Title: NOVEL BACILLUS THURINGIENSIS GENES CODING TOXINS ACTIVE AGAINST LEPIDOPTERAN PESTS

Abstract

The present invention is drawn to novel toxin genes purified and isolated from Bacillus thuringiensis var kurstaki and given the designations CryIE(c) and CryIE(d). The novel toxin genes encode proteins of approximately 130 kDa in size and are active against Lepidopteran insects. Also included in the invention are the proteins encoded by CryIE(c) and CryIE(d). Further disclosed are recombinant genes and proteins derived from CryIE(c) and CryIE(d). Also provided are biologically pure bacterial strains transformed with at least one of the novel toxin genes which can be used in entomocidal formulations for the control of Lepidopteran insects. Yet another aspect of the invention are plants transformed with at least one of the toxin genes or active fragments thereof, particularly where the transforming sequences have been optimized for expression in maize.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>Code</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
</tr>
<tr>
<td>GB</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>GE</td>
<td>Georgia</td>
</tr>
<tr>
<td>GN</td>
<td>Guinea</td>
</tr>
<tr>
<td>GR</td>
<td>Greece</td>
</tr>
<tr>
<td>HU</td>
<td>Hungary</td>
</tr>
<tr>
<td>IE</td>
<td>Ireland</td>
</tr>
<tr>
<td>IT</td>
<td>Italy</td>
</tr>
<tr>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>KE</td>
<td>Kenya</td>
</tr>
<tr>
<td>KG</td>
<td>Kyrgyzstan</td>
</tr>
<tr>
<td>KP</td>
<td>Democratic People’s Republic of Korea</td>
</tr>
<tr>
<td>KR</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>KZ</td>
<td>Kazakhstan</td>
</tr>
<tr>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>LV</td>
<td>Latvia</td>
</tr>
<tr>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>MD</td>
<td>Republic of Moldova</td>
</tr>
<tr>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>SK</td>
<td>Slovakia</td>
</tr>
<tr>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>VN</td>
<td>Viet Nam</td>
</tr>
</tbody>
</table>
Novel Bacillus thuringiensis genes coding toxins active against lepidopteran pests

The present invention relates to novel toxin genes isolated from Bacillus thuringiensis var. kurstaki, to the proteins encoded by the genes, recombinant strains comprising at least one of the novel toxin genes and entomocidal compositions containing at least one of the recombinant strains, as well as transgenic plants comprising at least one of the novel toxin genes or their derivatives.

Bacillus thuringiensis belongs to the large group of gram-positive, aerobic, endospore-forming bacteria. Unlike other very closely related species of Bacillus such as B. cereus or B. anthracis, the majority of the hitherto known Bacillus thuringiensis species produce in the course of their sporulation a parasporal inclusion body which, on account of its crystalline structure, is generally referred to also as a crystalline body. This crystalline body is composed of insecticidally active crystalline protoxin proteins, the so-called δ-endotoxins.

These protein crystals are responsible for the toxicity to insects of Bacillus thuringiensis. The δ-endotoxin does not exhibit its insecticidal activity until after oral intake of the crystalline body, when the latter is dissolved in the intestinal juice of the target insects. In most cases the actual toxic component is released from the protoxin as a result of proteolytic cleavage caused by the action of proteases from the digestive tract of the insects.

The δ-endotoxins of the various Bacillus thuringiensis strains are characterized by high specificity with respect to certain target insects, especially with respect to various Lepidoptera, Coleoptera and Diptera larvae, and by a high degree of activity against these larvae. A further advantage in using δ-endotoxins of Bacillus thuringiensis resides in the fact that the toxins are harmless to humans, other mammals, birds and fish.

With the introduction of genetic engineering and the new possibilities resulting from it, the field of Bacillus thuringiensis toxins has received a fresh impetus. For example, it is known that many naturally-occurring strains possess more than one insect toxin protein, which may account for a wide spectrum of insecticidal activity of those strains. However,
with the ability to genetically transform *Bacillus* it is possible to create recombinant strains which may contain a chosen array of insect toxin genes obtained by isolation and cloning from naturally-occurring sources. Such recombinant strains can be made to provide whatever spectrum of insecticidal activity might be desired for a particular application, based upon a knowledge of the insecticidal activity of individual toxin proteins. Furthermore, it is also possible to create recombinant toxin proteins which have a chosen combination of functions designed to enhance the degree of insecticidal activity against a particular insect or insect class, or to expand the spectrum of insects against which the toxin protein is active.

The various insecticidal crystal proteins from *Bacillus thuringiensis* have been classified based upon their spectrum of activity and sequence similarity. The classification put forth by Höfte and Whiteley, Microbiol. Rev. 53: 242-255 (1989) placed the then known insecticidal crystal proteins into four major classes. Generally, the major classes are defined by the spectrum of activity, with the Cryl proteins active against Lepidoptera, CryII proteins active against both Lepidoptera and Diptera, CryIII proteins active against Coleoptera, and CryIV proteins active against Diptera.

Within each major class, the δ-endotoxins are grouped according to sequence similarity. The Cryl proteins are typically produced as 130-140 kDa protoxin proteins which are proteolytically cleaved to produce active toxin proteins about 60-70 kDa. The active portion of the δ-endotoxin resides in the NH₂-terminal portion of the full-length molecule. Höfte and Whiteley, *supra*, classified the then known Cryl proteins into six groups, IA(a), IA(b), IA(c), IB, IC, and ID. Since then, proteins classified as CrylE, CrylF, CrylG, CrylH and CrylX have also been characterized.

The spectrum of insecticidal activity of an individual δ-endotoxin from *Bacillus thuringiensis* tends to be quite narrow, with a given δ-endotoxin being active against only a few insects. Specificity is the result of the efficiency of the various steps involved in producing an active toxin protein and its subsequent ability to interact with the epithelial cells in the insect digestive tract.

To be insecticidal, a δ-endotoxin must first be ingested by the insect, solubilized and in most cases proteolytically cleaved to form an active toxin. Once activated, the δ-endotoxins bind to specific proteins present on the surface of the insect’s gut epithelial cells through the agency of a specific domain on the protein toxin. In all cases examined, binding of the protein toxin to the insect gut occurs whenever there is toxicity. After binding,
a different domain of the δ-endotoxin is thought to insert itself into the cell membrane creating a pore that results in the osmotic rupture of the insect's gut epithelial cell. The protein toxin's specificity to particular insects is thought to be determined, in large part, by the properties of the binding domain of an activated δ-endotoxin.

The size of the region of a δ-endotoxin required for binding to the insect gut cell binding protein is unclear. Schnepp et al. (J. Biol. Chem. 265: 20923-20930, 1990) have shown that the region between amino acids 332 and 722 contributes substantially to the specificity of CryIA(c) toward Heliothis virescens and that there are sub-sequences within this region which additively contribute to this specificity. This region of amino acids 332 to 722 spans both the specificity determining "Domain II" and the structural orientation determining "Domain III" as defined by Li et al. (Nature 353: 815-821, 1991). The importance of sub-sequences within this broad region is further emphasized by the findings of Ge et al. (Proc. Natl. Acad. Sci. USA, 86: 4037-4041, 1989), who identified a region of CryIA(a) from amino acids 332 to 450 that determined the specificity of the protein's toxicity toward the silkworm (Bombyx mori; Lepidoptera).

It is an objective of the present invention to provide novel genes encoding a toxin protein and entomocidal compositions comprising the same.

In particular, the present invention is drawn to novel toxin genes of the CryIE-type obtainable from Bacillus thuringiensis var kurstaki, which toxin genes encode a CryIE-type toxin protein which is active against Heliothis species but does not exhibit an activity against Spodoptera exigua.

Each of the novel toxin genes encode a protein of approximately 130 kDa in size and is active against Lepidoptera insects. The novel toxin genes have been given the designation CryIE(c) [SEQ ID NO:1] and CryIE(d) [SEQ ID NO: 7]

Hence, the present invention particularly relates to an isolated DNA molecule encoding the toxin protein CryIE(c) and CryIE(d), respectively and having the nucleotide sequence set forth in SEQ ID NO:1 and SEQ ID NO 7, respectively. Further comprised is an isolated DNA molecule that has been truncated to encode the toxic core fragment of the toxin protein CryIE(c) and CryIE(d), respectively.

Also included in the invention are the proteins produced by CryIE(c) [SEQ ID NO:2] and CryIE(d) [SEQ ID NO 8], respectively and/or the toxic core fragment of the said toxin proteins.
The invention further encompasses recombinant genes and proteins possessing one or more of the sub-sequences of the novel genes which confer activity against insects of the genus *H. heliothis*.

It is thus a further object of the invention to provide an isolated DNA molecule encoding a toxin protein wherein said toxin protein comprises a sequence selected from the group consisting of Sub-Sequence A (SEQ ID NO:3) and Sub-Sequence B (SEQ ID NO:4) obtainable from CryIE(c) or Sub-Sequence A’ (SEQ ID NO:9) and Sub-Sequence B’ (SEQ ID NO:10) obtainable from CryIE(d), respectively and is active against *H. heliothis* species. Also included are isolated DNA molecules wherein said toxin protein comprises both Sub-Sequence A (SEQ ID NO:3) and Sub-Sequence B (SEQ ID NO:4) obtainable from CryIE(c) or Sub-Sequence A’ (SEQ ID NO:9) and Sub-Sequence B’ (SEQ ID NO:10) obtainable from CryIE(d), respectively, or combinations thereof. The proteins being encoded by the said DNA molecules are also included in the scope of the invention.

A specific embodiment of the invention relates to an isolated DNA molecule encoding the toxin protein CryIE(c) and CryIE(d), respectively and/or an isolated DNA molecule that has been truncated to encode the toxic core fragment of the said toxin proteins, which DNA molecule has been optimized for expression in plants, but especially in maize plants.

The invention further encompasses recombinant genes and proteins possessing one or more of the sub-sequences of the CryIE-type genes according to the invention, but especially to sub-sequences selected from the group consisting of Sub-Sequence A (SEQ ID NO:3) and Sub-Sequence B (SEQ ID NO:4) obtainable from CryIE(c) or Sub-Sequence A’ (SEQ ID NO:9) and Sub-Sequence B’ (SEQ ID NO:10) obtainable from CryIE(d), respectively, which confer activity against insects of the genus *H. heliothis*.

In particular, the invention relates to a recombinant DNA molecule comprising a DNA molecule encoding a toxin protein of the CryIE type, which is active against *H. heliothis* species but does not exhibit an activity against *Spodoptera exigua*, but especially a CryIE(c) and CryIE(d) protein as given in SEQ ID NO: 2 and SEQ ID NO: 8, respectively. In a preferred embodiment, the invention relates to a recombinant DNA molecule comprising a chimeric construct, wherein the DNA molecule encoding a toxin protein of the CryIE type which is active against *H. heliothis* species but does not exhibit an activity against *Spodoptera exigua* is under the control of expression sequences that are operable in microorganisms and/or plants.
An additional aspect of the invention are recombinant, biologically pure microbial strains transformed with at least one of the novel genes which can be used in entomocidal formulations for the control of Lepidopteran insects. In a specific embodiment the invention relates to microorganisms selected from the group consisting of members of the genus *Bacillus, Pseudomonas, Caulobacter, Agmellenum, Rhizobium,* and *Clavibacter,* to baculoviruses such as, for example the nuclear polyhedrosis virus *Autographica californica* and to yeast, e.g., *Saccharomyces, Cryptococcus, Kluveromyces, Sporobolomyces, Rhodotorula,* and *Aureobasidium.*

The invention thus further relates to entomocidal compositions comprising at least one of the novel CryIE-type toxin proteins, but especially an isolated protein molecule having the sequence set forth in SEQ ID NO: 2 and/or an isolated protein molecule having the sequence set forth in SEQ ID NO: 8 and/or an isolated protein molecule comprising a sequence selected from the group consisting of Sub-Sequence A (SEQ ID NO:3), Sub-Sequence B (SEQ ID NO:4), Sub-Sequence A' (SEQ ID NO:9), Sub-Sequence B' (SEQ ID NO:10) and a combination of Sub-Sequence A, B, A' and B' wherein said toxin protein is active against *Heliothis* species, in an insecticidally-effective amount together with a suitable carrier.

In a preferred embodiment the invention relates to an entomocidal composition comprising a recombinant microorganism, but especially a recombinant *Bacillus thuringiensis* strain, containing at least one of the novel toxin genes in recombinant form or a derivative or mutant thereof.

Yet another aspect of the invention are plants transformed with at least one of the novel toxin genes or active fragments thereof, particularly where the transforming sequences have been optimized for expression in plants, but especially in maize plants.

In particular, the invention relates to a transformed plant comprising a DNA molecule encoding the toxin protein CryIE(c) and CryIE(d), respectively, or a combination thereof and having the nucleotide sequence set forth in SEQ ID NO:1 and SEQ ID NO 7, respectively and/or an isolated DNA molecule that has been truncated to encode the toxic core fragment of the said toxin proteins.

