(19) (19DE 600 05 860 T2 2004.08.05

Bundesrepublik Deutschland
Deutsches Patent- und Markenamt

(12) Ubersetzung der europiischen Patentschrift

(97) EP 1 244 962 B1 1) intc.”: GO6F 9/38
(21) Deutsches Aktenzeichen: 600 05 860.3
(86) PCT-Aktenzeichen: PCT/US00/22458
(96) Europaisches Aktenzeichen: 00 964 913.8
(87) PCT-Verdéffentlichungs-Nr.: WO 01/050253
(86) PCT-Anmeldetag: 16.08.2000
(87) Veroffentlichungstag
der PCT-Anmeldung: 12.07.2001
(97) Erstverdffentlichung durch das EPA: 02.10.2002
(97) Veroffentlichungstag
der Patenterteilung beim EPA: 08.10.2003
(47) Veroffentlichungstag im Patentblatt: 05.08.2004

(30) Unionsprioritat: (74) Vertreter:
476322 03.01.2000 us Patentanwilte von Kreisler, Selting, Werner et col.,
476570 03.01.2000 us 50667 KoIn
476578 03.01.2000 us
476204 03.01.2000 us (84) Benannte Vertragsstaaten:
DE, GB
(73) Patentinhaber:
Advanced Micro Devices, Inc., Sunnyvale, Calif., (72) Erfinder:
us KELLER, B., James, Palo Alto, US; HADDAD, W.,
Ramsey, Cupertino, US; MEIER, G., Stephan,
Sunnyvale, US

(54) Bezeichnung: ABLAUFSTEUERUNG ZUM AUSGEBEN UND WIEDERAUSGEBEN VON KETTEN ABHANGIGER
BEFEHLE

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europa-
ischen Patents kann jedermann beim Europaischen Patentamt gegen das erteilte européaische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begriinden. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebuihr entrichtet worden ist (Art. 99 (1) Européisches Patentlibereinkommen).

Die Ubersetzung ist gemaR Artikel Il § 3 Abs. 1 IntPatUG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht gepruft.

DE 600 05 860 T2 2004.08.05

Beschreibung
Hintergrund der Erfindung
1. Technisches Gebiet

[0001] Diese Erfindung betrifft das Gebiet von Prozessoren und insbesondere Mechanismen zur Ablaufpla-
nung von Befehlen innerhalb Prozessoren.

2. Stand der Technik

[0002] Superskalare Prozessoren versuchen eine hohe Leistungsfahigkeit zu erreichen, indem sie mehrere
Befehle pro Taktzyklus ausgeben und ausfiihren und indem sie die héchst mogliche Taktfrequenz verwenden,
die mit dem Design vereinbar ist. Ein Verfahren zum Steigern der Anzahl der pro Taktzyklus ausgefiihrten Be-
fehle ist die unregelmaflige Ausfiihrung. Bei der unregelmafigen Ausfuhrung kénnen Befehle in einer anderen
Reihenfolge ausgefiihrt werden als in der Programmsequenz (oder "Reihenfolge des Programms") angegeben
ist. Gewisse Befehle, die in einer Programmsequenz nahe bei einander sind, kénnen Abhangigkeiten haben,
welche ihre gleichzeitige Ausfihrung verhindern, wahrend nachfolgende Befehle in der Programmsequenz kei-
ne Abhangigkeiten von den vorherigen Befehlen haben miussen. Entsprechend kann eine auRer der Reihe
Ausfihrung die Leistungsfahigkeit des superskalaren Prozessors durch eine Steigerung der Anzahl der gleich-
zeitig ausgefiihrten Befehle (im Mittel) erhéhen. Ein weiteres Verfahren, das sich auf die ungeordnete Ausfiih-
rung bezieht, ist die spekulative Ausfiihrung, bei der Befehle ausgefiihrt werden, die auf andere Befehle folgen,
welche die Ausfihrung des Programms veranlassen kénnen, einem anderen Pfad zu folgen als dem Pfad, der
die spekulativen Befehle enthalt. Zum Beispiel kdnnen Befehle spekulativ sein, falls die Befehle auf einen be-
stimmten Befehl folgen, der eine Ausnahme verursachen kénnte. Befehle sind auch spekulativ, wenn die Be-
fehle einem vorher gesagten, bedingten Verzweigungsbefehl folgen, der noch nicht ausgefiihrt worden ist. Auf
ahnliche Weise kdnnen Befehle ungeordnet oder spekulativ im Ablauf geplant, ausgegeben usw. werden.
[0003] Bedauerlicherweise flihrt die Ablaufplanung von Befehlen fiir die ungeordnete oder spekulative Aus-
fuhrung zu zusatzlicher Komplexitat bei der Hardware in dem Prozessor. Der Ausdruck ,Ablaufplanung” be-
zieht sich im Allgemeinen auf die Auswahl eines Befehls flr die Ausfiihrung. Typischerweise versucht der Pro-
zessor Befehle so schnell wie mdglich fir den Ablauf zu planen, um die durchschnittliche Rate der Befehlsaus-
fuhrung zu maximieren (zum Beispiel durch Ausfihren von Befehlen auler der Reihe, um Abhangigkeiten und
die Verfugbarkeit von Hardware fur verschiedene Typen von Befehlen zu behandeln). Diese Komplexitaten
kdnnen die Taktfrequenz begrenzen, bei denen der Prozessor arbeiten kann. Insbesondere missen die Ab-
hangigkeiten zwischen den Befehlen von der Hardware der Ablaufplanung bertcksichtigt werden. Im Aligemei-
nen bezieht sich, wie hier verwendet, der Ausdruck ,Abhangigkeit" auf eine Beziehung eines ersten Befehls
und eines nachfolgenden zweiten Befehls in der Reihenfolge des Programms, welche die Ausfiihrung des ers-
ten Befehls vor der Ausfiihrung des zweiten Befehls erfordert. Eine Vielzahl von Abhangigkeiten kann definiert
werden. Zum Beispiel tritt eine Abhangigkeit vom Quelloperanden auf, wenn ein Quelloperand des zweiten Be-
fehls ein Zieloperand des ersten Befehls ist.

[0004] Im Allgemeinen haben Befehle einen oder mehrere Quelloperanden und einen oder mehrere Zielope-
randen. Die Quelloperanden sind Eingangswerte, die in Ubereinstimmung mit der Definition des Befehls zu
manipulieren sind, um ein oder mehrere Ergebnisse zu erzeugen (welche die Zieloperanden sind). Quellund
Zieloperanden kdnnen Speicheroperanden sein, die in einer Speicherstelle aul3erhalb des Prozessors gespei-
chert werden, oder kdnnen Registeroperanden sein, die in in dem Prozessor enthaltenen Registerspeicherstel-
len gespeichert werden. Die von dem Prozessor verwendete Befehlssatzarchitektur definiert eine Anzahl von
architekturisierten Registern. Diese Register sind von der Befehlssatzarchitektur zu existieren definiert und Be-
fehle kdnnen kodiert werden unter Verwendung der architekturisierten Register als Quell- und Zieloperanden.
Ein Befehl gibt ein bestimmtes Register als einen Quell- oder Zieloperanden Uber eine Registernummer (oder
Registeradresse) in einem Operandenfeld eines Befehls an. Die Registernummer identifiziert das ausgewahlte
Register einzigartig unter den architekturisierten Registern. Ein Quelloperand wird von einer Quellregisternum-
mer identifiziert und ein Zieloperand wird von einer Zielregisternummer identifiziert.

[0005] Zusatzlich zu den Abhangigkeiten der Operanden, kénnen von dem Prozessor ein oder mehrere Ty-
pen von Ordnungsabhangigkeiten durchgesetzt werden. Ordnungsabhangigkeiten kénnen zum Beispiel ver-
wendet werden, um die verwendete Hardware zu vereinfachen oder um eine korrekte Ausflihrung des Pro-
gramms zu erzeugen. Durch das Zwingen von gewissen Befehlen, in einer Reihenfolge im Hinblick auf gewisse
andere Befehle ausgefihrt zu werden, kann die Hardware zum Behandeln von Konsequenzen der aul3er der
Reihe Ausflihrung der Befehle unterdriickt werden. Zum Beispiel kénnen Befehle, die speziellen Register, wel-
che einen allgemeinen Betriebszustand des Prozessors enthalten, aktualisieren, die Ausfiihrung einer Vielzahl
von nachfolgenden Befehlen beeinflussen, die nicht explizit auf die speziellen Register zugreifen. Im Allgemei-

2/45

DE 600 05 860 T2 2004.08.05

nen kénnen Ordnungsabhangigkeiten von Mikroarchitektur zu Mikroarchitektur variieren.

[0006] Wahrend der Mechanismus fiir die Ablaufplanung Abhangigkeiten respektiert, ist es wiinschenswert,
bei der ungeordneten und/oder spekulativen Ablaufplanung so aggressiv wie moglich zu sein, in einem Ver-
such, den realisierten Gewinn der Leistungsfahigkeit zu maximieren. Jedoch wird, je aggressiver der Mecha-
nismus fir die Ablaufplanung ist (das heil’t je weniger Bedingungen, welche einen bestimmten Befehl daran
hindern, fir den Ablauf geplant zu werden), desto wahrscheinlicher wird das Auftreten eines nicht korrekt aus-
gefuhrten Befehls. Der Mechanismus zur Wiederherstellung von nicht korrekt ausgefihrten Befehlen war im
Allgemeinen, den nicht korrekt ausgefuhrten Befehl und alle nachfolgenden Befehle aus der Pipeline des Pro-
zessors zu entfernen und den nicht korrekt ausgefuhrten Befehl (und nachfolgende Befehle) erneut abzurufen.
Oft wird die Entfernung und das erneute Abrufen von der Entdeckung einer nicht korrekten Ausfiihrung aus
Grunden der Einfachheit der Hardware verzdgert (zum Beispiel bis der nicht korrekt ausgefiihrte Befehl der
alteste Befehl in der Bearbeitung ist). Die durchschnittliche Anzahl von tatsachlich pro Taktzyklus ausgefihrten
Befehlen sinkt wegen der nicht korrekten Ausflihrung und den nachfolgenden Ereignissen zur Entfernung. Fir
aggressive Mechanismen fiir die Ablaufplanung, welche haufiger auf nicht korrekte Ausflihrung treffen, kann
die Verschlechterung der Leistungsfahigkeit, welche diesen Mechanismen zur Wiederherstellung zuzurechnen
ist, erheblich sein. Entsprechend ist ein Mechanismus zur Wiederherstellung von einer nicht korrekten, speku-
lativen Ausfihrung gewilinscht, der die Gewinne der Leistungsfahigkeit, die durch eine aggressive spekulative
oder ungeordnete Ablaufplanung mdéglich gemacht werden, sichert.

[0007] Das US Patent mit der Nummer 5,987,594 beschreibt einen Prozessor, der kodierte Befehle unter Ver-
wendung einer Ablaufplanungseinheit ausfihrt, welche kodierte Befehle empfangt und sie fur die Ausfihrung
ausgibt. Der Prozessor gibt Speicheroperationen, welche in einem Cachespeicher nicht treffen, wenn Daten
an den Cachespeicher zurtick gegeben werden, und Befehle, die von den genannten Speicheroperationen ab-
hangen, erneut aus. Des weiteren kann der Prozessor eine ungeordnete Ausflihrung von Speicheroperationen
durchfihren durch Detektierung von ,Lesen nach Schreiben" Gefahren und Weiterleitung der Schreibdaten an
den Lese Befehl.

Offenbarung der Erfindung

[0008] Die oben ausgefihrten Probleme werden zu einem grofRen Teil von einem Ablaufplaner, wie hier be-
schrieben, geldst. Der Ablaufplaner gibt Befehlsoperationen fir die Ausflihrung aus, halt aber auch die Befehl-
soperationen zuriick. Falls eine bestimmte Befehlsoperation nachfolgend als nicht korrekt ausgefihrt befunden
wird, kann die bestimmte Befehlsoperation von dem Ablaufplaner erneut ausgegeben werden. Vorteilhafter-
weise kann die Strafe fir das nicht korrekte Planen des Ablaufs von Befehlsoperationen im Vergleich zum Ent-
fernen der bestimmten Befehlsoperation und jliingeren Befehlsoperationen aus der Pipeline und zum erneuten
Abrufen der bestimmten Befehlsoperation reduziert werden. Die Leistungsfahigkeit kann wegen der reduzier-
ten Strafe fur eine nicht korrekte Ausfihrung reduziert werden. Des weiteren kann der Ablaufplaner einen ag-
gressiveren Mechanismus fir die Ablaufplanung verwenden, da die Strafe fiir eine nicht korrekte Ausfiihrung
verringert ist.

[0009] Des weiteren kann der Ablaufplaner die Angaben fur Abhangigkeiten fir jede Befehlsoperation, die
ausgegeben worden ist, beibehalten. Falls die bestimmte Befehlsoperation erneut ausgegeben wird, kdnnen
die Befehlsoperationen, die von der bestimmten Befehlsoperation abhangig sind (direkt oder indirekt) Gber die
Angaben zur Abhangigkeit identifiziert werden. Der Ablaufplaner gibt auch die abhangigen Befehlsoperationen
erneut aus. Befehlsoperationen, die in der Reihenfolge des Programms einer bestimmten Befehlsoperation
nachfolgen, aber die nicht von der bestimmten Befehlsoperation abhangig sind, werden nicht erneut ausgege-
ben. Entsprechend kann die Strafe fir die nicht korrekte Ablaufplanung von Befehlsoperationen im Hinblick auf
das Entfernen der bestimmten Befehlsoperation und aller jiingeren Befehlsoperationen und das erneute Abru-
fen der bestimmten Befehlsoperation weiter reduziert werden. Die Leistungsfahigkeit kann somit weiter gestei-
gert werden.

[0010] Allgemein betrachtet, wird ein Ablaufplaner betrachtet. Der Ablaufplaner weist einen Befehlspuffer
zum Speichern einer ersten Befehlsoperation, eine mit dem Befehlspuffer verbundene Ausgabeauswahlschal-
tung und eine Steuerschaltung auf. Die Ausgabeauswahlschaltung ist zum Auswahlen einer ersten Befehlso-
peration zur Ausgabe aus dem Befehlspuffer konfiguriert. An die Ausgabeauswahlschaltung angeschlossen ist
die Steuerschaltung konfiguriert, um einen ersten Ausflihrungszustand der ersten Befehlsoperation zu halten.
Die Steuerschaltung ist konfiguriert, um den ersten Ausfiihrungszustand in einen Ausfihrungszustand zu an-
dern in Reaktion auf die Ausgabeauswahlschaltung, welche die erste Befehlsoperation fir die Ausgabe aus-
wahlt. Des weiteren ist die Steuerschaltung konfiguriert, um den ersten Ausfihrungszustand in einen nicht aus-
geflhrten Zustand in Reaktion auf ein erstes Signal zu éandern, das anzeigt, dass die erste Befehlsoperation
nicht korrekt ausgefuhrt ist.

[0011] Des weiteren wird ein Prozessor betrachtet, der einen Ablaufplaner und eine Ausflihrungseinheit auf-
weist. Der Ablaufplaner ist konfiguriert zum Speichern einer ersten Befehlsoperation und zum Ausgeben der

3/45

DE 600 05 860 T2 2004.08.05

Befehlsoperation fur die Ausfiihrung. Der Ablaufplaner ist konfiguriert zum Halten eines ersten Ausfiihrungs-
zustandes entsprechend der ersten Befehlsoperation und ist konfiguriert zum Andern des ersten Ausfiihrungs-
zustandes in einen Ausfiihrungszustand in Reaktion auf das Ausgeben der ersten Befehlsoperation. An den
Ablaufplaner angeschlossen zum Empfangen der ersten Befehlsoperation in Reaktion auf eine Ausgabe davon
durch den Ablaufplaner, ist die Ausfihrungseinheit konfiguriert, die erste Befehlsoperation auszufiihren. Die
Steuerschaltung ist konfiguriert, um den ersten Ausflihrungszustand in einen nicht ausgefiihrten Zustand zu
andern in Reaktion auf ein erstes Signal, das anzeigt, dass die erste Befehlsoperation nicht korrekt ausgefihrt
ist. Daruiber hinaus wird ein Computersystem betrachtet, das einen Prozessor und ein Eingangs/Ausgangs
(I/O) Gerat, das konfiguriert ist, zwischen dem Computersystem und weiteren Computersystemen, an die das
I/O Gerat angeschlossen werden kann, zu kommunizieren, umfasst.

[0012] Des weiteren wird ein Verfahren betrachtet. Eine erste Befehlsoperation wird von einem Ablaufplaner
an eine Ausflihrungseinheit ausgegeben. Die erste Befehlsoperation wird nach der Ausgabe in dem Ablaufpla-
ner zuriick gehalten. Ein erstes Signal wird empfangen, dass die erste Befehlsoperation nicht korrekt ausfiihrt.
Die erste Befehlsoperation wird in Reaktion auf den Empfang des ersten Signals erneut ausgegeben.

[0013] Darlber hinaus wird ein Prozessor betrachtet. Der Prozessor weist einen Ablaufplaner und eine Aus-
fuhrungseinheit auf. Der Ablaufplaner ist konfiguriert, um eine erste Befehlsoperation zu speichern und um die
erste Befehlsoperation fiir die Ausflihrung auszugeben. Der Ablaufplaner ist konfiguriert, um die erste Befehl-
soperation nach der Ausgabe zurtick zu halten, und ist angeschlossen, um ein erstes Signal zu empfangen,
das anzeigt, dass die erste Befehlsoperation nicht korrekt ausgefiihrt wurde. In Reaktion auf das erste Signal
ist der Ablaufplaner konfiguriert, die Befehlsoperation in Reaktion auf das erste Signal erneut auszugeben. An
den Ablaufplaner angeschlossen, um die erste Befehlsoperation in Reaktion auf die Ausgabe davon durch den
Ablaufplaner zu empfangen, wobei die Ausfihrungseinheit konfiguriert ist, die erste Befehlsoperation auszu-
fuhren.

Kurze Beschreibung der Zeichnungen

[0014] Weitere Aufgaben und Vorteile der Erfindung werden bei dem Studium der folgenden detaillierten Be-
schreibung und der Bezugnahme auf die begleitenden Zeichnungen offenbar, in denen:

[0015] Fig. 1 ein Blockdiagramm eines Ausfiihrungsbeispiels eines Prozessors ist.

[0016] Fig. 2 ein beispielhaftes Pipelinediagramm ist, welches von einem in Fig. 1 gezeigten Ausfihrungs-
beispiel des Prozessors verwendet werden kann.

[0017] Fig. 3 ein Blockdiagramm ist, das ein Ausflihrungsbeispiel der in Fig. 1 gezeigten Abbildungseinheit,
des Ablaufplaners, des Ganzzahl Ausfiihrungskerns und der Lade/Speicher-Einheit detaillierter darstellt.
[0018] Fig. 4 ein Blockdiagramm eines Ausflihrungsbeispiels des in den Fig. 1 und 3 gezeigten Ablaufplaners
ist.

[0019] Fig. 5 ein Blockdiagramm eines Ausfuhrungsbeispiels eines Abhangigkeitsvektors ist.

[0020] Fig. 6 ein Blockdiagramm eines Ausfuhrungsbeispiels eines Abhangigkeitspuffers ist.

[0021] Fig. 7 ein Blockdiagramm eines Ausflihrungsbeispiels eines Bereichs des in Fig. 6 detaillierter gezeig-
ten Abhangigkeitspuffers ist.

[0022] Fig. 8 ein Zustandsmaschinendiagramm im Hinblick auf eine Befehlsoperation innerhalb eines Aus-
fuhrungsbeispiels des Ablaufplaners ist.

[0023] Fig. 9 ein Blockdiagramm ist, das Zustandinformation darstellt, die fir jede Befehlsoperation in einem
Ausfiihrungsbeispiel des Ablaufplaners gespeichert ist.

[0024] Fig. 10 ein Zeitablaufdiagramm ist, welches das Aufldsen einer Abhangigkeitskette darstellt.

[0025] Fig. 11 ein Zeitablaufdiagramm ist, welches die Ausgabe und die erneute Ausgabe von Befehlsopera-
tionen von einem Ausfiihrungsbeispiel des Ablaufplaners darstellt.

[0026] Fig. 12 ein Zeitablaufdiagramm ist, welches die Ausgabe und die nicht spekulative erneute Ausgabe
von Befehlsoperationen von einem Ausflihrungsbeispiel des Ablaufplaners darstellt.

[0027] Fig. 13 ein Diagramm eines beispielhaften Eintrags in einem Ausfiihrungsbeispiel des in Fig. 4 ge-
zeigten physikalischen Adresspuffers zusammen mit einer beispielhaften Logik zum Arbeiten auf diesem Ein-
trag ist.

[0028] Fig. 14 ein Diagramm eines beispielhaften Eintrags in einem Ausfiihrungsbeispiel des in Fig. 4 ge-
zeigten Speicheridentifiziererpuffers zusammen mit einer beispielhaften Logik zum Arbeiten auf diesem Ein-
trag ist.

[0029] Fig. 15 ein Zeitablaufdiagramm eines Ausflihrungsbeispiels des erneuten Versuchens eines Ladevor-
gangs in Reaktion auf eine Speicheradresse, welche die Ladeadresse trifft, und des nachfolgenden Auflésens
der abhangigen Operationen ist.

[0030] Fig. 16 ein Blockdiagramm eines ersten Ausfiihrungsbeispiels eines Computersystems einschlief3lich
des in Fig. 1 gezeigten Prozessors ist.

[0031] Fig. 17 ein Blockdiagramm eines zweiten Ausfiihrungsbeispiels eines Computersystems einschliel3-

4/45

DE 600 05 860 T2 2004.08.05

lich des in Fig. 1 gezeigten Prozessors ist.

[0032] Wahrend die Erfindung zahlreichen Modifikationen und alternativen Ausbildungen unterworten werden
kann, sind bestimmte Ausflihrungsbeispiele davon als Beispiel in den Zeichnungen gezeigt und werden hier
detailliert beschrieben werden. Es sollte jedoch verstanden werden, dass die Zeichnungen und die dazu ge-
horige detaillierte Beschreibung nicht beabsichtigt sind, die Erfindung auf die bestimmte offenbarte Form zu
begrenzen, sondern dass die Erfindung vielmehr alle Modifikationen, Aquivalente und Alternativen umfassen
soll, die in den Geist und den Umfang der vorliegenden Erfindung fallen, wie sie in den angefuigten Ansprichen
definiert ist.

Weg(e) zum Ausfiihren der Erfindung
Ubersicht tiber den Prozessor

[0033] Es wird nun auf Fig. 1 Bezug genommen, in der ein Ausfiihrungsbeispiel eines Prozessors 10 gezeigt
ist. Weitere Ausflhrungsbeispiele sind mdglich und werden betrachtet. In dem Ausflihrungsbeispiel aus Fig. 1
enthalt der Prozessor 10 eine Zeilenvorhersage 12, einen Befehls-Cachespeicher (B-Cachespeicher) 14, eine
Ausrichtungseinheit 16, eine Verzweigungsvorhersage/Abruf PC Erzeugungseinheit 18, eine Vielzahl von De-
kodiereinheiten 24A- 24D, eine Vorhersagefehltreffer-Dekodiereinheit 26, eine Mikrocode-Einheit 28, eine Ab-
bildungseinheit 30, eine Rickzugswarteschlange 32, eine architekturisierte Umbenennungsdatei 34, eine zu-
kiinftige Datei 20, einen Ablaufplaner 36, eine Ganzzahl-Registerdatei 38A, eine Gleitkomma-Registerdatei
38B, einen Ganzzahl-Ausfiihrungskern 40A, einen Gleitkomma-Ausfihrungskern 40B, eine Lade/Speicher-
einheit 42, einen Daten-Cachespeicher (D-Cachespeicher) 44, eine externe Interfaceeinheit 46 und einen PC
Silo 48. Die Zeilenvorhersage 12 ist verbunden mit der Vorhersagefehltreffer-Dekodiereinheit 26, der Verzwei-
gungsvorhersage/Abruf PC Erzeugungseinheit 18, dem PC Silo 48 und der Ausrichtungseinheit 16. Der B-Ca-
chespeicher 14 ist verbunden mit der Ausrichtungseinheit 16 und der Verzweigungsvorhersage/Abruf PC Er-
zeugungseinheit 18, welche ferner mit dem PC Silo 48 verbunden ist. Die Ausrichtungseinheit 16 ist des wei-
teren mit der Vorhersagefehltreffer-Dekodiereinheit 26 und den Dekodiereinheiten 24A-24D verbunden. Die
Dekodiereinheiten 24A-24D sind ferner mit der Abbildungseinheit 30 verbunden, und die Dekodiereinheit 24D
ist mit der Mikrocode-Einheit 28 verbunden. Die Abbildungseinheit 30 ist verbunden mit der Rickzugswarte-
schlange 32 (die mit der architekturisierten Umbenennungsdatei 34 verbunden ist), der zuklinftigen Datei 20,
dem Ablaufplaner 36 und dem PC Silo 48. Die architekturisierte Umbenennungsdatei 34 ist mit der zukinftigen
Datei 20 verbunden. Der Ablaufplaner 36 ist mit den Registerdateien 38A-38B verbunden, welche des weite-
ren miteinander und mit den entsprechenden Ausfiihrungskernen 40A—-40B verbunden sind. Die Ausfiihrungs-
kerne 40A-40B sind ferner mit der Lade/Speichereinheit 42 und dem Ablaufplaner 36 verbunden. Der Ausfiih-
rungskern 40A ist dartber hinaus mit dem D-Cachespeicher 44 verbunden. Die Lade/Speichereinheit 42 ist
verbunden mit dem Ablaufplaner 36, dem D-Cachespeicher 44 und der externen Interfaceeinheit 46. Der D-Ca-
chespeicher 44 ist mit den Registerdateien 38 verbunden. Die externe Interfaceeinheit 46 ist mit einer externen
Schnittstelle 52 und dem B-Cachespeicher 14 verbunden. Elemente, die hier durch eine Bezugsnummer ge-
folgt von einem Buchstaben bezeichnet werden, werden gemeinsam durch die Bezugszahl allein bezeichnet.
Zum Beispiel werden die Dekodiereinheiten 24A-24D gemeinsam als Dekodiereinheiten 24 bezeichnet.
[0034] In dem Ausfihrungsbeispiel aus Fig. 1 verwendet der Prozessor 10 eine komplexe Befehlssatzbe-
rechnungs- (CISC) Befehlssatzarchitektur mit variabler Bitlange. Zum Beispiel kann der Prozessor 10 die x86
Befehlssatzarchitektur (auch als I1A-32 bezeichnet) verwenden. Weitere Ausflihrungsbeispiele kbnnen andere
Befehlssatzarchitekturen verwenden, einschliellich Befehlssatzarchitekturen mit fester Lange und reduzierten
Befehlssatzberechnungs- (RISC) Befehlssatzarchitekturen. Gewisse in Fig. 1 gezeigte Merkmale kdnnen in
solchen Architekturen unterdriickt werden. Des weiteren kann, falls gewlinscht, jedes der obigen Ausflihrungs-
beispiele eine 64 Bit Architektur verwenden.

[0035] Die Verzweigungsvorhersage/Abruf PC Erzeugungseinheit 18 ist konfiguriert, um dem B-Cachespei-
cher 14, der Zeilenvorhersage 12 und dem PC Silo 48 eine Abrufadresse (Abruf PC) zur Verfigung zu stellen.
Die Verzweigungsvorhersage/Abruf PC Erzeugungseinheit 18 kann einen geeigneten Mechanismus zur Vor-
hersage von Verzweigungen enthalten, der als Hilfe bei der Erzeugung von Abrufadressen verwendet wird. In
Reaktion auf die Abrufadresse stellt die Zeilenvorhersage 12 Ausrichtungsinformation, die einer Vielzahl von
Befehlen entspricht, der Ausrichtungseinheit 16 zur Verfiigung und kann eine nachste Abrufadresse zum Ab-
holen von Befehlen zur Verfugung stellen, die dem von der bereit gestellten Befehlsinformation identifizierten
Befehl nach folgen. Die nachste Abrufadresse kann, wie gewilinscht, der Verzweigungsvorhersage/Abruf PC
Erzeugungseinheit 18 zur Verfligung gestellt werden oder kann dem B-Cachespeicher 14 direkt zur Verfligung
gestellt werden. Die Verzweigungsvorhersage/Abruf PC Erzeugungseinheit 18 kann eine Fangadresse von
dem PC Silo 48 empfangen (falls ein Fang detektiert ist) und die Fangadresse kann den Abruf PC aufweisen,
der von der Verzweigungsvorhersage/Abruf PC Erzeugungseinheit 18 erzeugt wurde. Anderenfalls kann der
Abruf PC unter Verwendung der Information zu der Verzweigungsvorhersage und der Information von der Zei-

5/45

DE 600 05 860 T2 2004.08.05

lenvorhersage 12 erzeugt werden. Im Allgemeinen speichert die Zeilenvorhersage 12 Information entspre-
chend zu Befehlen, die zuvor spekulativ von dem Prozessor 10 abgerufen wurden. In einem Ausflihrungsbei-
spiel enthalt die Zeilenvorhersage 12 2K Eintrage, wobei jeder Eintrag eine Gruppe von einem oder mehreren
Befehlen angibt, die hier als eine ,Zeile" von Befehlen bezeichnet werden. Die Zeile der Befehle kann neben-
einander von der Befehle verarbeitenden Pipeline des Prozessors 10 verarbeitet werden durch die Platzierung
in dem Ablaufplaner 36.

