[发明名称]
苯基苄酰胺

[摘要]
本发明涉及新的式(I)的苯基苄酰胺化合物，这些物质的制备方法及其防治有害微生物的用途，以及新的中间体及其制备方法，其中R¹代表三氟甲基，氯，溴或碘以及R²代表氢，甲基或乙基。
1. 式(Ⅰ)的苯基苯酰胺化合物

其中

R¹ 代表三氟甲基，氯，溴或碘以及
R² 代表氢，甲基或乙基。

2. 根据权利要求1的式(Ⅰ)的苯基苯酰胺化合物，其中R²代表氢。

3. 根据权利要求1的式(Ⅰ)的苯基苯酰胺化合物，选自下列一组化合物：

N-[2-(1,3-二甲基丁基)苯基]-2-(三氟甲基)苯甲酰胺，
N-[2-(1,3-二甲基丁基)苯基]-2-氯苯甲酰胺，
N-[2-(1,3-二甲基丁基)苯基]-2-溴苯甲酰胺，
N-[2-(1,3-二甲基丁基)苯基]-2-碘苯甲酰胺，
2-(三氟甲基)-N-[2-(1,3,3-三甲基丁基)苯基]苯甲酰胺，
2-氯-N-[2-(1,3,3-三甲基丁基)苯基]苯甲酰胺，
2-溴-N-[2-(1,3,3-三甲基丁基)苯基]苯甲酰胺和
2-碘-N-[2-(1,3,3-三甲基丁基)苯基]苯甲酰胺。

4. 根据权利要求1的式(Ⅰ)的苯基苯酰胺的制备方法，其特征在于

a) 第一步，存在碱以及存在路易斯酸的条件下，将苯胺与式(Ⅱ)的烯反应

其中

R² 代表氢、甲基或乙基，

从而获得式(Ⅲ)的烷基苯胺衍生物
其中
R_2 代表氢、甲基或乙基，

b) 第二步，任选地存在酸结合剂以及任选地存在稀释剂的条件下，
将第一步获得的式(III)的烷基苯胺衍生物与式(IV)的苯甲酰氯反应，

其中
R^1 代表三氟甲基，氯，溴或碘。

5. 防治微生物的组合物，其特征在于它们包含至少一种权利要求1的
式(I)的苯基苯酰胺以及填充剂和/or表面活性剂。

6. 权利要求1的式(I)的苯基苯酰胺在作物保护和各种材料的保护方
面用于防治微生物的用途。

7. 在作物保护和各种材料的保护方面防治微生物的方法，其特征在
于将权利要求1的式(I)的苯基苯酰胺施用至微生物和/or它们的栖息地。

8. 防治微生物的组合物的制备方法，其特征在于将权利要求1的式(I)
的苯基苯酰胺与填充剂和/or表面活性剂混合。

9. 式(III)的烷基苯胺衍生物
其中
R² 代表甲基或乙基。
10. 根据权利要求 9 的式(Ⅲ)的烷基苯胺衍生物，其中
R² 代表甲基。
苯基苯酰胺

本发明涉及新的苯基苯酰胺，它们的制备方法及其防治不需要的微生物的用途。

目前，已发现新的式(I)的苯基苯酰胺化合物

![化学结构式](image)

其中
R¹ 代表三氟甲基，氯，溴或碘以及
R² 代表氢或甲基，
R² 还代表乙基。

而且，已发现式(I)的苯基苯酰胺是通过下述方法制备
a) 第一步，存在碱以及存在路易斯酸的条件下，将苯胺与式(II)的烯反应

![化学结构式](image)

其中
R² 代表氢或甲基，
R² 还代表乙基，
从而获得式(Ⅲ)的烷基苯胺衍生物

![结构式III](image)

其中
- R² 代表氢或甲基，
- R² 还代表乙基。

b) 第二步，任选地存在酸结合剂以及任选地存在稀释剂的条件下，将第一步获得的式(Ⅲ)的烷基苯胺衍生物与式(Ⅳ)的苯甲酰氯反应

![结构式IV](image)

其中
- R¹ 代表三氟甲基，氯，溴或碘。

最后，已发现新的式(Ⅰ)的苯基苯酰胺化合物具有很好的杀微生物活性，可用于作物以及材料的保护以防治有害微生物。

令人惊奇地，本发明式(Ⅰ)的苯基苯酰胺化合物与现有技术中具有同样作用谱的结构上最接近的活性化合物相比表现出显著的更高的杀真菌活性。

式(Ⅰ)提供了本发明的苯基苯酰胺的通式定义。
优选，其中 R² 代表氢的式(Ⅰ)的苯基苯酰胺化合物。
优选，其中 R² 代表甲基的式(Ⅰ)的苯基苯酰胺化合物。
优选，其中 R² 代表乙基的式(Ⅰ)的苯基苯酰胺化合物。
优选，其中 R¹ 代表三氟甲基或碘的式(Ⅰ)的苯基苯酰胺化合物。

根据本发明，式(Ⅰ)包括下列苯基苯酰胺化合物:
N-[2-(1,3-二甲基丁基)苯基]-2-(三氟甲基)苯甲酰胺，
N-[2-(1,3-二甲基丁基)苯基]-2-氯苯甲酰胺，
N-[2-(1,3-二甲基丁基)苯基]-2-溴苯甲酰胺，
N-[2-(1,3-二甲基丁基)苯基]-2-碘苯甲酰胺，
2-(三氟甲基)-N-[2-(1,3,3-三甲基丁基)苯基]苯甲酰胺，
2-氯-N-[2-(1,3,3-三甲基丁基)苯基]苯甲酰胺，
2-溴-N-[2-(1,3,3-三甲基丁基)苯基]苯甲酰胺，
2-碘-N-[2-(1,3,3-三甲基丁基)苯基]苯甲酰胺，
[2-(三氟甲基)苯基]-N-[2-(1,3,3-三甲基戊基)苯基]甲酰胺，
(2-氯苯基)-N-[2-(1,3,3-三甲基戊基)苯基]甲酰胺，
(2-溴苯基)-N-[2-(1,3,3-三甲基戊基)苯基]甲酰胺，
(2-碘苯基)-N-[2-(1,3,3-三甲基戊基)苯基]甲酰胺。

使用苯胺，4-甲基-1-戊烯和 2-(三氟甲基)苯甲酰氯作为起始物时，
本发明方法的反应过程可通过下述反应路线图进行解释：

在本发明制备方法的第一步中用作起始物的组分苯胺以及式(II)
的烯，也就是 4-甲基-1-戊烯，4,4-二甲基-1-戊烯和 4,4-二甲基-1-己烯，
通常都是用于合成的已知化合物并且是市场上可以购得的。

