

(19) 日本国特許庁(JP)

(12) 公表特許公報(A)

(11) 特許出願公表番号

特表2004-526286
(P2004-526286A)

(43) 公表日 平成16年8月26日(2004.8.26)

(51) Int.C1. ⁷	F 1	テーマコード (参考)	
HO 1 M 4/26	HO 1 M 4/26	H	5 H O 5 O
HO 1 M 4/24	HO 1 M 4/24	H	
HO 1 M 4/62	HO 1 M 4/62	C	

審査請求 未請求 予備審査請求 有 (全 24 頁)

(21) 出願番号	特願2002-574138 (P2002-574138)	(71) 出願人	503334389 パワージェニックス・システムズ・インコ ーポレーテッド POWERGENIX SYSTEMS INCORPORATED カナダ国 ユーコン準州 ブイ1エー 3 ティ2 ホワイトホース, ランパート・ス トリート, 204, スイート 204 (74) 代理人 110000028 特許業務法人明成国際特許事務所
(86) (22) 出願日	平成14年3月15日 (2002.3.15)	(72) 発明者	フィリップス・ジェフリー アメリカ合衆国 カリフォルニア州950 54 サンタ・クララ, ケネス・ストリー ト, 3080
(85) 翻訳文提出日	平成15年9月12日 (2003.9.12)		
(86) 國際出願番号	PCT/CA2002/000352		
(87) 國際公開番号	W02002/075825		
(87) 國際公開日	平成14年9月26日 (2002.9.26)		
(31) 優先権主張番号	60/276,344		
(32) 優先日	平成13年3月15日 (2001.3.15)		
(33) 優先権主張国	米国(US)		

最終頁に続く

(54) 【発明の名称】アルカリ電池のための酸化亜鉛電極の製造方法

(57) 【要約】

【課題】アルカリ電池で用いられる亜鉛電極を提供する。

【解決手段】アルカリ電池で用いられる亜鉛電極は、体積比で0.425～1.55の酸化亜鉛と、体積比で1の酸化カルシウム、酸化マグネシウム、酸化バリウム、およびこれらの混合物からなるグループから選択された金属酸化物と、ヒドロキシエチルセルロースと、石けん誘導体、陰イオン高分子電解質、陰イオン界面活性剤、およびこれらの混合物からなるグループから選択された酸化物分散剤と、液体バインダと、を含む混合物を含む。電極は、酸化亜鉛を、水または水酸化カリウムのような水性媒体中の金属酸化物と混ぜ、終夜攪拌し、混合物を濾過し、乾燥させ、任意選択的に少量の酸化亜鉛をさらに加え、任意選択的に少量の他の金属酸化物をさらに加え、ヒドロキシエチルセルロース、分散剤、およびバインダを加えることによって準備される。水性ペーストまたはスラリーはこのように形成され導電性基板上に置かれ、寸法決定するギャップを通して、カットされ、乾燥されることで低コストなペースト式酸化亜鉛電極を形成する。

【特許請求の範囲】

【請求項 1】

アルカリ電池に用いられる酸化亜鉛電極の製造方法であって、
(a) 酸化カルシウム、酸化マグネシウム、酸化バリウム、およびそれらの混合物からなるグループから選択された金属酸化物の水性懸濁液を準備することであって、体積比で0.1～2.0の前記選択された金属酸化物を、体積比で20の水および20%の水酸化カリウム溶液からなるグループから選択された水性媒体に入れ、懸濁液を形成するよう激しく攪拌することを含む、水性懸濁液を準備すること、

(b) 前記懸濁液中の前記選択された金属酸化物の体積比で0.4～1.5倍の量の酸化亜鉛を前記懸濁液に加えること、
10

(c) 1～12時間のあいだ、前記懸濁液を攪拌すること、

(d) 前記攪拌された混合物を濾過すること、

(e) 前記濾過された混合物を45～75の温度で乾燥させることによって粉末状混合物を形成すること、

(f) 体積比で0.025～0.05の追加の酸化亜鉛を前記粉末状混合物に加えること、
15

(g) 任意選択として、酸化ビスマス、酸化インジウム、酸化スズ、およびそれらの混合物からなるグループから選択された体積比で0.01～0.04の追加の金属酸化物を前記粉末状混合物に加えること、

(h) ヒドロキシエチルセルロース、石けん誘導体、陰イオン高分子電解質、陰イオン界面活性剤、およびそれらの混合物からなるグループから選択された酸化物分散剤、および液体バインダを前記粉末状混合物に加えることによって、前記粉末状混合物の水性ペーストを準備すること、
20

(i) 前記水性ペーストを導電性基板上にコーティングまたは塗布すること、

(j) 前記コーティングされた導電性基板を、所定の寸法を持つギャップを通して引き出すことにより、製造される前記電極の厚さを決定すること、および
25

(k) 前記電極を乾燥させ、適当な大きさに切ること、
を含む方法。

【請求項 2】

請求項1に記載の方法であって、前記水性媒体は水であり、ステップ(c)は室温で実行され、かつ前記水性媒体が水酸化カリウム溶液であるとき、ステップ(c)が50～75で実行される方法。
30

【請求項 3】

請求項1に記載の方法であって、前記液体バインダはPTE分散液である方法。

【請求項 4】

アルカリ電池で用いられる亜鉛電極であって、

体積比で0.425～1.55の酸化亜鉛と、
40

体積比で1の酸化カルシウム、酸化マグネシウム、酸化バリウム、およびそれらの混合物からなるグループから選択された金属酸化物と、

ヒドロキシエチルセルロースと、

石けん誘導体、陰イオン高分子電解質、陰イオン界面活性剤、およびそれらの混合物からなるグループから選択された酸化物分散剤と、

液体バインダと、
45

を含む混合物を含む亜鉛電極。

【請求項 5】

請求項4に記載の亜鉛電極であって、前記バインダはPTE分散液である亜鉛電極。

【請求項 6】

請求項4に記載の亜鉛電極であって、体積比で0.01～0.04の、酸化ビスマス、酸化インジウム、酸化スズ、およびそれらの混合物からなるグループから選択された金属酸化物をさらに備える亜鉛電極。
50