[0036] Der B-Cachespeicher 14 ist ein Cachespeicher hoher Geschwindigkeit zum Speichern von Befehlsby-
tes. In Ubereinstimmung mit einem Ausfiihrungsbeispiel kann der B-Cachespeicher 14 zum Beispiel eine 128
KByte, vier Wege Satz assoziative Organisation aufweisen, die Cachezeilen mit 64 Byte verwendet. Jedoch
kann jede B-Cachespeicher Struktur geeignet sein (einschliel3lich direkt abgebildeter Strukturen).

[0037] Die Ausrichtungseinheit 16 empfangt die Information zur Ausrichtung von Befehlen von der Zeilenvor-
hersage 12 und Befehlsbytes, die der Abrufadresse entsprechen, von dem B-Cachespeicher 14. Die Ausrich-
tungseinheit 16 wahlt Befehlsbytes in jeder der Dekodiereinheiten 24A-24D in Ubereinstimmung mit der zur
Verfligung gestellten Information zur Ausrichtung von Befehlen aus. Genauer gesagt stellt die Zeilenvorhersa-
ge 12 einen Befehlszeiger zur Verfigung, der jeder Dekodiereinheit 24A—24D entspricht. Der Befehlszeiger or-
tet einen Befehl innerhalb der abgerufenen Befehlsbytes zur Beférderung an die entsprechende Dekodierein-
heit 24A-24D. In einem Ausfihrungsbeispiel kbnnen bestimmte Befehle zu mehr als einer Dekodiereinheit
24A-24D befordert werden. Entsprechen kann in dem gezeigten Ausfiihrungsbeispiel eine Zeile von Befehlen
von der Zeilenvorhersage 12 bis zu 4 Befehle enthalten, obwohl andere Ausfiihrungsbeispiele mehr oder we-
niger Dekodiereinheiten 24 enthalten kénnen, um fiir mehr oder weniger Befehle in einer Zeile zu sorgen.
[0038] Die Dekodiereinheiten 24A-24D dekodieren die ihnen zur Vertigung gestellten Befehle und jede De-
kodiereinheit 24A-24D erzeugt Informationen, die eine oder mehrere den Befehlen entsprechende Befehlso-
perationen (oder ROPs) identifizieren. In einem Ausfuhrungsbeispiel kann jede Dekodiereinheit 24A-24D bis
zu zwei Befehlsoperationen pro Befehl erzeugen. Wie hier verwendet ist eine Befehlsoperation (oder ROP)
eine Operation, fur die eine Ausfihrungseinheit innerhalb der Ausfiihrungskerne 40A—40B konfiguriert ist, sie
als ein einzelnes Gebilde auszufiihren. Einfache Befehle kdnnen einer einzelnen Befehlsoperation entspre-
chen, wahrend komplexere Befehle mehrfachen Befehlsoperationen entsprechen kénnen. Gewisse der kom-
plexeren Befehle kdnnen innerhalb der Mikrocode-Einheit 28 als Mikrocode Routinen implementiert sein (ab-
gerufen von einem Nur-Lese-Speicher darin Uber die Dekodiereinheit 24D in diesem Ausfuhrungsbeispiel).
Des weiteren kdnnen andere Ausfuhrungsbeispiele eine einzelne Befehlsoperation fur jeden Befehl verwen-
den (das heif3t Befehl und Befehlsoperation kénnen in derartigen Ausfihrungsbeispielen gleichbedeutend
sein).

[0039] Der PC Silo 48 speichert die abgerufenen Adressen und Befehlsinformationen fir jede Befehlsabru-
fung und ist verantwortlich fur die Umleitung des Abrufens von Befehlen bei Ausnahmen (wie Befehlsfangen,
wie sie von der von dem Prozessor 10 verwendeten Befehlssatzarchitektur definiert sind, falschen Vorhersa-
gen fir Verzweigungen und weiteren mikroarchitektonisch definierten Fangen). Der PC Silo 48 kann einen
Ringpuffer zum Speichern der Abrufadresse und Befehlsinformation, die den mehrfachen Zeilen von Befehlen
entspricht, welche innerhalb des Prozessors 10 unerledigt sind, umfassen. In Reaktion auf die Zurlickziehung
einer Zeile von Befehlen kann der PC Silo 48 den entsprechenden Eintrag verwerfen. In Reaktion auf eine Aus-
nahme kann der PC Silo 48 der Verzweigungsvorhersage/Abruf PC Erzeugungseinheit 18 eine Fangadresse
zur Vertugung stellen. Die Riickzugs- und Ausnahmeinformation kann von dem Ablaufplaner 36 zur Verfigung
gestellt werden. In einem Ausflhrungsbeispiel weist die Abbildungseinheit 30 jedem Befehl eine Sequenznum-
mer (R#) zu, um die Reihenfolge der innerhalb des Prozessors 10 unerledigten Befehle zu identifizieren. Der
Ablaufplaner 36 kann die R#s zu dem PC Silo 48 zuriick geben, um die Befehlsoperationen zu identifizieren,
die Ausnahmen erfahren oder Befehlsoperationen zurick ziehen.

[0040] Auf die Detektierung eines Fehltreffers in der Zeilenvorhersage 12 dirigiert die Ausrichtungseinheit 16
die entsprechenden Befehlsbytes von dem B-Cachespeicher 14 an die Vorhersagefehltreffer-Dekodiereinheit
26. Die Vorhersagefehltreffer-Dekodiereinheit 26 dekodiert den Befehl, wobei einer Zeile von Befehlen jegliche
Beschrankungen aufgezwungen werden, fiir die der Prozessor 10 entworfen ist (zum Beispiel maximale An-
zahl von Befehlsoperationen, maximale Anzahl von Befehlen, Beenden bei Verzweigungsbefehlen usw.) so-
bald eine Zeile beendet ist, stellt die Vorhersagefehltreffer-Dekodiereinheit 26 die Information der Zeilenvor-
hersage 12 zum Speichern zur Verfiigung. Es ist zu bemerken, dass die Vorhersagefehltreffer-Dekodiereinheit
26 konfiguriert sein kann, um Befehle abzusenden, wenn sie dekodiert werden. Alternativ kann die Vorhersa-
gefehltreffer-Dekodiereinheit 26 die Zeile von Befehlsinformationen dekodieren und sie der Zeilenvorhersage
12 zum Speichern zur Verfligung stellen. Nachfolgend kann die fehltreffende Abrufadresse erneut in der Zei-
lenvorhersage 12 versucht werden und ein Treffer kdnnte detektiert werden.

[0041] Zusatzlich zu dem Dekodieren von Befehlen nach einem Fehltreffer in der Zeilenvorhersage 12 kann
die Vorhersagefehltreffer-Dekodiereinheit 26 konfiguriert sein, um Befehle zu dekodieren, wenn die von der
Zeilenvorhersage 12 zur Verfugung gestellte Befehlsinformation ungultig ist. In einem Ausfuhrungsbeispiel ver-
sucht der Prozessor 10 nicht, Information in der Zeilenvorhersage 12 mit den Befehlen in dem B-Cachespei-

6/45

DE 600 05 860 T2 2004.08.05

cher 14 koharent zu halten (zum Beispiel wenn Befehle in dem B-Cachespeicher 14 ersetzt oder ungliltig ge-
macht werden, kann die Befehlsinformation nicht aktiv ungiltig gemacht werden). Die Dekodiereinheiten
24A-24D konnen die zur Verfiigung gestellte Befehlsinformation verifizieren und kénnen der Vorhersagefehl-
treffer-Dekodiereinheit 26 signalisieren, wenn ungliltige Befehlsinformation detektiert ist. In Ubereinstimmung
mit einem bestimmten Ausfuhrungsbeispiel werden die folgenden Befehlsoperationen von dem Prozessor 10
unterstutzt: Ganzzahl (einschlieBlich arithmetischen, logischen, Schiebe/Rotations- und Verzweigungsoperati-
onen), Gleitkomma (einschlief3lich Multimediaoperationen und Lade/Speicher.

[0042] Die dekodierten Befehlsoperationen und Quell- und Zielregisternummern werden der Abbildungsein-
heit 30 zur Verfligung gestellt. Die Abbildungseinheit 30 ist konfiguriert, um eine Umbenennung der Register
durchzufihren durch eine Zuweisung physikalischer Registernummern (PR#s) fur jeden Zielregisteroperanden
und jeden Quellregisteroperanden firr jede Befehlsoperation. Die physikalische Registernummer identifiziert
Register innerhalb der Registerdateien 38A-38B. Die Abbildungseinheit 30 stellt des weiteren einen Hinweis
auf die Abhangigkeiten fiir jede Befehlsoperation zur Verfiigung, durch zur Verfiigung stellen von R#s der Be-
fehlsoperationen, die jede physikalische Registernummer aktualisieren, die einem Quelloperanden der Befehl-
soperation zugewiesen ist. Die Abbildungseinheit 30 aktualisiert die zukunftige Datei 20 mit den physikalischen
Registernummern, die jedem Zielregister zugewiesen sind (und dem R# der entsprechenden Befehlsoperati-
on) basierend auf der entsprechenden logischen Registernummer. Des weiteren speichert die Abbildungsein-
heit 30 die logischen Registernummern der Zielregisters, die zugewiesenen physikalischen Registernummern
und die zuvor zugewiesenen physikalischen Registernummern in der Riickzugswarteschlange 32. Wenn Be-
fehle zurtick gezogen werden (der Abbildungseinheit 30 von dem Ablaufplaner 36 angezeigt), aktualisiert die
Ruckzugswarteschlange 32 die architekturisierte Umbenennungsdatei 34 und macht jegliche Register frei, die
nicht ldnger in Benutzung sind. Entsprechend identifizieren die physikalischen Registernummern in der archi-
tekturisierten Umbenennungsdatei 34 die physikalischen Register, welche den ibergebenen architekturalen
Zustand des Prozessors 10 speichern, wahrend die zuktinftige Datei 20 den spekulativen Zustand des Prozes-
sors 10 reprasentiert. In anderen Worten speichert die architekturisierte Umbenennungsdatei 34 eine physika-
lische Registernummer, die jedem logischen Register entspricht, darstellend den tbergebenen Registerzu-
stand fir jedes logische Register. Die zukiinftige Datei 20 speichert eine physikalische Registernummer, die
jedem logischen Register entspricht, darstellend den spekulativen Registerzustand fir jedes logische Register.
[0043] Die Zeile von Befehlsoperationen, die physikalischen Registernummern fir die Quelle und die physi-
kalischen Registernummern fiir das Ziel werden in dem Ablaufplaner 36 in Ubereinstimmung mit den von dem
PC Silo 48 zugewiesenen R#s gespeichert. Des weiteren kdnnen Abhangigkeiten fiir eine bestimmte Befehl-
soperation als Abhangigkeiten von anderen Befehlsoperationen, die in dem Ablaufplaner gespeichert sind, no-
tiert werden. In einem Ausfihrungsbeispiel verbleiben die Befehlsoperationen in der Vorhersagefehltreffer-De-
kodiereinheit 26 bis sie zurlick gezogen werden.

[0044] Der Ablaufplaner 36 speichert jede Befehlsoperation bis die fiir diese Befehlsoperation notierten Ab-
hangigkeiten zufrieden gestellt sind. In Reaktion auf die zeitliche Planung einer bestimmten Befehlsoperation
zur Ausfuhrung kann der Ablaufplaner 36 bestimmen, zu welchem Taktzyklus diese bestimmte Befehlsopera-
tion die Registerdateien 38A-38B aktualisieren wird. Verschiedene Ausfiihrungseinheiten in den Ausfuhrungs-
kernen 40A—40B koénnen verschiedene Anzahlen von Stufen der Pipeline verwenden (und damit unterschied-
liche Latenzzeiten). Des weiteren kdnnen gewisse Befehle innerhalb einer Pipeline mehr Latenz als andere
erfahren. Entsprechend wird ein Countdown erzeugt, der die Latenzzeit fir diese bestimmte Befehlsoperation
misst (in Nummern von Taktzyklen). Der Ablaufplaner 36 erwartet die angegebene Nummer von Taktzyklen (bis
die Aktualisierung geschieht vor oder zusammenfallend mit den abhangigen die Registerdatei lesenden Be-
fehlsoperationen) und zeigt dann an, dass die Befehlsoperationen zeitlich geplant werden kénnen, die von die-
ser bestimmten Befehlsoperation abhangig sind. Es ist zu bemerken, dass der Ablaufplaner 36 einen Befehl
zeitlich planen kann, sobald seine Abhangigkeiten zufrieden gestellt worden sind (das heilt aul3er der Reihe,
was seine Reihenfolge innerhalb der Warteschlange des Ablaufplaners betrifft).

[0045] Ganzzahl und Lade/Speicher Befehlsoperationen lesen Quelloperanden in Ubereinstimmung mit den
physikalischen Registernummern fir die Quelle aus der Registerdatei 38A und werden fur die Ausfiihrung zu
dem Ausfiihrungskern 40A beférdert. Der Ausfiihrungskern 40A flihrt die Befehlsoperation aus und aktualisiert
die dem Ziel innerhalb der Registerdatei 38A zugewiesenen physikalischen Register. Des weiteren meldet der
Ausfuhrungskern 40A die R# der Befehlsoperation und Ausnahmeinformation hinsichtlich der Befehlsoperati-
on (falls vorhanden) dem Ablaufplaner 36. Die Registerdatei 38B und der Ausflihrungskern 40B kdénnen auf
ahnliche Weise im Hinblick auf Gleitkomma Befehlsoperationen arbeiten (und kénnen der Lade/Speicherein-
heit 42 Speicherdaten flr Gleitkomma Speichervorgange zur Verfliigung stellen). Es ist zu bemerken, dass
Operanden fiir abhangige Operationen direkt zu den abhangigen Operationen umgeleitet werden kénnen, falls
die Operationen, von denen sie abhangig sind, gleichzeitig abschliel3en.

[0046] In einem Ausfiihrungsbeispiel kann der Ausfiihrungskern 40A zum Beispiel zwei Ganzzahleinheiten,
eine Verzweigungseinheit und zwei Adresserzeugungseinheiten (mit entsprechenden Ubersetzungsseiten-
blickpuffern oder TLBs) enthalten. Der Ausfihrungskern 40B kann einen Gleitkomma/Multimedia-Multiplizie-

7/45

DE 600 05 860 T2 2004.08.05

rer, einen Gleitkomma/Multimedia-Addieren und eine Speicherdateneinheit zum Liefern von Speicherdaten an
die Lade/Speichereinheit 42 enthalten. Weitere Konfigurationen von Ausfiihrungseinheiten sind mdglich, ein-
schliellich einem kombinierten Gleitkomma/Ganzzahl Ausfiihrungskern.

[0047] Die Lade/Speichereinheit 42 stellt eine Schnittstelle zu dem D-Cachespeicher 44 zur Verfigung, um
Speicheroperationen durchzuflihren und um Filloperationen fir Speicheroperationen, die den D-Cachespei-
cher 44 nicht treffen, zeitlich zu planen. Lade-Speicheroperationen kdnnen von dem Ausfuhrungskern 40A be-
endet werden durch Ausfihren einer Adresserzeugung und Weiterleiten von Daten an die Registerdateien
38A-38B (von dem D-Cachespeicher 44 oder der Speicherwarteschlange innerhalb der Lade/Speichereinheit
42). Speicheradressen kénnen dem D-Cachespeicher 44 prasentiert werden, sobald sie von dem Ausfih-
rungskern 40A erzeugt sind (direkt Uber Verbindungen zwischen dem Ausfihrungskern 40A und dem D-Ca-
chespeicher 44). Die Speicheradressen werden einem Eintrag in der Speicherwarteschlange zugeordnet. Die
Speicherdaten kdnnen neben einander zur Verfligung gestellt werden, oder nach einander zur Verfigung ge-
stellt werden, in Ubereinstimmung mit der Wahl des Entwicklers. Auf das Zuriickziehen der Befehlsoperation
werden die Daten in dem D-Cachespeicher 44 gespeichert (obwohl einige Verzégerung zwischen dem Zurlick-
ziehen und der Aktualisierung des D-Cachespeichers 44 sein kann). Des weiteren kann die Lade/Speicherein-
heit 42 einen Lade/Speicher Puffer enthalten zum Speichern von Lade/Speicher Adressen, die den D-Cache-
speicher 44 nicht treffen, fiir nachfolgende Fillvorgange des Cachespeichers (lber die externe Interfaceeinheit
46) und zum erneuten Versuchen der nicht treffenden Lade/Speicher Operationen. Die Lade/Speichereinheit
42 ist ferner konfiguriert, um Abhangigkeiten von Lade/Speicher Operationen zu behandeln.

[0048] Der D-Cachespeicher 44 ist ein Cachespeicher mit hoher Geschwindigkeit zum Speichern von Daten,
auf die von dem Prozessor 10 zugegriffen werden. Wahrend der D-Cachespeicher 44 jede geeignete Struktur
aufweisen kann (einschlieBlich direkt abbildender oder Satz assoziativer Strukturen), kann ein Ausfiihrungs-
beispiel des D-Cachespeichers 44 einen 128 KByte, vier Wege Satz assoziativen Cachespeicher aufweisen,
der Cachezeilen mit 64 Byte hat.

[0049] Die externe Interfaceeinheit 46 ist zur Kommunikation mit anderen Geraten Uber die externe Schnitt-
stelle 52 konfiguriert. Jede geeignete externe Schnittstelle 52 kann verwendet werden, einschlieRlich Schnitt-
stellen zu L2 Cachespeichern und einem externen Bus oder Bussen zum AnschlieRen des Prozessors 10 an
andere Gerate. Die externe Interfaceeinheit 46 ruft Fillvorgange fir den B-Cachespeicher 14 und den D-Ca-
chespeicher 44 ab, ebenso wie sie verworfene aktualisierte Cachezeilen von dem D-Cachespeicher 44 an die
externe Schnittstelle schreibt. Des weiteren kann die externe Interfaceeinheit 46 auch von dem Prozessor 10
erzeugte Lesevorgange und Schreibvorgange ausfihren, die nicht zwischen gespeichert werden kénnen.
[0050] Es wird nun auf Fig. 2 Bezug genommen, in der ein beispielhaftes Pipelinediagramm gezeigt ist, das
einen beispielhaften Satz von Stufen einer Pipeline zeigt, die von einem Ausflihrungsbeispiel des Prozessors
10 verwendet werden kénnen. Weitere Ausflhrungsbeispiele kénnen verschiedene Pipelines verwenden,
Pipelines, die mehr oder weniger Stufen der Pipeline verwenden als die in Fig. 2 gezeigte Pipeline. Die in
Fig. 2 gezeigten Stufen sind von senkrechten, gestrichelten Linien unterteilt. Jede Stufe ist ein Taktzyklus ei-
nes Taktsignals, das zur Taktung von Speicherelementen (zum Beispiel Registern, Auffangregistern, Flops
usw.) innerhalb des Prozessors 10 verwendet wird.

[0051] Wie in Fig. 2 dargestellt enthalt die beispielhafte Pipeline eine Stufe CAMO, eine Stufe CAM1, eine
Stufe Zeilenvorhersage (LP), eine Stufe Befehls-Cachespeicher (IC), eine Stufe Ausrichtung (AL), eine Stufe
Dekodierung (DEC), eine Stufe Abbildung1 (M1), eine Stufe Abbildung2 (M2), eine Stufe Ablaufplanung
Schreiben (WR SC), eine Stufe Ablaufplanung Lesen (RD SC), eine Stufe Registerdatei Lesen (RF RD), eine
Stufe Ausfihrung (EX), eine Stufe Registerdatei Schreiben (RF WR) und eine Stufe Zuruckziehen (RET). Ei-
nige Befehle benutzen mehrfache Taktzyklen in der Stufe Ausflihrung. Zum Beispiel sind Speicheroperationen,
Gleitkomma Operationen und Ganzzahl Multiplikationsoperationen in auseinander gezogener Darstellung in
Fig. 2 gezeigt. Speicheroperationen kénnen eine Stufe Adresserzeugung (AGU), eine Stufe Ubersetzung
(TLB), eine Stufe Daten-Cachespeicher 1 (DC1) und eine Stufe Daten-Cachespeicher 2 (DC2) enthalten. Auf
ahnliche Weise kdnnen Gleitkomma Operationen bis zu vier Stufen Ausfihrung Gleitkomma (FEX1-FEX4)
enthalten und Ganzzahl Multiplikationen bis zu vier (IM1-IM4) Stufen enthalten.

[0052] Wahrend der Stufen CAMO und CAM1 vergleicht die Zeilenvorhersage 12 die von der Verzweigungs-
vorhersage/Abruf PC Erzeugungseinheit 18 zur Verfiigung gestellte Abrufadresse mit den Adressen der darin
gespeicherten Zeilen. Des weiteren wird die Abrufadresse von einer virtuellen Adresse (zum Beispiel einer li-
nearen Adresse in der x86 Architektur) zu einer physikalischen Adresse wahrend der Stufen CAMO und CAM1
Ubersetzt. In Reaktion auf die Detektierung eines Trefers wahrend der Stufen CAMO und CAM1 wird die ent-
sprechende Information der Zeile von der Zeilenvorhersage wahrend der Stufe Zeilenvorhersage gelesen. Der
Lesevorgang endet wahrend der Stufe Befehls-Cachespeicher.

[0053] Esistzu bemerken, dass, wahrend die in Fig. 2 dargestellte Pipeline zwei Taktzyklen zur Detektierung
eines Treffers in der Zeilenvorhersage 12 fir eine Abrufadresse verwendet, andere Ausfihrungsbeispiele ei-
nen einzelnen Taktzyklus (und Stufe) zur Durchfiihrung dieser Operation verwenden kdnnen. Daruber hinaus
stellt in einem Ausflihrungsbeispiel die Zeilenvorhersage 12 eine nachste Abrufadresse fiir den B-Cachespei-

8/45

DE 600 05 860 T2 2004.08.05

cher 14 und einen nachsten Eintrag in der Zeilenvorhersage 12 fiir einen Treffer zur Vertigung und daher kon-
nen die Stufen CAMO und CAM1 Ubersprungen werden fur Abrufvorgange, die von einem vorherigen Treffer
in der Zeilenvorhersage 12 stammen.

[0054] Die von dem B-Cachespeicher 14 zur Verfliigung gestellten Befehlsbytes werden von der Ausrich-
tungseinheit 16 fur die Dekodiereinheiten 24A-24D ausgerichtet wahrend der Stufe Ausrichtung in Reaktion
auf die entsprechende Zeileninformation von der Zeilenvorhersage 12. Es ist zu bemerken, dass einige Befeh-
le auf mehr als eine Dekodiereinheit 24A-24D ausgerichtet sein kdnnen. Die Dekodiereinheiten 24A-24D de-
kodieren wahrend der Stufe Dekodierung die zur Verfiigung gestellten Befehle, die sowohl den Befehlen ent-
sprechende ROPs als auch Operandeninformation identifizieren. Die Abbildungseinheit 30 erzeugt wahrend
der Stufe Abbildung1 ROPs von den zur Verfiigung gestellten Informationen und fihrt eine Umbenennung der
Register durch (Aktualisierung der zukiinftigen Datei 20). Wahrend der Stufe Abbildung2 werden die ROPs und
zugewiesenen Umbenennungen in der Riickzugswarteschlange 32 aufgezeichnet. Des weiteren werden die
ROPs bestimmt, von denen jede ROP abhangig ist. Jede ROP kann registerabhangig von friheren ROPs sein,
wie in der zukunftigen Datei ausgezeichnet ist, und kann auch andere Typen aufweisen (zum Beispiel Abhan-
gigkeiten von einem vorherigen Serialisierungsbefehl usw.).

[0055] Die erzeugten ROPs werden wahrend der Stufe Ablaufplanung in den Ablaufplaner 36 geschrieben.
Bis zu dieser Stufe flielen die ROPs, die von einer bestimmten Zeile an Information geortet sind, als eine Ein-
heit durch die Pipeline. Es ist zu bemerken, dass ROPs, die eine Mikrocode Routine aufweisen, eine Ausnah-
me zu der zuvor erwahnten. Aussage sein kénnen, weil sie von dem Mikrocode ROM uber mehrere Taktzyklen
gelesen werden kdnnten. Jedoch kénnen die ROPs, nachdem sie in den Ablaufplaner 36 geschrieben sind, zu
verschiedenen Zeiten unabhangig durch die verbleibenden Stufen flieBen. Im Allgemeinen verbleibt eine be-
stimmte ROP in dieser Stufe, bis sie von dem Ablaufplaner 36 zur Ausfuhrung ausgewahlt wird (zum Beispiel
nachdem die ROPs, von denen die bestimmte ROP abhangig ist, wie oben beschrieben zur Ausfiihrung aus-
gewahlt worden sind). Entsprechend kann eine bestimmte ROP zwischen der Stufe Ablaufplanung Schreiben
und der Stufe Ablaufplanung Lesen einen oder mehrere Taktzyklen an Verzégerung erfahren. Wahrend der
Stufe Ablaufplanung Lesen nimmt die bestimmte ROP an der Auswahllogik innerhalb des Ablaufplaners 36 teil,
wird zur Ausfihrung ausgewahlt und von dem Ablaufplaner 36 gelesen. Die bestimmte ROP schreitet dann in
der Stufe Registerdatei Lesen fort zu den Lese Register Operationen von einer der Registerdateien 38A-38B
(abhéangig von dem Typ der ROP).

[0056] Die bestimmte ROP und die Operanden werden dem entsprechenden Ausfiihrungskern 40A oder 40B
zur Verfigung gestellt und die Befehlsoperation wird wahrend der Stufe Ausfihrung auf den Operanden aus-
gefuhrt. Zum Beispiel werden Speicher Befehlsoperationen (zum Beispiel Ladevorgange und Speichervorgan-
ge) ausgefihrt durch eine Stufe Adresserzeugung (in der die Datenadressen der Speicherstelle, auf die von
der Speicher Befehlsoperation zugegriffen wird, erzeugt wird), eine Stufe Ubersetzung (in der die von der Stufe
Adresserzeugung zur Verfliigung gestellte virtuelle Datenadresse ubersetzt wird) und ein Paar von Stufen Da-
ten-Cachespeicher, in denen auf den D-Cachespeicher 44 zugegriffen wird. Gleitkomma Operationen kénnen
bis zu vier Taktzyklen an Ausfiihrung verwenden und Ganzzahl Multiplikationen verwenden ahnlich bis zu vier
Taktzyklen an Ausfiihrung.

[0057] Nach Abschluss der Stufe oder der Stufen Ausfihrung aktualisiert die bestimmte ROP wahrend der
Stufe Registerdatei Schreiben ihre zugewiesenen physikalischen Register. SchlieBlich wird die bestimmte
ROP zurlick gezogen, nachdem jede vorherige ROP zurlick gezogen ist (in der Stufe Zuriickziehung). Wieder
kdnnen einer oder mehrere Taktzyklen fir eine bestimmte ROP zwischen der Stufe Registerdatei Schreiben
und der Stufe Zurickziehung ablaufen. Des weiteren kann eine bestimmte ROP an jeder Stufe der Pipeline
angehalten werden aufgrund von Bedingungen zum Anhalten der Pipeline, wie im Stand der Technik gut be-
kannt sind.