在本发明制备方法的第二步中用作起始物的式(IV)的苯甲酰氯，
也就是 2-(三氟甲基)苯甲酰氯，2-氯苯甲酰氯，2-溴苯甲酰氯和 2-碘
苯甲酰氯，通常都是用于合成的已知化合物并且是市场上可以购得的。

本发明制备方法的第一步(a)中获得的式(III)的烷基苯胺衍生物是
新化合物，同时也构成了本发明主题的一部分。

本发明的式(III)的烷基苯胺衍生物是 2-(1,3-二甲基丁基)苯胺，2-(1,3,3-三甲基丁基)苯胺和 2-(1,3,3-三甲基戊基)苯胺。

在本发明制备方法的第一步(a)中使用的适合的碱是所有常用于这些反应的无机和有机碱。优选使用铝颗粒(参见 DE-A 2730620)。

在本发明制备方法的第一步(a)中使用的适合的路易斯酸是所有常用于这些反应的化合物。优选使用氯化铝或氯化铁，特别是氯化铝(参见 DE-A 2730620)。

在本发明制备方法的第二步(b)中使用的适合的酸催化剂是所有常用于这些反应的无机和有机碱。优选使用碱土金属或碱金属的氢氧化物，如氢氧化钠，氢氧化钙，氢氧化钾或氢氧化铵，碱金属碳酸盐，如碳酸钠，碳酸钾，碳酸氢钾，碳酸氢钠，碱金属或碱土金属乙酸盐，如乙酸钠，乙酸钾，乙酸钙以及叔胺，如三甲胺，三乙胺，三丁胺，N,N-二甲基苯胺，吡啶，N-甲基哌啶，N,N-二甲基氨基吡啶，二氟化二环辛烷(DABCDO)，二氟化二环壬烯(DBN)或二氟化二环十一碳烯(DBU)。特别优选使用碳酸钾。

在本发明制备方法的第二步(b)中使用的适合的稀释剂是所有常用的惰性有机溶剂。优选使用任选卤代的脂族、脂环族或芳族烃，如石脑油，乙烷，戊烷，环己烷，甲基环己烷，苯，甲苯，二甲苯或萘烷，氯苯，二氯苯，二氯甲烷，氯仿，四氯化碳，二氯乙烷或三氯乙烷；醚类，如乙醚，二甲氧丙醚，甲基叔丁基醚，甲基叔戊基醚，二噁烷，四氢呋喃，1,2-二氯氧乙烷，1,2-二氯氧乙烷或甲基苯酮；腈类，如乙腈，丙腈，正或异丁腈或苄腈；酰胺类，如 N,N-二甲基酰胺，N,N-二甲基乙酰胺，N-甲基酰胺，N-甲基吡咯烷酮或六甲基磷酸三胺；酯类，如乙酸甲酯或乙酸乙酯；亚砜，如二甲基亚砜；或砜，如环丁砜，特别优选使用乙腈。

在本发明制备方法第一步骤(a)中，反应温度各自可在相对宽的范围内变化，通常，第一步是在 100°C 至 300°C，优选 150°C 至 280°C，更优选 200°C 至 260°C 的温度下进行。

通常，本发明制备方法各自是在升压，1巴至 250 巴的条件下进行。优选在升压的 50 巴至 150 巴的条件下进行。

在本发明制备方法第二步骤(b)中，反应温度可在相对宽的范围内变
化。通常，第二步是在-20℃至180℃，优选10℃至50℃的温度下进行。

通常，本发明制备方法的第二步(b)各自是在大气压下进行。然而，各自还可以在升压或减压条件下进行操作。

在本发明制备方法的第一步(a)中，通常，每摩尔苯胺使用1-10摩尔，优选1.5-5摩尔，特别优选2-2.5摩尔的4-甲基-1-戊烯。然而，还可以其它比例加入反应组分。通过常规方法进行处理。通常，将反应混合物与甲苯和碱水溶液一起搅拌，分离有机相，然后干燥，减压浓缩。如需要，通过常规方法去除剩余的残留物中可能还存在的杂质，如通过色谱法，蒸馏法或重结晶方法。

在本发明制备方法的第二步(b)中，通常，每摩尔苯胺氯使用1摩尔或过量的苯胺。然而，还可以其它比例加入反应组分。通过常规方法进行处理。通常，将反应混合物与甲苯合并萃取，分离有机相，然后干燥，减压浓缩。如需要，通过常规方法去除剩余的残留物中可能还存在的杂质，如通过色谱法或重结晶方法。

本发明化合物具有很强的杀菌、微生物活性并可在作物保护和各种材料的保护方面用于防治有害微生物，如真菌和细菌。

在作物保护方面，杀真菌剂可适用于防治根肿病菌属、卵菌属、壶菌属、接合菌属、子囊菌属、担子菌属和半知菌属真菌。

作物保护中杀细菌剂可用于防治假单胞菌科、根瘤菌科、肠杆菌科、棒杆菌科和链霉菌科的细菌。

可归入上述属名的引起真菌和细菌病害的某些病原物将以实例列于下面，但并不限于此：

黄单胞菌属，例如，野油菜黄单胞菌水稻致病变种；
假单胞菌属，例如，丁香假单胞菌黄瓜致病变种；
欧文氏菌属，例如，梨火疫病欧文氏菌；
腐霉属，例如，腐霉属；
疫霉属，例如，蔓延疫霉；
假霜霉属，例如，芋草假霜霉或古巴假霜霉；
单轴霉属，例如，葡萄生单轴霉；
盘梗霉属，例如，莴苣盘梗霉；
霜霉属，例如豌豆霜霉或芸苔霜霉；
白粉菌属，例如禾白粉菌；
单丝壳菌属，例如苍耳单丝壳菌；
柄球菌属，例如苹果白粉病柄球菌；
黑星菌属，例如苹果黑星菌；
核腔菌属，例如圆核腔菌或麦类核腔菌
(分生孢子型:德斯霉，异名:长蠕孢属)；
旋孢霉属，例如禾旋孢霉(小麦根腐病菌)
(分生孢子型:德斯霉，异名:长蠕孢属)；
单胞锈菌属，例如疮顶单胞锈菌(菜豆单胞锈菌)；
柄锈菌属，例如隐匿柄锈菌；
核盘菌属，例如油菜核盘菌；
腥黑粉菌属，例如小麦腥黑粉菌；
黑粉菌属，例如裸黑粉菌(麦散黑粉菌)或燕麦黑粉菌；
薄膜革菌属，例如佐佐木氏薄膜革菌；
梨孢霉属，例如稻梨孢(稻瘟病菌)；
镰孢属，例如大刀镰孢；
葡萄孢属，例如灰色葡萄孢；
壳针孢属，例如颖枯壳针孢(小麦颖枯病菌)；
小球腔菌属，例如冰草颖枯病菌的有性阶段；
尾孢属，例如 Cercospora canescens；
链格孢属，例如甘蓝黑斑病链格孢；以及
假尾孢属，例如小麦眼斑(基腐病)菌。