The invention further relates to a transformed plant comprising a DNA molecule encoding a toxin protein wherein said toxin protein comprises a sequence selected from the group consisting of Sub-Sequence A (SEQ ID NO:3), Sub-Sequence B (SEQ ID NO:4),
Sub-Sequence A' (SEQ ID NO:9), Sub-Sequence B' (SEQ ID NO:10) and a combination of Sub-Sequence A, B, A' and B' wherein said toxin protein is active against *Heliothis* species.

Preferred within the invention are transformed plants selected from the group consisting of maize, wheat, barley, rice, tobacco, cotton, and soybean.

The invention further relates to methods of producing an isolated DNA molecule according to the invention or of a toxin protein being encoded by the said DNA molecule. Methods of producing recombinant microorganisms and plants comprising the said DNA molecule are also embodied by the present invention as well as methods for producing entomocidal compositions.

In particular, the invention relates to a method of producing an isolated DNA molecule encoding a toxin protein of the CryIE-type, but especially of the CryIE(c) and CryIE(d) type, respectively which is active against *Heliothis* species but does not exhibit an activity against *Spodoptera exigua*, which method comprises

(a) isolating total DNA from *Bacillus thuringiensis* var *kurstaki*;
(b) establishing a genomic DNA library in a suitable host organism;
(c) probing the said library with a suitable probe molecule;
(d) isolating a clone that hybridizes with the probe molecule; and
(e) assaying the said clone for insecticidal activity.

The invention further relates to a method of producing an isolated protein molecule of the CryIE type, but especially of the CryIE(c) and CryIE(d) type, respectively which is active against *Heliothis* species but does not exhibit an activity against *Spodoptera exigua*, which method comprises

(a) transforming a suitable host organism with a recombinant DNA molecule comprising a chimeric construct, wherein the DNA molecule encoding a toxin protein of the CryIE type which is active against *Heliothis* species but does not exhibit an activity against *Spodoptera exigua* is under the control of expression sequences that are operable in the said host organism;
(b) growing the so transformed host organism in a suitable medium; and
(c) isolating the recombinant protein product produced by the transformed host organism upon expression of the toxin gene.

The invention further encompasses a method of producing a transgenic plant comprising transforming the said plant with a recombinant DNA molecule comprising a chimeric construct, wherein the DNA molecule encoding a toxin protein of the CryIE-type,
but especially of the CrylE(c) and CrylE(d) type, respectively which is active against Heliothis species but does not exhibit an activity against Spodoptera exigua is under the control of expression sequences that are operable in the said plant.

It is a further object of the invention to provide a method of producing a recombinant microorganism comprising transforming the said microorganism with a recombinant DNA molecule comprising a chimeric construct, wherein the DNA molecule encoding a toxin protein of the CrylE-type which is active against Heliothis species but does not exhibit an activity against Spodoptera exigua is under the control of expression sequences that are operable in the said microorganism.

The invention also relates to a method of producing an entomocidal composition comprising mixing a recombinant microorganism or an isolated protein molecule according to the invention in an insecticidally-effective amount with a suitable carrier.

Its is a further object of the invention to provide methods for protecting plants against damage caused by insect pest comprising applying to the plant or the growing area at least one of the novel toxin proteins according to the invention either directly or in form of an entomocidal composition comprising at least one of the said proteins or a a recombinant microorganism, but especially a recombinant Bacillus thuringiensis strain, containing at least one of the novel toxin genes in recombinant form or a derivative or mutant thereof. In a further embodiment, a transgenic plant according to the invention may be used in a method of protecting plants against damage caused by an insect pest comprising planting a plant according to the invention within an area where the said insect pest may occur.

The isolation and purification of the novel toxin genes of the present invention is described at length in Example 1. According to the nomenclature scheme of Höfte and Whiteley, Microbiol. Rev. 53: 242-255 (1989), the proteins encoded by the novel toxin genes of the present invention would be classified as a CrylE-type, and is designated herein as CrylE(c). The coding region of the novel toxin gene (SEQ ID NO:1) extends from nucleotide base position 196 to position 3723. The protein produced by the novel toxin gene CrylE(c) has the amino acid sequence disclosed as SEQ ID NO: 2, and is further characterized in Example 5.

The coding region of the novel toxin gene CrylE(d) (SEQ ID NO:7) extends from nucleotide base position 1 to position 3528. The protein produced by the novel toxin gene
CryIE(d) has the amino acid sequence disclosed as SEQ ID NO: 8, and is also further characterized in Example 5. The size of both the CryIE(c) protein (SEQ ID NO: 2) and the CryIE(d) protein (SEQ ID NO: 8), as deduced from their DNA sequence, is 130.7 kDa. This is similar in size to other known CryIE-type proteins. Despite the apparent size similarity, comparison of the amino acid sequence of the proteins encoded by the novel toxin genes with that of the previously reported CryIE-type protein shows significant differences between the two. The CryIE(c) and CryIE(d) proteins have only 81 % similarity to CryIE(a) protein and only 83 % similarity to the CryIE(b) protein.

The novel toxin genes CryIE(c) and CryIE(d) are 99 % identical to each other at the protein level, differing in amino acid residue only at the positions indicated in Table 1.

Table 1: Differences in amino acid composition between the CryIE(c) protein (SEQ ID NO: 2) and the CryIE(d) protein (SEQ ID NO: 8).

<table>
<thead>
<tr>
<th>Residue Position</th>
<th>Amino Acid in CryIE(c)</th>
<th>Amino Acid in CryIE(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>84</td>
<td>Glutamine</td>
<td>Histidine</td>
</tr>
<tr>
<td>187</td>
<td>Valine</td>
<td>Alanine</td>
</tr>
<tr>
<td>214</td>
<td>Asparagine</td>
<td>Threonine</td>
</tr>
<tr>
<td>229</td>
<td>Asparagine</td>
<td>Isoleucine</td>
</tr>
<tr>
<td>394</td>
<td>Glutamine</td>
<td>Histidine</td>
</tr>
<tr>
<td>437</td>
<td>Serine</td>
<td>Alanine</td>
</tr>
<tr>
<td>441</td>
<td>Threonine</td>
<td>Serine</td>
</tr>
<tr>
<td>453</td>
<td>Histidine</td>
<td>Arginine</td>
</tr>
<tr>
<td>459</td>
<td>Asparagine</td>
<td>Lysine</td>
</tr>
<tr>
<td>483</td>
<td>Threonine</td>
<td>Proline</td>
</tr>
<tr>
<td>506</td>
<td>Methionine</td>
<td>Isoleucine</td>
</tr>
<tr>
<td>729</td>
<td>Tyrosine</td>
<td>Phenylalanine</td>
</tr>
</tbody>
</table>

A comparison of the nucleotide base sequence of the CryIE(c) and the CryIE(d) genes of the present invention with the corresponding coding regions of other CryIE-type...
genes known in the art indicate significant differences between them. The CryIE(c) and CryIE(d) genes of the present invention have only 87% sequence identity to the known endotoxin gene designated CryIE(a) and only 85% sequence identity to the known endotoxin gene designated CryIE(b).

While the CryIE(c) and CryIE(d) proteins of the present invention show limited sequence similarity with other known CryIE-type proteins, they exhibit insecticidal activities distinct from that of the known CryIE-type proteins. As shown below in Example 4 and Table 3, the proteins encoded by the novel toxin genes of the present invention are active against the Lepidopteran insect *Heliothis virescens*. Previously reported CryIE-type proteins are not known to be active against this insect pest. Furthermore, the previously reported CryIE-type proteins are known to be active against the Lepidopteran insect *Spodoptera exigua* whereas the CryIE(c) and CryIE(d) proteins of the present invention do not possess this activity.

CryIE(d) further possesses activity against *Spodoptera frugiperda*. Finally, both CryIE(c) and CryIE(d) proteins are active against the insect *Plutella xylostella* whereas the previously known CryIE-type proteins are not toxic to that particular insect.

The unique insecticidal activity of the CryIE(c) and CryIE(d) proteins of the present invention against *Heliothis virescens* is the result of two sub-sequences located in the region spanning amino acid residues 332 to 622 of the protein. This region corresponds to regions identified in other δ-endotoxin proteins as responsible for insect specificity ("Domain I") and structural orientation ("Domain III"). See Li et al. (Nature 353: 815-821, 1991). Sub-sequences within this region correspond to the domains described by Li et al., supra.

The first sub-sequences identified, Sub-Sequence A [SEQ ID NO:3; from CryIE(c)], and Sub-Sequence A' [SEQ ID NO:9; from CryIE(d)], spans the region from amino acids 332 to 465. It is characterized as having low sequence similarity to other CryI-type toxin proteins yet is suggested to additively determine activity against *Heliothis virescens* based on the work of Schnepf et al., (J. Biol. Chem. 265: 20923-20930, 1990). Sub-Sequence A also corresponds to the specificity determining "Domain II" as described by Li et al., (Nature 353: 815-821, 1991).

The second sub-sequence identified, Sub-Sequence B (SEQ ID NO:4), from CryIE(c), and Sub-Sequence B' [SEQ ID NO:10; from CryIE(d)], spans the region from amino acids 466 to 622. This region is characterized by its high sequence similarity with the corresponding region found in another protein from *Bacillus thuringiensis*, CryIA(a), which is
as active on *Heliotris virescens* as the novel toxin protein CryIE(c) or CryIE(d). Sub-Sequence B corresponds to the structural orientation "Domain III" as described by Li *et al.*, (Nature 353: 815-821, 1991). The similarity between Sub-Sequence B in CryIE(c) and the corresponding region in CryIA(a) for the two proteins is shown in Table 2, below.

Table 2: Alignment of regions corresponding to Sub-Sequence B from CryIE(c) of the present invention and CryIA(a).

<table>
<thead>
<tr>
<th>CryIE(c)</th>
<th>CryIA(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>466</td>
<td>511</td>
</tr>
<tr>
<td>ITQIP1WKAFLHSGATVARGPGFTGDIIRKINVGFGDOMVRNTT</td>
<td>FSSQTQIP1...</td>
</tr>
<tr>
<td>512</td>
<td>561</td>
</tr>
<tr>
<td>APLSRQVRKRGASTNLHSTSINQRAQADPAMNSGQNLSQGSF</td>
<td>APLSRQVRKRGASTNLHSTSINQRAQADPAMNSGQNLSQGSF</td>
</tr>
<tr>
<td>516</td>
<td>565</td>
</tr>
<tr>
<td>562</td>
<td>611</td>
</tr>
<tr>
<td>RIAGSFPPTPDASTSFTIGAGFSSGNEVYIDRIIEFVPAEVTFEAED</td>
<td>615</td>
</tr>
<tr>
<td>566</td>
<td>615</td>
</tr>
<tr>
<td>KTVGSFPPTPDASTSFTIGAGFSSGNEVYIDRIIEFVPAEVTFEAED</td>
<td>622</td>
</tr>
<tr>
<td>612</td>
<td>622</td>
</tr>
<tr>
<td>LERQA</td>
<td>622</td>
</tr>
<tr>
<td>KA</td>
<td>616</td>
</tr>
<tr>
<td>KA</td>
<td>622</td>
</tr>
</tbody>
</table>

Percent Similarity: 86 Percent Identity: 77.

Similarities and identities were done using the GAP program from UWGCN.

The high percent similarity (86 %) between the Sub-Sequence B region of the novel toxin protein CryIE(c) of the present invention and the corresponding region of the CryIA(a) protein indicates the conserved nature of the region which confers toxicity to *Heliotris virescens*. When Sub-Sequence B of the novel toxin protein CryIE(c) of the present invention is compared with the corresponding region for the related protein CryIE(a), which is not active against *Heliotris virescens*, it is found that the percent similarity is only 63 %.

When CryIE(d) is compared to CryIE(c), the region from amino acid residue 466 to amino acid residue 622 of CryIE(d) differs in only two amino acids. CryIE(d) has a proline at
position 482 and a isoleucine at position 506, compared to a threonine and methionine, respectively, for CryIE(c). These differences do not affect the percent similarity so that Sub-Sequence B of CryIE(d) is also 86% similar to the corresponding region of the CryIA(a) protein.

The present invention is intended to cover mutants and recombinant or genetically engineered derivatives of the CryIE(c) gene [SEQ ID NO:1] or CryIE(d) gene [SEQ ID NO: 7]. For example, it is well known that Cryl-type proteins must be proteolytically cleaved into a toxic core fragment that is the actual toxic molecule [Höfte and Whiteley, Microbiol Rev 53: 242-255 (1989)]. Hence, a truncated DNA sequence which encodes for the toxic core fragment of the novel toxin protein CryIE(c) and CryIE(d) is considered to be within the scope of the present invention. In addition, a recombinant toxin protein may be constructed using methods known in the art which contain at least one of the sub-sequences conferring activity against Heliothis virescens as indicated for CryIE(c) [see SEQ ID NOS: 3 to 4] or the related gene CryIE(d)[see SEQ ID NOS: 9 to 10]. Such a recombinant protein would have activity against Heliothis virescens, in addition to its native properties. Mutants of the CryIE(c) and the CryIE(d) genes of the present invention are also encompassed by the present invention. For example, individual nucleotides may be altered, either by natural processes or by site-directed mutagenesis, which in turn creates a change in the amino acid sequence of the encoded protein. In addition, the DNA sequence of either the full-length or truncated form of the genes may be altered such that their expression is optimized for plants, where the codons are chosen so as to produce a proteins having the same or similar amino acid sequence as that encoded by the native form of the CryIE(c) or the CryIE(d) genes. Other modifications of the novel toxin gene that yield a protein with insecticidal properties essentially the same as those of the CryIE(c) protein [SEQ ID NO:2] or CryIE(d) [SEQ ID NO: 8] are also encompassed by the present invention.