Ablaufplaner

[0058] Es wird nun auf Fig. 3 Bezug genommen, wo ein Blockdiagramm gezeigt ist, das ein Ausfuhrungsbei-
spiel einer Abbildungseinheit 30, einer zuklinftigen Datei 20, eines Ablaufplaners 36, eines Ganzzahl Ausfiih-
rungskerns 40A und einer Lade/Speicher-Einheit 42 darstellt. Eine gewisse beispielhafte Verbindung ist in der
Fig. 3 dargestellt, als auch gewisse interne Details eines Ausfuhrungsbeispiels der Einheiten au3er dem Ab-
laufplaner 36. Weitere Ausfiihrungsbeispiele sind moglich und werden betrachtet. In dem Ausflihrungsbeispiel
von Fig. 3 ist die Abbildungseinheit 30 mit den Dekodiereinheiten 24A- 24D, der zukunftigen Datei 20 und dem
Ablaufplaner 36 verbunden. Der Ablaufplaner 36 ist des weiteren mit der externen Interfaceeinheit 46, dem
Ganzzahl Ausfiuhrungskern 40A und der Lade/Speicher-Einheit 42 verbunden. In dem Ausflihrungsbeispiel
von Fig. 3 enthalt die Abbildungseinheit 30 eine Zielumbenennungsschaltung 60, eine Inline Abhangigkeitsu-
berprifungsschaltung 62, eine Abhangigkeitsordnungsschaltung 64, einen Satz von Abhangigkeitsordnungs-
registern 66A—-66N und einen Mux 68. Die Zielumbenennungsschaltung 60, die Inline Abhangigkeitstiberpri-
fungsschaltung 62 und die Abhangigkeitsordnungsschaltung 64 sind angeschlossen, um von den Dekodierein-

9/45

DE 600 05 860 T2 2004.08.05

heiten 24A-24N Befehlsoperationen zu empfangen. Die Zielumbenennungsschaltung 60 ist mit dem Mux 68
und dem Ablaufplaner 36 verbunden. Die Inline Abhangigkeitsiiberprifungsschaltung 62 ist mit dem Mux 68
verbunden, der dariiber hinaus mit der zukiinftigen Datei 20 verbunden ist. Die zuklinftige Datei 20 ist ange-
schlossen, um ldentifizieren fir Quelloperanden zu empfangen, die den von der Abbildungseinheit 30 empfan-
genen Befehlsoperationen entsprechen. Die Abhangigkeitsordnungsschaltung 64 ist mit den Abhangigkeits-
ordnungsregistern 66A—66N und mit dem Ablaufplaner 36 verbunden. Die Lade/Speicher-Einheit 42 umfasst
eine Speicherwarteschlange 70, die angeschlossen ist, um eine physikalische Adresse von dem Ganzzahl
Ausfuhrungskern 40A zu empfangen. Der Ganzzahl Ausfiihrungskern 40A enthalt eine Adresserzeugungsein-
heit 40AA, die mit einem Ubersetzungsseitenblickpuffer (TLB) 40AB verbunden ist.

[0059] Im Allgemeinen empfangt die Abbildungseinheit 30 Befehlsoperationen von den Dekodiereinheiten
24A-24D. Die Abbildungseinheit 30 fihrt fir jede Befehlsoperation eine Umbenennung der Register durch und
bestimmt die Abhangigkeiten fiir jede Befehlsoperation von alteren Operationen, die in dem Ablaufplaner 36
in Verarbeitung sind (oder gleichzeitig an den Ablaufplaner 36 abgeschickt werden). Die Abbildungseinheit 30
stellt die Befehlsoperationen und die Umbenennungen der Register dem Ablaufplaner 36 zum Speichern zur
Verfligung (und spatere Ausgabe zur Ausfihrung). Des weiteren stellt die Abbildungseinheit 30 eine Angabe
der Abhangigkeiten jeder Befehlsoperation zur Verfliigung (dargestellt als die Quelloperanden-Abhangigkeiten
und die Ordnungsabhangigkeiten in Fig. 3). Genauer gesagt identifiziert die Abbildungseinheit 30 die altesten
Befehlsoperationen durch R# (die Nummer, welche die Befehlsoperation in dem Ablaufplaner 36 identifiziert).
Die PR#s der den Operanden zugeordneten physikalischen Register werden dem Ablaufplaner 36 zur Verfi-
gung gestellt zur Ausgabe mit der Befehlsoperation, aber werden nicht bei der Bestimmung der Abhangigkei-
ten verwendet. Der Ablaufplaner 36 speichert die Befehlsoperationen und die entsprechenden Abhangigkeiten
und plant den Ablauf der Befehlsoperationen in Reaktion auf die entsprechenden Abhangigkeiten, die befrie-
digt werden. Die fur den Ablauf geplanten Befehlsoperationen werden an die Ausfihrungskerne 40A-40B aus-
gegeben, die Ressourcen zur Ausflihrung haben, die konfiguriert sind zur Ausflihrung dieser Befehlsoperation.
[0060] Gewisse Befehlsoperationen kénnten die Ausfiihrung nicht abschlief3en, wenn sie ausgegeben wer-
den. Zum Beispiel kdnnte in dem gezeigten Ausfuhrungsbeispiel Speicheroperationen die Ausflihrung nicht
abschlieRRen. Falls ein Befehl die Ausfiihrung nicht abschlief3t, wird er von einer Einheit, die in die Ausfuhrung
der Befehlsoperation einbezogen ist, ,erneut versucht". Das erneute Versuchen einer Befehlsoperation um-
fasst das Signalisieren an den Ablaufplaner 36, dass die Befehlsoperation zuriick gezogen wird. Der Ablauf-
planer 36 halt die ausgegebenen Befehlsoperationen zurlick und, falls die ausgegebenen Befehlsoperationen
zurlick gezogen werden, gibt der Ablaufplaner 36 dann die Befehlsoperationen erneut aus. Insbesondere in
einem Ausflhrungsbeispiel halt der Ablaufplaner 36 einen Ausfuhrungszustand fur jede Befehlsoperation auf-
recht. In Reaktion auf ein erneutes Versuchen einer zuvor ausgegebenen Befehlsoperation setzt der Ablauf-
planer 36 den Ausflihrungszustand der Befehlsoperation auf einen ,nicht ausgefihrt" Zustand zuriick. Nach-
folgend kann die Befehlsoperation erneut ausgegeben werden. Des weiteren behalt der Ablaufplaner 36 die
Abhangigkeiten von jeder ausgegebenen Befehlsoperation. Alle Befehlsoperationen, die direkt oder indirekt
von der zuruck gezogenen Befehlsoperation abhangig sind, werden ebenfalls in den nicht ausgefiihrten Zu-
stand zurtick gebracht. Es ist zu bemerken, dass eine Gruppe von Befehlsoperationen, in der die erste aus der
Gruppe der Befehlsoperationen von einer bestimmten Befehlsoperation abhangig ist und in der jede andere
Befehlsoperation innerhalb der Gruppe von den anderen Befehlsoperationen abhangig ist und durch die ande-
re Befehlsoperation indirekt von der bestimmten Befehlsoperation abhangig ist, hier als eine ,Abhangigkeits-
kette" bezeichnet wird.

[0061] Das Zuriicksetzen des Ausflihrungszustands auf nicht ausgeflihrt in Reaktion auf einen erneuten Ver-
such der Befehlsoperation oder einer anderen Befehlsoperation, von der die Befehlsoperation direkt oder indi-
rekt abhangig ist, wird hier als ,riickgangig machen" dieser Befehlsoperation bezeichnet.

[0062] Indem Befehlsoperationen erlaubt wird, zuriick gezogen zu werden (und in Reaktion auf ein erneutes
Versuchen erneut ausgegeben zu werden), kann der Ablaufplaner 36 Befehlsoperationen aggressiv fiir die
Ausfuhrung im Ablauf planen und kann sich von einer nicht korrekten Ablaufplanung erholen durch die erneute
Ausgabe der nicht korrekt im Ablauf geplanten Befehlsoperationen zu einem spateren Zeitpunkt. Die Strafe fur
eine nicht korrekte Ablaufplanung kann erheblich geringer sein als das Entfernen der nicht korrekt im Ablauf
geplanten Befehlsoperation und aller jingeren Befehlsoperationen und das erneute Abrufen beginnend an der
nicht korrekt im Ablauf geplanten Befehlsoperation.

[0063] Die Abbildungseinheit 30 verwendet die Zielumbenennungsschaltung 60, die Inline Abhangigkeitsu-
berprifungsschaltung 62, die zukiinftige Datei 20 und die Abhangigkeitsordnungsschaltung 64, um die Abhan-
gigkeiten fiir jede Befehlsoperation zu bestimmen. Die Zielumbenennungsschaltung 60 empfangt eine Angabe
fur jede Befehlsoperation, ob diese Befehlsoperation einen Register-Zieloperanden hat oder nicht, und die
Nummer des Zielregisters, falls die Befehlsoperation einen Register-Zieloperanden hat. Falls die Befehlsope-
ration einen Register-Zieloperanden hat, weist die Zielumbenennungsschaltung 60 der Befehlsoperation eine
freie physikalische Registernummer zu. Die zugewiesenen PR#s werden dem Ablaufplaner 36 mit den Befehl-
soperationen zur Verfiigung gestellt. Des weiteren stellt die Zielumbenennungsschaltung 60 die R#s und die

10/45

DE 600 05 860 T2 2004.08.05

PR#s von jedem Befehlsoperand dem Mux 68 zur Verfligung.

[0064] Die zukinftige Datei 20 stellt fir jede Registernummer des Quelloperanden die PR# und die R# der
Befehlsoperation zur Verfligung, die zuletzt das entsprechende architekturisierte Register als einen Zielope-
randen hatte. Insbesondere kann die zukinftige Datei 20 eine Tabelle aufweisen mit Eintragen fur jedes archi-
tekturisierte Register (und in Mikrocode verwendenden Ausflihrungsbeispielen, jedes temporare Mikrocodere-
gister). Die Registernummern der Quelloperanden werden verwendet, um die Eintrage der Register auszuwah-
len, die als Quelloperanden flir die Befehlsoperationen angegeben sind. Jeder Eintrag speichert die R# der
altesten Befehlsoperation (vor der aktuellen Zeile von Befehlsoperationen), um dieses Register zu aktualisie-
ren, und die PR# des physikalischen Registers, das dem Ziel dieser altesten Befehlsoperation zugewiesen ist.
Des weiteren enthalt die zuklnftige Datei 20 ein Giiltig Bit (V) in jedem Eintrag. Das Gilltig Bit zeigt an, ob die
fur dieses Register aufgezeichnete R# giiltig ist oder nicht (das heif3t ob die entsprechende Befehlsoperation
in dem Ablaufplaner 36 immer noch giiltig ist oder nicht). Das Giiltig Bit wird gesetzt auf die Versendung der
der R# entsprechenden Befehlsoperation in den Ablaufplaner 36 und wird zurlick gesetzt, wenn die Befehlso-
peration zurlick gezogen wird. Das Gultig Bit wird dem Ablaufplaner 36 zur Verfiigung gestellt, wenn der Ein-
trag als die Abhangigkeit des Quelloperanden ausgewahlt wird. Der Ablaufplaner 36 zeichnet fir diesen Quell-
operanden keine Abhangigkeit auf, falls das Gilltig Bit nicht gesetzt ist, und zeichnet eine Abhangigkeit auf,
falls das Giiltig Bit gesetzt ist.

[0065] Die Inline Abhangigkeitsuberprifungsschaltung 62 empfangt die Nummern der Quell- und Zielregister
von jeder Befehlsoperation und fiihrt eine Uberpriifung der Abhéngigkeit innerhalb der Zeile der von der Abbil-
dungseinheit 30 empfangenen Befehlsoperationen durch. Die Inline Abhangigkeitstuberprifungsschaltung 62
vergleicht die Nummern der Zielregister mit von jeder alteren Befehlsoperation in der Zeile mit den Nummern
der Zielregister einer bestimmten Befehlsoperation innerhalb der Zeile. Falls eine Ubereinstimmung fiir einen
der Quelloperanden gefunden wurde, Ubersteuert die Inline Abhangigkeitstiberpriifungsschaltung 62 die R#s
und die PR#s von der zukunftigen Datei 20, die dem Quelloperanden entsprechen, mit den entsprechenden
von der Zielumbenennungsschaltung 60 zur Verfiigung gestellten R# und PR#. Falls keine Ubereinstimmung
gefunden wurde, stellen die R# und die PR# von der zuklnftigen Datei 20 die korrekte Registerumbenen-
nungs- und Abhangigkeits- R# fir diesen Quelloperanden zur Verfligung. Die Inline Abhangigkeitstiberpru-
fungsschaltung 62 erzeugt Multiplexerauswahlleitungen fur den Mux 68, um den geeigneten R# und PR# fur
jeden Quelloperanden von jeder Befehlsoperation auszuwahlen. Es ist zu bemerken, dass der Mux 68 jede
geeignete Auswahlschaltung zum Auswahlen der Abhangigkeiten des Quelloperanden darstellen kann. Zum
Beispiel kann der Mux 68 separate Multiplexer fir jeden méglichen Quelloperanden von jeder mdglichen Be-
fehlsoperation innerhalb der Zeile darstellen.

[0066] Die Inline Abhangigkeitstiberprifungsschaltung kann des weiteren die Nummern der Zielregister fir
jede Befehlsoperation innerhalb der Zeile vergleichen, um die alteste Befehlsoperation innerhalb der Zeile zu
bestimmen, um jedes architekturisierte Register zu aktualisieren, das ein Zieloperand fur eine oder mehrere
Befehlsoperationen innerhalb der Zeile ist. Die zuklnftige Datei 20 kann dann in den Eintragen, die den Zielo-
peranden der Zeile entsprechen, mit den R#s und den PR#s aktualisiert werden, die von der Zielumbenen-
nungsschaltung 60 zugewiesen wurden. Der Pfad der Aktualisierung ist wegen der Ubersichtlichkeit der Zeich-
nung in der Fig. 3 nicht gezeigt.

[0067] Die Abhangigkeitsordnungsschaltung 64 verfolgt Abhangigkeiten von der Reihenfolge, die im Hinblick
auf gewisse Befehlsoperationen aufgezeichnet werden kdnnen. Zum Beispiel sind in einem Ausfuhrungsbei-
spiel, das die x86 Befehlssatzarchitektur verwendet, Abhangigkeiten von der Reihenfolge definiert fur: (i) Seg-
mentladevorgange, welche eine Abhangigkeit von der Reihenfolge fiir jede nachfolgende Speicheroperation
verursachen, (ii) Aktualisierungen von Steuerworten fir Gleitkomma, welche eine Abhangigkeit von der Rei-
henfolge fiir jede nachfolgende Gleitkomma Befehlsoperation verursachen. Im Aligemeinen fiihrt jede Befehl-
soperation, die eine Serialisierungssperre fir nachfolgende Befehlsoperationen erzeugt, zu einer Abhangigkeit
von der Reihenfolge von den serialisierenden Befehlsoperationen zu den nachfolgenden betroffenen Befehls-
operationen. Eine "Serialisierungssperre" ist eine Sperre in der Programmsequenz, um die eine ungeordnete
oder spekulative Ausfiihrung verboten ist. Einige Befehlssatzarchitekturen haben Befehle, deren alleinige
Funktion es ist, die Serialisierungssperre zur Verfiigung zu stellen.

[0068] Die oben erwahnten Abhangigkeiten von der Reihenfolge kénnen nach verfolgt werden unter Verwen-
dung der Abhangigkeitsordnungsregister 66 A—66N. Die Abhangigkeitsordnungsschaltung 64 speichert in Re-
aktion auf eine Befehlsoperation, welche eine Abhangigkeit von der Reihenfolge erzeugt, die R# der Befehls-
operation in einem der Abhangigkeitsordnungsregister 66A-66N. Ein Abhangigkeitsordnungsregister
66A—-66N kann flr jede von dem Prozessor 10 detektierte Abhangigkeit von der Reihenfolge zur Verfligung
gestellt werden. Zusatzlich kann ein Glltig Bit enthalten sein und kann in Reaktion auf das Aufzeichnen einer
R# gesetzt werden und zuriick gesetzt werden auf das zurtick ziehen der entsprechenden Befehlsoperation
(ahnlich wie bei dem Gliltig Bit in der zuklinftigen Datei 20). In Reaktion auf eine Befehlsoperation, die tber
eine bestimmte Abhangigkeit von der Reihenfolge als von der Reihenfolge abhangig definiert ist, stellt die Ab-
hangigkeitsordnungsschaltung 64 die entsprechende R# als eine der Abhangigkeiten von der Reihenfolge flr

11/45

DE 600 05 860 T2 2004.08.05

diese Befehlsoperation zur Verfligung.
[0069] Zusatzlich zu den obigen besonderen Situationen kann die Abhangigkeitsordnungsschaltung 64 eine
Tabelle verwenden, um vorherige Ereignisse von Lade-Speicheroperationen zu verfolgen, welche vor den al-
teren Speicher-Speicheroperationen im Ablauf geplant waren und nachfolgend als abhangig von dieser alteren
Speicher-Speicheroperation befunden wurde (fir den Speicheroperanden, auf den von dem Ladevorgang zu-
gegriffen wurde). Die Tabelle kann eine erste Tabelle aufweisen, die mit der Abrufadresse der Lade-Speicher-
operation indiziert wird und mit der Abrufadresse der alteren Speicher-Speicheroperation trainiert wird, wenn
die Abhangigkeit wahrend der Ausfihrung detektiert wird. Die zweite Tabelle wird mit der Abrufadresse der
Speicher-Speicheroperation indiziert und wird auf das Versenden der Speicher-Speicheroperationen mit der
R# der Speicher-Speicheroperation aktualisiert. Falls die Lade-Speicheroperation ein Treffer in der Tabelle ist,
wird die entsprechende R# als eine Abhangigkeit von der Reihenfolge fiir die Lade-Speicheroperation zur Ver-
fligung gestellt.
[0070] Wie oben erwahnt plant der Ablaufplaner 36 den Ablauf und gibt eine Befehlsoperation in Reaktion auf
die Detektierung, dass jede Abhangigkeit von dieser Befehlsoperation befriedigt ist, an einen geeigneten Aus-
fuhrungskern aus. Genauer gesagt werden Speicheroperationen an eine Adresserzeugungseinheit 40AA in-
nerhalb des Ausfiihrungskerns 40A ausgegeben. Die Adresserzeugungseinheit 40AA empfangt die Register-
operanden von der Ganzzahl Registerdatei 38A und erzeugt die Adresse des der Speicheroperation entspre-
chenden Speicheroperanden. Die Adresse ist die virtuelle Adresse, welche mittels eines Schemas zur Adress-
Ubersetzung, das von der von dem Prozessor 10 verwendeten Befehlssatzarchitektur angegeben ist, in eine
physikalische Adresse zum Zugreifen auf den Speicher (und den D-Cachespeicher 44) (ibersetzt wird. Der TLB
40AB ist ein Cachespeicher fiir die Ergebnisse von vorherigen Ubersetzungen, was eine schnelle Ubersetzung
der virtuellen Adressen, welche darin treffen, in entsprechende physikalische Adressen und was eine schnelle
Bestimmung der verschiedenen Attribute erlaubt, die den entsprechenden Speicherstellen Gber den Mecha-
nismus zur Ubersetzung zugewiesen wurden. Die Kombination von AGU 40AA und TLB 40AB stellt der La-
de/Speicher-Einheit 42 (und parallel dazu dem D-Cachespeicher 44 und dem Ablaufplaner 36) eine physikali-
sche Adresse zur Verfligung.
[0071] Die Lade/Speicher-Einheit 42 bestimmt, ob die Speicheroperation die Ausflihrung erfolgreich ab-
schliefl3t oder ob sie zurlick zu ziehen ist. Falls eine Situation zum Rickzug detektiert wird, legt die Lade/Spei-
cher-Einheit 42 das erneutes Versuchen Signal an dem Ablaufplaner 36 an und stellt den Grund fiir den erneu-
ten Versuch Uber die erneuter Versuchstyp Signale zur Verfliigung. In einem Ausfuihrungsbeispiel kbnnen Spei-
cheroperationen aus den folgenden Griinden zurlickgezogen werden:

(i) die Speicheroperation ist eine Lade-Speicheroperation, welche den D-Cachespeicher 44 nicht trifft;

(i) die Speicheroperation erfordert einen Puffer in der Lade/Speicher-Einheit 42, der voll ist (zum Beispiel

ein Fehltreffer-Puffer zum Speichern von Fehltrefferadressen, die von der externen Interfaceeinheit 46 aus

dem Hauptspeicher abgerufen werden);

(iii) die Speicheroperation erfahrt einen Bankkonflikt innerhalb des D-Cachespeichers 44 mit einer anderen

Speicheroperation, die gleichzeitig auf den D-Cachespeicher 44 zugreift;

(iv) die Speicheroperation ist eine Speicher-Speicheroperation und erfordert eine Uberpriifung auf selbst

modifizierenden Code (SMC);

(v) die Speicheroperation ist eine Lade-Speicheroperation, die eine oder mehrere Speicheroperationen in

der Speicherwarteschlange 70 trifft (das heil3t die eine oder die mehreren Speicheroperationen unterstuit-

zen zumindest ein Byte des Speicheroperanden des Speicheroperanden, auf dem von der Lade-Speiche-

roperation zugegriffen wird) und die Speicherwarteschlange 70 ist nicht fahig, die entsprechenden Daten

weiterzuleiten;

(vi) die Speicheroperation ist nicht spekulativ auszufihren.

[0072] Der Grund (i) ist als getrennter erneuter Versuchstyp kodiert, fir den der Ablaufplaner 36 eine Uber-
einstimmende Filladresse erwartet, die von der externen Interfaceeinheit 46 vor der Ablaufplanung und dem
erneuten Ausgeben der Lade-Speicheroperation zur Verfliigung gestellt wird. Die externe Interfaceeinheit 46
stellt die Filladresse zur Verfiigung, um anzuzeigen, dass die Daten von der Fiilladresse an den D-Cachespei-
cher 44 zum Speichern zur Verfligung gestellt werden (und damit, dass entsprechende Lade-Speicheropera-
tionen Treffer in dem D-Cachespeicher 44 sein kdnnten). Der Ablaufplaner 36 zeichnet die physikalische
Adresse der Lade-Speicheroperation auf (zur Verfiigung gestellt von dem Ausflihrungskern 40A) zum Ver-
gleich mit der Filladresse. Die Grinde (ii), (iii) und (v) kdnnen als ein einzelner erneuter Versuchstyp kodiert
sein, auf den der Ablaufplaner 36 antworten kann durch erneutes Planen des Ablaufs der entsprechenden
Speicheroperation ohne jegliche besondere Warteerfordernisse. Der Grund (iv) ist als ein erneuter Ver-
suchstyp kodiert und der Ablaufplaner 36 kann die entsprechende Speicher-Speicheroperation nachdem die
SMC Uberpriifung abgeschlossen worden ist fiir die erneute Ausgabe im Ablauf planen. Der Grund (vi) ist als
ein erneuter Versuchstyp kodiert und der Ablaufplaner 36 plant den Ablauf der Speicheroperation zur erneuten
Ausgabe nachdem die entsprechende Speicheroperation nicht spekulativ wird. In Ubereinstimmung mit einem

12/45

DE 600 05 860 T2 2004.08.05

bestimmten Ausflihrungsbeispiel ist eine Speicheroperation als nicht spekulativ auszufiihren, wenn die Spei-
cheroperation auf einen Speicheroperanden zugreift, der eine Seitengrenze Uberquert (das heil’t zumindest
ein Byte des Speicheroperanden ist in einer zweiten Seite gespeichert, die von einer zweiten Adressliberset-
zung Ubersetzt wurde, die anders ist als die erste Adressiibersetzung), die Ubersetzung zeigt an, dass der Typ
des Speichers des Speicheroperanden nicht spekulativ ist oder die Speicheroperation trifft fehl in dem TLB.
Der erste und der letzte Grund flr das nicht spekulative Ausfiihren sind beim Entwurf gewahlt, um die Hard-
ware zu vereinfachen, und der mittlere Grund wird von der von dem Prozessor 10 verwendeten Befehlssatz-
architektur gefordert.

[0073] Esistzu bemerken, dass, wahrend die obige Beschreibung sich auf die erneute, nicht spekulative Aus-
gabe gewisser Speicheroperationen bezieht, andere Befehlsoperationen ebenfalls nicht spekulativ erneut aus-
gegeben werden kénnen. Zum Beispiel kann jede Befehlsoperation, die eine Ausnahme erfahrt (zum Beispiel
eine Falle oder einen von der Architektur angegebenen Fehler oder eine fiir die von dem Prozessor 10 imple-
mentierte Mikroarchitektur definierte mikroarchitekturale Ausnahme), nicht spekulativ erneut ausgegeben wer-
den. Auf diese Weise kann Information, die auf die Ausnahme bezogen ist, wahrend der nicht spekulativen
Ausfuhrung aufgezeichnet werden. Daher kann der Aufwand an Hardware, der zum Speichern und Verfolgen
von Ausnahmeinformation verwendet wird, minimiert werden.

[0074] Die Speicherwarteschlange 70 stellt Uber die Treffer und Speicher R# Signale zusatzliche Information
hinsichtlich der Lade-Speicheroperationen zur Verfligung, welche Speicher-Speicheroperationen innerhalb der
Speicherwarteschlange treffen. Die Treffer und Speicher R# werden unabhangig davon zur Verfiigung gestellt,
ob ein erneuter Versuch der Lade-Speicheroperation auftritt oder nicht. Das Treffer Signal zeigt an, dass ein
Treffer in der Speicherwarteschlange detektiert wurde, und die Speicher R# ist die R# des Speichervorgangs,
der von dem Ladevorgang getroffen wurde. Diese Information kann verwendet werden, um einen erneuten Ver-
such der Lade-Speicheroperation zu veranlassen, falls der Speichervorgang, der von dem Ladevorgang ge-
troffen wurde nachfolgend erneut ausgefiihrt wird (und eine andere Adresse empfangt). Die Verwendung der
Speicher R# wird detaillierter unten beschrieben. Es ist zu bemerken, dass, wahrend die Speicher R# in die-
sem Beispiel verwendet wird, jeglicher Identifizieren, der den Speichervorgang identifiziert, verwendet werden
kann. Zum Beispiel kann die Nummer der Speicherwarteschlange zur Verfigung gestellt werden, welche den
Eintrag der Speicherwarteschlange innerhalb der Speicherwarteschlange 70 identifiziert, der von dem Lade-
vorgang getroffen wird. Derartige Ausfihrungsbeispiele werden betrachtet.

[0075] Wie oben bemerkt, kdnnte die Speicherwarteschlange 70 nicht fahig sein, in allen Fallen, wenn eine
Lade-Speicheroperation eine Speicher-Speicheroperation in der Speicherwarteschlange 70 trifft, die Daten
weiter zu leiten. Zum Beispiel kbnnen zahlreiche Bytes des Lade-Speicheroperanden von verschiedenen Spei-
chervorgangen in der Speicherwarteschlange 70 zur Verfigung gestellt werden. Jedoch kann die Speicher-
warteschlange 70 die Anzahl der separaten Speichervorgange begrenzen, von denen Bytes eines bestimmten
Lade-Speicheroperanden weiter geleitet werden kénnten. Falls zum Beispiel die Speicherwarteschlange 70 fa-
hig ist, die Daten von bis zu zwei Speicher-Speicheroperationen weiter zu leiten, verhindert ein Treffen auf zwei
oder mehr Speicher-Speicheroperationen fiir verschiedene Bytes von diesem bestimmten Lade-Speicherope-
randen die Weiterleitung von allen Bytes des bestimmten Lade-Speicheroperanden. Des weiteren kénnen ei-
nige Ausflihrungsbeispiele der Speicherwarteschlange 70 die Adresse des Lade-Speicheroperanden vor dem
Empfangen der Speicherdaten empfangen. Falls die Speicherdaten nicht zur Verfligung stehen, ist die Spei-
cherwarteschlange 70 nicht fahig, die Speicherdaten weiter zu leiten, sogar wenn ein Treffer detektiert wiirde.
[0076] Es ist zu bemerken, dass Befehlsoperationen hier als "alter" oder "jliinger" als andere Befehlsoperati-
onen seiend bezeichnet werden. Eine erste Befehlsoperation ist "alter" als eine zweite Befehlsoperation, wenn
die erste Befehlsoperation in der Reihenfolge des Programms vor der zweiten Befehlsoperationen ist. Ande-
rerseits ist eine erste Befehlsoperation "jinger" als eine zweite Befehlsoperation, wenn die erste Befehlsope-
ration in der Reihenfolge des Programms der zweiten Befehlsoperation nachfolgend ist. Wie hier verwendet
bezieht sich der Ausdruck "erneute Ausgabe" auf die Ausgabe einer Befehlsoperation, die zuvor ausgegeben
wurde (und als nicht korrekt ausgefiihrt befunden wurde, entweder direkt (ber einen erneuten Versuch oder
indirekt Gber die von dem Ablaufplaner 36 fir diese Befehlsoperation aufgezeichneten Abhangigkeiten). Des
weiteren bezieht sich der Ausdruck "Speicheroperation" wie er hier verwendet wird auf eine Befehlsoperation,
die eine Speicheroperation hat. Lade-Speicheroperationen haben einen Speicher-Quelloperanden als einen
Quelloperanden (und einen Register-Zieloperanden) und geben den Transfer von Daten von dem Spei-
cher-Quelloperanden zu dem Register-Zieloperanden an. Speicher-Speicheroperationen haben einen Regis-
ter-Quelloperanden und einen Speicher-Zieloperanden und geben den Transfer von Daten von dem Regis-
ter-Quelloperanden zu dem Speicher-Zieloperanden an. Es ist zu bemerken, dass, obwohl Fig. 3 eine
Adresserzeugungseinheit 40AA und einen entsprechenden TLB 40AB darstellt, verschiedene Ausfiihrungs-
beispiele eine beliebige Anzahl von Adresserzeugungseinheiten und TLBs enthalten kénnen. Die Lade/Spei-
cher-Einheit 42 kann separate erneutes Versuchen Signale, erneuter Versuchstyp Signale, Treffer Signale und
Speicher R#s fiir Speicheroperationen, die jeder AGU entsprechen, zur Verfligung stellen.

