

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2013276467 B2

(54) Title
CHO expression system

(51) International Patent Classification(s)
C12N 15/69 (2006.01) **C12N 15/79** (2006.01)

(21) Application No: **2013276467** (22) Date of Filing: **2013.06.14**

(87) WIPO No: **WO13/186371**

(30) Priority Data

(31) Number
12305677.2 (32) Date
2012.06.14 (33) Country
EP

(43) Publication Date: **2013.12.19**
(44) Accepted Journal Date: **2018.08.30**

(71) Applicant(s)
Sanofi

(72) Inventor(s)
Devaud, Catherine;Dumas, Bruno;Lounis, Nabil

(74) Agent / Attorney
Watermark Intellectual Property Pty Ltd, L 1 109 Burwood Rd, Hawthorn, VIC, 3122, AU

(56) Related Art
KR 100267720 B1
PU H ET AL, "RAPID ESTABLISHMENT OF HIGH-PRODUCING CELL LINES
USING DICISTRONIC VECTORS WITH GLUTAMINE SYNTHETASE AS THE
SEL...", MOLECULAR BIOTECHNOLOGY, (1998-08-01), vol. 10, no. 1, doi:10.1007/
BF02745860, ISSN 1073-6085, pages 17 - 25
GenBank Accession No. AY044241, 01 September 2001
US 7244616 B2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

WIPO | PCT

(10) International Publication Number

WO 2013/186371 A1

(43) International Publication Date

19 December 2013 (19.12.2013)

(51) International Patent Classification:

C12N 15/69 (2006.01) C12N 15/79 (2006.01)

(21) International Application Number:

PCT/EP2013/062400

(22) International Filing Date:

14 June 2013 (14.06.2013)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

12305677.2 14 June 2012 (14.06.2012) EP

(71) Applicant: SANOFI [FR/FR]; 54 rue La Boétie, F-75008 Paris (FR).

(72) Inventors: DEVAUD, Catherine; c/o Sanofi, Patent Department, 54 rue La Boétie, F-75008 Paris (FR). DUMAS, Bruno; c/o Sanofi, Patent Department, 54 rue La Boétie, F-75008 Paris (FR). LOUNIS, Nabil; c/o Sanofi, Patent Department, 54 rue La Boétie, F-75008 Paris (FR).

(74) Agent: BOUVET, Philippe; c/o Sanofi, Patent Department, 54 rue La Boétie, F-75008 Paris (FR).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- with sequence listing part of description (Rule 5.2(a))

WO 2013/186371 A1

(54) Title: CHO EXPRESSION SYSTEM

(57) Abstract: The present invention is within the field of industrial protein production. The inventors have designed and constructed a new expression system comprising an expression vector coding for a glutamine synthetase of human or dog origin, and a CHO cell line. More specifically, the invention pertains to a combination of (i) a DNA vector suitable for production of a recombinant protein, wherein said vector comprises a sequence coding for a glutamine synthetase, and (ii) a Chinese Hamster Ovary (CHO) cell line, wherein said GS comprises a sequence at least 94.5 % identical to the sequence of SEQ ID NO: 1 or to the sequence of SEQ ID NO: 2.

CHO EXPRESSION SYSTEM

FIELD OF THE INVENTION

The present invention is within the field of industrial protein production. The inventors have designed and constructed a new expression system comprising an expression 5 vector coding for a glutamine synthetase of human or of dog origin, and a CHO cell line. More specifically, the invention pertains to a combination of (i) a DNA vector suitable for production of a recombinant protein, wherein said vector comprises a sequence coding for a glutamine synthetase, and (ii) a Chinese Hamster Ovary (CHO) cell line, wherein said GS comprises a sequence at least 94.5 % identical to the sequence of SEQ ID NO: 10 1 or to the sequence of SEQ ID NO: 2.

BACKGROUND OF THE INVENTION

When producing recombinant proteins at industrial scale, one must isolate clones producing high amounts of recombinant proteins.

Introducing heterologous genes into animal host cells and screening for expression of 15 the added genes is a lengthy and complicated process. The process involves the transfection and the selection of clones with stable long-term expression, and the screening for high expression rates of the recombinant protein.

When generating clones expressing a recombinant protein from expression vectors, host cells are usually transfected with a DNA vector encoding both the protein of 20 interest and the selection marker on the same vector. Such an expression vector thus comprises a selectable marker allowing the selection of clones in which the expression vector is present. Such a selectable marker may also lead to a co-amplification taking place, thereby allowing the isolation of high-producer clones.

Several such selectable markers are known in the art, including e.g. G418, hygromycin, 25 puromycin, zeomycin, dihydrofolate reductase (DHFR), glutamine synthetase (GS) and hypoxanthine-guanine phosphoribosyltransferase (HPRT). In particular, GS is widely used as a selectable marker in the field of industrial recombinant protein production in eukaryotic cells.

More specifically, WO 87/04462 describes the use of glutamine synthetase (GS) as a 30 selectable marker. The examples teach an expression vector comprising, as a selectable marker, the sequence coding for a GS of Chinese hamster origin. It is further

shown that such an expression vector allows production of a recombinant protein upon transfection of the expression vector into CHO cells, the recombinant protein being tPA.

Even though the above CHO expression system based on the use of GS as a

selectable marker was described as early as in the 80'ies, it remains a standard in the

5 art still today. In particular, no significant improvement to the original GS selectable marker has been published.

Indeed, the Korean patent KR10-0267720 discloses the use of human GS as a

selectable marker. However, the exact sequence of the human GS used is not disclosed. Moreover, it is also indicated the technical effect (high yield) is only linked

10 both with the human GS and with the specific SV40 promoter that is used (i.e. an SV40 promoter that lacks positions 128 to 270).

There is thus a need in the art for additional and/or improved expression systems

allowing the isolation of a high number of clones expressing the recombinant protein for which production is desired, at least some of these clones exhibiting high expression

15 rates of the recombinant protein.

SUMMARY OF THE INVENTION

The inventors have surprisingly found that when producing recombinant proteins in CHO cells, the use of a GS of human or of dog origin yields better results than the use of a GS of CHO origin (see e.g. Figures 2 and 3).

20 In particular, it has been found that the use of a GS of human origin is especially advantageous since it allows the isolation of more clones expressing the recombinant proteins than when a GS of CHO origin is used, some of them expressing the recombinant protein at higher levels than when a GS of CHO origin is used (see e.g. Figure 3).

25 One embodiment of the invention provides a Chinese Hamster Ovary (CHO) cell line comprising a deoxyribonucleic acid (DNA) expression vector, and wherein the vector comprises a nucleotide sequence coding for a heterologous mammalian glutamine synthetase (GS) and at least one expression cassette for expressing a recombinant protein, wherein the GS comprises a protein sequence that is at least 94.5 % identical
30 to the sequence of SEQ ID NO: 1 or to the sequence of SEQ ID NO: 2; or a protein fragment of at least 100 consecutive amino acids of SEQ ID NO: 1 or SEQ ID NO: 2. In another embodiment of the invention, the GS comprises a sequence at least 94.5 % identical to the sequence of SEQ ID NO: 1 and to the sequence of SEQ ID NO: 2. In

another embodiment of the invention, the GS comprises a sequence at least 97.5 % identical to the sequence of SEQ ID NO: 1. In a particular embodiment of the invention, the GS is a human GS and comprises a sequence of SEQ ID NO: 1. In another embodiment of the invention, the GS is a dog GS and has a sequence of SEQ ID NO: 2.

5 In a particular embodiment, there is provided a Chinese Hamster Ovary (CHO) cell line comprising a deoxyribonucleic acid (DNA) expression vector, and wherein said vector comprises a nucleotide sequence coding for a heterologous mammalian glutamine synthetase (GS) under the control of a Simian vacuolating virus 40 (SV40) promoter, including the SV40 enhancer, and at least one expression cassette for expressing a
10 recombinant protein, wherein said GS comprises a sequence at least 94.5 % identical to the sequence of SEQ ID NO: 1 or to the sequence of SEQ ID NO: 2.

In still another embodiment of the invention the CHO cell line comprises a deoxyribonucleic acid (DNA) expression vector, and the vector comprises a nucleotide sequence coding for a heterologous mammalian glutamine synthetase (GS) and at least one expression
15 cassette for expressing a recombinant protein, wherein the triplet codons of said sequence coding for a GS have been biased for expression in CHO cells. In another embodiment of the invention, said sequence coding for a GS comprises a sequence at least 80 % identical to the sequence of SEQ ID NO: 8 or SEQ ID NO: 9. In a particular embodiment of the invention, the sequence coding for a GS comprises a sequence of SEQ ID NO: 8 or SEQ
20 ID NO: 9. In another embodiment of the invention, the sequence coding for human GS is placed under the control of a Simian vacuolating virus 40 (SV40) promoter and the recombinant protein is a monoclonal antibody.

In still another embodiment of the invention the CHO cell line comprises a deoxyribonucleic acid (DNA) expression vector, and the vector comprises a nucleotide sequence coding for a heterologous mammalian glutamine synthetase (GS) and at least one expression
25 cassette for expressing a recombinant protein wherein the triplet codons of said sequence coding for a GS have been biased for expression in CHO cells. In another embodiment, the vector comprises a first expression cassette suitable for cloning of an antibody light chain, and a second expression cassette suitable for cloning of an antibody heavy chain.
30 In yet another embodiment, the first and second expression cassettes each comprise a CMV promoter and the CHO cell line is capable of growing in serum-free medium or serum free and animal derived protein free medium.

In yet another embodiment, there is provided the CHO cell line according to any one of the previous claims which is derived from a *Cricetulus griseus* CHO-K1 cell line maintained by
35 the American Type Culture Collection (ATCC).

In yet another embodiment, there is provided a kit comprising the combination of:

- (i) a Chinese Hamster Ovary (CHO) cell line; and
- (ii) a DNA (deoxyribonucleic acid) vector for production of a recombinant protein, wherein said vector comprises a sequence coding for a mammalian glutamine synthetase (GS) operably linked to the Simian vacuolating virus 40 (SV40) promoter including the SV40 enhancer,

wherein said GS comprises a protein sequence at least 94.5% identical to the sequence of SEQ ID NO: 1 or to the sequence of SEQ ID NO: 2.

In one embodiment of the invention, the CHO cell line is the cell line deposited under No.

10 CCL-61 at the ATCC or is derived from the cell line deposited under No. CCL-61 at the ATCC. In another embodiment of the invention, the CHO cell line allows for obtaining clones producing at least 1 mg/L of recombinant protein upon transfection of said vector into the CHO cell line deposited under No. CCL-61 at the ATCC.

In still another embodiment of the invention, the CHO cell line comprises a

15 deoxyribonucleic acid (DNA) expression vector, and the vector comprises a glutamine synthase (GS) nucleotide sequence (i.e. a nucleotide sequence coding for a glutamine synthetase (GS)) and at least one expression cassette for expressing a recombinant

protein. In one embodiment, the vector does not contain a heterologous gene for expression of a recombinant protein. In another embodiment of the invention, the vector contains at least one sequence coding for a recombinant protein. In another embodiment, the vector contains a heterologous gene encoding a recombinant protein 5 that is a monoclonal antibody. In another embodiment of the invention, the vector contains a heterologous gene encoding a recombinant protein that is an immunogenic protein for inducing an antibody response. In another embodiment of the invention, the vector contains a heterologous gene encoding a recombinant protein that is an enzyme for enzyme replacement therapy or for industrial use.

10 One embodiment of the invention provides a deoxyribonucleic acid (DNA) expression vector, and the vector comprises a nucleotide sequence coding for a glutamine synthetase (GS) under the control of a Simian vacuolating virus 40 (SV40) promoter and a first expression cassette suitable for cloning of a heterologous recombinant protein under the control of a CMV promoter. In a particular embodiment of the 15 invention, the GS comprises a protein sequence that is at least 94.5 % identical to the sequence of SEQ ID NO: 1 or to the sequence of SEQ ID NO: 2; or a fragment of at least 100 consecutive amino acids of SEQ ID NO: 1 or SEQ ID NO: 2.

Another embodiment of the invention provides a deoxyribonucleic acid (DNA) expression vector, and the vector comprises a nucleotide sequence coding for a 20 glutamine synthetase (GS) under the control of a Simian vacuolating virus 40 (SV40) promoter and a first expression cassette suitable for cloning of an antibody light chain under the control of a CMV promoter, and a second expression cassette suitable for cloning of an antibody heavy chain under the control of a CMV promoter. In a particular embodiment of the invention, the GS comprises a protein sequence that is least 94.5 % 25 identical to the sequence of SEQ ID NO: 1 or to the sequence of SEQ ID NO: 2 or a fragment of at least 100 consecutive amino acids of SEQ ID NO: 1 or SEQ ID NO: 2.

One embodiment of the invention provides a vector as defined in Figure 1.

One embodiment of the invention provides an *in vitro* method of producing a recombinant protein comprising the steps of providing a CHO cell line; culturing the 30 CHO cell line obtained under conditions suitable for production of the recombinant protein; and isolating and/or purifying said recombinant protein. Another embodiment provides a further step of formulating the recombinant protein into a pharmaceutical composition.

One embodiment of the invention pertains to a combination of:

- i) a eukaryotic cell line (e.g. a Chinese Hamster Ovary (CHO) cell line); and
- ii) a DNA vector suitable for production of a recombinant protein, wherein said vector comprises a sequence coding for a heterologous mammalian glutamine synthetase (GS) (e.g. a GS comprising a sequence at least 94.5 % identical to the sequence of SEQ ID NO: 1 or to the sequence of SEQ ID NO: 2).

In yet another embodiment, there is provided an *in vitro* method of producing a recombinant protein comprising the steps of:

- 10 a) providing a CHO cell line according to any one of claims 1 to 9;
- b) culturing said CHO cell line obtained under conditions for production of the recombinant protein; and
- c) isolating and/or purifying said recombinant protein.

Another aspect of the present invention is directed to a kit comprising the above 15 combination.

Still another aspect of the invention is directed to the DNA vector as such.

Still another aspect of the invention is directed to a CHO cell line comprising the DNA vector.

In still another aspect, the invention pertains to an *in vitro* method of producing a 20 recombinant protein comprising the steps of:

- a) providing a vector as defined hereabove;
- b) transfecting a cell line with said vector;
- c) culturing the transfected cell line obtained at step (b) under conditions suitable for production of the recombinant protein; and
- 25 d) isolating and/or purifying said recombinant protein.

Still another aspect of the invention pertains to the use of such a combination, or of such a vector, or of such cell line, for producing a recombinant protein *in vitro*.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 shows a scheme of the vectors used in the Examples (pBH3695, pBH3700, pBH3694, pBH3699, pBH3698, pBH3697 and pBH3623).

5 Figure 2 shows the number of occupied wells and productivities achieved with a CHO cell line transformed with vectors pBH3695, pBH3700, pBH3694, pBH3699, pBH3698, pBH3697 and pBH3623.

Figure 3 shows the productivities achieved by the clones obtained during the experiment shown in Figure 2, for vectors pBH3695, pBH3700 and pBH3623. Each bar represents a clone.

10

REMAINING LINES LEFT BLANK INTENTIONALLY

PAGE 6 TO FOLLOW

Figure 4 shows the results of an experiment carried out in the 9E4 cell line. Productivities and the number of clones obtained are shown. The number “0” on the horizontal axis indicates that no clone was obtained (which is the case for the pBH3700, pBH3694, pBH3697, pBH3698 and pBH3699 vectors).

