
*DE60005860T220040805*
ß (19)
Bundesrepublik Deutschland 
Deutsches Patent- und Markenamt
(10) DE 600 05 860 T2 2004.08.05
 

(12) Übersetzung der europäischen Patentschrift

(97) EP 1 244 962 B1
(21) Deutsches Aktenzeichen: 600 05 860.3
(86) PCT-Aktenzeichen: PCT/US00/22458
(96) Europäisches Aktenzeichen: 00 964 913.8
(87) PCT-Veröffentlichungs-Nr.: WO 01/050253
(86) PCT-Anmeldetag: 16.08.2000
(87) Veröffentlichungstag

der PCT-Anmeldung: 12.07.2001
(97) Erstveröffentlichung durch das EPA: 02.10.2002
(97) Veröffentlichungstag

der Patenterteilung beim EPA: 08.10.2003
(47) Veröffentlichungstag im Patentblatt: 05.08.2004

(51) Int Cl.7: G06F 9/38

(54) Bezeichnung: ABLAUFSTEUERUNG ZUM AUSGEBEN UND WIEDERAUSGEBEN VON KETTEN ABHÄNGIGER 
BEFEHLE

(30) Unionspriorität:
476322 03.01.2000 US
476570 03.01.2000 US
476578 03.01.2000 US
476204 03.01.2000 US

(73) Patentinhaber: 
Advanced Micro Devices, Inc., Sunnyvale, Calif., 
US

(74) Vertreter: 
Patentanwälte von Kreisler, Selting, Werner et col., 
50667 Köln

(84) Benannte Vertragsstaaten: 
DE, GB

(72) Erfinder: 
KELLER, B., James, Palo Alto, US; HADDAD, W., 
Ramsey, Cupertino, US; MEIER, G., Stephan, 
Sunnyvale, US

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europä-
ischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch 
einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebühr entrichtet worden ist (Art. 99 (1) Europäisches Patentübereinkommen).

Die Übersetzung ist gemäß Artikel II § 3 Abs. 1 IntPatÜG 1991 vom Patentinhaber eingereicht worden. Sie wurde 
vom Deutschen Patent- und Markenamt inhaltlich nicht geprüft.
1/45



DE 600 05 860 T2 2004.08.05
Beschreibung

Hintergrund der Erfindung

1. Technisches Gebiet

[0001] Diese Erfindung betrifft das Gebiet von Prozessoren und insbesondere Mechanismen zur Ablaufpla-
nung von Befehlen innerhalb Prozessoren.

2. Stand der Technik

[0002] Superskalare Prozessoren versuchen eine hohe Leistungsfähigkeit zu erreichen, indem sie mehrere 
Befehle pro Taktzyklus ausgeben und ausführen und indem sie die höchst mögliche Taktfrequenz verwenden, 
die mit dem Design vereinbar ist. Ein Verfahren zum Steigern der Anzahl der pro Taktzyklus ausgeführten Be-
fehle ist die unregelmäßige Ausführung. Bei der unregelmäßigen Ausführung können Befehle in einer anderen 
Reihenfolge ausgeführt werden als in der Programmsequenz (oder "Reihenfolge des Programms") angegeben 
ist. Gewisse Befehle, die in einer Programmsequenz nahe bei einander sind, können Abhängigkeiten haben, 
welche ihre gleichzeitige Ausführung verhindern, während nachfolgende Befehle in der Programmsequenz kei-
ne Abhängigkeiten von den vorherigen Befehlen haben müssen. Entsprechend kann eine außer der Reihe 
Ausführung die Leistungsfähigkeit des superskalaren Prozessors durch eine Steigerung der Anzahl der gleich-
zeitig ausgeführten Befehle (im Mittel) erhöhen. Ein weiteres Verfahren, das sich auf die ungeordnete Ausfüh-
rung bezieht, ist die spekulative Ausführung, bei der Befehle ausgeführt werden, die auf andere Befehle folgen, 
welche die Ausführung des Programms veranlassen können, einem anderen Pfad zu folgen als dem Pfad, der 
die spekulativen Befehle enthält. Zum Beispiel können Befehle spekulativ sein, falls die Befehle auf einen be-
stimmten Befehl folgen, der eine Ausnahme verursachen könnte. Befehle sind auch spekulativ, wenn die Be-
fehle einem vorher gesagten, bedingten Verzweigungsbefehl folgen, der noch nicht ausgeführt worden ist. Auf 
ähnliche Weise können Befehle ungeordnet oder spekulativ im Ablauf geplant, ausgegeben usw. werden.
[0003] Bedauerlicherweise führt die Ablaufplanung von Befehlen für die ungeordnete oder spekulative Aus-
führung zu zusätzlicher Komplexität bei der Hardware in dem Prozessor. Der Ausdruck „Ablaufplanung" be-
zieht sich im Allgemeinen auf die Auswahl eines Befehls für die Ausführung. Typischerweise versucht der Pro-
zessor Befehle so schnell wie möglich für den Ablauf zu planen, um die durchschnittliche Rate der Befehlsaus-
führung zu maximieren (zum Beispiel durch Ausführen von Befehlen außer der Reihe, um Abhängigkeiten und 
die Verfügbarkeit von Hardware für verschiedene Typen von Befehlen zu behandeln). Diese Komplexitäten 
können die Taktfrequenz begrenzen, bei denen der Prozessor arbeiten kann. Insbesondere müssen die Ab-
hängigkeiten zwischen den Befehlen von der Hardware der Ablaufplanung berücksichtigt werden. Im Allgemei-
nen bezieht sich, wie hier verwendet, der Ausdruck „Abhängigkeit" auf eine Beziehung eines ersten Befehls 
und eines nachfolgenden zweiten Befehls in der Reihenfolge des Programms, welche die Ausführung des ers-
ten Befehls vor der Ausführung des zweiten Befehls erfordert. Eine Vielzahl von Abhängigkeiten kann definiert 
werden. Zum Beispiel tritt eine Abhängigkeit vom Quelloperanden auf, wenn ein Quelloperand des zweiten Be-
fehls ein Zieloperand des ersten Befehls ist.
[0004] Im Allgemeinen haben Befehle einen oder mehrere Quelloperanden und einen oder mehrere Zielope-
randen. Die Quelloperanden sind Eingangswerte, die in Übereinstimmung mit der Definition des Befehls zu 
manipulieren sind, um ein oder mehrere Ergebnisse zu erzeugen (welche die Zieloperanden sind). Quellund 
Zieloperanden können Speicheroperanden sein, die in einer Speicherstelle außerhalb des Prozessors gespei-
chert werden, oder können Registeroperanden sein, die in in dem Prozessor enthaltenen Registerspeicherstel-
len gespeichert werden. Die von dem Prozessor verwendete Befehlssatzarchitektur definiert eine Anzahl von 
architekturisierten Registern. Diese Register sind von der Befehlssatzarchitektur zu existieren definiert und Be-
fehle können kodiert werden unter Verwendung der architekturisierten Register als Quell- und Zieloperanden. 
Ein Befehl gibt ein bestimmtes Register als einen Quell- oder Zieloperanden über eine Registernummer (oder 
Registeradresse) in einem Operandenfeld eines Befehls an. Die Registernummer identifiziert das ausgewählte 
Register einzigartig unter den architekturisierten Registern. Ein Quelloperand wird von einer Quellregisternum-
mer identifiziert und ein Zieloperand wird von einer Zielregisternummer identifiziert.
[0005] Zusätzlich zu den Abhängigkeiten der Operanden, können von dem Prozessor ein oder mehrere Ty-
pen von Ordnungsabhängigkeiten durchgesetzt werden. Ordnungsabhängigkeiten können zum Beispiel ver-
wendet werden, um die verwendete Hardware zu vereinfachen oder um eine korrekte Ausführung des Pro-
gramms zu erzeugen. Durch das Zwingen von gewissen Befehlen, in einer Reihenfolge im Hinblick auf gewisse 
andere Befehle ausgeführt zu werden, kann die Hardware zum Behandeln von Konsequenzen der außer der 
Reihe Ausführung der Befehle unterdrückt werden. Zum Beispiel können Befehle, die speziellen Register, wel-
che einen allgemeinen Betriebszustand des Prozessors enthalten, aktualisieren, die Ausführung einer Vielzahl 
von nachfolgenden Befehlen beeinflussen, die nicht explizit auf die speziellen Register zugreifen. Im Allgemei-
2/45



DE 600 05 860 T2 2004.08.05
nen können Ordnungsabhängigkeiten von Mikroarchitektur zu Mikroarchitektur variieren.
[0006] Während der Mechanismus für die Ablaufplanung Abhängigkeiten respektiert, ist es wünschenswert, 
bei der ungeordneten und/oder spekulativen Ablaufplanung so aggressiv wie möglich zu sein, in einem Ver-
such, den realisierten Gewinn der Leistungsfähigkeit zu maximieren. Jedoch wird, je aggressiver der Mecha-
nismus für die Ablaufplanung ist (das heißt je weniger Bedingungen, welche einen bestimmten Befehl daran 
hindern, für den Ablauf geplant zu werden), desto wahrscheinlicher wird das Auftreten eines nicht korrekt aus-
geführten Befehls. Der Mechanismus zur Wiederherstellung von nicht korrekt ausgeführten Befehlen war im 
Allgemeinen, den nicht korrekt ausgeführten Befehl und alle nachfolgenden Befehle aus der Pipeline des Pro-
zessors zu entfernen und den nicht korrekt ausgeführten Befehl (und nachfolgende Befehle) erneut abzurufen. 
Oft wird die Entfernung und das erneute Abrufen von der Entdeckung einer nicht korrekten Ausführung aus 
Gründen der Einfachheit der Hardware verzögert (zum Beispiel bis der nicht korrekt ausgeführte Befehl der 
älteste Befehl in der Bearbeitung ist). Die durchschnittliche Anzahl von tatsächlich pro Taktzyklus ausgeführten 
Befehlen sinkt wegen der nicht korrekten Ausführung und den nachfolgenden Ereignissen zur Entfernung. Für 
aggressive Mechanismen für die Ablaufplanung, welche häufiger auf nicht korrekte Ausführung treffen, kann 
die Verschlechterung der Leistungsfähigkeit, welche diesen Mechanismen zur Wiederherstellung zuzurechnen 
ist, erheblich sein. Entsprechend ist ein Mechanismus zur Wiederherstellung von einer nicht korrekten, speku-
lativen Ausführung gewünscht, der die Gewinne der Leistungsfähigkeit, die durch eine aggressive spekulative 
oder ungeordnete Ablaufplanung möglich gemacht werden, sichert.
[0007] Das US Patent mit der Nummer 5,987,594 beschreibt einen Prozessor, der kodierte Befehle unter Ver-
wendung einer Ablaufplanungseinheit ausführt, welche kodierte Befehle empfängt und sie für die Ausführung 
ausgibt. Der Prozessor gibt Speicheroperationen, welche in einem Cachespeicher nicht treffen, wenn Daten 
an den Cachespeicher zurück gegeben werden, und Befehle, die von den genannten Speicheroperationen ab-
hängen, erneut aus. Des weiteren kann der Prozessor eine ungeordnete Ausführung von Speicheroperationen 
durchführen durch Detektierung von „Lesen nach Schreiben" Gefahren und Weiterleitung der Schreibdaten an 
den Lese Befehl.

Offenbarung der Erfindung

[0008] Die oben ausgeführten Probleme werden zu einem großen Teil von einem Ablaufplaner, wie hier be-
schrieben, gelöst. Der Ablaufplaner gibt Befehlsoperationen für die Ausführung aus, hält aber auch die Befehl-
soperationen zurück. Falls eine bestimmte Befehlsoperation nachfolgend als nicht korrekt ausgeführt befunden 
wird, kann die bestimmte Befehlsoperation von dem Ablaufplaner erneut ausgegeben werden. Vorteilhafter-
weise kann die Strafe für das nicht korrekte Planen des Ablaufs von Befehlsoperationen im Vergleich zum Ent-
fernen der bestimmten Befehlsoperation und jüngeren Befehlsoperationen aus der Pipeline und zum erneuten 
Abrufen der bestimmten Befehlsoperation reduziert werden. Die Leistungsfähigkeit kann wegen der reduzier-
ten Strafe für eine nicht korrekte Ausführung reduziert werden. Des weiteren kann der Ablaufplaner einen ag-
gressiveren Mechanismus für die Ablaufplanung verwenden, da die Strafe für eine nicht korrekte Ausführung 
verringert ist.
[0009] Des weiteren kann der Ablaufplaner die Angaben für Abhängigkeiten für jede Befehlsoperation, die 
ausgegeben worden ist, beibehalten. Falls die bestimmte Befehlsoperation erneut ausgegeben wird, können 
die Befehlsoperationen, die von der bestimmten Befehlsoperation abhängig sind (direkt oder indirekt) über die 
Angaben zur Abhängigkeit identifiziert werden. Der Ablaufplaner gibt auch die abhängigen Befehlsoperationen 
erneut aus. Befehlsoperationen, die in der Reihenfolge des Programms einer bestimmten Befehlsoperation 
nachfolgen, aber die nicht von der bestimmten Befehlsoperation abhängig sind, werden nicht erneut ausgege-
ben. Entsprechend kann die Strafe für die nicht korrekte Ablaufplanung von Befehlsoperationen im Hinblick auf 
das Entfernen der bestimmten Befehlsoperation und aller jüngeren Befehlsoperationen und das erneute Abru-
fen der bestimmten Befehlsoperation weiter reduziert werden. Die Leistungsfähigkeit kann somit weiter gestei-
gert werden.
[0010] Allgemein betrachtet, wird ein Ablaufplaner betrachtet. Der Ablaufplaner weist einen Befehlspuffer 
zum Speichern einer ersten Befehlsoperation, eine mit dem Befehlspuffer verbundene Ausgabeauswahlschal-
tung und eine Steuerschaltung auf. Die Ausgabeauswahlschaltung ist zum Auswählen einer ersten Befehlso-
peration zur Ausgabe aus dem Befehlspuffer konfiguriert. An die Ausgabeauswahlschaltung angeschlossen ist 
die Steuerschaltung konfiguriert, um einen ersten Ausführungszustand der ersten Befehlsoperation zu halten. 
Die Steuerschaltung ist konfiguriert, um den ersten Ausführungszustand in einen Ausführungszustand zu än-
dern in Reaktion auf die Ausgabeauswahlschaltung, welche die erste Befehlsoperation für die Ausgabe aus-
wählt. Des weiteren ist die Steuerschaltung konfiguriert, um den ersten Ausführungszustand in einen nicht aus-
geführten Zustand in Reaktion auf ein erstes Signal zu ändern, das anzeigt, dass die erste Befehlsoperation 
nicht korrekt ausgeführt ist.
[0011] Des weiteren wird ein Prozessor betrachtet, der einen Ablaufplaner und eine Ausführungseinheit auf-
weist. Der Ablaufplaner ist konfiguriert zum Speichern einer ersten Befehlsoperation und zum Ausgeben der 
3/45



DE 600 05 860 T2 2004.08.05
Befehlsoperation für die Ausführung. Der Ablaufplaner ist konfiguriert zum Halten eines ersten Ausführungs-
zustandes entsprechend der ersten Befehlsoperation und ist konfiguriert zum Ändern des ersten Ausführungs-
zustandes in einen Ausführungszustand in Reaktion auf das Ausgeben der ersten Befehlsoperation. An den 
Ablaufplaner angeschlossen zum Empfangen der ersten Befehlsoperation in Reaktion auf eine Ausgabe davon 
durch den Ablaufplaner, ist die Ausführungseinheit konfiguriert, die erste Befehlsoperation auszuführen. Die 
Steuerschaltung ist konfiguriert, um den ersten Ausführungszustand in einen nicht ausgeführten Zustand zu 
ändern in Reaktion auf ein erstes Signal, das anzeigt, dass die erste Befehlsoperation nicht korrekt ausgeführt 
ist. Darüber hinaus wird ein Computersystem betrachtet, das einen Prozessor und ein Eingangs/Ausgangs 
(I/O) Gerät, das konfiguriert ist, zwischen dem Computersystem und weiteren Computersystemen, an die das 
I/O Gerät angeschlossen werden kann, zu kommunizieren, umfasst.
[0012] Des weiteren wird ein Verfahren betrachtet. Eine erste Befehlsoperation wird von einem Ablaufplaner 
an eine Ausführungseinheit ausgegeben. Die erste Befehlsoperation wird nach der Ausgabe in dem Ablaufpla-
ner zurück gehalten. Ein erstes Signal wird empfangen, dass die erste Befehlsoperation nicht korrekt ausführt. 
Die erste Befehlsoperation wird in Reaktion auf den Empfang des ersten Signals erneut ausgegeben.
[0013] Darüber hinaus wird ein Prozessor betrachtet. Der Prozessor weist einen Ablaufplaner und eine Aus-
führungseinheit auf. Der Ablaufplaner ist konfiguriert, um eine erste Befehlsoperation zu speichern und um die 
erste Befehlsoperation für die Ausführung auszugeben. Der Ablaufplaner ist konfiguriert, um die erste Befehl-
soperation nach der Ausgabe zurück zu halten, und ist angeschlossen, um ein erstes Signal zu empfangen, 
das anzeigt, dass die erste Befehlsoperation nicht korrekt ausgeführt wurde. In Reaktion auf das erste Signal 
ist der Ablaufplaner konfiguriert, die Befehlsoperation in Reaktion auf das erste Signal erneut auszugeben. An 
den Ablaufplaner angeschlossen, um die erste Befehlsoperation in Reaktion auf die Ausgabe davon durch den 
Ablaufplaner zu empfangen, wobei die Ausführungseinheit konfiguriert ist, die erste Befehlsoperation auszu-
führen.

Kurze Beschreibung der Zeichnungen

[0014] Weitere Aufgaben und Vorteile der Erfindung werden bei dem Studium der folgenden detaillierten Be-
schreibung und der Bezugnahme auf die begleitenden Zeichnungen offenbar, in denen:
[0015] Fig. 1 ein Blockdiagramm eines Ausführungsbeispiels eines Prozessors ist.
[0016] Fig. 2 ein beispielhaftes Pipelinediagramm ist, welches von einem in Fig. 1 gezeigten Ausführungs-
beispiel des Prozessors verwendet werden kann.
[0017] Fig. 3 ein Blockdiagramm ist, das ein Ausführungsbeispiel der in Fig. 1 gezeigten Abbildungseinheit, 
des Ablaufplaners, des Ganzzahl Ausführungskerns und der Lade/Speicher-Einheit detaillierter darstellt.
[0018] Fig. 4 ein Blockdiagramm eines Ausführungsbeispiels des in den Fig. 1 und 3 gezeigten Ablaufplaners 
ist.
[0019] Fig. 5 ein Blockdiagramm eines Ausführungsbeispiels eines Abhängigkeitsvektors ist.
[0020] Fig. 6 ein Blockdiagramm eines Ausführungsbeispiels eines Abhängigkeitspuffers ist.
[0021] Fig. 7 ein Blockdiagramm eines Ausführungsbeispiels eines Bereichs des in Fig. 6 detaillierter gezeig-
ten Abhängigkeitspuffers ist.
[0022] Fig. 8 ein Zustandsmaschinendiagramm im Hinblick auf eine Befehlsoperation innerhalb eines Aus-
führungsbeispiels des Ablaufplaners ist.
[0023] Fig. 9 ein Blockdiagramm ist, das Zustandinformation darstellt, die für jede Befehlsoperation in einem 
Ausführungsbeispiel des Ablaufplaners gespeichert ist.
[0024] Fig. 10 ein Zeitablaufdiagramm ist, welches das Auflösen einer Abhängigkeitskette darstellt.
[0025] Fig. 11 ein Zeitablaufdiagramm ist, welches die Ausgabe und die erneute Ausgabe von Befehlsopera-
tionen von einem Ausführungsbeispiel des Ablaufplaners darstellt.
[0026] Fig. 12 ein Zeitablaufdiagramm ist, welches die Ausgabe und die nicht spekulative erneute Ausgabe 
von Befehlsoperationen von einem Ausführungsbeispiel des Ablaufplaners darstellt.
[0027] Fig. 13 ein Diagramm eines beispielhaften Eintrags in einem Ausführungsbeispiel des in Fig. 4 ge-
zeigten physikalischen Adresspuffers zusammen mit einer beispielhaften Logik zum Arbeiten auf diesem Ein-
trag ist.
[0028] Fig. 14 ein Diagramm eines beispielhaften Eintrags in einem Ausführungsbeispiel des in Fig. 4 ge-
zeigten Speicheridentifiziererpuffers zusammen mit einer beispielhaften Logik zum Arbeiten auf diesem Ein-
trag ist.
[0029] Fig. 15 ein Zeitablaufdiagramm eines Ausführungsbeispiels des erneuten Versuchens eines Ladevor-
gangs in Reaktion auf eine Speicheradresse, welche die Ladeadresse trifft, und des nachfolgenden Auflösens 
der abhängigen Operationen ist.
[0030] Fig. 16 ein Blockdiagramm eines ersten Ausführungsbeispiels eines Computersystems einschließlich 
des in Fig. 1 gezeigten Prozessors ist.
[0031] Fig. 17 ein Blockdiagramm eines zweiten Ausführungsbeispiels eines Computersystems einschließ-
4/45



DE 600 05 860 T2 2004.08.05
lich des in Fig. 1 gezeigten Prozessors ist.
[0032] Während die Erfindung zahlreichen Modifikationen und alternativen Ausbildungen unterworten werden 
kann, sind bestimmte Ausführungsbeispiele davon als Beispiel in den Zeichnungen gezeigt und werden hier 
detailliert beschrieben werden. Es sollte jedoch verstanden werden, dass die Zeichnungen und die dazu ge-
hörige detaillierte Beschreibung nicht beabsichtigt sind, die Erfindung auf die bestimmte offenbarte Form zu 
begrenzen, sondern dass die Erfindung vielmehr alle Modifikationen, Äquivalente und Alternativen umfassen 
soll, die in den Geist und den Umfang der vorliegenden Erfindung fallen, wie sie in den angefügten Ansprüchen 
definiert ist.

Weg(e) zum Ausführen der Erfindunq

Übersicht über den Prozessor

[0033] Es wird nun auf Fig. 1 Bezug genommen, in der ein Ausführungsbeispiel eines Prozessors 10 gezeigt 
ist. Weitere Ausführungsbeispiele sind möglich und werden betrachtet. In dem Ausführungsbeispiel aus Fig. 1
enthält der Prozessor 10 eine Zeilenvorhersage 12, einen Befehls-Cachespeicher (B-Cachespeicher) 14, eine 
Ausrichtungseinheit 16, eine Verzweigungsvorhersage/Abruf PC Erzeugungseinheit 18, eine Vielzahl von De-
kodiereinheiten 24A– 24D, eine Vorhersagefehltreffer-Dekodiereinheit 26, eine Mikrocode-Einheit 28, eine Ab-
bildungseinheit 30, eine Rückzugswarteschlange 32, eine architekturisierte Umbenennungsdatei 34, eine zu-
künftige Datei 20, einen Ablaufplaner 36, eine Ganzzahl-Registerdatei 38A, eine Gleitkomma-Registerdatei 
38B, einen Ganzzahl-Ausführungskern 40A, einen Gleitkomma-Ausführungskern 40B, eine Lade/Speicher-
einheit 42, einen Daten-Cachespeicher (D-Cachespeicher) 44, eine externe Interfaceeinheit 46 und einen PC 
Silo 48. Die Zeilenvorhersage 12 ist verbunden mit der Vorhersagefehltreffer-Dekodiereinheit 26, der Verzwei-
gungsvorhersage/Abruf PC Erzeugungseinheit 18, dem PC Silo 48 und der Ausrichtungseinheit 16. Der B-Ca-
chespeicher 14 ist verbunden mit der Ausrichtungseinheit 16 und der Verzweigungsvorhersage/Abruf PC Er-
zeugungseinheit 18, welche ferner mit dem PC Silo 48 verbunden ist. Die Ausrichtungseinheit 16 ist des wei-
teren mit der Vorhersagefehltreffer-Dekodiereinheit 26 und den Dekodiereinheiten 24A–24D verbunden. Die 
Dekodiereinheiten 24A–24D sind ferner mit der Abbildungseinheit 30 verbunden, und die Dekodiereinheit 24D
ist mit der Mikrocode-Einheit 28 verbunden. Die Abbildungseinheit 30 ist verbunden mit der Rückzugswarte-
schlange 32 (die mit der architekturisierten Umbenennungsdatei 34 verbunden ist), der zukünftigen Datei 20, 
dem Ablaufplaner 36 und dem PC Silo 48. Die architekturisierte Umbenennungsdatei 34 ist mit der zukünftigen 
Datei 20 verbunden. Der Ablaufplaner 36 ist mit den Registerdateien 38A–38B verbunden, welche des weite-
ren miteinander und mit den entsprechenden Ausführungskernen 40A–40B verbunden sind. Die Ausführungs-
kerne 40A–40B sind ferner mit der Lade/Speichereinheit 42 und dem Ablaufplaner 36 verbunden. Der Ausfüh-
rungskern 40A ist darüber hinaus mit dem D-Cachespeicher 44 verbunden. Die Lade/Speichereinheit 42 ist 
verbunden mit dem Ablaufplaner 36, dem D-Cachespeicher 44 und der externen Interfaceeinheit 46. Der D-Ca-
chespeicher 44 ist mit den Registerdateien 38 verbunden. Die externe Interfaceeinheit 46 ist mit einer externen 
Schnittstelle 52 und dem B-Cachespeicher 14 verbunden. Elemente, die hier durch eine Bezugsnummer ge-
folgt von einem Buchstaben bezeichnet werden, werden gemeinsam durch die Bezugszahl allein bezeichnet. 
Zum Beispiel werden die Dekodiereinheiten 24A–24D gemeinsam als Dekodiereinheiten 24 bezeichnet.
[0034] In dem Ausführungsbeispiel aus Fig. 1 verwendet der Prozessor 10 eine komplexe Befehlssatzbe-
rechnungs- (CISC) Befehlssatzarchitektur mit variabler Bitlänge. Zum Beispiel kann der Prozessor 10 die x86 
Befehlssatzarchitektur (auch als IA-32 bezeichnet) verwenden. Weitere Ausführungsbeispiele können andere 
Befehlssatzarchitekturen verwenden, einschließlich Befehlssatzarchitekturen mit fester Länge und reduzierten 
Befehlssatzberechnungs- (RISC) Befehlssatzarchitekturen. Gewisse in Fig. 1 gezeigte Merkmale können in 
solchen Architekturen unterdrückt werden. Des weiteren kann, falls gewünscht, jedes der obigen Ausführungs-
beispiele eine 64 Bit Architektur verwenden.
[0035] Die Verzweigungsvorhersage/Abruf PC Erzeugungseinheit 18 ist konfiguriert, um dem B-Cachespei-
cher 14, der Zeilenvorhersage 12 und dem PC Silo 48 eine Abrufadresse (Abruf PC) zur Verfügung zu stellen. 
Die Verzweigungsvorhersage/Abruf PC Erzeugungseinheit 18 kann einen geeigneten Mechanismus zur Vor-
hersage von Verzweigungen enthalten, der als Hilfe bei der Erzeugung von Abrufadressen verwendet wird. In 
Reaktion auf die Abrufadresse stellt die Zeilenvorhersage 12 Ausrichtungsinformation, die einer Vielzahl von 
Befehlen entspricht, der Ausrichtungseinheit 16 zur Verfügung und kann eine nächste Abrufadresse zum Ab-
holen von Befehlen zur Verfügung stellen, die dem von der bereit gestellten Befehlsinformation identifizierten 
Befehl nach folgen. Die nächste Abrufadresse kann, wie gewünscht, der Verzweigungsvorhersage/Abruf PC 
Erzeugungseinheit 18 zur Verfügung gestellt werden oder kann dem B-Cachespeicher 14 direkt zur Verfügung 
gestellt werden. Die Verzweigungsvorhersage/Abruf PC Erzeugungseinheit 18 kann eine Fangadresse von 
dem PC Silo 48 empfangen (falls ein Fang detektiert ist) und die Fangadresse kann den Abruf PC aufweisen, 
der von der Verzweigungsvorhersage/Abruf PC Erzeugungseinheit 18 erzeugt wurde. Anderenfalls kann der 
Abruf PC unter Verwendung der Information zu der Verzweigungsvorhersage und der Information von der Zei-
5/45