The CryIE(c) gene [SEQ ID NO:1] and CryIE(d) gene [SEQ ID NO: 7] or the subsequences of the gene which confer specificity against Heliothis virescens, are also useful as a DNA hybridization probe, for discovering similar or closely related Cryl-type or genes active against Heliothis virescens in other Bacillus thuringiensis strains. The novel genes, or portions or derivatives thereof, can be labeled for use as a hybridization probe, e.g., with a radioactive label, using conventional procedures. The labeled DNA hybridization probe may then be used in the manner described in the Example 1.
The utility of the novel toxin genes present in a recombinant strain of *Bacillus thuringiensis* is illustrated in Examples 3 to 4. It should also be recognized that the isolated novel toxin gene of the present invention can be transferred into any microbial host and confer their insecticidal properties upon that host. Alternate hosts for the novel toxin gene of the present invention can be selected as suitable for cloning purposes, for purposes of characterizing the form and function of the gene or encoded protein, for use as a fermentation host to increase production of the toxin protein, for purposes of delivering at least one of the toxin proteins more effectively to the target insect pest, or introduction of the novel toxin gene into insect pathogens such as baculovirus [e.g. *Autographica californica*] to improve their effectiveness.

The novel toxin genes or recombinant forms thereof can be transformed into such alternate hosts using a variety of art recognized methods. One such preferred method is electroporation of microbial cells, as described, for example, by the method of Dower (U.S. Patent No. 5,186,800). Another preferred method is that of Schurter et al. (Mol. Gen. Genet. 218: 177-181 (1989)), which is also disclosed in EP-A 0 342 633 which is incorporated herein in its entirety.

It is envisioned that said alternate host would be applied to the environment or plants or animals for insect control. Microorganism hosts may be selected which are known to occupy the "phytosphere" (phylloplane, phyllosphere, rhizosphere, and/or rhizoplane) of one or more crops of interest. These microorganisms are selected so as to be capable of successfully competing in the particular environment with the wild-type microorganisms, provide for stable maintenance and expression of the gene expressing the polypeptide pesticide, and, desirably, provide for improved protection of the pesticide from environmental degradation and inactivation.

Such microorganisms include bacteria, algae, and fungi. Of particular interest are microorganisms, such as bacteria, e.g., *Bacillus*, *Caulobacter*, *Agmenellum*, *Pseudomonas*, *Erwinia*, *Serratia*, *Klebsiella*, *Xanthomonas*, *Streptomyces*, *Rhizobium*, *Rhodopseudomonas*, *Methylius*, *Agrobacterium*, *Acetobacter*, *Lactobacillus*, *Arthrobacter*, *Azotobacter*, *Leuconostoc*, and *Alcaligenes*; fungi, particularly yeast, e.g., *Saccharomyces*, *Cryptococcus*, *Kluveromyces*, *Sporobolomyces*, *Rhodotorula*, and *Aureobasidium*. Of particular interest are such phytosphere bacterial species as *Bacillus* spp., *Pseudomonas syringae*, *Pseudomonas fluorescens*, *Serratia marcescens*, *Acetobacter xylinum*, *Agrobacteria*, *Rhodopseudomonas spheroides*, *Xanthomonas campestris*, *Rhizobium meliloti*, *Alcaligenes entrophus*, *Clavibacter xyli* and
Azotobacter vinlandii; and phytosphere yeast species such as Rhodotorula rubra, R. glutinis, R. marina, R. aurantiaca, Cryptococcus albidos, C. diffluens, C. laurentii, Saccharomyces rosei, S. pretoriensis, S. cerevisiae, Sporabolomyces rosues, S. odorus, Kluveromyces veronae, and Aureobasidium pullulans. Of particular interest are the pigmented microorganisms.

The present invention further provides an entomocidal composition comprising as an active ingredient at least one of the novel toxins according to the invention or a recombinant microorganism containing at least on of the novel toxin genes in recombinant form, but especially a recombinant Bacillus thuringiensis strain containing at least one of the novel toxin genes in recombinant form, or a derivative or mutant thereof, together with an agricultural adjuvant such as a carrier, diluent, surfactant or application-promoting adjuvant. The composition may also contain a further biologically active compound. The said compound can be both a fertilizer or micronutrient donor or other preparations that influence plant growth. It can also be a selective herbicide, insecticide, fungicide, bactericide, nematicide, molluscide or mixtures of several of these preparations, if desired, together with further agriculturally acceptable carriers, surfactants or application-promoting adjuvants customarily employed in the art of formulation. Suitable carriers and adjuvants can be solid or liquid and correspond to the substances ordinarily employed in formulation technology, e.g. natural or regenerated mineral substances, solvents, dispersants, wetting agents, tackifiers, binders or fertilizers.

The composition may comprise from 0.1 to 99% by weight of the active ingredient, from 1 to 99.9% by weight of a solid or liquid adjuvant, and from 0 to 25% by weight of a surfactant. The active ingredient comprising at least one of the novel toxins according to the invention or a recombinant microorganism containing at least one of the novel toxin genes in recombinant form, but especially a recombinant Bacillus thuringiensis strain containing at least one of the novel toxin genes in recombinant form, or a derivative or mutant thereof, or the composition containing the said active ingredient, may be administered to the plants or crops to be protected together with certain other insecticides or chemicals (1993 Crop Protection Chemicals Reference, Chemical and Pharmaceutical Press, Canada) without loss of potency. It is compatible with most other commonly used agricultural spray materials but should not be used in extremely alkaline spray solutions.
may be administered as a dust, a suspension, a wettable powder or in any other material form suitable for agricultural application.

The invention further provides methods for controlling or inhibiting of insect pests by applying an active ingredient comprising at least one of the novel toxins according to the invention or a recombinant microorganism containing at least one of the novel toxin gene in recombinant form or a composition comprising the said active ingredient to (a) an environment in which the insect pest may occur, (b) a plant or plant part in order to protect said plant or plant part from damage caused by an insect pest, or (c) seed in order to protect a plant which develops from said seed from damage caused by an insect pest.

A preferred method of application in the area of plant protection is application to the foliage of the plants (foliar application), with the number of applications and the rate of application depending on the plant to be protected and the risk of infestation by the pest in question. However, the active ingredient may also penetrate the plants through the roots (systemic action) if the locus of the plants is impregnated with a liquid formulation or if the active ingredient is incorporated in solid form into the locus of the plants, for example into the soil, e.g. in granular form (soil application). In paddy rice crops, such granules may be applied in metered amounts to the flooded rice field.

The compositions according to the invention are also suitable for protecting plant propagating material, e.g. seed, such as fruit, tubers or grains, or plant cuttings, from insect pests. The propagation material can be treated with the formulation before planting: seed, for example, can be dressed before being sown. The active ingredient of the invention can also be applied to grains (coating), either by impregnating the grains with a liquid formulation or by coating them with a solid formulation. The formulation can also be applied to the planting site when the propagating material is being planted, for example to the seed furrow during sowing. The invention relates also to those methods of treating plant propagation material and to the plant propagation material thus treated.

The compositions according to the invention comprising as an active ingredient a recombinant microorganism containing at least one of the novel toxin genes in recombinant form, but especially a recombinant *Bacillus thuringiensis* strain containing at least one of the
novel toxin genes in recombinant form, or a derivative or mutant thereof may be applied in any method known for treatment of seed or soil with bacterial strains. For example, see US Patent No.4,863,866. The strains are effective for biocontrol even if the microorganism is not living. Preferred is, however, the application of the living microorganism.

Target crops to be protected within the scope of the present invention comprise, e.g., the following species of plants:

cereals (wheat, barley, rye, oats, rice, sorghum and related crops), beet (sugar beet and fodder beet), forage grasses (orchardgrass, fescue, and the like), drupes, pomes and soft fruit (apples, pears, plums, peaches, almonds, cherries, strawberries, raspberries and blackberries), leguminous plants (beans, lentils, peas, soybeans), oil plants (rape, mustard, poppy, olives, sunflowers, coconuts, castor oil plants, cocoa beans, groundnuts), cucumber plants (cucumber, marrows, melons) fiber plants (cotton, flax, hemp, jute), citrus fruit (oranges, lemons, grapefruit, mandarins), vegetables (spinach, lettuce, asparagus, cabbages and other Brassicae, onions, tomatoes, potatoes, paprika), lauraceae (avocados, carrots, cinnamon, camphor), deciduous trees and conifers (e.g. linden-trees, yew-trees, oak-trees, alders, poplars, birch-trees, firs, larches, pines), or plants such as maize, tobacco, nuts, coffee, sugar cane, tea, vines, hops, bananas and natural rubber plants, as well as ornamentals (including composites).

A recombinant Bacillus thuringiensis strain containing at least one of the novel gene in recombinant form is normally applied in the form of entomocidal compositions and can be applied to the crop area or plant to be treated, simultaneously or in succession, with further biologically active compounds. These compounds may be both fertilizers or micronutrient donors or other preparations that influence plant growth. They may also be selective herbicides, insecticides, fungicides, bactericides, nematicides, molluscicides or mixtures of several of these preparations, if desired together with further carriers, surfactants or application-promoting adjuvants customarily employed in the art of formulation.

The active ingredient according to the invention may be used in unmodified form or together with any suitable agriculturally acceptable carrier. Such carriers are adjuvants
conventionally employed in the art of agricultural formulation, and are therefore formulated in known manner to emulsifiable concentrates, coatable pastes, directly sprayable or dilutable solutions, dilute emulsions, wettable powders, soluble powders, dusts, granulates, and also encapsulations, for example, in polymer substances. Like the nature of the compositions, the methods of application, such as spraying, atomizing, dusting, scattering or pouring, are chosen in accordance with the intended objective and the prevailing circumstances. Advantageous rates of application are normally from about 50 g to about 5 kg of active ingredient (a.i.) per hectare ("ha", approximately 2.471 acres), preferably from about 100 g to about 2 kg a.i./ha. Important rates of application are about 200 g to about 1 kg a.i./ha and 200 g to 500 g a.i./ha. For seed dressing advantageous application rates are 0.5 g to 1000 g a.i.per 100 kg seed, preferably 3 g to 100 g a.i. per 100 kg seed or 10 g to 50 g a.i.per 100 kg seed.

Suitable carriers and adjuvants can be solid or liquid and correspond to the substances ordinarily employed in formulation technology, e.g. natural or regenerated mineral substances, solvents, dispersants, wetting agents, tackifiers, binders or fertilizers. The formulations, i.e. the entomocidal compositions, preparations or mixtures containing the recombinant Bacillus thuringiensis strain containing the novel gene in recombinant form as an active ingredient or combinations thereof with other active ingredients, and, where appropriate, a solid or liquid adjuvant, are prepared in known manner, e.g., by homogeneously mixing and/or grinding the active ingredients with extenders, e.g., solvents, solid carriers, and in some cases surface-active compounds (surfactants).

Suitable solvents are: aromatic hydrocarbons, preferably the fractions containing 8 to 12 carbon atoms, e.g. xylene mixtures or substituted naphthalenes, phthalates such as dibutyl phthalate or dioctyl phthalate, aliphatic hydrocarbons such as cyclohexane or paraffins, alcohols and glycols and their ethers and esters, such as ethanol, ethylene glycol monomethyl or monoethyl ether, ketones such as cyclohexanone, strongly polar solvents such as N-methyl-2-pyrrolidone, dimethylsulfoxide or dimethylformamide, as well as vegetable oils or epoxidised vegetable oils such as epoxidised coconut oil or soybean oil; or water.

The solid carriers used, e.g., for dusts and dispersible powders, are normally natural mineral fillers such as calcite, talcum, kaolin, montmorillonite or attapulgite. In order to
improve the physical properties it is also possible to add highly dispersed silicic acid or highly dispersed absorbent polymers. Suitable granulated adsorptive carriers are porous types, for example pumice, broken brick, sepiolite or bentonite; and suitable nonsorbent carriers are materials such as calcite or sand. In addition, a great number of pregranulated materials of inorganic or organic nature can be used, e.g. especially dolomite or pulverized plant residues.