5 Figure 5 shows a sequence alignment between the human GS of SEQ ID NO: 1, the dog GS of SEQ ID NO: 2, and the CHO GS of SEQ ID NO: 3, which was made using the “CLUSTAL 2.1 multiple sequence alignment” program. Residues that are different in human and in dog GS, as compared with CHO GS, are indicated with a black arrow. These residues correspond to residues 12, 16, 18, 19, 33, 49, 80, 82, 91, 116, 191, 269, 10 282, 350, 355 and 356 of SEQ ID NO: 1 and of SEQ ID NO: 2 (the amino acid variations corresponding to 12G, 16V, 18M, 19S, 33I, 49S, 80V, 82A, 91K, 116T, 191A, 269Y, 282Q, 350S, 355L and 356I, respectively). Residues that are different in human GS, as compared to dog and CHO GS, are indicated with a grey arrow. These residues correspond to residues at position 2, 68, 98, 107, 169, 213 of SEQ ID NO: 1 (the amino 15 acid variations corresponding to 2T, 68L, 98L, 107R, 169R and 213S, respectively).

Figure 6 shows the antibody concentration obtained after transient transfection of CHO-S cells with control vectors (Control 1 and Control 2), and with the pBH3695 and pBH3772 vectors, respectively expressing the 13C3 and anti-CD38 antibodies.

DETAILED DESCRIPTION OF THE INVENTION

20 Another aspect of the invention is directed to a combination of:

- i) a eukaryotic cell line; and
- ii) a DNA (deoxyribonucleic acid) vector suitable for production of a recombinant protein, wherein said vector comprises a sequence coding for a heterologous mammalian glutamine synthetase (GS).

25 The eukaryotic cell line may for instance be a yeast cell line (e.g. a *Saccharomyces cerevisiae* or a *Yarrowia lipolytica* cell line), a fungal cell line (e.g. an *Aspergillus niger* cell line), an insect cell line or a mammalian cell line (including but not limited to CHO cell lines, human cell lines such as HEK293 or PERC.6, mouse cell lines such as NS0, and monkey cell lines). In a specific embodiment, the eukaryotic cell line is a CHO cell 30 line. The GS encoded by the DNA vector originates from a heterologous mammalian species, and may for instance originate from human or dog.

In a specific embodiment, said heterologous mammalian GS comprises or consists of a sequence:

- at least 94.5 % identical to at least one of SEQ ID NO: 1 or SEQ ID NO: 2, and/or
- consisting of a fragment of at least 100, 150, 200, 250, 300 or 350 consecutive amino acids of SEQ ID NO: 1 or SEQ ID NO: 2.

5 Such a combination, further referred to as "combination according to the invention", constitutes an expression system.

More specifically, one aspect of the invention is directed to a combination of:

- i) a DNA vector suitable for production of a recombinant protein, wherein said vector comprises a sequence coding for a glutamine synthetase (GS);
10 and
- ii) a Chinese Hamster Ovary (CHO) cell line;

wherein said GS comprises a sequence:

- at least 94.5 % identical to the sequence of SEQ ID NO: 1 or to the sequence of SEQ ID NO: 2; or
- 15 - consisting of a fragment of at least 100, 150, 200, 250, 300 or 350 consecutive amino acids of SEQ ID NO: 1 or SEQ ID NO: 2.

The combination according to the invention may for example be provided under the form of a kit, e.g. with one vial comprising the DNA vector, and another vial comprising the cell line.

20 When the expression system is used for producing a recombinant protein, the vector is introduced into the cell line (it may for example be stably or transiently transfected into the cell line).

The present invention thus encompasses:

- a combination wherein the vector is present within the cell line on the one hand,
25 and
- a combination wherein the vector is isolated from the cell line on the other hand.

1. Vector according to the invention

The DNA vector for use in the combination according to the invention (further referred to as "vector according to the invention") is suitable for the production of a recombinant protein, and comprises a sequence coding for a glutamine synthetase (GS).

5 As used herein, the term "glutamine synthetase" or "GS" refers to a polypeptide capable of catalyzing the condensation of glutamate and ammonia to form glutamine, as represented by the following biochemical reaction:

Such a polypeptide is classified under Enzyme Commission (EC) number 6.3.1.2.

10 Polypeptides capable of catalyzing the above reaction exhibit "GS activity".

The GS that is used in the frame of the present invention (further referred to as "GS according to the invention") may comprise or consist of a sequence at least 94.5 %, 95%, 95.5%, 96%, 96.5%, 97%, 97.5%, 98%, 98.5%, 99%, 99.5% or 100% identical to at least one of SEQ ID NO: 1 or SEQ ID NO: 2. Indeed, it has been found that such a

15 GS is advantageous for use as a selectable marker in CHO cells (see Example 1). It may also comprise or consist of a fragment of at least 100, 150, 200, 250, 300 or 350 consecutive amino acids of SEQ ID NO: 1 or SEQ ID NO: 2, provided the protein retains its GS activity.

In a specific embodiment, the GS according to the invention comprises or consists of a
20 sequence at least 94.5 %, 95%, 95.5%, 96%, 96.5%, 97%, 97.5%, 98%, 98.5%, 99%, 99.5% or 100% identical both to the sequence of SEQ ID NO: 1 and to the sequence of SEQ ID NO: 2.

In a specific embodiment, the GS according to the invention comprises or consists of a sequence at least 97.5%, 98%, 98.5%, 99%, 99.5% or 100% identical to the sequence
25 of SEQ ID NO: 1. Such a GS is particularly advantageous for use as a selectable marker in CHO cells (see Example 1), in particular in the E94 CHO cell line (see Example 2).

In a specific embodiment, the GS according to the invention is a human GS, i.e., a GS
30 of human origin. As used herein, the term "human GS" refers to a sequence comprising or consisting of SEQ ID NO: 1, as well as variants thereof exhibiting GS activity. Such variants may for example correspond to variants that occur naturally in human species (such as allelic variants or splice variants). Alternatively, such variants may correspond to variants obtained by genetic engineering. Most preferably, such variants only differ

from the sequence of SEQ ID NO: 1 by the presence of at most 22, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 amino acid variations as compared to SEQ ID NO: 1 (said variations including substitutions, insertions and deletions).

In another specific embodiment, the GS according to the invention is a dog GS, i.e., a
5 GS of dog origin. As used herein, the term "dog GS" refers to a sequence comprising or
consisting of SEQ ID NO: 2, as well as variants thereof exhibiting GS activity. Such
variants may for example correspond to variants that occur naturally in dog species
(such as allelic variants or splice variants). Alternatively, such variants may correspond
to variants obtained by genetic engineering. Most preferably, such variants only differ
10 from the sequence of SEQ ID NO: 2 by the presence of at most 22, 20, 15, 10, 9, 8, 7, 6,
5, 4, 3, 2 or 1 amino acid variations as compared to SEQ ID NO: 2 (said variations
including substitutions, insertions and deletions).

In a specific embodiment, the GS according to the invention comprises at least 1, 2, 3, 4,
5, 6, 10, 15, 16, 20 or 22 of the following amino acids: 12G, 16V, 18M, 19S, 33I, 49S,
15 80V, 82A, 91K, 116T, 191A, 269Y, 282Q, 350S, 355L, 356I, 2T, 68L, 98L, 107R, 169R
and 213S, wherein the number indicates the position on SEQ ID NO: 1 and SEQ ID NO:
2, and the letter the nature of the amino acid (using the one-letter genetic code). In a
more specific embodiment, the GS according to the invention comprises at least 1, 2, 3,
4, 5 or 6 of the following amino acids: 2T, 68L, 98L, 107R, 169R and 213S. In another
20 more specific embodiment, the GS according to the invention comprises at least 1, 2, 3,
4, 5, 6, 10, 15 or 16 of the following amino acids: 12G, 16V, 18M, 19S, 33I, 49S, 80V,
82A, 91K, 116T, 191A, 269Y, 282Q, 350S, 355L and 356I. The above amino acids
appear to be specific to the human and/or dog GS, as compared to the CHO GS (see
Figure 5).

25 By a polypeptide having an amino acid sequence at least, for example, 95% "identical"
to a query amino acid sequence of the present invention, it is intended that the amino
acid sequence of the subject polypeptide is identical to the query sequence except that
the subject polypeptide sequence may include up to five amino acid alterations per
each 100 amino acids of the query amino acid sequence. In other words, to obtain a
30 polypeptide having an amino acid sequence at least 95% identical to a query amino
acid sequence, up to 5% (5 of 100) of the amino acid residues in the subject sequence
may be inserted, deleted, or substituted with another amino acid.

In the frame of the present application, the percentage of identity is calculated using a
global alignment (i.e., the two sequences are compared over their entire length).

Methods for comparing the identity and homology of two or more sequences are well known in the art. The « needle » program, which uses the Needleman-Wunsch global alignment algorithm (Needleman and Wunsch, 1970 J. Mol. Biol. 48:443-453) to find the optimum alignment (including gaps) of two sequences when considering their entire 5 length, may for example be used when performing a global alignment. This needle program is for example available on the ebi.ac.uk world wide web site. The percentage of identity in accordance with the invention is preferably calculated using the EMBOSS::needle (global) program with a “Gap Open” parameter equal to 10.0, a “Gap Extend” parameter equal to 0.5, and a Blosum62 matrix.

10 Variants of a reference sequence may comprise mutations such as deletions, insertions and/or substitutions compared to the reference sequence. In case of substitutions, the substitution preferably corresponds to a conservative substitution as indicated in the table below.

Conservative substitutions	Type of Amino Acid
Ala, Val, Leu, Ile, Met, Pro, Phe, Trp	Amino acids with aliphatic hydrophobic side chains
Ser, Tyr, Asn, Gln, Cys	Amino acids with uncharged but polar side chains
Asp, Glu	Amino acids with acidic side chains
Lys, Arg, His	Amino acids with basic side chains
Gly	Neutral side chain

The DNA vector according to the invention comprises a sequence coding for such a GS 15 according to the invention. The sequence coding for such a GS according to the invention may be the naturally-occurring nucleotide sequence. Alternatively, the triplet codons of the sequence coding for such a GS may be biased for expression in CHO cells. Software and algorithms for biasing sequence in order to obtain an optimal expression are known in the art and include, e.g., the algorithm described in Raab *et al.* 20 (2010, Syst Synth Biol. 4:215-25). This algorithm not only provides the best available codons for expression, but also takes into account the GC content and the absence of non desired DNA motifs.

For instance, the sequence coding for the GS according to the invention may comprise or consist of a sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 25 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% to the sequence of SEQ ID NO: 8 (i.e. a sequence coding for the human GS of SEQ ID NO: 1,

which has been designed for optimal expression in CHO cells) and/or to the sequence of SEQ ID NO: 9 (i.e. a sequence coding for a dog GS of SEQ ID NO: 2, which has been designed for optimal expression in CHO cells).

In a specific embodiment, the sequence coding for the GS according to the invention
5 comprises or consists of a sequence of SEQ ID NO: 8 or SEQ ID NO: 9.

On the DNA vector according to the invention, the sequence coding for the GS according to the invention may be placed under the control of any promoter known to those skilled in the art.

For instance, the sequence coding for the GS according to the invention may for
10 example be placed under the control of a Simian vacuolating virus 40 (SV40) promoter, for instance the late or the early promoter of SV40. An early SV40 promoter is for example described in Benoist and Chambon (1981, *Nature*. 290:304-10) and in Moreau et al. (1981, *Nucleic Acids Res.* 9:6047-68). In particular, said SV40 promoter is a full-length promoter. Said SV40 promoter may also have a replication origin containing a
15 72bp repeat.

In a specific embodiment, said SV40 promoter is not an SV40 promoter in which positions 128 to 270 have been removed, i.e. said SV40 promoter is not the SV40 promoter described in Korean patent No. 10-0267720 and transforming the *E. coli* transformant deposited to the Gene Bank, Institute of Bioengineering, KIST on 17
20 December 1997 under the Deposition Number: KCTC 8860 P.

In another specific embodiment, the sequence coding for the GS according to the invention is not placed under the control of a SV40 promoter.

DNA vectors that are suitable for the production of recombinant proteins are known to those skilled in the art. Such DNA vectors typically correspond to expression vectors
25 that comprise an origin of replication and at least one expression cassette allowing the cloning and the expression of the recombinant protein for which production is desired. An expression cassette typically comprises a 5' untranslated region (comprising or consisting of a promoter, and optionally an enhancer sequence), one or more restriction sites allowing the cloning of a sequence coding for the recombinant protein, a 3'
30 untranslated region (e.g. a polyA signal), and optionally one or more introns. The promoter sequence may correspond to any strong promoter well-known to the art, such as e.g. the human CMV promoter. The vector according to the invention may for instance have the structure depicted on Figure 1, which is explained in more details in

Example 1, provided that the heavy chain and the light chain of 13C3 may be replaced with two other coding sequences (e.g. sequences coding for the heavy chain and the light chain of another antibody).

The recombinant protein may correspond to any protein that is of interest to those skilled in the art. As used herein, the term "protein" is meant to encompass peptides (i.e. amino acid chains of less than 50 amino acids), polypeptides (i.e. amino acid chains of at least 50 amino acids), monomeric proteins (i.e. proteins consisting of one amino acid chain) and multimeric proteins (i.e. proteins consisting of two or more amino acid chains, such as e.g. monoclonal antibodies).

5 10 The vector according to the invention typically comprises a number of expression cassettes that is identical to the number of different amino acid chains that constitute the protein (e.g. one expression cassette in case of a monomeric protein or homodimeric protein, two in the case of a heterodimeric protein or of a monoclonal antibody, etc.).

15 Alternatively, the DNA vector according to the invention may comprise only one expression cassette even when production of a heterodimeric protein or of a monoclonal antibody is desired. In such a case, the sequence(s) coding for the other amino acid chain(s) of the protein is (are) present on an expression separate vector, which is co-transfected with the vector according to the invention into the CHO cell line.

20 In a specific embodiment, the DNA vector according to the invention may be devoid of expression cassette. In such a case, the expression cassette(s) suitable for expression of the recombinant protein is (are) present on a separate vector, which is co-transfected with the vector according to the invention into the CHO cell line.

Throughout the present specification, the term "recombinant protein" refers to any recombinant protein for which production is desired. It can for example correspond to a therapeutic and/or a prophylactic protein, i.e. a protein intended for use as a medicament (including vaccines). In a specific embodiment, the recombinant protein for which production is desired is not a glutamine synthetase (GS). In another specific embodiment, the recombinant protein for which production is desired is an antibody, for instance a monoclonal antibody. In still another specific embodiment, the recombinant protein for which production is desired is an antigenic protein. In still another specific embodiment, the recombinant protein for which production is desired is not erythropoietin (EPO).

The term “antibody” is used herein in the broadest sense and specifically covers monoclonal antibodies (including full length monoclonal antibodies) of any isotype such as IgG, IgM, IgA, IgD, and IgE, polyclonal antibodies, multispecific antibodies (including bispecific antibodies), antibody fragments (such as e.g. Fv, scFv, dsFv, Fab, Fab’, or 5 F(ab’)2 fragments), and fusion proteins comprising an antibody fragment. An antibody reactive with a specific antigen can be generated by recombinant methods such as selection of libraries of recombinant antibodies in phage or similar vectors, or by immunizing an animal with the antigen or an antigen-encoding nucleic acid.

A “monoclonal antibody”, as used herein, is an antibody obtained from a population of 10 substantially homogeneous antibodies, i.e. the antibodies forming this population are essentially identical except for possible naturally occurring mutations which might be present in minor amounts. These antibodies are directed against a single epitope (or a single group of epitopes in the case of multispecific monoclonal antibodies) and are therefore highly specific.

15 A typical monoclonal antibody is comprised of two identical heavy chains and two identical light chains that are joined by disulfide bonds. Each heavy and light chain contains a constant region and a variable region. Each variable region contains three segments called “complementarity-determining regions” (“CDRs”) or “hypervariable regions”, which are primarily responsible for binding an epitope of an antigen. They are 20 usually referred to as CDR1, CDR2, and CDR3, numbered sequentially from the N-terminus (see Kabat et al., Sequences of Proteins of Immunological Interest, 5th edition, National Institute of Health, Bethesda, MD, 1991). The more highly conserved portions of the variable regions are called the “framework regions”.

The monoclonal antibody may for example be a murine antibody, a chimeric antibody, a 25 humanized antibody, or a fully human antibody.