本发明活性化合物还对植物具有很好的增强作用。因此，它们可用于调动植物的防御能力以抵抗有害微生物的侵染。

在本发明中，植物-增强(诱导抗性)物质可以理解为表示能够刺激植物的防御系统以使处理的植物在随后接种有害微生物时，对这些微生物表现出显著抗性的那些物质。

在这种情况下，有害微生物可以理解为表示植物病原真菌，细菌和病毒。因此，本发明化合物可于保护处理后一段时间内的植物以抵抗上述病原物的侵染。通常，在用活性化合物处理植物后，提供保护的时间可延续1-10天，优选1-7天。
由于当以防治植物病害所需浓度使用时，植物对本发明活性化合物具有很好的耐受性，因此可用于处理植物的地上部分，繁殖块茎和种子以及土壤。

本发明活性化合物还适用于提高作物的产量。此外，它们表现出减小毒性以及很好的植物耐受性。

本发明活性化合物任选在特定的浓度和使用量下还可用作除草剂，用于调节植物生长和防治害虫。任选可以作为合成其它活性化合物的中间体和母体。

本发明活性化合物可用于处理所有植物和植物的各部分。本发明中植物可以理解为表示所有植物以及植物群落如需要和不需要的野生植物或作物（包括自然长出的作物）。作物可以是通过常规植物育种和优化方法或通过生物技术和遗传工程方法或上述方法的结合获得的植物，包括转基因植物以及包括获得或没有获得植物育种权保护的植物栽培品种。植物的各部分可理解为表示所有地上和地下部分以及植物器官如茎、叶、花和根，可提及的实例为叶片、针叶、枝条、树干、花、子实体、果实、种子、根、块茎和根状茎。植物各部分还包括收获的植物材料以及植物的无性和有性繁殖材料，例如种苗、块茎、根状茎、插条和种子。

使用本发明活性化合物对植物和植物各部分的处理是通过常规处理方法直接施用或对化合物施用于它们的周围环境、生境或贮藏区进行处理，例如通过浸渍、喷雾、熏蒸、弥雾、撒播、刷涂以及在繁殖材料特别是种子的情况下还可以进行一层或多层包衣。

用于保护材料时，本发明化合物可用于保护工业材料使之免受不期望的微生物的侵染和损坏。

在本发明中工业材料可以理解为表示在工业领域已制备使用的非生命物质。例如，使用本发明活性化合物可保护其免受微生物影响或破坏的工业材料可以是胶粘剂、胶、纸和板、纺织品、皮革、木材、涂料和塑料制品、冷却润滑剂以及可被微生物侵染或破坏的其它材料。生产车间的各部件，例如可受微生物增殖而破坏的冷却水循环系统也包括在需要保护的材料范围内。本发明范围内可提及的工业材料优选胶粘剂、胶、纸和板、皮革、木材、涂料、冷却润滑剂和传热液体，特别优选木材。
可腐蚀或改变工业材料的微生物例如是细菌、真菌、酵母、藻和粘菌。本发明活性化合物优选杀真菌，特别是霉菌，使木材变色及腐蚀木材的真菌（担子菌纲），以及杀粘菌和藻类。

下列属的微生物作为实例提出：
链格孢属，例如纤细链格孢，
曲霉属，例如黑色曲霉，
毛壳霉属，例如球毛壳霉，
粉孢革菌属，例如简单粉孢革菌，
香菇属，例如 Lentinus tigrinus，
青霉属，例如灰绿青霉，
多孔菌属，例如变色多孔菌，
短柄霉属，例如出芽短柄霉，
Sclerophoma，例如 Sclerophoma pityophila，
木霉属，例如绿色木霉，
埃希氏杆菌属，例如大肠杆菌，
假单胞菌属，例如铜绿假单胞菌（绿脓杆菌），以及
葡萄球菌属，例如金黄色葡萄球菌。

根据它们各自的物理和/或化学性质，可将活性化合物加工成常规制剂，例如溶液、乳剂、悬浮剂、粉剂、泡沫剂、糊剂、颗粒剂、气溶胶以及聚合物包封的微胶囊剂以及种子包衣剂，和超低容量冷和热弥散剂。

这些制剂是以已知方法生产的，例如，通过将活性化合物与填充剂，即液体溶剂，加压液化气体，和/或固体载体混合而生产，制剂中可选择使用表面活性剂，即乳化剂和/或分散剂，和/或发泡剂。在使用水作为填充剂的情况下，例如，也可使用有机溶剂作为助溶剂。适当的液体溶剂主要有：芳香烃类如二甲苯，甲苯或烷基苯，氯代芳烃类或氯代脂肪烃类如氯苯，二氯乙烷或二氯甲烷，脂肪烃类如环己烷或石蜡，例如矿物油液份，醇类如丁醇或乙二醇及其醚和酯，酮类如丙酮，甲基乙基酮，甲基异丁基酮或环己酮，强极性溶剂如二甲基甲酰胺和二甲基亚砜，以及水。液化气体填充剂或载体意为在室温和大气压下呈气态的液体，例如气雾推进剂如卤代烃类以及丁烷，丙烷，氮气和二氧化碳。适当的固体载体有：例如，天然矿物粉末如高岭土，粘
土，滑石，白垩，石英，硅镁土，蒙脱土或硅藻土，和合成矿物粉末。如高分散二氧化硅，氧化铝和硅酸盐。适合颗粒剂的固体载体有：例如粉碎和分级的天然岩石如方解石，大理石，浮石，海泡石和白云石，或无机的合成颗粒和有机粉末，如有机材料的颗粒如铝末，椰子壳，玉米穗茎和烟草茎。适当的乳化剂和/或发泡剂有：例如非离子和阴离子乳化剂，如聚氧乙烯脂肪酸酯，聚氧乙烯脂肪醇醚，例如烷芳基聚乙二醇醚，烷基磺酸盐，烷基磷酸盐，芳基磺酸盐以及蛋白水解产物。适合的分散剂有：例如木素素亚硫酸酯液和甲基纤维素。

在制剂中还可使用粘着剂，如羧甲基纤维素以及粉末、颗粒或胶乳状的天然或合成聚合物，如阿拉伯树胶，聚乙烯醇和聚乙酸乙烯酯，以及天然磷脂，如脑磷脂和卵磷脂，和合成磷脂。其它可能的添加剂可以是矿物油和植物油。

可以使用的着色剂，如有机颜料，例如氧化铁，氧化铁和普鲁士兰，和有机染料，如茜素染料，偶氮染料和金属酞菁染料，和微量营养物如金属盐，例如，铁、锰、硼、铜、钴和锌的盐。