DE 600 05 860 T2 2004.08.05
lenvorhersage 12 erzeugt werden. Im Allgemeinen speichert die Zeilenvorhersage 12 Information entspre-
chend zu Befehlen, die zuvor spekulativ von dem Prozessor 10 abgerufen wurden. In einem Ausführungsbei-
spiel enthält die Zeilenvorhersage 12 2K Einträge, wobei jeder Eintrag eine Gruppe von einem oder mehreren 
Befehlen angibt, die hier als eine „Zeile" von Befehlen bezeichnet werden. Die Zeile der Befehle kann neben-
einander von der Befehle verarbeitenden Pipeline des Prozessors 10 verarbeitet werden durch die Platzierung 
in dem Ablaufplaner 36.
[0036] Der B-Cachespeicher 14 ist ein Cachespeicher hoher Geschwindigkeit zum Speichern von Befehlsby-
tes. In Übereinstimmung mit einem Ausführungsbeispiel kann der B-Cachespeicher 14 zum Beispiel eine 128 
KByte, vier Wege Satz assoziative Organisation aufweisen, die Cachezeilen mit 64 Byte verwendet. Jedoch 
kann jede B-Cachespeicher Struktur geeignet sein (einschließlich direkt abgebildeter Strukturen).
[0037] Die Ausrichtungseinheit 16 empfängt die Information zur Ausrichtung von Befehlen von der Zeilenvor-
hersage 12 und Befehlsbytes, die der Abrufadresse entsprechen, von dem B-Cachespeicher 14. Die Ausrich-
tungseinheit 16 wählt Befehlsbytes in jeder der Dekodiereinheiten 24A–24D in Übereinstimmung mit der zur 
Verfügung gestellten Information zur Ausrichtung von Befehlen aus. Genauer gesagt stellt die Zeilenvorhersa-
ge 12 einen Befehlszeiger zur Verfügung, der jeder Dekodiereinheit 24A–24D entspricht. Der Befehlszeiger or-
tet einen Befehl innerhalb der abgerufenen Befehlsbytes zur Beförderung an die entsprechende Dekodierein-
heit 24A–24D. In einem Ausführungsbeispiel können bestimmte Befehle zu mehr als einer Dekodiereinheit 
24A–24D befördert werden. Entsprechen kann in dem gezeigten Ausführungsbeispiel eine Zeile von Befehlen 
von der Zeilenvorhersage 12 bis zu 4 Befehle enthalten, obwohl andere Ausführungsbeispiele mehr oder we-
niger Dekodiereinheiten 24 enthalten können, um für mehr oder weniger Befehle in einer Zeile zu sorgen.
[0038] Die Dekodiereinheiten 24A–24D dekodieren die ihnen zur Vertügung gestellten Befehle und jede De-
kodiereinheit 24A–24D erzeugt Informationen, die eine oder mehrere den Befehlen entsprechende Befehlso-
perationen (oder ROPs) identifizieren. In einem Ausführungsbeispiel kann jede Dekodiereinheit 24A–24D bis 
zu zwei Befehlsoperationen pro Befehl erzeugen. Wie hier verwendet ist eine Befehlsoperation (oder ROP) 
eine Operation, für die eine Ausführungseinheit innerhalb der Ausführungskerne 40A–40B konfiguriert ist, sie 
als ein einzelnes Gebilde auszuführen. Einfache Befehle können einer einzelnen Befehlsoperation entspre-
chen, während komplexere Befehle mehrfachen Befehlsoperationen entsprechen können. Gewisse der kom-
plexeren Befehle können innerhalb der Mikrocode-Einheit 28 als Mikrocode Routinen implementiert sein (ab-
gerufen von einem Nur-Lese-Speicher darin über die Dekodiereinheit 24D in diesem Ausführungsbeispiel). 
Des weiteren können andere Ausführungsbeispiele eine einzelne Befehlsoperation für jeden Befehl verwen-
den (das heißt Befehl und Befehlsoperation können in derartigen Ausführungsbeispielen gleichbedeutend 
sein).
[0039] Der PC Silo 48 speichert die abgerufenen Adressen und Befehlsinformationen für jede Befehlsabru-
fung und ist verantwortlich für die Umleitung des Abrufens von Befehlen bei Ausnahmen (wie Befehlsfängen, 
wie sie von der von dem Prozessor 10 verwendeten Befehlssatzarchitektur definiert sind, falschen Vorhersa-
gen für Verzweigungen und weiteren mikroarchitektonisch definierten Fängen). Der PC Silo 48 kann einen 
Ringpuffer zum Speichern der Abrufadresse und Befehlsinformation, die den mehrfachen Zeilen von Befehlen 
entspricht, welche innerhalb des Prozessors 10 unerledigt sind, umfassen. In Reaktion auf die Zurückziehung 
einer Zeile von Befehlen kann der PC Silo 48 den entsprechenden Eintrag verwerfen. In Reaktion auf eine Aus-
nahme kann der PC Silo 48 der Verzweigungsvorhersage/Abruf PC Erzeugungseinheit 18 eine Fangadresse 
zur Vertügung stellen. Die Rückzugs- und Ausnahmeinformation kann von dem Ablaufplaner 36 zur Verfügung 
gestellt werden. In einem Ausführungsbeispiel weist die Abbildungseinheit 30 jedem Befehl eine Sequenznum-
mer (R#) zu, um die Reihenfolge der innerhalb des Prozessors 10 unerledigten Befehle zu identifizieren. Der 
Ablaufplaner 36 kann die R#s zu dem PC Silo 48 zurück geben, um die Befehlsoperationen zu identifizieren, 
die Ausnahmen erfahren oder Befehlsoperationen zurück ziehen.
[0040] Auf die Detektierung eines Fehltreffers in der Zeilenvorhersage 12 dirigiert die Ausrichtungseinheit 16
die entsprechenden Befehlsbytes von dem B-Cachespeicher 14 an die Vorhersagefehltreffer-Dekodiereinheit 
26. Die Vorhersagefehltreffer-Dekodiereinheit 26 dekodiert den Befehl, wobei einer Zeile von Befehlen jegliche 
Beschränkungen aufgezwungen werden, für die der Prozessor 10 entworfen ist (zum Beispiel maximale An-
zahl von Befehlsoperationen, maximale Anzahl von Befehlen, Beenden bei Verzweigungsbefehlen usw.) so-
bald eine Zeile beendet ist, stellt die Vorhersagefehltreffer-Dekodiereinheit 26 die Information der Zeilenvor-
hersage 12 zum Speichern zur Verfügung. Es ist zu bemerken, dass die Vorhersagefehltreffer-Dekodiereinheit 
26 konfiguriert sein kann, um Befehle abzusenden, wenn sie dekodiert werden. Alternativ kann die Vorhersa-
gefehltreffer-Dekodiereinheit 26 die Zeile von Befehlsinformationen dekodieren und sie der Zeilenvorhersage 
12 zum Speichern zur Verfügung stellen. Nachfolgend kann die fehltreffende Abrufadresse erneut in der Zei-
lenvorhersage 12 versucht werden und ein Treffer könnte detektiert werden.
[0041] Zusätzlich zu dem Dekodieren von Befehlen nach einem Fehltreffer in der Zeilenvorhersage 12 kann 
die Vorhersagefehltreffer-Dekodiereinheit 26 konfiguriert sein, um Befehle zu dekodieren, wenn die von der 
Zeilenvorhersage 12 zur Verfügung gestellte Befehlsinformation ungültig ist. In einem Ausführungsbeispiel ver-
sucht der Prozessor 10 nicht, Information in der Zeilenvorhersage 12 mit den Befehlen in dem B-Cachespei-
6/45



DE 600 05 860 T2 2004.08.05
cher 14 kohärent zu halten (zum Beispiel wenn Befehle in dem B-Cachespeicher 14 ersetzt oder ungültig ge-
macht werden, kann die Befehlsinformation nicht aktiv ungültig gemacht werden). Die Dekodiereinheiten 
24A–24D können die zur Verfügung gestellte Befehlsinformation verifizieren und können der Vorhersagefehl-
treffer-Dekodiereinheit 26 signalisieren, wenn ungültige Befehlsinformation detektiert ist. In Übereinstimmung 
mit einem bestimmten Ausführungsbeispiel werden die folgenden Befehlsoperationen von dem Prozessor 10
unterstützt: Ganzzahl (einschließlich arithmetischen, logischen, Schiebe/Rotations- und Verzweigungsoperati-
onen), Gleitkomma (einschließlich Multimediaoperationen und Lade/Speicher.
[0042] Die dekodierten Befehlsoperationen und Quell- und Zielregisternummern werden der Abbildungsein-
heit 30 zur Verfügung gestellt. Die Abbildungseinheit 30 ist konfiguriert, um eine Umbenennung der Register 
durchzuführen durch eine Zuweisung physikalischer Registernummern (PR#s) für jeden Zielregisteroperanden 
und jeden Quellregisteroperanden für jede Befehlsoperation. Die physikalische Registernummer identifiziert 
Register innerhalb der Registerdateien 38A–38B. Die Abbildungseinheit 30 stellt des weiteren einen Hinweis 
auf die Abhängigkeiten für jede Befehlsoperation zur Verfügung, durch zur Verfügung stellen von R#s der Be-
fehlsoperationen, die jede physikalische Registernummer aktualisieren, die einem Quelloperanden der Befehl-
soperation zugewiesen ist. Die Abbildungseinheit 30 aktualisiert die zukünftige Datei 20 mit den physikalischen 
Registernummern, die jedem Zielregister zugewiesen sind (und dem R# der entsprechenden Befehlsoperati-
on) basierend auf der entsprechenden logischen Registernummer. Des weiteren speichert die Abbildungsein-
heit 30 die logischen Registernummern der Zielregisters, die zugewiesenen physikalischen Registernummern 
und die zuvor zugewiesenen physikalischen Registernummern in der Rückzugswarteschlange 32. Wenn Be-
fehle zurück gezogen werden (der Abbildungseinheit 30 von dem Ablaufplaner 36 angezeigt), aktualisiert die 
Rückzugswarteschlange 32 die architekturisierte Umbenennungsdatei 34 und macht jegliche Register frei, die 
nicht länger in Benutzung sind. Entsprechend identifizieren die physikalischen Registernummern in der archi-
tekturisierten Umbenennungsdatei 34 die physikalischen Register, welche den übergebenen architekturalen 
Zustand des Prozessors 10 speichern, während die zukünftige Datei 20 den spekulativen Zustand des Prozes-
sors 10 repräsentiert. In anderen Worten speichert die architekturisierte Umbenennungsdatei 34 eine physika-
lische Registernummer, die jedem logischen Register entspricht, darstellend den übergebenen Registerzu-
stand für jedes logische Register. Die zukünftige Datei 20 speichert eine physikalische Registernummer, die 
jedem logischen Register entspricht, darstellend den spekulativen Registerzustand für jedes logische Register.
[0043] Die Zeile von Befehlsoperationen, die physikalischen Registernummern für die Quelle und die physi-
kalischen Registernummern für das Ziel werden in dem Ablaufplaner 36 in Übereinstimmung mit den von dem 
PC Silo 48 zugewiesenen R#s gespeichert. Des weiteren können Abhängigkeiten für eine bestimmte Befehl-
soperation als Abhängigkeiten von anderen Befehlsoperationen, die in dem Ablaufplaner gespeichert sind, no-
tiert werden. In einem Ausführungsbeispiel verbleiben die Befehlsoperationen in der Vorhersagefehltreffer-De-
kodiereinheit 26 bis sie zurück gezogen werden.
[0044] Der Ablaufplaner 36 speichert jede Befehlsoperation bis die für diese Befehlsoperation notierten Ab-
hängigkeiten zufrieden gestellt sind. In Reaktion auf die zeitliche Planung einer bestimmten Befehlsoperation 
zur Ausführung kann der Ablaufplaner 36 bestimmen, zu welchem Taktzyklus diese bestimmte Befehlsopera-
tion die Registerdateien 38A–38B aktualisieren wird. Verschiedene Ausführungseinheiten in den Ausführungs-
kernen 40A–40B können verschiedene Anzahlen von Stufen der Pipeline verwenden (und damit unterschied-
liche Latenzzeiten). Des weiteren können gewisse Befehle innerhalb einer Pipeline mehr Latenz als andere 
erfahren. Entsprechend wird ein Countdown erzeugt, der die Latenzzeit für diese bestimmte Befehlsoperation 
misst (in Nummern von Taktzyklen). Der Ablaufplaner 36 erwartet die angegebene Nummer von Taktzyklen (bis 
die Aktualisierung geschieht vor oder zusammenfallend mit den abhängigen die Registerdatei lesenden Be-
fehlsoperationen) und zeigt dann an, dass die Befehlsoperationen zeitlich geplant werden können, die von die-
ser bestimmten Befehlsoperation abhängig sind. Es ist zu bemerken, dass der Ablaufplaner 36 einen Befehl 
zeitlich planen kann, sobald seine Abhängigkeiten zufrieden gestellt worden sind (das heißt außer der Reihe, 
was seine Reihenfolge innerhalb der Warteschlange des Ablaufplaners betrifft).
[0045] Ganzzahl und Lade/Speicher Befehlsoperationen lesen Quelloperanden in Übereinstimmung mit den 
physikalischen Registernummern für die Quelle aus der Registerdatei 38A und werden für die Ausführung zu 
dem Ausführungskern 40A befördert. Der Ausführungskern 40A führt die Befehlsoperation aus und aktualisiert 
die dem Ziel innerhalb der Registerdatei 38A zugewiesenen physikalischen Register. Des weiteren meldet der 
Ausführungskern 40A die R# der Befehlsoperation und Ausnahmeinformation hinsichtlich der Befehlsoperati-
on (falls vorhanden) dem Ablaufplaner 36. Die Registerdatei 38B und der Ausführungskern 40B können auf 
ähnliche Weise im Hinblick auf Gleitkomma Befehlsoperationen arbeiten (und können der Lade/Speicherein-
heit 42 Speicherdaten für Gleitkomma Speichervorgänge zur Verfügung stellen). Es ist zu bemerken, dass 
Operanden für abhängige Operationen direkt zu den abhängigen Operationen umgeleitet werden können, falls 
die Operationen, von denen sie abhängig sind, gleichzeitig abschließen.
[0046] In einem Ausführungsbeispiel kann der Ausführungskern 40A zum Beispiel zwei Ganzzahleinheiten, 
eine Verzweigungseinheit und zwei Adresserzeugungseinheiten (mit entsprechenden Übersetzungsseiten-
blickpuffern oder TLBs) enthalten. Der Ausführungskern 40B kann einen Gleitkomma/Multimedia-Multiplizie-
7/45



DE 600 05 860 T2 2004.08.05
rer, einen Gleitkomma/Multimedia-Addieren und eine Speicherdateneinheit zum Liefern von Speicherdaten an 
die Lade/Speichereinheit 42 enthalten. Weitere Konfigurationen von Ausführungseinheiten sind möglich, ein-
schließlich einem kombinierten Gleitkomma/Ganzzahl Ausführungskern.
[0047] Die Lade/Speichereinheit 42 stellt eine Schnittstelle zu dem D-Cachespeicher 44 zur Verfügung, um 
Speicheroperationen durchzuführen und um Fülloperationen für Speicheroperationen, die den D-Cachespei-
cher 44 nicht treffen, zeitlich zu planen. Lade-Speicheroperationen können von dem Ausführungskern 40A be-
endet werden durch Ausführen einer Adresserzeugung und Weiterleiten von Daten an die Registerdateien 
38A–38B (von dem D-Cachespeicher 44 oder der Speicherwarteschlange innerhalb der Lade/Speichereinheit 
42). Speicheradressen können dem D-Cachespeicher 44 präsentiert werden, sobald sie von dem Ausfüh-
rungskern 40A erzeugt sind (direkt über Verbindungen zwischen dem Ausführungskern 40A und dem D-Ca-
chespeicher 44). Die Speicheradressen werden einem Eintrag in der Speicherwarteschlange zugeordnet. Die 
Speicherdaten können neben einander zur Verfügung gestellt werden, oder nach einander zur Verfügung ge-
stellt werden, in Übereinstimmung mit der Wahl des Entwicklers. Auf das Zurückziehen der Befehlsoperation 
werden die Daten in dem D-Cachespeicher 44 gespeichert (obwohl einige Verzögerung zwischen dem Zurück-
ziehen und der Aktualisierung des D-Cachespeichers 44 sein kann). Des weiteren kann die Lade/Speicherein-
heit 42 einen Lade/Speicher Puffer enthalten zum Speichern von Lade/Speicher Adressen, die den D-Cache-
speicher 44 nicht treffen, für nachfolgende Füllvorgänge des Cachespeichers (über die externe Interfaceeinheit 
46) und zum erneuten Versuchen der nicht treffenden Lade/Speicher Operationen. Die Lade/Speichereinheit 
42 ist ferner konfiguriert, um Abhängigkeiten von Lade/Speicher Operationen zu behandeln.
[0048] Der D-Cachespeicher 44 ist ein Cachespeicher mit hoher Geschwindigkeit zum Speichern von Daten, 
auf die von dem Prozessor 10 zugegriffen werden. Während der D-Cachespeicher 44 jede geeignete Struktur 
aufweisen kann (einschließlich direkt abbildender oder Satz assoziativer Strukturen), kann ein Ausführungs-
beispiel des D-Cachespeichers 44 einen 128 KByte, vier Wege Satz assoziativen Cachespeicher aufweisen, 
der Cachezeilen mit 64 Byte hat.
[0049] Die externe Interfaceeinheit 46 ist zur Kommunikation mit anderen Geräten über die externe Schnitt-
stelle 52 konfiguriert. Jede geeignete externe Schnittstelle 52 kann verwendet werden, einschließlich Schnitt-
stellen zu L2 Cachespeichern und einem externen Bus oder Bussen zum Anschließen des Prozessors 10 an 
andere Geräte. Die externe Interfaceeinheit 46 ruft Füllvorgänge für den B-Cachespeicher 14 und den D-Ca-
chespeicher 44 ab, ebenso wie sie verworfene aktualisierte Cachezeilen von dem D-Cachespeicher 44 an die 
externe Schnittstelle schreibt. Des weiteren kann die externe Interfaceeinheit 46 auch von dem Prozessor 10
erzeugte Lesevorgänge und Schreibvorgänge ausführen, die nicht zwischen gespeichert werden können.
[0050] Es wird nun auf Fig. 2 Bezug genommen, in der ein beispielhaftes Pipelinediagramm gezeigt ist, das 
einen beispielhaften Satz von Stufen einer Pipeline zeigt, die von einem Ausführungsbeispiel des Prozessors 
10 verwendet werden können. Weitere Ausführungsbeispiele können verschiedene Pipelines verwenden, 
Pipelines, die mehr oder weniger Stufen der Pipeline verwenden als die in Fig. 2 gezeigte Pipeline. Die in 
Fig. 2 gezeigten Stufen sind von senkrechten, gestrichelten Linien unterteilt. Jede Stufe ist ein Taktzyklus ei-
nes Taktsignals, das zur Taktung von Speicherelementen (zum Beispiel Registern, Auffangregistern, Flops 
usw.) innerhalb des Prozessors 10 verwendet wird.
[0051] Wie in Fig. 2 dargestellt enthält die beispielhafte Pipeline eine Stufe CAM0, eine Stufe CAM1, eine 
Stufe Zeilenvorhersage (LP), eine Stufe Befehls-Cachespeicher (IC), eine Stufe Ausrichtung (AL), eine Stufe 
Dekodierung (DEC), eine Stufe Abbildung1 (M1), eine Stufe Abbildung2 (M2), eine Stufe Ablaufplanung 
Schreiben (WR SC), eine Stufe Ablaufplanung Lesen (RD SC), eine Stufe Registerdatei Lesen (RF RD), eine 
Stufe Ausführung (EX), eine Stufe Registerdatei Schreiben (RF WR) und eine Stufe Zurückziehen (RET). Ei-
nige Befehle benutzen mehrfache Taktzyklen in der Stufe Ausführung. Zum Beispiel sind Speicheroperationen, 
Gleitkomma Operationen und Ganzzahl Multiplikationsoperationen in auseinander gezogener Darstellung in 
Fig. 2 gezeigt. Speicheroperationen können eine Stufe Adresserzeugung (AGU), eine Stufe Übersetzung 
(TLB), eine Stufe Daten-Cachespeicher 1 (DC1) und eine Stufe Daten-Cachespeicher 2 (DC2) enthalten. Auf 
ähnliche Weise können Gleitkomma Operationen bis zu vier Stufen Ausführung Gleitkomma (FEX1–FEX4) 
enthalten und Ganzzahl Multiplikationen bis zu vier (IM1–IM4) Stufen enthalten.
[0052] Während der Stufen CAM0 und CAM1 vergleicht die Zeilenvorhersage 12 die von der Verzweigungs-
vorhersage/Abruf PC Erzeugungseinheit 18 zur Verfügung gestellte Abrufadresse mit den Adressen der darin 
gespeicherten Zeilen. Des weiteren wird die Abrufadresse von einer virtuellen Adresse (zum Beispiel einer li-
nearen Adresse in der x86 Architektur) zu einer physikalischen Adresse während der Stufen CAM0 und CAM1 
übersetzt. In Reaktion auf die Detektierung eines Trefers während der Stufen CAM0 und CAM1 wird die ent-
sprechende Information der Zeile von der Zeilenvorhersage während der Stufe Zeilenvorhersage gelesen. Der 
Lesevorgang endet während der Stufe Befehls-Cachespeicher.
[0053] Es ist zu bemerken, dass, während die in Fig. 2 dargestellte Pipeline zwei Taktzyklen zur Detektierung 
eines Treffers in der Zeilenvorhersage 12 für eine Abrufadresse verwendet, andere Ausführungsbeispiele ei-
nen einzelnen Taktzyklus (und Stufe) zur Durchführung dieser Operation verwenden können. Darüber hinaus 
stellt in einem Ausführungsbeispiel die Zeilenvorhersage 12 eine nächste Abrufadresse für den B-Cachespei-
8/45



DE 600 05 860 T2 2004.08.05
cher 14 und einen nächsten Eintrag in der Zeilenvorhersage 12 für einen Treffer zur Vertügung und daher kön-
nen die Stufen CAM0 und CAM1 übersprungen werden für Abrufvorgänge, die von einem vorherigen Treffer 
in der Zeilenvorhersage 12 stammen.
[0054] Die von dem B-Cachespeicher 14 zur Verfügung gestellten Befehlsbytes werden von der Ausrich-
tungseinheit 16 für die Dekodiereinheiten 24A–24D ausgerichtet während der Stufe Ausrichtung in Reaktion 
auf die entsprechende Zeileninformation von der Zeilenvorhersage 12. Es ist zu bemerken, dass einige Befeh-
le auf mehr als eine Dekodiereinheit 24A–24D ausgerichtet sein können. Die Dekodiereinheiten 24A–24D de-
kodieren während der Stufe Dekodierung die zur Verfügung gestellten Befehle, die sowohl den Befehlen ent-
sprechende ROPs als auch Operandeninformation identifizieren. Die Abbildungseinheit 30 erzeugt während 
der Stufe Abbildung1 ROPs von den zur Verfügung gestellten Informationen und führt eine Umbenennung der 
Register durch (Aktualisierung der zukünftigen Datei 20). Während der Stufe Abbildung2 werden die ROPs und 
zugewiesenen Umbenennungen in der Rückzugswarteschlange 32 aufgezeichnet. Des weiteren werden die 
ROPs bestimmt, von denen jede ROP abhängig ist. Jede ROP kann registerabhängig von früheren ROPs sein, 
wie in der zukünftigen Datei ausgezeichnet ist, und kann auch andere Typen aufweisen (zum Beispiel Abhän-
gigkeiten von einem vorherigen Serialisierungsbefehl usw.).
[0055] Die erzeugten ROPs werden während der Stufe Ablaufplanung in den Ablaufplaner 36 geschrieben. 
Bis zu dieser Stufe fließen die ROPs, die von einer bestimmten Zeile an Information geortet sind, als eine Ein-
heit durch die Pipeline. Es ist zu bemerken, dass ROPs, die eine Mikrocode Routine aufweisen, eine Ausnah-
me zu der zuvor erwähnten. Aussage sein können, weil sie von dem Mikrocode ROM über mehrere Taktzyklen 
gelesen werden könnten. Jedoch können die ROPs, nachdem sie in den Ablaufplaner 36 geschrieben sind, zu 
verschiedenen Zeiten unabhängig durch die verbleibenden Stufen fließen. Im Allgemeinen verbleibt eine be-
stimmte ROP in dieser Stufe, bis sie von dem Ablaufplaner 36 zur Ausführung ausgewählt wird (zum Beispiel 
nachdem die ROPs, von denen die bestimmte ROP abhängig ist, wie oben beschrieben zur Ausführung aus-
gewählt worden sind). Entsprechend kann eine bestimmte ROP zwischen der Stufe Ablaufplanung Schreiben 
und der Stufe Ablaufplanung Lesen einen oder mehrere Taktzyklen an Verzögerung erfahren. Während der 
Stufe Ablaufplanung Lesen nimmt die bestimmte ROP an der Auswahllogik innerhalb des Ablaufplaners 36 teil, 
wird zur Ausführung ausgewählt und von dem Ablaufplaner 36 gelesen. Die bestimmte ROP schreitet dann in 
der Stufe Registerdatei Lesen fort zu den Lese Register Operationen von einer der Registerdateien 38A–38B
(abhängig von dem Typ der ROP).
[0056] Die bestimmte ROP und die Operanden werden dem entsprechenden Ausführungskern 40A oder 40B
zur Verfügung gestellt und die Befehlsoperation wird während der Stufe Ausführung auf den Operanden aus-
geführt. Zum Beispiel werden Speicher Befehlsoperationen (zum Beispiel Ladevorgänge und Speichervorgän-
ge) ausgeführt durch eine Stufe Adresserzeugung (in der die Datenadressen der Speicherstelle, auf die von 
der Speicher Befehlsoperation zugegriffen wird, erzeugt wird), eine Stufe Übersetzung (in der die von der Stufe 
Adresserzeugung zur Verfügung gestellte virtuelle Datenadresse übersetzt wird) und ein Paar von Stufen Da-
ten-Cachespeicher, in denen auf den D-Cachespeicher 44 zugegriffen wird. Gleitkomma Operationen können 
bis zu vier Taktzyklen an Ausführung verwenden und Ganzzahl Multiplikationen verwenden ähnlich bis zu vier 
Taktzyklen an Ausführung.
[0057] Nach Abschluss der Stufe oder der Stufen Ausführung aktualisiert die bestimmte ROP während der 
Stufe Registerdatei Schreiben ihre zugewiesenen physikalischen Register. Schließlich wird die bestimmte 
ROP zurück gezogen, nachdem jede vorherige ROP zurück gezogen ist (in der Stufe Zurückziehung). Wieder 
können einer oder mehrere Taktzyklen für eine bestimmte ROP zwischen der Stufe Registerdatei Schreiben 
und der Stufe Zurückziehung ablaufen. Des weiteren kann eine bestimmte ROP an jeder Stufe der Pipeline 
angehalten werden aufgrund von Bedingungen zum Anhalten der Pipeline, wie im Stand der Technik gut be-
kannt sind.