When the recombinant protein for which production is desired is a monoclonal antibody, the vector according to the invention may comprise a first expression cassette suitable for cloning of the antibody light chain, and a second expression cassette suitable for cloning of the antibody heavy chain.

30 In a specific embodiment, said first and second expression cassettes each comprise the cytomegalovirus (CMV) promoter, for instance a CMV promoter from a human or a murine CMV. More specifically, said first and second expression cassettes may comprise:

- a CMV immediate early enhancer promoter (e.g. the one having the sequence described in Teschendorf *et al.*, 2002, Anticancer Res. 22:3325-30); or
- a IE2 promoter/enhancer region from mouse CMV (e.g. the one having the sequence described in Chatellard *et al.*, 2007, Biotechnol Bioeng. 96:106-17); or
- 5 - a hCMV-MIE regulatory element (e.g. the one having the sequence described in WO 89/01036).

The term "antigenic protein" is used herein in the broadest sense and covers any protein capable of generating an immune response, either alone or in combination with an adjuvant. It may be intended for use either in a prophylactic vaccine or in a 10 therapeutic vaccine. In a specific embodiment the antigenic protein is a vaccinal protein, i.e. a protein intended for use in a prophylactic vaccine.

In the frame of the present invention, the DNA vector might either comprise at least one sequence coding for the recombinant protein of interest (e.g. one sequence coding for a monomeric protein, one sequence coding for an antibody chain, or two sequences, 15 coding for an antibody light chain and an antibody heavy chain, respectively), or it might be empty (i.e. devoid of such a sequence coding for the recombinant protein of interest).

In one aspect, the invention is directed to the vector according to the invention *per se*. Such a vector is preferably intended for use in a CHO cell line. However, it may also be used for expressing proteins in other eukaryotic cell lines such as yeast, fungal, insect 20 or mammalian (e.g. human, mouse, monkey, etc.) cell lines.

2. Cell line according to the invention

The cell line for use in the combination according to the invention (further referred to as "cell line according to the invention") is a eukaryotic cell line, e.g. a mammalian cell line such as a CHO cell line. CHO cell lines are commonly used for industrial protein 25 production, and many CHO cell lines are known to those skilled in the art. For instance, such CHO cell lines include, e.g., the CHO-K1 cell line (ATCC Number: CCL-61), the CHO DP-12 cell line (ATCC Nos. CRL-12444 and 12445) and the CHO 1-15 cell line (ATCC Number CRL-9606). These strains are publically available from the American Type Culture Collection.

30 In a specific embodiment, the CHO cell line according to the invention is capable of growing in serum-free medium (e.g. a chemically-defined medium) and/or in suspension. Such a cell line can easily be obtained by those skilled in the art by adapting the parent

cell line to grow in serum-free medium and/or in suspension (e.g. through single cell cloning, through progressive adaptation and/or through a "starve and save" process).

The CHO cell line according to the invention may either be a GS deficient cell line, or a cell line comprising an endogenous GS gene coding for an endogenous GS polypeptide.

- 5 In a specific embodiment, the CHO cell line is the cell line deposited under No. CCL-61 at the ATCC. As used herein, the term 'cell line deposited under No. CCL-61 at the ATCC" encompasses the parental clone actually deposited at the ATCC on the one hand, and clones derived therefrom, for instance through single cell cloning, progressive adaptation and/or through a "starve and save" process, on the other hand.
- 10 More specifically, the cell line deposited under No. CCL-61 at the ATCC can be used to obtain clones capable of growing in serum-free medium and/or in suspension.

In a specific embodiment, the combination according to the invention is characterized in that it allows obtaining clones producing at least 1, 2, 3, 4 or 5 mg/L of recombinant protein upon transfection of the vector into the cell line deposited under No. CCL-61 at 15 the ATCC.

In another aspect, the invention is directed to a CHO cell line comprising a vector according to the invention. Preferably, said CHO cell line is transfected (stably or transiently transfected) with said vector. Most preferably said CHO cell line comprises said vector integrated in its genome.

- 20 More specifically, the invention is directed to CHO cell line comprising a DNA expression vector, and wherein said vector comprises a nucleotide sequence coding for a heterologous mammalian glutamine synthetase (GS) and at least one expression cassette for expressing a recombinant protein, wherein said GS comprises a protein sequence:
 - 25 a) at least 94.5 % identical to the sequence of SEQ ID NO: 1 or to the sequence of SEQ ID NO: 2; or
 - b) consisting of a fragment of at least 100 consecutive amino acids of SEQ ID NO: 1 or SEQ ID NO: 2.

3. Kits, methods and uses according to the invention

One aspect of the invention pertains to a kit comprising or consisting of a combination according to the invention. In such a kit, the vector is preferably empty, since this allows the cloning of the protein of interest for those skilled in the art. In addition, the DNA

5 vector is preferably isolated from the cell line in such a kit. The kit may further comprise media suitable for cultivation of the cell line, media suitable for transfection of the vector into the cell line, and/or instructions for use of the expression system.

Another aspect of the invention pertains to the use of the combination according to the invention, or of the vector according to the invention, or of the cell line according to the

10 invention, for producing a recombinant protein *in vitro*.

Still another aspect of the invention pertains to an *in vitro* method of producing a recombinant protein, said method comprising or consisting of the following steps:

a) providing a combination according to the invention;

b) transfecting said cell line with said DNA vector;

15 c) culturing the transfected cell line obtained at step (b) under conditions suitable for production of the recombinant protein; and

d) isolating and/or purifying said recombinant protein.

As immediately apparent to those skilled in the art, the above aspect relates to a combination according to the invention wherein the DNA vector is isolated from the cell

20 line at step (a).

Still another aspect of the invention pertains to an *in vitro* method of producing a recombinant protein, said method comprising or consisting of the following steps:

a) providing a combination according to the invention;

b) culturing the transfected cell line under conditions suitable for production of the 25 recombinant protein; and

c) isolating and/or purifying said recombinant protein.

As immediately apparent to those skilled in the art, the above aspect relates to a combination according to the invention wherein the cell line comprises the DNA vector (e.g. the cell line has previously been transected with the DNA vector) at step (a).

30 Yet another aspect of the invention pertains to an *in vitro* method of producing a recombinant protein, comprising or consisting of the following steps:

- a) providing a vector according to the invention, wherein said vector comprises at least one sequence coding for a recombinant protein;
- b) transfecting a cell line according to the invention with said vector;
- c) culturing the transfected cell line obtained at step (b) under conditions suitable for production of the recombinant protein; and
- 5 d) isolating and/or purifying said recombinant protein.

Conditions suitable for production of recombinant proteins are well-known to those skilled in the art. The protocols described in the Examples may for instance be used.

In a specific embodiment, a GS inhibitor such as methionine sulphoximine (msx) or 10 phophinothricin is added when culturing the cell line according to the invention. In a more specific embodiment, increasing concentrations of such a GS inhibitor are added when culturing the cell line. This allows selecting clones in which the vector-derived GS gene (and thus the sequence coding for the recombinant protein) has been amplified.

15 The above methods may further comprise the step of formulating the recombinant protein into a pharmaceutical composition.

Still another aspect of the invention is directed to a method for co-amplifying a recombinant DNA sequence which encodes a recombinant protein, comprising or consisting of the following steps:

- a) providing a vector according to the invention, wherein said vector comprises a 20 sequence which encodes said recombinant protein;
- b) providing a cell line according to the invention;
- c) transfecting said cell line with said vector; and
- d) culturing said transfected cell line under conditions which allow transformants containing an amplified number of copies of a vector-derived sequence which 25 encodes GS to be selected, wherein said transformants also contain an amplified number of copies of the sequence which encodes the complete amino acid sequence of the recombinant protein.

Step (d) of the above method may comprise culturing the transfected cell line in media containing a GS inhibitor and selecting for transformant cells which are resistant to 30 progressively increased level of the GS inhibitor. The media containing the GS inhibitor may further contain methionine, whereby the concentrations of GS inhibitor in the media can be reduced.

The invention is also directed to a method for using a DNA vector as a dominant selectable marker in a cotransformation process, wherein said method comprises or consists of the following steps:

- 5 a) providing a vector according to the invention, wherein said vector comprises a sequence which encodes a recombinant protein;
- b) providing a cell line according to the invention;
- c) transfecting said cell line with said vector; and
- 10 d) selecting transformant cells which are resistant to GS inhibitors, whereby transformant cells are selected in which a vector-derived recombinant DNA sequence which encodes GS serves as a dominant selectable and co-amplifiable marker.

In a specific embodiment of the above kits and methods, the cell line is a CHO cell line.

In a specific embodiment, the use of the combination according to the invention or of the vector according to the invention, or of the cell line according to the invention allows 15 (i) to increase clones expressing the recombinant proteins, and/or (ii) to increase production of the recombinant protein, than when a GS of CHO origin is used.

Several documents are cited throughout the text of this specification. Each of the documents herein (including any journal article or abstract, published or unpublished patent application, issued patent, manufacturer's specifications, instructions, etc.) are 20 hereby incorporated by reference. However, there is no admission that any document cited herein is indeed prior art in respect of the present invention.

The invention will further be described by reference to the following drawings and examples, which are illustrative only, and are not intended to limit the present invention. Indeed, the invention is defined by the claims, which should be interpreted with the help 25 of the description and the drawings.

BRIEF DESCRIPTION OF THE SEQUENCES

SEQ ID NO: 1 shows the amino acid sequence of a GS of human origin.

SEQ ID NO: 2 shows the amino acid sequence of a GS of dog origin.

SEQ ID NO: 3 shows the amino acid sequence of a GS of Chinese hamster origin.

SEQ ID NO: 4 shows the amino acid sequence of a GS of yeast origin (*Saccharomyces cerevisiae*).

SEQ ID NO: 5 shows the amino acid sequence of a GS originating from toad (*Xenopus laevis*).

5 SEQ ID NO: 6 shows the amino acid sequence of a GS originating from plants (*Arabidopsis thaliana*).

SEQ ID NO: 7 shows the amino acid sequence of a GS originating from insects (*Drosophila melanogaster*).

SEQ ID NO: 8 shows a nucleotidic sequence coding for a GS of human origin.

10 SEQ ID NO: 9 shows a nucleotidic sequence coding for a GS of dog origin.

SEQ ID NO: 10 shows a nucleotidic sequence coding for a GS of Chinese hamster origin.

SEQ ID NO: 11 shows a nucleotidic sequence coding for a GS of yeast origin (*Saccharomyces cerevisiae*).

15 SEQ ID NO: 12 shows a nucleotidic sequence coding for a GS originating from toad (*Xenopus laevis*).

SEQ ID NO: 13 shows a nucleotidic sequence coding for a GS originating from plants (*Arabidopsis thaliana*).

20 SEQ ID NO: 14 shows a nucleotidic sequence coding for a GS originating from insects (*Drosophila melanogaster*).

EXAMPLES

Example 1: Identification of a GS yielding improved results

The inventors aimed at developing new vectors for expression and production of recombinant proteins in Chinese Hamster Ovary (CHO) cell lines. A set of seven

25 vectors was designed as described herebelow.

Two cDNAs coding for a humanized version of the 13C3 antibody (one cDNA coding for the 13C3 heavy chain and another cDNA coding for the 13C3 light chain, respectively, the combination of said chains forming the humanized 13C3 antibody) were used as reporters for assessing the quality of the vector. The murine 13C3

30 antibody is an antibody that specifically binds to the protofibrillar form of the human β -

amyloid protein, as described in WO 2009/065054. As further used herein, the term "13C3" refers to the humanized version of the murine 13C3 antibody.

The seven vectors are schematically represented on Figure 1. These eight vectors all comprise:

- 5 - a sequence coding for a GS, placed under the control of the early SV40 promoter;
- a first expression cassette, in which the sequence coding for the light chain of the 13C3 antibody is placed under the control of the CMV promoter;
- a second expression cassette, in which the sequence coding for the heavy chain of the 13C3 antibody is placed under the control of the CMV promoter;
- 10 - a prokaryotic origin of replication;
- a eukaryotic origin of replication; and
- a selectable marker for use in prokaryotic cells, namely a sequence coding for a protein conferring resistance to ampicillin, placed under the control of its natural promoter.
- 15

More specifically, the sequence coding for GS is placed under the control of the SV40 promoter, including the SV40 enhancer. Such an SV40 early promoter contains the SV40 72-bp tandem repeat enhancers linked to the 21-bp non tandem repeats, and the SV40 early leader protein sequence excluding any coding sequence. The use of this region as a strong promoter was described by Benoist and Chambon (1981, *Nature*. 290:304-10) and in Moreau et al. (1981, *Nucleic Acids Res.* 9:6047-68). It is classically used as a promoter for expression of selection markers in mammalian cells. In the seven pBH3694 to pBH3700 vectors, the natural HindIII restriction site that was disrupted, and unique restriction sites (Sall and XmaI) were added at the 5' and the 3' end of the promoter region, in such a way as to allow an easy swapping of the different GS cDNAs.

The seven vectors differ from one another by the sequence coding for the GS. Indeed, sequences coding for GSs having different origins were cloned into the vectors.

More specifically, seven cDNAs coding respectively for a GS from Chinese hamster (*Cricetulus griseus*), human (*Homo sapiens*), dog (*Canis lupus*), yeast (*Saccharomyces cerevisiae*), drosophila (*Drosophila melanogaster*), plant (*Arabidopsis thaliana*) and toad (*Xenopus laevis*) were generated using the naturally-occurring amino acid sequences

that are available are in public databases. Starting from these sequences, the proteins were back-translated using a matrix of the most frequent codons used in CHO. Thereafter, the cDNAs were modified to contain proper cloning sites and the nucleotidic sequences were optimized. Of note, while the nucleotidic sequences were optimized for 5 CHO expression, the amino acid sequence of encoded proteins remains identical to that of the naturally-encoded proteins.

More specifically, the naturally-occurring coding sequences for the different GS were picked in different public cDNA libraries. For instance, NCBI Reference No. NM_002065.5 was used for human GS. NCBI Reference No. NM_001002965.1 was 10 used for dog GS. NCBI Reference No. NM_078568.2 was used for drosophila GS. The sequence coding for yeast GS was found in the world wide web site available at yeastgenome dot org (Reference No. YPR035W). The Chinese hamster GS amino acid sequence corresponds to the one that is shown in NCBI Reference Sequence: XP_003502909.1 (REFSEQ: accession XM_003502861.1). Starting from the naturally- 15 occurring cDNA sequences, the triplet codons of the sequence coding for such a GS was biased for expression in CHO cells using a software developed by Wagner and coworkers, which is based on the algorithm described in Raab *et al.* (2010, *Syst Synth Biol.* 4:215-25). This technique not only provides the best available codons for expression, but also takes into account the GC content and the absence of non desired 20 DNA motifs.

The obtained cDNAs were cloned into the backbone bearing the expression cassettes for 13C3 antibody, thereby yielding the vectors represented on Figure 1.

The name of these vectors as well as the origin and sequence of the encoded GS is shown in the table below.

Name	Origin of the GS	Amino acid sequence of the GS	Nucleotidic sequence of the GS
pBH3695	Human	SEQ ID NO: 1	SEQ ID NO: 8
pBH3700	Dog	SEQ ID NO: 2	SEQ ID NO: 9
pBH3623	CHO	SEQ ID NO: 3	SEQ ID NO: 10
pBH3694	Yeast	SEQ ID NO: 4	SEQ ID NO: 11
pBH3699	Toad	SEQ ID NO: 5	SEQ ID NO: 12
pBH3698	Plant	SEQ ID NO: 6	SEQ ID NO: 13
pBH3697	Drosophila	SEQ ID NO: 7	SEQ ID NO: 14

The above vectors were nucleoporated using classical conditions into a CHO cell line. 24 hours post transfection, about 2000 cells were seeded in 480 to 960 wells of 96-well-plates, each well comprising 200 µl of CD-CHO medium containing methionine sulphoximine (msx) at a concentration of 25 µM.

5 About 20 days post-seeding, the media of the wells were changed to fresh and selective medium (the same as described above).