制剂中通常含有按重量计0.1％-95％，优选按重量计0.5-90％的活性化合物。

本发明活性化合物可以其本身或它们的制备形式使用，还可以与其他已知活性化合物混合使用，它其它活性化合物如杀真菌剂，杀菌剂，杀螨剂，杀线虫剂或杀虫剂，以使例如扩大活性谱或阻止抗性发展。在许多情况下，可获得增效作用，即混合物的活性大于单一组分的活性。

适于混合的组分的实例包括下列化合物：

杀真菌剂：
2-苯基苯酚，8-羟基喹啉硫酸盐；

噻二唑素（acibenzolar-S-甲基），aldimorph，amidoflumet，氯丙膦酸，氯丙膦酸钙盐，andoprim，敌菌灵，环环唑，腈噻菌酯，

苯霜灵，麦锈灵，苯菌灵，benthiavalicarb-isopropyl，苄烯酸，苄烯酸氯丁酯，双丙氨酯，乐杀螨，联苯，联苯三唑醇，灭菌素，烯菌唑，乙嘧酚磺酸酯，丁硫啶，丁胺，

石硫合剂，capsimycin，敌菌丹，克菌丹，多菌灵，萎锈灵，carpropamid，carvone，灭螨灵，灭蚜唑，苯咪唑菌，地茂散，百
菌清，乙菌利，clozylacon， cyazofamid，cyflufenamid，霜脲氰，环丙唑醇，嘧菌环胺，酯菌胺，

咪草酯G，咪菌威，diclofluanid，二氯芬酰，双氯酚，diclocymet，
哒菌酮，氯硝胺，乙霉威，苯醚甲环唑，氟嘧菌胺，二甲嘧酚，烯酰
吗啉，dimoxystrobin，烯唑醇，烯唑醇-M，敌螨谱，二苯胺，吡菌
硫，灭菌磷，二氯蒽醌，多果定，敌菌酮，

敌瘟磷，氧唑菌，ethaboxam，乙嘧酚，土菌灵，

噁唑酮菌，fenamidone，咪菌腈，氯苯嘧啶醇，腈苯唑，呋菌胺，
fenhexamid，种衣酯，fenoxanil，拌种咯，苯锈啶，丁苯吗啉，福美
铁，氟吡胺，噻唑锰，氟噻菌，氟联苯菌，flumorph，氟氯苯核利，
fluoxastrobins，氟嘧唑，呋嘧唑，氟硅唑，磺菌胺，氯酰胺，粉唑醇，
灭菌丹，三乙膦酸铝，三乙膦酸铝，麦穗宁，吡霜灵，呋吡唑灵，灭
菌胺，拌种胺，

双胍盐，

六氯苯，乙唑醇，恶霉灵，

抑霉唑，亚胺唑，双胍辛酮酸盐，双八酚盐，iodocarb，种菌唑，
异稻瘟净，异菌脲，iprovalicarb，irumamycin，稻瘟灵，氟苯咪菌
酶，

春雷霉素，亚胺菌(kresoim-methyl)，

代森锰锌，代森锰，meferimzone，嘧菌胺，灭锈胺，甲霜灵，
精甲霜灵，叶菌唑，磺菌威，呋菌胺，代森联，叉氯苯酰胺，噻菌胺，
三多霉素，睛菌唑，甲菌利，

多马霉素，nicobifen，异丙消，noviflumuron，氟苯嘧啶醇，

呋酰胺，orysastrobin，恶霜灵，喹菌酮，oxpoconazole，氧化萎
锈灵，oxyfenthin，

多效唑，稻瘟酯，戊菌唑，戊菌隆，氯菌磷，四氯苯酞，
picoxystrobin，哌丙灵，多抗霉素，polyoxorim，烯丙苯噻唑，咪鲜
胺，腐霉利，霜霉威，propanosine-sodium，丙环唑，丙森锌，
proquinazid，prothioconazole，pyraclostrobin，吨菌磷酸，啶斑肟，噻
霉胺，咯嘧酮，氯吡嘧醚，pyrrolenitrine，唑嘧菌酮，唑氧灵，五氯
硝基苯，