Ablaufplaner

[0058] Es wird nun auf Fig. 3 Bezug genommen, wo ein Blockdiagramm gezeigt ist, das ein Ausführungsbei-
spiel einer Abbildungseinheit 30, einer zukünftigen Datei 20, eines Ablaufplaners 36, eines Ganzzahl Ausfüh-
rungskerns 40A und einer Lade/Speicher-Einheit 42 darstellt. Eine gewisse beispielhafte Verbindung ist in der 
Fig. 3 dargestellt, als auch gewisse interne Details eines Ausführungsbeispiels der Einheiten außer dem Ab-
laufplaner 36. Weitere Ausführungsbeispiele sind möglich und werden betrachtet. In dem Ausführungsbeispiel 
von Fig. 3 ist die Abbildungseinheit 30 mit den Dekodiereinheiten 24A– 24D, der zukünftigen Datei 20 und dem 
Ablaufplaner 36 verbunden. Der Ablaufplaner 36 ist des weiteren mit der externen Interfaceeinheit 46, dem 
Ganzzahl Ausführungskern 40A und der Lade/Speicher-Einheit 42 verbunden. In dem Ausführungsbeispiel 
von Fig. 3 enthält die Abbildungseinheit 30 eine Zielumbenennungsschaltung 60, eine Inline Abhängigkeitsü-
berprüfungsschaltung 62, eine Abhängigkeitsordnungsschaltung 64, einen Satz von Abhängigkeitsordnungs-
registern 66A–66N und einen Mux 68. Die Zielumbenennungsschaltung 60, die Inline Abhängigkeitsüberprü-
fungsschaltung 62 und die Abhängigkeitsordnungsschaltung 64 sind angeschlossen, um von den Dekodierein-
9/45



DE 600 05 860 T2 2004.08.05
heiten 24A–24N Befehlsoperationen zu empfangen. Die Zielumbenennungsschaltung 60 ist mit dem Mux 68
und dem Ablaufplaner 36 verbunden. Die Inline Abhängigkeitsüberprüfungsschaltung 62 ist mit dem Mux 68
verbunden, der darüber hinaus mit der zukünftigen Datei 20 verbunden ist. Die zukünftige Datei 20 ist ange-
schlossen, um Identifizieren für Quelloperanden zu empfangen, die den von der Abbildungseinheit 30 empfan-
genen Befehlsoperationen entsprechen. Die Abhängigkeitsordnungsschaltung 64 ist mit den Abhängigkeits-
ordnungsregistern 66A–66N und mit dem Ablaufplaner 36 verbunden. Die Lade/Speicher-Einheit 42 umfasst 
eine Speicherwarteschlange 70, die angeschlossen ist, um eine physikalische Adresse von dem Ganzzahl 
Ausführungskern 40A zu empfangen. Der Ganzzahl Ausführungskern 40A enthält eine Adresserzeugungsein-
heit 40AA, die mit einem Übersetzungsseitenblickpuffer (TLB) 40AB verbunden ist.
[0059] Im Allgemeinen empfängt die Abbildungseinheit 30 Befehlsoperationen von den Dekodiereinheiten 
24A–24D. Die Abbildungseinheit 30 führt für jede Befehlsoperation eine Umbenennung der Register durch und 
bestimmt die Abhängigkeiten für jede Befehlsoperation von älteren Operationen, die in dem Ablaufplaner 36
in Verarbeitung sind (oder gleichzeitig an den Ablaufplaner 36 abgeschickt werden). Die Abbildungseinheit 30
stellt die Befehlsoperationen und die Umbenennungen der Register dem Ablaufplaner 36 zum Speichern zur 
Verfügung (und spätere Ausgabe zur Ausführung). Des weiteren stellt die Abbildungseinheit 30 eine Angabe 
der Abhängigkeiten jeder Befehlsoperation zur Verfügung (dargestellt als die Quelloperanden-Abhängigkeiten 
und die Ordnungsabhängigkeiten in Fig. 3). Genauer gesagt identifiziert die Abbildungseinheit 30 die ältesten 
Befehlsoperationen durch R# (die Nummer, welche die Befehlsoperation in dem Ablaufplaner 36 identifiziert). 
Die PR#s der den Operanden zugeordneten physikalischen Register werden dem Ablaufplaner 36 zur Verfü-
gung gestellt zur Ausgabe mit der Befehlsoperation, aber werden nicht bei der Bestimmung der Abhängigkei-
ten verwendet. Der Ablaufplaner 36 speichert die Befehlsoperationen und die entsprechenden Abhängigkeiten 
und plant den Ablauf der Befehlsoperationen in Reaktion auf die entsprechenden Abhängigkeiten, die befrie-
digt werden. Die für den Ablauf geplanten Befehlsoperationen werden an die Ausführungskerne 40A–40B aus-
gegeben, die Ressourcen zur Ausführung haben, die konfiguriert sind zur Ausführung dieser Befehlsoperation.
[0060] Gewisse Befehlsoperationen könnten die Ausführung nicht abschließen, wenn sie ausgegeben wer-
den. Zum Beispiel könnte in dem gezeigten Ausführungsbeispiel Speicheroperationen die Ausführung nicht 
abschließen. Falls ein Befehl die Ausführung nicht abschließt, wird er von einer Einheit, die in die Ausführung 
der Befehlsoperation einbezogen ist, „erneut versucht". Das erneute Versuchen einer Befehlsoperation um-
fasst das Signalisieren an den Ablaufplaner 36, dass die Befehlsoperation zurück gezogen wird. Der Ablauf-
planer 36 hält die ausgegebenen Befehlsoperationen zurück und, falls die ausgegebenen Befehlsoperationen 
zurück gezogen werden, gibt der Ablaufplaner 36 dann die Befehlsoperationen erneut aus. Insbesondere in 
einem Ausführungsbeispiel hält der Ablaufplaner 36 einen Ausführungszustand für jede Befehlsoperation auf-
recht. In Reaktion auf ein erneutes Versuchen einer zuvor ausgegebenen Befehlsoperation setzt der Ablauf-
planer 36 den Ausführungszustand der Befehlsoperation auf einen „nicht ausgeführt" Zustand zurück. Nach-
folgend kann die Befehlsoperation erneut ausgegeben werden. Des weiteren behält der Ablaufplaner 36 die 
Abhängigkeiten von jeder ausgegebenen Befehlsoperation. Alle Befehlsoperationen, die direkt oder indirekt 
von der zurück gezogenen Befehlsoperation abhängig sind, werden ebenfalls in den nicht ausgeführten Zu-
stand zurück gebracht. Es ist zu bemerken, dass eine Gruppe von Befehlsoperationen, in der die erste aus der 
Gruppe der Befehlsoperationen von einer bestimmten Befehlsoperation abhängig ist und in der jede andere 
Befehlsoperation innerhalb der Gruppe von den anderen Befehlsoperationen abhängig ist und durch die ande-
re Befehlsoperation indirekt von der bestimmten Befehlsoperation abhängig ist, hier als eine „Abhängigkeits-
kette" bezeichnet wird.
[0061] Das Zurücksetzen des Ausführungszustands auf nicht ausgeführt in Reaktion auf einen erneuten Ver-
such der Befehlsoperation oder einer anderen Befehlsoperation, von der die Befehlsoperation direkt oder indi-
rekt abhängig ist, wird hier als „rückgängig machen" dieser Befehlsoperation bezeichnet.
[0062] Indem Befehlsoperationen erlaubt wird, zurück gezogen zu werden (und in Reaktion auf ein erneutes 
Versuchen erneut ausgegeben zu werden), kann der Ablaufplaner 36 Befehlsoperationen aggressiv für die 
Ausführung im Ablauf planen und kann sich von einer nicht korrekten Ablaufplanung erholen durch die erneute 
Ausgabe der nicht korrekt im Ablauf geplanten Befehlsoperationen zu einem späteren Zeitpunkt. Die Strafe für 
eine nicht korrekte Ablaufplanung kann erheblich geringer sein als das Entfernen der nicht korrekt im Ablauf 
geplanten Befehlsoperation und aller jüngeren Befehlsoperationen und das erneute Abrufen beginnend an der 
nicht korrekt im Ablauf geplanten Befehlsoperation.
[0063] Die Abbildungseinheit 30 verwendet die Zielumbenennungsschaltung 60, die Inline Abhängigkeitsü-
berprüfungsschaltung 62, die zukünftige Datei 20 und die Abhängigkeitsordnungsschaltung 64, um die Abhän-
gigkeiten für jede Befehlsoperation zu bestimmen. Die Zielumbenennungsschaltung 60 empfängt eine Angabe 
für jede Befehlsoperation, ob diese Befehlsoperation einen Register-Zieloperanden hat oder nicht, und die 
Nummer des Zielregisters, falls die Befehlsoperation einen Register-Zieloperanden hat. Falls die Befehlsope-
ration einen Register-Zieloperanden hat, weist die Zielumbenennungsschaltung 60 der Befehlsoperation eine 
freie physikalische Registernummer zu. Die zugewiesenen PR#s werden dem Ablaufplaner 36 mit den Befehl-
soperationen zur Verfügung gestellt. Des weiteren stellt die Zielumbenennungsschaltung 60 die R#s und die 
10/45



DE 600 05 860 T2 2004.08.05
PR#s von jedem Befehlsoperand dem Mux 68 zur Verfügung.
[0064] Die zukünftige Datei 20 stellt für jede Registernummer des Quelloperanden die PR# und die R# der 
Befehlsoperation zur Verfügung, die zuletzt das entsprechende architekturisierte Register als einen Zielope-
randen hatte. Insbesondere kann die zukünftige Datei 20 eine Tabelle aufweisen mit Einträgen für jedes archi-
tekturisierte Register (und in Mikrocode verwendenden Ausführungsbeispielen, jedes temporäre Mikrocodere-
gister). Die Registernummern der Quelloperanden werden verwendet, um die Einträge der Register auszuwäh-
len, die als Quelloperanden für die Befehlsoperationen angegeben sind. Jeder Eintrag speichert die R# der 
ältesten Befehlsoperation (vor der aktuellen Zeile von Befehlsoperationen), um dieses Register zu aktualisie-
ren, und die PR# des physikalischen Registers, das dem Ziel dieser ältesten Befehlsoperation zugewiesen ist. 
Des weiteren enthält die zukünftige Datei 20 ein Gültig Bit (V) in jedem Eintrag. Das Gültig Bit zeigt an, ob die 
für dieses Register aufgezeichnete R# gültig ist oder nicht (das heißt ob die entsprechende Befehlsoperation 
in dem Ablaufplaner 36 immer noch gültig ist oder nicht). Das Gültig Bit wird gesetzt auf die Versendung der 
der R# entsprechenden Befehlsoperation in den Ablaufplaner 36 und wird zurück gesetzt, wenn die Befehlso-
peration zurück gezogen wird. Das Gültig Bit wird dem Ablaufplaner 36 zur Verfügung gestellt, wenn der Ein-
trag als die Abhängigkeit des Quelloperanden ausgewählt wird. Der Ablaufplaner 36 zeichnet für diesen Quell-
operanden keine Abhängigkeit auf, falls das Gültig Bit nicht gesetzt ist, und zeichnet eine Abhängigkeit auf, 
falls das Gültig Bit gesetzt ist.
[0065] Die Inline Abhängigkeitsüberprüfungsschaltung 62 empfängt die Nummern der Quell- und Zielregister 
von jeder Befehlsoperation und führt eine Überprüfung der Abhängigkeit innerhalb der Zeile der von der Abbil-
dungseinheit 30 empfangenen Befehlsoperationen durch. Die Inline Abhängigkeitsüberprüfungsschaltung 62
vergleicht die Nummern der Zielregister mit von jeder älteren Befehlsoperation in der Zeile mit den Nummern 
der Zielregister einer bestimmten Befehlsoperation innerhalb der Zeile. Falls eine Übereinstimmung für einen 
der Quelloperanden gefunden wurde, übersteuert die Inline Abhängigkeitsüberprüfungsschaltung 62 die R#s 
und die PR#s von der zukünftigen Datei 20, die dem Quelloperanden entsprechen, mit den entsprechenden 
von der Zielumbenennungsschaltung 60 zur Verfügung gestellten R# und PR#. Falls keine Übereinstimmung 
gefunden wurde, stellen die R# und die PR# von der zukünftigen Datei 20 die korrekte Registerumbenen-
nungs- und Abhängigkeits- R# für diesen Quelloperanden zur Verfügung. Die Inline Abhängigkeitsüberprü-
fungsschaltung 62 erzeugt Multiplexerauswahlleitungen für den Mux 68, um den geeigneten R# und PR# für 
jeden Quelloperanden von jeder Befehlsoperation auszuwählen. Es ist zu bemerken, dass der Mux 68 jede 
geeignete Auswahlschaltung zum Auswählen der Abhängigkeiten des Quelloperanden darstellen kann. Zum 
Beispiel kann der Mux 68 separate Multiplexer für jeden möglichen Quelloperanden von jeder möglichen Be-
fehlsoperation innerhalb der Zeile darstellen.
[0066] Die Inline Abhängigkeitsüberprüfungsschaltung kann des weiteren die Nummern der Zielregister für 
jede Befehlsoperation innerhalb der Zeile vergleichen, um die älteste Befehlsoperation innerhalb der Zeile zu 
bestimmen, um jedes architekturisierte Register zu aktualisieren, das ein Zieloperand für eine oder mehrere 
Befehlsoperationen innerhalb der Zeile ist. Die zukünftige Datei 20 kann dann in den Einträgen, die den Zielo-
peranden der Zeile entsprechen, mit den R#s und den PR#s aktualisiert werden, die von der Zielumbenen-
nungsschaltung 60 zugewiesen wurden. Der Pfad der Aktualisierung ist wegen der Übersichtlichkeit der Zeich-
nung in der Fig. 3 nicht gezeigt.
[0067] Die Abhängigkeitsordnungsschaltung 64 verfolgt Abhängigkeiten von der Reihenfolge, die im Hinblick 
auf gewisse Befehlsoperationen aufgezeichnet werden können. Zum Beispiel sind in einem Ausführungsbei-
spiel, das die x86 Befehlssatzarchitektur verwendet, Abhängigkeiten von der Reihenfolge definiert für: (i) Seg-
mentladevorgänge, welche eine Abhängigkeit von der Reihenfolge für jede nachfolgende Speicheroperation 
verursachen, (ii) Aktualisierungen von Steuerworten für Gleitkomma, welche eine Abhängigkeit von der Rei-
henfolge für jede nachfolgende Gleitkomma Befehlsoperation verursachen. Im Allgemeinen führt jede Befehl-
soperation, die eine Serialisierungssperre für nachfolgende Befehlsoperationen erzeugt, zu einer Abhängigkeit 
von der Reihenfolge von den serialisierenden Befehlsoperationen zu den nachfolgenden betroffenen Befehls-
operationen. Eine "Serialisierungssperre" ist eine Sperre in der Programmsequenz, um die eine ungeordnete 
oder spekulative Ausführung verboten ist. Einige Befehlssatzarchitekturen haben Befehle, deren alleinige 
Funktion es ist, die Serialisierungssperre zur Verfügung zu stellen.
[0068] Die oben erwähnten Abhängigkeiten von der Reihenfolge können nach verfolgt werden unter Verwen-
dung der Abhängigkeitsordnungsregister 66A–66N. Die Abhängigkeitsordnungsschaltung 64 speichert in Re-
aktion auf eine Befehlsoperation, welche eine Abhängigkeit von der Reihenfolge erzeugt, die R# der Befehls-
operation in einem der Abhängigkeitsordnungsregister 66A–66N. Ein Abhängigkeitsordnungsregister 
66A–66N kann für jede von dem Prozessor 10 detektierte Abhängigkeit von der Reihenfolge zur Verfügung 
gestellt werden. Zusätzlich kann ein Gültig Bit enthalten sein und kann in Reaktion auf das Aufzeichnen einer 
R# gesetzt werden und zurück gesetzt werden auf das zurück ziehen der entsprechenden Befehlsoperation 
(ähnlich wie bei dem Gültig Bit in der zukünftigen Datei 20). In Reaktion auf eine Befehlsoperation, die über 
eine bestimmte Abhängigkeit von der Reihenfolge als von der Reihenfolge abhängig definiert ist, stellt die Ab-
hängigkeitsordnungsschaltung 64 die entsprechende R# als eine der Abhängigkeiten von der Reihenfolge für 
11/45



DE 600 05 860 T2 2004.08.05
diese Befehlsoperation zur Verfügung.
[0069] Zusätzlich zu den obigen besonderen Situationen kann die Abhängigkeitsordnungsschaltung 64 eine 
Tabelle verwenden, um vorherige Ereignisse von Lade-Speicheroperationen zu verfolgen, welche vor den äl-
teren Speicher-Speicheroperationen im Ablauf geplant waren und nachfolgend als abhängig von dieser älteren 
Speicher-Speicheroperation befunden wurde (für den Speicheroperanden, auf den von dem Ladevorgang zu-
gegriffen wurde). Die Tabelle kann eine erste Tabelle aufweisen, die mit der Abrufadresse der Lade-Speicher-
operation indiziert wird und mit der Abrufadresse der älteren Speicher-Speicheroperation trainiert wird, wenn 
die Abhängigkeit während der Ausführung detektiert wird. Die zweite Tabelle wird mit der Abrufadresse der 
Speicher-Speicheroperation indiziert und wird auf das Versenden der Speicher-Speicheroperationen mit der 
R# der Speicher-Speicheroperation aktualisiert. Falls die Lade-Speicheroperation ein Treffer in der Tabelle ist, 
wird die entsprechende R# als eine Abhängigkeit von der Reihenfolge für die Lade-Speicheroperation zur Ver-
fügung gestellt.
[0070] Wie oben erwähnt plant der Ablaufplaner 36 den Ablauf und gibt eine Befehlsoperation in Reaktion auf 
die Detektierung, dass jede Abhängigkeit von dieser Befehlsoperation befriedigt ist, an einen geeigneten Aus-
führungskern aus. Genauer gesagt werden Speicheroperationen an eine Adresserzeugungseinheit 40AA in-
nerhalb des Ausführungskerns 40A ausgegeben. Die Adresserzeugungseinheit 40AA empfängt die Register-
operanden von der Ganzzahl Registerdatei 38A und erzeugt die Adresse des der Speicheroperation entspre-
chenden Speicheroperanden. Die Adresse ist die virtuelle Adresse, welche mittels eines Schemas zur Adress-
übersetzung, das von der von dem Prozessor 10 verwendeten Befehlssatzarchitektur angegeben ist, in eine 
physikalische Adresse zum Zugreifen auf den Speicher (und den D-Cachespeicher 44) übersetzt wird. Der TLB 
40AB ist ein Cachespeicher für die Ergebnisse von vorherigen Übersetzungen, was eine schnelle Übersetzung 
der virtuellen Adressen, welche darin treffen, in entsprechende physikalische Adressen und was eine schnelle 
Bestimmung der verschiedenen Attribute erlaubt, die den entsprechenden Speicherstellen über den Mecha-
nismus zur Übersetzung zugewiesen wurden. Die Kombination von AGU 40AA und TLB 40AB stellt der La-
de/Speicher-Einheit 42 (und parallel dazu dem D-Cachespeicher 44 und dem Ablaufplaner 36) eine physikali-
sche Adresse zur Verfügung.
[0071] Die Lade/Speicher-Einheit 42 bestimmt, ob die Speicheroperation die Ausführung erfolgreich ab-
schließt oder ob sie zurück zu ziehen ist. Falls eine Situation zum Rückzug detektiert wird, legt die Lade/Spei-
cher-Einheit 42 das erneutes Versuchen Signal an dem Ablaufplaner 36 an und stellt den Grund für den erneu-
ten Versuch über die erneuter Versuchstyp Signale zur Verfügung. In einem Ausführungsbeispiel können Spei-
cheroperationen aus den folgenden Gründen zurückgezogen werden: 

(i) die Speicheroperation ist eine Lade-Speicheroperation, welche den D-Cachespeicher 44 nicht trifft;
(ii) die Speicheroperation erfordert einen Puffer in der Lade/Speicher-Einheit 42, der voll ist (zum Beispiel 
ein Fehltreffer-Puffer zum Speichern von Fehltrefferadressen, die von der externen Interfaceeinheit 46 aus 
dem Hauptspeicher abgerufen werden);
(iii) die Speicheroperation erfährt einen Bankkonflikt innerhalb des D-Cachespeichers 44 mit einer anderen 
Speicheroperation, die gleichzeitig auf den D-Cachespeicher 44 zugreift;
(iv) die Speicheroperation ist eine Speicher-Speicheroperation und erfordert eine Überprüfung auf selbst 
modifizierenden Code (SMC);
(v) die Speicheroperation ist eine Lade-Speicheroperation, die eine oder mehrere Speicheroperationen in 
der Speicherwarteschlange 70 trifft (das heißt die eine oder die mehreren Speicheroperationen unterstüt-
zen zumindest ein Byte des Speicheroperanden des Speicheroperanden, auf dem von der Lade-Speiche-
roperation zugegriffen wird) und die Speicherwarteschlange 70 ist nicht fähig, die entsprechenden Daten 
weiterzuleiten;
(vi) die Speicheroperation ist nicht spekulativ auszuführen.