【発明の詳細な説明】**【技術分野】****【0001】**

本発明は、アルカリ電池に用いられる酸化亜鉛電極に関し、そのような酸化亜鉛電極の製造方法と、合わせてその配合とを提供する。特に本発明は、ペースト式亜鉛陰極の低成本製造のために提供される。

【背景技術】**【0002】**

ハイレート、ハイパフォーマンス電池中の亜鉛電極の使用に関して難問が生じている。一方で亜鉛電極の使用は低成本の陰極を提供する。もう一方ではそのような電極が、通常の場合そうであるようにペーストされるとき、それらは作るのが困難で非常にコストが高くつく。その電極が置かれる蓄電池の寿命のあいだに亜鉛電極がサイクルされ(cycled)、最終的には起こる形状変化が起こらないようなステップが取られるときには特にそうである。

【0003】

本発明は、ある水溶性ペースティング技術を採用することによって、かつ、安定化のためにそこに含まれるカルシウム、マグネシウム、またはバリウムのさらなる酸化物を特に持つ安定な亜鉛ベースのスラリーまたはペーストを提供することによって、環境にやさしい亜鉛電極の大量生産が提供されることを偶然に発見した。

【0004】

亜鉛電極を持つ蓄電池は、低成本の陰極を利用できるという利点を有する。もちろんそれらはまた、高電圧および軽量を提供する。

【0005】

一方、アルカリ電池の亜鉛電極は、多くのアルカリ電解液中でいくらかの溶解度を呈し、その結果、電池としての亜鉛電極の完全性を失うこととなる。亜鉛電極の形状がくずれるこの現象はよく知られ、業界では形状変化(shape change)と呼ばれる。

【0006】

形状変化を制御するために多くのアプローチが取られてきている。最もうまくいく試みは、亜鉛電極の溶解度を制限し、それにより亜鉛電極の移行(migrate)性を減らす。

【0007】

例えばEISENBERGに付与された1980年9月23日発行の米国特許第4,224,391号、および1993年6月1日発行の米国特許第5,215,836号は、それぞれ、水酸化カリウム、およびホウ酸、リン酸、またはヒ酸の混合物を用いる電解液の配合を開示する。いずれの場合も目的は、亜鉛電極の溶解度を抑制することにある。

【0008】

他のアプローチは1994年4月12日に発行された米国特許第5,302,475号においてADLERらによって取られた。この特許では発明者らは、水酸化カリウムおよびフッ化カリウムおよび炭酸カリウム塩の混合物を含む電解質を教示する。この亜鉛電極は、低い形状変化を示すと報告されている。

【0009】

発明者に知られるさらに他のアプローチは、酸化カルシウムのような物質を電極そのものに添加することである。このアプローチは、放電生成物の化学組成を変えることによって、実質的に溶液中の亜鉛イオンの濃度を下げる。しかしそうするためには、亜鉛電極の導電基板に塗るために亜鉛酸カルシウムの水性ペーストまたはスラリーを製造する方法が考案されなければならない。

【0010】

さらに亜鉛電極が製造される方法は、電池のサイクルパフォーマンスに大きな影響を与えるかもしれない。多くの準備プロセスが、亜鉛電極のパフォーマンスをさらに最適化するために用いられてきた。これらにはHEINらによって1972年2月29日に発行された米国特許第3,645,793号で教示される粉末圧縮を含む。この特許では、発明者

10

20

30

40

50

らは、金属粉末を高度に多孔性の金属電池電極構造に圧縮することを教示し、粉末は、圧縮工程の前またはその間に弱酸性の作用でまず洗浄される。

【0011】

他のアプローチはCHARKEYらによって取られた、1999年1月26日発行の米国特許第5,863,676号におけるものである。ここでは不溶性シート形成が採用され、これは亜鉛酸カルシウムの構成要素が電池の外部で形成され、層状に電池内に配置される。

【0012】

しかし、ペーストを塗る間の「設定」時間を管理することに関して、ペーストを塗る工程を採用するプロセスはどれも制御が難しい。これは、1987年9月のJournal of the Electrochemical Society誌の2091ページから2096ページに刊行されたGagnonらによる「Zn/NiOOHセル用の水酸化カルシウムを含むペースト式ロール状亜鉛電極」と題された論文に報告されている。2092ページには、同一量のペーストがグリッドの両面に塗布され、ペーストの裏紙で挟み、薄膜を形成するためにローラを通すことで電極製造がなされると報告されている。その後、集電板が2つのフィルム間に置かれ、この複合体は亜鉛電極を作るためにプレスされる。これにより、電極を塗るより長い設定時間が得られ、ペーストは集電板グリッドを満足のいくように固着させることができた。

【0013】

高パフォーマンス電池に用いられる亜鉛電極の高能率な製造のためには、残念ながら上述のいずれのプロセスもすぐには大量生産には移行されえない。したがって亜鉛電極の形状変化の化学的問題が効果的に解決されたにもかかわらず、妥当な価格で商業製品を提供することは不可能であった。

【0014】

本発明は環境にやさしい亜鉛電極の大量生産方法を提供し、ここで電極は、大きな形状変化なしに優秀な機械的特性、高率特性、および高サイクルライフを示す。

【0015】

実際、本発明の方法は、全ての蓄電池製造にすぐに容易に適用でき、そのうち低成本亜鉛ベースの電池が大量に製造され、それにより有害なカドミウムベースの電池に取って代わることができる。そのようなカドミウムベースの電池は、その有害性およびメモリ効果などにもかかわらず、その比較的な低成本のために強い市場での位置を今でも占める。