Depending on the nature of the active ingredients to be formulated, suitable surface-active compounds are non-ionic, cationic and/or anionic surfactants having good emulsifying, dispersing and wetting properties. The term "surfactants" will also be understood as comprising mixtures of surfactants. Suitable anionic surfactants can be both water-soluble soaps and water-soluble synthetic surface-active compounds. Suitable soaps are the alkali metal salts, alkaline earth metal salts or unsubstituted or substituted ammonium salts of higher fatty acids (C sub 10 -C sub 22), e.g. the sodium or potassium salts of oleic or stearic acid, or of natural fatty acid mixtures which can be obtained, e.g. from coconut oil or tallow oil. Further suitable surfactants are also the fatty acid methyltaurin salts as well as modified and unmodified phospholipids.

More frequently, however, so-called synthetic surfactants are used, especially fatty sulfonates, fatty sulfates, sulfonated benzimidazole derivatives or alkylarylsulfonates. The fatty sulfonates or sulfates are usually in the forms of alkali metal salts, alkaline earth metal salts or unsubstituted or substituted ammonium salts and generally contain a C sub 8 -C sub 22 alkyl radical which also includes the alkyl moiety of acyl radicals, e.g. the sodium or calcium salt of lignosulfonic acid, of dodecylsulfate, or of a mixture of fatty alcohol sulfates obtained from natural fatty acids. These compounds also comprise the salts of sulfuric acid esters and sulfonic acids of fatty alcohol/ethylene oxide adducts. The sulfonated benzimidazole derivatives preferably contain 2 sulfonic acid groups and one fatty acid radical containing about 8 to 22 carbon atoms. Examples of alkylarylsulfonates are the sodium, calcium or triethanolamine salts of dodecylbenzenesulfonic acid, dibutynaphthalenesulfonic acid, or of a naphthalenesulfonic acid/formaldehyde condensation product. Also suitable are corresponding phosphates, e.g. salts of the phosphoric acid ester of an adduct of p-nonylphenol with 4 to 14 moles of ethylene oxide. Non-ionic surfactant are preferably polyglycol ether derivatives of aliphatic or cycloaliphatic alcohols, or saturated or unsaturated fatty acids and alkylphenols, said derivatives
containing 3 to 30 glycol ether groups and 8 to 20 carbon atoms in the (aliphatic) hydrocarbon moiety and 6 to 18 carbon atoms in the alkyl moiety of the alkylphenols.

Further suitable non-ionic surfactants are the water-soluble adducts of polyethylene oxide with polypropylene glycol, ethylenediaminopolypropylene glycol and alkylpolypropylene glycol containing 1 to 10 carbon atoms in the alkyl chain, which adducts contain 20 to 250 ethylene glycol ether groups and 10 to 100 propylene glycol ether groups. These compounds usually contain 1 to 5 ethylene glycol units per propylene glycol unit. Representative examples of non-ionic surfactants are nonylphenolpolyethoxyethanols, castor oil polyglycol ethers, polypropylene/polyethylene oxide adducts, tributylphenoxypolyethoxyethanol, polyethylene glycol and octylphenoxypolyethoxyethanol. Fatty acid esters of polyoxyethylene sorbitan, such as polyoxyethylene sorbitan trioleate, are also suitable non-ionic surfactants.

Cationic surfactants are preferably quaternary ammonium salts which contain, as N-substituent, at least one C sub 8 -C sub 22 alkyl radical and, as further substituents, lower unsubstituted or halogenated alkyl, benzyl or hydroxyl-lower alkyl radicals. The salts are preferably in the form of halides, methylsulfates or ethylsulfates, e.g., stearylttrimethylammonium chloride or benzyl(2-chloroethyl)ethylammonium bromide.

The surfactants customarily employed in the art of formulation are described, e.g., in "McCutcheon's Detergents and Emulsifiers Annual", MC Publishing Corp. Ridgewood, N.J., 1979; Dr. Helmut Stache, "Tensid Taschenbuch" (Handbook of Surfactants), Carl Hanser Verlag, Munich/Vienna.

Another particularly preferred characteristic of an entomocidal composition of the present invention is the persistence of the active ingredient when applied to plants and soil. Possible causes for loss of activity include inactivation by ultra-violet light, heat, leaf exudates and pH. For example, at high pH, particularly in the presence of reductant, δ-endotoxin crystals are solubilized and thus become more accessible to proteolytic inactivation. High leaf pH might also be important, particularly where the leaf surface can be in the range of pH 8-10. Formulation of an entomocidal composition of the present invention can address these problems by either including additives to help prevent loss of the active ingredient or encapsulating the material in such a way that the active ingredient is protected from inactivation. Encapsulation can be accomplished chemically (McGuire and Shasha, J Econ Entomol 85: 1425-1433, 1992) or biologically (Barnes and Cummings, 1986; EP-A 0 192 319). Chemical encapsulation involves a process in which the active
ingredient is coated with a polymer while biological encapsulation involves the expression of the δ-endotoxin genes in a microbe. For biological encapsulation, the intact microbe containing the δ-endotoxin protein is used as the active ingredient in the formulation. The addition of UV protectants might effectively reduce irradiation damage. Inactivation due to heat could also be controlled by including an appropriate additive.

Preferred within the present application are formulations comprising living microorganisms as active ingredient either in form of the vegetative cell or more preferable in form of spores, if available. Suitable formulations may consist, for example, of polymer gels which are crosslinked with polyvalent cations and comprise these microorganisms. This is described, for example, by D.R. Fravel et al. in Phytopathology, Vol. 75, No. 7, 774-777, 1985 for alginate as the polymer material. It is also known from this publication that carrier materials can be co-used. These formulations are as a rule prepared by mixing solutions of naturally occurring or synthetic gel-forming polymers, for example alginates, and aqueous salt solutions of polyvalent metal ions such that individual droplets form, it being possible for the microorganisms to be suspended in one of the two or in both reaction solutions. Gel formation starts with the mixing in drop form. Subsequent drying of these gel particles is possible. This process is called ionotropic gelling. Depending on the degree of drying, compact and hard particles of polymers which are structurally crosslinked via polyvalent cations and comprise the microorganisms and a carrier present predominantly uniformly distributed are formed. The size of the particles can be up to 5 mm.

Compositions based on partly crosslinked polysaccharides which, in addition to a microorganism, for example, can also comprise finely divided silicic acid as the carrier material, crosslinking taking place, for example, via Ca²⁺ ions, are described in EP-A1-0 097 571. The compositions have a water activity of not more than 0.3. W.J. Cornick et al. describe in a review article [New Directions in Biological Control: Alternatives for Suppressing Agricultural Pests and Diseases, pages 345-372, Alan R. Liss, Inc. (1990)] various formulation systems, granules with vermiculite as the carrier and compact alginate beads prepared by the ionotropic gelling process being mentioned. Such compositions are also disclosed by D.R. Fravel in Pesticide Formulations and Application Systems: 11th Volume, ASTM STP 1112 American Society for Testing and Materials, Philadelphia, 1992, pages 173 to 179 and can be used to formulate the recombinant microorganisms according to the invention.
The entomocidal compositions of the invention usually contain from about 0.1 to about 99\%, preferably about 0.1 to about 95\%, and most preferably from about 3 to about 90\% of the active ingredient, from about 1 to about 99.9\%, preferably from about 1 to about 99\%, and most preferably from about 5 to about 95\% of a solid or liquid adjuvant, and from about 0 to about 25\%, preferably about 0.1 to about 25\%, and most preferably from about 0.1 to about 20\% of a surfactant.

In a preferred embodiment of the invention the entomocidal compositions usually contain 0.1 to 99\%, preferably 0.1 to 95\%, of a recombinant *Bacillus thuringiensis* strain containing at least one of the novel genes in recombinant form, or combination thereof with other active ingredients, 1 to 99.9\% of a solid or liquid adjuvant, and 0 to 25\%, preferably 0.1 to 20\%, of a surfactant.

Whereas commercial products are preferably formulated as concentrates, the end user will normally employ dilute formulations of substantially lower concentration. The entomocidal compositions may also contain further ingredients, such as stabilizers, antifoams, viscosity regulators, binders, tackifiers as well as fertilizers or other active ingredients in order to obtain special effects.

A further object of the invention relates to transgenic plants comprising at least one of the novel toxin genes according to the invention. A host plant expressing the novel toxin genes of the invention will have enhanced resistance to insect attack and will be thus better equipped to withstand crop losses associated with such attack.

By plant is meant any plant species which can be genetically transformed by methods known in the art. Methods known in the art for plant transformation are discussed below. Host plants include, but are not limited to, those species previously listed as target crops.

It has been discovered that the codon usage of a native *Bacillus thuringiensis* toxin gene is significantly different from that which is typical of a plant gene. In particular, the codon usage of a native *Bacillus thuringiensis* gene is very different from that of a maize gene. As a result, the mRNA from this gene may not be efficiently utilized. Codon usage might influence the expression of genes at the level of translation or transcription or mRNA processing. To optimize a toxin gene for expression in plants, for example in maize, the codon usage is optimized by using the codons which are most preferred in maize (maize preferred codons) in the synthesis of a synthetic gene which encodes the same protein as
found for the native toxin gene sequence. The optimized maize preferred codon usage is
effective for expression of high levels of the Bt insecticidal protein. Further details for
constructing maize-optimized synthetic toxin genes can be found in WO 93/07278, herein
incorporated by reference in its entirety.

Toxin genes derived from microorganisms may also differ from plant genes. Plant
genes differ from genes found in microorganisms in that their transcribed RNA does not
possess defined ribosome binding site sequence adjacent to the initiating methionine.
Consequently, microbial genes can be enhanced by the inclusion of a eukaryotic consensus
translation initiator at the ATG. Clontech (1993/1994 catalog, page 210) has suggested the
sequence GTGCACCATGGTC (SEQ ID NO:5) as a consensus translation initiator for the
expression of the E. coli uidA gene in plants. Further, Joshi (Nucl Acids Res 15: 6643-6653
(1987)) has compared many plant sequences adjacent to the ATG and suggests the
consensus TAAACAATGGCT (SEQ ID NO:6). In situations where difficulties are
encountered in the expression of microbial ORFs in plants, inclusion of one of these
sequences at the initiating ATG may improve translation. In such cases the last three
nucleotides of the consensus may not be appropriate for inclusion in the modified sequence
due to their modification of the second AA residue. Preferred sequences adjacent to the
initiating methionine may differ between different plant species. By surveying the sequence
of maize genes present in the GenBank/EMBL database it can be discerned which
nucleotides adjacent to the ATG should be modified to enhance translation of the toxin
gene introduced into maize.

In addition, it has been shown that removal of illegitimate splice sites can enhance
expression and stability of introduced genes. Genes cloned from non-plant sources and not
optimized for expression in plants may contain motifs which can be recognized in plants as
5' or 3' splice sites. Consequently, the transcription process can be prematurely terminated,
generating truncated or deleted mRNA. The toxin genes can be engineered to remove
these illegitimate splice sites using the techniques well known in the art.

It is well known that many δ-endotoxin proteins from Bacillus thuringiensis are
actually expressed as protoxins. These protoxins are solubilized in the alkaline environment
of the insect gut and are proteolytically converted by proteases into a toxic core fragment
(Höfte and Whiteley, Microbiol. Rev. 53: 242-255 (1989)). For δ-endotoxin proteins of the
Cry1 class, the toxic core fragment is localized in the N-terminal half of the protoxin. It is
within the scope of the present invention that genes encoding either the full-length protoxin
form or the truncated toxic core fragment of the novel toxin protein can be used in plant transformation vectors to confer insecticidal properties upon the host plant.

One particularly preferred set of embodiments for the introduction of recombinant DNA molecules into maize by microprojectile bombardment can be found in WO 93/07278, herein incorporated by reference in its entirety. An additional preferred embodiment is the protoplast transformation method for maize as disclosed in European Patent Application EP 0 292 435, hereby incorporated by reference in its entirety.
Further comprised within the scope of the present invention are transgenic plants, in particular transgenic fertile plants transformed by means of the aforedescribed processes and their asexual and/or sexual progeny, which still comprises an isolated DNA molecule encoding a toxin protein of the CryIE type according to the invention, which is active against *Heliothis* species but does not exhibit an activity against *Spodoptera exigua*.

The transgenic plant according to the invention may be a dicotyledonous or a monocotyledonous plant. Preferred are monocotyledonous plants of the *Graminaceae* family involving *Lolium*, *Zea*, *Triticum*, *Triticale*, *Sorghum*, *Saccharum*, *Bromus*, *Oryzae*, *Avena*, * Hordeum*, *Secale* and *Setaria* plants.

Especially preferred are transgenic maize, wheat, barley, sorghum, rye, oats, turf grasses and rice.

Among the dicotyledonous plants soybean, cotton, tobacco, sugar beet, oilseed rape, and sunflower are especially preferred herein.

The expression 'progeny' is understood to embrace both, "asexually" and "sexually" generated progeny of transgenic plants. This definition is also meant to include all mutants and variants obtainable by means of known processes, such as for example cell fusion or mutant selection and which still exhibit the characteristic properties of the initial transformed plant, together with all crossing and fusion products of the transformed plant material.