[0072] Der Grund (i) ist als getrennter erneuter Versuchstyp kodiert, für den der Ablaufplaner 36 eine über-
einstimmende Fülladresse erwartet, die von der externen Interfaceeinheit 46 vor der Ablaufplanung und dem 
erneuten Ausgeben der Lade-Speicheroperation zur Verfügung gestellt wird. Die externe Interfaceeinheit 46
stellt die Fülladresse zur Verfügung, um anzuzeigen, dass die Daten von der Fülladresse an den D-Cachespei-
cher 44 zum Speichern zur Verfügung gestellt werden (und damit, dass entsprechende Lade-Speicheropera-
tionen Treffer in dem D-Cachespeicher 44 sein könnten). Der Ablaufplaner 36 zeichnet die physikalische 
Adresse der Lade-Speicheroperation auf (zur Verfügung gestellt von dem Ausführungskern 40A) zum Ver-
gleich mit der Fülladresse. Die Gründe (ii), (iii) und (v) können als ein einzelner erneuter Versuchstyp kodiert 
sein, auf den der Ablaufplaner 36 antworten kann durch erneutes Planen des Ablaufs der entsprechenden 
Speicheroperation ohne jegliche besondere Warteerfordernisse. Der Grund (iv) ist als ein erneuter Ver-
suchstyp kodiert und der Ablaufplaner 36 kann die entsprechende Speicher-Speicheroperation nachdem die 
SMC Überprüfung abgeschlossen worden ist für die erneute Ausgabe im Ablauf planen. Der Grund (vi) ist als 
ein erneuter Versuchstyp kodiert und der Ablaufplaner 36 plant den Ablauf der Speicheroperation zur erneuten 
Ausgabe nachdem die entsprechende Speicheroperation nicht spekulativ wird. In Übereinstimmung mit einem 
12/45



DE 600 05 860 T2 2004.08.05
bestimmten Ausführungsbeispiel ist eine Speicheroperation als nicht spekulativ auszuführen, wenn die Spei-
cheroperation auf einen Speicheroperanden zugreift, der eine Seitengrenze überquert (das heißt zumindest 
ein Byte des Speicheroperanden ist in einer zweiten Seite gespeichert, die von einer zweiten Adressüberset-
zung übersetzt wurde, die anders ist als die erste Adressübersetzung), die Übersetzung zeigt an, dass der Typ 
des Speichers des Speicheroperanden nicht spekulativ ist oder die Speicheroperation trifft fehl in dem TLB. 
Der erste und der letzte Grund für das nicht spekulative Ausführen sind beim Entwurf gewählt, um die Hard-
ware zu vereinfachen, und der mittlere Grund wird von der von dem Prozessor 10 verwendeten Befehlssatz-
architektur gefordert.
[0073] Es ist zu bemerken, dass, während die obige Beschreibung sich auf die erneute, nicht spekulative Aus-
gabe gewisser Speicheroperationen bezieht, andere Befehlsoperationen ebenfalls nicht spekulativ erneut aus-
gegeben werden können. Zum Beispiel kann jede Befehlsoperation, die eine Ausnahme erfährt (zum Beispiel 
eine Falle oder einen von der Architektur angegebenen Fehler oder eine für die von dem Prozessor 10 imple-
mentierte Mikroarchitektur definierte mikroarchitekturale Ausnahme), nicht spekulativ erneut ausgegeben wer-
den. Auf diese Weise kann Information, die auf die Ausnahme bezogen ist, während der nicht spekulativen 
Ausführung aufgezeichnet werden. Daher kann der Aufwand an Hardware, der zum Speichern und Verfolgen 
von Ausnahmeinformation verwendet wird, minimiert werden.
[0074] Die Speicherwarteschlange 70 stellt über die Treffer und Speicher R# Signale zusätzliche Information 
hinsichtlich der Lade-Speicheroperationen zur Verfügung, welche Speicher-Speicheroperationen innerhalb der 
Speicherwarteschlange treffen. Die Treffer und Speicher R# werden unabhängig davon zur Verfügung gestellt, 
ob ein erneuter Versuch der Lade-Speicheroperation auftritt oder nicht. Das Treffer Signal zeigt an, dass ein 
Treffer in der Speicherwarteschlange detektiert wurde, und die Speicher R# ist die R# des Speichervorgangs, 
der von dem Ladevorgang getroffen wurde. Diese Information kann verwendet werden, um einen erneuten Ver-
such der Lade-Speicheroperation zu veranlassen, falls der Speichervorgang, der von dem Ladevorgang ge-
troffen wurde nachfolgend erneut ausgeführt wird (und eine andere Adresse empfängt). Die Verwendung der 
Speicher R# wird detaillierter unten beschrieben. Es ist zu bemerken, dass, während die Speicher R# in die-
sem Beispiel verwendet wird, jeglicher Identifizieren, der den Speichervorgang identifiziert, verwendet werden 
kann. Zum Beispiel kann die Nummer der Speicherwarteschlange zur Verfügung gestellt werden, welche den 
Eintrag der Speicherwarteschlange innerhalb der Speicherwarteschlange 70 identifiziert, der von dem Lade-
vorgang getroffen wird. Derartige Ausführungsbeispiele werden betrachtet.
[0075] Wie oben bemerkt, könnte die Speicherwarteschlange 70 nicht fähig sein, in allen Fällen, wenn eine 
Lade-Speicheroperation eine Speicher-Speicheroperation in der Speicherwarteschlange 70 trifft, die Daten 
weiter zu leiten. Zum Beispiel können zahlreiche Bytes des Lade-Speicheroperanden von verschiedenen Spei-
chervorgängen in der Speicherwarteschlange 70 zur Verfügung gestellt werden. Jedoch kann die Speicher-
warteschlange 70 die Anzahl der separaten Speichervorgänge begrenzen, von denen Bytes eines bestimmten 
Lade-Speicheroperanden weiter geleitet werden könnten. Falls zum Beispiel die Speicherwarteschlange 70 fä-
hig ist, die Daten von bis zu zwei Speicher-Speicheroperationen weiter zu leiten, verhindert ein Treffen auf zwei 
oder mehr Speicher-Speicheroperationen für verschiedene Bytes von diesem bestimmten Lade-Speicherope-
randen die Weiterleitung von allen Bytes des bestimmten Lade-Speicheroperanden. Des weiteren können ei-
nige Ausführungsbeispiele der Speicherwarteschlange 70 die Adresse des Lade-Speicheroperanden vor dem 
Empfangen der Speicherdaten empfangen. Falls die Speicherdaten nicht zur Verfügung stehen, ist die Spei-
cherwarteschlange 70 nicht fähig, die Speicherdaten weiter zu leiten, sogar wenn ein Treffer detektiert würde.
[0076] Es ist zu bemerken, dass Befehlsoperationen hier als "älter" oder "jünger" als andere Befehlsoperati-
onen seiend bezeichnet werden. Eine erste Befehlsoperation ist "älter" als eine zweite Befehlsoperation, wenn 
die erste Befehlsoperation in der Reihenfolge des Programms vor der zweiten Befehlsoperationen ist. Ande-
rerseits ist eine erste Befehlsoperation "jünger" als eine zweite Befehlsoperation, wenn die erste Befehlsope-
ration in der Reihenfolge des Programms der zweiten Befehlsoperation nachfolgend ist. Wie hier verwendet 
bezieht sich der Ausdruck "erneute Ausgabe" auf die Ausgabe einer Befehlsoperation, die zuvor ausgegeben 
wurde (und als nicht korrekt ausgeführt befunden wurde, entweder direkt über einen erneuten Versuch oder 
indirekt über die von dem Ablaufplaner 36 für diese Befehlsoperation aufgezeichneten Abhängigkeiten). Des 
weiteren bezieht sich der Ausdruck "Speicheroperation" wie er hier verwendet wird auf eine Befehlsoperation, 
die eine Speicheroperation hat. Lade-Speicheroperationen haben einen Speicher-Quelloperanden als einen 
Quelloperanden (und einen Register-Zieloperanden) und geben den Transfer von Daten von dem Spei-
cher-Quelloperanden zu dem Register-Zieloperanden an. Speicher-Speicheroperationen haben einen Regis-
ter-Quelloperanden und einen Speicher-Zieloperanden und geben den Transfer von Daten von dem Regis-
ter-Quelloperanden zu dem Speicher-Zieloperanden an. Es ist zu bemerken, dass, obwohl Fig. 3 eine 
Adresserzeugungseinheit 40AA und einen entsprechenden TLB 40AB darstellt, verschiedene Ausführungs-
beispiele eine beliebige Anzahl von Adresserzeugungseinheiten und TLBs enthalten können. Die Lade/Spei-
cher-Einheit 42 kann separate erneutes Versuchen Signale, erneuter Versuchstyp Signale, Treffer Signale und 
Speicher R#s für Speicheroperationen, die jeder AGU entsprechen, zur Verfügung stellen.
[0077] Nun Bezug nehmend auf Fig. 4 ist ein Blockdiagramm eines Ablaufplaners 36 gezeigt. Weitere Aus-
13/45



DE 600 05 860 T2 2004.08.05
führungsbeispiele sind möglich und werden betrachtet. Wie in Fig. 4 gezeigt umfasst der Ablaufplaner 36 einen 
Befehlsoperation (ROP) Puffer 80, eine Ausgabeauswahlschaltung 82, eine Rückzugsgrenzschaltung 84, eine 
ROP Steuerschaltung 86, einen Abhängigkeitspuffer 88, einen Puffer für physikalische Adressen 90, einen 
Speichern R# Puffer 92, eine Rückzugsschaltung 94 und eine Abhängigkeitsdekodiererschaltung 96. Der ROP 
Puffer 80 ist angeschlossen zum Empfangen von Befehlsoperationen (einschließlich solcher Information wie 
unmittelbare oder Versetzungsdaten, usw.) und von zugewiesenen PR#s von der Abbildungseinheit 30 und ist 
verbunden, um ausgegebene Befehlsoperationen und PR#s den Registerdateien 38A–38B und den Ausfüh-
rungskernen 40A–40B zur Verfügung zu stellen. Der ROP Puffer 80 ist des weiteren an die Ausgabeauswahl-
schaltung 82 angeschlossen, welche an die ROP Steuerschaltung 86 angeschlossen ist. Die Rückzugsgrenz-
schaltung 84 ist mit der Rückzugsschaltung 94 und der ROP Steuerschaltung 86 verbunden, welche ange-
schlossen ist an die Rückzugsschaltung 94, den Abhängigkeitspuffer 88, den Puffer für physikalische Adressen 
90 und den Speichern R# Puffer 92. Die ROP Steuerschaltung 86 ist des weiteren angeschlossen, um die er-
neutes Versuchen und erneuter Versuchstyp Signale von der Lade/Speicher-Einheit 42 zu empfangen. Die Ab-
hängigkeitsdekodiererschaltung 96 ist angeschlossen zum Empfangen von der Quellabhängigkeits R#s und 
der Ordnungsabhängigkeits R#s von der Abbildungseinheit 30 und ist mit dem Abhängigkeitspuffer 88 verbun-
den. Der Puffer für physikalische Adressen 90 ist angeschlossen zum Empfang einer Fülladresse von der ex-
ternen Interfaceeinheit 46 und einer oder mehrerer physikalischer Adressen von dem Ausführungskern 40A. 
Der Speichern R# Puffer 92 ist angeschlossen zum Empfang eines oder mehrerer Treffersignale und einer 
oder mehrerer Speicher R#s von der Lade/Speicher-Einheit 42.
[0078] Die Abhängigkeitsdekodiererschaltung 96 empfängt die R#s, welche Befehlsoperationen identifizie-
ren, von denen jede in den Ablaufplaner 36 geschriebene Befehlsoperation abhängig ist, und dekodiert die R#s 
in Abhängigkeitsangaben für die entsprechende Befehlsoperation. Wie oben bemerkt wird, falls ein R# als un-
gültig angezeigt wird (zum Beispiel von der zukünftigen Datei 20), dann eine auf dieser R# basierende Abhän-
gigkeit nicht angezeigt. Im Gegensatz zu der Belieferung der Abhängigkeitsdekodiererschaltung 96 kann die 
Abbildungseinheit 30 die Angaben über die Abhängigkeit für jede Befehlsoperation direkt erzeugen (zum Bei-
spiel durch Bereitstellung eines Abhängigkeitsvektors für jede Befehlsoperation wie den in Fig. 5 gezeigten). 
Im Allgemeinen wird eine Angabe zur Abhängigkeit einer ersten Befehlsoperation und einer zweiten Befehls-
operation zugewiesen und identifiziert eine Abhängigkeit (oder ein Fehlen davon) der erstem Befehlsoperation 
von der zweiten Befehlsoperation. Zum Beispiel kann jede Befehlsoperation ein Bit aufweisen, das, wenn ge-
setzt, eine Abhängigkeit der ersten Befehlsoperation von der zweiten Befehlsoperation anzeigt, und wenn nicht 
gesetzt ein Fehlen einer Abhängigkeit der ersten Befehlsoperation von der zweiten Befehlsoperation anzeigt. 
Die gesetzten und nicht gesetzten Bedeutungen des Bits können in einem Ausführungsbeispiel umgekehrt 
werden und weitere Kodierungen der Angaben zur Abhängigkeit sind möglich.
[0079] Die Abhängigkeitsdekodiererschaltung 96 stellt die Angaben über die Abhängigkeit dem Abhängig-
keitspuffer 88 zum Speichern zur Verfügung. Der Abhängigkeitspuffer 88 weist mehrere Abhängigkeitseinträge 
auf, von denen jedem zwei Einträge in dem ROP Puffer 80 zugewiesen sind. Der Abhängigkeitseintrag spei-
chert die Angabe über die Abhängigkeit, welche die Abhängigkeit oder das Fehlen derselben einer ersten Be-
fehlsoperation, die in einem der zwei Einträge in dem ROP Puffer 80 gespeichert ist, von einer zweiten Befehl-
soperation, die in dem anderen der zwei Einträge gespeichert ist, identifiziert. Falls die Angabe über die Ab-
hängigkeit eine Abhängigkeit anzeigt, dann ist die erste Befehlsoperation nicht für die Ablaufplanung auswähl-
bar bis die zweite Befehlsoperation die Abhängigkeit befriedigt.
[0080] Die ROP Steuerschaltung 86 überwacht die Angaben über die Abhängigkeit innerhalb des Abhängig-
keitspuffers 88 und die Befriedigung von diesen Abhängigkeiten und identifiziert diejenigen Befehlsoperatio-
nen, welche für die Ablaufplanung auswählbar sind. Die ROP Steuerschaltung 86 identifiziert die auswählba-
ren Befehlsoperationen für die Ausgabeauswahlschaltung 82, welche die auswählbaren Befehlsoperationen 
abtastet, um Befehlsoperationen für die Ausgabe an die Ausführungskerne 40A–40B auswählt. Ausgewählte 
Befehlsoperationen werden in Reaktion auf die Ausgabeauswahlschaltung 82 von dem ROP Puffer 80 gelesen 
und den Registerdateien 38A–38B und den Ausführungskernen 40A–40B für die Ausführung zur Verfügung 
gestellt. Im Allgemeinen ist die Ausgabeauswahlschaltung 82 konfiguriert, um eine Befehlsoperation für jede 
Ausführungseinheit in jedem der Ausführungskerne 40A– 40B auszuwählen (falls eine Befehlsoperation von 
jenem Typ ist, der für die Ablaufplanung auswählbar ist). Die ausgewählte Befehlsoperation ist die älteste Be-
fehlsoperation von diesem Typ, die für die Ablaufplanung auswählbar ist. In einem Ausführungsbeispiel tastet 
die Ausgabeauswahlschaltung 82 die auswählbaren Befehlsoperationen zweimal pro Taktzyklus ab, um die 
Auswahl von zwei Befehlsoperationen von einem gegebenen Typen zu ermöglichen. Die zweite Abtastung 
wählt eine zweite Befehlsoperation zur Ausgabe an eine zweite Ausführungseinheit eines bestimmten Typs 
aus (zum Beispiel zwei Adresserzeugungseinheiten und zwei ALUs werden in einem Ausführungsbeispiel des 
Ausführungskerns 40A zur Verfügung gestellt). In der zweiten Abtastung wird die während der ersten Abtas-
tung ausgewählte Befehlsoperation maskiert (das heißt erscheint nicht auswählbar), so dass die zweitälteste 
Befehlsoperation des entsprechenden Typs ausgewählt werden kann.
[0081] In einer bestimmten Ausführung kann die Ausgabeauswahlschaltung 82 unabhängige Auswahlschal-
14/45



DE 600 05 860 T2 2004.08.05
tungen für jeden Typ von Befehlen haben. Jede Auswahlschaltung kann parallel zu dem Betrieb der anderen 
Auswahlschaltungen nach Befehlsoperationen von dem entsprechenden abtasten. Jeder Befehlstyp kann ver-
schiedene Ressourcen zur Ausführung (zum Beispiel Ausführungseinheiten) von den anderen Befehlstypen 
verwenden, was eine unabhängige Operation der Auswahlschaltungen erlaubt.
[0082] Die Ausgabeauswahlschaltung 82 meldet (der ROP Steuerschaltung 86) welche Befehlsoperationen 
für die Ausgabe ausgewählt worden sind. Die ausgewählten Befehlsoperationen werden als im Ablauf geplant 
bezeichnet und die Befehlsoperationen werden ausgegeben (oder erneut ausgegeben) sobald sie von dem 
ROP Puffer 80 gelesen worden sind. Die ROP Steuerschaltung 86 unterhält einen Ausführungszustand für 
jede Befehlsoperation. Der Ausführungszustand kann im weitesten Sinn definiert sein, um einen "nicht ausge-
führten" Zustand, einen "ausführend" Zustand und einen "erledigt" Zustand zu umfassen. Jeder dieser Zustän-
de kann mehrere Zustände aufweisen, wie in der beispielhaften Zustandsmaschine dargestellt, die in Fig. 8
gezeigt ist, je nach Wahl des Entwicklers. Eine Befehlsoperation wird als nicht ausgeführt angesehen bei der 
Speicherung in den Ablaufplaner 36, bis die Befehlsoperation ausgegeben ist. Der Ausführungszustand der 
Befehlsoperation wird in ausführend geändert in Reaktion auf das Ausgegeben werden und wechselt nachfol-
gend in den erledigt Zustand auf die Erledigung der Ausführung. Der Ausführungszustand der Befehlsoperati-
on kann zu jedem Zeitpunkt in den nicht ausgeführten Zustand geändert werden (oder kann "rückgängig ge-
macht" sein), wenn die Befehlsoperation erneut versucht wird (zum Beispiel über die erneutes Versuchen Si-
gnale von der Lade/Speicher-Einheit 42) oder wenn eine andere Befehlsoperation von der diese Befehlsope-
ration abhängt (direkt oder indirekt) rückgängig gemacht wird. Die ROP Steuerschaltung 86 kann im Allgemei-
nen eine bestimmte Befehlsoperation als für die Ablaufplanung auswählbar identifizieren, falls die bestimmte 
Befehlsoperation einen Ausführungszustand von nicht ausgeführt hat und falls jede Abhängigkeit der bestimm-
ten Befehlsoperation befriedigt worden ist.
[0083] Da der Ausführungszustand einer Befehlsoperation in nicht ausgeführt geändert wird in Reaktion auf 
ein erneutes Versuchen für diese Befehlsoperation, kann die Befehlsoperation auswählbar werden für eine er-
neute Ablaufplanung und für eine erneute Ausgabe in Reaktion auf das erneute Versuchen. Jedoch können 
gewisse Typen von erneuten Versuchen angeben, dass die Befehlsoperation nicht erneut im Ablauf zu planen 
ist bis zu dem Auftreten eines nachfolgenden Ereignisses (zum Beispiel wird eine Fülladresse in dem Fall einer 
Lade-Speicheroperation zur Verfügung gestellt, die nicht trifft, oder die Befehlsoperation wird nicht spekulativ). 
In derartigen Fällen kann die ROP Steuerschaltung 86 den Ausführungszustand der zurück gezogenen ROP 
in nicht ausgeführt ändern, aber kann nicht signalisieren, dass die Befehlsoperation für die Ablaufplanung aus-
wählbar ist bis das nachfolgende Ereignis auftritt.
[0084] Da die Angaben über die Abhängigkeit nicht aus dem Abhängigkeitspuffer 88 in Reaktion auf die Aus-
gabe der entsprechenden Befehlsoperationen gelöscht werden, können Befehlsoperationen innerhalb einer 
Kette von Abhängigkeiten spekulativ ausgegeben werden, wenn die Abhängigkeiten befriedigt werden. Die Ab-
hängigkeiten anderer Befehlsoperationen von einer bestimmten Befehlsoperation werden als nicht befriedigt 
erneut kategorisiert, wenn die bestimmte Befehlsoperation rückgängig gemacht wird, und daher werden diese 
anderen Befehlsoperationen ebenfalls rückgängig gemacht. Auf diese Weise wird eine spekulativ ausgegebe-
ne Kette von Abhängigkeiten rückgängig gemacht und in Reaktion auf ein erneutes Versuchen der ersten Be-
fehlsoperation in der Kette erneut ausgegeben.
[0085] Zusätzlich zu den während der Ausführung einer Lade-Speicheroperation gemeldeten erneuten Ver-
suchen können Lade-Speicheroperationen auch aufgrund älterer Speicher-Speicheroperationen erneut ver-
sucht werden, die nachfolgend zu der Lade-Speicheroperation ausgeben. Der Puffer für physikalische Adres-
sen 90 wird zur Verfügung gestellt für die Detektierung dieser Szenarien für das erneute Versuchen. Im Allge-
meinen werden Lade-Speicheroperationen nicht angezeigt (über die Angaben zur Abhängigkeit innerhalb des 
Abhängigkeitspuffers 88) als abhängig seiend von älteren Speicher-Speicheroperationen. Stattdessen werden 
Lade-Speicheroperationen im Ablauf geplant ohne Berücksichtigung von älteren Speicher-Speicheroperatio-
nen (mit der Ausnahme, in einem Ausführungsbeispiel, des oben beschriebenen Mechanismus der Ordnungs-
abhängigkeit). Es ist jedoch möglich, dass eine Lade-Speicheroperation von einer älteren Lade-Speicherope-
ration abhängig sein kann, falls die ältere Lade-Speicheroperation wenigstens ein Byte der Speicheroperanden 
aktualisiert, auf das von der Lade-Speicheroperation zugegriffen wird. Um diese Szenarien zu detektieren, 
speichert der Puffer für physikalische Adressen 90 die physikalischen Adressen, auf die von dem Ladevorgang 
zugegriffen wird (empfangen von dem Ausführungskern 40A). der Puffer für physikalische Adressen 90 enthält 
die gleiche Anzahl von Einträgen wie der ROP Puffer 80, wobei jeder Eintrag fähig ist, Informationen über phy-
sikalischen Adressen für eine Lade-Speicheroperation und zugewiesen zu einem entsprechenden Eintrag in 
dem ROP Puffer 80 zu speichern. Der einer ausführenden Lade-Speicheroperation entsprechende Eintrag 
wird mit der physikalischen Adresse der Lade-Speicheroperation aktualisiert.
[0086] Während der Ausführung von Speicher-Speicheroperationen wird die physikalische Adresse, die von 
der Speicher-Speicheroperation aktualisiert wurde, von dem Ausführungskern 40A zur Verfügung gestellt. Der 
Puffer für physikalische Adressen 90 vergleicht die Speicheradresse mit den physikalischen Adressen in dem 
Puffer für physikalische Adressen 90, welche jüngeren Lade-Speicheroperationen entsprechen. Anders aus-
15/45



DE 600 05 860 T2 2004.08.05
gedrückt ist der Vergleich der Adressen maskiert auf diejenigen Einträge in dem Puffer für physikalische Adres-
sen 90, welche den Befehlsoperationen entsprechen, die jünger sind als die ausführende Speicher-Speicher-
operation. Falls ein Treffer der Speicheradresse auf einer Ladeadresse detektiert wird, wird die entsprechende 
Lade-Speicheroperation rückgängig gemacht (der Puffer für physikalische Adressen 90 signalisiert der ROP 
Steuerschaltung 86, dass die entsprechende Lade-Speicheroperation getroffen worden ist, und die ROP Steu-
erschaltung 86 ändert den Ausführungszustand der entsprechenden Lade-Speicheroperation auf nicht ausge-
führt). Die entsprechende Lade-Speicheroperation wird später erneut ausgegeben. Während der Ausführung 
nach dem erneuten Ausgeben wird die Lade-Speicheroperation entweder die ältere Speicher-Speicheropera-
tion in der Speicher-Warteschlange 70 treffen (und die Speicherdaten werden weiter geleitet oder die La-
de-Speicheroperation wird zurück gezogen) oder die ältere Lade-Speicheroperation wird den Cachespeicher 
oder den Hauptspeicher aktualisieren lassen. In jeden Fall empfängt die Lade-Speicheroperation den korrek-
ten Speicheroperanden nach dem erneuten Ausgeben und erfolgreich abgeschlossener Ausführung. Es ist zu 
bemerken, dass in einem Ausführungsbeispiel, falls eine Lade-Speicheroperation wegen eines älteren Spei-
chervorgangs, der die entsprechende physikalische Adresse in dem Puffer für physikalische Adressen 90 trifft, 
rückgängig gemacht wird, die Lade-Speicheroperation in die Tabelle in der Schaltung für Ordnungsabhängig-
keiten 64 trainiert werden kann.
[0087] Während der Puffer für physikalische Adressen 90 einen Mechanismus zum Erholen von nicht korrek-
ter Ablaufplanung einer Lade-Speicheroperation vor einer älteren Speicher-Speicheroperation, von der die La-
de-Speicheroperation abhängig ist, zur Verfügung stellt, kann ein weiteres Problem existieren, welches die La-
de-Speicheroperation veranlasst, rückgängig gemacht zu werden. Sogar wenn die Lade-Speicheroperation 
nach der Speicher-Speicheroperation, von der sie abhängt, im Ablauf geplant wird und die Speicherdaten von 
der Speicherwarteschlange in der Lade/Speicher-Einheit 42 weiter geleitet werden, kann die Speicher-Spei-
cheroperation selbst rückgängig gemacht werden. Die Adressoperanden der Speicher-Speicheroperation (ver-
wendet, um die Adresse des Speicheroperanden der Speicher-Speicheroperation zu bilden) können während 
der erneuten Ausgabe anders sein (das heißt das Empfangen eines nicht korrekten Adressoperanden kann 
der Grund für die erneute Ausgabe sein) und daher könnte die Speicheradresse nicht den Puffer für physika-
lische Adressen 90 während der Ausführung der erneuten Ausgabe treffen und die Lade-Speicheroperation 
veranlassen, ungültig gemacht zu werden. Der Ablaufplaner 36 ist mit dem Speichern R# Puffer 92 ausgestat-
tet, um diese Möglichkeit zu behandeln.
[0088] In Antwort auf die Detektierung eines Treffers einer Lade-Speicheroperation auf einen Speichervor-
gang in der Speicher-Warteschlange 70 stellt die Lade/Speicher-Einheit 42 dem Ablaufplaner 36 ein Treffer 
Signal und die Speicher R# der Speicher-Speicheroperation, die von der Lade-Speicheroperation getroffen 
wird, zur Verfügung. Ähnlich wie der Puffer für physikalische Adressen 90 enthält der Speichern R# Puffer 92
die gleiche Anzahl von Einträgen wie der ROP Puffer 80. Jeder der Einträge ist einem entsprechenden Eintrag 
in dem ROP Puffer 80 zugeordnet. Falls das Treffer Signal für eine ausführende Lade-Speicheroperation aus-
gegeben ist, speichert der Speichern R# Puffer 92 die Speicher R#, die von der Lade/Speicher-Einheit 42 zur 
Verfügung gestellt wird.
[0089] Die Lade/Speicher-Einheit 42 stellt ebenfalls die R# eines ausführenden Speichervorgangs an den 
Speichern R# Puffer 92 zur Verfügung. Die Speicher R# wird mit den in dem Speichern R# Puffer 92 gespei-
cherten R#s verglichen. Falls eine Übereinstimmung detektiert wird, signalisiert der Speichern R# Puffer 92 der 
ROP Steuerschaltung 86, dass die entsprechende Lade-Speicheroperation rückgängig zu machen ist. Die 
ROP Steuerschaltung 86 ändert den Ausführungszustand der entsprechenden Lade-Speicheroperation auf 
nicht ausgeführt in Antwort auf das Signal. Nachfolgend wird die Lade-Speicheroperation erneut im Ablauf ge-
plant und erneut ausgegeben. Es ist zu bemerken, dass die Speicher R# während der Ausführung der Spei-
cher-Speicheroperation durch den Ausführungskern 40A zur Verfügung gestellt werden kann, falls dies ge-
wünscht ist.
[0090] Zusätzlich zu der Detektierung der Abhängigkeiten von Speichervorgängen zu Ladevorgängen, wie 
oben beschrieben, kann der Puffer für physikalische Adressen 90 für weitere Zwecke verwendet werden. Zum 
Beispiel kann der Puffer für physikalische Adressen 90 verwendet werden, um festzustellen, wann eine La-
de-Speicheroperation erneut auszugeben ist, die im D-Cachespeicher 44 fehl getroffen hat. Die Lade-Speiche-
roperation wird nachfolgend zu den entsprechenden Daten erneut ausgegeben, die von der externen Interfa-
ceeinheit 46 zur Verfügung gestellt werden. Entsprechend stellt die externe Interfaceeinheit 46 eine Fülladres-
se zur Verfügung, die Fülldaten identifiziert, welche dem D-Cachespeicher 44 zur Verfügung gestellt werden. 
Der Puffer für physikalische Adressen 90 vergleicht die Fülladresse mit den darin gespeicherten Adressen und 
signalisiert der ROP Steuerschaltung 86 jegliche Übereinstimmungen. In Antwort zeichnet die ROP Steuer-
schaltung 86 auf, dass die Daten für die Lade-Speicheroperation zur Verfügung gestellt worden sind und dass 
die Lade-Speicheroperation erneut im Ablauf geplant werden kann (angenommen dass weitere Abhängigkei-
ten. der Lade-Speicheroperation befriedigt sind).
[0091] Die externe Interfaceeinheit 46 kann des weiteren Sondierungsadressen zur Vertügung stellen, die 
den auf dem externen Interface empfangenen Sondierungen entsprechen. Im Allgemeinen werden Sondierun-
16/45