【0016】

酸化亜鉛の水性ペーストを金属製の集電板上に均一にコーティングすることは非常に難しい。酸化カルシウムまたは水酸化カルシウムが混合物に加えられると、水性ペースト状の酸化亜鉛を金属製集電板上に均一にコーティングする問題がより深刻になる。

【0017】

混合物に対してさらなる工程を施すことを妨げる急速な固化の結果、これらの問題が起り、すなわち最終的に塗布された板は構造的に堅牢でなく、さらなる工程を施すことが不可能である。

【発明の開示】

【発明が解決しようとする課題】

【0018】

もちろんこれらの問題のために、亜鉛電極の非標準的な製造技術につながり、その結果亜鉛電極を製造するコストを押し上げることになる。しかし、もしカドミウム電極に適用されるような水性ベースの製造技術を亜鉛ベースの電極にもうまく採用することが開発されるなら、有害なカドミウムベースの電池への依存は克服される。

【課題を解決するための手段】

【0019】

本発明はこの解決法を提供する。本発明を利用することで、連続したコーティングされた

10

20

30

40

50

電極を設定の問題なしに製造することが可能になり、かつ機械的に堅牢な電極を提供できる。簡単に言えば、本発明は亜鉛酸カルシウムまたは他の前駆物質のために、さらに他の任意選択の酸化金属、およびセルロース化合物、分散剤、およびバインダのような適切なペースト構成物とともに、酸化カルシウム、酸化マグネシウム、または酸化バリウムを含む酸化亜鉛の混合物に基づいて水性溶液を提供する。

【0020】

上記目的のために本発明は、アルカリ電池で用いられる酸化亜鉛電極の製造方法および酸化亜鉛電極そのものの両方を提供する。本発明の方法は、以下のステップを含む。

【0021】

(a) 酸化カルシウム、酸化マグネシウム、酸化バリウム、およびそれらの混合物からなるグループから選択された金属酸化物の水性懸濁液を準備することであって、体積比で0.1～2.0の前記選択された金属酸化物を、体積比で20の水および20%の水酸化カリウム溶液からなるグループから選択された水性媒体に入れること。水性媒体中の選択された金属酸化物は、懸濁液を形成するよう激しく攪拌される。

【0022】

(b) 前記懸濁液中の前記選択された金属酸化物の体積比で0.4～1.5倍の量の酸化亜鉛を前記懸濁液に加えること。

【0023】

(c) 1～12時間のあいだ、前記懸濁液を攪拌すること。

【0024】

(d) 前記攪拌された混合物を濾過すること。

【0025】

(e) 前記濾過された混合物を45～75の温度で乾燥させることによって粉末状混合物を形成すること。

【0026】

(f) 体積比で0.025～0.05の追加の酸化亜鉛を前記粉末状混合物に加えること。

【0027】

(g) 任意選択として、酸化ビスマス、酸化インジウム、酸化スズ、およびそれらの混合物からなるグループから選択された体積比で0.01～0.04の追加の金属酸化物を前記粉末状混合物に加えること。

【0028】

(h) ヒドロキシエチルセルロース、石けん誘導体、陰イオン高分子電解質、陰イオン界面活性剤、およびそれらの混合物からなるグループから選択された酸化物分散剤、および液体バインダを前記粉末状混合物に加えることによって、前記粉末状混合物の水性ペーストを準備すること。

【0029】

(i) 前記水性ペーストを導電性基板上にコーティングまたは塗布すること。

【0030】

(j) 前記コーティングされた導電性基板を、所定の寸法を持つギャップを通して引き出すことにより、製造される前記電極の厚さを決定すること。

【0031】

(k) 前記電極を乾燥させ、適当な大きさに切ること。

請求項1に記載の方法であって、前記水性媒体は水であり、ステップ(c)は室温で実行され、かつ前記水性媒体が水酸化カリウム溶液であるとき、ステップ(c)が50～75で実行される方法。

【0032】

本発明によれば、水性媒体は水でありえ、または水酸化カリウム溶液でありえる。水性媒体が水であるとき、ステップ(c)は室温で実行される。しかし水性媒体が水酸化カリウム溶液であるとき、ステップ(c)は50～75で実行される。

10

20

30

40

50

【0033】

本発明による亜鉛電極の形成で用いられる液体バインダは典型的にはPTE分散液である。

【0034】

本発明は、アルカリ電池で用いられる亜鉛電極も提供し、この亜鉛電極は、体積比で0.425～1.55の酸化亜鉛と、体積比で1の酸化カルシウム、酸化マグネシウム、酸化バリウム、およびそれらの混合物からなるグループから選択された金属酸化物と、ヒドロキシエチルセルロースと、石けん誘導体、陰イオン高分子電解質、陰イオン界面活性剤、およびそれらの混合物からなるグループから選択された酸化物分散剤と、液体バインダと、の混合物であることによって特徴づけられる。

10

【0035】

やはりバインダは典型的にはPTE分散液である。

【0036】

本発明の亜鉛電極は、体積比で0.01～0.04の、酸化ビスマス、酸化インジウム、酸化スズ、およびそれらの混合物からなるグループから選択された金属酸化物をさらに備えてよい。

【発明を実施するための最良の形態】

【0037】

そのさらなる目的および効果と共に、その構造、組成、使用および実現方法について本発明の特徴であると考えられる新規な特徴は、以下の説明から理解されよう。

20

【0038】

いくつかの実施例が以下に続き、これらは、本発明による亜鉛電極の特定の選択された構成要素の具体的な利用法、およびそれを製造する方法を示す。

実施例1

【0039】

100グラムの酸化カルシウムが2リットルの水に加えられて懸濁液を形成する。この懸濁液は激しく攪拌される。

【0040】

その後、約250グラム、酸化カルシウムのほぼ2.5倍の重量の酸化亜鉛がこの懸濁液に加えられる。体積比(volume part)で約0.32の酸化カルシウムと約0.47の酸化亜鉛が用いられたことになる。

