发明名称
背光模组和液晶显示器

摘要
本发明涉及一种背光模组及液晶显示器。该背光模组包括一导光板，其包括一第一本体及一由该本体一端向远离该本体的方向延伸形成的延伸部。该本体包括平行于该延伸部延伸方向的一第一侧面，该延伸部在该本体的第一侧面所在水平面向外延伸一凸耳，该凸耳包括一入光面，该入光面位于该延伸部与该本体邻接处，该延伸部包括至少一侧面，该侧面上设置有反射结构；及至少一发光二极管，设置于入光面一侧；其中，该发光二极管出射的光束，从该入光面射入该延伸部，由设置有反射结构的该侧面反射后形成散光束进入该本体。该背光模组及液晶显示器的亮度较均匀。
1. 一种背光模组，其包括一导光板及至少一发光二极管，该导光板包括一撑板，其包括平行于该延伸部延伸方向的一第一侧面及一第二侧面，其特征在于：该背光模组进一步包括一由该撑板一端向远离该撑板的方向延伸形成的延伸部，该延伸部在该撑板的第一侧面所在水平面向外延伸一凸耳；该凸耳包括一入光面，该入光面位于该延伸部与该撑板相邻接处，该延伸部包括至少一侧面，其一端与该入光面相连，另一端与该撑板的该第二侧面相连，该侧面上设置有反射结构，该发光二极管设置在入光面一侧，该发光二极管射出的光束，从该入光面射入该延伸部，由设置有反射结构的该至少一侧面反射后形成发散光束进入该撑板。

2. 如权利要求 1 所述的背光模组，其特征在于：该入光面与该第一侧面相交并成一夹角，该夹角的角度为 110~130 度。

3. 如权利要求 1 所述的背光模组，其特征在于：该延伸部的与该入光面相对的侧面个数为一，该侧面为平滑曲面。

4. 如权利要求 1 所述的背光模组，其特征在于：该延伸部的与该入光面相对的侧面个数为三。

5. 如权利要求 4 所述的背光模组，其特征在于：该三个侧面为依序相连的一第三侧面、一第四侧面及一第五侧面，该第三侧面与该入光面相连，该第五侧面与该第二侧面处于同一平面内。

6. 如权利要求 5 所述的背光模组，其特征在于：该第三侧面与该入光面的连接处形成一夹角，该夹角的角度为 50~80 度。

7. 如权利要求 5 所述的背光模组，其特征在于：该第三侧面与该第四侧面的连接处形成一夹角，该夹角的角度为 110~130 度，该第四侧面与该第五侧面呈直角相连接。

8. 如权利要求 5 所述的背光模组，其特征在于：该第三侧面、第四侧面及第五侧面均为平面。

9. 如权利要求 5 所述的背光模组，其特征在于：该第四侧面及第五侧面均为平面，该第三侧面为平滑曲面。

10. 一种液晶显示器，其包括一液晶面板及与该液晶面板层
叠设置的一背光模组，由该背光模组射出的平面光入射该液晶面板，其特征在于：该背光模组为上述权利要求1至9项中任意一权利要求项所述的背光模组。
背光模组和液晶显示器

技术领域

本发明是关于一种背光模组和采用该背光模组的液晶显示器。

背景技术

由于液晶面板为一种非自发光的显示装置，为达到显示目的，需给液晶面板提供一面光源装置以实现其显示功能，如背光模组，其功能在于向液晶面板提供亮度充分且分布均匀的平面光。

习知背光模组包括光源及导光板，光源是相对导光板的入光面设置，该导光板引导自光源发出光束的传输方向，将线光源或点光源转换成面光源出射。该导光板的底面分布多个网点，用以破坏光束在导光板内部传输的全反射条件，且使其散射以提高导光板出射光束的均匀性，进而提升背光模组的整体性能。该网点的疏密、大小均可有不同设计以适应不同的背光模组。背光模组主要使用的点光源是发光二极管 (Light Emitting Diode，LED)光源，LED具有工作电压低、发光亮度高、响应速度快、寿命长的优点。但是，LED的出射光具较强的光学指向性，使得背光模组不易获得较佳的出光均匀度。