DE 600 05 860 T2 2004.08.05
gen verwendet, um die Kohärenz des Speichers in Computersystemen aufrecht zu erhalten und geben einen 
Block im Cachespeicher, der von einem anderen Gerät angenommen wird, und den richtigen Zustand des Ca-
chespeichers für den Block des Cachespeichers an, falls der Prozessor 10 eine Kopie des Block des Cache-
speichers hat. Falls die Sondierungsadresse eine Lade physikalische Adresse in dem Puffer für physikalische 
Adressen 90 trifft könnte der entsprechende Ladevorgang erfordern, erneut im Ablauf geplant zu werden, um 
die Kohärenz und die Regeln der Speicherordnung, die von der von dem Prozessor 10 verwendeten Befehls-
satzarchitektur beizubehalten. Zum Beispiel gibt die x86 Befehlssatzarchitektur eine strenge Speicherordnung 
an. Daher könnte ein spekulativer Ladevorgang, der von einer Sondierung getroffen wird, erneut im Ablauf ge-
plant werden müssen, falls vorherige Speicheroperationen in dem Ablaufplaner 36 existieren und nicht ausge-
führt worden sind.
[0092] Wie zuvor erwähnt speichert der ROP Puffer 80 die Befehlsoperationen und gibt die Befehlsoperatio-
nen an die Registerdateien 38A–38B und die Ausführungskerne 40A–40B in Antwort auf die Ausgabeauswahl-
schaltung 82 aus.
[0093] Der ROP Puffer 80 weist eine Vielzahl von Einträgen auf, von denen jeder zum Speichern einer Be-
fehlsoperation fähig ist. Der einer bestimmten Befehlsoperation zugewiesene Eintrag wird durch die R# der Be-
fehlsoperation identifiziert. Entsprechend hat jeder Eintrag in dem ROP Puffer 80: (i) einen entsprechenden 
ersten zugewiesenen Satz von Abhängigkeitseinträgen in dem Abhängigkeitspuffer 88, welche Angaben über 
die Abhängigkeit der Befehlsoperation in diesem Eintrag von anderen Befehlsoperationen in dem Ablaufplaner 
36 speichert; (ii) einen entsprechenden zweiten zugewiesenen Satz von Abhängigkeitseinträgen, welche die 
Angaben über die Abhängigkeit von anderen Befehlsoperationen in dem Ablaufplaner 36 von der Befehlsope-
ration in diesem Eintrag speichert; (iii) einen entsprechenden Eintrag in dem Puffer für physikalische Adressen 
und (iv) einen entsprechenden Eintrag in dem Speichern R# Puffer. Gemeinsam werden die Einträge in den 
verschiedenen Puffern des Ablaufplaners 36, die einer gegebenen R# entsprechen, hier als ein "Eintrag im Ab-
laufplaner" bezeichnet.
[0094] Die Rückzugsgrenzauswahlschaltung 84 und die Rückzugsschaltung 94 arbeiten zusammen, um Be-
fehlsoperationen aus dem Ablaufplaner 36 zurück zu ziehen. Die ROP Steuerschaltung 86 zeigt der Rückzugs-
grenzauswahlschaltung an, welche Befehlsoperationen einen Ausführungszustand von abgeschlossen haben. 
Die Rückzugsgrenzauswahlschaltung 84 tastet die Angaben von dem Anfang des Ablaufplaners 36 ab (das 
heißt der ältesten Befehlsoperation in dem Ablaufplaner 36) auf entweder die erste Befehlsoperation mit einem 
Ausführungszustand, der nicht abgeschlossen ist, oder eine vorbestimmte maximale Anzahl von Befehlsope-
rationen ist abgetastet worden und alte sind in einem abgeschlossenen Zustand. Die Rückzugsgrenzauswahl-
schaltung 84 bestimmt daher die jüngste Befehlsoperation, welche zurück gezogen sein könnte und die Rück-
zugsschaltung 94 bestimmt, wie viele Befehlsoperationen tatsächlich zurück gezogen sind. Die Rückzugs-
schaltung 94 sendet die R# der letzten Befehlsoperation, die zurück gezogen wird, und kommuniziert zu der 
ROP Steuerschaltung 86, welche Befehlsoperationen zurück gezogen werden. Für jede zurück gezogene Be-
fehlsoperation macht die ROP Steuer-schaltung 86 den entsprechenden Eintrag in dem ROP Puffer 80, dem 
Puffer für physikalische Adressen 90 und dem Speichern R# Puffer 92 ungültig. Des weiteren setzt die ROP 
Steuerschaltung 86 für jede zurück gezogene Befehlsoperation jeden Abhängigkeitseintrag in dem Abhängig-
keitspuffer 88, der eine Abhängigkeit einer Befehlsoperation von einer zurück gezogenen Befehlsoperation an-
zeigt.
[0095] Wie hier verwendet bezieht sich der Ausdruck "Puffer" auf einen Speicher, der konfiguriert ist, um Ge-
genstände an Information zu speichern. Der Puffer kann einen oder mehrere Einträge enthalten, von denen 
jeder eine Speicherstelle in dem Speicher ist, die ausreichend Speicherplatz hat, um einen, der Gegenstände 
an Information zu speichern, für den der Puffer entworfen ist.
[0096] Es ist zu bemerken, dass, während der Puffer für physikalische Adressen 90 und der Speichern R# 
Puffer 92 beschrieben sind als die gleiche Anzahl von Einträgen wie der ROP Puffer 80 zu haben sein, andere 
Ausführungsbeispiele Puffer mit weniger Einträgen einsetzen können. Jeder Eintrag in dem Puffer 90 oder 92
kann zum Beispiel eine Markierung enthalten, welche den Eintrag in dem ROP Puffer 80 identifiziert, der die 
entsprechende Lade-Speicheroperation speichert. Es ist ferner zu bemerken, dass wie zuvor erwähnt die 
Nummer der Speicher-Warteschlange statt der Speicher R# verwendet werden kann, um die erneute Ausgabe 
der Speicher-Speicheroperationen zu detektieren, welche als von einer Lade-Speicheroperation getroffen de-
tektiert wurden.
[0097] Es wird nun auf Fig. 5 Bezug genommen, in der ein Blockdiagramm eines Ausführungsbeispiels eines 
Abhängigkeitsvektors 100 gezeigt ist. Der Abhängigkeitsvektor 100 enthält eine Vielzahl von Abhängigkeitsan-
gaben 102A–102N. Jede Abhängigkeitsangabe 102A–102N zeigt die Abhängigkeit (oder das Fehlen davon) 
einer Befehlsoperation an, die dem Abhängigkeitsvektor 100 auf eine andere Befehlsoperation in dem Ablauf-
planer 36 entspricht. Die Befehlsoperation kann daher von einer zufälligen Anzahl von anderen Befehlsopera-
tionen abhängig sein. Des weiteren können, da die Abhängigkeiten in Überein-stimmung mit der Befehlsope-
ration und nicht mit dem Typ der Abhängigkeit aufgezeichnet werden, die Abhängigkeiten aus willkürlichen 
Gründen erzeugt werden (zum Beispiel um den Entwurf des Prozessors 10 zu vereinfachen). Wie zuvor er-
17/45



DE 600 05 860 T2 2004.08.05
wähnt kann der Abhängigkeitsvektor 100 durch die Dekodierung von Abhängigkeits R#s, die von der Abbil-
dungseinheit 30 zur Verfügung gestellt werden, und das Setzen der verbleibenden Abhängigkeitsangaben, um 
keine Abhängigkeit anzuzeigen, erzeugt werden. Alternativ kann die Abbildungseinheit 30 dem Ablaufplaner 
36 Abhängigkeitsvektoren in der in Fig. 5 gezeigten Form zum Speichern zur Verfügung stellen.
[0098] Es wird nun auf Fig. 6 Bezug genommen, in der ein Blockdiagramm eines Ausführungsbeispiels des 
Abhängigkeitspuffers 88 gezeigt ist. Weitere Ausführungsbeispiele sind möglich und werden betrachtet. In dem 
Ausführungsbeispiel von Fig. 6 umfasst der Abhängigkeitspuffer 88 eine Vielzahl von Abhängigkeitseinträgen 
einschließlich der Abhängigkeitseinträge 104A–104L. Die Abhängigkeitseinträge, welche Abhängigkeiten ei-
ner bestimmten Befehlsoperation identifizieren, die in einem bestimmten Eintrag des Ablaufplaners 36 gespei-
chert ist (das heißt ein Eintrag in dem ROP Puffer 80 und entsprechende Einträge in dem Puffer für physikali-
sche Adressen 90 und in dem Speichern R# Puffer 92), werden als Zeilen und Spalten von Abhängigkeitsein-
trägen angeordnet. Jede Zeile von Abhängigkeitseinträgen speichert die Abhängigkeitsangaben, welche die 
Abhängigkeiten einer bestimmten Befehlsoperation in einem bestimmten Eintrag des Ablaufplaners angeben. 
Zum Beispiel werden die Abhängigkeitseinträge, welche die Abhängigkeiten der Befehlsoperation in dem Ein-
trag 0 des Ablaufplaners identifizieren, in den Abhängigkeitseinträgen 104A–104G gespeichert (und den da-
zwischen liegenden Einträgen dieser Zeile, nicht gezeigt). Die in den Abhängigkeitseinträgen 104A–104G ge-
zeigten beispielhaften Abhängigkeitsangaben stellen die Abhängigkeit der Befehlsoperation in dem Eintrag 0 
des Ablaufplaners von der Befehlsoperation in dem Eintrag N–2 (Abhängigkeitseintrag 104F) des Ablaufpla-
ners dar. Des weiteren gibt jede Spalte von Abhängigkeitseinträgen die Abhängigkeiten jeder anderen Befehl-
soperation von einer bestimmten Befehlsoperation an. Zum Beispiel werden die Abhängigkeiten jeder anderen 
Befehlsoperation von der Befehlsoperation in dem Eintrag 0 des Ablaufplaners in den Abhängigkeitseinträge 
104H–104L aufgezeichnet. Die gezeigten beispielhaften Abhängigkeitsangaben stellen eine Abhängigkeit der 
Befehlsoperation in dem Eintrag 2 des Ablaufplaners von der Befehlsoperation in dem Eintrag 0 (Abhängig-
keitseinträge 104I) des Ablaufplaners dar.
[0099] Der Abhängigkeitspuffer 88 ist angeschlossen zum Empfangen eines Satzes von Eingangssignalen 
(Block(0) bis Block(N-1)). Jedes Blocksignal entspricht einem der Einträge des Ablaufplaners. Das Blocksignal 
zeigt, wenn angelegt, an, dass die in dem entsprechenden Eintrag des Ablaufplaners gespeicherte Befehlso-
peration nicht befriedigte Abhängigkeiten auf diese Befehlsoperation hat. Wenn nicht angelegt, zeigt das 
Blocksignal an, dass die Abhängigkeiten von dieser Befehlsoperation befriedigt worden sind. Im Allgemeinen 
wird das Blocksignal angelegt auf das Schreiben der entsprechenden Befehlsoperation in den Ablaufplaner 36
und wird zurückgenommen während der Ausführung der entsprechenden Befehlsoperation. Falls die Befehls-
operation zurück gezogen oder anders rückgängig gemacht wird, wird das Blocksignal zurückgenommen bis 
die entsprechende Befehlsoperation erneut ausgeführt wird. Die Blocksignale werden von der ROP Steuer-
schaltung 86 angelegt und zurückgenommen in Übereinstimmung mit dem Ausführungszustand der entspre-
chenden Befehlsoperation. Jedes Blocksignal wird zu den Abhängigkeitseinträgen weiter geleitet, welche Ab-
hängigkeiten anderer Befehlsoperationen von der entsprechenden Befehlsoperation aufzeichnen. Zum Bei-
spiel wird Block(0) zu den Abhängigkeitseinträgen 104N–104L weiter geleitet. Wenn das Blocksignal zurück 
genommen wird, werden die entsprechenden Abhängigkeiten als befriedigt angesehen. Wenn zum Beispiel 
Block (0) zurück genommen wird, ist die Abhängigkeit der Befehlsoperation in dem Eintrag 2 des Ablaufplaners 
von der Befehlsoperation in dem Eintrag 0 des Ablaufplaners befriedigt.
[0100] Der Abhängigkeitspuffer 88 stellt des weiteren eine Vielzahl von Ausgangssignalen (Not_Blocked(0) 
bis Not_Blocked(N-1)) zur Verfügung. Jedes Not_Blocked Signal entspricht einem der Einträge des Ablaufpla-
ners. Das Not_Blocked Signal zeigt, wenn angelegt, an, dass die Abhängigkeiten der in dem entsprechenden 
Eintrag des Ablaufplaners gespeicherten Befehlsoperation befriedigt worden sind. Wenn zurück genommen 
zeigt das Not_Blocked Signal an, dass die Abhängigkeiten der in dem entsprechenden Eintrag des Ablaufpla-
ners gespeicherten Befehlsoperation nicht befriedigt worden sind. Im Allgemeinen ist das Not_Blocked Signal 
nicht angelegt bis das letzte Blocksignal, das einer Abhängigkeit der entsprechenden Befehlsoperation ent-
spricht, zurück genommen ist, und dann wird das Not_Blocked Signal angelegt. Befehlsoperationen, für wel-
che das Not_Blocked Signal angelegt ist, sind für die Ablaufplanung auswählbar, zumindest im Hinblick auf die 
Abhängigkeiten von dieser Befehlsoperation (das heißt andere Bedingungen, wie der erneute Versuchstyp, der 
das Warten auf ein nachfolgendes Ereignis angibt, können die Ablaufplanung verhindern). Jedes Not_Blocked 
Signal wird zu den Abhängigkeitseinträgen weiter geleitet, welche Abhängigkeiten der entsprechenden Befehl-
soperation aufzeichnen. Zum Beispiel wird Not_Blocked(0) zu den Abhängigkeitseinträgen 104A–104G weiter 
geleitet. Die Not_Blocked Signale können jeweils eine verdrahtete ODER Leitung sein, welche auf angelegt 
vorgeladen wird und dann von einem oder mehreren Abhängigkeitseinträgen zurück genommen wird, für wel-
che das entsprechende Blocksignal angelegt ist und die Abhängigkeitsangabe eine Abhängigkeit anzeigt.
[0101] Durch das Aufzeichnen von Abhängigkeiten basierend auf der Position der Befehlsoperationen inner-
halb des Ablaufplaners (zum Beispiel durch R#) im Gegensatz zu einer Basierung auf einer Ressource oder 
eines Abhängigkeitsgrunds, kann der Abhängigkeitspuffer 88 leichter zu implementieren sein und mit höheren 
Frequenzen betreibbar sein. Die Verdrahtung innerhalb des Abhängigkeitspuffers 88 kann höchst üblich sein 
18/45



DE 600 05 860 T2 2004.08.05
(das heißt kein Bereich des Abhängigkeitspuffers ist überladen im Hinblick auf die Verdrahtung und es wenig 
Überlappung der Leiter). Die Normalität erleichtert die Implementierung und kann zu einem Betrieb mit höheren 
Frequenzen beitragen (zum Beispiel durch erlauben einer dichteren Implementierung des Abhängigkeitspuf-
fers 88).
[0102] Es ist zu bemerken, dass die Abhängigkeitseinträge auf der Diagonalen von der oberen linken zu der 
unteren Rechten, wie in der Fig. 6 gezeigt, eine Abhängigkeit der Befehlsoperation von sich selbst anzeigen 
würden. Diese Abhängigkeitseinträge könnten nicht implementiert sein (wie durch die punktierten Kästen, wel-
che diese Einträge repräsentieren, dargestellt).
[0103] Wie hier verwendet, bezieht sich der Ausdruck "angelegt" auf die Bereitstellung eines logisch wahren 
Werts für ein Signal oder ein Bit. Ein Signal oder Bit kann angelegt werden, wenn es einen Wert transportiert, 
der ein Fehlen einer bestimmten Bedingung anzeigt. Ein Signal oder Bit kann als angelegt definiert sein, wenn 
es einen logischen Wert von Null befördert, oder umgekehrt, wenn es einen logischen Wert von Eins befördert, 
und das Signal oder Bit kann als nicht angelegt definiert sein, wenn der gegenteilige logische Wert befördert 
wird.
[0104] Es wird nun auf Fig. 7 Bezug genommen, in der ein Blockdiagramm detaillierter gezeigt ist, das einen 
Bereich eines Ausführungsbeispiels des Abhängigkeitspuffers 88 und der ROP Steuerschaltung 86 darstellt. 
Weitere Ausführungsbeispiele sind möglich und werden betrachtet. In Übereinstimmung mit der Fig. 7 weist 
die ROP Steuerschaltung 86 eine Vielzahl von unabhängigen Schaltungen auf, von denen jede einem Eintrag 
in dem Ablaufplaner 36 entspricht. Zum Beispiel wird der Eintrag (i) in dem Ablaufplaner in der Fig. 7 darge-
stellt. Eine ROP Steuerschaltung(i) 86A ist dargestellt zum Nachverfolgen der Zustands der Ausführung der in 
dem Eintrag (i) gespeicherten Befehlsoperation. Des weiteren sind einige Abhängigkeitseinträge 104M–104N
gezeigt, welche Abhängigkeiten der in dem Eintrag (i) gespeicherten Befehlsoperation speichern. Insbesonde-
re sind die Abhängigkeitseinträge gezeigt, welche eine Abhängigkeit der in dem Eintrag (i) gespeicherten Be-
fehlsoperation von der in dem Eintrag (j) (Abhängigkeitseintrag 104M) gespeicherten Befehlsoperation und von 
der in dem Eintrag (j + 1) (Abhängigkeitseintrag 104N) gespeicherten Befehlsoperation anzeigen. Die Block(i) 
und die Not_Blocked(i) Signale sind gezeigt, ebenso wie die Block(j) und die Block(j + 1) Signale. Die ROP 
Steuerschaltung(i) 86A ist angeschlossen zur Bereitstellung des Block(i) Signals und ist angeschlossen zum 
Empfangen des Not_Blocked(i) Signals. Des weiteren ist die ROP Steuerschaltung(i) 86A angeschlossen zum 
Empfangen eines retry_PA(i) Signals und eines fill_hit(i) Signals von dem Speichern R# Puffer 92, einem er-
neuter Versuch Signal und erneuter Versuchtyp Signalen von der Lade/Speicher-Einheit 42, einem 
almost_done Signal von den Ausführungskernen 40A–40B und einem pick(i) Signal von der Ausgabeauswahl-
schaltung 82. Des weiteren ist die ROP Steuerschaltung(i) 86A angeschlossen, um ein request(i) Signal der 
Ausgabeauswahlschaltung 82 zur Verfügung zu stellen.
[0105] Die ROP Steuerschaltung(i) 86A fängt an, die Abhängigkeiten der in dem Eintrag (i) gespeicherten Be-
fehlsoperation zu überwachen, sobald die Befehlsoperation in den in den Eintrag (i) geschrieben ist. Bis die 
Befehlsoperation die Abhängigkeiten anderer Befehlsoperationen von dieser Befehlsoperation befriedigt hat, 
gibt die ROP Steuerschaltung(i) 86A das Block(i) Signal aus (welches an die Abhängigkeitseinträge weiter ge-
leitet wird, welche anderer Befehlsoperationen von der Befehlsoperation aufzeichnen, wie in Fig. 6 darge-
stellt). Die Befehlsoperation hat die nicht befriedigte Abhängigkeiten, während der Zustand der Ausführung der 
Befehlsoperation in dem nicht ausgeführt zustand ist und während der Zustand der Ausführung in dem aus-
führenden Zustand ist, aber nicht nahe genug zum Abschluss der Ausführung ist, um befriedigte Abhängigkei-
ten zu haben. Des weiteren überwacht die ROP Steuerschaltung(i) 86A das Not_Blocked(i) Signal, um festzu-
stellen, wann die Abhängigkeiten der Befehlsoperation befriedigt worden sind.
[0106] Jeder Abhängigkeitseintrag 104, der eine Abhängigkeitsangabe einer Befehlsoperation von einer an-
deren Befehlsoperation speichert, ist angeschlossen, um das Not_Blocked(i) Signal zurück zu nehmen, um an-
zuzeigen, dass die Befehlsoperation blockiert ist. Zum Beispiel ist der Abhängigkeitseintrag 104M mit einem 
UND Gatter 106A und einem Transistor 108A verbunden und der Abhängigkeitseintrag 104N ist mit einem 
UND Gatter 106B und einem Transistor 108B verbunden. Falls die gespeicherte Abhängigkeitsangabe und der 
Abhängigkeitseintrag eine Abhängigkeit anzeigen und das entsprechende Blocksignal angelegt ist, aktiviert 
das UNG Gatter den entsprechenden Transistor, der das Not_Blocked(i) Signal zurück nimmt. Andererseits 
deaktiviert das UND Gatter den entsprechenden Transistor und dieser Transistor legt das Not_Blocked(i) Sig-
nal nicht an, wenn die Abhängigkeitsangabe keine Abhängigkeit anzeigt oder das Blocksignal nicht angelegt 
ist. Entsprechend blockieren Befehlsoperationen, von denen die Befehlsoperation in dem Eintrag (i) nicht ab-
hängig ist, nicht die Ausgabe von dieser Befehlsoperation. Befehlsoperationen, von denen die Befehlsopera-
tion in dem Eintrag (i) abhängig ist, blockieren die Ausgabe dieser Befehlsoperation bis die Abhängigkeit be-
friedigt ist (angezeigt durch die Rücknahme des entsprechenden Blocksignals).
[0107] In Antwort auf das Anlegen des Not_Blocked Signals legt die ROP Steuerschaltung(i) 86A das re-
quest(i) Signal an die Ausgabeauswahlschaltung 82 an. Die Ausgabeauswahlschaltung 82 tastet die request(i) 
Signale zusammen mit ähnlichen Signalen von anderen Steuerschaltungen, die anderen Einträgen entspre-
chen, ab. Sobald die Ausgabeauswahlschaltung 82 den Ablauf der Befehlsoperation in dem Eintrag (i) für die 
19/45