30

【0041】

この懸濁液はそれから連続して終夜、室温で攪拌される。

【0042】

その後、懸濁液から固形混合物が濾過され、60で乾燥される。

【0043】

それからさらに約20グラムの酸化亜鉛が、酸化亜鉛および酸化カルシウムの粉末状混合物に加えられ、これは体積比で、酸化亜鉛0.51の総量に対して0.04に相当する。

【0044】

また約28グラムの酸化ビスマス、体積比約0.01が粉末混合物に加えられる。

40

【0045】

それからヒドロキシルエチルセルロースおよび分散剤を加えることによって、なめらかなペーストが得られる。石けん誘導体、陰イオン高分子電解質、陰イオン界面活性剤、および他の界面活性剤を含む、さまざまな分散剤が用いられる。

【0046】

最後に液体バインダ、この場合、PTE分散液が加えられる。

【0047】

実施例2

【0048】

二番目のテストにおいて、酸化カルシウムおよび酸化亜鉛が上述の比率で混ぜられるが、

50

それらは 20 % の水酸化カリウム溶液に加えられる。この混合物はそれから 60 に熱せられ、亜鉛酸カルシウムの形成を促進するために終夜、攪拌される。

【 0 0 4 9 】

そのあと混合物は濾過されてから 60 で乾燥され、実施例 1 で述べたのと同様に、混合物には酸化亜鉛が少量追加され、酸化ビスマスも少量追加される。

【 0 0 5 0 】

上述の実施例の両方から得られる混合物はそれから、なめらかなペーストまたはスラリーに形成される。

【 0 0 5 1 】

そのあとペーストまたはスラリーは、既知の方法で、穿孔された金属のような適当な基板 10 上にコーティングされるか、または適当な基板に塗り込められる。

【 0 0 5 2 】

しかし典型的には混合物はスラリーコーティングとして準備され、基板がペーストまたはスラリーを通して引き出され、製造される電極の厚さを制御するために既知の寸法の正確なギャップを通して引き出される。

【 0 0 5 3 】

そのあとペースト式電極は乾燥され、所定サイズに切られ、電気的な接続点を設けられ、電気化学セルの中に組み立てられる。本発明に基づいて行われたテストの目的では、セルはコーティングされたニッケル陽極を有し、20 % の水酸化カリウムおよび 2 % の水酸化リチウムを有する電解液で満たされる。

【 0 0 5 4 】

テストセルは、サイクルを繰り返され、レート能力およびサイクルパフォーマンスのためにテストされ、陰極の大きな形状変化なしでよく機能することがわかった。

【 0 0 5 5 】

よって本発明は、酸化カルシウム、酸化マグネシウム、酸化バリウム、またはそれらの混合物とともに酸化亜鉛の水性懸濁液を用いることを提供する。水性媒体は、水または水酸化カリウムでありえる。

【 0 0 5 6 】

酸化ビスマス、酸化インジウム、酸化スズ、およびそれらの混合物のようなその他の金属酸化物も水性ペースト準備において提供され、それによりさらに電極の大きさの安定性が繰り返されるサイクル使用のあいだ確保される。

【 0 0 5 7 】

ペーストまたはスラリーの準備には、前述のようにこの技術分野でよく知られる典型的なセルロース化合物、分散剤、およびバインダが本発明の混合物と共に用いられる。しかしペーストまたはスラリーは水性であり、ペーストまたはコーティング工程は室温で行われるので、ペーストの設定時間は従前に経験されたほど問題にはならない。

【 0 0 5 8 】

アルカリ電池のための亜鉛電極の準備方法、および亜鉛電極そのものが上で説明された。当業者に理解されるように他の変更が添付の特許請求の精神および範囲から逸脱すること 40 なくなされえる。

【 0 0 5 9 】

例えばおおまかな体積比値の説明は、特定の正確さや厳密さを要求するために意図されたものではなく、同じ体積の異なる金属酸化物の比は利用される金属の異なる原子量によって変動しえることが理解されよう。

【 0 0 6 0 】

この明細書および特許請求の範囲を通して、文脈がそうではないと要求しない限り、用語「comprise」、および「comprises」または「comprising」のような変形は、言及された整数またはステップまたは整数またはステップのグループを含むこと意味するのであって、他の整数やステップや整数またはステップのグループを除外するものではない。

10

20

30

40

50

【国際公開パンフレット】

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(10) International Publication Number
WO 02/075825 A2

(51) International Patent Classification: H01M
 (81) Designated States (national): AE, AG, AI, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, IR, IU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PT, RO, RU, SD, SH, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(21) International Application Number: PCT/CA02/00352
 (22) International Filing Date: 15 March 2002 (15.03.2002)
 (25) Filing Language: English
 (26) Publication Language: English
 (30) Priority Data: 60/276,344 15 March 2001 (15.03.2001) US
 (71) Applicant (for all designated States except US): POWER-GENIX SYSTEMS, INC. [CA/CA]; 204 Lambert Street, Suite 204, Whitehorse, Yukon V1A 3T2 (CA).
 (72) Inventor; and
 (75) Inventor/Applicant (for US only): PHILLIPS, Jeffrey [GB/US]; 3080 Kenneth Street, Santa Clara, CA 95054 (US).
 (74) Agents: CURRIER, T., Andrew et al.; Marks & Clerk, 350 Burnhamthorpe Road West, Suite # 402, Mississauga, Ontario L5B 3J1 (CA).

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SI, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BJ, BJ, CH, CG, CI, CM, GA, GN, GQ, GW, MI, MR, NU, SN, TD, TG).