[0077] Nun Bezug nehmend auf Fig. 4 ist ein Blockdiagramm eines Ablaufplaners 36 gezeigt. Weitere Aus-

13/45

DE 600 05 860 T2 2004.08.05

fuhrungsbeispiele sind mdglich und werden betrachtet. Wie in Fig. 4 gezeigt umfasst der Ablaufplaner 36 einen
Befehlsoperation (ROP) Puffer 80, eine Ausgabeauswahlschaltung 82, eine Riickzugsgrenzschaltung 84, eine
ROP Steuerschaltung 86, einen Abhangigkeitspuffer 88, einen Puffer fir physikalische Adressen 90, einen
Speichern R# Puffer 92, eine Riickzugsschaltung 94 und eine Abhangigkeitsdekodiererschaltung 96. Der ROP
Puffer 80 ist angeschlossen zum Empfangen von Befehlsoperationen (einschlieRlich solcher Information wie
unmittelbare oder Versetzungsdaten, usw.) und von zugewiesenen PR#s von der Abbildungseinheit 30 und ist
verbunden, um ausgegebene Befehlsoperationen und PR#s den Registerdateien 38A-38B und den Ausfiih-
rungskernen 40A—40B zur Verfiigung zu stellen. Der ROP Puffer 80 ist des weiteren an die Ausgabeauswahl-
schaltung 82 angeschlossen, welche an die ROP Steuerschaltung 86 angeschlossen ist. Die Rickzugsgrenz-
schaltung 84 ist mit der Riickzugsschaltung 94 und der ROP Steuerschaltung 86 verbunden, welche ange-
schlossen ist an die Rickzugsschaltung 94, den Abhangigkeitspuffer 88, den Puffer fir physikalische Adressen
90 und den Speichern R# Puffer 92. Die ROP Steuerschaltung 86 ist des weiteren angeschlossen, um die er-
neutes Versuchen und erneuter Versuchstyp Signale von der Lade/Speicher-Einheit 42 zu empfangen. Die Ab-
hangigkeitsdekodiererschaltung 96 ist angeschlossen zum Empfangen von der Quellabhangigkeits R#s und
der Ordnungsabhangigkeits R#s von der Abbildungseinheit 30 und ist mit dem Abhangigkeitspuffer 88 verbun-
den. Der Puffer fir physikalische Adressen 90 ist angeschlossen zum Empfang einer Fllladresse von der ex-
ternen Interfaceeinheit 46 und einer oder mehrerer physikalischer Adressen von dem Ausflihrungskern 40A.
Der Speichern R# Puffer 92 ist angeschlossen zum Empfang eines oder mehrerer Treffersignale und einer
oder mehrerer Speicher R#s von der Lade/Speicher-Einheit 42.

[0078] Die Abhangigkeitsdekodiererschaltung 96 empfangt die R#s, welche Befehlsoperationen identifizie-
ren, von denen jede in den Ablaufplaner 36 geschriebene Befehlsoperation abhangig ist, und dekodiert die R#s
in Abhangigkeitsangaben fiir die entsprechende Befehlsoperation. Wie oben bemerkt wird, falls ein R# als un-
glltig angezeigt wird (zum Beispiel von der zukiinftigen Datei 20), dann eine auf dieser R# basierende Abhan-
gigkeit nicht angezeigt. Im Gegensatz zu der Belieferung der Abhangigkeitsdekodiererschaltung 96 kann die
Abbildungseinheit 30 die Angaben Uber die Abhangigkeit fir jede Befehlsoperation direkt erzeugen (zum Bei-
spiel durch Bereitstellung eines Abhangigkeitsvektors fur jede Befehlsoperation wie den in Fig. 5 gezeigten).
Im Allgemeinen wird eine Angabe zur Abhangigkeit einer ersten Befehlsoperation und einer zweiten Befehls-
operation zugewiesen und identifiziert eine Abhangigkeit (oder ein Fehlen davon) der erstem Befehlsoperation
von der zweiten Befehlsoperation. Zum Beispiel kann jede Befehlsoperation ein Bit aufweisen, das, wenn ge-
setzt, eine Abhangigkeit der ersten Befehlsoperation von der zweiten Befehlsoperation anzeigt, und wenn nicht
gesetzt ein Fehlen einer Abhangigkeit der ersten Befehlsoperation von der zweiten Befehlsoperation anzeigt.
Die gesetzten und nicht gesetzten Bedeutungen des Bits kdnnen in einem Ausfihrungsbeispiel umgekehrt
werden und weitere Kodierungen der Angaben zur Abhangigkeit sind mdéglich.

[0079] Die Abhangigkeitsdekodiererschaltung 96 stellt die Angaben Uber die Abhangigkeit dem Abhangig-
keitspuffer 88 zum Speichern zur Verfigung. Der Abhangigkeitspuffer 88 weist mehrere Abhangigkeitseintrage
auf, von denen jedem zwei Eintrage in dem ROP Puffer 80 zugewiesen sind. Der Abhangigkeitseintrag spei-
chert die Angabe Uber die Abhangigkeit, welche die Abhangigkeit oder das Fehlen derselben einer ersten Be-
fehlsoperation, die in einem der zwei Eintrage in dem ROP Puffer 80 gespeichert ist, von einer zweiten Befehl-
soperation, die in dem anderen der zwei Eintrdge gespeichert ist, identifiziert. Falls die Angabe Uber die Ab-
hangigkeit eine Abhangigkeit anzeigt, dann ist die erste Befehlsoperation nicht fur die Ablaufplanung auswahl-
bar bis die zweite Befehlsoperation die Abhangigkeit befriedigt.

[0080] Die ROP Steuerschaltung 86 uberwacht die Angaben uber die Abhangigkeit innerhalb des Abhangig-
keitspuffers 88 und die Befriedigung von diesen Abhangigkeiten und identifiziert diejenigen Befehlsoperatio-
nen, welche fur die Ablaufplanung auswahlbar sind. Die ROP Steuerschaltung 86 identifiziert die auswahlba-
ren Befehlsoperationen flir die Ausgabeauswahlschaltung 82, welche die auswahlbaren Befehlsoperationen
abtastet, um Befehlsoperationen fir die Ausgabe an die Ausfiihrungskerne 40A-40B auswahlt. Ausgewahlte
Befehlsoperationen werden in Reaktion auf die Ausgabeauswahlschaltung 82 von dem ROP Puffer 80 gelesen
und den Registerdateien 38A-38B und den Ausfihrungskernen 40A—40B fir die Ausfihrung zur Verfigung
gestellt. Im Allgemeinen ist die Ausgabeauswahlschaltung 82 konfiguriert, um eine Befehlsoperation fir jede
Ausfihrungseinheit in jedem der Ausfihrungskerne 40A—- 40B auszuwahlen (falls eine Befehlsoperation von
jenem Typ ist, der fiir die Ablaufplanung auswabhlbar ist). Die ausgewahlte Befehlsoperation ist die alteste Be-
fehlsoperation von diesem Typ, die fir die Ablaufplanung auswahlbar ist. In einem Ausflihrungsbeispiel tastet
die Ausgabeauswahlschaltung 82 die auswahlbaren Befehlsoperationen zweimal pro Taktzyklus ab, um die
Auswahl von zwei Befehlsoperationen von einem gegebenen Typen zu erméglichen. Die zweite Abtastung
wahlt eine zweite Befehlsoperation zur Ausgabe an eine zweite Ausfiihrungseinheit eines bestimmten Typs
aus (zum Beispiel zwei Adresserzeugungseinheiten und zwei ALUs werden in einem Ausfiihrungsbeispiel des
Ausfuhrungskerns 40A zur Verfligung gestellt). In der zweiten Abtastung wird die wahrend der ersten Abtas-
tung ausgewahlte Befehlsoperation maskiert (das heil’t erscheint nicht auswahlbar), so dass die zweitélteste
Befehlsoperation des entsprechenden Typs ausgewahlt werden kann.

[0081] In einer bestimmten Ausfiihrung kann die Ausgabeauswahlschaltung 82 unabhangige Auswahlschal-

14/45

DE 600 05 860 T2 2004.08.05

tungen fur jeden Typ von Befehlen haben. Jede Auswahlschaltung kann parallel zu dem Betrieb der anderen
Auswahlschaltungen nach Befehlsoperationen von dem entsprechenden abtasten. Jeder Befehlstyp kann ver-
schiedene Ressourcen zur Ausfihrung (zum Beispiel Ausfihrungseinheiten) von den anderen Befehlstypen
verwenden, was eine unabhangige Operation der Auswahlschaltungen erlaubt.

[0082] Die Ausgabeauswahlschaltung 82 meldet (der ROP Steuerschaltung 86) welche Befehlsoperationen
fur die Ausgabe ausgewahlt worden sind. Die ausgewahlten Befehlsoperationen werden als im Ablauf geplant
bezeichnet und die Befehlsoperationen werden ausgegeben (oder erneut ausgegeben) sobald sie von dem
ROP Puffer 80 gelesen worden sind. Die ROP Steuerschaltung 86 unterhalt einen Ausfiihrungszustand fir
jede Befehlsoperation. Der Ausfliihrungszustand kann im weitesten Sinn definiert sein, um einen "nicht ausge-
fuhrten" Zustand, einen "ausflihrend" Zustand und einen "erledigt" Zustand zu umfassen. Jeder dieser Zustan-
de kann mehrere Zustande aufweisen, wie in der beispielhaften Zustandsmaschine dargestellt, die in Fig. 8
gezeigt ist, je nach Wahl des Entwicklers. Eine Befehlsoperation wird als nicht ausgefiihrt angesehen bei der
Speicherung in den Ablaufplaner 36, bis die Befehlsoperation ausgegeben ist. Der Ausfliihrungszustand der
Befehlsoperation wird in ausfihrend geéandert in Reaktion auf das Ausgegeben werden und wechselt nachfol-
gend in den erledigt Zustand auf die Erledigung der Ausfihrung. Der Ausfihrungszustand der Befehlsoperati-
on kann zu jedem Zeitpunkt in den nicht ausgefiihrten Zustand geandert werden (oder kann "riickgangig ge-
macht" sein), wenn die Befehlsoperation erneut versucht wird (zum Beispiel Gber die erneutes Versuchen Si-
gnale von der Lade/Speicher-Einheit 42) oder wenn eine andere Befehlsoperation von der diese Befehlsope-
ration abhangt (direkt oder indirekt) riickgangig gemacht wird. Die ROP Steuerschaltung 86 kann im Allgemei-
nen eine bestimmte Befehlsoperation als fir die Ablaufplanung auswahlbar identifizieren, falls die bestimmte
Befehlsoperation einen Ausfuhrungszustand von nicht ausgefiihrt hat und falls jede Abhangigkeit der bestimm-
ten Befehlsoperation befriedigt worden ist.

[0083] Da der Ausfiihrungszustand einer Befehlsoperation in nicht ausgefiihrt gedndert wird in Reaktion auf
ein erneutes Versuchen flr diese Befehlsoperation, kann die Befehlsoperation auswahlbar werden fir eine er-
neute Ablaufplanung und fir eine erneute Ausgabe in Reaktion auf das erneute Versuchen. Jedoch kénnen
gewisse Typen von erneuten Versuchen angeben, dass die Befehlsoperation nicht erneut im Ablauf zu planen
ist bis zu dem Auftreten eines nachfolgenden Ereignisses (zum Beispiel wird eine Filladresse in dem Fall einer
Lade-Speicheroperation zur Verfligung gestellt, die nicht trifft, oder die Befehlsoperation wird nicht spekulativ).
In derartigen Fallen kann die ROP Steuerschaltung 86 den Ausfiihrungszustand der zuriick gezogenen ROP
in nicht ausgefihrt andern, aber kann nicht signalisieren, dass die Befehlsoperation fir die Ablaufplanung aus-
wahlbar ist bis das nachfolgende Ereignis auftritt.

[0084] Da die Angaben Uber die Abhangigkeit nicht aus dem Abhangigkeitspuffer 88 in Reaktion auf die Aus-
gabe der entsprechenden Befehlsoperationen geldéscht werden, kdnnen Befehlsoperationen innerhalb einer
Kette von Abhangigkeiten spekulativ ausgegeben werden, wenn die Abhangigkeiten befriedigt werden. Die Ab-
hangigkeiten anderer Befehlsoperationen von einer bestimmten Befehlsoperation werden als nicht befriedigt
erneut kategorisiert, wenn die bestimmte Befehlsoperation riickgangig gemacht wird, und daher werden diese
anderen Befehlsoperationen ebenfalls riickgangig gemacht. Auf diese Weise wird eine spekulativ ausgegebe-
ne Kette von Abhangigkeiten riickgangig gemacht und in Reaktion auf ein erneutes Versuchen der ersten Be-
fehlsoperation in der Kette erneut ausgegeben.

[0085] Zusatzlich zu den wahrend der Ausfihrung einer Lade-Speicheroperation gemeldeten erneuten Ver-
suchen kénnen Lade-Speicheroperationen auch aufgrund alterer Speicher-Speicheroperationen erneut ver-
sucht werden, die nachfolgend zu der Lade-Speicheroperation ausgeben. Der Puffer fir physikalische Adres-
sen 90 wird zur Verfugung gestellt fir die Detektierung dieser Szenarien fir das erneute Versuchen. Im Allge-
meinen werden Lade-Speicheroperationen nicht angezeigt (Uber die Angaben zur Abhangigkeit innerhalb des
Abhangigkeitspuffers 88) als abhangig seiend von alteren Speicher-Speicheroperationen. Stattdessen werden
Lade-Speicheroperationen im Ablauf geplant ohne Berticksichtigung von alteren Speicher-Speicheroperatio-
nen (mit der Ausnahme, in einem Ausflihrungsbeispiel, des oben beschriebenen Mechanismus der Ordnungs-
abhangigkeit). Es ist jedoch mdglich, dass eine Lade-Speicheroperation von einer alteren Lade-Speicherope-
ration abhangig sein kann, falls die altere Lade-Speicheroperation wenigstens ein Byte der Speicheroperanden
aktualisiert, auf das von der Lade-Speicheroperation zugegriffen wird. Um diese Szenarien zu detektieren,
speichert der Puffer fir physikalische Adressen 90 die physikalischen Adressen, auf die von dem Ladevorgang
zugegriffen wird (empfangen von dem Ausfihrungskern 40A). der Puffer fiir physikalische Adressen 90 enthalt
die gleiche Anzahl von Eintradgen wie der ROP Puffer 80, wobei jeder Eintrag fahig ist, Informationen tber phy-
sikalischen Adressen flr eine Lade-Speicheroperation und zugewiesen zu einem entsprechenden Eintrag in
dem ROP Puffer 80 zu speichern. Der einer ausfiihrenden Lade-Speicheroperation entsprechende Eintrag
wird mit der physikalischen Adresse der Lade-Speicheroperation aktualisiert.

[0086] Wahrend der Ausfihrung von Speicher-Speicheroperationen wird die physikalische Adresse, die von
der Speicher-Speicheroperation aktualisiert wurde, von dem Ausfihrungskern 40A zur Verfugung gestellt. Der
Puffer flr physikalische Adressen 90 vergleicht die Speicheradresse mit den physikalischen Adressen in dem
Puffer fir physikalische Adressen 90, welche jingeren Lade-Speicheroperationen entsprechen. Anders aus-

15/45

DE 600 05 860 T2 2004.08.05

gedruckt ist der Vergleich der Adressen maskiert auf diejenigen Eintrage in dem Puffer fir physikalische Adres-
sen 90, welche den Befehlsoperationen entsprechen, die jiinger sind als die ausfihrende Speicher-Speicher-
operation. Falls ein Treffer der Speicheradresse auf einer Ladeadresse detektiert wird, wird die entsprechende
Lade-Speicheroperation riickgangig gemacht (der Puffer flr physikalische Adressen 90 signalisiert der ROP
Steuerschaltung 86, dass die entsprechende Lade-Speicheroperation getroffen worden ist, und die ROP Steu-
erschaltung 86 andert den Ausfiihrungszustand der entsprechenden Lade-Speicheroperation auf nicht ausge-
fuhrt). Die entsprechende Lade-Speicheroperation wird spater erneut ausgegeben. Wahrend der Ausfihrung
nach dem erneuten Ausgeben wird die Lade-Speicheroperation entweder die altere Speicher-Speicheropera-
tion in der Speicher-Warteschlange 70 treffen (und die Speicherdaten werden weiter geleitet oder die La-
de-Speicheroperation wird zurtick gezogen) oder die altere Lade-Speicheroperation wird den Cachespeicher
oder den Hauptspeicher aktualisieren lassen. In jeden Fall empfangt die Lade-Speicheroperation den korrek-
ten Speicheroperanden nach dem erneuten Ausgeben und erfolgreich abgeschlossener Ausfiihrung. Es ist zu
bemerken, dass in einem Ausfuhrungsbeispiel, falls eine Lade-Speicheroperation wegen eines alteren Spei-
chervorgangs, der die entsprechende physikalische Adresse in dem Puffer fiir physikalische Adressen 90 trifft,
rickgangig gemacht wird, die Lade-Speicheroperation in die Tabelle in der Schaltung fiir Ordnungsabhangig-
keiten 64 trainiert werden kann.

[0087] Wahrend der Puffer fiir physikalische Adressen 90 einen Mechanismus zum Erholen von nicht korrek-
ter Ablaufplanung einer Lade-Speicheroperation vor einer alteren Speicher-Speicheroperation, von der die La-
de-Speicheroperation abhangig ist, zur Verfigung stellt, kann ein weiteres Problem existieren, welches die La-
de-Speicheroperation veranlasst, rickgangig gemacht zu werden. Sogar wenn die Lade-Speicheroperation
nach der Speicher-Speicheroperation, von der sie abhangt, im Ablauf geplant wird und die Speicherdaten von
der Speicherwarteschlange in der Lade/Speicher-Einheit 42 weiter geleitet werden, kann die Speicher-Spei-
cheroperation selbst riickgangig gemacht werden. Die Adressoperanden der Speicher-Speicheroperation (ver-
wendet, um die Adresse des Speicheroperanden der Speicher-Speicheroperation zu bilden) kdnnen wahrend
der erneuten Ausgabe anders sein (das heifl3t das Empfangen eines nicht korrekten Adressoperanden kann
der Grund fir die erneute Ausgabe sein) und daher kénnte die Speicheradresse nicht den Puffer fir physika-
lische Adressen 90 wahrend der Ausflihrung der erneuten Ausgabe treffen und die Lade-Speicheroperation
veranlassen, ungultig gemacht zu werden. Der Ablaufplaner 36 ist mit dem Speichern R# Puffer 92 ausgestat-
tet, um diese Mdglichkeit zu behandeln.

[0088] In Antwort auf die Detektierung eines Treffers einer Lade-Speicheroperation auf einen Speichervor-
gang in der Speicher-Warteschlange 70 stellt die Lade/Speicher-Einheit 42 dem Ablaufplaner 36 ein Treffer
Signal und die Speicher R# der Speicher-Speicheroperation, die von der Lade-Speicheroperation getroffen
wird, zur Verfiigung. Ahnlich wie der Puffer fiir physikalische Adressen 90 enthélt der Speichern R# Puffer 92
die gleiche Anzahl von Eintragen wie der ROP Puffer 80. Jeder der Eintrage ist einem entsprechenden Eintrag
in dem ROP Puffer 80 zugeordnet. Falls das Treffer Signal fiir eine ausfihrende Lade-Speicheroperation aus-
gegeben ist, speichert der Speichern R# Puffer 92 die Speicher R#, die von der Lade/Speicher-Einheit 42 zur
Verfligung gestellt wird.

[0089] Die Lade/Speicher-Einheit 42 stellt ebenfalls die R# eines ausfihrenden Speichervorgangs an den
Speichern R# Puffer 92 zur Verfligung. Die Speicher R# wird mit den in dem Speichern R# Puffer 92 gespei-
cherten R#s verglichen. Falls eine Ubereinstimmung detektiert wird, signalisiert der Speichern R# Puffer 92 der
ROP Steuerschaltung 86, dass die entsprechende Lade-Speicheroperation riickgangig zu machen ist. Die
ROP Steuerschaltung 86 andert den Ausfihrungszustand der entsprechenden Lade-Speicheroperation auf
nicht ausgefihrt in Antwort auf das Signal. Nachfolgend wird die Lade-Speicheroperation erneut im Ablauf ge-
plant und erneut ausgegeben. Es ist zu bemerken, dass die Speicher R# wahrend der Ausfiihrung der Spei-
cher-Speicheroperation durch den Ausfihrungskern 40A zur Verfligung gestellt werden kann, falls dies ge-
wilinscht ist.

[0090] Zuséatzlich zu der Detektierung der Abhangigkeiten von Speichervorgdngen zu Ladevorgangen, wie
oben beschrieben, kann der Puffer fir physikalische Adressen 90 fur weitere Zwecke verwendet werden. Zum
Beispiel kann der Puffer flr physikalische Adressen 90 verwendet werden, um festzustellen, wann eine La-
de-Speicheroperation erneut auszugeben ist, die im D-Cachespeicher 44 fehl getroffen hat. Die Lade-Speiche-
roperation wird nachfolgend zu den entsprechenden Daten erneut ausgegeben, die von der externen Interfa-
ceeinheit 46 zur Verfligung gestellt werden. Entsprechend stellt die externe Interfaceeinheit 46 eine Filladres-
se zur Verfugung, die Fulldaten identifiziert, welche dem D-Cachespeicher 44 zur Verfligung gestellt werden.
Der Puffer fir physikalische Adressen 90 vergleicht die Fllladresse mit den darin gespeicherten Adressen und
signalisiert der ROP Steuerschaltung 86 jegliche Ubereinstimmungen. In Antwort zeichnet die ROP Steuer-
schaltung 86 auf, dass die Daten fir die Lade-Speicheroperation zur Verfligung gestellt worden sind und dass
die Lade-Speicheroperation erneut im Ablauf geplant werden kann (angenommen dass weitere Abhangigkei-
ten. der Lade-Speicheroperation befriedigt sind).

[0091] Die externe Interfaceeinheit 46 kann des weiteren Sondierungsadressen zur Vertigung stellen, die
den auf dem externen Interface empfangenen Sondierungen entsprechen. Im Allgemeinen werden Sondierun-

16/45

DE 600 05 860 T2 2004.08.05

gen verwendet, um die Koharenz des Speichers in Computersystemen aufrecht zu erhalten und geben einen
Block im Cachespeicher, der von einem anderen Gerat angenommen wird, und den richtigen Zustand des Ca-
chespeichers fir den Block des Cachespeichers an, falls der Prozessor 10 eine Kopie des Block des Cache-
speichers hat. Falls die Sondierungsadresse eine Lade physikalische Adresse in dem Puffer fur physikalische
Adressen 90 trifft kdnnte der entsprechende Ladevorgang erfordern, erneut im Ablauf geplant zu werden, um
die Koharenz und die Regeln der Speicherordnung, die von der von dem Prozessor 10 verwendeten Befehls-
satzarchitektur beizubehalten. Zum Beispiel gibt die x86 Befehlssatzarchitektur eine strenge Speicherordnung
an. Daher konnte ein spekulativer Ladevorgang, der von einer Sondierung getroffen wird, erneut im Ablauf ge-
plant werden mussen, falls vorherige Speicheroperationen in dem Ablaufplaner 36 existieren und nicht ausge-
fuhrt worden sind.

[0092] Wie zuvor erwahnt speichert der ROP Puffer 80 die Befehlsoperationen und gibt die Befehlsoperatio-
nen an die Registerdateien 38A-38B und die Ausfihrungskerne 40A—40B in Antwort auf die Ausgabeauswahl-
schaltung 82 aus.

[0093] Der ROP Puffer 80 weist eine Vielzahl von Eintragen auf, von denen jeder zum Speichern einer Be-
fehlsoperation fahig ist. Der einer bestimmten Befehlsoperation zugewiesene Eintrag wird durch die R# der Be-
fehlsoperation identifiziert. Entsprechend hat jeder Eintrag in dem ROP Puffer 80: (i) einen entsprechenden
ersten zugewiesenen Satz von Abhangigkeitseintragen in dem Abhangigkeitspuffer 88, welche Angaben tber
die Abhangigkeit der Befehlsoperation in diesem Eintrag von anderen Befehlsoperationen in dem Ablaufplaner
36 speichert; (ii) einen entsprechenden zweiten zugewiesenen Satz von Abhangigkeitseintragen, welche die
Angaben Uber die Abhangigkeit von anderen Befehlsoperationen in dem Ablaufplaner 36 von der Befehlsope-
ration in diesem Eintrag speichert; (iii) einen entsprechenden Eintrag in dem Puffer fur physikalische Adressen
und (iv) einen entsprechenden Eintrag in dem Speichern R# Puffer. Gemeinsam werden die Eintrége in den
verschiedenen Puffern des Ablaufplaners 36, die einer gegebenen R# entsprechen, hier als ein "Eintrag im Ab-
laufplaner” bezeichnet.

[0094] Die Riuckzugsgrenzauswahlschaltung 84 und die Riickzugsschaltung 94 arbeiten zusammen, um Be-
fehlsoperationen aus dem Ablaufplaner 36 zuriick zu ziehen. Die ROP Steuerschaltung 86 zeigt der Riickzugs-
grenzauswabhlschaltung an, welche Befehlsoperationen einen Ausfiihrungszustand von abgeschlossen haben.
Die Rlckzugsgrenzauswahlschaltung 84 tastet die Angaben von dem Anfang des Ablaufplaners 36 ab (das
heif3t der altesten Befehlsoperation in dem Ablaufplaner 36) auf entweder die erste Befehlsoperation mit einem
Ausfuhrungszustand, der nicht abgeschlossen ist, oder eine vorbestimmte maximale Anzahl von Befehlsope-
rationen ist abgetastet worden und alte sind in einem abgeschlossenen Zustand. Die Rlickzugsgrenzauswahl-
schaltung 84 bestimmt daher die jungste Befehlsoperation, welche zurilick gezogen sein kénnte und die Rick-
zugsschaltung 94 bestimmt, wie viele Befehlsoperationen tatsachlich zuriick gezogen sind. Die Rickzugs-
schaltung 94 sendet die R# der letzten Befehlsoperation, die zuriick gezogen wird, und kommuniziert zu der
ROP Steuerschaltung 86, welche Befehlsoperationen zuriick gezogen werden. Fir jede zurlick gezogene Be-
fehlsoperation macht die ROP Steuer-schaltung 86 den entsprechenden Eintrag in dem ROP Puffer 80, dem
Puffer fir physikalische Adressen 90 und dem Speichern R# Puffer 92 ungiiltig. Des weiteren setzt die ROP
Steuerschaltung 86 fir jede zurlick gezogene Befehlsoperation jeden Abhangigkeitseintrag in dem Abhangig-
keitspuffer 88, der eine Abhangigkeit einer Befehlsoperation von einer zurliick gezogenen Befehlsoperation an-
zeigt.

[0095] Wie hier verwendet bezieht sich der Ausdruck "Puffer" auf einen Speicher, der konfiguriert ist, um Ge-
genstande an Information zu speichern. Der Puffer kann einen oder mehrere Eintradge enthalten, von denen
jeder eine Speicherstelle in dem Speicher ist, die ausreichend Speicherplatz hat, um einen, der Gegenstande
an Information zu speichern, fur den der Puffer entworfen ist.

[0096] Es ist zu bemerken, dass, wahrend der Puffer fir physikalische Adressen 90 und der Speichern R#
Puffer 92 beschrieben sind als die gleiche Anzahl von Eintragen wie der ROP Puffer 80 zu haben sein, andere
Ausfuhrungsbeispiele Puffer mit weniger Eintragen einsetzen kénnen. Jeder Eintrag in dem Puffer 90 oder 92
kann zum Beispiel eine Markierung enthalten, welche den Eintrag in dem ROP Puffer 80 identifiziert, der die
entsprechende Lade-Speicheroperation speichert. Es ist ferner zu bemerken, dass wie zuvor erwahnt die
Nummer der Speicher-Warteschlange statt der Speicher R# verwendet werden kann, um die erneute Ausgabe
der Speicher-Speicheroperationen zu detektieren, welche als von einer Lade-Speicheroperation getroffen de-
tektiert wurden.