DE 600 05 860 T2 2004.08.05
Ausgabe plant, legt die Ausgabeauswahlschaltung 82 das pick(i) Signal an. In Antwort auf das pick(i) Signal 
ändert die ROP Steuerschaltung(i) den Zustand der Ausführung auf ausführend. Wie oben bemerkt, zeichnet 
der Ablaufplaner 36 in dem vorliegenden Ausführungsbeispiel die Latenz der Befehlsoperation auf und zählt 
die Taktzyklen von der Ausgabe der Befehlsoperation, um den Punkt festzustellen, an dem Abhängigkeiten be-
friedigt sind. Weitere Ausführungsbeispiele können zum Beispiel Abschlusssignale von den Ausführungsein-
heiten empfangen oder jeglichen anderen alternativen Mechanismus zur Feststellung, wann Abhängigkeiten 
befriedigt sind, verwenden. Des weiteren haben in dem vorliegendem Ausführungsbeispiel gewisse Befehlso-
perationen eine variable Latenz oder haben eine längere Latenz als erwünscht zu zählen ist. Für derartige Be-
fehlsoperationen können die Ausführungskerne 40A–40B ein almost done Signal zur Verfügung stellen. Das 
almost done Signal wird angelegt, wenn die Ausführungskerne feststellen, dass eine Befehlsoperation mit va-
riabler Latenz eine voreingestellte Anzahl von Taktzyklen vor dem Abschluss erreicht hat. Das almost done Si-
gnal kann von der ROP Steuerschaltung(i) 86A verwendet werden, um anzufangen, Zyklen bis zu der vorein-
gestellten Anzahl zu zählen, an welchem Punkt die Befehlsoperation die Ausführung abgeschlossen hat.
[0108] Falls die Befehlsoperation eine Speicheroperation ist, tastet die ROP Steuerschaltung(i) 86A jedes er-
neuter Versuch Signal von der Lade/Speicher-Einheit 42 während des Taktzyklus ab, in dem der Zustand des 
erneuten Versuchs für die in dem Eintrag (i) gespeicherte Befehlsoperation zur Verfügung gestellt wird. In Re-
aktion auf ein angelegtes erneuter Versuch Signal ändert die ROP Steuerschaltung(i) 86 den Zustand der Aus-
führung auf nicht ausgeführt und legt das Block(i) Signal erneut an. Auf diese Weise wird die Befehlsoperation 
in einen Zustand vor der Ausgabe zurück gebracht und nachfolgende Befehlsoperationen in einer Abhängig-
keitskette mit der Befehlsoperation werden ebenfalls in einen Zustand vor der Ausgabe zurück gebracht (durch 
Zurücknehmen der entsprechenden Not_Blocked Signale). Zusätzlich tastet die ROP Steuerschaltung(i) 86A
die erneuter Versuchstyp Signale ab, falls das erneuter Versuch Signal angelegt ist. Falls der erneute Ver-
suchstyp das Auftreten eines nachfolgenden Ereignisses erfordert bevor die Befehlsoperation erneut ausge-
geben ist, zeichnet die ROP Steuerschaltung(i) 86A das zu suchende Ereignis auf und verhindert eine erneute 
Anfrage nach einer erneuten Ausgabe (durch erneutes Anlegen des request(i) Signals), bis das nachfolgende 
Ereignis auftritt.
[0109] Zusätzlich zu dem erneuten versucht werden während der Ausführung, können Lade-Speicheropera-
tionen erneut versucht werden, weil eine physikalische Adresse einer ausführenden Speicher-Speicheropera-
tion die physikalische Adresse der Lade-Speicheroperation (gespeichert in dem Puffer für physikalische Adres-
sen 90) trifft oder die R# der ausführenden Speicher-Speicheroperation die Speichern R# trifft, die für die La-
de-Speicheroperation aufgezeichnet wurde. Der Puffer für physikalische Adressen 90 legt ein retry_PA(i) Sig-
nal an, um den vorigen Fall an die ROP Steuerschaltung(i) 86A zu kommunizieren (und kann ähnliche Signale 
für jeden anderen Eintrag enthalten). Der Speichern R# Puffer 92 legt ein retry_stq(i) Signal an, um den spä-
teren Fall zu kommunizieren (und kann ähnliche Signale für jeden anderen Eintrag enthalten). In Antwort auf 
das Anlegen eines der beiden Signale ändert die ROP Steuerschaltung(i) 86A den Zustand der Ausführung 
auf nicht ausgeführt und legt das Block(i) Signal erneut an. Unter der Annahme, dass das Not_Blocked(i) Sig-
nal angelegt ist, kann die ROP Steuerschaltung(i) 86A das request(i) Signal anlegen, um eine erneute Ablauf-
planung und eine erneute Ausgabe der Befehlsoperation anzufordern.
[0110] Zusätzlich zu den erneuter versuch, retry_PA(i) und retry_stq(i) Signalen kann der Zustand der Aus-
führung der Befehlsoperation auf nicht ausgeführt zurück gebracht werden, falls das Not_Blocked(i) Signal zu-
rück genommen wird. Dieser Mechanismus wird verwendet, um den abgeschlossen Zustand einer Abhängig-
keitskette rückgängig zu machen, wenn eine Befehlsoperation an dem Anfang der Kette rückgängig gemacht 
wird, um die erneute Ausgabe der Befehlsoperationen in der Abhängigkeitskette zu veranlassen. Entspre-
chend ändert, falls das Not_Blocked(i) Signal nicht angelegt ist, die ROP Steuerschaltung(i) 86A den Zustand 
der Ausführung auf nicht ausgeführt und legt das Block(i) Signal wieder an (was nachfolgend weitere 
Not_Blocked Signale veranlassen kann, zurück zu nehmen, was die Abhängigkeitskette weiter rückgängig 
macht).
[0111] Der Puffer für physikalische Adressen 90 stellt der ROP Steuerschaltung(i) 86A ein zusätzliches Signal 
zur Verfügung, um anzuzeigen, falls eine von der externen Interfaceeinheit 46 zur Verfügung gestellte Adresse 
die physikalische Adresse des Ladevorgangs in dem Puffer für physikalische Adressen 90 trifft, als fill_hit(i) in 
Fig. 7 gezeigt. Der Puffer für physikalische Adressen 90 legt das fill_hit(i) Signal an, um anzuzeigen, dass die 
von der externen Interfaceeinheit 46 zur Verfügung gestellte Adresse die dem Eintrag (i) zugeordnete physi-
kalische Adresse in dem Puffer für physikalische Adressen 90 trifft. Die externe Interfaceeinheit 46 kann auch 
Füll/Sondierung Signale zur Verfügung stellen, um den Typ der zur Verfügung gestellten Adresse anzuzeigen. 
Falls die Füll/Sondierung Signale Füllen anzeigen, dann ist das Anlegen des fill_hit(i) eine Angabe, dass die 
Fülldaten für die Zeile des Cachespeichers einschließlich der physikalischen Adresse für die Lade-Speichero-
peration zur Verfügung gestellt werden. Falls die Lade-Speicheroperation an der Ablaufplanung gehindert wird, 
wegen einer Detektierung eines Fehltreffers im Cachespeicher während einer vorherigen Ausgabe, kann die 
Lade-Speicheroperation für ein erneutes Planen des Ablaufs auswählbar sein und die ROP Steuerschaltung(i) 
86A kann das request(i) Signal in Antwort auf den Treffer der Fülladresse anlegen. Das oben erwähnte Aus-
20/45



DE 600 05 860 T2 2004.08.05
führungsbeispiel stellt auch Adressen von der externen Interfaceeinheit 46 zur Verfügung, um Sondierungen 
auszuführen. Falls das fill_hit(i) Signal angelegt ist und die Füll/Sondierung Signale von der externen Interfa-
ceeinheit 46 eine Sondierung anzeigen, dann wird ein Sondierungstreffer detektiert, der eine korrigierende Ak-
tion erfordern könnte. In einem Ausführungsbeispiel kann das Anlegen des fill_hit(i) Signals für eine Sondie-
rung die ROP Steuerschaltung(i) 86A veranlassen, den Zustand der Ausführung auf nicht ausgeführt zu än-
dern. Weitere Ausführungsbeispiele können kompliziertere Mechanismen versuchen, um eine Speicherord-
nung sicher zu stellen, ohne Befehlsoperation unnötig erneut auszugeben. Zum Beispiel kann die ROP Steu-
erschaltung(i) 86A den Treffer durch die Sondierungsadresse aufzeichnen. Falls eine ältere Lade-Speichero-
peration nachfolgend aus dem Ablaufplaner zurückgezogen wird, kann dann die ROP Steuerschaltung(i) 86A
den Zustand der Ausführung auf nicht ausgeführt ändern. Weitere Alternativen sind ebenfalls möglich.
[0112] Es wird nun auf Fig. 8 Bezug genommen, in der eine beispielhafte Zustandsmaschine gezeigt ist, wel-
che von einem Ausführungsbeispiel der ROP Steuerschaltung(i) 86A verwendet werden kann. Weitere Steu-
erschaltungen können ähnliche Zustandsmaschinen verwenden. Weitere Ausführungsbeispiele sind möglich 
und werden betrachtet. In dem Ausführungsbeispiel von Fig. 8 enthält die Zustandsmaschine einen Ungültig 
Zustand 110, einen Blockiert Zustand 112, einen Anforderung Zustand 114, einen Ausführung Variable (ExecV) 
Zustand 118, einen Exec6 Zustand 120, einen Exec5 Zustand 122, einen Exec4 Zustand 124, einen Exec3 
Zustand 126, einen Exec2 Zustand 128, einen Exec1 Zustand 130 und einen Abgeschlossen Zustand 132.
[0113] Die Zustandsmaschine fängt in dem Ungültig Zustand 110 an, wenn der entsprechende Eintrag keine 
Befehlsoperation speichert. In Reaktion auf das Schreiben einer Befehlsoperation in den entsprechenden Ein-
trag geht die Zustandsmaschine entweder in den Blockiert Zustand 112 oder in den Anforderung Zustand 114
über. Der Blockiert Zustand 112 wird ausgewählt, wenn das Not_Blocked(i) Signal nicht angelegt ist, und der 
Anforderung Zustand 114 wird ausgewählt, wenn das Not_Blocked(i) Signal angelegt ist. In anderen Ausfüh-
rungsbeispielen können Befehlsoperationen mit voreingestellten Warteereignissen in den Ablaufplaner ge-
schrieben werden, welche die Befehlsoperation blockieren, im Ablauf geplant zu werden, sogar wenn alle Ab-
hängigkeiten befriedigt sind (auf ähnliche Weise zu den Ereignissen, die ein erneutes Planen des Ablaufs ver-
hindern nachdem eine Befehlsoperation in den nicht ausgeführt Zustand zurück gebracht worden ist). Derarti-
ge Befehlsoperationen können einen Übergang in den Blockiert Zustand 112 veranlassen sogar wenn das 
Not_Blocked(i) Signal angelegt ist.
[0114] Die Zustandsmaschine verbleibt in dem Blockiert Zustand 112 bis die Befehlsoperation nicht mehr blo-
ckiert wird. Während der Übergang von dem Ungültig Zustand 110 in den Blockiert Zustand 112 oder in den 
Anforderung Zustand 114 in dem vorliegenden Ausführungsbeispiel auf dem Not_Blocked(i) Signal basieren 
kann, berücksichtigt der Übergang von dem Blockiert Zustand 112 in den Anforderung Zustand 114 die Aus-
wirkungen von Situationen des erneuten Versuchens, die angeben, dass ein nachfolgendes Ereignis auftritt 
bevor die Befehlsoperation auswählbar ist für ein erneutes Planen des Ablaufs. Das Kasten 134 in der Fig. 8
enthält eine Gleichung für den Ausdruck für den blockierten Übergang, der an den Pfeilen in Fig. 8 für das oben 
beschriebene Ausführungsbeispiel verwendet wird. Genauer gesagt ist eine Befehlsoperation blockiert, wenn 
das Not_Blocked(i) Signal nicht angelegt ist oder eine vorherige Ausgabe in der Feststellung endete, dass die 
Befehlsoperation nicht spekulativ (blocked_non_spec) auszuführen ist und immer noch spekulativ ist, oder 
eine vorherige Ausgabe in einem Fehltreffer im Cachespeicher (blocked_until_fill) endete und die Fülldaten 
noch nicht zur Verfügung gestellt worden sind. Weitere Ausführungsbeispiele können zusätzliche Ereignisse 
enthalten, die falls gewünscht ein erneutes Planen des Ablaufs blockieren. Sobald die Befehlsoperation nicht 
mehr blockiert ist geht die Zustandsmaschine von dem Blockiert Zustand 112 in den Anforderung Zustand 114
über.
[0115] Während die Zustandsmaschine in dem Anforderung Zustand 114 ist, legt die ROP Steuerschaltung(i) 
86A das request(i) Signal an. Falls die Befehlsoperation während des Anforderung Zustands 114 wieder blo-
ckiert wird, geht die Zustandsmaschine in den Blockiert Zustand 112 über. Die Zustandsmaschine geht von 
dem Anforderung Zustand 114 in einen der Zustände 118–128 (basierend auf der Latenz der Befehlsoperation) 
in Reaktion auf ein Anlegen des pick(i) Signals über. Der Zustand, in den in Reaktion auf das pick(i) Signal 
übergegangen wurde, kann in einem Ausführungsbeispiel der Stufe Lesen Ablaufplanung der Pipeline von 
Fig. 2 entsprechen.
[0116] Das vorliegende Ausführungsbeispiel unterstützt Latenzen von zwei bis sechs Taktzyklen und eine va-
riable Latenz größer als sechs Taktzyklen. Die Zustandsmaschine verbleibt in dem ExecV Zustand 118 bis das 
almost done Signal von den Ausführungskernen 40A–40B angelegt wird und dann in den Exec6 Zustand 120. 
Jeder der Exec6 Zustand 120 bis Exec2 Zustand 128 geht in den nächst niedrigeren Zustand in der Latenz-
kette über, wenn die Befehlsoperation nicht rückgängig gemacht ist, wie in Fig. 8 gezeigt. Von dem Exec1 Zu-
stand 130 geht die Zustandsmaschine in den Abgeschlossen Zustand 132 über, wenn die Befehlsoperation 
nicht rückgängig gemacht ist. Schließlich geht die Zustandsmaschine von dem Abgeschlossen Zustand 132 in 
den Ungültig Zustand 110 über, wenn die Befehlsoperation nicht vor dem Zurückziehen rückgängig gemacht 
ist.
[0117] Zur Übersichtlichkeit der Zeichnung ist das pick(i) Signal gezeigt, wie es zu einem Auswahlknoten 116
21/45



DE 600 05 860 T2 2004.08.05
geht, von dem einer der Zustände 118–128 betreten wird. Der Auswahlknoten 116 wird nur verwendet, um die 
Unordnung in der Zeichnung zu reduzieren und ist nicht beabsichtigt, einen separaten Zustand darzustellen.
[0118] In dem vorliegenden Ausführungsbeispiel. ist die Latenz der Befehlsoperation für Zwecke der Zu-
standsmaschine von Fig. 8 die Anzahl der Taktzyklen bevor die Befehlsoperation die Abhängigkeiten von die-
ser Befehlsoperation befriedigt hat. Diese Latenz kann auslaufen, bevor die Befehlsoperation Informationen zu 
dem Zustand der Ausführung zurück gibt (zum Beispiel ob die Befehlsoperation eine Ausnahme erfährt oder 
nicht). Jedoch nimmt die Zustandsmaschine Vorteil von der Verzögerung der Pipeline zwischen einer Befehl-
soperation, die im Ablauf geplant wird, und dieser Befehlsoperation, welche Operanden von den Registerda-
teien 38A–38B liest, um anzuzeigen, dass Abhängigkeiten befriedigt sind bevor die Abhängigkeiten tatsächlich 
physikalisch mittels einer Aktualisierung der Registerdateien befriedigt sind. Entsprechend wird das Block(i) 
Signal zurück genommen, wenn die Befehlsoperation in dem vorliegenden Ausführungsbeispiel den Exec2 Zu-
stand 128 erreicht und verbleibt nicht angelegt, wenn die Zustandsmaschine in dem Exec1 Zustand 130, dem 
Abgeschlossen Zustand 132 oder dem Ungültig Zustand 134 ist (siehe Kasten 134). Das Block(i) Signal wird 
für andere Zustände angelegt.
[0119] An jedem Punkt nach der Ablaufplanung (pick(i) ist angelegt) kann die Befehlsoperation rückgängig 
gemacht werden und kehrt in den nicht ausgeführt Zustand zurück. Diese Operation ist in Fig. 8 dargestellt 
durch jeden der Zustände 118–132, der einen Übergang basierend auf einer "undo" Gleichung (Kasten 134) 
zu einem zentralen Punkt 136 hat, von dem ein Übergang entweder in den Blockiert Zustand 112 oder den 
Anforderung Zustand 114 ausgeführt wird basierend auf der in dem Kasten 134 dargestellten Blockierungsglei-
chung. Der zentrale Punkt 136 wird nur verwendet, um die Unordnung in der Zeichnung zu reduzieren und ist 
nicht beabsichtigt, einen separaten Zustand darzustellen. Für jeden der Zustände, der einen Übergang zu dem 
zentralen punkt 136 zeigt, wird ein Übergang in den Blockiert Zustand 112 ausgeführt, wenn die Rückgän-
gig-Gleichung wahr ist und die Blockierungsgleichung wahr ist, und ein Übergang in den Anforderung Zustand 
114 wird ausgeführt, wenn die Rückgängig-Gleichung wahr ist und die Blockierungsgleichung falsch ist.
[0120] In dem vorliegenden Ausführungsbeispiel wird eine Befehlsoperation "rückgängig gemacht" (das heißt 
kehrt in einem Zustand der Ausführung von nicht ausgeführt) zurück, wenn die Befehlsoperation direkt erneut 
versucht wird oder wenn das Not_Blocked(i) Signal zurück genommen wird. Die Rückgängig-Gleichung in dem 
Kasten 134 stellt die Bedingung für das erneute Versuchen als einen retry_this_op Wert dar, um anzuzeigen, 
dass die Befehlsoperation in dem Eintrag (i) zurückgezogen wurde. Ein Kasten 138 ist ferner gezeigt, der den 
retry_this op Wert als eine Gleichung darstellt, die wahr sein kann, wenn das retry_PA(i) Signal oder das 
retry_stq(i) Signal angelegt ist, oder wenn die Befehlsoperation während der Ausführung erneut versucht wird 
(zum Beispiel das erneuter Versuch Signal von der Lade/Speicher-Einheit 42). Die retry this op Gleichung stellt 
ferner die Abtastung des erneuter Versuch Signals dar, wenn die Befehlsoperation in dem Exec1 Zustand 130
ist. In dem vorliegenden Ausführungsbeispiel werden Situationen des erneuten Versuchs von der Lade/Spei-
cher-Einheit 42 gemeldet, wenn die entsprechende Befehlsoperation in dem Exec1 Zustand 130 ist. Weitere 
Ausführungsbeispiele können den Zustand an verschiedenen Punkten während der Ausführung der Befehls-
operation melden, in Übereinstimmung mit den Wünschen des Entwicklers.
[0121] Wie zuvor erwähnt kann der Zustand der Ausführung einer Befehlsoperation weithin nicht ausgeführt, 
ausführend und abgeschlossen Zustände umfassen.
[0122] Für das Ausführungsbeispiel von Fig. 8 kann der nicht ausgeführt Zustand den Blockiert Zustand 112
oder den Anforderung Zustand 114 aufweisen. Der ausführende Zustand kann die Ausführung Zustände 
118–130 umfassen. Der abgeschlossen Zustand kann den Abgeschlossen Zustand 132 umfassen. Es ist zu 
bemerken, dass die Anzahl der Ausführung Zustände 118–130 von der Implementierung abhängig ist und je 
nach Wahl des Entwicklers variiert werden kann. Des weiteren kann der Punkt in der Ausführung der Befehls-
operation, an dem Abhängigkeiten befriedigt werden je nach Wahl des Entwicklers variiert werden. Die Varia-
tion kann teilweise auf der Anzahl der Stufen der Pipeline zwischen der Stufe, in der die abhängige Befehlso-
peration für den Ablauf geplant ist, und einer bestimmten Stufe, in der die Befriedigung der Abhängigkeiten, 
wie Operanden- oder Ordnungsabhängigkeiten, wie benötigt befriedigt werden, basieren. In dem vorliegenden 
Ausführungsbeispiel ist die bestimmte Stufe die Stufe Lesen Registerdatei.
[0123] Nun Bezug nehmend auf Fig. 9 ist ein Register 140 gezeigt, das von der ROP Steuerschaltung(i) 86A
verwendet werden kann, um Zustände der Zustandsmaschine von Fig. 8 und weitere Zustände, wie sie ge-
wünscht sein könnten, zu speichern. Weitere Ausführungsbeispiel sind möglich und werden betrachtet. In dem 
Ausführungsbeispiel von Fig. 9 kann das Register 140 einen Zustand 142, eine blocked_non spec Angabe 
144, eine blocked_until_fill Angabe 146 und weitere Informationen 148 speichern.
[0124] Der Zustand 142 speichert den derzeitigen Zustand der in Fig. 8 dargestellten Zustandsmaschine. Die 
Zustände können auf jegliche geeignete Weise in dem Zustand 142 kodiert sein. Das Register 142 wird jeden 
Taktzyklus in Übereinstimmung mit den Übergängen der Zustände, wie in der Fig. 8 dargestellt, aktualisiert.
[0125] Die blocked_non spec Angabe 144 kann gesetzt werden, um ein Blockieren in Reaktion auf den Emp-
fang des erneuter Versuch Signals von der Lade/Speicher-Einheit 42 während der Ausführung der Befehlso-
peration anzuzeigen, wenn der erneute Versuchtyp anzeigt, dass die Befehlsoperation nicht spekulativ auszu-
22/45



DE 600 05 860 T2 2004.08.05
führen ist. Die blocked_non spec Angabe 144 kann in der in dem Kasten 134 in Fig. 8 gezeigten Blockierungs-
gleichung verwendet werden. Insbesondere ist, während die blocked_non spec Angabe 144 die Blockierung 
anzeigt, die Befehlsoperation an der Anforderung einer Ablaufplanung gehindert bis die Befehlsoperation nicht 
spekulativ wird. In Reaktion darauf, dass die Befehlsoperation nicht spekulativ wird, kann die blocked_non 
spec Angabe gesetzt werden, um nicht blockiert anzuzeigen und die Befehlsoperation kann für den Ablauf ge-
plant werden. In einem bestimmten Ausführungsbeispiel wird die Befehlsoperation nicht spekulativ, wenn jede 
ältere Befehlsoper ration in dem Ablaufplaner 36 einen Zustand der Ausführung von abgeschlossen hat.
[0126] Die blocked_until fill Angabe 146 kann gesetzt werden, um ein Blockieren in Reaktion auf den Emp-
fang des erneuter Versuch Signals von der Lade/Speicher-Einheit 42 während der Ausführung der Befehlso-
peration anzuzeigen, wenn der erneute Versuchtyp anzeigt, dass die Befehlsoperation in dem D-Cachespei-
cher 44 fehl trifft. Die blocked_until fill Angabe 146 kann in der in dem Kasten 134 in Fig. 8 gezeigten Blockie-
rungsgleichung verwendet werden. Insbesondere ist, während die blocked_until fill Angabe 146 die Blockie-
rung anzeigt, die Befehlsoperation an der Anforderung einer Ablaufplanung gehindert bis die entsprechenden 
Fülldaten zur Verfügung gestellt werden. In Reaktion darauf, dass die als zur Verfügung gestellt angezeigt wer-
den, kann die blocked_until_fill Angabe gesetzt werden, um nicht blockiert anzuzeigen und die Befehlsopera-
tion kann für den Ablauf geplant werden.
[0127] Weitere Informationen können wie gewünscht in dem Weitere Informationen Feld 148 aufgezeichnet 
werden. Zum Beispiel können gewisse Ausführungsbeispiele die Zurückziehung einer Speicheroperation ver-
hindern bis eine SMC Überprüfung durchgeführt wird. Das Weitere Informationen Feld 148 kann das Erforder-
nis auf die SMC Überprüfung zu warten aufzeichnen und kann die Beendigung der SMC Überprüfung aufzeich-
nen. Jegliche andere Information kann aufgezeichnet werden. Des weiteren werden Ausführungsbeispiele, bei 
denen keine weitere Information aufgezeichnet wird, betrachtet werden.
[0128] Nun wird auf Fig. 10 Bezug genommen, in der ein Zeitablaufdiagramm gezeigt ist, das ein Beispiel des 
Rückgängigmachens einer Abhängigkeitskette in Übereinstimmung mit einem Ausführungsbeispiel des Ab-
laufplaners 36 darstellt. Taktzyklen werden von vertikalen punktierten Linien unterteilt, mit einem Identifizieren 
für jeden Taktzyklus an der Spitze zwischen den vertikalen punktierten Linien, die diesen Taktzyklus abgren-
zen. Zustände für jede der Befehlsoperationen (wie von der ROP Steuerschaltung 86 aufgezeichnet) sind 
ebenfalls in Fig. 10 gezeigt (angrenzend zu dem Wort "State" und die R#s der entsprechenden Befehlsopera-
tion in Klammern), wobei "done" den Abgeschlossen Zustand 132 anzeigt, und "blkd" den Blockiert Zustand 
112 anzeigt. Die Fig. 10 umfasst einen Kasten 150, der zwei Abhängigkeitsketten darstellt. Die erste Abhän-
gigkeitskette beginnt mit einer Befehlsoperation I0, einer R# von 10 zugewiesen, und enthält ferner die Befehl-
soperationen I1, I2 und I3. die Befehlsoperation I1 ist abhängig von I0 und hat einen R# von 15. Die Befehls-
operation I2 ist abhängig von I1 und hat einen R# von 23. Die Befehlsoperation I3 ist abhängig von I2 und hat 
einen R# von 34. Die Befehlsoperation I4 ist in einer zweiten Abhängigkeitskette eingeleitet von I0 und ist somit 
abhängig von I0. Die Befehlsoperation I4 hat einen R# von 45. I1 und I4 sind direkt abhängig von I0, während 
I2 und I3 indirekt abhängig von I0 sind. Die Block und Not_Blocked Signale für jede Befehlsoperation sind in 
Fig. 10 dargestellt (wobei die R# der Befehlsoperation in Klammern gezeigt ist). Gewisse Ereignisse, welche 
andere Ereignisse veranlassen, sind durch Pfeile von dem Ereignis zu dem sich ergebenden Ereignis darge-
stellt. Zum Beispiel verursacht die Rücknahme von Not_Blocked(10) eine Änderung von State(10) zu blockiert, 
dargestellt durch einen Pfeil von der Rücknahme von Not_Blocked(10) zu dem blockierten Zustand von Sta-
te(10).
[0129] Während des Taktzyklus clk0 ist jede der Befehlsoperationen in dem abgeschlossen Zustand. Entspre-
chend sind die entsprechenden Block Signale nicht angelegt und die Not_Blocked Signale sind angelegt. Wäh-
rend des Taktzyklus clk1 wird das Not_Blocked(10) Signal zurück genommen (wegen einer oder mehrerer Be-
fehlsoperationen, von denen die Rückgängigmachung von I0 abhängt). In Reaktion auf die Rücknahme von 
Not_Blocked(10) kehrt die Zustandsmaschine für I0 (State(10)) in den blockierten Zustand zurück und somit 
wird das Block(10) Signal in dem Taktzyklus clk2 erneut angelegt. In Reaktion auf das Anlegen von Block(10) 
und die aufgezeichnete Abhängigkeit von I1 und I4 von I0, werden die Not_Blocked(15) und Not_Blocked(45) 
Signale zurück genommen (Taktzyklus clk2). Die Rücknahme der Not_Blocked(15) und Not_Blocked(45) Sig-
nale führen wiederum zu dem rückgängig machen von I1 und I4 (State(15) und State(45) wechseln in den blo-
ckierten Zustand in dem Taktzyklus clk3). Nachfolgend werden I2 und I3 rückgängig gemacht wegen ihrer di-
rekten Abhängigkeiten von I1 beziehungsweise I2 und damit wegen ihrer indirekten Abhängigkeit von I0. an 
dem Ende des Taktzyklus clk5 sind die Abhängigkeitsketten in dem beispielhaften Beispiel rückgängig ge-
macht und die Zustände der Ausführung entsprechend jeder Befehlsoperation (I0 bis I4) sind in dem nicht aus-
geführt Zustand. Nachfolgend können die Befehlsoperationen Befriedigung ihrer Abhängigkeiten erfahren und 
können wiederum erneut ausgegeben werden, wenn die Befehlsoperationen in der Abhängigkeitskette erneut 
ausgeben und die Abhängigkeiten von anderen Befehlsoperationen in den Abhängigkeitsketten erfüllen.
[0130] Es ist zu bemerken, dass während die Block und Not_Blocked Signale in Fig. 10 gezeigt sind (und in 
den Fig. 11, 12 und 15 unten) als angelegt oder nicht angelegt während eines bestimmten Taktzyklus, die 
Block Signale während eines ersten Teils des Taktzyklus inaktiv sein können, um es den Not_Blocked Signalen 
23/45