Published:
 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A2

WO 02/075825 (54) Title: METHODS FOR PRODUCTION OF ZINC OXIDE ELECTRODES FOR ALKALINE BATTERIES

(57) Abstract: A zinc electrode for use in alkaline batteries comprises a mixture of 0.425 to 1.55 volume parts of zinc oxide with a volume part of a metallic oxide chosen from the group consisting of: calcium oxide, barium oxide, and mixtures thereof, together with hydroxy-ethyl cellulose, an oxide dispersant chosen from the group consisting of: soap derivatives, anionic polyolelectrolytes, anionic surfactants, and mixtures thereof, and a binder. The electrode is prepared by mixing zinc oxide with the chosen metallic oxide in an aqueous medium such as water or potassium hydroxide, stirring overnight, filtering and drying the mixture, optionally adding a further small amount of zinc oxide, optionally adding other metallic oxides, and adding hydroxy-ethyl cellulose, an oxide dispersant, and a binder. The aqueous paste or slurry thus formed is placed on a conductive substrate, drawn through a sizing gap, cut and dried, to form low cost pasted zinc oxide electrodes.

**METHODS FOR PRODUCTION OF ZINC OXIDE ELECTRODES FOR
ALKALINE BATTERIES****FIELD OF THE INVENTION:**

[0001] This invention relates to zinc oxide electrodes for use in alkaline batteries, and provides methods for production of such zinc oxide electrodes as well as the formulations thereof. Particularly, the present invention provides for the low cost production of pasted zinc negative electrodes.

BACKGROUND OF THE INVENTION:

[0002] A conundrum develops with respect to the use of zinc electrodes in high rate, high performance batteries. On the one hand, the use of zinc electrodes provides low cost negative electrodes. On the other hand, when such electrodes are pasted, as is usually the case, they are very difficult and very expensive to make, especially when steps are taken to avoid shape change as will inevitably occur while the zinc electrode is cycled during the life of the rechargeable battery in which it is placed.

[0003] The present inventor has unexpectedly discovered that mass production of environmentally benign zinc electrodes can be provided for, by adapting certain aqueous pasting techniques, and by the provision of a stable zinc-based slurry or paste which particularly has an additional oxide of calcium, magnesium, or barium included therein for purposes of stability.

[0004] It is well known that rechargeable batteries having zinc electrodes have the advantage of using a low cost negative electrode. Of course, they also provide high voltage, and light weight.

[0005] On the other hand, the zinc electrode in alkaline batteries will exhibit some solubility in most alkaline electrolytes, resulting in the loss of integrity of the zinc electrode as the battery is cycled. This phenomenon of zinc electrode disfigurement is well known, and is referred to in the industry as shape change.

[0006] Many approaches have been taken to control shape change. The most successful attempts have limited the solubility of the zinc electrode, so as to thereby reduce its ability to migrate.

[0007] For example, EISENBERG United States Patents 4,224,391, issued September 23, 1980, and US Patent 5,215,836 issued June 1, 1993, each provides electrolyte formulations that employ mixtures of potassium hydroxide and boric acid, phosphoric acid, or arsenic acid. The purpose, in all events, is to limit the solubility of the zinc electrode.

[0008] Another approach is that taken by ADLER *et al* in United States Patent 5,302,475, issued April 12, 1994. In that patent, the inventors teach an electrolyte which contains potassium hydroxide and a combination of potassium fluoride and potassium carbonate salts. The zinc electrode is reported to exhibit low shape change.

[0009] Yet another approach which is known to the inventor, is the addition of material such as calcium oxide to the electrode itself. This approach will modify the chemical composition of the discharge product to effectively lower the concentration of the zinc ion in the solution. However, in order to do so a method must be devised whereby a calcium zincate water based paste or slurry is manufactured, for pasting into the conductive substrate of a zinc electrode.

[0010] Moreover, the method by which the zinc electrode is manufactured may have significant effect upon cycle performance of the battery. A number of preparation processes have been used to further optimise the performance of zinc electrodes. They include powder pressing as taught by HEIN *et al* United States Patent 3,645,793, issued February 29, 1972. In that patent, the inventors teach pressing metallic powder into highly porous metallic battery electrodes structures, and the powders are first cleaned by the action of mild acids prior to and during the pressing operation.

[0011] Another approach is that taken by CHARKEY *et al* in United States Patent 5,863,676, issued January 26, 1999. Here, a non-aqueous sheet formation is

employed, where a calcium zincate constituent is formed external of the battery, and then placed in the battery in layers.

[0012] However, any process which employs a pasting operation is difficult to control as far as managing the "set" time during pasting is concerned. This is reported in a paper entitled *Pasted-Rolled Zinc Electrodes Containing Calcium Hydroxide for Use in Zn/NiOOH Cells* by Gagnon *et al*, published in the Journal of the Electrochemical Society, September 1987, at pages 2091 to 2096. It is reported at page 2092 that the electrode fabrication was carried out in such a manner that the same amount of paste is added to both sides of a grid, by sandwiching the paste between backing papers and passing it through rollers to make a thin film. Thereafter, the current collector was placed between 2 films, and the composite was pressed to make a zinc electrode. This provided a longer set-time in which to paste the electrodes, and adhered the paste to the current collector grid in satisfactory manner. The thickness of the electrode, and therefore the zinc loading density, was controlled by the gap between the rollers.

[0013] Regrettably, none of the above mentioned processes can be readily transferred to mass production techniques, for high rate production of zinc electrodes for use in high performance batteries. Therefore, it has not been possible to provide a commercial product at a reasonable price, even though the chemical problems of the shape change of the zinc electrode have been effectively resolved.

[0014] The present invention provides a method for mass production of any environmentally benign zinc electrode, where the electrode will demonstrate excellent mechanical characteristics, good rate capability, and high cycle life, without significant shape change.

[0015] Indeed, the methods of the present invention may be readily and easily adaptable to all rechargeable zinc battery production, so that in time low cost zinc-based batteries may be manufactured in substantial quantities, and thereby replace toxic

cadmium-based batteries. Such cadmium-based batteries enjoy a strong market position, even now, due to their relatively low cost, notwithstanding their toxicity and notwithstanding memory effect, and the like.