[0097] Es wird nun auf Fig. 5 Bezug genommen, in der ein Blockdiagramm eines Ausfiihrungsbeispiels eines
Abhangigkeitsvektors 100 gezeigt ist. Der Abhangigkeitsvektor 100 enthalt eine Vielzahl von Abhangigkeitsan-
gaben 102A-102N. Jede Abhangigkeitsangabe 102A-102N zeigt die Abhangigkeit (oder das Fehlen davon)
einer Befehlsoperation an, die dem Abhangigkeitsvektor 100 auf eine andere Befehlsoperation in dem Ablauf-
planer 36 entspricht. Die Befehlsoperation kann daher von einer zufélligen Anzahl von anderen Befehlsopera-
tionen abhangig sein. Des weiteren kénnen, da die Abhéngigkeiten in Uberein-stimmung mit der Befehlsope-
ration und nicht mit dem Typ der Abhangigkeit aufgezeichnet werden, die Abhangigkeiten aus willkirlichen
Grunden erzeugt werden (zum Beispiel um den Entwurf des Prozessors 10 zu vereinfachen). Wie zuvor er-

17/45

DE 600 05 860 T2 2004.08.05

wahnt kann der Abhangigkeitsvektor 100 durch die Dekodierung von Abhangigkeits R#s, die von der Abbil-
dungseinheit 30 zur Verfligung gestellt werden, und das Setzen der verbleibenden Abhangigkeitsangaben, um
keine Abhangigkeit anzuzeigen, erzeugt werden. Alternativ kann die Abbildungseinheit 30 dem Ablaufplaner
36 Abhangigkeitsvektoren in der in Fig. 5 gezeigten Form zum Speichern zur Verfligung stellen.

[0098] Es wird nun auf Fig. 6 Bezug genommen, in der ein Blockdiagramm eines Ausflihrungsbeispiels des
Abhangigkeitspuffers 88 gezeigt ist. Weitere Ausfiihrungsbeispiele sind méglich und werden betrachtet. In dem
Ausfuhrungsbeispiel von Fig. 6 umfasst der Abhangigkeitspuffer 88 eine Vielzahl von Abhangigkeitseintragen
einschlieRlich der Abhangigkeitseintrdge 104A-104L. Die Abhangigkeitseintrage, welche Abhangigkeiten ei-
ner bestimmten Befehlsoperation identifizieren, die in einem bestimmten Eintrag des Ablaufplaners 36 gespei-
chert ist (das heif3t ein Eintrag in dem ROP Puffer 80 und entsprechende Eintrage in dem Puffer fir physikali-
sche Adressen 90 und in dem Speichern R# Puffer 92), werden als Zeilen und Spalten von Abhangigkeitsein-
tragen angeordnet. Jede Zeile von Abhangigkeitseintragen speichert die Abhangigkeitsangaben, welche die
Abhangigkeiten einer bestimmten Befehlsoperation in einem bestimmten Eintrag des Ablaufplaners angeben.
Zum Beispiel werden die Abhangigkeitseintrage, welche die Abhangigkeiten der Befehlsoperation in dem Ein-
trag 0 des Ablaufplaners identifizieren, in den Abhangigkeitseintragen 104A-104G gespeichert (und den da-
zwischen liegenden Eintragen dieser Zeile, nicht gezeigt). Die in den Abhangigkeitseintragen 104A-104G ge-
zeigten beispielhaften Abhangigkeitsangaben stellen die Abhangigkeit der Befehlsoperation in dem Eintrag 0
des Ablaufplaners von der Befehlsoperation in dem Eintrag N-2 (Abhangigkeitseintrag 104F) des Ablaufpla-
ners dar. Des weiteren gibt jede Spalte von Abhangigkeitseintragen die Abhangigkeiten jeder anderen Befehl-
soperation von einer bestimmten Befehlsoperation an. Zum Beispiel werden die Abhangigkeiten jeder anderen
Befehlsoperation von der Befehlsoperation in dem Eintrag 0 des Ablaufplaners in den Abhangigkeitseintrage
104H-104L aufgezeichnet. Die gezeigten beispielhaften Abhangigkeitsangaben stellen eine Abhangigkeit der
Befehlsoperation in dem Eintrag 2 des Ablaufplaners von der Befehlsoperation in dem Eintrag O (Abhangig-
keitseintrage 104l1) des Ablaufplaners dar.

[0099] Der Abhangigkeitspuffer 88 ist angeschlossen zum Empfangen eines Satzes von Eingangssignalen
(Block(0) bis Block(N-1)). Jedes Blocksignal entspricht einem der Eintradge des Ablaufplaners. Das Blocksignal
zeigt, wenn angelegt, an, dass die in dem entsprechenden Eintrag des Ablaufplaners gespeicherte Befehlso-
peration nicht befriedigte Abhangigkeiten auf diese Befehlsoperation hat. Wenn nicht angelegt, zeigt das
Blocksignal an, dass die Abhangigkeiten von dieser Befehlsoperation befriedigt worden sind. Im Allgemeinen
wird das Blocksignal angelegt auf das Schreiben der entsprechenden Befehlsoperation in den Ablaufplaner 36
und wird zuriickgenommen wahrend der Ausfihrung der entsprechenden Befehlsoperation. Falls die Befehls-
operation zuriick gezogen oder anders riickgangig gemacht wird, wird das Blocksignal zuriickgenommen bis
die entsprechende Befehlsoperation erneut ausgefihrt wird. Die Blocksignale werden von der ROP Steuer-
schaltung 86 angelegt und zuriickgenommen in Ubereinstimmung mit dem Ausfilhrungszustand der entspre-
chenden Befehlsoperation. Jedes Blocksignal wird zu den Abhangigkeitseintragen weiter geleitet, welche Ab-
hangigkeiten anderer Befehlsoperationen von der entsprechenden Befehlsoperation aufzeichnen. Zum Bei-
spiel wird Block(0) zu den Abhangigkeitseintragen 104N-104L weiter geleitet. Wenn das Blocksignal zurlick
genommen wird, werden die entsprechenden Abhangigkeiten als befriedigt angesehen. Wenn zum Beispiel
Block (0) zuriick genommen wird, ist die Abhangigkeit der Befehlsoperation in dem Eintrag 2 des Ablaufplaners
von der Befehlsoperation in dem Eintrag 0 des Ablaufplaners befriedigt.

[0100] Der Abhangigkeitspuffer 88 stellt des weiteren eine Vielzahl von Ausgangssignalen (Not_Blocked(0)
bis Not_Blocked(N-1)) zur Verfligung. Jedes Not_Blocked Signal entspricht einem der Eintrage des Ablaufpla-
ners. Das Not_Blocked Signal zeigt, wenn angelegt, an, dass die Abhangigkeiten der in dem entsprechenden
Eintrag des Ablaufplaners gespeicherten Befehlsoperation befriedigt worden sind. Wenn zuriick genommen
zeigt das Not_Blocked Signal an, dass die Abhangigkeiten der in dem entsprechenden Eintrag des Ablaufpla-
ners gespeicherten Befehlsoperation nicht befriedigt worden sind. Im Allgemeinen ist das Not_Blocked Signal
nicht angelegt bis das letzte Blocksignal, das einer Abhangigkeit der entsprechenden Befehlsoperation ent-
spricht, zuriick genommen ist, und dann wird das Not_Blocked Signal angelegt. Befehlsoperationen, fir wel-
che das Not_Blocked Signal angelegt ist, sind fir die Ablaufplanung auswahlbar, zumindest im Hinblick auf die
Abhangigkeiten von dieser Befehlsoperation (das heildt andere Bedingungen, wie der erneute Versuchstyp, der
das Warten auf ein nachfolgendes Ereignis angibt, kdnnen die Ablaufplanung verhindern). Jedes Not_Blocked
Signal wird zu den Abhangigkeitseintragen weiter geleitet, welche Abhangigkeiten der entsprechenden Befehl-
soperation aufzeichnen. Zum Beispiel wird Not_Blocked(0) zu den Abhangigkeitseintragen 104A-104G weiter
geleitet. Die Not_Blocked Signale kénnen jeweils eine verdrahtete ODER Leitung sein, welche auf angelegt
vorgeladen wird und dann von einem oder mehreren Abhangigkeitseintragen zuriick genommen wird, fir wel-
che das entsprechende Blocksignal angelegt ist und die Abhangigkeitsangabe eine Abhangigkeit anzeigt.
[0101] Durch das Aufzeichnen von Abhangigkeiten basierend auf der Position der Befehlsoperationen inner-
halb des Ablaufplaners (zum Beispiel durch R#) im Gegensatz zu einer Basierung auf einer Ressource oder
eines Abhangigkeitsgrunds, kann der Abhangigkeitspuffer 88 leichter zu implementieren sein und mit héheren
Frequenzen betreibbar sein. Die Verdrahtung innerhalb des Abhangigkeitspuffers 88 kann hochst Ublich sein

18/45

DE 600 05 860 T2 2004.08.05

(das heifdt kein Bereich des Abhangigkeitspuffers ist Uberladen im Hinblick auf die Verdrahtung und es wenig
Uberlappung der Leiter). Die Normalitat erleichtert die Implementierung und kann zu einem Betrieb mit hdheren
Frequenzen beitragen (zum Beispiel durch erlauben einer dichteren Implementierung des Abhangigkeitspuf-
fers 88).

[0102] Es ist zu bemerken, dass die Abhangigkeitseintrage auf der Diagonalen von der oberen linken zu der
unteren Rechten, wie in der Fig. 6 gezeigt, eine Abhangigkeit der Befehlsoperation von sich selbst anzeigen
wirden. Diese Abhangigkeitseintrage kénnten nicht implementiert sein (wie durch die punktierten Kasten, wel-
che diese Eintrage reprasentieren, dargestellt).

[0103] Wie hier verwendet, bezieht sich der Ausdruck "angelegt" auf die Bereitstellung eines logisch wahren
Werts flr ein Signal oder ein Bit. Ein Signal oder Bit kann angelegt werden, wenn es einen Wert transportiert,
der ein Fehlen einer bestimmten Bedingung anzeigt. Ein Signal oder Bit kann als angelegt definiert sein, wenn
es einen logischen Wert von Null beférdert, oder umgekehrt, wenn es einen logischen Wert von Eins befordert,
und das Signal oder Bit kann als nicht angelegt definiert sein, wenn der gegenteilige logische Wert beférdert
wird.

[0104] Es wird nun auf Fig. 7 Bezug genommen, in der ein Blockdiagramm detaillierter gezeigt ist, das einen
Bereich eines Ausflihrungsbeispiels des Abhangigkeitspuffers 88 und der ROP Steuerschaltung 86 darstellt.
Weitere Ausfiihrungsbeispiele sind mdglich und werden betrachtet. In Ubereinstimmung mit der Fig. 7 weist
die ROP Steuerschaltung 86 eine Vielzahl von unabhangigen Schaltungen auf, von denen jede einem Eintrag
in dem Ablaufplaner 36 entspricht. Zum Beispiel wird der Eintrag (i) in dem Ablaufplaner in der Fig. 7 darge-
stellt. Eine ROP Steuerschaltung(i) 86A ist dargestellt zum Nachverfolgen der Zustands der Ausfiihrung der in
dem Eintrag (i) gespeicherten Befehlsoperation. Des weiteren sind einige Abhangigkeitseintrage 104M-104N
gezeigt, welche Abhangigkeiten der in dem Eintrag (i) gespeicherten Befehlsoperation speichern. Insbesonde-
re sind die Abhangigkeitseintrage gezeigt, welche eine Abhangigkeit der in dem Eintrag (i) gespeicherten Be-
fehlsoperation von der in dem Eintrag (j) (Abhangigkeitseintrag 104M) gespeicherten Befehlsoperation und von
der in dem Eintrag (j + 1) (Abhangigkeitseintrag 104N) gespeicherten Befehlsoperation anzeigen. Die Block(i)
und die Not_Blocked(i) Signale sind gezeigt, ebenso wie die Block(j) und die Block(j + 1) Signale. Die ROP
Steuerschaltung(i) 86A ist angeschlossen zur Bereitstellung des Block(i) Signals und ist angeschlossen zum
Empfangen des Not_Blocked(i) Signals. Des weiteren ist die ROP Steuerschaltung(i) 86A angeschlossen zum
Empfangen eines retry_PA(i) Signals und eines fill_hit(i) Signals von dem Speichern R# Puffer 92, einem er-
neuter Versuch Signal und erneuter Versuchtyp Signalen von der Lade/Speicher-Einheit 42, einem
almost_done Signal von den Ausfuhrungskernen 40A—40B und einem pick(i) Signal von der Ausgabeauswahl-
schaltung 82. Des weiteren ist die ROP Steuerschaltung(i) 86A angeschlossen, um ein request(i) Signal der
Ausgabeauswahlschaltung 82 zur Verfugung zu stellen.

[0105] Die ROP Steuerschaltung(i) 86A fangt an, die Abhangigkeiten der in dem Eintrag (i) gespeicherten Be-
fehlsoperation zu Uberwachen, sobald die Befehlsoperation in den in den Eintrag (i) geschrieben ist. Bis die
Befehlsoperation die Abhangigkeiten anderer Befehlsoperationen von dieser Befehlsoperation befriedigt hat,
gibt die ROP Steuerschaltung(i) 86A das Block(i) Signal aus (welches an die Abhangigkeitseintrage weiter ge-
leitet wird, welche anderer Befehlsoperationen von der Befehlsoperation aufzeichnen, wie in Fig. 6 darge-
stellt). Die Befehlsoperation hat die nicht befriedigte Abhangigkeiten, wahrend der Zustand der Ausfihrung der
Befehlsoperation in dem nicht ausgefiihrt zustand ist und wahrend der Zustand der Ausflihrung in dem aus-
fuhrenden Zustand ist, aber nicht nahe genug zum Abschluss der Ausfiihrung ist, um befriedigte Abhangigkei-
ten zu haben. Des weiteren Uberwacht die ROP Steuerschaltung(i) 86A das Not_Blocked(i) Signal, um festzu-
stellen, wann die Abhangigkeiten der Befehlsoperation befriedigt worden sind.

[0106] Jeder Abhangigkeitseintrag 104, der eine Abhangigkeitsangabe einer Befehlsoperation von einer an-
deren Befehlsoperation speichert, ist angeschlossen, um das Not_Blocked(i) Signal zurtick zu nehmen, um an-
zuzeigen, dass die Befehlsoperation blockiert ist. Zum Beispiel ist der Abhangigkeitseintrag 104M mit einem
UND Gatter 106A und einem Transistor 108A verbunden und der Abhangigkeitseintrag 104N ist mit einem
UND Gatter 106B und einem Transistor 108B verbunden. Falls die gespeicherte Abhangigkeitsangabe und der
Abhangigkeitseintrag eine Abhangigkeit anzeigen und das entsprechende Blocksignal angelegt ist, aktiviert
das UNG Gatter den entsprechenden Transistor, der das Not_Blocked(i) Signal zurtick nimmt. Andererseits
deaktiviert das UND Gatter den entsprechenden Transistor und dieser Transistor legt das Not_Blocked(i) Sig-
nal nicht an, wenn die Abhangigkeitsangabe keine Abhangigkeit anzeigt oder das Blocksignal nicht angelegt
ist. Entsprechend blockieren Befehlsoperationen, von denen die Befehlsoperation in dem Eintrag (i) nicht ab-
hangig ist, nicht die Ausgabe von dieser Befehlsoperation. Befehlsoperationen, von denen die Befehlsopera-
tion in dem Eintrag (i) abhangig ist, blockieren die Ausgabe dieser Befehlsoperation bis die Abhangigkeit be-
friedigt ist (angezeigt durch die Ricknahme des entsprechenden Blocksignals).

[0107] In Antwort auf das Anlegen des Not_Blocked Signals legt die ROP Steuerschaltung(i) 86A das re-
quest(i) Signal an die Ausgabeauswahlschaltung 82 an. Die Ausgabeauswahlschaltung 82 tastet die request(i)
Signale zusammen mit dhnlichen Signalen von anderen Steuerschaltungen, die anderen Eintragen entspre-
chen, ab. Sobald die Ausgabeauswahlschaltung 82 den Ablauf der Befehlsoperation in dem Eintrag (i) fur die

19/45

DE 600 05 860 T2 2004.08.05

Ausgabe plant, legt die Ausgabeauswahlschaltung 82 das pick(i) Signal an. In Antwort auf das pick(i) Signal
andert die ROP Steuerschaltung(i) den Zustand der Ausfihrung auf ausfihrend. Wie oben bemerkt, zeichnet
der Ablaufplaner 36 in dem vorliegenden Ausfiihrungsbeispiel die Latenz der Befehlsoperation auf und zahit
die Taktzyklen von der Ausgabe der Befehlsoperation, um den Punkt festzustellen, an dem Abhangigkeiten be-
friedigt sind. Weitere Ausfiihrungsbeispiele kbnnen zum Beispiel Abschlusssignale von den Ausflihrungsein-
heiten empfangen oder jeglichen anderen alternativen Mechanismus zur Feststellung, wann Abhangigkeiten
befriedigt sind, verwenden. Des weiteren haben in dem vorliegendem Ausflihrungsbeispiel gewisse Befehlso-
perationen eine variable Latenz oder haben eine langere Latenz als erwilinscht zu zahlen ist. Fur derartige Be-
fehlsoperationen kénnen die Ausfiihrungskerne 40A-40B ein almost done Signal zur Verfligung stellen. Das
almost done Signal wird angelegt, wenn die Ausfiihrungskerne feststellen, dass eine Befehlsoperation mit va-
riabler Latenz eine voreingestellte Anzahl von Taktzyklen vor dem Abschluss erreicht hat. Das almost done Si-
gnal kann von der ROP Steuerschaltung(i) 86A verwendet werden, um anzufangen, Zyklen bis zu der vorein-
gestellten Anzahl zu zahlen, an welchem Punkt die Befehlsoperation die Ausflihrung abgeschlossen hat.
[0108] Falls die Befehlsoperation eine Speicheroperation ist, tastet die ROP Steuerschaltung(i) 86A jedes er-
neuter Versuch Signal von der Lade/Speicher-Einheit 42 wahrend des Taktzyklus ab, in dem der Zustand des
erneuten Versuchs fiir die in dem Eintrag (i) gespeicherte Befehlsoperation zur Verfigung gestellt wird. In Re-
aktion auf ein angelegtes erneuter Versuch Signal andert die ROP Steuerschaltung(i) 86 den Zustand der Aus-
fuhrung auf nicht ausgefihrt und legt das Block(i) Signal erneut an. Auf diese Weise wird die Befehlsoperation
in einen Zustand vor der Ausgabe zurlick gebracht und nachfolgende Befehlsoperationen in einer Abhangig-
keitskette mit der Befehlsoperation werden ebenfalls in einen Zustand vor der Ausgabe zurtick gebracht (durch
Zuriicknehmen der entsprechenden Not_Blocked Signale). Zusatzlich tastet die ROP Steuerschaltung(i) 86A
die erneuter Versuchstyp Signale ab, falls das erneuter Versuch Signal angelegt ist. Falls der erneute Ver-
suchstyp das Auftreten eines nachfolgenden Ereignisses erfordert bevor die Befehlsoperation erneut ausge-
geben ist, zeichnet die ROP Steuerschaltung(i) 86A das zu suchende Ereignis auf und verhindert eine erneute
Anfrage nach einer erneuten Ausgabe (durch erneutes Anlegen des request(i) Signals), bis das nachfolgende
Ereignis auftritt.

[0109] Zusatzlich zu dem erneuten versucht werden wahrend der Ausfiihrung, kdnnen Lade-Speicheropera-
tionen erneut versucht werden, weil eine physikalische Adresse einer ausflihrenden Speicher-Speicheropera-
tion die physikalische Adresse der Lade-Speicheroperation (gespeichert in dem Puffer fiir physikalische Adres-
sen 90) trifft oder die R# der ausfiihrenden Speicher-Speicheroperation die Speichern R# trifft, die fiir die La-
de-Speicheroperation aufgezeichnet wurde. Der Puffer fur physikalische Adressen 90 legt ein retry_PA(i) Sig-
nal an, um den vorigen Fall an die ROP Steuerschaltung(i) 86A zu kommunizieren (und kann ahnliche Signale
fur jeden anderen Eintrag enthalten). Der Speichern R# Puffer 92 legt ein retry_stq(i) Signal an, um den spa-
teren Fall zu kommunizieren (und kann &hnliche Signale fir jeden anderen Eintrag enthalten). In Antwort auf
das Anlegen eines der beiden Signale andert die ROP Steuerschaltung(i) 86A den Zustand der Ausfiihrung
auf nicht ausgefihrt und legt das Block(i) Signal erneut an. Unter der Annahme, dass das Not_Blocked(i) Sig-
nal angelegt ist, kann die ROP Steuerschaltung(i) 86A das request(i) Signal anlegen, um eine erneute Ablauf-
planung und eine erneute Ausgabe der Befehlsoperation anzufordern.

[0110] Zusatzlich zu den erneuter versuch, retry PA(i) und retry_stq(i) Signalen kann der Zustand der Aus-
fuhrung der Befehlsoperation auf nicht ausgefihrt zurtick gebracht werden, falls das Not_Blocked(i) Signal zu-
rick genommen wird. Dieser Mechanismus wird verwendet, um den abgeschlossen Zustand einer Abhangig-
keitskette rickgangig zu machen, wenn eine Befehlsoperation an dem Anfang der Kette riickgangig gemacht
wird, um die erneute Ausgabe der Befehlsoperationen in der Abhangigkeitskette zu veranlassen. Entspre-
chend andert, falls das Not_Blocked(i) Signal nicht angelegt ist, die ROP Steuerschaltung(i) 86A den Zustand
der Ausfuhrung auf nicht ausgefiihrt und legt das Block(i) Signal wieder an (was nachfolgend weitere
Not_Blocked Signale veranlassen kann, zurlick zu nehmen, was die Abhangigkeitskette weiter riickgangig
macht).

[0111] Der Puffer fur physikalische Adressen 90 stellt der ROP Steuerschaltung(i) 86A ein zusatzliches Signal
zur Verfigung, um anzuzeigen, falls eine von der externen Interfaceeinheit 46 zur Verfugung gestellte Adresse
die physikalische Adresse des Ladevorgangs in dem Puffer flir physikalische Adressen 90 trifft, als fill_hit(i) in
Fig. 7 gezeigt. Der Puffer fur physikalische Adressen 90 legt das fill_hit(i) Signal an, um anzuzeigen, dass die
von der externen Interfaceeinheit 46 zur Verfligung gestellte Adresse die dem Eintrag (i) zugeordnete physi-
kalische Adresse in dem Puffer fur physikalische Adressen 90 trifft. Die externe Interfaceeinheit 46 kann auch
Full/Sondierung Signale zur Verfiigung stellen, um den Typ der zur Verfiigung gestellten Adresse anzuzeigen.
Falls die Full/Sondierung Signale Fillen anzeigen, dann ist das Anlegen des fill_hit(i) eine Angabe, dass die
Fulldaten fur die Zeile des Cachespeichers einschliellich der physikalischen Adresse fiir die Lade-Speichero-
peration zur Verfiigung gestellt werden. Falls die Lade-Speicheroperation an der Ablaufplanung gehindert wird,
wegen einer Detektierung eines Fehltreffers im Cachespeicher wahrend einer vorherigen Ausgabe, kann die
Lade-Speicheroperation fir ein erneutes Planen des Ablaufs auswahlbar sein und die ROP Steuerschaltung(i)
86A kann das request(i) Signal in Antwort auf den Treffer der Fllladresse anlegen. Das oben erwahnte Aus-

20/45

DE 600 05 860 T2 2004.08.05

fuhrungsbeispiel stellt auch Adressen von der externen Interfaceeinheit 46 zur Verfigung, um Sondierungen
auszufuhren. Falls das fill_hit(i) Signal angelegt ist und die Fill/Sondierung Signale von der externen Interfa-
ceeinheit 46 eine Sondierung anzeigen, dann wird ein Sondierungstreffer detektiert, der eine korrigierende Ak-
tion erfordern kénnte. In einem Ausfiihrungsbeispiel kann das Anlegen des fill_hit(i) Signals fir eine Sondie-
rung die ROP Steuerschaltung(i) 86A veranlassen, den Zustand der Ausfihrung auf nicht ausgefihrt zu an-
dern. Weitere Ausfiihrungsbeispiele kébnnen kompliziertere Mechanismen versuchen, um eine Speicherord-
nung sicher zu stellen, ohne Befehlsoperation unnétig erneut auszugeben. Zum Beispiel kann die ROP Steu-
erschaltung(i) 86A den Treffer durch die Sondierungsadresse aufzeichnen. Falls eine altere Lade-Speichero-
peration nachfolgend aus dem Ablaufplaner zuriickgezogen wird, kann dann die ROP Steuerschaltung(i) 86A
den Zustand der Ausfihrung auf nicht ausgefiihrt andern. Weitere Alternativen sind ebenfalls méglich.

[0112] Es wird nun auf Fig. 8 Bezug genommen, in der eine beispielhafte Zustandsmaschine gezeigt ist, wel-
che von einem Ausflihrungsbeispiel der ROP Steuerschaltung(i) 86A verwendet werden kann. Weitere Steu-
erschaltungen kdnnen ahnliche Zustandsmaschinen verwenden. Weitere Ausfuhrungsbeispiele sind mdglich
und werden betrachtet. In dem Ausflihrungsbeispiel von Fig. 8 enthalt die Zustandsmaschine einen Ungliltig
Zustand 110, einen Blockiert Zustand 112, einen Anforderung Zustand 114, einen Ausfihrung Variable (ExecV)
Zustand 118, einen Exec6 Zustand 120, einen Exec5 Zustand 122, einen Exec4 Zustand 124, einen Exec3
Zustand 126, einen Exec2 Zustand 128, einen Exec1 Zustand 130 und einen Abgeschlossen Zustand 132.
[0113] Die Zustandsmaschine fangt in dem Unguiltig Zustand 110 an, wenn der entsprechende Eintrag keine
Befehlsoperation speichert. In Reaktion auf das Schreiben einer Befehlsoperation in den entsprechenden Ein-
trag geht die Zustandsmaschine entweder in den Blockiert Zustand 112 oder in den Anforderung Zustand 114
Uber. Der Blockiert Zustand 112 wird ausgewahlt, wenn das Not_Blocked(i) Signal nicht angelegt ist, und der
Anforderung Zustand 114 wird ausgewahlt, wenn das Not_Blocked(i) Signal angelegt ist. In anderen Ausfih-
rungsbeispielen kdnnen Befehlsoperationen mit voreingestellten Warteereignissen in den Ablaufplaner ge-
schrieben werden, welche die Befehlsoperation blockieren, im Ablauf geplant zu werden, sogar wenn alle Ab-
hangigkeiten befriedigt sind (auf ahnliche Weise zu den Ereignissen, die ein erneutes Planen des Ablaufs ver-
hindern nachdem eine Befehlsoperation in den nicht ausgefihrt Zustand zuriick gebracht worden ist). Derarti-
ge Befehlsoperationen kénnen einen Ubergang in den Blockiert Zustand 112 veranlassen sogar wenn das
Not_Blocked(i) Signal angelegt ist.

[0114] Die Zustandsmaschine verbleibt in dem Blockiert Zustand 112 bis die Befehlsoperation nicht mehr blo-
ckiert wird. Wahrend der Ubergang von dem Ungiiltig Zustand 110 in den Blockiert Zustand 112 oder in den
Anforderung Zustand 114 in dem vorliegenden Ausflihrungsbeispiel auf dem Not_Blocked(i) Signal basieren
kann, beriicksichtigt der Ubergang von dem Blockiert Zustand 112 in den Anforderung Zustand 114 die Aus-
wirkungen von Situationen des erneuten Versuchens, die angeben, dass ein nachfolgendes Ereignis auftritt
bevor die Befehlsoperation auswahlbar ist fur ein erneutes Planen des Ablaufs. Das Kasten 134 in der Fig. 8
enthalt eine Gleichung fiir den Ausdruck fiir den blockierten Ubergang, der an den Pfeilen in Fig. 8 fiir das oben
beschriebene Ausflihrungsbeispiel verwendet wird. Genauer gesagt ist eine Befehlsoperation blockiert, wenn
das Not_Blocked(i) Signal nicht angelegt ist oder eine vorherige Ausgabe in der Feststellung endete, dass die
Befehlsoperation nicht spekulativ (blocked_non_spec) auszufihren ist und immer noch spekulativ ist, oder
eine vorherige Ausgabe in einem Fehltreffer im Cachespeicher (blocked_until_fill) endete und die Fulldaten
noch nicht zur Verfiigung gestellt worden sind. Weitere Ausfihrungsbeispiele kdnnen zusétzliche Ereignisse
enthalten, die falls gewuinscht ein erneutes Planen des Ablaufs blockieren. Sobald die Befehlsoperation nicht
mehr blockiert ist geht die Zustandsmaschine von dem Blockiert Zustand 112 in den Anforderung Zustand 114
Uber.