simeconazole，spiroxamine，硫，
戊唑醇，叶枯醚，四氢硝基苯，四环唑，四氯唑烷，噻菌灵，噻菌腈，溴氯唑菌，甲基硫菌灵，福美双，硫氟苯甲酰胺，甲基立枯磷，甲苯氯磺胺，三唑酮，三唑醇，叶锈特，咪唑嗪，水杨菌胺，三环唑，十三吗啉，trifloxystrobin，氟菌唑，唑胺灵，灭菌唑，
烯效唑，有效霉素A，乙烯菌核利，代森锌，福美锌，zoxamide；
(2S)-N-[2-[4-[[3-(4-氯苯基)-2-丙炔基]氧基]-3-甲氧基苯基]乙基]-3-甲基-2-[[甲基磺酰基]氧基]丁酰胺；
1-(1-苯基)-1H-吡咯-2,5-二酮，
2,3,5,6-四氯-4-(甲磺酰基)-吡啶，
2-氨基-4-甲基-N-苯基-5-噻唑甲酰胺，
2-氯-N-(2,3-二氯-1,1,3-三甲基-1H-茚-4-基)-3-吡啶甲酰胺，
3,4,5-三氯-2,6-吡啶二甲胺，
actinovate，
顺式-1-(4-氯苯基)-2-(1H-1,2,4-三唑-1-基)-环庚酮，
1-(2,3-二氢-2,2-二甲基-1H-茚-1-基)-1H-咪唑-5-羧酸甲酯，
碳酸氢钾，
N-(6-甲氧基-3-吡啶基)-环丙烷甲酰胺，
N-丁基-8-(1,1-二甲基乙基)-1-氧杂螺[4.5]癸烷-3-胺，
四硫碳酸钠，
以及铜盐及其制剂，如波尔多液，氢氧化铜，环烷酸铜，王铜，
硫酸铜，硫杂灵，氧化铜，锰钢混剂，噻嗪铜。
杀虫剂：
溴硝丙二醇，双氯酚，三氯甲基吡啶，福美镍，春雷霉素，辛噻酮，
呋喃羧酸，土霉素，烯丙苯噻唑，链霉素，叶枯醚，硫酸铜和其它铜制剂。
杀虫剂/杀螨剂/杀线虫剂：
阿维菌素、乙酰甲胺磷、啶虫脒、氧丙菊酯、烯啶虫威、氟虫威，
烯虫威，顺式氯氟菊酯、甲体氯氟菊酯、双甲脒、齐墩果酸、AZ 60541，
艾扎丁、甲基吡螨磷、乙基谷硫磷、谷硫磷、三唑锡，
日本甲虫芽孢杆菌、球形芽孢杆菌、枯草芽孢杆菌、苏云金芽孢杆菌、baculoviruses、
蛋白僵菌、纤细白僵菌、恶虫威、丙硫克百威、
杀虫磷、苯螨特、高效氯氟菊酯、联苯肼酯、联苯菊酯、
bioethanomethrin、生物氯菊酯、bistrifluron，仲丁威、溴硫磷 A、合杀威、噻嗪酮、特疋硫磷、丁醚威、butylpyridaben，
硫线磷、甲基威、克百威、三硫磷、丁硫克百威、杀螟丹、
chloethocarb、氯氧磷、氯唑虫清、毒虫畏、氯啶脲、氧甲磷、毒死蜱、甲基毒死蜱、chlovaporthrin、chromafenozide，顺式苄呋菊酯、
顺式氯菊酯、clocthrin、除虫威、四螨嗪、clothianidin，杀螟腈、
cycloprene、乙氧菊酯、氟氯氰菊酯、氯氟氰菊酯、三环锡、氯氟菊酯、灭蝇胺
溴氟菊酯、甲基内吸磷、内吸磷硫酰式异构体、甲基内吸磷硫酰式异构体、丁醚脲、二嗪磷、敌敌畏、三氯杀螨醇，除虫脲、乐果、
甲基毒虫畏、苯虫酰、乙拌磷、磷酸二辛、苯氧炔螨
efusilanate、emamectin、右旋烯炔菊酯、硫丹、虫霉属、S-氯戊聚酯、乙硫苯威、乙硫磷、灭线磷、醚菊酯、特苯恶唑、乙嘧硫磷
苯线磷、噻螨酯、苯丁锡、杀螟硫磷、苯硫威、fenoxacrin、苯氧威、甲氰菊酯、fenpyrad、fenpyrithrin、唑螨酯、氟戊菊酯、氯虫腈、啶蜱脲、溴氯菊酯、氟环胺、氯氟戊菊酯、氟虫脲、氟氯苯菊酯、
flutenzine、氰胺菊酯、地虫硫磷、丁苯硫磷、噻唑磷、fubfenprox、
呋线威
颗粒体病毒
特丁苯酰肼、六六六、庚烯磷、氯铃脲、噻螨酮、烯虫乙酯、
吡虫啉、氯二唑虫、氯唑磷、异柳磷、恶唑磷、氯溴螨素
核多角体病毒
高效氯氰菊酯、氟丙氧菊
马拉硫磷、灭蚜磷、四聚乙醛、甲胺磷、Metharhizium anisopliae、
Metharhizium flavoviride、杀扑磷、甲硫威、苯五—五、灭多威、甲氧烷酰肼、速灭威、恶虫酮、速灭磷、milbemycin、米尔螨素、久效磷
二氯磷、烯啶虫胺、硝虫噻嗪、双苯氟脲
氯乐果、杀线威、亚砜磷
玫瑰色拟青霉、对硫磷 A、甲基对硫磷、氯菊酯、稻丰散、甲拌磷、
伏杀硫磷、亚胺硫磷、磺胺、辛硫磷、抗蚜威、乙基嘧啶磺、甲基嘧啶磷、丙溴磷、猛杀威、克螨特、残杀威、丙硫磷、发硫磷、吡
蛇酶、吡唑硫磷、反灭虫菊、除虫菊素、哒螨灵、pyridathion、嘧螨酯、蚊蝇酯

嘧硫磷，ribavirin

杀抗松、硫线磷、氟硅菊酯、艾克敌 105、spirodiclofen、sulphotep、硫丙磷

氟胺氧菊酯、虫酰肼、吡螨胺、嘧丙磷、氟苯脲、七氟菊酯、双硫磷、灭虫畏、特丁硫磷、杀虫畏、三氯杀螨砜、辛体氧氟菊酯、thiacloprid、thiamethoxam、噻丙脂、thiatriphos、硫环杀、硫双威、久效威、敌百特、溴氯菊酯、四溴菊酯、苯螨噻、唑螨威、三唑磷、thiazuron、氯咪唑、敌百虫、杀虫脲、混杀威

蛇灭多、氯吡虫、麦柯特尔

Y1 5302、乙体氧氟菊酯、zolaprofos

(1R-顺)-[5-(苯基甲基)-3-呋喃基]-甲基-3-[(二氯-2-氧-3(2H)-亚呋喃基)-甲基]-2,2-二甲基环丙烷羧酸酯

(3-苯氧基苯基)-甲基-2,2,3,4-四甲基环丙烷羧酸酯
1-[(2-氯-5-噻唑基)甲基]-四氢-3,5-二甲基-N-硝基-1,3,5-三嗪-2(1H)-亚胺

2-(2-氯-6-氟苯基)-4-[4-(1,1-二甲基乙基)苯基]-4,5-二氯-唑
2-(乙酰氧基)-3-十二烷基-1,4-氧二酮
2-氟-N-[[4-(1-苯基乙氧基)-苯基]-氨基]-羧基]-苯甲酰胺
2-氟-N-[[4-(2,2-二氯-1,1-二氯乙氧基)-苯基]-氨基]-羧基]-苯甲酰胺

3-甲基苯基-丙基环丙基甲酸酯
4-[4-(4-乙氧基苯基)-4-甲基戊基]-1-氟-2-苯氧基-苯
4-氯-2-(1,1-二甲基乙基)-5-[[2-(2,6-二甲基-4-苯氧基苯氧基)乙基]-硫代]-3(2H)-哒嗪酮
4-氯-2-(2-氧-2-甲基丙基)-5-[[6-羟-3-吡啶基]甲氧基]-3(2H)-哒嗪酮
4-氯-5-[[6-氧-3-吡啶基]甲氧基]-2-(3,4-二氯苯基)-3(2H)-哒嗪酮