Another object of the invention concerns the proliferation material of transgenic plants.

The proliferation material of transgenic plants is defined relative to the invention as any plant material that may be propagated sexually or asexually *in vivo* or *in vitro*. Particularly preferred within the scope of the present invention are protoplasts, cells, calli, tissues, organs, seeds, embryos, pollen, egg cells, zygotes, together with any other propagating material obtained from transgenic plants.

Parts of plants, such as for example flowers, stems, fruits, leaves, roots originating in transgenic plants or their progeny previously transformed by means of the process of the invention and therefore consisting at least in part of transgenic cells, are also an object of the present invention.

Transformation of plants can be undertaken with a single DNA species or multiple DNA species (*i.e.* co-transformation) and both these techniques are suitable for use with the novel toxin genes of the present invention.
Methods using either a form of direct gene transfer or Agrobacterium-mediated transfer usually, but not necessarily, are undertaken with a selectable marker which may provide resistance to an antibiotic (kanamycin, hygromycin or methotrexate) or a herbicide (phosphinothricin). The choice of selectable marker for plant transformation is not, however, critical to the invention.

Numerous transformation vectors are available for plant transformation, and the genes of this invention can be used in conjunction with any such vectors. The selection of vector for use will depend upon the preferred transformation technique and the target species for transformation. For certain target species, different antibiotic or herbicide selection markers may be preferred. Selection markers used routinely in transformation include the nptII gene which confers resistance to kanamycin and related antibiotics (Messing & Vierra, Gene 19: 259-268 (1982); Bevan et al., Nature 304: 184-187 (1983)), the bargene which confers resistance to the herbicide phosphinothricin (White et al., Nucl Acids Res 18: 1062 (1990), Spencer et al. Theor Appl Genet 79: 625-631(1990)), the hph gene which confers resistance to the antibiotic hygromycin (Biochinger & Diggelmann, Mol Cell Biol 4: 2929-2931, 1984), and the dhfrgene, which confers resistance to methotrexate (Bourouis et al., EMBO J. 2: 1099-1104 (1983).

Many vectors are available for transformation using Agrobacterium tumefaciens. These typically carry at least one T-DNA border sequence and include vectors such as pBIN19 (Bevan, Nucl. Acids Res. (1984)). In one preferred embodiment, the novel toxin gene of the present invention may be inserted into either of the binary vectors pCIB200 and pCIB2001 for use with Agrobacterium. These vector cassettes for Agrobacterium-mediated transformation can be constructed in the following manner. pTJS75kan was created by NarI digestion of pTJS75 (Schmidhauser & Helinski, J Bacteriol. 164: 446-455 (1985)) allowing excision of the tetracycline-resistance gene, followed by insertion of an Accl fragment from pUC4K carrying an NPTII (Messing & Vierra, Gene 19: 259-268 (1982); Bevan et al., Nature 304: 184-187 (1983); McBride et al., Plant Molecular Biology 14: 266-276 (1990)). XhoI linkers were ligated to the EcoRV fragment of pCIB7 which contains the left and right T-DNA borders, a plant selectable nos/nptII chimeric gene and the pUC polylinker (Rothstein et al., Gene 53: 153-161 (1987)), and the XhoI-digested fragment was cloned into SalI-digested pTJS75kan to create pCIB200 (see also EP 0 332 104, example 19). pCIB200 contains the following unique polylinker restriction sites: EcoRI, SstI, KpnI, BgIII, XbaI, and SalI. pCIB2001 is a derivative of pCIB200 which is created by the insertion...
into the polylinker of additional restriction sites. Unique restriction sites in the polylinker of pCIB2001 are EcoRI, SstI, KpnI, BglII, XbaI, SalI, MluI, BclI, AvrII, ApaI, HpaI, and StuI. pCIB2001, in addition to containing these unique restriction sites also has plant and bacterial kanamycin selection, left and right T-DNA borders for Agrobacterium-mediated transformation, the RK2-derived trfA function for mobilization between E. coli and other hosts, and the OriT and OriV functions also from RK2. The pCIB2001 polylinker is suitable for the cloning of plant expression cassettes containing their own regulatory signals.

An additional vector useful for Agrobacterium-mediated transformation is the binary vector pCIB10 which contains a gene encoding kanamycin resistance for selection in plants, T-DNA right and left border sequences and incorporates sequences from the wide host-range plasmid pRK252 allowing it to replicate in both E. coli and Agrobacterium. Its construction is described by Rothstein et al. (Gene 53: 153-161 (1987)). Various derivatives of pCIB10 have been constructed which incorporate the gene for hygromycin B phosphotransferase described by Gritz et al. (Gene 25: 179-188 (1983)). These derivatives enable selection of transgenic plant cells on hygromycin only (pCIB743), or hygromycin and kanamycin (pCIB715, pCIB717).

Other transformation techniques which do not rely on Agrobacterium, the so-called direct gene transfer methods, are also useful for the introduction of the novel toxin gene of the present invention, including transformation by microprojectile bombardment, protoplast uptake (e.g. PEG and electroporation) and microinjection. The choice of vector for these methods depends largely on the preferred selection for the species being transformed.

One such vector useful for direct gene transfer techniques in combination with selection by the herbicide Basta (or phosphinothricin) is pCIB3064. This vector is based on the plasmid pCIB246, which comprises the CaMV 35S promoter in operational fusion to the E. coli/GUS gene and the CaMV 35S transcriptional terminator and is described in the PCT published application WO 93/07278, herein incorporated by reference. The gene for providing resistance to phosphinothricin is the bar gene from Streptomyces hygroscopicus (Thompson et al. EMBO J 6: 2519-2523 (1987)). This vector is suitable for the cloning of plant expression cassettes containing their own regulatory signals.

An additional transformation vector is pSOG35 which utilizes the E. coli gene dihydrofolate reductase (DHFR) as a selectable marker conferring resistance to methotrexate. PCR was used to amplify the 35S promoter (~800 bp), intron 6 from the maize Adh1 gene (~550 bp) [Lou et al, Plant J 3: 393-403, 1993; Dennis et al, Nucl Acids
Res 12: 3983-4000, 1984] and 18 bp of the GUS untranslated leader sequence from pSOG10 [see also Jefferson et al, Proc Natl Acad Sci USA 83: 8447-8451 (1986)]. A 250 bp fragment encoding the E. coli dihydrofolate reductase type II gene was also amplified by PCR and these two PCR fragments were assembled with a SacI-PstI fragment from pBl221 (Clontech) which comprised the pUC19 vector backbone and the nopaline synthase terminator. Assembly of these fragments generated pSOG19 which contains the 35S promoter in fusion with the intron 6 sequence, the GUS leader, the DHFR gene and the nopaline synthase terminator. Replacement of the GUS leader in pSOG19 with the leader sequence from Maize Chlorotic Mottle Virus check (MCMV) generated the vector pSOG35. pSOG19 and pSOG35 carry the pUC gene for ampicillin resistance and have HindIII, SphI, PstI and EcoRI sites available for the cloning of foreign sequences.

The novel toxin genes of the present invention, either as their native sequence or as optimized synthetic sequences as described above, can be operably fused to a variety of promoters for expression in plants including constitutive, inducible, temporally regulated, developmentally regulated, chemically regulated, tissue-preferred and tissue-specific promoters to prepare recombinant DNA molecules, i.e., chimeric genes. Preferred constitutive promoters include the CaMV 35S and 19S promoters [Fraley et al, US Patent No 5,352, 605., issued October 04, 1994]. An additionally preferred promoter is derived from any one of several of the actin genes, which are known to be expressed in most cell types. The promoter expression cassettes described by McElroy et al. (Mol. Gen. Genet. 231: 150-160 (1991)) can be easily modified for the expression of the novel toxin gene and are particularly suitable for use in monocotyledonous hosts.

Yet another preferred constitutive promoter is derived from ubiquitin, which is another gene product known to accumulate in many cell types. The ubiquitin promoter has been cloned from several species for use in transgenic plants (e.g. sunflower - Binet et al. Plant Science 79: 87-94 (1991), maize - Christensen et al. Plant Molec. Biol. 12: 619-632 (1989)). The maize ubiquitin promoter has been developed in transgenic monocot systems and its sequence and vectors constructed for monocot transformation are disclosed in the patent publication EP 0 342 926. The ubiquitin promoter is suitable for the expression of the novel toxin gene in transgenic plants, especially monocotyledons.

Tissue-specific or tissue-preferential promoters useful for the expression of the novel toxin gene in plants, particularly maize, are those which direct expression in root, pith, leaf or pollen. Such promoters are disclosed in WO 93/07278, herein incorporated by reference
in its entirety. Chemically inducible promoters useful for directing the expression of the novel toxin gene in plants are disclosed in EP-A 0 332 104, herein incorporated by reference in its entirety.

In addition to promoters, a variety of transcriptional terminators are also available for use in chimeric gene construction using the novel toxin gene of the present invention. Transcriptional terminators are responsible for the termination of transcription beyond the transgene and its correct polyadenylation. Appropriate transcriptional terminators and those which are known to function in plants include the CaMV 35S terminator, the tml terminator, the nopaline synthase terminator, the pea rbcS E9 terminator and others known in the art. These can be used in both monocotyledons and dicotyledons.

Numerous sequences have also been found to enhance gene expression from within the transcriptional unit and these sequences can be used in conjunction with the novel toxin gene of this invention to increase their expression in transgenic plants.

Various intron sequences have been shown to enhance expression, particularly in monocotyledonous cells. For example, the introns of the maize Adh1 gene have been found to significantly enhance the expression of the wild-type gene under its cognate promoter when introduced into maize cells (Callis et al., Genes Develop 1: 1183-1200 (1987)). Intron sequences have been routinely incorporated into plant transformation vectors, typically within the non-translated leader.

A number of non-translated leader sequences derived from viruses are also known to enhance expression, and these are particularly effective in dicotyledonous cells. Specifically, leader sequences from Tobacco Mosaic Virus (TMV, the "Ω-sequence"), Maize Chlorotic Mottle Virus (MCMV), and Alfalfa Mosaic Virus (AMV) have been shown to be effective in enhancing expression (e.g. Gallie et al. Nucl. Acids Res. 15: 8693-8711 (1987); Skuzeski et al. Plant Molec. Biol. 15: 65-79 (1990))

BRIEF DESCRIPTION OF THE FIGURE

Figure 1. SDS-PAGE analysis of the CryIE(c) and CryIE(d) proteins individually expressed in the recombinant *Bacillus thuringiensis* strains CGB311 and CGB313, respectively.
Lane 1, molecular weight markers; lane 2, CBG311 5 l; lane 3, CBG313 10 l; lane 4, CBG311 20 l; 5, molecular weight markers; 6, molecular weight markers; lane 7, CBG313 5 l; lane 8, CBG313 10 l; lane 9, CBG313 20 l; 10, molecular weight markers.

EXAMPLES

The following examples further describe the materials and methods used in carrying out the invention and the subsequent results. They are offered by way of illustration, and their recitation should not be considered as a limitation of the claimed invention.

Formulation Examples

The active ingredient used in following formulation examples are the recombinant strains of Bacillus thuringiensis designated CGB311 and CGB313, respectively containing pClB5618 and pClB5621, respectively and expressing the novel toxin genes CryIE(c) and CryIE(d) respectively. Both CGB313 and CGB311 were deposited on June 1, 1994 with the Agricultural Research Service, Patent Culture Collection (NRRL), Northern Regional Research Center, 1815 North University Street, Peoria, Illinois 61604, U.S.A. and were assigned accession numbers NRRL B-21274 and NRRL B-21273, respectively.

A1. Wettable powders

<table>
<thead>
<tr>
<th></th>
<th>a)</th>
<th>b)</th>
<th>c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus thuringiensis spores</td>
<td>25%</td>
<td>50%</td>
<td>75%</td>
</tr>
<tr>
<td>sodium lignosulfonate</td>
<td>5%</td>
<td>5%</td>
<td>--</td>
</tr>
<tr>
<td>sodium laurylsulfate</td>
<td>3%</td>
<td>--</td>
<td>5%</td>
</tr>
<tr>
<td>sodium diobutylinaphthalenesulfonate</td>
<td>--</td>
<td>6%</td>
<td>10%</td>
</tr>
<tr>
<td>octylphenol polyethylene glycol ether</td>
<td>--</td>
<td>2%</td>
<td>--</td>
</tr>
</tbody>
</table>
(7-8 moles of ethylene oxide)

highly dispersed silicid acid 5% 10% 10%
kaolin 62% 27% --

The spores are thoroughly mixed with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording wettable powders which can be diluted with water to give suspensions of the desired concentrations.

A2. Emulsifiable concentrate

Bacillus thuringiensis spores 10%
ocetylphenol polyethylene glycol ether (4-5 moles ethylene oxide) 3%
clayium dodecylbenzene sulfonate 3%
caster oil polyglycol ether (36 moles of ethylene oxide) 4%
cyclohexanone 30%
xylene mixture 50%

Emulsions of any required concentration can be obtained from this concentrate by dilution with water.