Four days later, the number of occupied was counted, i.e. the numbers of wells that are containing growing clones is counted. Each supernatant from occupied wells was tested for their 13C3 antibody productivity using an homogeneous time resolved fluorescence

10 (HTRF) technology developed by Cisbio Bioassays (Bagnols/Ceze, France).

The results are shown on Figures 2 and 3. It can be concluded from these figures that two vectors, namely pBH3695 and PBH3700, give better results than the other vectors. They allow obtaining both more clones, and a better productivity.

Percentages of identity between sequences of different GS that were tested are shown
15 in the three tables below. These percentages of identity were calculated using the
EMBOSS Needle program, using the following default parameters:

- Matrix: EBLOSUM62;
- Gap_penalty: 10.0; and
- Extend_penalty: 0.5.

Vector	Sequence	Origin of GS	Percentage of identity to the human GS of SEQ ID NO: 1
pBH3695	SEQ ID NO: 1	Human	100%
pBH3700	SEQ ID NO: 2	Dog	97.3%
pBH3623	SEQ ID NO: 3	CHO	94.1%
pBH3694	SEQ ID NO: 4	Yeast	52.4%
pBH3699	SEQ ID NO: 5	Toad	85.8%
pBH3698	SEQ ID NO: 6	Plant	50.3%
pBH3697	SEQ ID NO: 7	Drosophila	62.8%

Vector	Sequence	Origin of GS	Percentage of identity to the dog GS of SEQ ID NO: 2
pBH3695	SEQ ID NO: 1	Human	97.3%
pBH3700	SEQ ID NO: 2	Dog	100%
pBH3623	SEQ ID NO: 3	CHO	94.4%

Vector	Sequence	Origin of GS	Percentage of identity to the CHO GS of SEQ ID NO: 3
pBH3695	SEQ ID NO: 1	Human	94.1%
pBH3700	SEQ ID NO: 2	Dog	94.4%
pBH3623	SEQ ID NO: 3	CHO	100%

From these tables, it can be concluded that the two sequences that yield the best results, namely human and dog GS, are characterized in that their sequence exhibit at least 94.5% identity to the sequence of SEQ ID NO: 1 and/or 2. This feature is not true for the sequences of the other GS that were tested, which led to less optimal results.

Example 2: Confirmation of the advantageous properties of the use of vector encoding a human GS in a second CHO cell line.

10 The above experiment has been repeated with the CHO cell line referred to as “9E4”, which is suitable for industrial production of recombinant proteins.

The 9E4 cell line was established from a clone of the CHO-K1 cell line through a single cell cloning process. The CHO-K1 cell line was obtained by Puck in 1957 and has been deposited at the ATCC under number CCL-61. The CHO 9E4 cell line appears to

15 express an endogenous and functional GS protein since this cell line can grow in the

absence of glutamine. Methionine sulphoximine (msx) should thus preferably be used for selection of transfected clones.

The vector was introduced into the 9E4 cell line through nucleoporation. A first experiment was performed using the six vectors constructed in Example 1 (namely

5 pBH3695, pBH3700, pBH3694, pBH3697, pBH3698 and pBH3699). Conditions of selection were identical to the conditions described in Example 1 (msx added at a concentration of 25 µM). The number of occupied wells and the concentration of the 13C3 antibody were measured as described in Example 1. The results are shown on Figure 4.

10 In the 9E4 cell line, pBH3695 is the only vector capable of generating clones producing 13C3 antibodies. This plasmid is the one bearing the cDNA coding for human GS, where the triplet codons were biased for expression in CHO cells. The use of a vector comprising a sequence coding for a human GS is thus particularly advantageous for producing recombinant proteins in CHO cell lines.

15

Example 3: Transient expression of X14 in HEK 293 using pBH vector based on human GS and human CMV promoter.

In this experiment, a vector containing the human GS of sequence SEQ ID NO: 1 placed under the control of the SV40 promoter, and a single expression cassette 20 containing a cDNA coding for the human or mouse X14 receptor (also named C-type lectin domain family 14, member A (CLEC14A), and respectively having the NCBI Reference Number NP_778230.1 and NP_080085.3) under the control of the human CMV promoter and a polyadenylation site, has been used. The vector containing the cDNA coding for the human X14 receptor is hereafter pBH4590 vector, and the vector 25 containing the cDNA coding for the mouse X14 receptor is hereafter called pBH4589 vector.

The pBH4590 vector, pBH4589 vector or a control vector (i.e. an unrelated plasmid vector) were introduced by transfection with Jet PEI in HEK 293-FS cells as described by the manufacturer Poly Plus transfection.

30 The cells were analysed 24h after transfection by immunofluorescence, flow cytometry or immunocytochemistry after proper labeling for human or mouse X14 detection.

Immunofluorescence detection

For immunofluorescence detection, the transfected cells were spun down and their supernatants were discarded. Cell pellets were resuspended in PBS buffer containing 1% Bovine Serum Albumin (W/V) and 0.1% Tween (V/V) (PBS T BSA) and saturated 5 for 10 minutes in this buffer. The cells were washed twice with the same buffer and incubated with primary Serum 1 (i.e. serum obtained just before immunization of the animal, called sera pre-immune serum that represent negative control) or Serum 2 (i.e. serum that is the unpurified immune serum obtained after immunization of the animal) with purified X14 human extracellular domain as described below at dilution 1/5000 in 10 the (PBS T BSA) buffer for 10 minutes at Room Temperature.

After washing out the unbound primary antibody, a secondary goat anti Rabbit antibody linked to an Alexa fluorophore (Alexa 488nm Ref A11034 form Invitrogen) is added. Immunofluorescence was performed using a Leica fluorescence microscope set for detecting Alexa 488 nm.

15 No background Alexa 488 fluorescence can be observed either with control plasmid and serum 1 or control plasmid and serum 2, respectively. This indicates the absence of background non-specific fluorescence. On the contrary, a strong Alexa 488 fluorescence appears at the plasma membrane of cells transfected with pBH4590 and pBH4589 vectors. The use of a vector comprising a sequence coding for a human GS is 20 thus particularly advantageous for promoting transient expression of membrane bound proteins.

Flow cytometry detection.

For flow cytometry detection, human X14 labeling was achieved by two serial 25 incubations with three different antibody preparations and a secondary antibody anti Rabbit IgG Fc moiety. The two transfected cell lines were analyzed with three different dilutions of the anti-X14 serum (1/5000, 1/1000, 1/500):

- Serum 1, obtain just before immunization of the animal, called sera pre-immune serum that represent negative control,
- Serum 2 that is the unpurified immune serum and obtain after immunization of the animal with purified X14 human extracellular domain,
- Serum 3 that corresponds to the immunoglobulin fraction of Serum 2, directed against X14 human lectin.

30 After washing out the unbound primary antibody, a secondary goat anti Rabbit antibody linked to an Alexa fluorophore (Alexa 488nm, Catalog Number A-11034, from Life

Technologies) has been added. The transfected cells were analysed using flow cytometry set for detecting Alexa 488 with three different dilutions from Serum 1, 2 and 3 respectively.

It is worth noting that all histograms present a single fluorescence peak, indicating a 5 homogeneous cell population. The mid fluorescence intensity of this peak is between 10^2 and 10^3 fluorescence units. However, cells incubated with serum 2, diluted to 1/500e, present a mid-fluorescence intensity of about 1000 fluorescence units. This minimal background intensity is suitable to study the detection at the plasma membrane. The flow cytometer was calibrated in such way that the fluorescence observed with 10 control vector and serum 1 diluted to 1/5000e, was taken as background reference fluorescence.

Cells transfected with pBH4590 vector were then analyzed. Fluorescence intensity of human X14 transfected cell with serum 1, for each dilution, is similar to the signals of the control cells. On the contrary, the fluorescence signals were markedly more intense 15 for serum 2 and purified polyclonal antibodies (Serum 3) than for pre-immune serum (Serum 1). In fact, mid fluorescence intensity for immune serum (Serum 2) and purified antibody (Serum 3) on human X14 transfected cells is 10^4 fluorescence units. It increases by a factor of 10-20 at the three concentrations of specific antisera tested.

These results demonstrate that in HEK 293-FS cells transfected with pBH4590 vector, 20 human X14 is produced at a clearly detectable level as observed by fluorescent microscopy and flow cytometry. Moreover human X14 is being accessible to extracellular detection indicating that it is expressed at the plasma membrane.

Example 4: Expression of human and murine X14 receptors in CHO cells

25 The goal of this experiment was to test if the same vector that was used for transient human or mouse X14 expression could be used for expression in CHO cells as stable clones of either mouse or human X14 receptor. To do so the pBH4590 vector or pBH4589 vector bearing human GS cDNA was transfected into CHO-9E4 cell line, using the protocol developed by Lonza/Amaxa nucleoporation device. Two millions 30 CHO-9E4 cells were electroporated with 10 μ g of the pBH4590 vector or pBH4589 vector described hereabove. Soon After the electric shock, the cells were diluted into 2ml CD-CHO fresh medium and 24 hours later, the cells were again diluted into fresh CD-CHO medium containing 25 μ M methyl sulfoximide (msx) at a concentration of 10 000 cells per ml. About ten 96 well plates were seeded at 2000 cells per well.

CHO semi clones, obtained after CHO cells transfection with pBH4590 vector or pBH4589 vector, using the selectable marker GS, were screened. A transfection with the reference control expressing antibody 13C3 was also performed. Said control was used as control for analysis by flow cytometer. Thirty human X14 semi clones, forty-one 5 mouse X14 semi clones and twenty-nine semi clones for control vector were obtained.

After the passage of semi clones in 24-well plates, that is at the beginning of the amplification process, the detection of presence or absence of human or mouse X14 antigen using tools described previously has been performed.

It has been observed that, for example, the human semi clone n°12 has fluorescence 10 intensity lower than the murine semi clone n°30. In fact, with murine semi clones, the presence of single peak fluorescence having a maximum fluorescence intensity of 10^3 fluorescence units was observed, while in the case of human semi clone, peak is spread and the mean fluorescence intensity does not exceed 500 fluorescence units.

Amplification of semi clones which were analyzed as positive by flow cytometry was 15 performed, thereby allowing to finally generate 10 semi clones of CHO lines stably expressing X14 murine lectin and 4 semi clones of CHO lines stably expressing X14 human lectin.

The use of a vector comprising a sequence coding for a human GS is thus particularly advantageous for generating CHO lines stably expressing recombinant proteins.

20

Example 5: Transient transfection in CHO-S of different DNA plasmid coding for different two different antibodies

In order to study the feasibility of using our vector bearing the human GS cDNAs for transient transfection in CHO-S, a second vector, called, derived from the pBH3695 was 25 constructed by replacing the two cDNAs corresponding to the light and heavy chain of the 13C3 antibody by the light and heavy chain of the anti-CD38 cDNAs using classical cloning technologies and four different unique restriction sites. Consequently, the pBH3772 vector comprises:

- a sequence coding for a GS, placed under the control of the early SV40 30 promoter;
- a first expression cassette, in which the sequence coding for the light chain of the anti-CD38 antibody is placed under the control of the CMV promoter;
- a second expression cassette, in which the sequence coding for the heavy chain of the anti-CD38 antibody is placed under the control of the CMV promoter;

- a prokaryotic origin of replication;
- an eukaryotic origin of replication; and
- a selectable marker for use in prokaryotic cells, namely a sequence coding for a protein conferring resistance to ampicillin, placed under the control of its natural promoter.

5

CHO-S were then transfected using the Maxcyte® apparatus with (i) two control vectors classically used for transient transfection and containing the cDNA of light and heavy chain of two different antibodies (i.e. called Control 1 and Control 2), and (ii) the pBH3695 and pBH3772 vectors in the conditions described by Maxcyte® Corporation.

10 CHO-S cells were cultivated in CD-CHO containing 8mM Glutamine in classical CHO-S cultivating conditions (Passage every 2-3 days at 0.3 10^6 cells /ml). The day before transfection, the cells were splitted to $1.2 \cdot 10^6$ cells/ ml and transfected 24 hours later. Temperature shift and media feeding were done according to the Maxcyte® protocol. Culture samples were taken at day 3, 6, 7, 8 and 9, and measured by SEC-HPLC using 15 purified antibody as standard reference curve.

Results of such an experiment are shown on the figure 6.

It can be concluded from this figure that the pBH3695 and pBH3772 vectors are capable of producing antibodies at level that are equivalent or better than the two control vectors classically used for transient transfection.

20 In conclusion the two pBH3695 and pBH3772 vectors based on human Glutamine Synthase are capable of producing remarkable level of antibodies above 100mg/l.

The use of a vector comprising a sequence coding for a human GS is thus particularly advantageous for stably or transiently expressing membrane bound protein or antibodies.

25

Example 6: Expression of human erythropoietin (EPO) in CHO cells

In order to perform the expression of human EPO, the pBH4590 vector was digested with restriction enzymes NheI and EcoRI and two human EPO cDNA, i.e. cDNA1 or cDNA2 bordered with NheI and EcoRI sites, were inserted in said vector using classical 30 molecular biology techniques.

This allows to obtain the pBH4614 vector bearing the human EPO cDNA1, and the pBH4615 vector bearing the human EPO cDNA2.

The two vectors were prepared at the maxi-preparation level using a kit developed by Qiagen corporation.

pBH4614 and pBH4615 vectors were used to transfect the three cell lines CHO-S, CHO-9E4 and CHO 30D12 using the Lonza electroporation techniques, respectively. To do so, the cells were splitted the day before transfection to achieve a cellular density of 1X10⁶ cells/ml. Two millions cells were spun down and suspended in 100µl solution V in 5 the presence of 10µg of DNA, respectively for each DNA and cell line. Cells were electroporated using program X05. Rapidly after electroporation, the cells were diluted into 2ml of CD-CHO medium containing 6mM glutamine (Life Technologies) and incubated for 24 hours at 37°C and 5% CO₂. After this incubation, the cells are diluted into 200ml of the same medium without Glutamine and in the presence of 25µM msx 10 and distributed in 96 well plates using 200µl per well. After 15 (CHO-S) to 25 days (CHO-9E4, CHO 30D12), fresh medium was changed in wells containing surviving cells. Four to 5 days later, the surviving cells were transferred into 1ml of CD-CHO containing 25µM msx without agitation respectively for each well. For CHO-S, 24 semi-clones were 15 amplified, meanwhile 12 semi clones were amplified for the two other cell lines, respectively for the two EPO cDNA. Overall 96 semi-clones were amplified, grown and verified for their capacity to produce human erythropoietin. To do so, after 3-4 day incubation, the 1ml were diluted into 4ml of the CD-CHO medium containing 25µM msx and put into agitation at 37°C and 5% CO₂. After 3-4 days, the cultures were again 20 diluted with 5 ml fresh medium. After 3-4 days, the cellular density was measured and cells were diluted at 3X10⁵ cells /ml and grown for 3-4 days for a first time. Cellular density was measured and cells were seeded at 3X10⁵ cells/ml in CD-CHO medium containing 25µM msx and 30% Feed B (Life Technologies).

Cells were grown in 10ml of the above medium (37°C 5% CO₂) for 10 days. Cellular density and viability were measured after 8 and 10 days. 0.6 ml samples were equally 25 taken to evaluate human EPO concentration. Culture supernatants (0.6ml) were first screened using the microfluidic Caliper technology evaluating the presence of protein at the apparent molecular weight of human EPO.

Sixteen best clone supernatants, e.g. having the most intense EPO signal, were submitted to an ELISA specific for human EPO detection using the kit developed by 30 R&D System® for in vitro diagnostic (Human Erythropoietin Quantikine® IVD ELISA Kit For In Vitro Diagnostic Use, Catalog reference DEP00). Seven clones were shown to have interesting productivities as measured at Day 8 and Day 10 (Table below).