DE 600 05 860 T2 2004.08.05
zu erlauben, vorgeladen zu werden, und dann können die Block Signale während des zweiten Teils des Takt-
zyklus pulsieren (und Not_Blocked Signale können entladen werden oder vorgeladen bleiben, in Übereinstim-
mung mit den aufgezeichneten Abhängigkeiten). Des weiteren stellen die Zeitablaufdiagramme der Fig. 10, 
11, 12 und 15 den Übergang der Not_Blocked Signale basierend auf dem Übergang der dargestellten Block 
Signale dar. Entsprechend stellen die Beispie lein Beispiel dar, in dem die Abhängigkeiten der dargestellten 
Abhängigkeitsketten die letzten zu befriedigenden Abhängigkeiten für jede Befehlsoperation in der Abhängig-
keitskette sind. Falls weitere Abhängigkeiten unbefriedigt bleieben würden die Not_Blocked Signale nicht an-
gelegt bleiben bis zur Erfüllung von diesen anderen Abhängigkeiten. Auf ähnliche Weise stellen die Zeitablauf-
diagramme für die Übersichtlichkeit der Zeichnungen Befehlsoperationen dar, die in Reaktion auf eine Anfor-
derung unmittelbar für den Ablauf geplant werden. Jedoch kann die Ablaufplanung für einen oder mehrere 
Taktzyklen verzögert werden, falls jüngere Befehlsoperationen des gleichen Typs die Ablaufplanung anfordern.
[0131] Es wird nun auf Fig. 11 Bezug genommen, in der ein Zeitablaufdiagramm die Ausgabe und die erneute 
Ausgabe von beispielhaften Befehlsoperationen in einer Abhängigkeitskette darstellt, wobei die erneute Aus-
gabe wegen eines erneuten Versuchs der ersten Befehlsoperation in der Abhängigkeitskette auftritt. Taktzyk-
len werden von vertikalen punktierten Linien unterteilt, mit einem Identifizieren für jeden Taktzyklus an der Spit-
ze zwischen den vertikalen punktierten Linien, die diesen Taktzyklus abgrenzen. Ein Kasten 152 stellt die bei-
spielhafte Abhängigkeitskette dar, welche die Befehle I0 bis I2 von dem Beispiel aus Fig. 10 sind. Die Block 
und Not_Blocked Signale für jede Befehlsoperation sind dargestellt, ebenso wie die Zustände von jeder Be-
fehlsoperation (wie von der ROP Steuerschaltung 86 aufgezeichnet), ähnlich wie bei dem Beispiel von Fig. 10. 
Die in der Fig. 11 dargestellten Zustände umfassen blockierte und abgeschlossene Zustände, dargestellt 
durch "blkd" und "done" in der Fig. 11 ähnlich wie in Fig. 10. Ebenso sind der Anforderung Zustand 114, der 
Exec2 Zustand 128 und der Exec1 Zustand 130 als "rgst", "ex2" beziehungsweise "ex1" dargestellt. Wieder 
ähnlich zu der Fig. 10 sind gewisse Ereignisse, die andere Ereignisse veranlassen als Pfeile von den verursa-
chenden Ereignissen zu den sich ergebenden Ereignissen dargestellt. In diesem Beispiel sind beide Befehls-
operationen I0 und I1 von einer Latenz von 2.
[0132] Der Taktzyklus clk0 stellt jede der Befehlsoperationen I0–I2 in einem blockierten Zustand dar, wartend 
auf die Erfüllung von Abhängigkeiten bevor sie für die Ausgabe auswählbar werden. Jedes der Not_Blocked 
Signale ist nicht angelegt und jedes der Block Signale ist angelegt. Während des Taktzyklus clk1 wird das 
Not_Blocked(10) Signal angelegt. In Reaktion auf das Anlegen von Not_Blocked(10) wechselt State(10) in den 
Anforderung Zustand während des Taktzyklus clk2. I0 wird für die Ausgabe ausgewählt und damit geht 
Block(10) in den Exec2 Zustand in dem Taktzyklus clk3 über. In dem Taktzyklus clk4 geht State(10) in die 
Exec1 Zustände über.
[0133] In Reaktion auf den Exec2 Zustand von State(10), wird während des Taktzyklus clk4 Block(10) zurück 
genommen (was wiederum dazu führt, dass Not_Blocked(15) angelegt wird). State(15) geht in dem Taktzyklus 
clk4 in Reaktion auf das Anlegen von Not_Blocked(15) in den Anforderung Zustand über und in dem Taktzyklus 
clk5 in Reaktion auf ausgewählt zu werden in den Exec2 Zustand.
[0134] Während des Exec1 Zustands von State(10) (Taktzyklus clk4) detektiert die ROP Steuerschaltung 86
einen erneuten Versuch von I0 (dargestellt in Fig. 10 mittels des retry(R#10) Signals). Der erneute Versuch 
veranlasst ein rückgängig machen von I0 und damit geht State(10) in dem Taktzyklus clk5 in einen nicht aus-
geführt Zustand über. Genauer gesagt geht State(10) in den Anforderung Zustand über, weil das 
Not_Blocked(10) Signal während des Taktzyklus clk4 angelegt wird. In Reaktion auf State(10), das in einen 
nicht ausgeführt Zustand zurück kehrt, wird das Block(10) Signal erneut angelegt (und damit wird 
Not_Blocked(15) zurück genommen. Die Rücknahme von Not_Blocked(15)führt zu einer Rückkehr von Sta-
te(15) in einen nicht ausgeführten Zustand (Taktzyklus clk6).
[0135] Der erneute Versuch von I0 in diesem Beispiel ist von einem Typ des erneuten Versuchs, der eine un-
mittelbare erneute Ausgabe von I0 erlaubt. Entsprechend ist State(10) im Taktzyklus clk5 in dem Anforderung 
Zustand. I0 wird für die Ausführung ausgewählt und daher geht State(10) in den Taktzyklen clk6, clk7 bezie-
hungsweise clk8 in die Exec2, Exec1 und abgeschlossen Zustände über. Während der erneuten Ausführung 
von I0 tritt ein erneuter Versuch nicht auf. Es ist jedoch zu bemerken, dass erneute Versuche mehrere Male 
auftreten können bevor eine Befehlsoperation erfolgreich abschließt.
[0136] Sobald State(10) während der erneuten Ausführung von I0 den Exec2 Zustand erreicht (Taktzyklus 
clk6) wird das Block(10) Signal zurück genommen und das Not_Blocked(15) Signal wird angelegt. In Reaktion 
auf das Anlegen des Not_Blocked(15) Signals geht State(15) in den Anforderung Zustand über (Taktzyklus 
clk7) und nachfolgend in den Exec2 Zustand in Reaktion darauf, zur Ausgabe ausgewählt zu werden (Taktzy-
klus clk8). State(15) geht in den Taktzyklen clk9 beziehungsweise cIk10 in die Exec1 und abgeschlossen Zu-
stände über.
[0137] In Reaktion auf das Erreichen von dem Exec2 Zustand durch State(15) (Taktzyklus clk8) wird das 
Block(15) Signal zurück genommen. Das Not_Blocked(23) Signal wird während Taktzyklus clk8 in Reaktion auf 
die Rücknahme von Block(15) angelegt und damit geht State(23) in den Anforderung Zustand während Takt-
zyklus clk9 zurück. Die Ausgabe von I2 kann während eines späteren Taktzyklus geschehen (nicht gezeigt).
24/45



DE 600 05 860 T2 2004.08.05
[0138] Es wird nun auf Fig. 12 Bezug genommen, in der ein Zeitablaufdiagramm eine erneute Ausgabe von 
einer Befehlsoperationen darstellt, mit einem Grund für eine erneute Ausgabe, der das Auftreten eines nach-
folgendes Ereignisses erfordert, bevor die erneute Ablaufplanung der Befehlsoperation durchgeführt wird. Ge-
nauer gesagt stellt Fig. 12 einen erneuten Versuch einer Befehlsoperation dar, die nicht spekulativ auszufüh-
ren ist. Taktzyklen werden von vertikalen punktierten Linien unterteilt, mit einem Identifizierer für jeden Taktzy-
klus an der Spitze zwischen den vertikalen punktierten Linien, die diesen Taktzyklus abgrenzen. Ein Kasten 
152 stellt die beispielhafte Abhängigkeitskette dar, welche die gleichen Befehlsoperationen I0 bis I2 und Ab-
hängigkeiten von dem Beispiel aus Fig. 11 sind. Die Block und Not_Blocked Signale für jede Befehlsoperation 
sind dargestellt, ebenso wie die Zustände von jeder Befehlsoperation (wie von der ROP Steuerschaltung 86
aufgezeichnet), ähnlich wie bei dem Beispiel von Fig. 11. Die in der Fig. 12 dargestellten Zustände sind ähnlich 
wie in Fig. 11 dargestellt. Wieder ähnlich zu der Fig. 11 sind gewisse Ereignisse, die andere Ereignisse veran-
lassen als Pfeile von dem Ereignis zu dem sich ergebenden Ereignis dargestellt. In diesem Beispiel ist die Be-
fehlsoperation I0 von einer Latenz von 2.
[0139] Die Taktzyklen clk0 bis clk6 sind ähnlich. zu den entsprechenden Taktzyklen clk0 bis clk6 aus Fig. 11
mit der Ausnahme, dass das erneute Versuchen von I0 in dem Taktzyklus clk4 als ein erneutes Versuchen an-
gezeigt wird, weil I0 nicht spekulativ auszuführen ist. Daher wurde I0 spekulativ ausgegeben und seine nicht 
spekulative Natur wurde nach der Ausgabe detektiert. Der Ablaufplaner 36 löst diese Situation durch rückgän-
gig machen von I0, um nicht spekulativ zu werden bevor eine erneute Ausgabe erlaubt wird. Genauer gesagt 
kann die ROP Steuerschaltung 86 in Reaktion auf den erneuten Versuchstyp als "wartend auf nicht spekulativ"
seiend die Blocked_non spec Angabe entsprechend zu I0 setzen. Damit wird die ROP Steuerschaltung 86 da-
ran gehindert, eine Ablaufplanung von I0 anzufordern bevor I0 nicht spekulativ wird, sogar obwohl das 
Not_Blocked(10) Signal angelegt ist. Einige Anzahlen von Taktzyklen können ablaufen und dann kann die ROP 
Steuerschaltung 86 feststellen, dass I0 nicht spekulativ ist (zum Beispiel Taktzyklus clkn in Fig. 12, dargestellt 
durch das Anlegen von dem non-spec(R#10) Signal in Fig. 12). Wie zuvor erwähnt kann eine Befehlsoperation 
nicht spekulativ sein, wenn in Übereinstimmung mit einem Ausführungsbeispiel jede vorherige Befehlsopera-
tion (in der Reihenfolge des Programms) innerhalb des Ablaufplaners 36 in dem abgeschlossen Zustand ist.
[0140] In Reaktion darauf, dass I0 nicht spekulativ wird geht State(10) in den Anforderung Zustand über (Takt-
zyklus clkn + 1). Nachfolgend wird I0 für die Ausgabe ausgewählt (Exec2 Zustand von State(10) in dem Takt-
zyklus clkn + 2) und führt aus. Die abhängigen Befehlsoperationen I1 und I2 können nachfolgend ausgeführt 
werden, sobald ihre Abhängigkeiten von I0 erfüllt sind.
[0141] Es wird nun auf Fig. 13 Bezug genommen, in der ein beispielhafter Eintrag 160 des Puffers für physi-
kalische Adressen gezeigt ist, der von einem Ausführungsbeispiel des Puffers für physikalische Adressen 90
verwendet werden kann. Des weiteren ist eine beispielhafte kombinatorische Logikschaltung 172 gezeigt. Die 
Schaltung 172 kann verwendet werden, um die fill_hit(i) und retry_PA(i) Signale zu erzeugen. Weitere Ausfüh-
rungsbeispiele sind möglich und werden betrachtet. Genauer gesagt kann jede geeignete kombinatorische Lo-
gikschaltung verwendet werden, einschließlich jeglicher Boolean Äquivalente der in Fig. 13 gezeigten Logik. 
Des weiteren kann die in dem Eintrag 160 gespeicherte Information in Form und Inhalt geändert werden, in 
Übereinstimmung mit den Wünschen des Entwicklers. In dem Ausführungsbeispiel von Fig. 13 umfasst der 
Eintrag 160 ein Gültig Bit 162, ein erstes Laden PA Feld 164, ein erstes Bytemaskierungsfeld 166, ein zweites 
Laden PA Feld 168 und ein zweites Bytemaskierungsfeld 170.
[0142] Im Allgemeinen wird, falls die Befehlsoperation in dem Eintrag des Befehlspuffers, dem der Eintrag 
160 zugeordnet ist, eine Lade-Speicheroperation ist, der Eintrag 160 mit der physikalischen Adressinformation 
des Speicheroperanden aktualisiert, auf den von der Lade-Speicheroperation zugegriffen wird (der "Lade Spei-
cheroperand") und das Gültig Bit 162 wird gesetzt. In dem vorliegenden Ausführungsbeispiel wird die Informa-
tion von der physikalischen Adresse des Quadwortes einschließlich des ersten Bytes des Lade Speicherope-
randen (erstes Laden PA Feld 164) und einer Bytemaskierung repräsentiert, die anzeigt, welche Bytes in dem 
Quadwort Teil des Lade Speicheroperanden sind (erstes Bytemaskierungsfeld 166). Die Bytemaskierung weist 
ein Bit für jedes Byte in dem Quadwort auf. Falls das Bit gesetzt ist, ist das entsprechende Byte Teil des Lade 
Speicheroperanden. Falls das Bit nicht gesetzt ist, ist das entsprechende Byte kein Teil des Lade Speichero-
peranden.
[0143] Lade Speicheroperanden können beliebig in dem Speicher ausgerichtet sein. Entsprechend können 
ein oder mehrere Bytes des Lade Speicheroperanden in einem Quadwort sein und ein oder mehrere Bytes des 
Lade Speicheroperanden können in dem nächsten darauf folgenden Quadwort sein. Daher stellt der Eintrag 
160 das zweite Laden PA Feld 168 und das zweite Bytemaskierungsfeld 170 zur Vertügung. Das zweite Laden 
PA Feld 168 speichert die physikalische Adresse des nächsten darauf folgenden Quadworts in das erste Laden 
PA Feld 168. In dem vorliegenden Ausführungsbeispiel wird der in der Seite befindliche Teil der physikalischen 
Adresse in dem zweite Laden PA Feld 168 gespeichert. Weil Lade-Speicheroperationen, die eine Seitengrenze 
überschreiten in dem vorliegenden Ausführungsbeispiel nicht spekulativ sind, ist es ausreichend, lediglich den 
in der Seite befindlichen Teil des nächsten darauf folgenden Quadworts zu speichern (weil die Lade-Speiche-
roperation, wenn eine Seite überschritten wird, nicht spekulativ erneut ausgegeben wird und daher keine älte-
25/45



DE 600 05 860 T2 2004.08.05
ren Speichervorgänge nachfolgend zu der erneuten Ausgabe der Lade-Speicheroperation ausgegeben wer-
den). Weitere Ausführungsbeispiele können die Gesamtheit des nächsten darauf folgenden Quadworts spei-
chern oder falls gewünscht jeden geeigneten Teil. Des weiteren können andere Ausführungsbeispiele, wäh-
rend das vorliegende Ausführungsbeispiel Adressen mit einer Auflösung von einem Quadwort speichert, jeg-
liche andere geeignete Auflösung verwenden (zum Beispiel Oktawort, Doppelwort, usw.). Das zweite Bytemas-
kierungsfeld 170, ähnlich zu dem ersten Bytemaskierungsfeld 166, zeigt an, welche Bytes in dem nächsten 
darauf folgenden Quadwort Teil des Lade Speicheroperanden sind.
[0144] Der Ausführungskern 40A stellt die Speicher physikalische Adresse und die entsprechende Bytemas-
kierung während der Ausführung von Speicher-Speicheroperationen zur Verfügung. Die Schaltung 172 ver-
gleicht die entsprechenden Teile der Speicher physikalische Adresse mit den in dem ersten Laden PA Feld 164
und in dem zweiten Laden PA Feld 168 gespeicherten Werten. Des weiteren werden entsprechende Speicher 
Bytemaskierungen zur Verfügung gestellt. Die UND Gatter, welche die Speicher und Lade Bytemaskierungen 
in der Schaltung 172 empfangen, stellen eine Logik dar, welche feststellt, ob zumindest ein Byte der Lade Byte-
maskierung und zumindest ein entsprechendes Bit in der Speicher Bytemaskierung gesetzt sind, was anzeigt, 
dass zumindest ein Byte des Lade Speicheroperanden von der Lade-Speicheroperation aktualisiert wird. Zum 
Beispiel kann ein UND Gatter für jedes Bit verwendet werden, deren Ausgänge mit einem ODER verknüpft 
sind. Falls der Eintrag 160 gültig ist, stimmen die physikalischen Adressteile überein und zumindest ein Byte 
in dem entsprechenden Quadwort ist Teil des Lade Speicheroperanden und wird von der Speicher-Speicher-
operation aktualisiert, dann kann das retry_PA(i) Signal erzeugt werden. Es ist zu bemerken, dass das 
retry_PA(i) Signal ebenfalls maskiert werden kann, wenn die Speicher-Speicheroperation in der Reihenfolge 
des Programms nicht vor der Lade-Speicheroperation ist (nicht gezeigt in Fig. 3).
[0145] Es ist zu bemerken, dass Speicher Speicheroperanden ebenfalls willkürlich im Speicher ausgerichtet 
sein können. Entsprechend können ein oder mehrere Bytes des Speicher Speicheroperanden in einem Quad-
wort sein und ein oder mehrere Bytes des Speicher Speicheroperanden können in dem nächsten darauf fol-
genden Quadwort sein. Daher kann die Speicher PA+1 (ähnlich zu der Lade PA+1) mit den gespeicherten Lade 
PAs verglichen werden, um eine Speicher PA zu detektieren, die eine Lade PA trifft. Die folgende Formel kann 
das retry_PA(i) Signal darstellen (in dem die MATCH(A(n : 0),B(n : 0)) Funktion eine binäre 1 zurück gibt, wenn 
zumindest ein Bit in A(n : 0) gesetzt ist ein entsprechendes Bit in B(n : 0) gesetzt ist):

[0146] Es ist ferner zu bemerken, dass der letzte der vier Ausdrücke (Load_PA(11 : 3) + 1 und Store_PA(11 : 
3) + 1 vergleichend) redundant ist und in dem vorliegenden Ausführungsbeispiel eliminiert werden kann, weil, 
für einen Speicheroperanden mit einem gültigen Byte in dem nächsten darauf folgenden Quadwort, der Spei-
cheroperand zumindest ein gültiges Byte (Byte 7, repräsentiert von dem Maskierungsbit 7) in dem ersten 
Quadwort hat. Daher wird eine Übereinstimmung in dem vierten Ausdruck nur angetroffen, wenn auch eine 
Übereinstimmung in dem ersten Ausdruck (Load_PA(11 : 3) und Store_PA(11 : 3) vergleichend) angetroffen 
wird.
[0147] Des weiteren wird der Eintrag 160 mit den von der externen Interfaceeinheit 46 zur Verfügung gestell-
ten Füll/Sondierung Adressen verglichen. In dem dargestellten Ausführungsbeispiel wird die für einen Füllvor-
gang zur Verfügung gestellte Zeile des Cachespeichers dem Puffer für physikalische Adressen 90 zum Ver-
gleich zur Verfügung gestellt. Ein entsprechender Teil des ersten Laden PA Feld 164 und des zweiten Laden 
PA Feld 168 kann mit der Fülladresse verglichen werden. Falls eine Übereinstimmung detektiert wird, kann das 
fill_hit(i) Signal angelegt werden. In anderen Ausführungsbeispielen kann die Zeile des Cachespeichers dem 
D-Cachespeicher 44 als eine Vielzahl von Paketen zur Verfügung gestellt werden. Der Teil der Adresse, der 
26/45



DE 600 05 860 T2 2004.08.05
die Zeile des Cachespeichers identifiziert, und das zur Verfügung gestellte Paket können in diesen Ausfüh-
rungsbeispielen verglichen werden.
[0148] Es ist ferner zu bemerken, dass das retry_PA(i) Signal maskiert werden kann, wenn die Speicher-Spei-
cheroperation, die dem store_PA entspricht, jünger ist als die Lade-Speicheroperation, die dem Eintrag 160
entspricht.
[0149] Es wird nun auf Fig. 14 Bezug genommen, in der ein beispielhafter Eintrag 180 des Puffers für Spei-
chern R# Adressen gezeigt ist, der von einem Ausführungsbeispiel des Speichern R# Puffer 92 verwendet wer-
den kann. Des weiteren ist eine beispielhafte kombinatorische Logikschaltung 190 gezeigt. Die Schaltung 190
kann verwendet werden, um das retry_stq(i) Signal zu erzeugen. Weitere Ausführungsbeispiele sind möglich 
und werden betrachtet. Genauer gesagt kann jede geeignete kombinatorische Logikschaltung verwendet wer-
den, einschließlich jeglicher Boolean Äquivalente der in Fig. 14 gezeigten Logik. Des weiteren kann die in dem 
Eintrag 180 gespeicherte Information in Form und Inhalt geändert werden, in Übereinstimmung mit den Wün-
schen des Entwicklers. In dem Ausführungsbeispiel von Fig. 14 umfasst der Eintrag 180 ein Gültig Bits 182
und 186 und Speichern R# Felder 184 und 188.
[0150] Im Allgemeinen wird, falls die Befehlsoperation in dem Eintrag des Befehlspuffers, dem der Eintrag 
180 zugeordnet ist, eine Lade-Speicheroperation ist, der Eintrag 180 mit dem Speicher R# eines Speichervor-
gangs in der Speicher-Warteschlange 70 aktualisiert, der von der Lade-Speicheroperation getroffen wird. Das 
vorliegende Ausführungsbeispiel stellt die Weiterleitung von bis zu zwei Speicher-Speicheroperationen an eine 
Lade-Speicheroperation zur Verfügung und daher sind zwei Speichern R# Felder 184 und 188 vorgesehen, 
um die R# von jedem weiter geleiteten Speichervorgang aufzuzeichnen. Entsprechende Gültig Bits 182 und 
186 sind gesetzt, wenn die entsprechenden weiterleitenden Speichervorgänge detektiert werden. Weitere Aus-
führungsbeispiele könnten lediglich von einem Speichervorgang weiterleiten und der Eintrag 180 könnte ledig-
lich ein Speicher R# aufzeichnen. Noch weitere Ausführungsbeispiele können von mehr als zwei Speichervor-
gängen weiterleiten und der Eintrag 180 kann eine entsprechende Anzahl von Speicher R#s aufzeichnen.
[0151] Sobald Speicher-Speicheroperationen ausgeführt werden stellt die Lade/Speicher-Einheit 42 die R# 
der Speicher-Speicheroperation dem Speichern 2# Puffer 92 zur Verfügung. Die R# wird mit den in dem Ein-
trag 180 gespeicherten R# verglichen und falls eine Übereinstimmung detektiert wird (und das entsprechende 
Gültig Bit gesetzt ist), legt die Schaltung 190 das retn stq(i) Signal an. Wie oben erwähnt können in einer wei-
teren Alternative die Nummern der Speicherwarteschlange in dem Puffer 92 gespeichert werden und die Num-
mern der Speicherwarteschlange können zum Vergleich zur Verfügung gestellt werden.
[0152] Es wird nun auf Fig. 15 Bezug genommen, in der ein Zeitablaufdiagramm eine erneute Ausgabe von 
einer Lade-Speicheroperation über einen Treffer in dem Puffer für physikalische Adressen 90 darstellt. Ein er-
neuter Versuch einer Lade-Speicheroperation über einen Treffer in dem Speichern R# Puffer 92 kann ähnlich 
sein. Taktzyklen werden von vertikalen punktierten Linien unterteilt, mit einem Identifizieren für jeden Taktzyk-
lus an der Spitze zwischen den vertikalen punktierten Linien, die diesen Taktzyklus abgrenzen. Ein Kasten 192
stellt die beispielhafte Abhängigkeitskette dar, welche die gleichen Befehlsoperationen I0 bis I2 und Abhängig-
keiten von dem Beispiel aus Fig. 11 sind (mit der Ausnahme, dass I0 nun eine Lade-Speicheroperation ist). 
Die Block und Not_Blocked Signale für jede Befehlsoperation sind dargestellt, ebenso wie die Zustände von 
jeder Befehlsoperation (wie von der ROP Steuerschaltung 86 aufgezeichnet), ähnlich wie bei dem Beispiel von 
Fig. 11. Die in der Fig. 12 dargestellten Zustände sind ähnlich wie in Fig. 11 dargestellt. Des weiteren sind die 
Exec4 und Exec3 Zustände als "ex4" beziehungsweise "ex3" dargestellt. Wieder ähnlich zu der Fig. 11 sind 
gewisse Ereignisse, die andere Ereignisse veranlassen als Pfeile von dem Ereignis zu dem sich ergebenden 
Ereignis dargestellt. In diesem Beispiel ist die Lade-Speicheroperation I0 von einer Latenz von 4.
[0153] In dem Taktzyklus clk0 ist jede der Befehlsoperationen I0–I2 ausgegeben und ausgeführt worden und 
sind daher in dem abgeschlossen Zustand. Entsprechende Block Signale sind nicht angelegt und Not_Blocked 
Signale sind angelegt. Jedoch wird für R#10 ein Treffer in dem Puffer für physikalische Adressen 90 detektiert 
(retry_PA(10) wird während des Taktzyklus clk0 angelegt). In Reaktion geht State(10) in dem Taktzyklus clk1 
in den Anforderung Zustand über. Des weiteren wird das Block(10) Signal angelegt und I1 und I2 werden nach 
einander während der Taktzyklen clk2 bis clk3 rückgängig gemacht.
[0154] Die Lade-Speicheroperation I0 wird in den Taktzyklen clk2 bis clk6 für die Ausführung ausgewählt und 
läuft durch die ausführenden Stufen in den abgeschlossen Zustand. In Reaktion darauf, dass I0 in dem Takt-
zyklus clk4 den Exec2 Zustand erreicht, wird das Block(10) Signal zurückgenommen (und damit wird das 
Not_Blocked(15) Signal angelegt. Die Befehlsoperationen I1 und I2 werden damit erneut für den Ablauf ge-
plant und wie in Fig. 15 gezeigt erneut ausgegeben.
[0155] Fig. 15 stellt dar, dass eine Lade-Speicheroperation vor Speicher-Speicheroperationen ausgegeben 
und ausgeführt werden kann, von denen die Lade Befehlsoperation abhängt. Nachfolgend können die Spei-
cher-Speicheroperationen ausgegeben werden und die Abhängigkeit detektiert werden. Die Abhängigkeit wird 
berücksichtigt durch eine erneute Ausgabe der Lade-Speicheroperation (und ihrer Abhängigkeitsketten) durch 
den Ablaufplaner 36, sobald die Abhängigkeit erkannt wird. Ein ähnliches Zeitablaufdiagramm mit dem 
retry_stq(10) Signal angelegt stellt die Detektierung einer falschen Abhängigkeit einer Lade-Speicheroperation 
27/45



D E  6 0 0  0 5  8 6 0  T 2  2 0 0 4 .0 8 .0 5
von einer vorherigen Speicher-Speicheroperation dar, welche nicht korrekt ausgeführt wurde und nachfolgend 
erneut ausgegeben wurde. Wiederum behandelt der Ablaufplaner 36 die Situation durch eine erneute Ausgabe 
der Lade-Speicheroperation und ihrer Abhängigkeitsketten. Eine korrekte Operation kann bei minimaler Ab-
nahme der Leistungsfähigkeit zur Verfügung gestellt werden und daher kann eine aggressive spekulative Aus-
führung durchgeführt werden und eine höhere Leistungsfähigkeit kann erreicht werden.