[0115] Wahrend die Zustandsmaschine in dem Anforderung Zustand 114 ist, legt die ROP Steuerschaltung(i)
86A das request(i) Signal an. Falls die Befehlsoperation wahrend des Anforderung Zustands 114 wieder blo-
ckiert wird, geht die Zustandsmaschine in den Blockiert Zustand 112 uber. Die Zustandsmaschine geht von
dem Anforderung Zustand 114 in einen der Zustande 118-128 (basierend auf der Latenz der Befehlsoperation)
in Reaktion auf ein Anlegen des pick(i) Signals Uber. Der Zustand, in den in Reaktion auf das pick(i) Signal
Ubergegangen wurde, kann in einem Ausflihrungsbeispiel der Stufe Lesen Ablaufplanung der Pipeline von
Fig. 2 entsprechen.

[0116] Das vorliegende Ausflihrungsbeispiel unterstiitzt Latenzen von zwei bis sechs Taktzyklen und eine va-
riable Latenz gréRRer als sechs Taktzyklen. Die Zustandsmaschine verbleibt in dem ExecV Zustand 118 bis das
almost done Signal von den Ausflihrungskernen 40A-40B angelegt wird und dann in den Exec6 Zustand 120.
Jeder der Exec6 Zustand 120 bis Exec2 Zustand 128 geht in den nachst niedrigeren Zustand in der Latenz-
kette Gber, wenn die Befehlsoperation nicht rickgangig gemacht ist, wie in Fig. 8 gezeigt. Von dem Exec1 Zu-
stand 130 geht die Zustandsmaschine in den Abgeschlossen Zustand 132 Uber, wenn die Befehlsoperation
nicht riickgangig gemacht ist. SchlieRlich geht die Zustandsmaschine von dem Abgeschlossen Zustand 132 in
den Ungiiltig Zustand 110 Gber, wenn die Befehlsoperation nicht vor dem Zuriickziehen riickgangig gemacht
ist.

[0117] Zur Ubersichtlichkeit der Zeichnung ist das pick(i) Signal gezeigt, wie es zu einem Auswahlknoten 116

21/45

DE 600 05 860 T2 2004.08.05

geht, von dem einer der Zustande 118-128 betreten wird. Der Auswahlknoten 116 wird nur verwendet, um die
Unordnung in der Zeichnung zu reduzieren und ist nicht beabsichtigt, einen separaten Zustand darzustellen.
[0118] In dem vorliegenden Ausfuhrungsbeispiel. ist die Latenz der Befehlsoperation fir Zwecke der Zu-
standsmaschine von Fig. 8 die Anzahl der Taktzyklen bevor die Befehlsoperation die Abhangigkeiten von die-
ser Befehlsoperation befriedigt hat. Diese Latenz kann auslaufen, bevor die Befehlsoperation Informationen zu
dem Zustand der Ausfiihrung zurilick gibt (zum Beispiel ob die Befehlsoperation eine Ausnahme erfahrt oder
nicht). Jedoch nimmt die Zustandsmaschine Vorteil von der Verzdégerung der Pipeline zwischen einer Befehl-
soperation, die im Ablauf geplant wird, und dieser Befehlsoperation, welche Operanden von den Registerda-
teien 38A-38B liest, um anzuzeigen, dass Abhangigkeiten befriedigt sind bevor die Abhangigkeiten tatsachlich
physikalisch mittels einer Aktualisierung der Registerdateien befriedigt sind. Entsprechend wird das Block(i)
Signal zuriick genommen, wenn die Befehlsoperation in dem vorliegenden Ausfuhrungsbeispiel den Exec2 Zu-
stand 128 erreicht und verbleibt nicht angelegt, wenn die Zustandsmaschine in dem Exec1 Zustand 130, dem
Abgeschlossen Zustand 132 oder dem Ungultig Zustand 134 ist (siehe Kasten 134). Das Block(i) Signal wird
fur andere Zustande angelegt.

[0119] An jedem Punkt nach der Ablaufplanung (pick(i) ist angelegt) kann die Befehlsoperation riickgangig
gemacht werden und kehrt in den nicht ausgefiihrt Zustand zurlick. Diese Operation ist in Fig. 8 dargestellt
durch jeden der Zustande 118-132, der einen Ubergang basierend auf einer "undo" Gleichung (Kasten 134)
zu einem zentralen Punkt 136 hat, von dem ein Ubergang entweder in den Blockiert Zustand 112 oder den
Anforderung Zustand 114 ausgefiihrt wird basierend auf der in dem Kasten 134 dargestellten Blockierungsglei-
chung. Der zentrale Punkt 136 wird nur verwendet, um die Unordnung in der Zeichnung zu reduzieren und ist
nicht beabsichtigt, einen separaten Zustand darzustellen. Fiir jeden der Zusténde, der einen Ubergang zu dem
zentralen punkt 136 zeigt, wird ein Ubergang in den Blockiert Zustand 112 ausgefiihrt, wenn die Riickgén-
gig-Gleichung wahr ist und die Blockierungsgleichung wahr ist, und ein Ubergang in den Anforderung Zustand
114 wird ausgefihrt, wenn die Ruckgangig-Gleichung wahr ist und die Blockierungsgleichung falsch ist.
[0120] In dem vorliegenden Ausfihrungsbeispiel wird eine Befehlsoperation "riickgéngig gemacht" (das heif3t
kehrt in einem Zustand der Ausflihrung von nicht ausgefiihrt) zurtick, wenn die Befehlsoperation direkt erneut
versucht wird oder wenn das Not_Blocked(i) Signal zuriick genommen wird. Die Ruckgangig-Gleichung in dem
Kasten 134 stellt die Bedingung fiir das erneute Versuchen als einen retry_this_op Wert dar, um anzuzeigen,
dass die Befehlsoperation in dem Eintrag (i) zurtickgezogen wurde. Ein Kasten 138 ist ferner gezeigt, der den
retry_this op Wert als eine Gleichung darstellt, die wahr sein kann, wenn das retry PA(i) Signal oder das
retry_stq(i) Signal angelegt ist, oder wenn die Befehlsoperation wahrend der Ausfliihrung erneut versucht wird
(zum Beispiel das erneuter Versuch Signal von der Lade/Speicher-Einheit 42). Die retry this op Gleichung stellt
ferner die Abtastung des erneuter Versuch Signals dar, wenn die Befehlsoperation in dem Exec1 Zustand 130
ist. In dem vorliegenden Ausfiihrungsbeispiel werden Situationen des erneuten Versuchs von der Lade/Spei-
cher-Einheit 42 gemeldet, wenn die entsprechende Befehlsoperation in dem Exec1 Zustand 130 ist. Weitere
Ausfuhrungsbeispiele kénnen den Zustand an verschiedenen Punkten wahrend der Ausfiihrung der Befehls-
operation melden, in Ubereinstimmung mit den Wiinschen des Entwicklers.

[0121] Wie zuvor erwahnt kann der Zustand der Ausflihrung einer Befehlsoperation weithin nicht ausgefihrt,
ausflihrend und abgeschlossen Zustande umfassen.

[0122] Fur das Ausfihrungsbeispiel von Fig. 8 kann der nicht ausgefiihrt Zustand den Blockiert Zustand 112
oder den Anforderung Zustand 114 aufweisen. Der ausfiihrende Zustand kann die Ausfiihrung Zustande
118-130 umfassen. Der abgeschlossen Zustand kann den Abgeschlossen Zustand 132 umfassen. Es ist zu
bemerken, dass die Anzahl der Ausfihrung Zustande 118-130 von der Implementierung abhangig ist und je
nach Wahl des Entwicklers variiert werden kann. Des weiteren kann der Punkt in der Ausfuhrung der Befehls-
operation, an dem Abhangigkeiten befriedigt werden je nach Wahl des Entwicklers variiert werden. Die Varia-
tion kann teilweise auf der Anzahl der Stufen der Pipeline zwischen der Stufe, in der die abhangige Befehlso-
peration fur den Ablauf geplant ist, und einer bestimmten Stufe, in der die Befriedigung der Abhangigkeiten,
wie Operanden- oder Ordnungsabhangigkeiten, wie benétigt befriedigt werden, basieren. In dem vorliegenden
Ausfiuhrungsbeispiel ist die bestimmte Stufe die Stufe Lesen Registerdatei.

[0123] Nun Bezug nehmend auf Fig. 9 ist ein Register 140 gezeigt, das von der ROP Steuerschaltung(i) 86A
verwendet werden kann, um Zustande der Zustandsmaschine von Fig. 8 und weitere Zustande, wie sie ge-
wiinscht sein kdnnten, zu speichern. Weitere Ausfihrungsbeispiel sind moglich und werden betrachtet. In dem
Ausfiuhrungsbeispiel von Fig. 9 kann das Register 140 einen Zustand 142, eine blocked_non spec Angabe
144, eine blocked_until_fill Angabe 146 und weitere Informationen 148 speichern.

[0124] Der Zustand 142 speichert den derzeitigen Zustand der in Fig. 8 dargestellten Zustandsmaschine. Die
Zustande kénnen auf jegliche geeignete Weise in dem Zustand 142 kodiert sein. Das Register 142 wird jeden
Taktzyklus in Ubereinstimmung mit den Ubergéngen der Zustande, wie in der Fig. 8 dargestellt, aktualisiert.
[0125] Die blocked_non spec Angabe 144 kann gesetzt werden, um ein Blockieren in Reaktion auf den Emp-
fang des erneuter Versuch Signals von der Lade/Speicher-Einheit 42 wahrend der Ausfiihrung der Befehlso-
peration anzuzeigen, wenn der erneute Versuchtyp anzeigt, dass die Befehlsoperation nicht spekulativ auszu-

22/45

DE 600 05 860 T2 2004.08.05

fuhren ist. Die blocked _non spec Angabe 144 kann in der in dem Kasten 134 in Fig. 8 gezeigten Blockierungs-
gleichung verwendet werden. Insbesondere ist, wahrend die blocked_non spec Angabe 144 die Blockierung
anzeigt, die Befehlsoperation an der Anforderung einer Ablaufplanung gehindert bis die Befehlsoperation nicht
spekulativ wird. In Reaktion darauf, dass die Befehlsoperation nicht spekulativ wird, kann die blocked_non
spec Angabe gesetzt werden, um nicht blockiert anzuzeigen und die Befehlsoperation kann fur den Ablauf ge-
plant werden. In einem bestimmten Ausflihrungsbeispiel wird die Befehlsoperation nicht spekulativ, wenn jede
altere Befehlsoper ration in dem Ablaufplaner 36 einen Zustand der Ausflihrung von abgeschlossen hat.
[0126] Die blocked_until fill Angabe 146 kann gesetzt werden, um ein Blockieren in Reaktion auf den Emp-
fang des erneuter Versuch Signals von der Lade/Speicher-Einheit 42 wahrend der Ausfiihrung der Befehlso-
peration anzuzeigen, wenn der erneute Versuchtyp anzeigt, dass die Befehlsoperation in dem D-Cachespei-
cher 44 fehl trifft. Die blocked_until fill Angabe 146 kann in der in dem Kasten 134 in Fig. 8 gezeigten Blockie-
rungsgleichung verwendet werden. Insbesondere ist, wahrend die blocked_until fill Angabe 146 die Blockie-
rung anzeigt, die Befehlsoperation an der Anforderung einer Ablaufplanung gehindert bis die entsprechenden
Fulldaten zur Verfigung gestellt werden. In Reaktion darauf, dass die als zur Verfligung gestellt angezeigt wer-
den, kann die blocked_until_fill Angabe gesetzt werden, um nicht blockiert anzuzeigen und die Befehlsopera-
tion kann fur den Ablauf geplant werden.

[0127] Weitere Informationen kdnnen wie gewlinscht in dem Weitere Informationen Feld 148 aufgezeichnet
werden. Zum Beispiel kbnnen gewisse Ausflihrungsbeispiele die Zuriickziehung einer Speicheroperation ver-
hindern bis eine SMC Uberpriifung durchgefiihrt wird. Das Weitere Informationen Feld 148 kann das Erforder-
nis auf die SMC Uberpriifung zu warten aufzeichnen und kann die Beendigung der SMC Uberpriifung aufzeich-
nen. Jegliche andere Information kann aufgezeichnet werden. Des weiteren werden Ausfihrungsbeispiele, bei
denen keine weitere Information aufgezeichnet wird, betrachtet werden.

[0128] Nun wird auf Fig. 10 Bezug genommen, in der ein Zeitablaufdiagramm gezeigt ist, das ein Beispiel des
Riickgéngigmachens einer Abhéngigkeitskette in Ubereinstimmung mit einem Ausfiihrungsbeispiel des Ab-
laufplaners 36 darstellt. Taktzyklen werden von vertikalen punktierten Linien unterteilt, mit einem ldentifizieren
fur jeden Taktzyklus an der Spitze zwischen den vertikalen punktierten Linien, die diesen Taktzyklus abgren-
zen. Zustande fir jede der Befehlsoperationen (wie von der ROP Steuerschaltung 86 aufgezeichnet) sind
ebenfalls in Fig. 10 gezeigt (angrenzend zu dem Wort "State" und die R#s der entsprechenden Befehlsopera-
tion in Klammern), wobei "done" den Abgeschlossen Zustand 132 anzeigt, und "blkd" den Blockiert Zustand
112 anzeigt. Die Fig. 10 umfasst einen Kasten 150, der zwei Abhangigkeitsketten darstellt. Die erste Abhan-
gigkeitskette beginnt mit einer Befehlsoperation 10, einer R# von 10 zugewiesen, und enthalt ferner die Befehl-
soperationen |1, 12 und 13. die Befehlsoperation 11 ist abhangig von 10 und hat einen R# von 15. Die Befehls-
operation 12 ist abhangig von |1 und hat einen R# von 23. Die Befehlsoperation 13 ist abhangig von 12 und hat
einen R# von 34. Die Befehlsoperation 14 ist in einer zweiten Abhangigkeitskette eingeleitet von 10 und ist somit
abhangig von 10. Die Befehlsoperation 14 hat einen R# von 45. |1 und 14 sind direkt abhangig von 10, wahrend
I2 und I3 indirekt abhangig von 10 sind. Die Block und Not_Blocked Signale firr jede Befehlsoperation sind in
Fig. 10 dargestellt (wobei die R# der Befehlsoperation in Klammern gezeigt ist). Gewisse Ereignisse, welche
andere Ereignisse veranlassen, sind durch Pfeile von dem Ereignis zu dem sich ergebenden Ereignis darge-
stellt. Zum Beispiel verursacht die Riicknahme von Not_Blocked(10) eine Anderung von State(10) zu blockiert,
dargestellt durch einen Pfeil von der Ricknahme von Not_Blocked(10) zu dem blockierten Zustand von Sta-
te(10).

[0129] Wahrend des Taktzyklus clkO ist jede der Befehlsoperationen in dem abgeschlossen Zustand. Entspre-
chend sind die entsprechenden Block Signale nicht angelegt und die Not_Blocked Signale sind angelegt. Wah-
rend des Taktzyklus clk1 wird das Not_Blocked(10) Signal zuriick genommen (wegen einer oder mehrerer Be-
fehlsoperationen, von denen die Rickgangigmachung von 10 abhangt). In Reaktion auf die Riicknahme von
Not_Blocked(10) kehrt die Zustandsmaschine fur 10 (State(10)) in den blockierten Zustand zuriick und somit
wird das Block(10) Signal in dem Taktzyklus clk2 erneut angelegt. In Reaktion auf das Anlegen von Block(10)
und die aufgezeichnete Abhangigkeit von 11 und 14 von 10, werden die Not_Blocked(15) und Not_Blocked(45)
Signale zuriick genommen (Taktzyklus clk2). Die Ricknahme der Not_Blocked(15) und Not_Blocked(45) Sig-
nale fihren wiederum zu dem riickgangig machen von I1 und 14 (State(15) und State(45) wechseln in den blo-
ckierten Zustand in dem Taktzyklus clk3). Nachfolgend werden 12 und I3 riickgangig gemacht wegen ihrer di-
rekten Abhangigkeiten von |1 beziehungsweise 12 und damit wegen ihrer indirekten Abhangigkeit von 10. an
dem Ende des Taktzyklus clk5 sind die Abhangigkeitsketten in dem beispielhaften Beispiel rickgangig ge-
macht und die Zustande der Ausflihrung entsprechend jeder Befehlsoperation (10 bis 14) sind in dem nicht aus-
gefuhrt Zustand. Nachfolgend kénnen die Befehlsoperationen Befriedigung ihrer Abhangigkeiten erfahren und
kénnen wiederum erneut ausgegeben werden, wenn die Befehlsoperationen in der Abhangigkeitskette erneut
ausgeben und die Abhangigkeiten von anderen Befehlsoperationen in den Abhangigkeitsketten erfillen.
[0130] Es ist zu bemerken, dass wahrend die Block und Not_Blocked Signale in Fig. 10 gezeigt sind (und in
den Fig. 11, 12 und 15 unten) als angelegt oder nicht angelegt wahrend eines bestimmten Taktzyklus, die
Block Signale wahrend eines ersten Teils des Taktzyklus inaktiv sein kbnnen, um es den Not_Blocked Signalen

23/45

DE 600 05 860 T2 2004.08.05

zu erlauben, vorgeladen zu werden, und dann kénnen die Block Signale wahrend des zweiten Teils des Takt-
zyklus pulsieren (und Not_Blocked Signale kénnen entladen werden oder vorgeladen bleiben, in Ubereinstim-
mung mit den aufgezeichneten Abhangigkeiten). Des weiteren stellen die Zeitablaufdiagramme der Fig. 10,
11, 12 und 15 den Ubergang der Not_Blocked Signale basierend auf dem Ubergang der dargestellten Block
Signale dar. Entsprechend stellen die Beispie lein Beispiel dar, in dem die Abhangigkeiten der dargestellten
Abhangigkeitsketten die letzten zu befriedigenden Abhangigkeiten fir jede Befehlsoperation in der Abhangig-
keitskette sind. Falls weitere Abhangigkeiten unbefriedigt bleieben wiirden die Not_Blocked Signale nicht an-
gelegt bleiben bis zur Erfillung von diesen anderen Abhangigkeiten. Auf ahnliche Weise stellen die Zeitablauf-
diagramme fiir die Ubersichtlichkeit der Zeichnungen Befehlsoperationen dar, die in Reaktion auf eine Anfor-
derung unmittelbar fir den Ablauf geplant werden. Jedoch kann die Ablaufplanung fur einen oder mehrere
Taktzyklen verzdgert werden, falls jlingere Befehlsoperationen des gleichen Typs die Ablaufplanung anfordern.
[0131] Es wird nun auf Fig. 11 Bezug genommen, in der ein Zeitablaufdiagramm die Ausgabe und die erneute
Ausgabe von beispielhaften Befehlsoperationen in einer Abhangigkeitskette darstellt, wobei die erneute Aus-
gabe wegen eines erneuten Versuchs der ersten Befehlsoperation in der Abhangigkeitskette auftritt. Taktzyk-
len werden von vertikalen punktierten Linien unterteilt, mit einem Identifizieren fir jeden Taktzyklus an der Spit-
ze zwischen den vertikalen punktierten Linien, die diesen Taktzyklus abgrenzen. Ein Kasten 152 stellt die bei-
spielhafte Abhangigkeitskette dar, welche die Befehle 10 bis 12 von dem Beispiel aus Fig. 10 sind. Die Block
und Not_Blocked Signale fir jede Befehlsoperation sind dargestellt, ebenso wie die Zustédnde von jeder Be-
fehlsoperation (wie von der ROP Steuerschaltung 86 aufgezeichnet), ahnlich wie bei dem Beispiel von Fig. 10.
Die in der Fig. 11 dargestellten Zustdnde umfassen blockierte und abgeschlossene Zustande, dargestellt
durch "blkd" und "done" in der Fig. 11 dhnlich wie in Fig. 10. Ebenso sind der Anforderung Zustand 114, der
Exec2 Zustand 128 und der Exec1 Zustand 130 als "rgst", "ex2" beziehungsweise "ex1" dargestellt. Wieder
ahnlich zu der Fig. 10 sind gewisse Ereignisse, die andere Ereignisse veranlassen als Pfeile von den verursa-
chenden Ereignissen zu den sich ergebenden Ereignissen dargestellt. In diesem Beispiel sind beide Befehls-
operationen 10 und 11 von einer Latenz von 2.

[0132] Der Taktzyklus clkO stellt jede der Befehlsoperationen 10-12 in einem blockierten Zustand dar, wartend
auf die Erfullung von Abhangigkeiten bevor sie fur die Ausgabe auswahlbar werden. Jedes der Not_Blocked
Signale ist nicht angelegt und jedes der Block Signale ist angelegt. Wahrend des Taktzyklus clk1 wird das
Not_Blocked(10) Signal angelegt. In Reaktion auf das Anlegen von Not_Blocked(10) wechselt State(10) in den
Anforderung Zustand wahrend des Taktzyklus clk2. 10 wird fir die Ausgabe ausgewahlt und damit geht
Block(10) in den Exec2 Zustand in dem Taktzyklus clk3 Uber. In dem Taktzyklus clk4 geht State(10) in die
Exec1 Zustande Uber.

[0133] In Reaktion auf den Exec2 Zustand von State(10), wird wahrend des Taktzyklus clk4 Block(10) zuriick
genommen (was wiederum dazu fihrt, dass Not_Blocked(15) angelegt wird). State(15) geht in dem Taktzyklus
clk4 in Reaktion auf das Anlegen von Not_Blocked(15) in den Anforderung Zustand Giber und in dem Taktzyklus
clk5 in Reaktion auf ausgewahlt zu werden in den Exec2 Zustand.

[0134] Wahrend des Exec1 Zustands von State(10) (Taktzyklus clk4) detektiert die ROP Steuerschaltung 86
einen erneuten Versuch von |0 (dargestellt in Fig. 10 mittels des retry(R#10) Signals). Der erneute Versuch
veranlasst ein riickgangig machen von 10 und damit geht State(10) in dem Taktzyklus clk5 in einen nicht aus-
gefihrt Zustand Uber. Genauer gesagt geht State(10) in den Anforderung Zustand udber, weil das
Not_Blocked(10) Signal wahrend des Taktzyklus clk4 angelegt wird. In Reaktion auf State(10), das in einen
nicht ausgefiihrt Zustand zurick kehrt, wird das Block(10) Signal erneut angelegt (und damit wird
Not_Blocked(15) zuriick genommen. Die Ricknahme von Not_Blocked(15)fuhrt zu einer Ruckkehr von Sta-
te(15) in einen nicht ausgefihrten Zustand (Taktzyklus clk6).

[0135] Der erneute Versuch von 10 in diesem Beispiel ist von einem Typ des erneuten Versuchs, der eine un-
mittelbare erneute Ausgabe von 10 erlaubt. Entsprechend ist State(10) im Taktzyklus clk5 in dem Anforderung
Zustand. 10 wird fir die Ausfihrung ausgewahlt und daher geht State(10) in den Taktzyklen clk6, clk7 bezie-
hungsweise clk8 in die Exec2, Exec1 und abgeschlossen Zustéande Uber. Wahrend der erneuten Ausfiihrung
von 10 tritt ein erneuter Versuch nicht auf. Es ist jedoch zu bemerken, dass erneute Versuche mehrere Male
auftreten kdnnen bevor eine Befehlsoperation erfolgreich abschlief3t.

[0136] Sobald State(10) wahrend der erneuten Ausfiihrung von 10 den Exec2 Zustand erreicht (Taktzyklus
clk6) wird das Block(10) Signal zuriick genommen und das Not_Blocked(15) Signal wird angelegt. In Reaktion
auf das Anlegen des Not_Blocked(15) Signals geht State(15) in den Anforderung Zustand Uber (Taktzyklus
clk7) und nachfolgend in den Exec2 Zustand in Reaktion darauf, zur Ausgabe ausgewahlt zu werden (Taktzy-
klus clk8). State(15) geht in den Taktzyklen clk9 beziehungsweise clk10 in die Exec1 und abgeschlossen Zu-
stande Uber.

[0137] In Reaktion auf das Erreichen von dem Exec2 Zustand durch State(15) (Taktzyklus clk8) wird das
Block(15) Signal zuriick genommen. Das Not_Blocked(23) Signal wird wahrend Taktzyklus clk8 in Reaktion auf
die Ricknahme von Block(15) angelegt und damit geht State(23) in den Anforderung Zustand wahrend Takt-
zyklus clk9 zurtick. Die Ausgabe von 12 kann wahrend eines spateren Taktzyklus geschehen (nicht gezeigt).

24/45

DE 600 05 860 T2 2004.08.05

[0138] Es wird nun auf Fig. 12 Bezug genommen, in der ein Zeitablaufdiagramm eine erneute Ausgabe von
einer Befehlsoperationen darstellt, mit einem Grund fiir eine erneute Ausgabe, der das Auftreten eines nach-
folgendes Ereignisses erfordert, bevor die erneute Ablaufplanung der Befehlsoperation durchgefiihrt wird. Ge-
nauer gesagt stellt Fig. 12 einen erneuten Versuch einer Befehlsoperation dar, die nicht spekulativ auszufiih-
ren ist. Taktzyklen werden von vertikalen punktierten Linien unterteilt, mit einem Identifizierer fur jeden Taktzy-
klus an der Spitze zwischen den vertikalen punktierten Linien, die diesen Taktzyklus abgrenzen. Ein Kasten
152 stellt die beispielhafte Abhangigkeitskette dar, welche die gleichen Befehlsoperationen 10 bis 12 und Ab-
hangigkeiten von dem Beispiel aus Fig. 11 sind. Die Block und Not_Blocked Signale fiir jede Befehlsoperation
sind dargestellt, ebenso wie die Zustande von jeder Befehlsoperation (wie von der ROP Steuerschaltung 86
aufgezeichnet), ahnlich wie bei dem Beispiel von Fig. 11. Die in der Fig. 12 dargestellten Zustande sind ahnlich
wie in Fig. 11 dargestellt. Wieder ahnlich zu der Fig. 11 sind gewisse Ereignisse, die andere Ereignisse veran-
lassen als Pfeile von dem Ereignis zu dem sich ergebenden Ereignis dargestellt. In diesem Beispiel ist die Be-
fehlsoperation 10 von einer Latenz von 2.

[0139] Die Taktzyklen clkO bis clk6 sind ahnlich. zu den entsprechenden Taktzyklen clkO bis clk6 aus Fig. 11
mit der Ausnahme, dass das erneute Versuchen von 10 in dem Taktzyklus clk4 als ein erneutes Versuchen an-
gezeigt wird, weil 10 nicht spekulativ auszufiihren ist. Daher wurde 10 spekulativ ausgegeben und seine nicht
spekulative Natur wurde nach der Ausgabe detektiert. Der Ablaufplaner 36 I6st diese Situation durch riickgan-
gig machen von 10, um nicht spekulativ zu werden bevor eine erneute Ausgabe erlaubt wird. Genauer gesagt
kann die ROP Steuerschaltung 86 in Reaktion auf den erneuten Versuchstyp als "wartend auf nicht spekulativ"
seiend die Blocked_non spec Angabe entsprechend zu 10 setzen. Damit wird die ROP Steuerschaltung 86 da-
ran gehindert, eine Ablaufplanung von 10 anzufordern bevor 10 nicht spekulativ wird, sogar obwohl das
Not_Blocked(10) Signal angelegt ist. Einige Anzahlen von Taktzyklen kénnen ablaufen und dann kann die ROP
Steuerschaltung 86 feststellen, dass |0 nicht spekulativ ist (zum Beispiel Taktzyklus clkn in Fig. 12, dargestellt
durch das Anlegen von dem non-spec(R#10) Signal in Fig. 12). Wie zuvor erwahnt kann eine Befehlsoperation
nicht spekulativ sein, wenn in Ubereinstimmung mit einem Ausfiihrungsbeispiel jede vorherige Befehlsopera-
tion (in der Reihenfolge des Programms) innerhalb des Ablaufplaners 36 in dem abgeschlossen Zustand ist.
[0140] In Reaktion darauf, dass |0 nicht spekulativ wird geht State(10) in den Anforderung Zustand Uber (Takt-
zyklus clkn + 1). Nachfolgend wird 10 fiir die Ausgabe ausgewahlt (Exec2 Zustand von State(10) in dem Takt-
zyklus clkn + 2) und fuhrt aus. Die abhangigen Befehlsoperationen 11 und 12 kdnnen nachfolgend ausgefuhrt
werden, sobald ihre Abhangigkeiten von 10 erfillt sind.

[0141] Es wird nun auf Fig. 13 Bezug genommen, in der ein beispielhafter Eintrag 160 des Puffers fir physi-
kalische Adressen gezeigt ist, der von einem Ausflihrungsbeispiel des Puffers fiir physikalische Adressen 90
verwendet werden kann. Des weiteren ist eine beispielhafte kombinatorische Logikschaltung 172 gezeigt. Die
Schaltung 172 kann verwendet werden, um die fill_hit(i) und retry_PA(i) Signale zu erzeugen. Weitere Ausfuh-
rungsbeispiele sind méglich und werden betrachtet. Genauer gesagt kann jede geeignete kombinatorische Lo-
gikschaltung verwendet werden, einschlieRlich jeglicher Boolean Aquivalente der in Fig. 13 gezeigten Logik.
Des weiteren kann die in dem Eintrag 160 gespeicherte Information in Form und Inhalt gedndert werden, in
Ubereinstimmung mit den Wiinschen des Entwicklers. In dem Ausfiihrungsbeispiel von Fig. 13 umfasst der
Eintrag 160 ein Gliltig Bit 162, ein erstes Laden PA Feld 164, ein erstes Bytemaskierungsfeld 166, ein zweites
Laden PA Feld 168 und ein zweites Bytemaskierungsfeld 170.