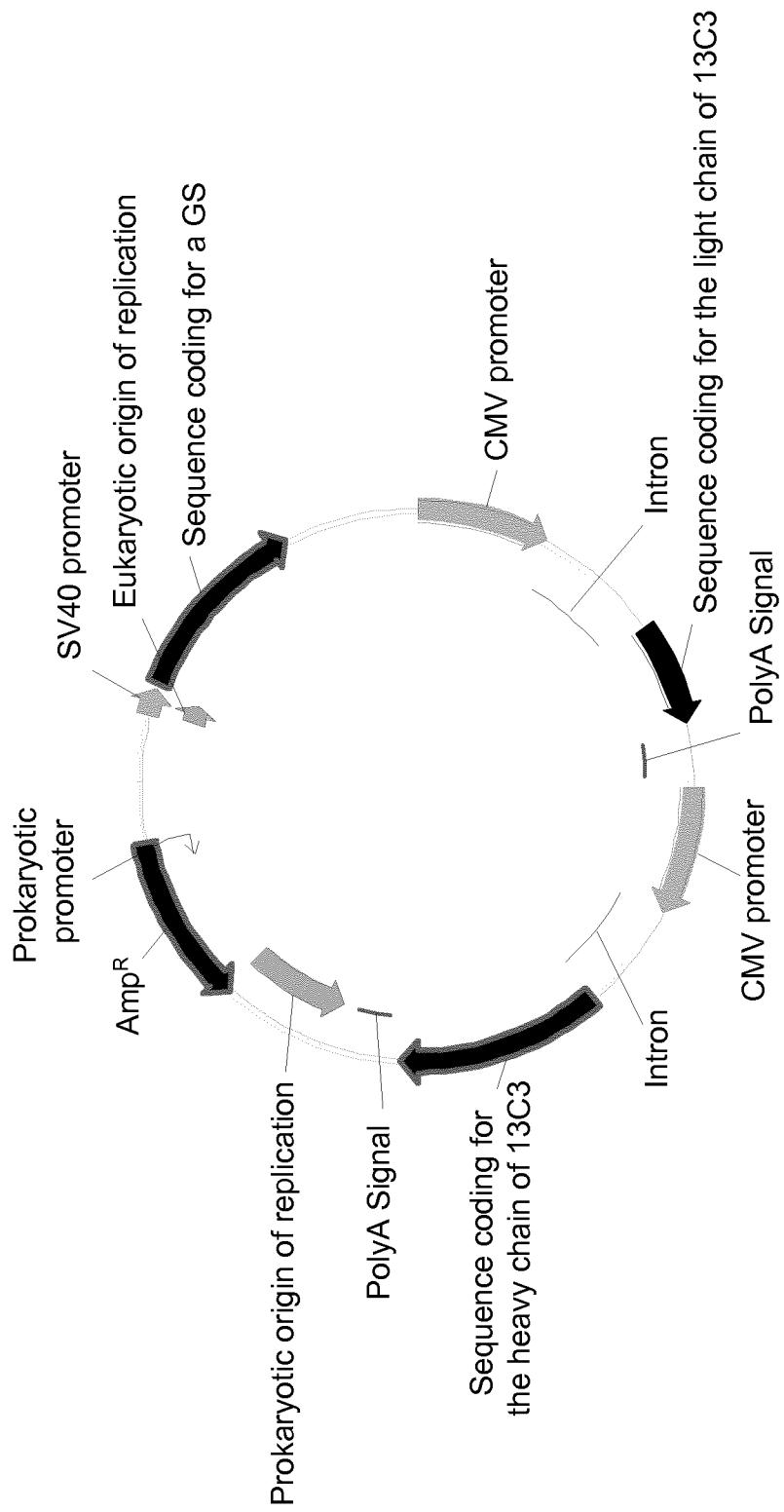
Semi clones	Viable cells /ml (x10 ⁶) Day 8	Viable cells /ml (x10 ⁶) Day 10	EPO Concentration (g/L) Day 8	EPO Concentration (g/L) Day 10
CHO-S cDNA1/ clone 17	3.9	0.4	0.9	1.5
CHO-S cDNA1/ clone 18	9.8	5.8	0.5	1.0
CHO-S cDNA1/ clone 21	2.4	2.6	0.5	0.9
CHO-S cDNA1/ clone 24	1.4	1.5	0.5	0.9
CHO-S cDNA2/ clone 30	4.6	1.5	0.4	0.6
CHO-30D12 cDNA2/ clone 90	8.4	0.8	1.1	2.0
CHO-30D12 cDNA2/ clone 92	19.4	20.3	0.4	0.7
CHO-30D12 cDNA2/ clone 93	23.1	26.7	0.3	0.7
CHO-30D12 cDNA2/ clone 94	18.8	17.8	1.3	1.4

The productivities of the clones were ranging from 0.3 to 2.0 g/l. Semi-clone 90 was the best producing clone with a productivity of 1.1 to 2.0 g/L at Day 8 and Day 10 respectively.

The viability of this clone at Day 10 was around 70% with less than one million cells per 5 ml (0.8 million cells/ml) rendering impossible to calculate the specific productivity as the number of cells is diminishing between Day 8 and Day 10. It renders not possible the calculation of a specific activity (Table below). This phenomenon is observed for most the semi-clones except for semi-clones 21, 24, 92 and 93. In that case, the specific productivity expressed in μ g/10⁶ cells/day can go up to 441 and 854 (Table below).

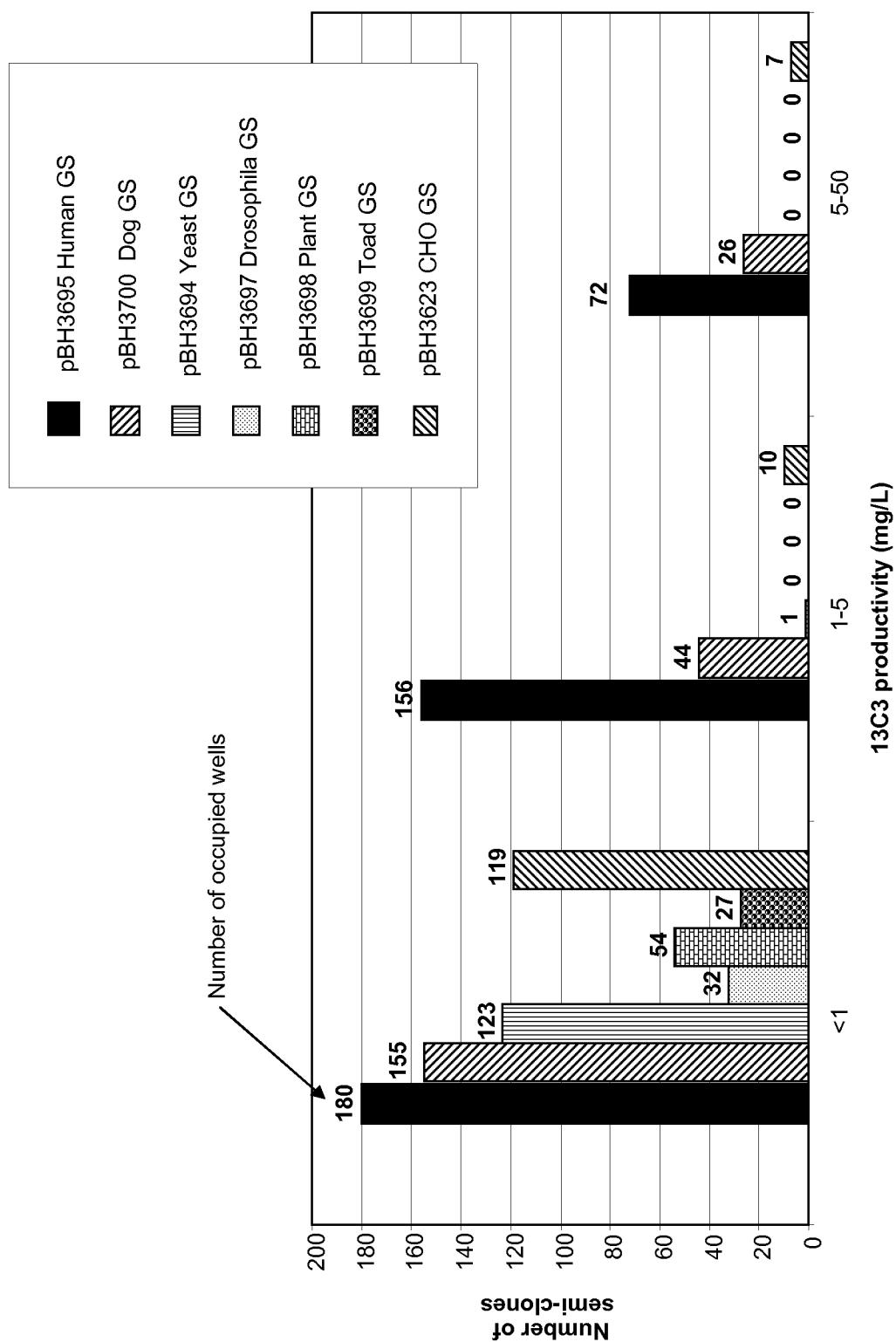
Semi clones	Daily Growth Rate	Productivity pg/cell in 2 days	Specific Productivity (pg/cell/day)
CHO-S cDNA1/ clone 17	NA	NA	NA
CHO-S cDNA1/ clone 18	NA	NA	NA
CHO-S cDNA1/ clone 21	0.29	1542	441
CHO-S cDNA1/ clone 24	0.17	5125	854
CHO-S cDNA2/ clone 30	NA	NA	NA
CHO-30D12 cDNA2/ clone 90	NA	NA	NA
CHO-30D12 cDNA2/ clone 92	0.12	296	36
CHO-30D12 cDNA2/ clone 93	0.43	117	51
CHO-30D12 cDNA2/ clone 94	NA	117	NA

These results thus shown that, both in terms of volume or specific productivity, the use of a vector comprising a sequence coding for a human GS allow having productivity above than 300µg of protein per million cells.


CLAIMS

1. A Chinese Hamster Ovary (CHO) cell line comprising a deoxyribonucleic acid (DNA) expression vector, and wherein said vector comprises a nucleotide sequence coding for a heterologous mammalian glutamine synthetase (GS) under the control of a Simian vacuolating virus 40 (SV40) promoter, including the SV40 enhancer, and at least one expression cassette for expressing a recombinant protein, wherein said GS comprises a sequence at least 94.5% identical to the sequence of SEQ ID NO: 1 or to the sequence of SEQ ID NO: 2.
2. The CHO cell line according to claim 1, wherein said GS is a human GS.
3. The CHO cell line according to claim 1 or 2, wherein said GS comprises the sequence of SEQ ID NO: 1.
4. The CHO cell line according to claim 1, wherein said GS is a dog GS.
5. The CHO cell line according to claim 5, wherein said dog GS comprises a sequence of SEQ ID NO: 2.
6. The CHO cell line according to any one of the previous claims, wherein said recombinant protein is a monoclonal antibody.
7. The CHO cell line according to claim 5, wherein said vector comprises:
a first expression cassette suitable for cloning of an antibody light chain, and
a second expression cassette suitable for cloning of an antibody heavy chain.
8. The CHO cell line according to any one of the previous claims, wherein the cell line allows obtaining clones producing at least 1 mg/L of recombinant protein.
9. The CHO cell line according to any one of the previous claims which is derived from a *Cricetulus griseus* CHO-K1 cell line maintained by the American Type Culture Collection (ATCC).

10. A combination of:
 - (i) a Chinese Hamster Ovary (CHO) cell line; and
 - (ii) a DNA (deoxyribonucleic acid) vector for production of a recombinant protein, wherein said vector comprises a sequence coding for a mammalian glutamine synthetase (GS) operably linked to the Simian vacuolating virus 40 (SV40) promoter including the SV40 enhancer, wherein said GS comprises a protein sequence at least 94.5% identical to the sequence of SEQ ID NO: 1 or to the sequence of SEQ ID NO: 2.
11. A kit comprising the combination according to claim 10.
12. An in vitro method of producing a recombinant protein comprising the steps of:
 - a) providing a CHO cell line according to any one of claims 1 to 9;
 - b) culturing said CHO cell line obtained under conditions for production of the recombinant protein; and
 - c) isolating and/or purifying said recombinant protein.
13. The method according to claim 12, further comprising the step of formulating said recombinant protein into a pharmaceutical composition.
14. Use of the CHO cell line according to any one of claims 1 to 9, or the combination according to claim 10, for producing a recombinant protein *in vitro*.


SANOFI

WATERMARK INTELLECTUAL PROPERTY PTY LTD
P39861AU00

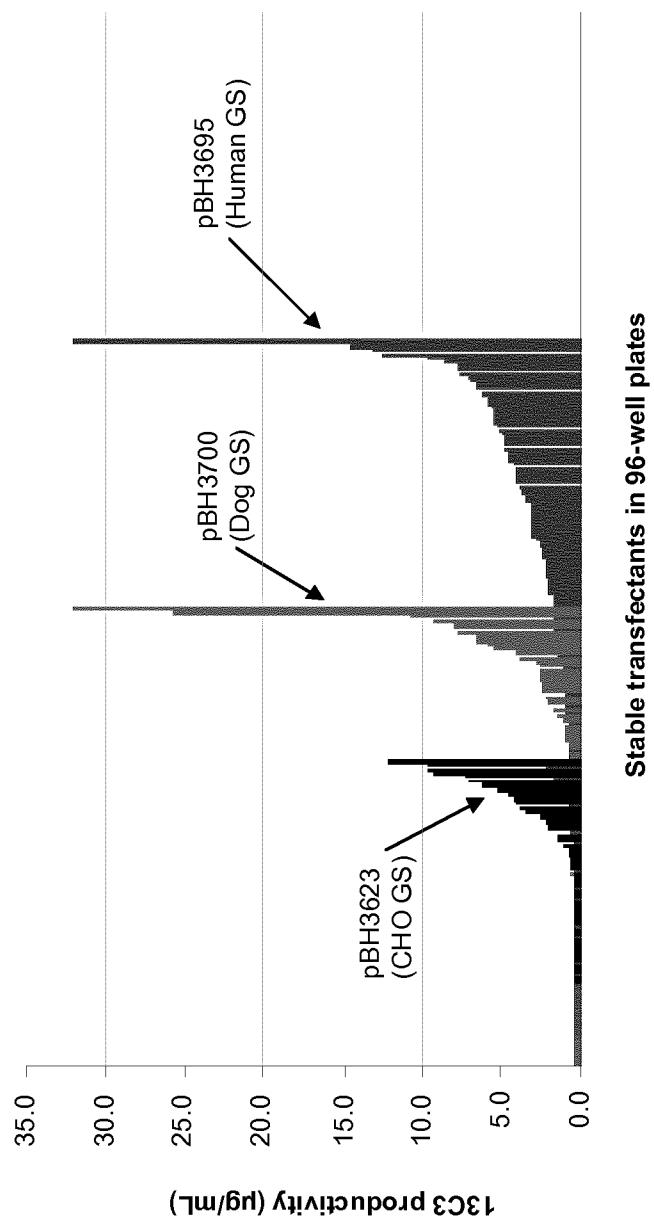
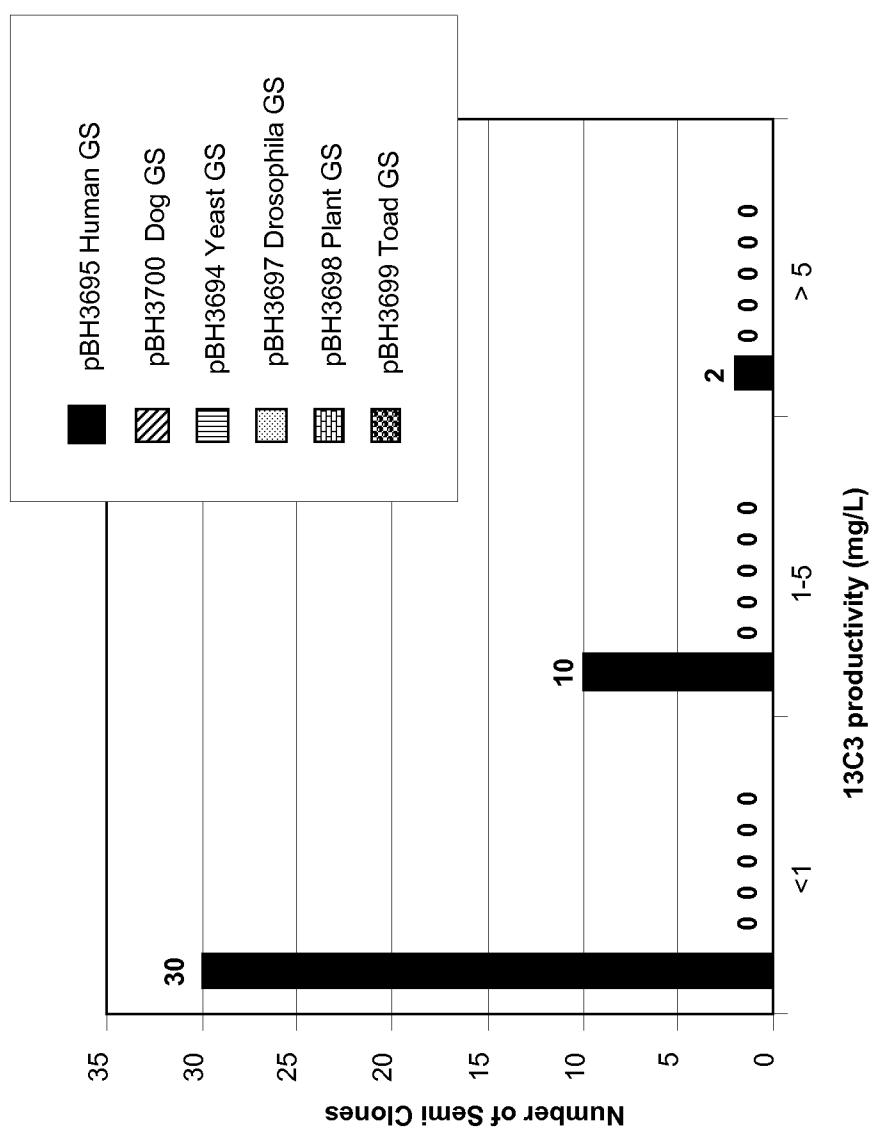