[0016] It is very difficult to uniformly coat an aqueous paste of zinc oxide onto a metallic current collector. When calcium oxide or calcium hydroxide is added to the mix, the problem of uniformly coating an aqueous paste zinc oxide onto a metallic current collector is even more difficult.

[0017] These problems come as a consequence of the rapid solidification which may prevent further work with the mix, or the final pasted plate may be structurally unsound in such a manner that further handling is impossible.

[0018] These problems, of course, have lead to non-standard manufacturing techniques in the manufacturer of zinc electrodes, thereby adding to the costs of the manufacture of the zinc electrodes. However, if a successful adoption of aqueous based manufacturing techniques such as those which are applied to cadmium electrodes could be developed for zinc-based electrodes, then a reliance on toxic cadmium-based batteries would be overcome.

[0019] The present invention provides such a solution. In keeping with the present invention, it is possible to manufacture a continuous coated electrode without setting problems, and to provide a mechanically sound electrode. Briefly, the present invention provides for a calcium zincate or other precursor constituent for an aqueous solution, based primarily on mixtures of zinc oxide with calcium oxide, magnesium oxide, or barium oxide, together with further optional metal oxides, and appropriate pasting constituents as a cellulose compound, a dispersant, and a binder.

SUMMARY OF THE INVENTION:

[0020] To that end, the present invention provides both a method for production of zinc oxide electrodes, and the zinc oxide electrodes themselves, for use in alkaline batteries. The method comprises the following steps:

[0021] (a) Preparing an aqueous suspension of a metallic oxide chosen from the group consisting of: calcium oxide, magnesium oxide, barium oxide, and mixtures thereof, by placing 0.1 to 2.0 volume parts of the chosen metallic oxide in 20 volume parts of an aqueous medium chosen from the group consisting of: water, and a 20% potassium hydroxide solution. The chosen metallic oxide in the aqueous medium is stirred vigorously so as to form a suspension.

[0022] (b) Adding zinc oxide to the suspension, in an amount of 0.4 to 1.5 times the volume of the chosen metallic oxide in the suspension.

[0023] (c) Stirring the suspension for a period of 1 to 12 hours.

[0024] (d) Filtering the stirred mixture.

[0025] (e) Drying the filter mixture at a temperature of 45 °C to 75 °C, to form a powder mixture.

[0026] (f) Adding an additional 0.025 to 0.05 volume parts of zinc oxide to the powdered mixture.

[0027] (g) Optionally, adding a further 0.01 to 0.04 volume parts of a further metallic oxide chosen from the group consisting of: bismuth oxide, indium oxide, tin oxide, and mixtures thereof, to the powdered mixture.

[0028] (h) Preparing an aqueous paste of the powdered mixture, by adding hydroxy-ethyl cellulose, an oxide dispersant chosen from the group consisting of: soap derivatives, anionic polyelectrolytes, anionic surfactants, and mixtures thereof, together with a liquid binder, to the powdered mixture.

[0029] (i) Coating or pasting the aqueous paste thus formed onto a conductive substrate.

[0030] (j) Drawing the coated or pasted conductive substrate through a gap having a predetermined dimension so as to fix the thickness of the electrode being manufactured.

[0031] (k) Drying and cutting the electrode to size.

[0032] In keeping with provisions of the present invention, the aqueous medium may be water, or it may be potassium hydroxide solution, as noted. When the aqueous medium is water, then step (c) is carried out at room temperature. However, when the aqueous medium is potassium hydroxide solution, then step (c) is carried out at 50 °C to 75 °C.

[0033] Typically, the liquid binder provided in the formulation for zinc electrodes in keeping with the present invention, is dispersed PTFE.

[0034] The present invention also provides for a zinc electrode for use in alkaline batteries, which zinc electrode is characterised by a mixture of 0.425 to 1.55 volume parts of zinc oxide with 1 volume part of a metallic oxide chosen from the group consisting of: calcium oxide, magnesium oxide, barium oxide, and mixtures thereof, together with hydroxy-ethyl cellulose, an oxide dispersant chosen from the group consisting of: soap derivatives, anionic polyelectrolytes, anionic surfactants, and mixtures thereof, and also together with a binder.

[0035] Again, typically, the binder is dispersed PTFE.

[0036] The zinc electrode of the present invention may further comprise 0.01 to 0.04 volume parts of a further metallic oxide chosen from the group consisting of: bismuth oxide, indium oxide, tin oxide, and mixtures thereof.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS:

[0037] The novel features which are believed to be characteristic of the present invention, as to its structure, organization, use and method of operation, together with

further objectives and advantages thereof, will be better understood from the following discussion.

[0038] Several examples now follow showing specific utilization of particular selected constituent components of zinc electrodes, and the method of making the same, in keeping with the present invention.

EXAMPLE 1

[0039] 100 grams of calcium oxide was added to about 2 litres of water, so as to form a suspension. The suspension was then stirred vigorously.

[0040] Thereafter, approximately 250 grams – about 2.5 times the weight of calcium oxide – was then added to the suspension. It will be seen that approximately 0.32 volume part of calcium oxide and approximately 0.47 volume parts of zinc oxide were employed.

[0041] The suspension was then continuously stirred overnight, at room temperature.

[0042] Thereafter, the solid mixture from the suspension was filtered, and dried at 60 °C.

[0043] Then, another approximately 20 grams of zinc oxide was added to the powdered mixture of zinc oxide and calcium oxide – being another approximately 0.04 volume parts, for a total of about 0.51 volume parts of zinc oxide.

[0044] Also, approximately 28 grams of bismuth oxide – about 0.01 volume parts – was added to the powdered mixture.

[0045] Then, a smooth paste was prepared by adding hydroxy-ethyl cellulose, and a dispersant. Various dispersants were used, including soap derivatives, anionic polyelectrolytes, anionic surfactants, and other surface active agents.

[0046] Finally, a liquid binder – in this case, dispersed PTFE – was added.