苏云金芽孢杆菌 EG-2348 株系

2-苯甲酰基-1-(1,1-二甲基乙基)-肼基苯甲酸
2,2-二甲基-3-(2,4-二氯苯基)-2-氧-1-氧杂螺[4,5]癸-3-烯-4-基丁酸酯
[3-[(6-氧-3-吡啶基)甲基]-2-噻唑亚烷基]-氨腈
二氯-2-(硝基亚甲基)-2H-1,3-噻嗪-3(4H)-甲醛
[2-[[1,6-二氧-6-氧-(苯甲基)-4-嘧啶基]氧代]乙基]-氨基甲酸乙酯
N-(3,4,4-三氟-1-氧-3-丁烯基)-甘氨酸
N-(4-氯苯基)-3-[4-(二氯甲氧基)苯基]-4,5-二氧-4-苯基-1H-吡啶-1-
甲酰胺
N-[(2-氯-5-噻唑基)甲基]-N’-甲基-N’’-硝基-胺
N-甲基-N’-(1-甲基-2-丙烯基)-1,2-二硫代甲酰胺
N-甲基-N’-2-丙烯基-1,2-二硫代甲酰胺
[2-(二丙基氨基)-2-氧代乙基]-乙基硫代磷酰氨基 O,O-乙二酯
N-氯基甲基-4-三氯甲基酰胺
3,5-二氯-1-(3,3-二氯-2-丙烯氧基)-4-[3-(5-三氯甲基吡啶-2-基氧基)
丙氧基]苯
还可与其它已知活性化合物如除草剂或肥料以及生长调节剂混合。
此外，本发明式(1)化合物还具有很强的抗真菌活性。它们具有
很宽的抗真菌活性谱，特别是抗皮肤真菌和酵母菌，霉菌和两阶段真
菌(diphasic fungi)(例如抗假丝酵母属，例如白色假丝酵母，Candida
glabrata)以及果状表皮癣菌，曲霉属，如黑色曲霉和烟曲霉，发癣菌
属，如须发癣菌，小孢子菌属如犬小孢子菌和头癣小孢子菌。上述所
列真菌并不表示限制于所覆盖的真菌谱，而是仅作为列举。
活性化合物可以其本身直接使用或以它们的制剂形式或由其制备
的应用形式使用，如现混现用溶液，悬浮剂，可湿性粉剂，糊剂，可
溶性粉剂，粉剂和颗粒剂。它们可以常规方式施用，例如浇灌，喷雾，
弥雾，撒播，喷粉，形成泡沫，撒布等方式。还可以将活性化合物通
过超低容量方法施用或将活性化合物制剂或活性化合物本身注入土
壤。还可以用于处理植物种子。
当将本发明活性化合物用作杀真菌剂时，根据施用方式的不同，
使用量可在相对宽的范围内变化。在用于处理植物各部分时，活性化
合物的用量通常为0.1-10,000g/ha，优选10-1000g/ha。当种子处理时，
活性化合物的用量通常为每公斤种子0.001-50g，优选每公斤种子0.01-
10g。在土壤处理时，活性化合物的用量通常为0.1-10,000g/ha，优选1-5000g/ha。

如上所述，用本发明活性化合物可以处理所有植物以及它们的各部分。在优选实施方案中，处理野生植物种以及植物栽培品种，或通过常规生物育种方法，例如杂交或原生质体融合获得的植物以及它们的各部分。在另一优选实施方案中，处理的植物是通过遗传工程方法，如需要结合常规育种方法获得的转基因植物(遗传修饰生物体)和植物栽培品种及它们的各部分。对于术语“各部分”或“植物的各部分”或“植物各部分”上面已经进行了说明。

特别优选，本发明处理的是各自市场上可以购得的或通用的植物栽培品种。植物栽培品种可以理解为表示通过常规植物育种，诱变或重组DNA技术获得的具有新的特性(“性状”)的植物。它们可以是品种，变种，生物型或基因型。

根据植物种或植物栽培品种，它们的生长场所和生长条件(土壤，气候，营养生长期，养分)，本发明处理方法还可以获得超加合(“增效”)作用。因此，例如，可以产生以下结果：减少施用量和/或扩大作用范围和/或提高本发明使用的化学物质及组合物的活性，更佳的植物长势，提高作物对高温或低温的耐受性，增强作物对旱或涝或土壤盐度的耐受能力，增加开花率，更易于收获，加速成熟，更高的产量，品质更优和/或收获产品具有更高的营养价值，更好的贮藏稳定性和/或收获产品的加工性能，上述这些方面都超出了实际预期的效果。

本发明优选处理的转基因植物或植物栽培品种(即通过遗传工程方法获得的)包括那些通过遗传修饰获得遗传物质的所有植物，其中所述遗传物质赋予这些植物特别有价值的特性(“性状”)。上述特性的事例包括植物的长势更好，提高了对高温或低温的耐受性，增强了对旱或涝或土壤盐度的耐受能力，提高开花率，易于收获，加速成熟，更高的产量，品质更优和/或收获产品具有更高的营养价值，更好的贮藏稳定性和/或收获产品的加工性能。上述特性中另一些特别优选的事例是提高植物对动物以及微生物害虫的防御能力，如抗昆虫，螨，植物病原真菌，细菌和/或病毒，以及提高植物对某些除草活性化合物的耐受能力。可提及的转基因植物的实例包括重要的经济作物，如禾谷类(小麦，水稻)，玉米，大豆，马铃薯，棉花，油菜以及果树(苹果，梨，
柑桔和葡萄)以及特别优选玉米，大豆，马铃薯，棉花和油菜。特别优选的性状是通过在植物体内生成毒素来提高植物对昆虫的防御能力，特别是通过源于苏云金芽孢杆菌的遗传物质(例如通过基因CryIA(a), CryIA(b), CryIA(c), CryIIB, CryIIC, Cry2Ab, Cry3Bb和CryIF及其组合)在植物体(下文称作“Bt 植物”)内产生的那些毒素。还特别优选的性状是通过系统获得抗性(SAR)，系统素，植物抗毒素，激素素以及抗性基因及相应的表达蛋白和毒素来提高植物对真菌，细菌和病毒的抗性。另一些特别优选的性状是提高植物对下述某些除草活性化合物的耐受性，如咪唑啉酮，磺酰脲，草甘膦或膦基麦黄酮(tricin)(例如“PAT”基因)。在转基因植物中，各自赋予上述所需性状的基因还可以互相组合。可提及的“Bt 植物”实例包括下述的玉米品种，棉花品种，大豆品种和马铃薯品种，它们都是市场上可以买得到的并且商品名为YIELD GARD® (例如玉米，棉花，大豆)，KnockOut® (例如玉米)，StarLink® (例如玉米)，Bollgard® (棉花)，Nucoton® (棉花)和NewLeaf® (马铃薯)。可提及的耐除草剂植物的实例是下述的玉米品种，棉花品种和大豆品种，它们都是市场上可以买得到的且商品名为Roundup Ready® (耐草甘膦的植物品种，例如玉米，棉花，大豆)，Liberty Link® (耐膦基麦麦黄酮的植物品种，例如油菜)，IMI® (耐咪唑啉酮的植物品种)以及STS® (耐磺酰脲的植物品种，例如玉米)。可提及的抗除草剂植物(通过除草剂耐受性的常规育种方法获得的植物)包括商品名为Clearfield® (例如玉米)的市售植物品种。当然，上面的描述同样也适用于具有这些遗传性状或仍需要研究的遗传性状的那些植物品种，其中这些植物未来将研发和/或将要投放市场。

在本发明特别优选方式中使用本发明式 I 化合物或活性化合物混合物可以处理前面所列植物。上述对活性化合物或混合物的优选范围也适用于这些植物的处理。特别优选本文中特别提及的化合物或混合物处理植物。