Figure 1

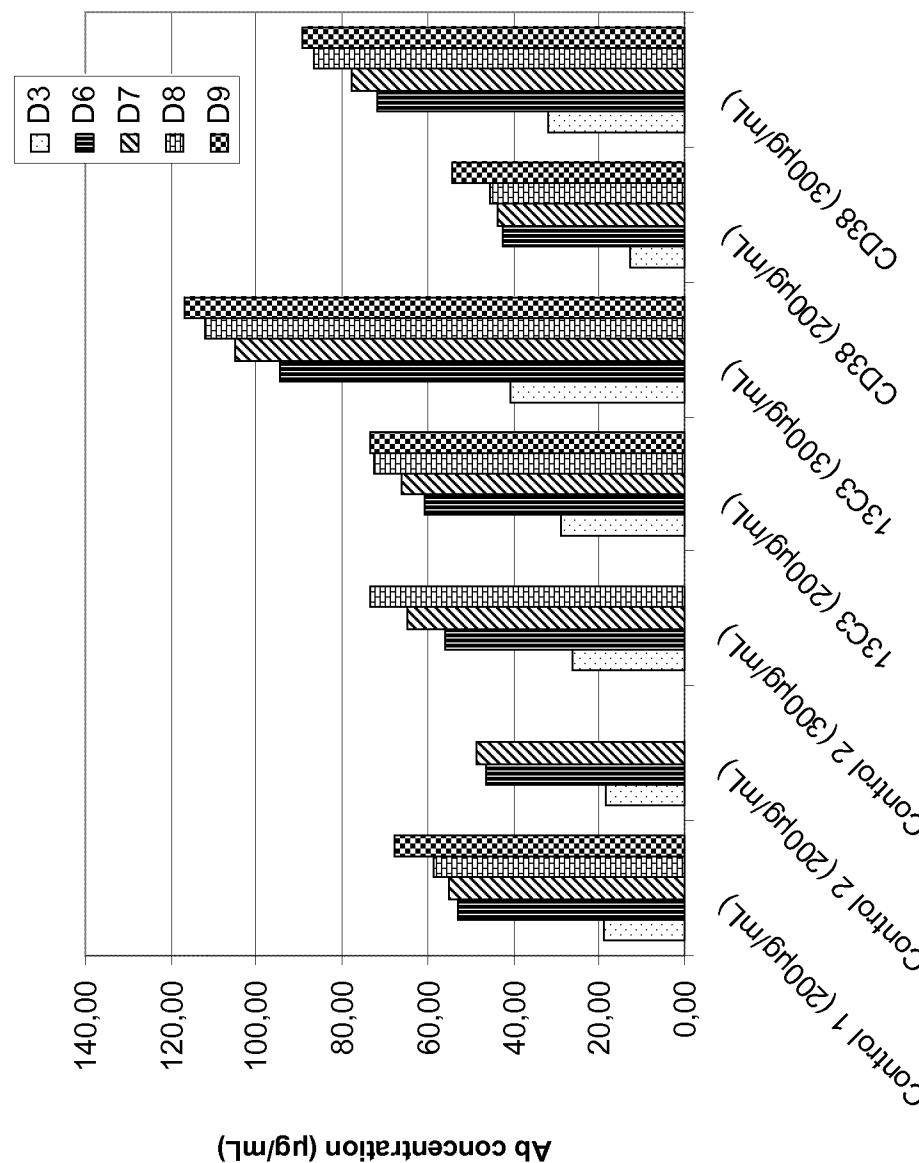
2/6


Figure 2

3/6

Figure 3

4/6


Figure 4

5/6

SEQ	ID	NO:1	Human	MTTASSSHLNKGIIQVYMSLIPQGEKVQAMYIWIDGTGEGLRCKTRTLDSEPKCVCVEELPEW	60
SEQ	ID	NO:2	Dog	MATSSASHLNKGIIQVYMSLIPQGEKVQAMYIWIDGTGEGLRCKTRTLDSEPKCVCVEELPEW	60
SEQ	ID	NO:3	CHO	MATSSASHLNKNIIQMYLCLIPQGEKVQAMYIWIDGTGEGLRCKTRTLDSEPKCVCVEELPEW	60
***	***	***	***	***	***
SEQ	ID	NO:1	Human	NFDGSSTLQSEGSSNSDMYLIVPAAMFRDPFRKDPNKLVLICVEFKYNRPAETNLRHTCKRI	120
SEQ	ID	NO:2	Dog	NFDGSSTFQSEGSSNSDMYLIVPAAMFRDPFRKDPNKLVLFCEVFKYNRKPAETNLRHTCKRI	120
SEQ	ID	NO:3	CHO	NFDGSSTFQSEGSSNSDMYLSPVAMFRDPFRRDPNKLVLFCEVFKYNRKPAETNLRHSCKRI	120
***	***	***	***	***	***
SEQ	ID	NO:1	Human	MDMVSQNQHPWFQGMEQEYTLIMGT DGHFPFGWPSNGFPGPQGPYYCGVGADRAYGRDIVEAHY	180
SEQ	ID	NO:2	Dog	MDMVSQNQHPWFQGMEQEYTLIMGT DGHFPFGWPSNGFPGPQGPYYCGVGADKAYGRDIVEAHY	180
SEQ	ID	NO:3	CHO	MDMVSQNQHPWFQGMEQEYTLIMGT DGHFPFGWPSNGFPGPQGPYYCGVGADKAYGRDIVEAHY	180
***	***	***	***	***	***
SEQ	ID	NO:1	Human	RACLYAGVKIAGTNAEVMPAQWEFQIGPCEGISMGDHLWVARFILHRVCFDFGVIAFDP	240
SEQ	ID	NO:2	Dog	RACLYAGGIKIAGTNAEVMPAQWEFQIGPCEGIDMGDHLWVARFILHRVCFDFGVIAFDP	240
SEQ	ID	NO:3	CHO	RACLYAGVKITGTNAEVMPAQWEFQIGPCEGIRMGDHLWVARFILHRVCFDFGVIAFDP	240
***	***	***	***	***	***
SEQ	ID	NO:1	Human	KPIPGNWNGAGCHTNFSTKAMREENGKYIEEAIKELSKRHQYHIRAYDPKGGLDNARRL	300
SEQ	ID	NO:2	Dog	KPIPGNWNGAGCHTNFSTKAMREENGKYIEEAIKELSKRHQYHIRAYDPKGGLDNARRL	300
SEQ	ID	NO:3	CHO	KPIPGNWNGAGCHTNFSTKAMREENGKYIEEAIKELSKRHQYHIRAYDPKGGLDNARRL	300
***	***	***	***	***	***
SEQ	ID	NO:1	Human	TGFHETSNINDFSAVGVANRSASIRIPIRTVGQEKKGYFEDRRPSANCDFPSVTEALIRTCL	360
SEQ	ID	NO:2	Dog	TGFHETSNINDFSAVGVANRGASIRIPIRTVGQEKKGYFEDRRPSANCDFPSVTEALIRTCL	360
SEQ	ID	NO:3	CHO	TGFHETSNINDFSAVGVANRSASIRIPIRTVGQEKKGYFEDRRPSANCDFPFAVTEAIVRTCL	360
***	***	***	***	***	***
SEQ	ID	NO:1	Human	LNETGDEPFQYKN 373	
SEQ	ID	NO:2	Dog	LNETGDEPFQYKN 373	
SEQ	ID	NO:3	CHO	LNETGDEPFQYKN 373	
***	***	***	***	***	***

Figure 5

6/6

Figure 6

SEQUENCE LISTING eol f-seql . txt

<110> SANOFI
<120> CHO EXPRESSION SYSTEM
<130> FR2012-007
<160> 14
<170> PatentIn version 3.3

<210> 1
<211> 373
<212> PRT
<213> Homo sapiens

<400> 1

Met Thr Thr Ser Ala Ser Ser His Leu Asn Lys Gly Ile Lys Glu Val
1 5 10 15

Tyr Met Ser Leu Pro Glu Gly Glu Lys Val Glu Ala Met Tyr Ile Trp
20 25 30

Ile Asp Gly Thr Gly Glu Gly Leu Arg Cys Lys Thr Arg Thr Leu Asp
35 40 45

Ser Glu Pro Lys Cys Val Glu Glu Leu Pro Glu Trp Asn Phe Asp Glu
50 55 60

Ser Ser Thr Leu Glu Ser Glu Gly Ser Asn Ser Asp Met Tyr Leu Val
65 70 75 80

Pro Ala Ala Met Phe Arg Asp Pro Phe Arg Lys Asp Pro Asn Lys Leu
85 90 95

Val Leu Cys Glu Val Phe Lys Tyr Asn Arg Arg Pro Ala Glu Thr Asn
100 105 110

Leu Arg His Thr Cys Lys Arg Ile Met Asp Met Val Ser Asn Glu His
115 120 125

Pro Trp Phe Glu Met Glu Glu Tyr Thr Leu Met Glu Thr Asp Glu
130 135 140

His 145 Pro 150 Phe 155 Gly 160
Pro 145 Ser 150 Asn 155 Gly 160
Phe 145 Pro 150 Glu 155 Pro 160
Gly 145 Pro 150 Glu 155 Glu 160
Gln 145 Pro 150 Glu 155 Glu 160

Tyr Tyr Cys Gl y Val Gl y Al a Asp Arg Al a Tyr Gl y Arg Asp Ile Val
165 170 175

Gl u Al a His Tyr Arg Al a Cys Leu Tyr Al a Gl y Val Lys Ile Al a Gl y
180 185 190

195

200

205

Cys Glu Gly Ile Ser Met Glu Asp His Leu Trp Val Ala Arg Phe Ile
 210 215 220

Leu His Arg Val Cys Glu Asp Phe Gly Val Ile Ala Thr Phe Asp Pro
 225 230 235 240

Lys Pro Ile Pro Gly Asn Trp Asn Gly Ala Gly Cys His Thr Asn Phe
 245 250 255

Ser Thr Lys Ala Met Arg Glu Glu Asn Gly Leu Lys Tyr Ile Glu Glu
 260 265 270

Ala Ile Glu Lys Leu Ser Lys Arg His Gln Tyr His Ile Arg Ala Tyr
 275 280 285

Asp Pro Lys Gly Gly Leu Asp Asn Ala Arg Arg Leu Thr Gly Phe His
 290 295 300

Glu Thr Ser Asn Ile Asn Asp Phe Ser Ala Gly Val Ala Asn Arg Ser
 305 310 315 320

Ala Ser Ile Arg Ile Pro Arg Thr Val Gly Gln Glu Lys Lys Gly Tyr
 325 330 335

Phe Glu Asp Arg Arg Pro Ser Ala Asn Cys Asp Pro Phe Ser Val Thr
 340 345 350

Glu Ala Leu Ile Arg Thr Cys Leu Leu Asn Glu Thr Gly Asp Glu Pro
 355 360 365

Phe Gln Tyr Lys Asn
 370

<210> 2
 <211> 373
 <212> PRT
 <213> Canis lupus

<400> 2

Met Ala Thr Ser Ala Ser Ser His Leu Asn Lys Gly Ile Lys Gln Val
 1 5 10 15

Tyr Met Ser Leu Pro Gln Gly Glu Lys Val Gln Ala Met Tyr Ile Trp
 20 25 30

Ile Asp Gly Thr Gly Glu Gly Leu Arg Cys Lys Thr Arg Thr Leu Asp
 35 40 45

Ser Glu Pro Lys Gly Val Glu Glu Leu Pro Glu Trp Asn Phe Asp Gly
 50 55 60

eol f-seql . txt

Ser Ser Thr Phe Glu Ser Glu Gly Ser Asn Ser Asp Met Tyr Leu Val
65 70 75 80

Pro Ala Ala Met Phe Arg Asp Pro Phe Arg Lys Asp Pro Asn Lys Leu
85 90 95

Val Phe Cys Glu Val Phe Lys Tyr Asn Arg Lys Pro Ala Glu Thr Asn
100 105 110

Leu Arg His Thr Cys Lys Arg Ile Met Asp Met Val Ser Asn Glu His
115 120 125

Pro Trp Phe Gly Met Glu Glu Tyr Thr Leu Met Gly Thr Asp Gly
130 135 140

His Pro Phe Gly Trp Pro Ser Asn Gly Phe Pro Gly Pro Glu Gly Pro
145 150 155 160

Tyr Tyr Cys Glu Val Glu Ala Asp Lys Ala Tyr Gly Arg Asp Ile Val
165 170 175

Glu Ala His Tyr Arg Ala Cys Leu Tyr Ala Gly Ile Lys Ile Ala Gly
180 185 190

Thr Asn Ala Glu Val Met Pro Ala Glu Trp Glu Phe Glu Ile Gly Pro
195 200 205

Cys Glu Gly Ile Asp Met Glu Asp His Leu Trp Val Ala Arg Phe Ile
210 215 220

Leu His Arg Val Cys Glu Asp Phe Gly Val Ile Ala Thr Phe Asp Pro
225 230 235 240

Lys Pro Ile Pro Gly Asn Trp Asn Gly Ala Gly Cys His Thr Asn Phe
245 250 255

Ser Thr Lys Ala Met Arg Glu Glu Asn Gly Leu Lys Tyr Ile Glu Glu
260 265 270

Ser Ile Glu Lys Leu Ser Lys Arg His Glu Tyr His Ile Arg Ala Tyr
275 280 285

Asp Pro Lys Gly Gly Leu Asp Asn Ala Arg Arg Leu Thr Gly Phe His
290 295 300

Glu Thr Ser Asn Ile Asn Asp Phe Ser Ala Gly Val Ala Asn Arg Gly
305 310 315 320

Ala Ser Ile Arg Ile Pro Arg Thr Val Gly Glu Glu Lys Lys Gly Tyr
325 330 335

eol f-seql . txt

Phe Glu Asp Arg Arg Pro Ser Ala Asn Cys Asp Pro Phe Ser Val Thr
340 345 350

Gl u Ala Leu Ile Arg Thr Cys Leu Leu Asn Gl u Thr Gl y Asp Gl u Pro
355 360 365

Phe Gl n Tyr Lys Asn
370

<210> 3
<211> 373
<212> PRT
<213> Cricetus griseus

<400> 3

Met Ala Thr Ser Ala Ser Ser His Leu Asn Lys Asn Ile Lys Gl n Met
1 5 10 15

Tyr Leu Cys Leu Pro Gl n Gl y Gl u Lys Val Gl n Ala Met Tyr Ile Trp
20 25 30

Val Asp Gl y Thr Gl y Gl u Gl y Leu Arg Cys Lys Thr Arg Thr Leu Asp
35 40 45

Cys Gl u Pro Lys Cys Val Gl u Gl u Leu Pro Gl u Trp Asn Phe Asp Gl y
50 55 60

Ser Ser Thr Phe Gl n Ser Gl u Gl y Ser Asn Ser Asp Met Tyr Leu Ser
65 70 75 80

Pro Val Ala Met Phe Arg Asp Pro Phe Arg Arg Asp Pro Asn Lys Leu
85 90 95

Val Phe Cys Gl u Val Phe Lys Tyr Asn Arg Lys Pro Ala Gl u Thr Asn
100 105 110

Leu Arg His Ser Cys Lys Arg Ile Met Asp Met Val Ser Asn Gl n His
115 120 125

Pro Trp Phe Gl y Met Gl u Gl n Gl u Tyr Thr Leu Met Gl y Thr Asp Gl y
130 135 140