EXAMPLE 2

[0047] In a second test, calcium oxide and zinc oxide were mixed in the same proportion as noted above, but they were added to a 20% potassium hydroxide solution. This mixture was then heated to 60 °C and stirred overnight to promote the formation of calcium zincate.

[0048] Thereafter, the mix was filtered and dried at 60 °C; an additional small amount of zinc oxide, and an additional amount of bismuth oxide, were also added to the mix, in the same manner as set forth in Example 1.

[0049] The mixes from both of the examples noted above were then formed into a smooth paste or slurry.

[0050] Thereafter, the paste or slurry was coated onto a suitable substrate such as perforated metal, or pasted into a suitable substrate, in known manner.

[0051] However, typically, the mix was prepared as a slurry coat, and the substrate metal was drawn through the paste or slurry, and through a precision gap of known dimension, so as to control the thickness of the electrode being manufactured.

[0052] Thereafter, the pasted electrode were dried, cut to size, provided with an electrical contact, and assembled into electrochemical cells. For purposes of the tests conducted in keeping with the present teachings, the cells had pasted nickel positive electrodes, and were filled with an electrolyte having 20% potassium hydroxide and 2% lithium hydroxide.

[0053] The test cells were cycled and tested for rate capability and cycle performance, and were found to perform well, without significant shape change of the negative electrode.

[0054] Thus, the present invention provides for the use of an aqueous suspension of zinc oxide together with calcium oxide, magnesium oxide, or barium oxide, or mixtures thereof. The aqueous medium may be water or potassium hydroxide.

[0055] Additional metal oxides such as bismuth oxide, indium oxide, tin oxide, and mixtures thereof, may also be provided in the aqueous paste preparation, whereby further dimensional stability of the electrode is assured during repeated cycling operations.

[0056] As noted, typical cellulose compounds, dispersants, and binders, of the sort well known in the art, are employed with the inventive mixture, in the preparation of a paste or slurry. However, because the paste or slurry is aqueous, and the pasting or coating operation can be carried out at room temperature, then the set time for the paste is less of a problem than hitherto experienced.

[0057] Methods of preparation of zinc electrodes for alkaline batteries, and the zinc electrodes *per se*, have been described above. It will be recognised by those skilled in the art that other modification can be made without departing from the spirit and scope of the appended claims.

[0058] For example, discussion of approximate volume part measurements is intended to suggest that there is no specific preciseness or exactitude, and that in any event the weight of equal volume parts of differing metallic oxides will vary as a consequence of the differing atomic weights of the metals being employed.

[0059] Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not to the exclusion of any other integer or step or group of integers or steps.

WHAT IS CLAIMED IS:

1. A method for production of zinc oxide electrodes for use in alkaline batteries, characterized by the steps of:
 - (a) preparing an aqueous suspension of a metallic oxide chosen from the group consisting of: calcium oxide, magnesium oxide, barium oxide, and mixtures thereof, by placing 0.1 to 2.0 volume parts of the chosen metallic oxide in 20 volume parts of an aqueous medium chosen from the group consisting of: water, and 20% potassium hydroxide solution, and stirring vigorously so as to form a suspension;
 - (b) adding zinc oxide to the suspension in an amount of 0.4 to 1.5 times the volume of the chosen metallic oxide in the suspension;
 - (c) stirring the suspension for a period of 1 to 12 hours;
 - (d) filtering the stirred mixture;
 - (e) drying the filtering mixture at a temperature of 45 °C to 75 °C to form a powdered mixture;
 - (f) adding an additional 0.025 to 0.05 volume parts of zinc oxide to the powdered mixture;
 - (g) optionally adding a further 0.01 to 0.04 volume parts of a further metallic oxide chosen from the group consisting of: bismuth oxide, indium oxide, tin oxide, and mixtures thereof, to the powdered mixture;
 - (h) preparing an aqueous paste of the powdered mixture by adding hydroxy-ethyl cellulose, an oxide dispersant chosen from the group consisting of: soap derivatives, anionic polyelectrolytes, anionic surfactants, and mixtures thereof, and a liquid binder, to the powdered mixture;
 - (i) coating or pasting the aqueous paste onto a conductive substrate;

11

(j) drawing the coated of pasted conductive substrate through a gap having a predetermined dimension so as to fix the thickness of the electrode being manufactured; and

(k) drying and cutting the electrode to size.

2. The method of claim 1, wherein when said aqueous medium is water, step (c) is carried out at room temperature; and when said aqueous medium is potassium hydroxide solution, step (c) is carried at 50 °C to 75 °C.

3. The method of claim 1, wherein said liquid binder is dispersed PTFE.

4. A zinc electrode for use in alkaline batteries, characterized by: a mixture of 0.425 to 1.55 volume parts of zinc oxide with one volume part of a metallic oxide chosen from the group consisting of: calcium oxide, magnesium oxide, barium oxide, and mixtures thereof, together with hydroxy-ethyl cellulose, an oxide dispersant chosen from the group consisting of: soap derivatives, anionic polyelectrolytes, anionic surfactants, and mixtures thereof, and a binder.

5. The zinc electrode of claim 4, wherein the binder is dispersed PTFE.

6. The zinc electrode of claim 4, further comprising 0.01 to 0.04 volume parts of a further metallic oxide chosen from the group consisting of: bismuth oxide, indium oxide, tin oxide, and mixtures thereof.

【国際公開パンフレット（コレクトバージョン）】

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
26 September 2002 (26.09.2002)

PCT

(10) International Publication Number
WO 02/075825 A3

(51) International Patent Classification: H01M 4/24, 4/26

CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, IIR, IIU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TZ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(21) International Application Number: PCT/CA02/00352

(22) International Filing Date: 15 March 2002 (15.03.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/276,344 15 March 2001 (15.03.2001) US

(71) Applicant (for all designated States except US): POWER-GENIX SYSTEMS, INC. [CA/CA]: 204 Lambert Street, Suite 204, Whitehorse, Yukon V1A 3T2 (CA).