A3. Dusts

a) b)

Bacillus thuringiensis spores 5% 8%
talcum 95% --
kaolin -- 92%

Ready for use dusts are obtained by mixing the active ingredient with the carriers and grinding the mixture in a suitable mill.

A4. Extruder Granulate

Bacillus thuringiensis spores 10%
sodium lignosulfonate 2%
carboxymethylcellulose 1%
kaolin 87%

The active ingredient or combination is mixed and ground with the adjuvants and the mixture is subsequently moistened with water. The mixture is extruded, granulated and the dried in a stream of air.

A5. Coated Granule

* Bacillus thuringiensis* spores 3%
polyethylene glycol (mol wt 200) 3%
kaolin 94%

The active ingredient or combination is uniformly applied in a mixer to the kaolin moistened with polyethylene glycol. Non-dusty coated granulates are obtained in this manner.

A6. Suspension Concentrate

* Bacillus thuringiensis* spores 40%
ethylene glycol 10%
nonylphenol polyethylene glycol ether (15 moles of ethylene oxide) 6%
sodium lignosulfonate 10%
carboxymethylcellulose 1%
37% aqueous formaldehyde solution 0.2%
silicone oil in the form of a 75% aqueous solution 0.8%
water 32%

The active ingredient or combination is intimately mixed with the adjuvants giving a suspension concentrate from which suspensions of any desired concentration can be obtained by dilution with water.

Example 1: *Cloning and Isolation of the Novel Toxin Gene*

Total DNA was isolated from an appropriate strain of *Bacillus thuringiensis* var* kurstaki*. For the isolation of CryIE(c), the strain used was CGB316 and for CryIE(d) the
strain used was CGB323. A culture of the appropriate strain was grown overnight in L-broth at 25 °C with 150 rpm of shaking in a rotary shaker. The culture was then centrifuged, and resuspended in 8% sucrose, 100 mM Tris pH 8.0, 10 mM EDTA, 50 mM NaCl and 2 mg/ml lysozyme, and incubated for 30 minutes at 37 °C. Fifty µg/ml proteinase K and SDS to a final concentration of 0.2% were then added and the resultant mixture incubated at 50 °C until the solution became very viscous. An equal volume of phenol/chloroform was added to the viscous mixture, vortexed and centrifuged to separate the aqueous and organic phases. The aqueous phase was then mixed with 1 g/ml CsCl and 150 µg/ml ethidium bromide, placed in an 33 ml Nalgene UltraLok tube and centrifuged at 45,000 rpm for 16 hours in a Beckman Ti50 ultracentrifuge rotor. The resultant DNA band was visualized with a UV light source and was removed with a syringe using a 16 gauge needle. Contaminating ethidium bromide was removed from the DNA sample by isoamyl alcohol extraction. The isolated DNA was precipitated with 2 volumes 100% ethanol and centrifuged. The resulting DNA pellet was washed with 70% ethanol. The DNA pellet was dried and resuspended in 10 mM Tris pH 8.0, 1 mM EDTA.

Fifteen µg of isolated DNA from each strain was digested with 0.1 units Sau3A / µg DNA at 37 °C. At 3, 5 and 10 minutes after addition of restriction enzyme 5 µg samples were removed from the digest mixture, EDTA was added made to a final concentration of 10 mM and placed on ice. An aliquot of each timed digest was loaded on a 0.8% agarose gel utilizing a Tris-borate-EDTA (TBE; Molecular Cloning, A Laboratory Manual, Sambrook et al. eds. Cold Spring Harbor Press: New York (1989)) buffer and run overnight at 25 volts in an IBI model MPH gel electrophoresis system [Kodak, Rochester, New York]. Lambda DNA digested with HindIII was used as molecular weight markers for the gel run. After electrophoresis, DNA fragments in the 6-9 kb range were cut out of the gel. DNA was electroeluted out of the agarose gel slices by placing them in a Nanotrap electroelution trap [ISCO, Lincoln, Nebraska] and utilizing a ISCO Little Blue Tank [ISCO, Lincoln, Nebraska] with a buffer system and current using the procedure described by the supplier of the...
apparatus. After electroelution, the isolated DNA was precipitated by addition of 1/10 volume 3M sodium acetate pH 4.8, 2.5 volumes 100% ethanol and then centrifuged. The resulting DNA pellet was washed with 70% ethanol and centrifuged. The DNA pellet was dried and resuspended in 10 mM Tris pH 8.0, 1 mM EDTA.

Ligation into pUC19 [New England Biolabs, Beverly, Massachusetts, USA] of the isolated DNA fragments having sizes of 6-9 kb were done using 4 μl of the above DNA solution, 1 μl of a 100 ng/μl solution of pUC19 that was previously digested with Bam HI and treated with calf alkaline phosphatase, 1 μl 10X ligation buffer, 3 μl water and 1 μl containing 3 units T4 ligase. This mixture was incubated at 15 °C overnight. The resulting pUC19-based plasmids containing the inserted DNA fragments isolated from the Bacillus thuringiensis strain was transformed into E. coli DH5α [Stratagene, LaJolla, California, USA] competent cells. This was accomplished by combining the ligation mixture with 200 μl of bacterial cells, placement on ice for 1-2 hours and subsequent heating at 42 °C for 90 seconds. After treatment the bacterial solution was mixed with 200 μl of SOC medium (Molecular Cloning, A Laboratory Manual, Sambrook et al. eds. Cold Spring Harbor Press: New York (1989)), placed at 37 °C for 45 minutes and plated on L-agar plates containing 100 μg/ml ampicillin to select for transformants. The plates were incubated overnight at 37 °C.

Transformed colonies arising after overnight incubation were subjected to the colony hybridization procedure as described in Molecular Cloning, A Laboratory Manual, Sambrook et al. eds. Cold Spring Harbor Press: New York (1989).

In brief, a 85 mm Nitroplus 2000 filter circle [Micron Separations, Westboro, Massachusetts, USA] was placed on each agar plate containing transformed colonies and then lifted off. After removing the filter, the plates were again placed at 37 °C until transformed colonies were visible again. The filters with the colonies on them were treated to release DNA from the bacterial cells first on Whatman paper saturated with 10% SDS, then 0.5 N NaOH-1.5 M NaCl, then 1.5 M NaCl-0.5 M Tris pH 7.4 for 3 minutes each. The
filters were then treated with 2X SSC and the released bacterial DNA was fixed to the filters by UV crosslinking using a Stratalinker (Stratagene) at 0.2 mJoule.

Approximately 6 plates with 100-200 colonies/plate were done for the DNA fragments isolated from each strain of *Bacillus thuringiensis*. Prehybridization and hybridization of the filter was carried out in a solution of 10X Denhardt's solution [Molecular Cloning, A Laboratory Manual, Sambrook et al. eds. Cold Spring Harbor Press: New York (1989)], 150 g/ml sheared salmon sperm DNA, 1% SDS, 50 mM sodium phosphate pH 7, 5 mM EDTA, 6X SSC, 0.05% sodium pyrophosphate. Prehybridization was at 65 °C for 4 hours and hybridization was at 65 °C for 18 hrs with 1 million cpm/ml of a 32P-dCTP labeled probe in a volume of 50 ml. Radiolabeled DNA probes were prepared using a BRL random prime labeling system [GIBCO-BRL, Grand Island, New York, USA] and unincorporated counts removed using Nick Columns (Pharmacia).

Filters were probed with a crylB radiolabeled fragment generated by Polymerase Chain Reaction. The generated fragment spans the region from 461-1366 bp of the crylB gene. Hybridization probes were boiled 5 minutes before addition to the hybridization solution. The filters were washed twice in 50 ml of 2X SSC, 0.5% SDS at 65 °C for 20 minutes. The probed and washed filters were exposed to Kodak X-Omat AR X-ray film with Dupont Cronex Lightning Plus intensifying screens at -80 °C. Those colonies which were positive by hybridization were identified and picked from the regrown plates. Picked colonies were streaked on L-agar with 100 µg/ml ampicillin. Plasmid DNA was isolated from each streaked culture using the alkaline miniprep method described in Molecular Cloning, A Laboratory Manual, Sambrook et al. eds. Cold Spring Harbor Press: New York (1989).

Clones designated CGE5618 [carrying the gene for CrylE(c)] and CGE5621 [carrying the gene for CrylE(d)] were isolated. Both clones contained a recombinant plasmid which was shown by the above procedure to possess a DNA fragment isolated from *Bacillus thuringiensis* strain CGB316 (CrylE(c) gene) and CGB323 (CrylE(d) gene) which positively hybridized to the CrylB probe.
The DNA fragment isolated from the appropriate *Bacillus thuringiensis* strains and contained in the recombinant plasmids designated above was re-cloned into pHT3101 [Arantes et al, Gene 108, 115-119, 1991], a shuttle vector which allows plasmid manipulation in either *E. coli* or *Bacillus thuringiensis*. pHT3101 is composed of pUC18, a *Bt* replicon and an erythromycin gene for selection in *Bt* (Lereclus et al, FMS Microbiology Letters 60: 211-218, 1989). The recombinant plasmid containing the cloned DNA from *Bacillus thuringiensis* was isolated from the *E. coli* cells using standard procedures (Molecular Cloning, A Laboratory Manual, Sambrook et al. eds. Cold Spring Harbor Press: New York (1989)). To remove the cloned *Bacillus thuringiensis* DNA from the recombinant plasmid, the isolated plasmid from each clone was digested with the restriction enzymes *Sac I* and *Bbu I*. The digestion mixtures were then loaded on a 1% SeaPlaque® agarose gel using TBE buffer system and electrophoresed overnight at 25 volts. After electrophoresis, a DNA fragment of approximately 7 kb in size was isolated from the gel using the above described procedures. The DNA fragment isolated from the gel was ligated into pHT3101 using the previously described procedure by combining 5 µl of the melted (65 °C) agarose fragment and 4 µl 10 ng/µl of pHT3101.

The *Bacillus thuringiensis* DNA isolated from the strain CGB316 and ligated in pHT3101 was designated pCIB5618. The *E. coli* strain containing plasmid pCIB5618 was designated CGE5618. The DNA isolated from the strain CGB323 and ligated in pHT3101 was designated pCIB5621. The *E. coli* strain containing plasmid pCIB5621 was designated CGE5621. Both CGE5621 and CGE5618 were deposited on June 1, 1994 with the Agricultural Research Service, Patent Culture Collection (NRRL), Northern Regional Research Center, 1815 North University Street, Peoria, Illinois 61604, U.S.A. and were assigned accession numbers NRRL B-21276 and NRRL B-21275, respectively.
Example 2: DNA Sequence Analysis of Novel Toxin Gene and Homology of Deduced Protein Sequence to other Cry1 Genes

The DNA sequence of each of the novel toxin genes of the present invention was obtained by first synthesizing sequencing primers using an Applied Biosystems model 380B DNA synthesizer. The primers were then used in the DNA sequencing reactions. Sequencing was performed using the dideoxy chain-termination method (Sanger et al., Proc Natl Acad Sci USA 74: 5463-5467, 1977). Sequencing reactions were carried out using the Sequenase system (US Biochemical Corp.) and gel analysis performed on 40 cm gels of 6% polyacrylamide with 7 M urea in Tris-Borate-EDTA buffer (BRL Gel-Mix 6). For CryIE(d), DNA sequencing was obtained from an Applied Biosystem DNA Sequencer, Model 373A, according to the manufacturer's suggested protocol. Analysis of sequences was done using the University of Wisconsin Genetic Computer Group Sequence Analysis Software (UWGCG) and using Gene Codes Corp. (Ann Arbor, Michigan) sequencing program.

According the nomenclature scheme of Höfte and Whiteley, Microbiol. Rev. 53: 242-255 (1989) the proteins encoded by the novel toxin genes would be classified as a CryIE-type, and have been designated herein as CryIE(c) and CryIE(d). Both genes of the present invention encode a crystal protein of 1176 amino acids with a predicted molecular mass of 130.7 kDa. The complete nucleotide sequence of each isolated novel toxin gene is disclosed in SEQ ID NO:1 for CryIE(c) and in SEQ ID NO:7 for CryIE(d). The deduced amino acid sequence of the encoded protein CryIE(c) is disclosed in SEQ ID NO:2 and the encoded protein CryIE(d) is disclosed in SEQ ID NO:8. Using the FASTA program available in UWGCG, the DNA sequence of the two novel toxin genes of the present invention have 99% sequence identity. Both CryIE(c) and CryIE(d) each have 87% sequence identity to the known endotoxin gene designated CryIE(a) (GenBank/EMBL Accession No. M73252) and 85% sequence identity to the known endotoxin gene CryIE(b) (GenBank/EMBL Accession No. M73252). The deduced protein sequence for both CryIE(c) and CryIE(d) have 83% similarity to CryIE(b) and 81% similarity to CryIE(a).
Example 3: **Transformation of Bacillus thuringiensis with Novel Toxin Genes**

The cloned gene for the novel toxin present in the recombinant plasmids pCIB5618 and pCIB5621 was transformed into the acrystalliferous derivative of *Bacillus thuringiensis* designated CGB324. Transformation was accomplished by the method of Schurter et al. (Mol. Gen. Genet. 218: 177-181 (1989)), which is also disclosed in EP-A 0 342 633 which is incorporated herein in its entirety.