[0142] Im Allgemeinen wird, falls die Befehlsoperation in dem Eintrag des Befehlspuffers, dem der Eintrag
160 zugeordnet ist, eine Lade-Speicheroperation ist, der Eintrag 160 mit der physikalischen Adressinformation
des Speicheroperanden aktualisiert, auf den von der Lade-Speicheroperation zugegriffen wird (der "Lade Spei-
cheroperand") und das Giiltig Bit 162 wird gesetzt. In dem vorliegenden Ausfiihrungsbeispiel wird die Informa-
tion von der physikalischen Adresse des Quadwortes einschlie3lich des ersten Bytes des Lade Speicherope-
randen (erstes Laden PA Feld 164) und einer Bytemaskierung reprasentiert, die anzeigt, welche Bytes in dem
Quadwort Teil des Lade Speicheroperanden sind (erstes Bytemaskierungsfeld 166). Die Bytemaskierung weist
ein Bit fur jedes Byte in dem Quadwort auf. Falls das Bit gesetzt ist, ist das entsprechende Byte Teil des Lade
Speicheroperanden. Falls das Bit nicht gesetzt ist, ist das entsprechende Byte kein Teil des Lade Speichero-
peranden.

[0143] Lade Speicheroperanden kénnen beliebig in dem Speicher ausgerichtet sein. Entsprechend kénnen
ein oder mehrere Bytes des Lade Speicheroperanden in einem Quadwort sein und ein oder mehrere Bytes des
Lade Speicheroperanden kénnen in dem nachsten darauf folgenden Quadwort sein. Daher stellt der Eintrag
160 das zweite Laden PA Feld 168 und das zweite Bytemaskierungsfeld 170 zur Vertiigung. Das zweite Laden
PA Feld 168 speichert die physikalische Adresse des nachsten darauf folgenden Quadworts in das erste Laden
PA Feld 168. In dem vorliegenden Ausfiihrungsbeispiel wird der in der Seite befindliche Teil der physikalischen
Adresse in dem zweite Laden PA Feld 168 gespeichert. Weil Lade-Speicheroperationen, die eine Seitengrenze
Uberschreiten in dem vorliegenden Ausfihrungsbeispiel nicht spekulativ sind, ist es ausreichend, lediglich den
in der Seite befindlichen Teil des nachsten darauf folgenden Quadworts zu speichern (weil die Lade-Speiche-
roperation, wenn eine Seite Uberschritten wird, nicht spekulativ erneut ausgegeben wird und daher keine alte-

25/45

DE 600 05 860 T2 2004.08.05

ren Speichervorgange nachfolgend zu der erneuten Ausgabe der Lade-Speicheroperation ausgegeben wer-
den). Weitere Ausfiihrungsbeispiele kénnen die Gesamtheit des nachsten darauf folgenden Quadworts spei-
chern oder falls gewlinscht jeden geeigneten Teil. Des weiteren kdbnnen andere Ausfihrungsbeispiele, wah-
rend das vorliegende Ausfihrungsbeispiel Adressen mit einer Aufldsung von einem Quadwort speichert, jeg-
liche andere geeignete Auflésung verwenden (zum Beispiel Oktawort, Doppelwort, usw.). Das zweite Bytemas-
kierungsfeld 170, ahnlich zu dem ersten Bytemaskierungsfeld 166, zeigt an, welche Bytes in dem nachsten
darauf folgenden Quadwort Teil des Lade Speicheroperanden sind.

[0144] Der Ausfiihrungskern 40A stellt die Speicher physikalische Adresse und die entsprechende Bytemas-
kierung wahrend der Ausfiihrung von Speicher-Speicheroperationen zur Verfugung. Die Schaltung 172 ver-
gleicht die entsprechenden Teile der Speicher physikalische Adresse mit den in dem ersten Laden PA Feld 164
und in dem zweiten Laden PA Feld 168 gespeicherten Werten. Des weiteren werden entsprechende Speicher
Bytemaskierungen zur Verfiigung gestellt. Die UND Gatter, welche die Speicher und Lade Bytemaskierungen
in der Schaltung 172 empfangen, stellen eine Logik dar, welche feststellt, ob zumindest ein Byte der Lade Byte-
maskierung und zumindest ein entsprechendes Bit in der Speicher Bytemaskierung gesetzt sind, was anzeigt,
dass zumindest ein Byte des Lade Speicheroperanden von der Lade-Speicheroperation aktualisiert wird. Zum
Beispiel kann ein UND Gatter fir jedes Bit verwendet werden, deren Ausgange mit einem ODER verknuipft
sind. Falls der Eintrag 160 gultig ist, stimmen die physikalischen Adressteile Uberein und zumindest ein Byte
in dem entsprechenden Quadwort ist Teil des Lade Speicheroperanden und wird von der Speicher-Speicher-
operation aktualisiert, dann kann das retry PA(i) Signal erzeugt werden. Es ist zu bemerken, dass das
retry_PA(i) Signal ebenfalls maskiert werden kann, wenn die Speicher-Speicheroperation in der Reihenfolge
des Programms nicht vor der Lade-Speicheroperation ist (nicht gezeigt in Fig. 3).

[0145] Es ist zu bemerken, dass Speicher Speicheroperanden ebenfalls willkirlich im Speicher ausgerichtet
sein kdnnen. Entsprechend kdnnen ein oder mehrere Bytes des Speicher Speicheroperanden in einem Quad-
wort sein und ein oder mehrere Bytes des Speicher Speicheroperanden kénnen in dem nachsten darauf fol-
genden Quadwort sein. Daher kann die Speicher PA+1 (ahnlich zu der Lade PA+1) mit den gespeicherten Lade
PAs verglichen werden, um eine Speicher PA zu detektieren, die eine Lade PA trifft. Die folgende Formel kann
das retry_PA(i) Signal darstellen (in dem die MATCH(A(n : 0),B(n : 0)) Funktion eine binare 1 zuriick gibt, wenn
zumindest ein Bit in A(n : 0) gesetzt ist ein entsprechendes Bit in B(n : 0) gesetzt ist):

Retry_PA(i) =V & Load_PA(39:12) == Store_PA(39:12) &
((Load_PA(11:3)== Store__PA(l 1:3) & MATCH(Store_Byte Mask(7:0),
Load_Byte_Mask(7:0))) ||
((Load_PA(11:3)+1 = Store PA(11:3) & MATCH(Store_Byte Mask(6:0),
Load_Byte Mask(14:8))) ||

((Load_PA(11:3) == Store_ PA(11:3)+1 &
MATCH(Store_Byte Mask(14:8),

Load_Byte Mask(6:0))) ||

((Load_PA(11:3)+1 = Store_PA(11:3)+1 &
MATCH(Store_Byte_Mask(14:8),

Load Byte Mask(14:8))))

[0146] Es ist ferner zu bemerken, dass der letzte der vier Ausdriicke (Load_PA(11 : 3) + 1 und Store_PA(11 :
3) + 1 vergleichend) redundant ist und in dem vorliegenden Ausfiihrungsbeispiel eliminiert werden kann, weil,
fur einen Speicheroperanden mit einem giltigen Byte in dem nachsten darauf folgenden Quadwort, der Spei-
cheroperand zumindest ein gultiges Byte (Byte 7, reprasentiert von dem Maskierungsbit 7) in dem ersten
Quadwort hat. Daher wird eine Ubereinstimmung in dem vierten Ausdruck nur angetroffen, wenn auch eine
Ubereinstimmung in dem ersten Ausdruck (Load_PA(11 : 3) und Store_PA(11 : 3) vergleichend) angetroffen
wird.

[0147] Des weiteren wird der Eintrag 160 mit den von der externen Interfaceeinheit 46 zur Verfigung gestell-
ten Full/Sondierung Adressen verglichen. In dem dargestellten Ausflihrungsbeispiel wird die fir einen Fullvor-
gang zur Verfigung gestellte Zeile des Cachespeichers dem Puffer fir physikalische Adressen 90 zum Ver-
gleich zur Verfugung gestellt. Ein entsprechender Teil des ersten Laden PA Feld 164 und des zweiten Laden
PA Feld 168 kann mit der Fiilladresse verglichen werden. Falls eine Ubereinstimmung detektiert wird, kann das
fill_hit(i) Signal angelegt werden. In anderen Ausfihrungsbeispielen kann die Zeile des Cachespeichers dem
D-Cachespeicher 44 als eine Vielzahl von Paketen zur Verfligung gestellt werden. Der Teil der Adresse, der

26/45

DE 600 05 860 T2 2004.08.05

die Zeile des Cachespeichers identifiziert, und das zur Verfliigung gestellte Paket kdnnen in diesen Ausfiih-
rungsbeispielen verglichen werden.

[0148] Esistferner zu bemerken, dass das retry PA(i) Signal maskiert werden kann, wenn die Speicher-Spei-
cheroperation, die dem store_PA entspricht, jinger ist als die Lade-Speicheroperation, die dem Eintrag 160
entspricht.

[0149] Es wird nun auf Fig. 14 Bezug genommen, in der ein beispielhafter Eintrag 180 des Puffers fur Spei-
chern R# Adressen gezeigt ist, der von einem Ausflihrungsbeispiel des Speichern R# Puffer 92 verwendet wer-
den kann. Des weiteren ist eine beispielhafte kombinatorische Logikschaltung 190 gezeigt. Die Schaltung 190
kann verwendet werden, um das retry_stq(i) Signal zu erzeugen. Weitere Ausfiihrungsbeispiele sind méglich
und werden betrachtet. Genauer gesagt kann jede geeignete kombinatorische Logikschaltung verwendet wer-
den, einschlieRlich jeglicher Boolean Aquivalente der in Fig. 14 gezeigten Logik. Des weiteren kann die in dem
Eintrag 180 gespeicherte Information in Form und Inhalt gedndert werden, in Ubereinstimmung mit den Wiin-
schen des Entwicklers. In dem Ausfiihrungsbeispiel von Fig. 14 umfasst der Eintrag 180 ein Giiltig Bits 182
und 186 und Speichern R# Felder 184 und 188.

[0150] Im Allgemeinen wird, falls die Befehlsoperation in dem Eintrag des Befehlspuffers, dem der Eintrag
180 zugeordnet ist, eine Lade-Speicheroperation ist, der Eintrag 180 mit dem Speicher R# eines Speichervor-
gangs in der Speicher-Warteschlange 70 aktualisiert, der von der Lade-Speicheroperation getroffen wird. Das
vorliegende Ausfiihrungsbeispiel stellt die Weiterleitung von bis zu zwei Speicher-Speicheroperationen an eine
Lade-Speicheroperation zur Verfligung und daher sind zwei Speichern R# Felder 184 und 188 vorgesehen,
um die R# von jedem weiter geleiteten Speichervorgang aufzuzeichnen. Entsprechende Gliltig Bits 182 und
186 sind gesetzt, wenn die entsprechenden weiterleitenden Speichervorgange detektiert werden. Weitere Aus-
fuhrungsbeispiele kdnnten lediglich von einem Speichervorgang weiterleiten und der Eintrag 180 kdnnte ledig-
lich ein Speicher R# aufzeichnen. Noch weitere Ausfihrungsbeispiele kénnen von mehr als zwei Speichervor-
gangen weiterleiten und der Eintrag 180 kann eine entsprechende Anzahl von Speicher R#s aufzeichnen.
[0151] Sobald Speicher-Speicheroperationen ausgefiihrt werden stellt die Lade/Speicher-Einheit 42 die R#
der Speicher-Speicheroperation dem Speichern 2# Puffer 92 zur Verfiigung. Die R# wird mit den in dem Ein-
trag 180 gespeicherten R# verglichen und falls eine Ubereinstimmung detektiert wird (und das entsprechende
Glltig Bit gesetzt ist), legt die Schaltung 190 das retn stq(i) Signal an. Wie oben erwahnt kénnen in einer wei-
teren Alternative die Nummern der Speicherwarteschlange in dem Puffer 92 gespeichert werden und die Num-
mern der Speicherwarteschlange kénnen zum Vergleich zur Verfigung gestellt werden.

[0152] Es wird nun auf Fig. 15 Bezug genommen, in der ein Zeitablaufdiagramm eine erneute Ausgabe von
einer Lade-Speicheroperation Gber einen Treffer in dem Puffer fir physikalische Adressen 90 darstellt. Ein er-
neuter Versuch einer Lade-Speicheroperation tber einen Treffer in dem Speichern R# Puffer 92 kann ahnlich
sein. Taktzyklen werden von vertikalen punktierten Linien unterteilt, mit einem Identifizieren fir jeden Taktzyk-
lus an der Spitze zwischen den vertikalen punktierten Linien, die diesen Taktzyklus abgrenzen. Ein Kasten 192
stellt die beispielhafte Abhangigkeitskette dar, welche die gleichen Befehlsoperationen 10 bis 12 und Abhangig-
keiten von dem Beispiel aus Fig. 11 sind (mit der Ausnahme, dass |0 nun eine Lade-Speicheroperation ist).
Die Block und Not_Blocked Signale fiir jede Befehlsoperation sind dargestellt, ebenso wie die Zustande von
jeder Befehlsoperation (wie von der ROP Steuerschaltung 86 aufgezeichnet), ahnlich wie bei dem Beispiel von
Fig. 11. Die in der Fig. 12 dargestellten Zustande sind ahnlich wie in Fig. 11 dargestellt. Des weiteren sind die
Exec4 und Exec3 Zustande als "ex4" beziehungsweise "ex3" dargestellt. Wieder ahnlich zu der Fig. 11 sind
gewisse Ereignisse, die andere Ereignisse veranlassen als Pfeile von dem Ereignis zu dem sich ergebenden
Ereignis dargestellt. In diesem Beispiel ist die Lade-Speicheroperation |0 von einer Latenz von 4.

[0153] In dem Taktzyklus clkO ist jede der Befehlsoperationen 10-12 ausgegeben und ausgefihrt worden und
sind daher in dem abgeschlossen Zustand. Entsprechende Block Signale sind nicht angelegt und Not_Blocked
Signale sind angelegt. Jedoch wird fir R#10 ein Treffer in dem Puffer fiir physikalische Adressen 90 detektiert
(retry_PA(10) wird wahrend des Taktzyklus clkO angelegt). In Reaktion geht State(10) in dem Taktzyklus clk1
in den Anforderung Zustand Uber. Des weiteren wird das Block(10) Signal angelegt und 11 und |12 werden nach
einander wahrend der Taktzyklen clk2 bis clk3 riickgangig gemacht.

[0154] Die Lade-Speicheroperation 10 wird in den Taktzyklen clk2 bis clk6 fir die Ausflihrung ausgewahit und
lauft durch die ausfiihrenden Stufen in den abgeschlossen Zustand. In Reaktion darauf, dass 10 in dem Takt-
zyklus clk4 den Exec2 Zustand erreicht, wird das Block(10) Signal zurickgenommen (und damit wird das
Not_Blocked(15) Signal angelegt. Die Befehlsoperationen 11 und 12 werden damit erneut fur den Ablauf ge-
plant und wie in Fig. 15 gezeigt erneut ausgegeben.

[0155] Fig. 15 stellt dar, dass eine Lade-Speicheroperation vor Speicher-Speicheroperationen ausgegeben
und ausgefuhrt werden kann, von denen die Lade Befehlsoperation abhangt. Nachfolgend kdnnen die Spei-
cher-Speicheroperationen ausgegeben werden und die Abhangigkeit detektiert werden. Die Abhangigkeit wird
bertcksichtigt durch eine erneute Ausgabe der Lade-Speicheroperation (und ihrer Abhangigkeitsketten) durch
den Ablaufplaner 36, sobald die Abhangigkeit erkannt wird. Ein &hnliches Zeitablaufdiagramm mit dem
retry_stq(10) Signal angelegt stellt die Detektierung einer falschen Abhangigkeit einer Lade-Speicheroperation

27/45

DE 600 05 860 T2 2004.08.05

von einer vorherigen Speicher-Speicheroperation dar, welche nicht korrekt ausgefiihrt wurde und nachfolgend
erneut ausgegeben wurde. Wiederum behandelt der Ablaufplaner 36 die Situation durch eine erneute Ausgabe
der Lade-Speicheroperation und ihrer Abhangigkeitsketten. Eine korrekte Operation kann bei minimaler Ab-
nahme der Leistungsfahigkeit zur Verfigung gestellt werden und daher kann eine aggressive spekulative Aus-
fuhrung durchgefihrt werden und eine héhere Leistungsfahigkeit kann erreicht werden.

Computersysteme

[0156] Es wird nun auf Fig. 16 Bezug genommen, in der ein Blockdiagramm gezeigt ist, das ein Ausfiihrungs-
beispiel eines Computersystems 200 einschlief3lich des Prozessors 10 darstellt, der Uber eine Busbriicke 202
mit einer Vielzahl von Systemkomponenten verbunden ist. Weitere Ausflihrungsbeispiele sind méglich und
werden betrachtet. In dem dargestellten System ist ein Hauptspeicher 204 (iber einen Speicherbus 206 mit der
Busbriicke 202 verbunden und eine Grafiksteuerung 208 ist tiber einen AGP Bus 210 mit der Busbriicke 202
verbunden. Schliel3lich ist eine Vielzahl von PCI Geraten 212A-212B Uber einen PCI Bus 214 mit der Busbri-
cke 202 verbunden. Eine zweite Busbriicke 216 kann ferner vorgesehen sein, um einem oder mehreren EISA
oder ISA Geraten 218 ber einen EISA/ISA Bus 220 eine elektrische Schnittstelle zu bieten. Der Prozessor 10
ist Uber einen CPU Bus 224 mit der Busbriicke 202 und mit einem optionalen L2 Cachespeicher 228 verbun-
den. Zusammen kénnen der CPU Bus 224 und die Schnittstelle zu dem L2 Cachespeicher 228 eine externe
Schnittstelle 52 aufweisen.

[0157] Die Busbricke 202 stellt eine Schnittstelle zwischen dem Prozessor 10, dem Hauptspeicher 204, der
Grafiksteuerung 208 und an den PCI Bus 214 angebrachten Geraten zur Verfigung. Wenn eine Operation von
einem der an die Busbriicke 202 angeschlossenen Gerate empfangen wird, identifiziert die Busbriicke 202 das
Ziel der Operation (zum Beispiel ein bestimmtes Gerat oder in dem Fall des PCl Busses 214, dass das Ziel auf
dem PCI Bus 214 ist). Die Busbriicke 202 fiihrt die Operation zu dem angezielten Gerat. Die Busbriicke 202
Ubersetzt im Allgemeinen eine Operation von dem Protokoll, das von dem Quellgerat oder -bus benutzt wird,
in das Protokoll, das von dem Zielgerat oder -bus benutzt wird.

[0158] Zusatzlich zur Bereitstellung einer Schnittstelle zu einem ISA/EISA Bus fir den PCI Bus 214 kann die
zweite Busbriicke 216 wie gewiinscht weitere Funktionalitat enthalten. Eine Eingangs/Ausgangssteuerung
(nicht gezeigt), entweder aullerhalb von der oder in die zweite Busbriicke 216 integriert, kann auch in dem
Computersystem 200 enthalten sein, um operationelle Unterstitzung fiir eine Tastatur und Maus 222 und fur
verschiedene serielle und parallele Anschliisse wie gewlinscht zur Verfliigung zu stellen. Eine externe Cache-
speichereinheit (nicht gezeigt) kann ferner an den CPU Bus 224 zwischen dem Prozessor 10 und der Busbri-
cke 202 in anderen Ausfuhrungsbeispielen angeschlossen sein. Alternativ kann der externe Cachespeicher an
die Busbriicke 202 angeschlossen sein und die Cachespeichersteuerlogik fiir den externen Cachespeicher
kann in der Busbricke 202 integriert sein. Ein L2 Cachespeicher 228 ist des weiteren in einer hinter dem Pro-
zessor 10 angeordneten Konfiguration gezeigt. Es ist zu bemerken, dass der L2 Cachespeicher 228 getrennt
von dem Prozessor 10, in einem Einsatz (zum Beispiel Slot 1 oder Slot A) fir den Prozessor 10 integriert oder
sogar integriert auf einem Halbleitersubstrat in dem Prozessor 10 sein kann.

[0159] Der Hauptspeicher 204 ist ein Speicher, in dem Anwendungsprogramme gespeichert werden und von
dem der Prozessor 10 hauptsachlich ausfiihrt. Ein geeigneter Hauptspeicher 204 weist DRAM (dynamischen
wahlfreien Zugriffsspeicher) auf. Zum Beispiel kann eine Vielzahl von Banken an SDRAM (Synchrones DRAM)
oder an Rambus DRAM (RDRAM) geeignet sein.

[0160] Die PCI Gerate 212A-212B sind beispielhaft fur eine Vielzahl von peripheren Geraten, wie zum Bei-
spiel Netzwerkschnittstellenkarten, Videobeschleunigern, Audiokarten, Festplatten oder Diskettenlaufwerken
oder Laufwerkssteuerungen, SCSI (kleine Computer Systemschnittstelle) Adaptern oder Telefoniekarten. Auf
ahnliche Weise ist das ISA Gerat 218 beispielhaft fir verschiedene Typen von peripheren Geraten, wie einem
Modem, einer Soundkarte und einer Vielzahl von Daten sammelnden Karten, wie GPIB oder Feldbus Schnitt-
stellenkarten.

[0161] Die Grafiksteuerung 208 ist vorgesehen, um Text und Bilder auf einer Anzeige 256 sichtbar zu ma-
chen. Die Grafiksteuerung 208 kann einen typischen Grafikbeschleuniger verwenden, der allgemein im Stand
der Technik bekannt ist, um dreidimensionale Datenstrukturen sichtbar zu machen, die effektiv aus und in den
Hauptspeicher 204 geschoben werden kénnen. Die Grafiksteuerung 208 kann daher ein Master von dem AGP
Bus 210 sein, so dass es Zugriff auf eine Zielschnittstelle innerhalb der Busbriicke 202 anfordern und empfan-
gen kann, um dadurch Zugriff auf den Hauptspeicher 204 zu bekommen. Ein fest zugeordneter Grafikbus er-
laubt eine schnelle Erlangung von Daten aus dem Hauptspeicher 204. Fir gewisse Operationen kann die Gra-
fiksteuerung 208 des weiteren konfiguriert sein, um auf dem AGP Bus Transaktionen nach dem PCI Protokoll
zu erzeugen. Die AGP Schnittstelle der Busbriicke 202 kann daher Funktionalitdten enthalten, um sowohl
Transaktionen nach dem AGP Protokoll als auch Ziel- und Urhebertransaktionen nach dem PCI Protokoll zu
unterstitzen. Die Anzeige 226 ist jegliche elektronische Anzeige, auf der ein Bild oder ein Text dargestellt wer-
den kann. Eine geeignete Anzeige umfasst eine Kathodenstrahlrohre (,CRT"), ein Flussigkristalldisplay

28/45

DE 600 05 860 T2 2004.08.05

(,LCD") usw.

[0162] Es ist zu bemerken, dass, wahrend die AGP, PCI und ISA oder EISA Busse in der obigen Beschrei-
bung als Beispiele benutzt worden sind, jede Busarchitektur wie gewiinscht ersetzt werden kann. Es ist weiter
zu bemerken, dass das Computersystem 200 ein Mehrfachprozessorsystem sein kann, das zusatzliche Pro-
zessoren enthalt (zum Beispiel Prozessor 10a, der als optionale Komponente des Computersystems 200 ge-
zeigt ist). Der Prozessor 10a kann ahnlich zu dem Prozessor 10 sein. Genauer gesagt kann der Prozessor 10a
eine identische Kopie des Prozessors 10 sein. Der Prozessor 10a kann uber einen unabhangigen Bus (wie in
Fig. 11 gezeigt) mit der Busbriicke 202 verbunden sein oder kann den CPU Bus 224 mit dem Prozessor 10
teilen. Des weiteren kann der Prozessor 10a mit einem optionalen L2 Cachespeicher 228a verbunden sein,
der dem L2 Cachespeicher 228 ahnlich ist.

[0163] Es wird nun auf Fig. 17 Bezug genommen, in der ein weiteres Ausfuhrungsbeispiel eines Computer-
systems 300 gezeigt ist. Weitere Ausfihrungsbeispiele sind méglich und werden betrachtet. In dem Ausfiih-
rungsbeispiel von Fig. 17 enthalt das Computersystem 300 mehrere Verarbeitungsknoten 321A, 312B, 312C
und 312D. Jeder Verarbeitungsknoten ist mit einem entsprechenden Speicher 314A-314D (ber eine Speicher-
steuerung 316A-316D verbunden, die in jedem entsprechenden Verarbeitungsknoten 312A-312D enthalten
ist. Des weiteren enthalten die Verarbeitungsknoten 312A-312D eine Interfacelogik, die zur Kommunikation
zwischen den Verarbeitungsknoten 312A-312D verwendet wird. Zum Beispiel enthalt der Verarbeitungsknoten
312A eine Intertacelogik 318A zum Kommunizieren mit dem Verarbeitungsknoten 312B, eine Intertacelogik
318B zum Kommunizieren mit dem Verarbeitungsknoten 312C und eine dritte Interfacelogik 318C zum Kom-
munizieren mit noch einem weiteren Verarbeitungsknoten (nicht gezeigt). Auf dhnliche Weise enthalt der Ver-
arbeitungsknoten 312B die Intertacelogiken 318D, 318E und 318F; der Verarbeitungsknoten 312C enthalt die
Intertacelogiken 318G, 318H und 318l und der Verarbeitungsknoten 312D enthalt die Interacelogiken 318J,
318K und 318L. Der Verarbeitungsknoten 312D ist angeschlossen, um mit einer Vielzahl von Eingangs/Aus-
gangs Geraten (zum Beispiel Gerate 320A-320B in verketteter Konfiguration) tiber die Interfacelogik 318L zu
kommunizieren. Weitere Verarbeitungsknoten kdnnen mit anderen I/O Geraten in dhnlicher Weise kommuni-
zieren.

[0164] Die Verarbeitungsknoten 312A-312D implementieren eine paketbasierte Verbindung fiir die Kommu-
nikation zwischen den Verarbeitungsknoten. In dem vorliegenden Ausfihrungsbeispiel ist die Verbindung als
Satze von unidirektionalen Leitungen verwirklicht (zum Beispiel werden Leitungen 324A verwendet, um Pakete
von dem Verarbeitungsknoten 312A zu dem Verarbeitungsknoten 312B zu tbermitteln und Leitungen 324B
werden verwendet, um Pakete von dem Verarbeitungsknoten 312B zu dem Verarbeitungsknoten 312A zu
Ubermitteln). Weitere Satze von Leitungen 324C-324h werden wie in Fig. 17 dargestellt verwendet, um Pakete
zwischen den anderen Verarbeitungsknoten zu tbermitteln. Im Allgemeinen kann jeder Satz von Leitungen
324 eine oder mehrere Datenleitungen, eine oder mehrere den Datenleitungen entsprechende Taktleitungen
und eine oder mehrere Steuerleitungen zur Anzeige des Typs des beforderten Pakets aufweisen. Die Verbin-
dung kann fir die Kommunikation zwischen den Verarbeitungsknoten auf eine mit einem Cachespeicher ko-
harente Weise betrieben werden oder fur die Kommunikation zwischen einem Verarbeitungsknoten und einem
I/O Gerat (oder einer Busbriicke zu einem 1/0O Bus von konventioneller Konstruktion, wie einem PCI Bus oder
einem ISA Bus) auf nicht koharente Weise betrieben werden. Des weiteren kann die Verbindung unter Benut-
zung einer verketteten Struktur zwischen den I/O Geraten, wie gezeigt, auf nicht koharente Weise betrieben
werden. Es ist zu bemerken, dass ein Paket, das von einem Verarbeitungsknoten zu einem Anderen Ubermit-
telt wird, einen oder mehrere andere in der Mitte liegende Knoten passieren kann. Zum Beispiel kann ein von
dem Verarbeitungsknoten 312A an den Verarbeitungsknoten 312D (bermitteltes Paket entweder durch den
Verarbeitungsknoten 312B oder den Verarbeitungsknoten 312C wie in Fig. 17 gezeigt gelangen. Jeder geeig-
nete Algorithmus zur Dirigierung kann verwendet werden. Weitere Ausfliihrungsbeispiele des Computersys-
tems 300 kdnnen mehr oder weniger Verarbeitungsknoten als in dem in Fig. 17 gezeigten Ausfihrungsbeispiel
enthalten.