请参阅图1，是现有技术采用LED点光源的背光模组入射光线分布示意图。该背光模组1包括多个LED光源12及一导光板13，多个LED光源12设置在导光板13一侧面。光线自该多个LED光源12出射后进入导光板13，由于LED光源12的出射光具有一定发散角，使得导光板13入光侧出现光学暗区15。该光学暗区15主要分布在相邻LED光源12之间。

改善导光板13网点设计可消除上述的光学暗区，从而提高背光模组的出光均匀度。然，导光板13网点设计不易克服LED
发光角度限制。

发明内容

为了解决现有技术背光模组出光均匀度较低的问题，有必要提供一种出光均匀度较高的背光模组。

还有必要提供采用上述背光模组的液晶显示器。

一种背光模组，其包括：一导光板，其包括一本体及一由该本体一端向远离该本体的方向延伸形成的延伸部，该本体包括平行于该延伸部延伸方向的一第一侧面及一第二侧面，该延伸部在该本体的第一侧面所在水平面向外延伸一凸耳，该凸耳包括一入光面，该入光面位于该延伸部与该本体邻接处，该延伸部包括至少一侧面，其一端与该入光面相连，另一端与该本体的该第二侧面相连，该侧面上设置有反射结构；及至少一发光二极管，设置于入光面一侧，其中，该发光二极管出射的光束，从该入光面射入该延伸部，由设置有反射结构的该侧面反射后形成发散光束进入该本体。

一种液晶显示器，其包括一液晶面板及与该液晶面板层迭设置的一背光模组，由该背光模组射出的平面光入射该液晶面板，该背光模组包括：一导光板，其包括一本体及一由该本体一端向远离该本体的方向延伸形成的延伸部，该本体包括平行于该延伸部延伸方向的一第一侧面及一第二侧面，该延伸部在该本体的第一侧面所在水平面向外延伸一凸耳，该凸耳包括一入光面，该入光面位于该延伸部与该本体邻接处，该延伸部包括至少一侧面，其一端与该入光面相连，另一端与该本体的该第二侧面相连，该侧面上设置有反射结构；及至少一发光二极管，设置于入光面一侧，其中，该发光二极管出射的光束，从该入光面射入该延伸部，由设置有反射结构的该侧面反射后形成发散光束进入该本体。

与现有技术相比，由于上述背光模组包括一本体及一由该本体一端向远离该本体的方向延伸形成的延伸部，该延伸部相
对于本体延伸出一凸耳，该凸耳处设置入光面，至少一颗发光二极管对应该入光面设置，且该延伸部包括与该入光面相对的至少一侧向，该侧面上设置有反射结构，该发光二极管光源发射的具有一定发散角的光束，从该导光板入光面射入该延伸部，由设置有反射结构的该至少一侧向反射后，发散为大角度光束导向该本体。从而该背光模组的出射光较均匀。

与现有技术相比，由于液晶显示器采用上述出射光较均匀的背光模组，因此可提高该液晶显示器的显示质量且可降低该液晶显示器的显示所需的耗量。

附图说明

图 1 是一种现有技术采用 LED 点光源的背光模组入射光线分布示意图。

图 2 是本发明液晶显示器第一实施方式的立体分解示意图。
图 3 是图 2 所示液晶显示器的导光板及光源的平面示意图。
图 4 是本发明液晶显示器第二实施方式的局部平面示意图。
图 5 是本发明液晶显示器第三实施方式的局部平面示意图。
图 6、7 是本发明液晶显示器的其它实施方式的示意图。

具体实施方式

请参阅图 2，是本发明液晶显示器第一实施方式的立体分解示意图。该液晶显示器 2 包括一背光模组 20 及一与该背光模组 20 层迭设置的液晶面板 30。

该液晶面板 30 包括一显示区域 31，用于显示画面。

该背光模组 20 包括一导光板 21 及一光源 22。该光源 22 是一颗发光二极管。该导光板 21 引导光源 22 发出光束的传输方向，并将其转换成平面光从导光板 21 出射。