Spores of CGB324 were inoculated into 10 ml of L-broth and incubated overnight at 25 °C on a rotary shaker at 100 rpm. After incubation, the culture is diluted 50-fold into L-broth and incubated further at 30 °C on a rotary shaker at 250 rpm until the culture reaches an OD₅₉₀ of 0.2. The bacterial cells are harvested by centrifugation and resuspended in 1/40 volume ice-cold electroporation buffer (400 mM sucrose, 1 mM MgCl₂, 7 mM phosphate buffer pH 6.0, 20% glycerol). The centrifugation and resuspension of the cells is repeated as described above. Four hundred µl of the resuspended cells are added to the cuvette of a Genepulser with a 0.4 cm electrode gap. Plasmid DNA is added to the cells in the cuvette and maintained at 4 °C for 10 minutes. The plasmid DNA is transferred into the cells by electroporation using a capacitance of 25 F and a field strength of 1300 V. The treated cells were then maintained at 4 °C for an additional 10 minutes, then diluted with 1.6 ml L-broth and incubated for 4 hours at 30 °C on a rotary shaker at 250 rpm. The cells were then plated on T3 agar (3 g Tryptone, 2 g Tryptose, 1.5 g Yeast Extract, 0.05 g MgCl₂, 50 mM sodium phosphate pH 6.8) containing 25 µg/ml erythromycin and incubated at 30 °C for 24-36 hours to visualize colonies. Single colonies were picked from the plates and streaked out on fresh T3 containing erythromycin and grown to sporulation. Transformed cells of CGB324 which produced crystalline protein bodies, indicative of expression of the novel toxin genes, were identified microscopically.

The recombinant strain of *Bacillus thuringiensis* containing pCIB5618 and expressing the novel toxin gene Cry1E(c) was designated CGB311. The recombinant strain
of *Bacillus thuringiensis* containing pCIB5621 and expressing the novel toxin gene CryIE(d) was designated CGB313. Both CGB313 and CGB311 were deposited on June 1, 1994 with the Agricultural Research Service, Patent Culture Collection (NRRL), Northern Regional Research Center, 1815 North University Street, Peoria, Illinois 61604, U.S.A. and were assigned accession numbers NRRL B-21274 and NRRL B-21273, respectively.

Example 4: Insect Bioassay of Novel Toxin Genes Expressed in Recombinant *Bacillus thuringiensis*

Insect bioassays were conducted by adding spore/crystal mixtures to artificial diet preparations. For example, molten Black Cutworm artificial insect diet was poured into 45 mm Gellman snap-cap Petri dishes. Test solutions of spore/crystals mixtures from the recombinant *Bacillus thuringiensis* strain CGB311 and CGB313 were made using dilutions of a 1 mg/ml suspension in 0.01% Triton X-100 designed to provide a range of test concentrations for each sample. After solidification of the molten diet, 100 μl of the appropriate dilution of Bt in 0.01% Triton X-100 was spread over the surface and the plates are air dried. Ten insects at the first instar of *Spodoptera exigua* (beet armyworm), *S. fugiperda* (fall armyworm), or *Ostrinia nubilalis* (European corn borer) and which were less than 24 hours old were placed onto the diet surface for a total of 30 insects at the first instar for each concentration of spore/crystal tested. The assay was incubated at 30 °C in complete darkness for 72 hours. The percent mortality was recorded at the end of the assay period.

The assay for *Heliothis virescens* (tobacco budworm) was similar to the above assay with the following differences. Costar 24-well cell culture clusters were used with a single well surface area of 2.26 cm² and 15 μl of the spore/crystal dilution was applied to the surface of the solidified artificial diet. One *H. virescens* larvae which is less than 24 hours old is placed in each well for a total of 24 insects for each concentration of spore/crystal tested. The wells were covered with two pieces of Parafilm and a piece of
Teri-Kimwipe® [Fisher Scientific, Pittsburg, Pennsylvania, USA] to prevent escape of the insects from the wells. The assay was incubated at 30 °C for 72 hours after which percent mortality was recorded. Background mortality for all assays was 0-15%.

Plutella xylostella bioassays were performed by incorporating aliquots of a 50 mg/ml spore/crystal mixture into molten, artificial *P. xylostella* diet (Biever and Boldt, Annals of Entomological Society of America, 1971; Shelton, *et al.*, J. Ent. Sci 26:17) at an appropriate concentration. The 4 ml mixed toxic diet was poured into 1 oz. clear plastic cups (Bioserve product #9051). Subsequent dilutions were made by adding non-toxic diet to the previous concentration. Once the diet cooled, 5 neonate *P. xylostella* from a diet-adapted lab colony were placed in each diet-containing cup and then covered with a white paper lid (Bioserve product #9049). Twenty larvae were assayed per concentration. Trays of cups were placed in an incubator for 3 days at 72°F with a 14:10 (hours) light:dark cycle. The percent mortality was recorded at the end of the assay period.

The results of the bioassay of the novel toxins are summarized in Table 3, below.

Table 3: Relative Activities of Novel Toxins on Selected Insects

<table>
<thead>
<tr>
<th>Insect Toxins</th>
<th>Spodoptera exigua</th>
<th>Spodoptera frugiperda</th>
<th>Heliothis virescens</th>
<th>Ostrinia nubilalis</th>
<th>Plutella xylostella</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGB311 containing cryIE(c) of the present invention</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>++</td>
</tr>
<tr>
<td>CGB313 containing cryIE(d) of the present invention</td>
<td>–</td>
<td>++</td>
<td>+</td>
<td>na</td>
<td>+++</td>
</tr>
<tr>
<td></td>
<td>++</td>
<td>na</td>
<td>–</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----</td>
<td>----</td>
<td>---</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>CryIE(a)</td>
<td>++</td>
<td>na</td>
<td>–</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>CryIA(a)</td>
<td>–</td>
<td>na</td>
<td>++</td>
<td>na</td>
<td></td>
</tr>
</tbody>
</table>

+++ = 1 ng/cm² ≤ LC₅₀ ≤ 10 ng/cm²
++ = 10 ng/cm² ≤ LC₅₀ ≤ 100 ng/cm²
+ = 100 ng/cm² ≤ LC₅₀ ≤ 1000 ng/cm²
– = LC₅₀ ≥ 1000 ng/cm²
na = data not available

Example 5: **SDS-PAGE Analysis of the Novel Toxin Protein**

Spore/crystal stocks of the recombinant strain CGB311 and CGB313 were prepared (20 mg/ml) in 0.1% Triton X-100 from lyophilized powders. A 100 µl portion of the stock was treated with 25 µl of 0.4 N NaOH for 5 min at room temperature, then 125 µl of 4% SDS, 20% glycerol, 10% β-mercapto-ethanol, 0.01% bromophenol blue, and 0.125M Tris-HCL pH 6.8 (Brussock, S.M., and T.C. Currier (1990), In: Analytical chemistry of *B. thuringiensis*. L.A. Hickle and W.L. Fitch, editors, American Chemical Society). This solution was then heated at 100 °C for 2 min. Samples were centrifuged for 60 s at 14,000 g in an Eppendorf 5415 microfuge. The samples were loaded on a 4-12% SDS-PAGE (Novex) and run as described by the supplier. Gels were stained in 0.2% Coomassie blue, 40% methanol and 10% acetic acid for 30 min at room temperature and destained with 40% methanol, 10% acetic acid. Gels were scanned using Molecular Dynamics Personal Densitometer and data was analyzed using Microsoft Excel. Figure 1 shows a protein band
at the expected molecular weight based on the deduced protein sequence for each of the novel toxin genes.

Example 6: Transformation of Maize with the Novel Toxin Gene

Transformation of maize with at least one of the novel toxin genes prepared according to any of the above methods is achieved by microprojectile bombardment of either immature zygotic embryos or serially-propagatable Type I embryogenic callus with a suitable plant transformation vector comprising the said toxin genes.

6.1 Construction of Plant Transformation Vectors

Numerous transformation vectors are available for plant transformation, and the genes of this invention can be used in conjunction with any such vectors. The selection of vector for use will depend upon the preferred transformation technique and the target species for transformation. For certain target species, different antibiotic or herbicide selection markers may be preferred. Selection markers used routinely in transformation include the nptII gene which confers resistance to kanamycin and related antibiotics (Messing & Vierra, *Gene* 19: 259-268 (1982); Bevan *et al.*, *Nature* 304:184-187 (1983)), the bargene which confers resistance to the herbicide phosphinothricin (White *et al.*, *Nucl Acids Res* 18: 1062 (1990), Spencer *et al.* Theor Appl Genet 79: 625-631(1990)), the hph gene which confers resistance to the antibiotic hygromycin (Blochinger & Diggelmann, *Mol Cell Biol* 4: 2929-2931), and the dhfr gene, which confers resistance to methotrexate (Bourouis *et al.*, *EMBO J.* 2(7): 1099-1104 (1983)).

(a) Construction of Vectors Suitable for *Agrobacterium* Transformation

Many vectors are available for transformation using *Agrobacterium tumefaciens*. These typically carry at least one T-DNA border sequence and include vectors such as pBIN19 (Bevan, *Nucl. Acids Res.* (1984)). Below the construction of two typical vectors is described.
Construction of pCI2B200 and pCI2B2001

The binary vectors pCI2B200 and pCI2B2001 are used for the construction of recombinant vectors for use with *Agrobacterium* and is constructed in the following manner. pTJS75kan is created by *Nra*I digestion of pTJS75 (Schmidhauser & Helinski, *J Bacteriol.* 164: 446-455 (1985)) allowing excision of the tetracycline-resistance gene, followed by insertion of an *Accl* fragment from pUC4K carrying an NPTII (Messing & Vieira, *Gene* 19: 259-268 (1982); Bevan *et al.*, *Nature* 304: 184-187 (1983); McBride *et al.*, *Plant Molecular Biology* 14: 266-276 (1990)). *Xho*I linkers are ligated to the *EcoRV* fragment of pCI27 which contains the left and right T-DNA borders, a plant selectable *nos/nptII* chimeric gene and the pUC polylinker (Rothstein *et al.*, *Gene* 53: 153-161 (1987)), and the *Xho*I-digested fragment is cloned into *SalI*-digested pTJS75kan to create pCI2B200 (see also EP 0332 104, example 19 [1338]). pCI2B200 contains the following unique polylinker restriction sites: *EcoRI*, *SstI*, *KpnI*, *BglII*, *XbaI*, and *SalI*. pCI2B2001 is a derivative of pCI2B200 which created by the insertion into the polylinker of additional restriction sites. Unique restriction sites in the polylinker of pCI2B2001 are *EcoRI*, *SstI*, *KpnI*, *BglII*, *XbaI*, *SalI*, *MluI*, *BclI*, *AverII*, *ApaI*, *HpaI*, and *Stul*. pCI2B2001, in addition to containing these unique restriction sites also has plant and bacterial kanamycin selection, left and right T-DNA borders for *Agrobacterium*-mediated transformation, the RK2-derived *trfA* function for mobilization between *E. coli* and other hosts, and the *OriT* and *OriV* functions also from RK2. The pCI2B2001 polylinker is suitable for the cloning of plant expression cassettes containing their own regulatory signals.

Construction of pCI2B10 and Hygromycin Selection Derivatives Thereof

The binary vector pCI2B10 contains a gene encoding kanamycin resistance for selection in plants, T-DNA right and left border sequences and incorporates sequences from the wide host-range plasmid pRK252 allowing it to replicate in both *E. coli* and *Agrobacterium*. Its construction is described by Rothstein *et al.*, *Gene* 53: 153-161 (1987).
Various derivatives of pCIB10 have been constructed which incorporate the gene for hygromycin B phosphotransferase described by Gritz et al., *Gene* 25: 179-188 (1983). These derivatives enable selection of transgenic plant cells on hygromycin only (pCIB743), or hygromycin and kanamycin (pCIB715, pCIB717) [Rothstein et al., *Gene* 53: 153-161 (1987)].

(2) **Construction of Vectors Suitable for non-*Agrobacterium* Transformation.**

Transformation without the use of *Agrobacterium tumefaciens* circumvents the requirement for T-DNA sequences in the chosen transformation vector and consequently vectors lacking these sequences can be utilized in addition to vectors such as the ones described above which contain T-DNA sequences. Transformation techniques which do not rely on *Agrobacterium* include transformation via particle bombardment, protoplast uptake (*e.g.* PEG and electroporation) and microinjection. The choice of vector depends largely on the preferred selection for the species being transformed. Below, the construction of some typical vectors is described.