[0165] Im Allgemeinen kdnnen die Pakete mit einer oder mehr Bitzeiten auf den Leitungen 324 zwischen den
Knoten tbermittelt werden. Eine Bitzeit kann die steigende oder fallende Flanke des Taktsignals auf den ent-
sprechenden Taktleitungen sein. Die Pakete kénnen Anweisungspakete zum Einleiten von Transaktionen,
Sondierungspakete zur Beibehaltung der Koharenz des Cachespeichers und Antwortpakete sein, die auf Son-
dierungen und Anweisungen antworten.

[0166] Die Verarbeitungsknoten 312A-312D kdnnen, zusatzlich zu einer Speichersteuerung und einer Inter-
facelogik, einen oder mehrere Prozessoren enthalten. Allgemein gesagt weist ein Verarbeitungsknoten min-
destens einen Prozessor auf und kann optional eine Speichersteuerung zur Kommunikation mit einem Spei-
cher und weitere Logik wie gewilinscht enthalten. Insbesondere kann ein Verarbeitungsknoten 312A-312D ei-
nen Prozessor 10 aufweisen. Die externe Interfaceeinheit 46 kann die Interfacelogik 318 innerhalb des Kno-
tens enthalten, ebenso wie die Speichersteuerung 316.

[0167] Die Speicher 314A-314D koénnen alle geeigneten Speichergerate aufweisen. Zum Beispiel kann ein
Speicher 314A-314D einen oder mehrere RAMBUS DRAMs (RDRAMSs), synchrone DRAMs (SDRAMs), sta-

29/45

DE 600 05 860 T2 2004.08.05

tische RAMs usw. aufweisen. Der Adressraum des Computersystems 300 ist zwischen den Speichern
314A-314D aufgeteilt. Jeder Verarbeitungsknoten 312A-312D kann eine Speicherabbildung enthalten, die
verwendet wird, um festzustellen, welche Adressen auf welche Speicher 314A-314D abgebildet sind, und da-
mit, an welchen Verarbeitungsknoten 312A-312D eine Speicheranforderung fir eine bestimmte Adresse diri-
giert werden soll. In einem Ausflihrungsbeispiel ist der Koharenzpunkt fiir eine Adresse in dem Computersys-
tem 300 die Speichersteuerung 316A-316D, die mit dem Speicher verbunden ist und den Adressen entspre-
chende Bytes speichert. Anders gesagt ist die Speichersteuerung 316A-316D verantwortlich fur die Sicher-
stellung, dass jeder Speicherzugriff auf den entsprechenden Speicher 314A-314D auf eine mit dem Cache-
speicher koharente Weise geschieht. Die Speichersteuerungen 316A-316D kdnnen eine Steuerschaltung auf-
weisen, um eine Schnittstelle zu dem Speicher 314A-314D zu bilden. Des weiteren kénnen die Speichersteu-
erungen 316A- 316D Anforderungswarteschlangen flr die Aufreihung von Speicheranforderungen enthalten.
[0168] Im Allgemeinen kann die Interfacelogik 318A-318L eine Vielzahl von Puffern zum Empfangen von Pa-
keten von der Verbindung und zum Puffern von auf der Verbindung zu GbermitteInden Paketen aufweisen. Das
Computersystem 300 kann jeden geeigneten Mechanismus zur Flusssteuerung fir die Ubermittelung von Pa-
keten verwenden. Zum Beispiel speichert in einem Ausfiihrungs-Beispiel die Interfacelogik 318 einen Zahlwert
der Anzahl von jedem Typ des Puffers in dem Empfanger an der anderen Seite der Verbindung, mit dem diese
Interfacelogik verbunden ist. Die Interfacelogik Gbermittelt kein Paket, es sei denn die empfangene Interface-
logik hat einen freien Puffer, um das Paket zu speichern. Wenn ein empfangender Puffer durch die Weiterlei-
tung eines Pakets frei wird, Gbermittelt die empfangende Logik eine Nachricht zu der sendenden Interfacelogik,
um anzuzeigen, dass der Puffer leer gemacht worden ist. Ein derartiger Mechanismus kann als ein ,Coupon
basiertes" System bezeichnet werden.

[0169] Die I/O Gerate 320A-320B konnen alle geeigneten 1/0 Gerate sein. Zum Beispiel kdnnen die I/0 Ge-
rate 320A-320B Netzwerk-Schnittstellenkarten, Videobeschleuniger, Audiokarten, Festplatten oder Disketten-
laufwerke oder Laufwerkcontroller, SCSI (Kleincomputer-Systemschnittstelle) Adapter und Telefoniekarten,
Modems, Soundkarten und eine Vielzahl von Datenaquisitionskarten, wie GPIB oder Feldbusinterfacekarten
sein.

[0170] Zahlreiche Variationen und Modifikationen werden den Fachleuten auf dem Gebiet offenbar werden,
sobald die obige Offenbarung vollstdndig anerkannt ist. Es ist beabsichtigt, dass die folgenden Anspruche in-
terpretiert werden, um alle derartigen Variationen und Modifikationen zu umfassen.

Industrielle Anwendbarkeit
[0171] Diese Erfindung ist in dem Gebiet von Prozessoren und Computersystemen anwendbar.
Patentanspriiche

1. Planungseinrichtung (36) mit:

einem Puffer (80) zum Speichern einer ersten Befehlsoperation; einer mit dem Puffer (80) gekoppelten Schal-
tung (82;86), die zum Auswahlen der ersten Befehlsoperation zwecks Ausgebens aus dem Puffer (80), zum
Halten der ersten Befehlsoperation nach dem Ausgeben in dem Puffer (80) und zum Wiederausgeben der ers-
ten Befehlsoperation, wenn die erste Befehlsoperation inkorrekt ausgeflihrt worden ist, vorgesehen ist;
dadurch gekennzeichnet, dass

die Planungseinrichtung ferner einen mit der Schaltung (82;86) gekoppelten Adressenpuffer (90) aufweist, wo-
bei die erste Befehlsoperation eine erste Speicheroperation ist und der Adressenpuffer (90) zum Speichern ei-
ner ersten Adresse vorgesehen ist, auf die die erste Speicheroperation zugreift, wobei der Adressenpuffer zum
Empfangen der ersten Adresse, zum Empfangen der zweiten Adresse einer im Anschluss an die erste Spei-
cheroperation erfolgenden Speichern-in-Speicheroperation und zum Vergleichen der zweiten Adresse mit im
Adressenpuffer (90) gespeicherten Adressen vorgesehen ist, und wobei die erste Befehlsoperation inkorrekt
ausgefiihrt worden ist, wenn die Speichern-in-Speicheroperation mindestens ein Byte aktualisiert, auf das die
erste Befehlsoperation zugreift, und die Speichern-in-Speicheroperation der ersten Speicheroperation in der
Programmreihenfolge vorangeht.

2. Planungseinrichtung nach Anspruch 1 zum Empfangen eines ersten Signals von einer Ausfiihrungsein-
heit (42), das anzeigt, dass die erste Befehlsoperation inkorrekt ausgefiihrt worden ist, wobei die Schaltung
(82;86) zum Wiederausgeben der ersten Befehlsoperation in Reaktion auf das erste Signal vorgesehen ist und
das erste Signal ferner anzeigt, dass die erste Befehlsoperation nicht spekulativ ausgefiihrt werden soll, und
wobei die Schaltung (82;86) zum Verzégern des Wiederausgebens der ersten Befehlsoperation vorgesehen
ist, bis die erste Befehlsoperation nicht spekulativ ist.

3. Planungseinrichtung nach Anspruch 1 zum Empfangen eines ersten Signals von einer Ausfiihrungsein-

30/45

DE 600 05 860 T2 2004.08.05

heit (42), das anzeigt, dass die Befehlsoperation inkorrekt ausgeflihrt worden ist, wobei die Schaltung zum
Wiederausgeben der ersten Befehlsoperation in Reaktion auf das erste Signal vorgesehen ist.

4. Planungseinrichtung nach Anspruch 1, bei der der Adressenpuffer (90) zum Empfangen einer Filladres-
se vorgesehen ist, die anzeigt, dass Daten an einen Daten-Cachespeicher (44) gesendet werden, und wobei,
wenn die erste Adresse Daten innerhalb der an den Daten-Cachespeicher gesendeten Daten anzeigt, die
Schaltung zum Wiederausgeben der ersten Speicheroperation vorgesehen ist.

5. Planungseinrichtung nach Anspruch 1, ferner mit einem Kennzeichenpuffer (92), der zum Empfangen
eines Speicherkennzeichens entsprechend einer Speichern-in-Speicheroperation vorgesehen ist, wobei die
erste Befehlsoperation eine erste Speicheroperation ist, wobei die Speichern-in-Speicheroperation mindes-
tens ein Byte aktualisiert, auf das die erste Speicheroperation zugreift, und die Speichern-in-Speicheroperation
der ersten Speichern-in-Speicher-Speicheroperation in der Programmreihenfolge vorangeht, wobei der Kenn-
zeichenpuffer (92) zum Speichern des Speicherkennzeichens in einen Eintrag entsprechend der ersten Spei-
cheroperation in Reaktion auf das Ausfiihren der ersten Speicheroperation vorgesehen ist.

6. Planungseinrichtung nach Anspruch 5, bei dem der Kennzeichenpuffer (92) ferner zum Empfangen ei-
nes zweiten Speicherkennzeichens entsprechend einem Ausflihrungsspeicher vorgesehen ist, wobei der
Kennzeichenpuffer (92) zum Vergleichen des zweiten Speicherkennzeichens mit dem Speicherkennzeichen
vorgesehen ist und wobei die Schaltung zum Wiederausgeben der ersten Speicheroperation in Reaktion dar-
auf, dass das Speicherkennzeichen dem zweiten Speicherkennzeichen gleich ist, vorgesehen ist.

7. Prozessor (10) mit:
einer Planungseinrichtung (36) nach einem der Anspriiche 1 bis 6; und einer mit der Planungseinrichtung ge-
koppelten Ausflihrungseinheit (42), die zum Ausflihren der ersten Befehlsoperation vorgesehen ist.

8. Verfahren mit folgenden Schritten:
Ausgeben einer ersten Befehlsoperation von einer Planungseinrichtung (36) zu Ausfihrungszwecken;
Halten der ersten Befehlsoperation in der Planungseinrichtung (36) nach dem Ausgeben;
Wiederausgeben der ersten Befehlsoperation von der Planungseinrichtung (36) zu Ausfihrungszwecken in
Reaktion darauf, dass die erste Befehlsoperation inkorrekt ausgefiihrt worden ist;
dadurch gekennzeichnet, dass
die erste Befehlsoperation eine erste Speicheroperation ist; wobei das Verfahren ferner folgende Schritte um-
fasst:
Speichern einer ersten Adresse der ersten Befehlsoperation in einem Adressenpuffer (90);
Ausgeben einer Speichern-in-Speicheroperation, die der ersten Befehloperation in der Programmreihenfolge
vorangeht, nach dem Ausgeben der ersten Befehlsoperation;
Vergleichen der ersten Adresse in dem Puffer (90) mit einer Speicheradresse entsprechend der Spei-
chern-in-Speicheroperation; und Detektieren, dass die erste Befehlsoperation inkorrekt ausgefiihrt worden ist,
wenn der Vergleich anzeigt, dass die Speichern-in-Speicheroperation mindestens ein Byte aktualisiert, auf das
die erste Speicheroperation zugreift.

9. Verfahren nach Anspruch 8, bei dem die erste Befehlsoperation eine erste Speicheroperation ist, wobei
das Verfahren ferner folgende Schritte umfasst:
Speichern einer ersten Adresse der ersten Befehlsoperation in einem Adressenpuffer (90);
Vergleichen einer Filladresse, die anzeigt, dass Daten zu einem Daten-Cachespeicher (44) gesendet werden;
und
Wiederausgeben der ersten Speicheroperation, wenn die erste Adresse Daten innerhalb der zu dem Da-
ten-Cachespeicher gesendeten Daten anzeigt.

10. Verfahren nach Anspruch 8, bei dem die erste Befehlsoperation eine erste Speicheroperation ist, wobei
das Verfahren ferner folgende Schritte umfasst:
Speichern eines Speicherkennzeichens entsprechend einer Speichern-in-Speicheroperation in einem Eintrag
eines Kennzeichenpuffers (92) entsprechend der ersten Speicheroperation, wobei die Speichern-in-Speicher-
operation mindestens ein Byte aktualisiert, auf das die erste Speicheroperation in der Programmreihenfolge
zugreift;
Vergleichen eines zweiten Speicherkennzeichens entsprechend einer ausgefiihrten Speicherung mit dem
Speicherkennzeichen in dem Kennzeichenpuffer (92); und
Wiederausgeben der ersten Speicheroperation in Reaktion darauf, dass der Vergleich eine Gleichheit anzeigt.

Es folgen 14 Blatt Zeichnungen

31/45

DE 600 05 860 T2 2004.08.05

Anhangende Zeichnungen

_ vorhersage/Abruf]

Verzweigungs-

PC Erzeugung

18
libruf PC

A 4

\ 4

32/45

"Fang .
PC . Zeilenvorhersage B-Cachespeicher
h 4 Jg ﬁ:
PC4§”° P Befehl Info i
y : A
Ausrichtungseinheit
16
{ y A 4
Pradiktor Fehltreffer Dekodier- Dekodier-| Microcodeeinheit
Dekodiereinheit einheit einheit 28
26 24A 24D
Ruckzugswarte-
L yischlange
= |
\ 4 y Y
Abbildungseinheit ZuKanftige Archiy
30 <+ Datei < Datei
} 20 34
- Ablaufplaner
> 36
y A 4
Int Reg FP Reg
Datei Datei
38A 38B \ 10
A A
A 4 v
Int Ausfiihrungskern P > FP Ausfiihrungskern
40A A 40B
Von B-Cachespeicher 14
y
Lade/ A 4 Externes
5 : Externe
gn Reg -8 v g Eﬁﬁ:gli'::er B Interfaceewgeit Interface
ateien - i 46
D-Cachespeicher N 42 59
ﬁ
Fig. 1

DE 600 05 860 T2 2004.08.05

134

1441

X34

¢od

HM
a4

- eI

£X3d

10d

X3

I

¢X3ad

g1l

ay
44

LN

b X34

nov

0S
ay

oS
dM

[4))|

N

o3d

w

¢ ‘B4

al

dl

WvYO

WvO

33/45

von den

DE 600 05 860 T2 2004.08.05

Dekodiereinheiten

24A-24D

Quelloperandenregisternummern

von den

Dekodiereinheiten

24A-24D

ung

Zielumbenenn-

schaltung

62

Inline Abhéngig-
keitsiiberpriifungs:

Abbildungs-

einhg_‘&

Quell R#s,
PR#s

R#| PR#

R#| PR#

v
R# <’ Abha

schal

~ jordnungs-

ngigkeits-

tung
64

Abhangigkeiten

Quelloperanden-

Ordnungs-
abhangigkeiten

Zukiinftige Datei

20

 Treffer,Speichern R#

-

——— —— G — —— ——— —— — — — . —— — ——— — — — — — -

Fig. 3

34/45

A

Erneuter
Versuch
Ablaufplaner Erneuter
_Versuchstyp
36
L A 4
[Reg.Datel |
| Reg.Datel yyon der externen -
3 Fulladresse
: 38A {Interfaceeinheit
———————— 46
A Wit O , B I
| i
| I [Speicher
AGU N TLB | | | warteschlange
40AA Virtuelle 40AB | Physikalische : 70
Adresse I Adresse |
: : Lade/Speicher-
Ausfithrungskern 40A : Einheit 4o

An D-Cachespeicher
44

-

DE 600 05 860 T2 2004.08.05

a0v-vovy

@ 4 autisbuniynisny
p Bl " pon
- g8£-v8¢E ualajep
IdYuIz S/ UoA . 1935169y Uy
A
B¢ seueidsneiqy T T T T T T T e
ot IIneIqy dAIsyonsiap 193naule
‘Yonsian 493naulg
y FYVYY A
% 06 - % v8 43
bunjjeyds 08
oynd [»| -lyemsne
1aynd oo Bunjeyos| |-oqebsny] [Bunjjeyds 18Ynd dOY
#d Jayndssalpy m_mc.mu. ¢ -19N21S -bnz>pny -lyemsne
iaydjads —1exisAyd -bibueyqy -doY -aqebsny
y A A 3 A
|1 v
96 —=
wm.m.MMmM 13131poXap v6
-syexbibueyqy Bunyjeyossbnzyony
.l 2
194041 S#Y U219 S
‘#d mmmw_h_ﬂm -Bibueyqe s#Y .mMNO_nN_
usayotads - -sbunupio| suabibueyqe|and
T N i I
Zveyuig V0P iy dBuu
w:cco> -sBunayny ~328413uI .omu_wcc_w 0¢

-shey wop Jautaixe

UOA

-sbunpjiqqy UoA

wayuresbunpjiqqy Uop

b e e e e e o — —— —— —_—_— e e e)

35/45

DE 600 05 860 T2 2004.08.05

102A
/— 1028 00 | 102N
a N\

104B 104C 104F
104A 104D 104E —\ /— 104C
~A___p

. A A A
Not — r=f-Af-At-—f--f---mmmmm - ~f--
U

AI — T
Blocked(O)‘: Ot

104H —1 = 1,
|
104 — -1

Block(0) ———
Block(1)
Block(2)

-
(=
(o
q
(=
-

Block(N-2)
Block(N-1)

104 —1 L

104K — T B -
'S T
104L —T oy
[
R A A Abhéngigkeitspuffer 88

|
|
|
|
i
!
|
|
{
1
|
!
|
!
i
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|

r
|
|
i
!
|
|
]
|
]
|
|
|
]
|
|
]
!
!
|
|
]
|
!
|
|
|
|
|
|
|
1
|
!
|
|
|
|
I
]
i
L

36/45

DE 600 05 860 T2 2004.08.05

v

Zv WdyuR
-19ydiads/ape UoA

‘Bi
L b4 g0b-VOP UauL)y
-sbunaynjsny Uop
9t 8YUISAdRIRIUT
dAysyonsiap Yonsaan UBUIIX® 3P UOA
J93nau43 Janaulg
1 auoQq Jsowyy > “UaJlaipuos/uajindg
(xo0ig -
A A . (VT 06 udssalpy-sAiuyd
Vo8 ANy Joynd WOoA
(OWvd Ane
[1+00p (e (Nbumjeydsienays |, z8 Bunyjeyos
dod (o1 -lyemsne
-aqebsny uoa/uy
. »> (N1sanba
/1 8901 /t - vool ()poxoolg JION | A o
mwo_‘ V801
(Moolg (1 +Dx1o01g (Dxo0ig (Nbis™Anjey
v v

\ 4

Z643)4nd
#Y Jaydlads wion

37/45

DE 600 05 860 T2 2004.08.05

INew_Op tPick(i)
nforde -
New_Op & |Blocked run % Pick(i)
1Blocked 1_4- Latenz= 116
variabel
New_Op & ™ piockiert lalmost_done &
Blocked 112 Block- Undo
ed
Blocked IBlocked
ExecV
118
Retired almost_done &| Latency
Undo =
Blocked Undo
' Exec6
IRetired Undo 120
- Undo
geschlossen Latenc
Y
132 Undo Undo =5
136
Undo Exec5
122
Latenz
1Undo Undo i
Execd
124 Latenz
=3
IUndo
134
Undo
Blocked =
INot_Blocked(i) | E;(SSS <
(blocked_non_spec Undo -
& Inon_spec) |
(blocked_until_fill & 1Und
1(fll_hit(i) &fll) ndo
Block(i) = !lnvalid Latenz
& IExec2 & Exect 'Undo Exec? -
IExec1 & !Done 130 128 /[
138 - -
Undo = _\ -
Retry_this_op | Ret : _
. ry_this_op = (Retry & Exec1) | .
INot_Blocked(i) Retry_PA(i) | Retry_Stq(i) Fig. 8

38/45

DE 600 05 860 T2 2004.08.05

142 144 146 148
/- / /- /

Blocked_ | Blocked
non_spec | until_fill

140 N Fig. 9

Zustand Weiteres

10 (R#10) ,
11 (Dependent on 10, R#15) Y 150
12 (Dependent on 11, R#23)
I3 (Dependent on 12, R#34)
14 (Dependent on 10, R#45)

ckO clkk1 clkk2 clk3 clk4 clk5 clk6

|

|

|

l
-

| | | | | i
| | | | | !
Not_Blocked(10) |~ ___| ! : ! !
Not_Blocked(15) | } j 3 Vo ! b !
Not_Blocked(23) | j ! ; ; : ; g
Not_Blocked(34) | ! \ ' ! / ! : ! !
Not_Blocked(45) ! ' \ T ! ' ' ' !
|] | T T T T T
| | I | l \ | (| | |
| | l | i | | |
S e = L
Block(15) 1 ! \ | Ly :\\ [i [
| | \ | \ | \ | | | |
Block(23) 1 | : | : ‘\ : [[
Block(34) |___ { \I | \\ L\ L—"—‘“ —
Block@s) |+ \ | |t
| | | i I
YR ol
State(10) | done | done | blkd | blkd \blkd\l bikd | bikd |
State(15) | done | done | done | bikd | bikd |\ bikd | blkd |
State(23) | done | done | done | done | blkd | bikd | blkd |
State(34) | done | done | done | done | done | bikd | blkd :
State(45) :done:done:done: bikd : blkd : blkd : bikd :
| !
| i

{ | | | | I
Fig. 10

39/45

DE 600 05 860 T2 2004.08.05

| | | ! § I | | | ! | ! I
| | | |] | l] “ “ " " “
|) | 1 } } | !
|] | } | | | | I i) I 1
| | | 1 | | | | | |] “ "
| | [I |] | | |] I
| 3sbi | 3sbu | ysbs | pia | PG | PG | PG | PG | pYia | paia | g L g L (g
|2UOp | dUop | |8 | zx | isbi | g | zxa | isbi | pyia | piq | pa | pwa | (s1)ereis
} 8uop | auop | suop | auop ! Lxo | qui Jsby | 1xe | gxe ! ish | Pa | P | (o1)eress
1 }
" " " “ “ | " " " " | (OLa)Anas
| | | | |] l | | |
| | |] |] | | I |
| | |] |] | | 1 J
||..|||||_|lt,__..|||" | “ _ _ “ (gzhjo0
]
| | | | (gzpoig
_ L _ I (G1)100ig
]] I | | i
| | ! | | 1 (oL)¥o01g.
|
“ i | |) |
| ! | | |
| |]
A m
A S S | (c2)paxooigTIoN
L L | (G1)paooigTIoN
! “ “ | ! | (01)p@xo0ig 10N
| !] I |
| | | | | “
L0 B2 B0 L0 90 SHI0 A0 €MD AP LM OO
I (€Z#d 'Ll uon BiBuBYqY) 2|
_ (SL#4 ‘01 uon Bibueyqy) ||
csl (01#) Ol

40/45

DE 600 05 860 T2 2004.08.05

| !) ! |) | ! l | | | !
|] | | | | | | | | | |]
] ! ! | 1 | |]] ! | | }
| | | |] | ! | |] | [!
| | | !] | | | | ! | | |
i] | | |] f ! | | | | |
| PYIQ | PIG | PHIG | Pl |t D pwia ! pwia L pia L g L pia L psia ! e | (e)erers
 ¥SPI PG | PYIQ | Pl | c) piq | sba ! asby D pia ! g g | psia ! (g1)erers
) bXe | oxe fasbi pya | oo L pwid ! pwig | gxe | gxe ! ISB1 I PHa | piia | (oL)sieis
" “ " _ " L[| L\ |1 (0u#d) 0edsuou *Anes
I | | ! |
—T T 11 | | N |1 (Ohrd)oeds uou
| | | | | ! 1 | | | | |
el ntudte el el St St b 01 ol e et kSt R
S U U R D ..ll.,’ lllll_l/ll-«lll_ €eMooig
_ | _ I (S1)ooig
|] ! I | | | / | i
_ U | ! | | | 1 (0L)0ig
| | | | | I i | |
! | ! | | | i | |
i I I i b ! I I
] ! | | ! ! | ! |
i | ! | |] | i]
_ _ — _ : _ _ _ _
e gy S T__1+--2) (e0)pexooigTIoN
__ ” / “ " “ _ “ m | (S1)paxooigTIoN
1 "
; ” " ; “ “ ﬂ _ , (01)paxo0ig 10N
i | | I ! | | ! |
i | | | | I [[!
E+U ZHU Lsu WP T 9D SHO WO E9 ZAR IR ONIO
o)) ‘
A Mo HPR Mm%m Ll uon Bibueyqy) ZI
i m m .
| O oo

41/45

DE 600 05 860 T2 2004.08.05

160

AW /162 /164

166
/_

168
/_

170
/_

V Laden PA(39:3)

Byte

Maskierung
(7:0)

Laden Byte
PA(11:3)+1 i ieiale

Speichern
Byte- Speichern
y maskierun . y v Byte-
Speichern PA = Speichern PA = maskierun
T
. A 4
Fillen PA’ — 31 = Fillen =
(39:6) PA(11:6) Y V
.
4
Fill_hit(i) Retry_PA(i)
J An ROP Steuer- An ROP Steuer- .
172 schaltung(i) 86A schaltung(i) 86A Flg 13

180

\ /—182 /—184

/—186

/—188

\Y Speichernl R#

\

Speichern2 R#

4 R#,
speichern

ausfihren

1]

Y

190»/

Fig. 14

Retry_Stq(i)

An ROP Steuer-
schaltung(i) 86A

42/45

DE 600 05 860 T2 2004.08.05

i ! I ! l | | I) “ " " “ “ “
T T T R S A
| | | | _ | _ _ _ i | _ ! | _
_ | | | _ |) | _ _ _ _ | | _
| _ | | | | [_ | B | _ _ ! _
| SUOP | 8UOP | 8UOP |2UOP | L@ | Zxo | isbi | pia | pYia | PYIA | pYiq | suop ! auopeuop! (gz)erms
"mcovnm:o_u“mcoc“mcou"mcon“mcov“ 1xa | gxo | 1sby | pya | pyiq | pyig jouopleuop! (G1)aElS
"m:ov"mcon"mcov“mcov“mcov"mcov“mcou"mcou“ RE) _ A “ £x8 “ pxa | 1shi _mCOU“ (o1)s1B)S
_ | -
i S S e (R ST I
T e e e e
! | |
[_ | [| _ | _ _) | | | | _
, _ | ! | _ _ _ |
A S N S, p s b B
" “ _ [_ [[W “ " “ \" _ “ (510018
| i i “ " i i i i ! 1 L (01)¥o0ig
| _ _ | _ | [| | | _ _ _ _ |
[| _ _ _ | _ | | ! ! | ! ! |
| [| _ _ ! _ !
_ | |
o
| | | | _ | _ b ! ! ! _ | _
i e s R
A R N S S S NV sy sy N 0 SO
! ; _ ! ! ! ! ! ! ! ! ! _ _ I (01)pexoojg 10N
| " “ “ n m) | “ “ | “ “ | _
_ _ ! _ _ | | _ | ! | _ [_ !

€L 2l Ll 0L 639 BA0 M0 OMID SN0 PO MO A0 e OMI0

43/45

A D O P (€Z#Y ‘LI uona BiBueyqy) 2|
‘ uoA 6ibueyqy)

o5 — (G1#d ‘01 L

(OL#y uspen))

DE 600 05 860 T2 2004.08.05

9] "Bi4

sng (0[44 81¢
VSI3arvsi
18499-YS]
91C a5
opnIgsnE gcie
a1epunyas 18199-10d

\fA %4
1R199-10d

cee

snep
/injelsel

N—~¢lz sng1od

00¢

92z
abiazuy
T
yY “ egce “
!]
| S H PR |
80¢ [T T K
[
6 ! enL
unJanalsyiyels B01
[10S5920.d
y [
o __
sng dov
N— 012
y
202 T or
9dnigsng sng NdO 10SS8Z0.4d
4 A
. /ll y
snqJaydiads 90¢ 577
! Jaydrads
-ayoe) 71
¥0C

Jayoladsidney

44/45

DE 600 05 860 T2 2004.08.05

Speicher Speicher
314A 3148
r A
5 /— 316A . /— 316B
’ MC MC
318C —~C -1 318A 318D ~C - 318F
Verarbeitungs- > Verarbeitungs-
IF knoten IF N 324A IF {knoten IF
312A 3128
) \— 324B
IF \ IF \
£ 3188 ‘ T \— 318E
324E ~ — 324F 324C N L~ 324D
y Vo 318H ! W 318K
IF 181 IF 318L
318G —~C 3 318J ~C
VerarbeitungsA » [Verarbeitungs >
IF [knoten IF . \—324G IF knoten F Gl/O"t
era
312C 312D
A N— 324H 320A
MC \ MC \ +
£ T31gc + 316D
y y
Speicher Speicher
314C 314D 110
Geréat
/4 3208
300
Fig. 17

45/45

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