本发明将通过下述实施例解释活性化合物的制备和应用。

制备实施例

实施例1: 制备式(III)的2-(1,3-二甲基丁基)苯胺
在钢制高压釜中，将62.8g(0.67mol)的苯胺，132.8g(1.58mol)的4-甲基-戊-1-烯，1.82g铝颗粒和5.58g(41.8mmol)的氯化铝的混合物加热至255℃，将反应混合物保持在上述温度和自身压力下10小时。

为进行处理，在冷却和放气后，用甲苯将高压釜中的内容物定量转移至新的容器中，在30-40℃，与80ml的40%浓度的氢氧化钠水溶液和100ml水一起搅拌15分钟。分离出有机相，用水洗涤并用碳酸钾干燥。使用旋转蒸发仪除去甲苯，然后将剩余物进行分馏。

由此获得43.9g(33%)的2-(1,3-二甲基丁基)苯胺，无色油状物(沸程73-85℃，0.3mbar)

实施例2: N-[2-(1,3-二甲基丁基)苯基]-2-(三氟甲基)苯甲酰胺

将5.32g(30mmol)的2-(1,3-二甲基丁基)苯胺(实施例1)和6.26g(30mmol)的2-(三氟甲基)苯甲酰氯逐滴加入至4.15g碳酸钾的200ml乙腈悬浮液中。将反应混合物搅拌10小时。

为进行处理，向反应溶液中加入200ml水，将混合物用乙酸乙酯萃取。用硫酸钠干燥有机相并浓缩。将剩余物过硅胶色谱(梯度环己烷100%至环己烷/乙酸乙酯1:4)。

由此获得5.00g(46%)的N-[2-(1,3-二甲基丁基)苯基]-2-(三氟甲基)苯甲酰胺，logP(pH2.3)= 4.09.
实施例3: N-[2-(1,3-二甲基丁基)苯基]-2-碘苯甲酰胺

将3.55g(20mmol)的2-(1,3-二甲基丁基)苯胺(实施例1)和5.33g(20mmol)的2-碘苯甲酰氯逐滴加入至2.76g碳酸钾的100ml乙腈悬浮液中，将反应混合物搅拌10小时。

为进行处理，向反应溶液中加入100ml水，将混合物用乙酸乙酯萃取。用硫酸钠干燥有机相并浓缩。将剩余物过硅胶色谱(梯度环己烷100%至环己烷/乙酸乙酯1:4)。

由此获得，7.00g(83%)的N-[2-(1,3-二甲基丁基)苯基]-2-碘苯甲酰胺，logP(pH2.3)=4.12。

类似上述实施例，以苯胺和4-甲基戊-1-烯和2-氯苯甲酰氯和2-溴苯甲酰氯作为起始物，分别制备下述化合物:

实施例4: N-[2-(1,3-二甲基丁基)苯基]-2-氯苯甲酰胺
[logP(pH2.3)=3.98]

实施例5: N-[2-(1,3-二甲基丁基)苯基]-2-溴苯甲酰胺
[logP(pH2.3)=4.01]

而且，类似上述实施例，以苯胺和4,4-二甲基-1-戊烯和2-(三氟甲基)苯甲酰氯，2-氯苯甲酰，2-溴苯甲酰氯和2-碘苯甲酰氯作为起始物，分别制备下述化合物:

实施例6: 2-(三氟甲基)-N-[2-(1,3,3-三甲基丁基)苯基]苯甲酰胺
[logP(pH2.3)=4.36]

实施例7: 2-氯-N-[2-(1,3,3-三甲基丁基)苯基]苯甲酰胺
[logP(pH2.3)=4.25]

实施例8: 2-溴-N-[2-(1,3,3-三甲基丁基)苯基]苯甲酰胺
[logP(pH2.3)=4.29]

实施例9: 2-碘-N-[2-(1,3,3-三甲基丁基)苯基]苯甲酰胺
实施例10: 2-(碘苯基)-N-[2-(1,3,3-三甲基戊基)苯基]甲酰胺
[logP(pH2.3) = 4.40]

实施例11: [2-(三氟甲基)苯基]-N-[2-(1,3,3-三甲基戊基)苯基]甲酰胺
[logP(pH2.3) = 4.71]

实施例12: 2-(氯苯基)-N-[2-(1,3,3-三甲基戊基)苯基]甲酰胺
[logP(pH2.3) = 4.68]

实施例13: 2-(溴苯基)-N-[2-(1,3,3-三甲基戊基)苯基]甲酰胺
[logP(pH2.3) = 4.60]

制备实施例中给出的 logP 值是根据 EEC- Directive 79/831 Annex V.A8 标准，通过 HPLC（高效液相色谱）方法，使用反相柱（C 18），温度：43°C 的条件下测定的。

在酸性范围用于测定的流动相：0.1%含水磷酸，乙腈；10%乙腈至 90%乙腈的线性梯度。

使用已知 logP 值的无支链的烷-2-酮（具有 3-16 个碳原子）进行校准（根据两个连续的链烷酮之间线性内插的保留时间测定 logP 值）。
应用实施例

实施例A

单丝壳菌属真菌（Sphaerotheca）试验(黄瓜)/保护性
溶剂： 24.5 重量份丙酮

24.5 重量份二甲基乙酰胺
乳化剂： 1 重量份烷芳基聚乙二醇醚

为制备适合的活性化合物制剂，将 1 重量份的活性化合物与上述
量的溶剂和乳化剂混合，然后将浓缩液用水稀释至所需浓度。

为测试保护活性，将植物幼苗用一定用量的活性化合物制剂喷雾。
喷雾干燥后，将植物用苍耳单丝壳菌的孢子水悬浮液接种。然后将
植物放置在约 23℃和约 70%相对大气湿度的温室中。

接种后7天进行评估。0%表示杀菌效果相当于对照，而100%的效
果表示没有观察到侵染。

活性化合物，施用量以及试验结果显示于下表中。
表A
单丝壳菌属真菌试验（黄瓜）/保护性

<table>
<thead>
<tr>
<th>活性化合物</th>
<th>活性化合物的用量，以g/ha表示</th>
<th>效果%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
实施例B
黑星菌属真菌（Venturia）试验（苹果）/保护性
溶剂： 24.5 重量份丙酮
 24.5 重量份二甲基乙酰胺
乳化剂： 1.0 重量份烷基芳基聚乙二醇醚

为制备适合的活性化合物制剂，将 1 重量份的活性化合物与上述
量的溶剂和乳化剂混合，然后将浓缩液用水稀释至所需浓度。

为测试保护活性，将植物幼苗用一定用量的活性化合物制剂喷雾。
喷雾层干燥后，将植物用苹果黑星病的病原物，即苹果黑星菌的分生
孢子水悬浮液接种，然后将其保持在约 20℃和 100%相对大气湿度的
培养箱中 1 天。