His Pro Phe Gl y Trp Pro Ser Asn Gl y Phe Pro Gl y Pro Gl n Gl y Pro
145 150 155 160

Tyr Tyr Cys Gl y Val Gl y Ala Asp Lys Ala Tyr Gl y Arg Asp Ile Val
165 170 175

Gl u Ala His Tyr Arg Ala Cys Leu Tyr Ala Gl y Val Lys Ile Thr Gl y
180 185 190

eol f-seql . txt

Thr Asn Al a Gl u Val Met Pro Al a Gl n Trp Gl u Phe Gl n Ile Gl y Pro
195 200 205

Cys Gl u Gl y Ile Arg Met Gl y Asp His Leu Trp Val Al a Arg Phe Ile
210 215 220

Leu His Arg Val Cys Gl u Asp Phe Gl y Val Ile Al a Thr Phe Asp Pro
225 230 235 240

Lys Pro Ile Pro Gl y Asn Trp Asn Gl y Al a Gl y Cys His Thr Asn Phe
245 250 255

Ser Thr Lys Al a Met Arg Gl u Gl u Asn Gl y Leu Lys His Ile Gl u Gl u
260 265 270

Al a Ile Gl u Lys Leu Ser Lys Arg His Arg Tyr His Ile Arg Al a Tyr
275 280 285

Asp Pro Lys Gl y Gl y Leu Asp Asn Al a Arg Arg Leu Thr Gl y Phe His
290 295 300

Gl u Thr Ser Asn Ile Asn Asp Phe Ser Al a Gl y Val Al a Asn Arg Ser
305 310 315 320

Al a Ser Ile Arg Ile Pro Arg Thr Val Gl y Gl n Gl u Lys Lys Gl y Tyr
325 330 335

Phe Gl u Asp Arg Arg Pro Ser Al a Asn Cys Asp Pro Phe Al a Val Thr
340 345 350

Gl u Al a Ile Val Arg Thr Cys Leu Leu Asn Gl u Thr Gl y Asp Gl u Pro
355 360 365

Phe Gl n Tyr Lys Asn
370

<210> 4
<211> 370
<212> PRT
<213> *Saccharomyces cerevisiae*

<400> 4

Met Al a Gl u Al a Ser Ile Gl u Lys Thr Gl n Ile Leu Gl n Lys Tyr Leu
1 5 10 15

Gl u Leu Asp Gl n Arg Gl y Arg Ile Ile Al a Gl u Tyr Val Trp Ile Asp
20 25 30

Gl y Thr Gl y Asn Leu Arg Ser Lys Gl y Arg Thr Leu Lys Lys Arg Ile
35 40 45

eof f-seql.txt

Thr Ser Ile Asp Glu Leu Pro Glu Trp Asn Phe Asp Glu Ser Ser Thr
50 55 60

Asn Glu Ala Pro Gly His Asp Ser Asp Ile Tyr Leu Lys Pro Val Ala
65 70 75 80

Tyr Tyr Pro Asp Pro Phe Arg Arg Glu Asp Asn Ile Val Val Leu Ala
85 90 95

Ala Cys Tyr Asn Asn Asp Glu Thr Pro Asn Lys Phe Asn His Arg His
100 105 110

Glu Ala Ala Lys Leu Phe Ala Ala His Lys Asp Glu Glu Ile Trp Phe
115 120 125

Glu Leu Glu Glu Glu Tyr Thr Leu Phe Asp Met Tyr Asp Asp Val Tyr
130 135 140

Glu Trp Pro Lys Glu Glu Tyr Pro Ala Pro Glu Glu Pro Tyr Tyr Cys
145 150 155 160

Glu Val Glu Ala Glu Lys Val Tyr Ala Arg Asp Met Ile Glu Ala His
165 170 175

Tyr Arg Ala Cys Leu Tyr Ala Glu Leu Glu Ile Ser Glu Ile Asn Ala
180 185 190

Glu Val Met Pro Ser Glu Trp Glu Phe Glu Val Glu Pro Cys Thr Glu
195 200 205

Ile Asp Met Glu Asp Glu Leu Trp Met Ala Arg Tyr Phe Leu His Arg
210 215 220

Val Ala Glu Glu Phe Glu Ile Lys Ile Ser Phe His Pro Lys Pro Leu
225 230 235 240

Lys Glu Asp Trp Asn Glu Ala Glu Cys His Ala Asn Val Ser Thr Lys
245 250 255

Glu Met Arg Glu Pro Glu Glu Thr Lys Tyr Ile Glu Glu Ala Ile Glu
260 265 270

Lys Leu Ser Lys Arg His Ala Glu His Ile Lys Leu Tyr Glu Ser Asp
275 280 285

Asn Asp Met Arg Leu Thr Glu Arg His Glu Thr Ala Ser Met Thr Ala
290 295 300

Phe Ser Ser Glu Val Ala Asn Arg Glu Ser Ser Ile Arg Ile Pro Arg
305 310 315 320

eol f-seql . txt

Ser Val Ala Lys Glu Gly Tyr Gly Tyr Phe Glu Asp Arg Arg Pro Ala
325 330 335

Ser Asn Ile Asp Pro Tyr Leu Val Thr Gly Ile Met Cys Glu Thr Val
340 345 350

Cys Gly Ala Ile Asp Asn Ala Asp Met Thr Lys Glu Phe Glu Arg Glu
355 360 365

Ser Ser
370

<210> 5

<211> 373

<212> PRT

<213> Xenopus laevis

<400> 5

Met Ala Thr Ser Ala Ser Ala Glu Leu Ser Lys Ala Ile Lys Glu Met
1 5 10 15

Tyr Leu Glu Leu Pro Glu Gly Asp Lys Val Glu Ala Met Tyr Ile Trp
20 25 30

Ile Asp Gly Thr Gly Glu Gly Leu Arg Cys Lys Thr Arg Thr Leu Asp
35 40 45

Ser Glu Pro Lys Thr Ile Glu Asp Leu Pro Glu Trp Asn Phe Asp Glu
50 55 60

Ser Ser Thr His Glu Ser Glu Gly Ser Asn Ser Asp Met Tyr Leu Ile
65 70 75 80

Pro Val Ala Met Phe Arg Asp Pro Phe Arg Arg Asp Pro Asn Lys Leu
85 90 95

Val Leu Cys Glu Val Leu Lys Tyr Asn Arg Lys Thr Ala Glu Thr Asn
100 105 110

Leu Arg His Thr Cys Asn Glu Ile Met Asp Met Val Gly Asn Glu His
115 120 125

Pro Trp Phe Gly Met Glu Glu Tyr Thr Leu Leu Gly Met Asp Glu
130 135 140

His Pro Phe Gly Trp Pro Ser Asn Glu Phe Pro Glu Pro Glu Gly Pro
145 150 155 160

Tyr Tyr Cys Glu Val Glu Ala Asn Lys Ala Tyr Gly Arg Asp Ile Val
165 170 175

Glu Ala His Tyr Arg Ala Cys Leu Tyr Ala Glu Val Lys Ile Ala Glu
Page 7

eol f-seql . txt

180

185

190

Thr Asn Al a Gl u Val Met Pro Al a Gl n Trp Gl u Phe Gl n Ile Gly Thr
195 200 205

Cys Gl u Gl y Ile Asp Met Gl y Asp His Leu Trp Ile Al a Arg Phe Ile
210 215 220

Leu His Arg Val Cys Gl u Asp Phe Gl y Ile Ile Val Ser Phe Asp Pro
225 230 235 240

Lys Pro Ile Thr Gl y Asn Trp Asn Gl y Al a Gl y Cys His Thr Asn Phe
245 250 255

Ser Thr Lys Ser Met Arg Gl u Gl u Gl y Gl y Leu Lys His Ile Gl u Gl u
260 265 270

Ser Ile Gl u Arg Leu Ser Lys Arg His Gl u Tyr His Ile Arg Met Tyr
275 280 285

Asp Pro Arg Gl y Gl y Lys Asp Asn Al a Arg Arg Leu Thr Gl y Phe His
290 295 300

Gl u Thr Ser Ser Ile His Gl u Phe Ser Al a Gl y Val Al a Asn Arg Gl y
305 310 315 320

Al a Ser Ile Arg Ile Pro Arg Leu Val Gl y Gl n Gl u Lys Lys Gl y Tyr
325 330 335

Phe Gl u Asp Arg Arg Pro Ser Al a Asn Cys Asp Pro Tyr Al a Val Thr
340 345 350

Gl u Al a Val Ile Arg Thr Cys Leu Leu Asn Gl u Thr Gl y Asp Gl u Pro
355 360 365

Leu Gl u Tyr Lys Asn
370

<210> 6
<211> 354
<212> PRT
<213> Arabidopsis thaliana

<400> 6

Met Ser Leu Leu Ser Asp Leu Val Asn Leu Asn Leu Thr Asp Al a Thr
1 5 10 15

Gl y Lys Ile Ile Ala Gl u Tyr Ile Trp Ile Gl y Gl y Ser Gl y Met Asp
20 25 30

Ile Arg Ser Lys Al a Arg Thr Leu Pro Gl y Pro Val Thr Asp Pro Ser
35 40 45

eol f-seql . txt

Lys Leu Pro Lys Trp Asn Tyr Asp Gl y Ser Ser Thr Gl y Gl n Al a Al a
50 55 60

Gl y Gl u Asp Ser Gl u Val Ile Leu Tyr Pro Gl n Al a Ile Phe Lys Asp
65 70 75 80

Pro Phe Arg Lys Gl y Asn Asn Ile Leu Val Met Cys Asp Al a Tyr Thr
85 90 95

Pro Al a Gl y Asp Pro Ile Pro Thr Asn Lys Arg His Asn Al a Al a Lys
100 105 110

Ile Phe Ser His Pro Asp Val Al a Lys Gl u Gl u Pro Trp Tyr Gl y Ile
115 120 125

Gl u Gl n Gl u Tyr Thr Leu Met Gl n Lys Asp Val Asn Trp Pro Ile Gl y
130 135 140

Trp Pro Val Gl y Gl y Tyr Pro Gl y Pro Gl n Gl y Pro Tyr Tyr Cys Gl y
145 150 155 160

Val Gl y Al a Asp Lys Al a Ile Gl y Arg Asp Ile Val Asp Al a His Tyr
165 170 175

Lys Al a Cys Leu Tyr Al a Gl y Ile Gl y Ile Ser Gl y Ile Asn Gl y Gl u
180 185 190

Val Met Pro Gl y Gl n Trp Gl u Phe Gl n Val Gl y Pro Val Gl u Gl y Ile
195 200 205

Ser Ser Gl y Asp Gl n Val Trp Val Al a Arg Tyr Leu Leu Gl u Arg Ile
210 215 220

Thr Gl u Ile Ser Gl y Val Ile Val Ser Phe Asp Pro Lys Pro Val Pro
225 230 235 240

Gl y Asp Trp Asn Gl y Al a Gl y Al a His Cys Asn Tyr Ser Thr Lys Thr
245 250 255

Met Arg Asn Asp Gl y Gl y Leu Gl u Val Ile Lys Lys Al a Ile Gl y Lys
260 265 270

Leu Gl n Leu Lys His Lys Gl u His Ile Al a Al a Tyr Gl y Gl u Gl y Asn
275 280 285

Gl u Arg Arg Leu Thr Gl y Lys His Gl u Thr Al a Asp Ile Asn Thr Phe
290 295 300

Ser Trp Gl y Val Al a Asn Arg Gl y Al a Ser Val Arg Val Gl y Arg Asp
305 310 315 320

eol f-seql . txt

Thr Glu Lys Glu Gly Lys Glu Tyr Phe Glu Asp Arg Arg Pro Ala Ser
325 330 335

Asn Met Asp Pro Tyr Val Val Thr Ser Met Ile Ala Glu Thr Thr Ile
340 345 350

Leu Glu

<210> 7
<211> 369
<212> PRT
<213> Drosophila melanogaster

<400> 7

Met Ser Ala Arg Ile Leu Glu Asp Ser Pro Asn Ala Arg Ile Asn Lys
1 5 10 15

Thr Ile Leu Asp Arg Tyr Leu Ser Leu Pro Leu Gln Glu Asn Ile Val
20 25 30

Gln Ala Thr Tyr Val Trp Ile Asp Glu Thr Glu Glu Asp Leu Arg Cys
35 40 45

Lys Asp Arg Thr Leu Asp Phe Ile Pro Gln Ser Pro Lys Glu Leu Pro
50 55 60

Val Trp Asn Tyr Asp Glu Ser Ser Cys Tyr Gln Ala Glu Glu Ser Asn
65 70 75 80

Ser Asp Thr Tyr Leu Tyr Pro Val Ala Ile Tyr Lys Asp Pro Phe Arg
85 90 95

Arg Glu Asn Asn Ile Leu Val Met Cys Asp Thr Tyr Lys Phe Asp Glu
100 105 110

Thr Pro Thr Asp Thr Asn Lys Arg Lys Thr Cys Leu Glu Val Ala Asn
115 120 125

Lys Cys Ala Ala Glu Glu Pro Trp Phe Glu Ile Glu Gln Glu Tyr Thr
130 135 140

Phe Leu Asp Phe Asp Glu His Pro Leu Glu Trp Pro Lys Asn Glu Phe
145 150 155 160

Pro Glu Pro Gln Glu Pro Tyr Tyr Cys Glu Val Glu Ala Asn Lys Val
165 170 175

Tyr Ala Arg Asp Ile Val Asp Ala His Tyr Arg Ala Cys Leu Tyr Ala
180 185 190

eof f-seql . txt

Gly Ile Lys Val Ser Gly Thr Asn Ala Glu Val Met Pro Ala Glu Trp
195 200 205

Glu Phe Glu Val Gly Pro Cys Glu Gly Ile Ser Ile Gly Asp Asp Leu
210 215 220

Trp Met Ala Arg Phe Leu Leu His Arg Ile Ser Glu Glu Phe Gly Ile
225 230 235 240

Val Ser Thr Leu Asp Pro Lys Pro Met Pro Gly Asp Trp Asn Gly Ala
245 250 255

Gly Ala His Thr Asn Val Ser Thr Lys Ala Met Arg Glu Asp Gly Gly
260 265 270

Ile Arg Asp Ile Glu Lys Ala Val Ala Lys Leu Ser Lys Cys His Glu
275 280 285

Arg His Ile Arg Ala Tyr Asp Pro Lys Glu Glu Gly Glu Asp Asn Ala Arg
290 295 300

Arg Leu Thr Gly Lys His Glu Thr Ser Ser Ile Asn Asp Phe Ser Ala
305 310 315 320

Gly Val Ala Asn Arg Gly Cys Ser Ile Arg Ile Pro Arg Gly Val Asn
325 330 335

Asp Asp Gly Lys Gly Tyr Phe Glu Asp Arg Arg Pro Ser Ser Asn Cys
340 345 350

Asp Pro Tyr Ser Val Val Glu Ala Ile Leu Arg Thr Ile Cys Leu Asp
355 360 365

Glu

<210> 8
<211> 1122
<212> DNA
<213> Homo sapiens

<400> 8
atgaccacct ccgcctccag ccacacctgaac aagggcatca aacaggtgtta catgagcctg 60
ccccagggcg agaaggtgca ggcacatgtac atctggatcg acggcaccgg cgagggactg 120
cggtgcaaga ccagaaccct ggactccgag cctaagtgcg tggagaagaact gcccggatgg 180
aacttcgacg gctcctccac cctgcagtcc gagggctcca actccgacat gtacctggtg 240
cctggccca tggccggga cccttccgg aaggacccca acaagctggt gctgtgcgag 300
gtgttcaagt acaacagacg gcctgcccgg acaaacctgc ggcataccctg caagcggatc 360
atggacatgg tgtccaaacca gcacccttgg tttggcatgg aacaggagta caccctgtatg 420