(72) Inventor: and
(75) Inventor/Applicant (for US only): PHILLIPS, Jeffrey [GB/US]: 3080 Kenneth Street, Santa Clara, CA 95054 (US).

(74) Agents: CURRIER, T., Andrew et al.; Marks & Clerk, 350 Burroughs Road West, Suite # 402, Mississauga, Ontario L5B 3J1 (CA).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CL, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BJ, BJ, CI, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report
before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

(88) Date of publication of the international search report:

15 May 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A3

WO 02/075825 (54) Title: METHODS FOR PRODUCTION OF ZINC OXIDE ELECTRODES FOR ALKALINE BATTERIES

(57) Abstract: A zinc electrode for use in alkaline batteries comprises a mixture of 0.425 to 1.55 volume parts of zinc oxide with a volume part of a metallic oxide chosen from the group consisting of: calcium oxide, barium oxide, and mixtures thereof, together with hydroxy-ethyl cellulose, an oxide dispersant chosen from the group consisting of: soap derivatives, anionic polyelectrolytes, anionic surfactants, and mixtures thereof, and a binder. The electrode is prepared by mixing zinc oxide with the chosen metallic oxide in an aqueous medium such as water or potassium hydroxide, stirring overnight, filtering and drying the mixture, optionally adding a further small amount of zinc oxide, optionally adding other metallic oxides, and adding hydroxy-ethyl cellulose, an oxide dispersant, and a binder. The aqueous paste or slurry thus formed is placed on a conductive substrate, drawn through a sizing gap, cut and dried, to form low cost pasted zinc oxide electrodes.

【国際調査報告】

INTERNATIONAL SEARCH REPORT		In International Application No PCT/CA 02/00352
A. CLASSIFICATION OF SUBJECT MATTER IPC 7 HO1M4/24 HO1M4/26		
According to International Patent Classification (IPC) or to both national classification and IPC		
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 HO1M CO16		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched		
Electronic data base consulted during the international search (name of data base and, where practical, search terms used) CHEM ABS Data, EPO-Internal, WPI Data, PAJ		
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 98 44579 A (ENERGY RES CORP) 8 October 1998 (1998-10-08) page 4, line 32 -page 8, line 20 & US 5 863 676 A 26 January 1999 (1999-01-26) cited in the application	1-6
A	US 4 358 517 A (JONES RICHARD A) 9 November 1982 (1982-11-09) column 1, line 19 -column 2, line 22 column 7, line 59 -column 8, line 27	1-6
A	US 3 951 687 A (TAKAMURA TSUTOMU ET AL) 20 April 1976 (1976-04-20) example 1	1-6
		-/-
<input checked="" type="checkbox"/> Further documents are listed in the continuation of box C.		<input checked="" type="checkbox"/> Patent family members are listed in annex.
* Special categories of cited documents:		
A document defining the general state of the art which is not considered to be of particular relevance		
E earlier document but published on or after the international filing date		
L document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)		
O document referring to an oral disclosure, use, exhibition or sale made prior to the international filing date		
P document published prior to the international filing date but later than the priority date claimed		
Date of the actual completion of the international search	Date of mailing of the international search report	
5 March 2003	12/03/2003	
Name and mailing address of the ISA European Patent Office, P.B. 5618 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 espn Fax: (+31-70) 340-3016	Authorized officer Siebel, E	

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT		International Application No PCT/CA 02/00352
C(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5 697 145 A (NODA YOSHIAKI ET AL) 16 December 1997 (1997-12-16) column 5, line 23 -column 6, line 33; figures 2-4,6 -----	1-6

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

In International Application No
PCT/CA 02/00352

Patent document cited in search report		Publication date	Patent family member(s)	Publication date
WO 9844579	A	08-10-1998	US 5863676 A CN 1220779 A CN 1220779 T EP 0916164 A1 JP 2001514797 T WO 9844579 A1	26-01-1999 23-06-1999 23-06-1999 19-05-1999 11-09-2001 08-10-1998
US 4358517	A	09-11-1982	CA 1149453 A1 DE 3072176 D1 EP 0028879 A2 JP 1051855 B JP 1581316 C JP 56073858 A	05-07-1983 03-05-1990 20-05-1981 07-11-1989 11-10-1990 18-06-1981
US 3951687	A	20-04-1976	JP 967577 C JP 50080445 A JP 54000061 B DE 2454820 A1 FR 2251922 A1 GB 1444695 A	26-07-1979 30-06-1975 05-01-1979 22-05-1975 13-06-1975 04-08-1976
US 5697145	A	16-12-1997	JP 3257876 B2 JP 7094170 A	18-02-2002 07-04-1995

Form PCT/ISA210 (patent family annex) (July 1992)

フロントページの続き

(81)指定国 AP(GH,GM,KE,LS,MW,MZ,SD,SL,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,MD,RU,TJ,TM),EP(AT, BE,CH,CY,DE,DK,ES,FI,FR,GB,GR,IE,IT,LU,MC,NL,PT,SE,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,ML,MR,NE,SN, TD,TG),AE,AG,AL,AM,AT,AU,AZ,BA,BB,BG,BR,BY,BZ,CA,CH,CN,CO,CR,CU,CZ,DE,DK,DM,DZ,EC,EE,ES,FI,GB,GD,GE, GH,GM,HR,HU, ID,IL,IN,IS,JP,KE,KG,KP,KR,KZ,LC,LK,LR,LS,LT,LU,LV,MA,MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL,PT,RO,RU,SD,SE,SG,SI,SK,SL,TJ,TM,TN,TR,TT,TZ,UA,UG,US,UZ,VN,YU,ZA,ZM,ZW

F ターム(参考) 5H050 AA02 AA08 AA19 BA11 CB13 DA09 EA12 FA17 GA02 GA04
GA08 GA10 GA22 HA07 HA14