Computersysteme

[0156] Es wird nun auf Fig. 16 Bezug genommen, in der ein Blockdiagramm gezeigt ist, das ein Ausführungs-
beispiel eines Computersystems 200 einschließlich des Prozessors 10 darstellt, der über eine Busbrücke 202
mit einer Vielzahl von Systemkomponenten verbunden ist. Weitere Ausführungsbeispiele sind möglich und 
werden betrachtet. In dem dargestellten System ist ein Hauptspeicher 204 über einen Speicherbus 206 mit der 
Busbrücke 202 verbunden und eine Grafiksteuerung 208 ist über einen AGP Bus 210 mit der Busbrücke 202
verbunden. Schließlich ist eine Vielzahl von PCI Geräten 212A–212B über einen PCI Bus 214 mit der Busbrü-
cke 202 verbunden. Eine zweite Busbrücke 216 kann ferner vorgesehen sein, um einem oder mehreren EISA 
oder ISA Geräten 218 über einen EISA/ISA Bus 220 eine elektrische Schnittstelle zu bieten. Der Prozessor 10
ist über einen CPU Bus 224 mit der Busbrücke 202 und mit einem optionalen L2 Cachespeicher 228 verbun-
den. Zusammen können der CPU Bus 224 und die Schnittstelle zu dem L2 Cachespeicher 228 eine externe 
Schnittstelle 52 aufweisen.
[0157] Die Busbrücke 202 stellt eine Schnittstelle zwischen dem Prozessor 10, dem Hauptspeicher 204, der 
Grafiksteuerung 208 und an den PCI Bus 214 angebrachten Geräten zur Verfügung. Wenn eine Operation von 
einem der an die Busbrücke 202 angeschlossenen Geräte empfangen wird, identifiziert die Busbrücke 202 das 
Ziel der Operation (zum Beispiel ein bestimmtes Gerät oder in dem Fall des PCI Busses 214, dass das Ziel auf 
dem PCI Bus 214 ist). Die Busbrücke 202 führt die Operation zu dem angezielten Gerät. Die Busbrücke 202
übersetzt im Allgemeinen eine Operation von dem Protokoll, das von dem Quellgerät oder -bus benutzt wird, 
in das Protokoll, das von dem Zielgerät oder -bus benutzt wird.
[0158] Zusätzlich zur Bereitstellung einer Schnittstelle zu einem ISA/EISA Bus für den PCI Bus 214 kann die 
zweite Busbrücke 216 wie gewünscht weitere Funktionalität enthalten. Eine Eingangs/Ausgangssteuerung 
(nicht gezeigt), entweder außerhalb von der oder in die zweite Busbrücke 216 integriert, kann auch in dem 
Computersystem 200 enthalten sein, um operationelle Unterstützung für eine Tastatur und Maus 222 und für 
verschiedene serielle und parallele Anschlüsse wie gewünscht zur Verfügung zu stellen. Eine externe Cache-
speichereinheit (nicht gezeigt) kann ferner an den CPU Bus 224 zwischen dem Prozessor 10 und der Busbrü-
cke 202 in anderen Ausführungsbeispielen angeschlossen sein. Alternativ kann der externe Cachespeicher an 
die Busbrücke 202 angeschlossen sein und die Cachespeichersteuerlogik für den externen Cachespeicher 
kann in der Busbrücke 202 integriert sein. Ein L2 Cachespeicher 228 ist des weiteren in einer hinter dem Pro-
zessor 10 angeordneten Konfiguration gezeigt. Es ist zu bemerken, dass der L2 Cachespeicher 228 getrennt 
von dem Prozessor 10, in einem Einsatz (zum Beispiel Slot 1 oder Slot A) für den Prozessor 10 integriert oder 
sogar integriert auf einem Halbleitersubstrat in dem Prozessor 10 sein kann.
[0159] Der Hauptspeicher 204 ist ein Speicher, in dem Anwendungsprogramme gespeichert werden und von 
dem der Prozessor 10 hauptsächlich ausführt. Ein geeigneter Hauptspeicher 204 weist DRAM (dynamischen 
wahlfreien Zugriffsspeicher) auf. Zum Beispiel kann eine Vielzahl von Bänken an SDRAM (Synchrones DRAM) 
oder an Rambus DRAM (RDRAM) geeignet sein.
[0160] Die PCI Geräte 212A–212B sind beispielhaft für eine Vielzahl von peripheren Geräten, wie zum Bei-
spiel Netzwerkschnittstellenkarten, Videobeschleunigern, Audiokarten, Festplatten oder Diskettenlaufwerken 
oder Laufwerkssteuerungen, SCSI (kleine Computer Systemschnittstelle) Adaptern oder Telefoniekarten. Auf 
ähnliche Weise ist das ISA Gerät 218 beispielhaft für verschiedene Typen von peripheren Geräten, wie einem 
Modem, einer Soundkarte und einer Vielzahl von Daten sammelnden Karten, wie GPIB oder Feldbus Schnitt-
stellenkarten.
[0161] Die Grafiksteuerung 208 ist vorgesehen, um Text und Bilder auf einer Anzeige 256 sichtbar zu ma-
chen. Die Grafiksteuerung 208 kann einen typischen Grafikbeschleuniger verwenden, der allgemein im Stand 
der Technik bekannt ist, um dreidimensionale Datenstrukturen sichtbar zu machen, die effektiv aus und in den 
Hauptspeicher 204 geschoben werden können. Die Grafiksteuerung 208 kann daher ein Master von dem AGP 
Bus 210 sein, so dass es Zugriff auf eine Zielschnittstelle innerhalb der Busbrücke 202 anfordern und empfan-
gen kann, um dadurch Zugriff auf den Hauptspeicher 204 zu bekommen. Ein fest zugeordneter Grafikbus er-
laubt eine schnelle Erlangung von Daten aus dem Hauptspeicher 204. Für gewisse Operationen kann die Gra-
fiksteuerung 208 des weiteren konfiguriert sein, um auf dem AGP Bus Transaktionen nach dem PCI Protokoll 
zu erzeugen. Die AGP Schnittstelle der Busbrücke 202 kann daher Funktionalitäten enthalten, um sowohl 
Transaktionen nach dem AGP Protokoll als auch Ziel- und Urhebertransaktionen nach dem PCI Protokoll zu 
unterstützen. Die Anzeige 226 ist jegliche elektronische Anzeige, auf der ein Bild oder ein Text dargestellt wer-
den kann. Eine geeignete Anzeige umfasst eine Kathodenstrahlröhre („CRT"), ein Flüssigkristalldisplay 
28/45



DE 600 05 860 T2 2004.08.05
(„LCD") usw.
[0162] Es ist zu bemerken, dass, während die AGP, PCI und ISA oder EISA Busse in der obigen Beschrei-
bung als Beispiele benutzt worden sind, jede Busarchitektur wie gewünscht ersetzt werden kann. Es ist weiter 
zu bemerken, dass das Computersystem 200 ein Mehrfachprozessorsystem sein kann, das zusätzliche Pro-
zessoren enthält (zum Beispiel Prozessor 10a, der als optionale Komponente des Computersystems 200 ge-
zeigt ist). Der Prozessor 10a kann ähnlich zu dem Prozessor 10 sein. Genauer gesagt kann der Prozessor 10a
eine identische Kopie des Prozessors 10 sein. Der Prozessor 10a kann über einen unabhängigen Bus (wie in 
Fig. 11 gezeigt) mit der Busbrücke 202 verbunden sein oder kann den CPU Bus 224 mit dem Prozessor 10
teilen. Des weiteren kann der Prozessor 10a mit einem optionalen L2 Cachespeicher 228a verbunden sein, 
der dem L2 Cachespeicher 228 ähnlich ist.
[0163] Es wird nun auf Fig. 17 Bezug genommen, in der ein weiteres Ausführungsbeispiel eines Computer-
systems 300 gezeigt ist. Weitere Ausführungsbeispiele sind möglich und werden betrachtet. In dem Ausfüh-
rungsbeispiel von Fig. 17 enthält das Computersystem 300 mehrere Verarbeitungsknoten 321A, 312B, 312C
und 312D. Jeder Verarbeitungsknoten ist mit einem entsprechenden Speicher 314A–314D über eine Speicher-
steuerung 316A–316D verbunden, die in jedem entsprechenden Verarbeitungsknoten 312A–312D enthalten 
ist. Des weiteren enthalten die Verarbeitungsknoten 312A–312D eine Interfacelogik, die zur Kommunikation 
zwischen den Verarbeitungsknoten 312A–312D verwendet wird. Zum Beispiel enthält der Verarbeitungsknoten 
312A eine Intertacelogik 318A zum Kommunizieren mit dem Verarbeitungsknoten 312B, eine Intertacelogik 
318B zum Kommunizieren mit dem Verarbeitungsknoten 312C und eine dritte Interfacelogik 318C zum Kom-
munizieren mit noch einem weiteren Verarbeitungsknoten (nicht gezeigt). Auf ähnliche Weise enthält der Ver-
arbeitungsknoten 312B die Intertacelogiken 318D, 318E und 318F; der Verarbeitungsknoten 312C enthält die 
Intertacelogiken 318G, 318H und 318I und der Verarbeitungsknoten 312D enthält die Interacelogiken 318J, 
318K und 318L. Der Verarbeitungsknoten 312D ist angeschlossen, um mit einer Vielzahl von Eingangs/Aus-
gangs Geräten (zum Beispiel Geräte 320A–320B in verketteter Konfiguration) über die Interfacelogik 318L zu 
kommunizieren. Weitere Verarbeitungsknoten können mit anderen I/O Geräten in ähnlicher Weise kommuni-
zieren.
[0164] Die Verarbeitungsknoten 312A–312D implementieren eine paketbasierte Verbindung für die Kommu-
nikation zwischen den Verarbeitungsknoten. In dem vorliegenden Ausführungsbeispiel ist die Verbindung als 
Sätze von unidirektionalen Leitungen verwirklicht (zum Beispiel werden Leitungen 324A verwendet, um Pakete 
von dem Verarbeitungsknoten 312A zu dem Verarbeitungsknoten 312B zu übermitteln und Leitungen 324B
werden verwendet, um Pakete von dem Verarbeitungsknoten 312B zu dem Verarbeitungsknoten 312A zu 
übermitteln). Weitere Sätze von Leitungen 324C–324h werden wie in Fig. 17 dargestellt verwendet, um Pakete 
zwischen den anderen Verarbeitungsknoten zu übermitteln. Im Allgemeinen kann jeder Satz von Leitungen 
324 eine oder mehrere Datenleitungen, eine oder mehrere den Datenleitungen entsprechende Taktleitungen 
und eine oder mehrere Steuerleitungen zur Anzeige des Typs des beförderten Pakets aufweisen. Die Verbin-
dung kann für die Kommunikation zwischen den Verarbeitungsknoten auf eine mit einem Cachespeicher ko-
härente Weise betrieben werden oder für die Kommunikation zwischen einem Verarbeitungsknoten und einem 
I/O Gerät (oder einer Busbrücke zu einem I/O Bus von konventioneller Konstruktion, wie einem PCI Bus oder 
einem ISA Bus) auf nicht kohärente Weise betrieben werden. Des weiteren kann die Verbindung unter Benut-
zung einer verketteten Struktur zwischen den I/O Geräten, wie gezeigt, auf nicht kohärente Weise betrieben 
werden. Es ist zu bemerken, dass ein Paket, das von einem Verarbeitungsknoten zu einem Anderen übermit-
telt wird, einen oder mehrere andere in der Mitte liegende Knoten passieren kann. Zum Beispiel kann ein von 
dem Verarbeitungsknoten 312A an den Verarbeitungsknoten 312D übermitteltes Paket entweder durch den 
Verarbeitungsknoten 312B oder den Verarbeitungsknoten 312C wie in Fig. 17 gezeigt gelangen. Jeder geeig-
nete Algorithmus zur Dirigierung kann verwendet werden. Weitere Ausführungsbeispiele des Computersys-
tems 300 können mehr oder weniger Verarbeitungsknoten als in dem in Fig. 17 gezeigten Ausführungsbeispiel 
enthalten.
[0165] Im Allgemeinen können die Pakete mit einer oder mehr Bitzeiten auf den Leitungen 324 zwischen den 
Knoten übermittelt werden. Eine Bitzeit kann die steigende oder fallende Flanke des Taktsignals auf den ent-
sprechenden Taktleitungen sein. Die Pakete können Anweisungspakete zum Einleiten von Transaktionen, 
Sondierungspakete zur Beibehaltung der Kohärenz des Cachespeichers und Antwortpakete sein, die auf Son-
dierungen und Anweisungen antworten.
[0166] Die Verarbeitungsknoten 312A–312D können, zusätzlich zu einer Speichersteuerung und einer Inter-
facelogik, einen oder mehrere Prozessoren enthalten. Allgemein gesagt weist ein Verarbeitungsknoten min-
destens einen Prozessor auf und kann optional eine Speichersteuerung zur Kommunikation mit einem Spei-
cher und weitere Logik wie gewünscht enthalten. Insbesondere kann ein Verarbeitungsknoten 312A–312D ei-
nen Prozessor 10 aufweisen. Die externe Interfaceeinheit 46 kann die Interfacelogik 318 innerhalb des Kno-
tens enthalten, ebenso wie die Speichersteuerung 316.
[0167] Die Speicher 314A–314D können alle geeigneten Speichergeräte aufweisen. Zum Beispiel kann ein 
Speicher 314A–314D einen oder mehrere RAMBUS DRAMs (RDRAMs), synchrone DRAMs (SDRAMs), sta-
29/45



DE 600 05 860 T2 2004.08.05
tische RAMs usw. aufweisen. Der Adressraum des Computersystems 300 ist zwischen den Speichern 
314A–314D aufgeteilt. Jeder Verarbeitungsknoten 312A–312D kann eine Speicherabbildung enthalten, die 
verwendet wird, um festzustellen, welche Adressen auf welche Speicher 314A–314D abgebildet sind, und da-
mit, an welchen Verarbeitungsknoten 312A–312D eine Speicheranforderung für eine bestimmte Adresse diri-
giert werden soll. In einem Ausführungsbeispiel ist der Kohärenzpunkt für eine Adresse in dem Computersys-
tem 300 die Speichersteuerung 316A–316D, die mit dem Speicher verbunden ist und den Adressen entspre-
chende Bytes speichert. Anders gesagt ist die Speichersteuerung 316A–316D verantwortlich für die Sicher-
stellung, dass jeder Speicherzugriff auf den entsprechenden Speicher 314A–314D auf eine mit dem Cache-
speicher kohärente Weise geschieht. Die Speichersteuerungen 316A–316D können eine Steuerschaltung auf-
weisen, um eine Schnittstelle zu dem Speicher 314A–314D zu bilden. Des weiteren können die Speichersteu-
erungen 316A– 316D Anforderungswarteschlangen für die Aufreihung von Speicheranforderungen enthalten.
[0168] Im Allgemeinen kann die Interfacelogik 318A–318L eine Vielzahl von Puffern zum Empfangen von Pa-
keten von der Verbindung und zum Puffern von auf der Verbindung zu übermittelnden Paketen aufweisen. Das 
Computersystem 300 kann jeden geeigneten Mechanismus zur Flusssteuerung für die Übermittelung von Pa-
keten verwenden. Zum Beispiel speichert in einem Ausführungs-Beispiel die Interfacelogik 318 einen Zählwert 
der Anzahl von jedem Typ des Puffers in dem Empfänger an der anderen Seite der Verbindung, mit dem diese 
Interfacelogik verbunden ist. Die Interfacelogik übermittelt kein Paket, es sei denn die empfangene Interface-
logik hat einen freien Puffer, um das Paket zu speichern. Wenn ein empfangender Puffer durch die Weiterlei-
tung eines Pakets frei wird, übermittelt die empfangende Logik eine Nachricht zu der sendenden Interfacelogik, 
um anzuzeigen, dass der Puffer leer gemacht worden ist. Ein derartiger Mechanismus kann als ein „Coupon 
basiertes" System bezeichnet werden.
[0169] Die I/O Geräte 320A–320B können alle geeigneten I/O Geräte sein. Zum Beispiel können die I/O Ge-
räte 320A–320B Netzwerk-Schnittstellenkarten, Videobeschleuniger, Audiokarten, Festplatten oder Disketten-
laufwerke oder Laufwerkcontroller, SCSI (Kleincomputer-Systemschnittstelle) Adapter und Telefoniekarten, 
Modems, Soundkarten und eine Vielzahl von Datenaquisitionskarten, wie GPIB oder Feldbusinterfacekarten 
sein.
[0170] Zahlreiche Variationen und Modifikationen werden den Fachleuten auf dem Gebiet offenbar werden, 
sobald die obige Offenbarung vollständig anerkannt ist. Es ist beabsichtigt, dass die folgenden Ansprüche in-
terpretiert werden, um alle derartigen Variationen und Modifikationen zu umfassen.

Industrielle Anwendbarkeit

[0171] Diese Erfindung ist in dem Gebiet von Prozessoren und Computersystemen anwendbar.

Patentansprüche

1.  Planungseinrichtung (36) mit:  
einem Puffer (80) zum Speichern einer ersten Befehlsoperation; einer mit dem Puffer (80) gekoppelten Schal-
tung (82;86), die zum Auswählen der ersten Befehlsoperation zwecks Ausgebens aus dem Puffer (80), zum 
Halten der ersten Befehlsoperation nach dem Ausgeben in dem Puffer (80) und zum Wiederausgeben der ers-
ten Befehlsoperation, wenn die erste Befehlsoperation inkorrekt ausgeführt worden ist, vorgesehen ist;  
dadurch gekennzeichnet, dass  
die Planungseinrichtung ferner einen mit der Schaltung (82;86) gekoppelten Adressenpuffer (90) aufweist, wo-
bei die erste Befehlsoperation eine erste Speicheroperation ist und der Adressenpuffer (90) zum Speichern ei-
ner ersten Adresse vorgesehen ist, auf die die erste Speicheroperation zugreift, wobei der Adressenpuffer zum 
Empfangen der ersten Adresse, zum Empfangen der zweiten Adresse einer im Anschluss an die erste Spei-
cheroperation erfolgenden Speichern-in-Speicheroperation und zum Vergleichen der zweiten Adresse mit im 
Adressenpuffer (90) gespeicherten Adressen vorgesehen ist, und wobei die erste Befehlsoperation inkorrekt 
ausgeführt worden ist, wenn die Speichern-in-Speicheroperation mindestens ein Byte aktualisiert, auf das die 
erste Befehlsoperation zugreift, und die Speichern-in-Speicheroperation der ersten Speicheroperation in der 
Programmreihenfolge vorangeht.

2.  Planungseinrichtung nach Anspruch 1 zum Empfangen eines ersten Signals von einer Ausführungsein-
heit (42), das anzeigt, dass die erste Befehlsoperation inkorrekt ausgeführt worden ist, wobei die Schaltung 
(82;86) zum Wiederausgeben der ersten Befehlsoperation in Reaktion auf das erste Signal vorgesehen ist und 
das erste Signal ferner anzeigt, dass die erste Befehlsoperation nicht spekulativ ausgeführt werden soll, und 
wobei die Schaltung (82;86) zum Verzögern des Wiederausgebens der ersten Befehlsoperation vorgesehen 
ist, bis die erste Befehlsoperation nicht spekulativ ist.

3.  Planungseinrichtung nach Anspruch 1 zum Empfangen eines ersten Signals von einer Ausführungsein-
30/45



DE 600 05 860 T2 2004.08.05
heit (42), das anzeigt, dass die Befehlsoperation inkorrekt ausgeführt worden ist, wobei die Schaltung zum 
Wiederausgeben der ersten Befehlsoperation in Reaktion auf das erste Signal vorgesehen ist.

4.  Planungseinrichtung nach Anspruch 1, bei der der Adressenpuffer (90) zum Empfangen einer Fülladres-
se vorgesehen ist, die anzeigt, dass Daten an einen Daten-Cachespeicher (44) gesendet werden, und wobei, 
wenn die erste Adresse Daten innerhalb der an den Daten-Cachespeicher gesendeten Daten anzeigt, die 
Schaltung zum Wiederausgeben der ersten Speicheroperation vorgesehen ist.

5.  Planungseinrichtung nach Anspruch 1, ferner mit einem Kennzeichenpuffer (92), der zum Empfangen 
eines Speicherkennzeichens entsprechend einer Speichern-in-Speicheroperation vorgesehen ist, wobei die 
erste Befehlsoperation eine erste Speicheroperation ist, wobei die Speichern-in-Speicheroperation mindes-
tens ein Byte aktualisiert, auf das die erste Speicheroperation zugreift, und die Speichern-in-Speicheroperation 
der ersten Speichern-in-Speicher-Speicheroperation in der Programmreihenfolge vorangeht, wobei der Kenn-
zeichenpuffer (92) zum Speichern des Speicherkennzeichens in einen Eintrag entsprechend der ersten Spei-
cheroperation in Reaktion auf das Ausführen der ersten Speicheroperation vorgesehen ist.

6.  Planungseinrichtung nach Anspruch 5, bei dem der Kennzeichenpuffer (92) ferner zum Empfangen ei-
nes zweiten Speicherkennzeichens entsprechend einem Ausführungsspeicher vorgesehen ist, wobei der 
Kennzeichenpuffer (92) zum Vergleichen des zweiten Speicherkennzeichens mit dem Speicherkennzeichen 
vorgesehen ist und wobei die Schaltung zum Wiederausgeben der ersten Speicheroperation in Reaktion dar-
auf, dass das Speicherkennzeichen dem zweiten Speicherkennzeichen gleich ist, vorgesehen ist.

7.  Prozessor (10) mit:  
einer Planungseinrichtung (36) nach einem der Ansprüche 1 bis 6; und einer mit der Planungseinrichtung ge-
koppelten Ausführungseinheit (42), die zum Ausführen der ersten Befehlsoperation vorgesehen ist.

8.  Verfahren mit folgenden Schritten:  
Ausgeben einer ersten Befehlsoperation von einer Planungseinrichtung (36) zu Ausführungszwecken;  
Halten der ersten Befehlsoperation in der Planungseinrichtung (36) nach dem Ausgeben;  
Wiederausgeben der ersten Befehlsoperation von der Planungseinrichtung (36) zu Ausführungszwecken in 
Reaktion darauf, dass die erste Befehlsoperation inkorrekt ausgeführt worden ist;  
dadurch gekennzeichnet, dass  
die erste Befehlsoperation eine erste Speicheroperation ist; wobei das Verfahren ferner folgende Schritte um-
fasst:  
Speichern einer ersten Adresse der ersten Befehlsoperation in einem Adressenpuffer (90);  
Ausgeben einer Speichern-in-Speicheroperation, die der ersten Befehloperation in der Programmreihenfolge 
vorangeht, nach dem Ausgeben der ersten Befehlsoperation;  
Vergleichen der ersten Adresse in dem Puffer (90) mit einer Speicheradresse entsprechend der Spei-
chern-in-Speicheroperation; und Detektieren, dass die erste Befehlsoperation inkorrekt ausgeführt worden ist, 
wenn der Vergleich anzeigt, dass die Speichern-in-Speicheroperation mindestens ein Byte aktualisiert, auf das 
die erste Speicheroperation zugreift.

9.  Verfahren nach Anspruch 8, bei dem die erste Befehlsoperation eine erste Speicheroperation ist, wobei 
das Verfahren ferner folgende Schritte umfasst:  
Speichern einer ersten Adresse der ersten Befehlsoperation in einem Adressenpuffer (90);  
Vergleichen einer Fülladresse, die anzeigt, dass Daten zu einem Daten-Cachespeicher (44) gesendet werden; 
und  
Wiederausgeben der ersten Speicheroperation, wenn die erste Adresse Daten innerhalb der zu dem Da-
ten-Cachespeicher gesendeten Daten anzeigt.

10.  Verfahren nach Anspruch 8, bei dem die erste Befehlsoperation eine erste Speicheroperation ist, wobei 
das Verfahren ferner folgende Schritte umfasst:  
Speichern eines Speicherkennzeichens entsprechend einer Speichern-in-Speicheroperation in einem Eintrag 
eines Kennzeichenpuffers (92) entsprechend der ersten Speicheroperation, wobei die Speichern-in-Speicher-
operation mindestens ein Byte aktualisiert, auf das die erste Speicheroperation in der Programmreihenfolge 
zugreift;  
Vergleichen eines zweiten Speicherkennzeichens entsprechend einer ausgeführten Speicherung mit dem 
Speicherkennzeichen in dem Kennzeichenpuffer (92); und  
Wiederausgeben der ersten Speicheroperation in Reaktion darauf, dass der Vergleich eine Gleichheit anzeigt.

Es folgen 14 Blatt Zeichnungen
31/45



DE 600 05 860 T2 2004.08.05
Anhängende Zeichnungen
32/45



DE 600 05 860 T2 2004.08.05
33/45



DE 600 05 860 T2 2004.08.05
34/45



DE 600 05 860 T2 2004.08.05
35/45



DE 600 05 860 T2 2004.08.05
36/45



DE 600 05 860 T2 2004.08.05
37/45



DE 600 05 860 T2 2004.08.05
38/45



DE 600 05 860 T2 2004.08.05
39/45



DE 600 05 860 T2 2004.08.05
40/45



DE 600 05 860 T2 2004.08.05
41/45



DE 600 05 860 T2 2004.08.05
42/45



DE 600 05 860 T2 2004.08.05
43/45



DE 600 05 860 T2 2004.08.05
44/45



DE 600 05 860 T2 2004.08.05
45/45


	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