eol f-seql . txt

ggcaccgacg	gccacccctt	cggctggcct	tctaacggct	tccctggccc	ccagggcccc	480
tactattgtg	gcgtgggcgc	cgaccgggcc	tacggcagag	atatcgtgga	agcccactac	540
cgggcctgcc	tgtacgcccc	agtgaagatc	gccggcacca	acgcccgaagt	gatgcccccc	600
cagtgggagt	tccagatcgg	cccttgcgag	ggcatctcca	tggcgatca	cctgtgggtg	660
gcccggtca	tcctgcacag	agtgtgcgag	gacttcggcg	tgatcgccac	cttcgacccc	720
aagcccatcc	ccggcaactg	gaacggcgt	ggctgccaca	ccaacttctc	caccaaggcc	780
atgcgggaag	agaacggcct	gaagtacatc	gaggaagcca	tcgagaagct	gtccaagcgg	840
caccagtacc	acatcagagc	ctacgaccct	aaggcggcc	tggacaacgc	cagaaggctg	900
accggcttcc	acgagacatc	caacatcaac	gacttctctg	ccggcgtggc	caacagatcc	960
gcctccatcc	ggatccctag	aaccgtggc	cagaaaaaga	aggctactt	cgaggacaga	1020
cggccctccg	ccaactgcga	cccctttagc	gtgaccgagg	ccctgatccg	gacctgcctg	1080
ctgaacgaga	caggcgacga	gcccttccag	tacaagaact	ga		1122

<210> 9
 <211> 1122
 <212> DNA
 <213> Canis lupus

<400> 9						
atggccacct	ccgcctccag	ccacctaaca	aaggcatca	aacaggtgt	catgagcctg	60
ccccagggcg	agaaggtca	ggccatgtac	atctggatcg	acggcaccgg	cgaggactg	120
cggtgcaaga	ccagaaccct	ggactccgag	cccaagggcg	tggaagaact	gcccgagtgg	180
aacttcgacg	gctcctccac	cttccagtcc	gagggctcca	actccgacat	gtacctggtg	240
cctgccgcca	tgttccggga	cccttccgg	aaggaccca	acaagctggt	gttctgcgag	300
gtgttcaagt	acaaccgaa	gcccggcgag	acaaacctgc	ggcataacctg	caagcgatc	360
atggacatgg	tgtccaacca	gcacccttgg	tttggcatgg	aacaggagta	caccctgatg	420
ggcaccgacg	gccacccctt	cggctggcct	tctaacggct	tccctggccc	ccagggcccc	480
tactattgtg	gcgtgggcgc	cgacaaggcc	tacggcagag	acatcgtgga	agcccactac	540
cgggcctgcc	tgtacgcccc	catcaagatc	gctggcacca	acgcccgaagt	gatgcccccc	600
cagtgggagt	tccagatcgg	cccttgcgag	ggcatcgaca	tggcgatca	cctgtgggtg	660
gcccggtca	tcctgcacag	agtgtgcgag	gacttcggcg	tgatcgccac	cttcgacccc	720
aagcccatcc	ccggcaactg	gaacggcgt	ggctgccaca	ccaacttctc	caccaaggcc	780
atgcgggaag	agaacggcct	gaagtacatc	gaggaatcca	tcgagaagct	gtccaagcgg	840
caccagtacc	acatccgggc	ctacgacccc	aaggcggcc	tggataacgc	cagacggctg	900
accggcttcc	acgagacatc	caacatcaac	gacttctctg	ccggcgtggc	caacagaggc	960
gcctccatcc	ggatcccccc	gaccgtggc	cagaaaaaga	aggctactt	cgaggacaga	1020
cggccctccg	ccaactgcga	cccctttagc	gtgaccgagg	ccctgatccg	gacctgcctg	1080

ctgaacgaga caggcgacga gcccttccag tacaagaact ga eol f-seql . txt 1122

<210> 10
<211> 1122
<212> DNA
<213> Cricetulus grisus

<400> 10
atggccacct cagcaagtcc ccacttgaac aaaaacatca agcaaatgta cttgtgcctg 60
ccccagggtg agaaagtcca agccatgtat atctgggtt atggtaactgg agaaggactg 120
cgctgcacaaa cccgcacccct ggactgtgag cccaaatgtg tagaagagtt acctgagtgg 180
aattttgatg gctctagttac ctttcgtct gagggctcca acagtgcacat gtatctcagc 240
cctgttgcca tgtttcggga ccccttcgc agagatccca acaagctggt gttctgtgaa 300
gttttcaagt acaaccggaa gcctgcagag accaattaa ggcactcgtg taaacggata 360
atggacatgg tgagcaacca gcacccctgg tttggaatgg aacaggagta tactctgatg 420
ggaacagatg ggcacccctt tggttggcct tccaaatggct ttccctggcc ccaagggtccg 480
tattactgtg gtgtgggcgc agacaaagcc tatggcaggg atatcgtgaa ggctcactac 540
cgccgcctgct tttatgttggcgtt ggtcaagattt acaggaacaa atgctgaggt catgcctgccc 600
cagtggaaat tccaaatagg accctgtgaa ggaatccgca tggagatca tctctgggtg 660
gcccgttca tcttgcatcg agtatgtgaa gactttgggg taatagcaac ctttgacccc 720
aagcccattc ctgggaactg gaatggtgca ggctgccata ccaacttttag caccaaggcc 780
atgcgggagg agaatggctt gaagcacatc gaggaggcca tcgagaaact aagcaagcgg 840
caccgggtacc acattcgagc ctacgatccc aaggggggcc tggacaatgc ccgtcgtctg 900
actgggttcc acgaaacgtc caacatcaac gactttctg ctgggtgcgc caatcgcagt 960
gccagcatcc gcattccccg gactgtcgcc caggagaaga aaggttactt tgaagaccgc 1020
cgcccccctg ccaattgtga ccccttgca gtgacagaag ccatcgtccg cacatgcctt 1080
ctcaatgaga ctggcgacga gcccttccaa tacaaaaaact aa 1122

<210> 11
<211> 1113
<212> DNA
<213> Saccharomyces cerevisiae

<400> 11
atggccgagg cctccatcga aaagacccag atcctgcaga agtacctgga actggaccag 60
cggggcagaa tcattgcccgtt gtacgtgtgg atcgacggca cccgcaacct gcggctcaag 120
ggccggaccc tgaagaagcg gatcacctcc atcgaccagc tgcccgagtg gaacttcgac 180
ggctccctcca ccaaccaggc ccctggccac gactccgaca tctacctgaa gcccgtggcc 240
tactaccccg accccttcag acggggcgac aacatcgtgg tgctggccgc ctgctacaac 300
aacgacggca cccccaacaa gttcaaccac cggcacgagg cccccaagct gttcggccgc 360
cacaaggacg aggaaatttgg ttcggcctg gaacaggagt acaccctgtt cgatatgtac 420

	eol f-seql . txt		
gacgacgtgt acggctggcc caagggcggc	tatcctgccc ctcagggccc	ctactactgt	480
ggcgtggcg ctggcaaggt gtacgccaga	gacatgatcg aggcccacta	ccgggcctgc	540
ctgtacgccc gcctggaaat ctccggcatc	aacgccaag ttagtgcctc	ccagtggag	600
ttccaggtgg gaccctgcac cggcatcgac	atgggcgacc agctgtggat	ggcccggtac	660
ttcctgcacc gggtggccga ggaattcgcc	atcaagatca gcttccaccc	caagcccctg	720
aaggcgact ggaacggcgc tggatgccac	gccaacgtgt ccaccaaaga	gatgcggcag	780
cctggcggca ccaagtacat cgagcaggcc	atcgagaagc tgtccaagcg	gcacgcccag	840
cacatcaagc tgtacggctc cgacaacgac	atgcggctga ccggcagaca	cgagacagcc	900
tccatgaccg ccttctccag cggcgtggcc	aaccggggct cctccatccg	gatccctaga	960
agcgtggcca aagagggcta cggctacttc	gaggacagac ggcctgcctc	caacatcgac	1020
ccctacctgg tgacaggcat catgtgcgag	acagtgtgcg ggcctatcg	caacgcccac	1080
atgaccaaag agttcgagag agagtccctcc	tga		1113

<210> 12

<211> 1122

<212> DNA

<213> Xenopus laevis

<400> 12			
atggccacct ccgcctccgc ccagctgtcc	aaggccatca agcagatgt	cctgaaactg	60
cctcagggcg acaaggtgca ggccatgtac	atctggatcg acggcaccgg	cgagggactg	120
cggtgcaaga ccagaacct ggactccgag	cccaagacca tcgaggac	gcccgagtgg	180
aacttcgacg gtcctccac ccaccagtcc	gagggctcca actccgacat	gtacctgatc	240
cccggtggca tttccggga cccttccgg	cgggacccca acaagctgg	gctgtgcgag	300
gtgctgaagt acaacagaaa gaccgcccag	acaaacctgc ggcacacctg	taaccagatc	360
atggacatgg tggaaacga gcacccttgg	tttggcatgg aacaggagta	caccctgctg	420
ggcatggacg gccacccctt cggctggcct	tccaaacggct ttcctggccc	ccagggcccc	480
tactattgcg gcgtggcgca	caacaaggcc tacggcagag	acatcgatgg	540
cgggcctgcc tgtacgccc	cgtgaagatc gccggcacca	acgcccgaat	600
cagtggagttccatgcg	cacatgcgag ggcacatcg	tggagacca	660
gcccgttca tcctgcacag agtgtgcgag	gacttcggca tcatcgatgc	tttcgaccc	720
aagccatca ccggcaactg	gaacggcgct ggctgccaca	ccaacttctc	780
atgcgggaag agggcgccct	gaagcacatc gaggaatcca	tcgagcggct	840
cacgagtacc acatcaggat	gtacgacccc agaggccggca	aggacaacgc	900
accggcttcc acgagacatc	ctccatccac gagttctctg	ctggcgtggc	960
gcctccatcc ggatcccaag	actgggtggga caggaaaaga	agggtactt	1020
cggccctccg ccaactgcga	cccttacgt gtgaccgagg	ccgtatccg	1080
ctgaacgaga caggcgcacga	gcccctggag	tacaagaact	1122

eol f-seql . txt

<210> 13
 <211> 1065
 <212> DNA
 <213> Arabidopsis thaliana

<400> 13
 atgtccctgc tgtccgacct ggtgaacctg aacctgaccg acgccaccgg caagatcatt 60
 gccgagtaca tctggatcgg cggtccggc atggacatcc ggtctaaggc ccggaccctg 120
 cctggccctg tgaccgaccc ctccaagctg cccaagtgg aactacgacgg ctcctccacc 180
 ggccaggccg ctggcgagga ctccgaagtg atcctgtatc cacaggccat cttcaaggac 240
 cctttccgga agggcaacaa catcctggtg atgtgcgacg cctacacccc tgccggcgac 300
 cccatcccta ccaacaagcg gcacaacgccc gccaagatct tctcccaccc cgacgtggcc 360
 aaagaggaac ctgggtacgg catcgagcag gactacaccc tggatgcagaa agacgtgaac 420
 tggcccatcg gctggccgt gggcgctat cctggccctc agggacccta ctactgcggc 480
 gtggcgccg acaaggccat cgccagagac atcgtggacg cccactacaa ggcctgcctg 540
 tacgcccggca tcggcatctc tggcatcaac ggcgaagtga tgcccgccca gtgggagttc 600
 caggtggac ccgtggaaagg catctcctcc ggcatcgagg tggatggatgc cagataacctg 660
 ctggaaacggta tcaccgagat ctccggcggt atcgtgtcct tcgaccccaa gcccgtgccc 720
 ggcgattggta atggcgctgg cgccactgc aactactcca ccaagaccat ggcggaaacgac 780
 ggcggcctgg aagtgtatcaa gaaggctatc ggcaagctgc agctgaagca caaagagcat 840
 atcggccgcct acggcgaggg caacgagcgg agactgaccg gcaaggcacga gacagccgac 900
 atcaacaccc tcaagctgggg cgtggccaaac agggcgctt ctgtgcgcgt gggccggat 960
 accgagaaag agggcaaggg ctacttcgag gacagacggc ctgcctccaa catggacccc 1020
 tacgtggta catccatgtatcgccgagaca accatcctgg gctga 1065

<210> 14
 <211> 1110
 <212> DNA
 <213> Drosophila melanogaster

<400> 14
 atgtccgccc ggatcctgga agattcccc aacgcccggta caacaagac catcctggac 60
 agataacctga gcctgccact gcaggaaac atcgtccagg ccacctacgt gtggatcgac 120
 ggcacaggcg aggacctgctgtcaaggac cggaccctgg acttcatccc ccagtcccc 180
 aaagaactgc ccgtgtggaa ctacgacggc tccagctgct accaggccga gggctccaaac 240
 tccgacaccc acctgtaccc cgtggccatc tacaaggacc cttcagacg gggcaacaac 300
 atcctggta tgtgcacac ctacaagttc gatggacccc ccacccgacac caacaagaga 360
 aagacctgccc tggaaagtggc caacaagtgt gccgcccagg aaccttgggtt tggcatcgag 420
 caggagtaca ctttcctggta cttcgacggc caccctgg gctggcccaa gaatggctt 480
 cctggacccc agggcccta ctattgcggc gtggcgccca acaagggtgta cgccagagac 540

eol f-seql . txt

atcgtggacg cccactaccg ggcctgcctg tacgccgaa tcaagggtgtc cggcaccaac	600
gccgaagtga tgcccgccca gtgggagttc caggtggac cttgcgaggg catctccatc	660
ggcgacgacc tgtggatggc ccggttcctg ctgcaccgga tctccgagga attcggcatc	720
gtgtccaccc tggaccccaa gcccattgccc ggcgattgga atggcgctgg cgcccacacc	780
aacgtgtcca ccaaggccat gagagaggac ggcggcatcc gggacatcga gaaggccgtg	840
gccaagctgt ccaagtgcca cgagcggcac atccggcct acgaccctaa gcagggccag	900
gacaacgcca gacggctgac cgccaaggcac gagacatcct ccatcaacga cttcttgcc	960
ggcgtggcca accggggctg ctccatcaga atccctcggt gcgtgaacga cgacggcaag	1020
ggctacttcg aggacagacg gcccctcctcc aactgcgacc cttaactccgt ggtgaaagcc	1080
atcctgcgga ccatctgcct ggacgagtga	1110