然后，将植物放在约 21℃和相对大气湿度约 90%的温室中。
接种后 10 天进行评估。0%表示杀菌效果相当于对照，而 100%的
效果表示没有观察到侵染。

活性化合物，施用量以及试验结果示于下表中。
<table>
<thead>
<tr>
<th>活性化合物</th>
<th>活性化合物用量，以g/ha表示</th>
<th>效果%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
实施例C
葡萄孢属真菌（Botrytis）试验（菜豆）/保护性
溶剂：49 重量份的 N,N-二甲基甲酰胺
乳化剂：1 重量份烷芳基聚乙二醇醚

为制备适合的活性化合物制剂，将1 重量份的活性化合物与上述
量的溶剂和乳化剂混合，然后将浓缩液用水稀释至所需浓度。

为测试保护活性，将植物幼苗用一定用量的活性化合物制剂喷雾。
喷雾层干燥后，将灰色葡萄孢定殖的2 小块琼脂置于每张叶片上。将
接种后的植物放在约20℃和100%相对大气湿度的黑暗的培养箱中。

接种后2天，测量叶片上被侵染面积的大小。0%表示杀菌的效果
相当于对照，而100%的效果表示没有观察到侵染。

活性化合物，活性化合物施用量以及试验结果示于下表中。
表C

葡萄孢属真菌试验（菜豆）/保护性

<table>
<thead>
<tr>
<th>活性化合物</th>
<th>活性化合物用量，以g/ha表示</th>
<th>效果%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>500</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>93</td>
</tr>
</tbody>
</table>
实施例D
链格孢属真菌(Alternaria)试验(番茄)/保护性
溶剂：49 重量份的 N,N-二甲基甲酰胺
乳化剂：1 重量份烷芳基聚乙二醇醚
为制备适合的活性化合物制剂，将 1 重量份的活性化合物与上述
量的溶剂和乳化剂混合，然后将浓缩液用水稀释至所需浓度。
为测试保护活性，将番茄幼苗用一定用量活性化合物制剂喷雾。处
理 1 天后，将植物用马铃薯早疫病链格孢的孢子水悬浮液接种，然
后将其保持在 100% 相对大气湿度 24 小时，然后，将植物保持在约 96%
的相对大气湿度和 20℃的条件下。
接种后 7 天进行评估。0% 表示杀菌效果相当于对照，而 100% 的效
果表示没有观察到侵染。
活性化合物，活性化合物施用量以及试验结果示于下表中。
表D
链格孢属真菌试验（番茄）/保护性

<table>
<thead>
<tr>
<th>活性化合物</th>
<th>活性化合物用量，以g/ha表示</th>
<th>效果%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>750</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>100</td>
</tr>
</tbody>
</table>
实施例E

白粉菌属真菌(Erysiphe)试验(大麦)/保护性

溶剂：49 重量份 N,N-二甲基甲酰胺

乳化剂：1 重量份烷芳基聚乙二醇醚

为制备适合的活性化合物制剂，将1 重量份的活性化合物与上述
量的溶剂和乳化剂混合，然后将浓缩液用水稀释至所需浓度。

为测试保护活性，将谷类植物幼苗用一定用量的活性化合物制剂
喷雾。处理1 天后，用禾白粉菌(f.sp.hordei)的孢子接种植物。然后将
植物放在18℃和70%相对大气湿度的温室中。

接种后7天进行评估。0%表示杀菌效果相当于对照，而100%的效
果表示没有观察到侵染。

活性化合物，活性化合物施用量以及试验结果示于下表中。
<table>
<thead>
<tr>
<th>活性化合物</th>
<th>活性化合物用量，以g/ha表示</th>
<th>效果%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>750</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>95</td>
</tr>
</tbody>
</table>
实施例F

柄锈菌属真菌（Puccinia）试验（小麦）/保护性

溶剂：25 重量份 N,N-二甲基乙酰胺

乳化剂：0.6 重量份烷基聚乙二醇醚

为制备适合的活性化合物制剂，将1 重量份的活性化合物与上述量的溶剂和乳化剂混合，然后将浓缩液用水稀释至所需浓度。

为测试保护活性，将植物幼苗用含隐匿柄锈菌孢子悬浮液的0.1%浓度的琼脂水溶液接种。喷雾层干燥后，将设定用量的活性化合物制剂对植物进行喷雾处理。然后将植物保持在20℃和相对大气湿度为100%的培养箱中24小时。

然后将植物放在约20℃和相对大气湿度为80%的温室中，以促进锈菌孢子堆的发育。

接种后10天进行评估。0%表示杀菌效果相当于对照，而100%的效果表示没有观察到侵染。

活性化合物、活性化合物施用量以及试验结果见于下表中。
<table>
<thead>
<tr>
<th>活性化合物</th>
<th>活性化合物用量，以g/ha表示</th>
<th>效果%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>500</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>100</td>
</tr>
<tr>
<td>活性化合物</td>
<td>活性化合物用量，以g/ha表示</td>
<td>效果%</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>100</td>
</tr>
</tbody>
</table>
实施例G

对比试验

在下表中，将本发明实施例化合物与下列化合物比较，这些化合物公开在EP-A 0 545 099中：

根据应用实施例A[单丝壳菌试验(黄瓜)/保护性]，D[链格孢菌试验(番茄)/保护性]和E[白粉菌试验(小麦)/保护性]，测试对比试验中的化合物。

每种情况下用量为500ppm。上述应用实施例中各化合物的效果示于下表。
<table>
<thead>
<tr>
<th>实施例</th>
<th>本发明的化合物</th>
<th>实施例A (单丝壳菌试验, 黄瓜), 保护作用以%表示</th>
<th>实施例D (链格孢属真菌试验, 菠菜), 保护作用, 以%表示</th>
<th>实施例E (白粉菌属真菌试验, 大麦), 保护作用, 以%表示</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例2</td>
<td></td>
<td>100</td>
<td>95</td>
<td>90</td>
</tr>
<tr>
<td>实施例3</td>
<td></td>
<td>100</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>实施例5</td>
<td></td>
<td>95</td>
<td>90</td>
<td>30</td>
</tr>
</tbody>
</table>
表G

<table>
<thead>
<tr>
<th>序号</th>
<th>公开的化合物</th>
<th>实施例A（单丝壳菌试验（黄瓜），保护作用以%表示）</th>
<th>实施例D（链格孢属真菌试验（番茄），保护作用，以%表示）</th>
<th>实施例E（白粉菌属真菌试验（大麦），保护作用，以%表示）</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td></td>
<td>10</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>14.3</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6.4</td>
<td></td>
<td>30</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>14.4</td>
<td></td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>6.9</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14.9</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>