该导光板 21 包括一本体 25 及一由该本体 25 一端向远离该本体 25 的方向延伸形成的延伸部 26。该本体 25 包括一出光面 251、一与该出光面 251 相对的底面 253、分别与该出光面 251 相邻且相
对的一第一侧面254及一第二侧面255，该二侧面254、255平行于该延伸部26的延伸方向。该底面253设置有网点数组(图未示)以提高光线的面均匀度及光利用率，该每一网点为微棱镜形。

该延伸部26在该本体25的第一侧面254所在水平面向外延伸一凸耳，该凸耳呈三棱柱形，其包括一入光面261及一第三侧面263，该第三侧面263与该入光面261相交，并于该相交处形成一夹角α，该夹角α的角度为50~80度，且该延伸部26包括垂直相连的一第四侧面264及一第五侧面265。该凸耳的第三侧面263远离入光面261一端与该第四侧面264相交，该相交处形成一夹角β，该夹角β的角度为110~130度。其中，该第三侧面263、第四侧面264及第五侧面265均设置有一反射结构29，该反射结构29是将反射材料涂布于该第三侧面263、第四侧面264及第五侧面265所形成。该延伸部26进一步包括一与该入光面261、第三侧面263、第四侧面264、第五侧面265相连的底面267。该入光面261恰好可收纳一颗发光二极管发出的光束。

该延伸部26的该入光面261与该本体25的该第一侧面254相连并形成一夹角γ，该夹角γ的角度为110~130度，即该入光面261位于该延伸部26与该本体25邻接处。该延伸部26的第五侧面265与该本体25的第二侧面255处于同一平面内，该延伸部26的底面267与该本体25的底面253处于同一平面内。

该背光模组20进一步包括一反射片23，该反射片23形状与该导光板21的形状对应，其与该导光板21的底面267、253相邻设置。

意两束光线，分别经设置于该第三侧面263、第四侧面264及第三侧面263、第四侧面264、第五侧面265的反射结构29后射入该本体25。可见，光线A1、A2及其所夹的角度范围内的所有光线均可经设置于该第三侧面263、第四侧面264、第五侧面265的反射结构29反射后以不同角度射入该本体25。即，该发光二极管光源22出射的具有一定发散角的光束，从该导光板21入光面261射入该延伸部26由设置有反射结构29的该侧面263、264、265反射后，发散为大角度光束导向该本体25，该本体25引导自延伸部26的光束的传输方向，将光束转换成面光源由该出射面251出射。

相较于现有技术，由于上述背光模组20包括一本体25及一由该本体25一端向远离该本体25的方向延伸形成的延伸部26，该延伸部26于本体25的第一侧面254所在水平面向外延伸一凸耳，该凸耳包括一入光面261，一颗发光二极管光源22对应该入光面261设置，且该延伸部26包括与该入光面261相对的侧面263、264、265，该侧面263、264、265上设置有反射结构29，该发光二极管光源22出射的具有一定发散角的光束，从该导光板21入光面261射入该延伸部26，由设置有反射结构29的该侧面263、264、265反射后，发散为大角度光束导向该本体25。因此，该背光模组20与该液晶显示器2的显示区域31对应的部分出射光较均匀，即该液晶显示器2亮度较均匀。

请参阅图4，是本发明液晶显示器第二实施方式的局部平面示意图。其与第一实施方式不同的处在于：该导光板41的该第三侧面463为向入光面461凹陷的平滑曲面。

请参阅图5，是本发明液晶显示器第三实施方式的局部平面示意图。其与第一实施方式不同的处在于：该导光板51的延伸部56进一步包括一与该第四侧面564及第五侧面565接接的第六侧面568，该第六侧面568与该第四侧面564及第五侧面565的连接处均形成一夹角δ，该夹角δ的角度为120~150度。

但是，本发明液晶显示器并不限于上述实施方式所述。如
图6所示，该导光板61的延伸部66可以仅包括一与该入光面661相对的平滑曲线侧面669。还如图7所示，该导光板71的入光面761设置一凹陷部7611，用于容纳该光源72。该光源22也可以采用二颗发光二极管。