Construction of pCIB3064

pCIB3064 is a pUC-derived vector suitable for direct gene transfer techniques in combination with selection by the herbicide basta (or phosphinothricin). The plasmid pCIB246 comprises the CaMV 35S promoter in operational fusion to the *E. coli* GUS gene and the CaMV 35S transcriptional terminator and is described in the PCT published application WO 93/07278. The 35S promoter of this vector contains two ATG sequences 5' of the start site. These sites are mutated using standard PCR techniques in such a way as to remove the ATGs and generate the restriction sites *Sspl* and *Pvull*. The new restriction sites are 96 and 37 bp away from the unique *SalI* site and 101 and 42 bp away from the actual start site. The resultant derivative of pCIB246 is designated pCIB3025. The GUS gene is then excised from pCIB3025 by digestion with *SalI* and *SacI*, the termini rendered
blunt and religated to generate plasmid pCIB3060. The plasmid pJIT82 is obtained from the John Innes Centre, Norwich and the a 400 bp SmaI fragment containing the bar gene from *Streptomyces viridochromogenes* is excised and inserted into the *HpaI* site of pCIB3060 (Thompson et al. EMBO J 6: 2519-2523 (1987)). This generated pCIB3064 which comprises the bar gene under the control of the CaMV 35S promoter and terminator for herbicide selection, a gene fro ampicillin resistance (for selection in *E. coli*) and a polylinker with the unique sites *SphI*, *PstI*, *HindIII*, and *BamHI*. This vector is suitable for the cloning of plant expression cassettes containing their own regulatory signals.

Construction of pSOG19 and pSOG35

pSOG35 is a transformation vector which utilizes the *E. coli* gene dihydrofolate reductase (DHFR) as a selectable marker conferring resistance to methotrexate. PCR is used to amplify the 35S promoter (~800 bp), intron 6 from the maize Adh1 gene (~550 bp) [Lou et al, Plant J 3: 393-403, 1993; Dennis et al, Nucl Acids Res 12: 3983-4000, 1984] and 18 bp of the GUS untranslated leader sequence from pSOG10. A 250 bp fragment encoding the *E. coli* dihydrofolate reductase type II gene is also amplified by PCR and these two PCR fragments are assembled with a *Sacl-PstI* fragment from pBl221 (Clontech) which comprised the pUC19 vector backbone and the nopaline synthase terminator. Assembly of these fragments generated pSOG19 which contains the 35S promoter in fusion with the intron 6 sequence, the GUS leader, the DHFR gene and the nopaline synthase terminator. Replacement of the GUS leader in pSOG19 with the leader sequence from Maize Chlorotic Mottle Virus (MCMV) generated the vector pSOG35. pSOG19 and pSOG35 carry the pUC gene for ampicillin resistance and have *HindIII*, *SphI*, *PstI* and *EcoRI* sites available for the cloning of foreign sequences.
pSOG 10

This β-Glucuronidase (GUS) expression vector is derived from plasmid pBl121, purchased from Clontech Laboratories, Palo Alto, California. Intron 6 of the maize Adh1 gene is amplified by PCR from plasmid pB428, described in Bennetzen et al., Proc. Natl. Acad. Sci, USA 81:4125-4128 (1987), using oligonucleotide primers SON0003 and SON0004.

SON0003: 5’-CTCGGATCCAGCAGATTCGAAGAAGGTACAG-3’
SON0004: 5’-ACGGGATCCAACTTCTAGCTGAAAAATGGG-3’

The PCR reaction product is digested with restriction endonuclease BamH1, cleaving the BamH1 site added on the 5' end of each PCR primer. The resulting DNA fragment is purified on an agarose gel and ligated into the BamH1 site of pBl121, which is between the CaMV35S promoter and the GUS gene. The ligated DNA is transformed into E.coli and clones with the Adh1 intron 6 in the same orientation as the GUS gene are identified by restriction digest.

pSOG 19

This dihydrofolate reductase (DHFR) expression vector is derived by fusing the 35S promoter and Adh1 intron 6 of pSOG10 to the DHFR gene from plasmid pHCO, described in Bourouis and Jarry, EMBO J. 2: 1099-1104 (1983) The 35S promoter and Adh1 intron 6 are produced by PCR amplification of the fragment from pSOG10 using primers SON0031 and SON0010.

SON0031: 5’-CATGAGGGACTGACCCACCCGGGATC-3’
SON0010: 5’-AGCGGATAACAATTTCACACAGGA-3’

The resulting fragment is digested with restriction endonucleases PstI and BspH1 and purified on an agarose gel.

The DHFR coding region is produced by PCR amplification of pHCO using primers SON0016 and SON0017.

SON0016: 5’-GCTACCATGGCCACATAGAACCA-3’
SON0017: 5'-CGAGAGCTCGCACTTACGTAACCTTG-3'

The resulting fragment is digested with restriction endonucleases NsI and Sacl and purified on an agarose gel.

The two fragments described above are ligated into a vector fragment prepared from pBl121 by digestion with restriction endonucleases PstI and Sacl and purification of the 3kb fragment containing the Nos terminator region and pUC19 region of pBl121 on an agarose gel. This three way ligation fuses the 35S promoter-Adh1 intron 6-DHFR gene-Nos terminator in correct order and orientation for functional expression in plants.

pSOG30

This GUS expression vector is derived from pSOG 10 by the insertion of the maize chlorotic mottle virus (MCMV) leader, described in Lommel et al., Virology 181: 382-385 (1991), into the 35S-GUS gene non-translated leader by a three way ligation.

Both strands of the 17 bp MCMV capsid protein leader sequence plus appropriate restriction endonuclease sites are synthesized and annealed. The resulting double stranded fragment is digested with BamHI and Ncol and purified on an acrylamide gel.

The GUS gene coding region is amplified by PCR using primers SON0039 and SON0041 and pBl121 as a template.

SON0039: 5'-CGACATGGTGACGTCCTGTAGAAACCACA-3'
SON0041: 5'-ATCGCAAGACCCGGCAACAGGATT-3'

These primers added an Ncol site to the 5' end of GUS and a Sacl site to the 3' end of GUS. The resulting fragment is digested with restriction endonucleases Ncol and Sacl and purified on an agarose gel.

The GUS gene is removed from the plasmid pSOG 10 by digestion with restriction endonuclease Sacl and partial digestion with restriction endonuclease BamHI. The resulting vector, which has a BamHI site and a Sacl site in which to reinsert a coding region behind the 35S promoter-Adh1 intron 6, is purified on an agarose gel.

The three fragments described above are ligated in a three way ligation to produce a gene fusion with the structure: 35Spromoter-Adh1 intron 6-MCMV leader-GUS-Nos terminator, all in the pUC19 vector backbone.
pSOG35

The DHFR selectable marker vector is identical to pSOG19, except that the MCMV leader is inserted in the non-translated leader of the DHFR gene to enhance translation. It is created in two steps. First the GUS coding region in pSOG32, a vector identical to pSOG30 except that it contains a modified Adh promoter rather than 35S, is replaced with DHFR coding region from pSOG19 by excising the GUS with Ncol and SacI and ligating in the DHFR as an Ncol-SacI fragment. This resulting in vector pSOG33 which has the gene structure Adh promoter-Adh1 intron 6-MCMV leader-DHFR coding region-Nos terminator, with a BgIII site between the promoter and Introns and a SacI site between the coding region and the terminator. The BgIII-SacI fragment is isolated by restriction endonuclease digestion and agarose gel purification, and ligated into the BamHI and SacI sites of pSOG30, replacing the Adh1 intronZ6-MCMV leader-GUS coding region of pSOG30 with the Adh1 intron 6-MCMV leader-DHFR coding region of pSOG33.

6.2 Construction of Plant Expression Cassettes

Gene sequences intended for expression in transgenic plants are firstly assembled in expression cassettes behind a suitable promoter and upstream of a suitable transcription terminator. These expression cassettes can then be easily transferred to the plant transformation vectors described above in Example 6.1.

Promoter Selection

The selection of a promoter used in expression cassettes will determine the spatial and temporal expression pattern of the transgene in the transgenic plant. Selected promoters will express transgenes in specific cell types (such as leaf epidermal cells, mesophyll cells, root cortex cells) or in specific tissues or organs (roots, leaves or flowers, for example) and this selection will reflect the desired location of expression of the transgene. Alternatively, the selected promoter may drive expression of the gene under a light-induced or other temporally regulated promoter. A further alternative is that the selected promoter be chemically regulated. This would provide the possibility of inducing expression of the transgene only when desired and caused by treatment with a chemical inducer.
Transcriptional Terminators

A variety of transcriptional terminators are available for use in expression cassettes. These are responsible for the termination of transcription beyond the transgene and its correct polyadenylation. Appropriate transcriptional terminators and those which are known to function in plants and include the CaMV 35S terminator, the tm1 terminator, the nopaline synthase terminator, the pea rbcS E9 terminator. These can be used in both monocotyledons and dicotyledons.

Sequences for the Enhancement or Regulation of Expression

Numerous sequences have been found to enhance gene expression from within the transcriptional unit and these sequences can be used in conjunction with the genes of this invention to increase their expression in transgenic plants.

Various intron sequences have been shown to enhance expression, particularly in monocotyledonous cells. For example, the introns of the maize Adh1 gene have been found to significantly enhance the expression of the wild-type gene under its cognate promoter when introduced into maize cells. Intron 1 is found to be particularly effective and enhanced expression in fusion constructs with the chloramphenicol acetyltransferase gene (Callis et al., Genes Develop. 1: 1183-1200 (1987)). In the same experimental system, the intron from the maize bronze1 gene had a similar effect in enhancing expression (Callis et al., supra). Intron sequences have been routinely incorporated into plant transformation vectors, typically within the non-translated leader.

A number of non-translated leader sequences derived from viruses are also known to enhance expression, and these are particularly effective in dicotyledonous cells. Specifically, leader sequences from Tobacco Mosaic Virus (TMV, the "W-sequence"), Maize Chlorotic Mottle Virus (MCMV), and Alfalfa Mosaic Virus (AMV) have been shown to be effective in enhancing expression (e.g. Gallie et al. Nucl. Acids Res. 15: 8693-8711 (1987); Skuzeski et al. Plant Molec. Biol. 15: 65-79 (1990))

Targeting of the Gene Product Within the Cell

Various mechanisms for targeting gene products are known to exist in plants and the sequences controlling the functioning of these mechanisms have been characterized in some detail. For example, the targeting of gene products to the chloroplast is controlled by a signal sequence found at the amino terminal end of various proteins and which is cleaved
during chloroplast import yielding the mature protein (e.g. Comai et al. J. Biol. Chem. 263: 15104-15109 (1988)). These signal sequences can be fused to heterologous gene products to effect the import of heterologous products into the chloroplast (van den Broeck et al. Nature 313: 358-363 (1985)). DNA encoding for appropriate signal sequences can be isolated from the 5' end of the cDNAs encoding the RUBISCO protein, the CAB protein, the EPSP synthase enzyme, the GS2 protein and many other proteins which are known to be chloroplast localized.

Other gene products are localized to other organelles such as the mitochondrion and the peroxisome (e.g. Unger et al. Plant Molec. Biol. 13: 411-418 (1989)). The cDNAs encoding these products can also be manipulated to effect the targeting of heterologous gene products to these organelles. Examples of such sequences are the nuclear-encoded ATPases and specific aspartate amino transferase isoforms for mitochondria. Targeting to cellular protein bodies has been described by Rogers et al., Proc. Natl. Acad. Sci. USA 82: 6512-6516 (1985)).

In addition sequences have been characterized which cause the targeting of gene products to other cell compartments. Amino terminal sequences are responsible for targeting to the ER, the apoplast, and extracellular secretion from aleurone cells (Koehler & Ho, Plant Cell 2: 769-783 (1990)). Additionally, amino terminal sequences in conjunction with carboxy terminal sequences are responsible for vacuolar targeting of gene products (Shinshi et al., Plant Molec. Biol. 14: 357-368 (1990)).

By the fusion of the appropriate targeting sequences described above to transgene sequences of interest it is possible to direct the transgene product to any organelle or cell compartment. For chloroplast targeting, for example, the chloroplast signal sequence from the RUBISCO gene, the CAB gene, the EPSP synthase gene, or the GS2 gene is fused in frame to the amino terminal ATG of the transgene. The signal sequence selected should include the known cleavage site and the fusion constructed should take into account any amino acids after the cleavage site which are required for cleavage. In some cases this requirement may be fulfilled by the addition of a small number of amino acids between the cleavage site and the transgene ATG or alternatively replacement of some amino acids within the transgene sequence. Fusions constructed for chloroplast import can be tested for efficacy of chloroplast uptake by in vitro translation of in vitro transcribed constructions followed by in vitro chloroplast uptake using techniques described by (Bartlett et al. In: Edelmann et al. (Eds.) Methods in Chloroplast Molecular Biology, Elsevier, pp 1081-1091).
(1982); Wasmann et al. Mol. Gen. Genet. 205: 446-453 (1986)). These construction techniques are well known in the art and are equally applicable to mitochondria and peroxisomes. The choice of targeting which may be required for expression of the transgenes will depend on the cellular localization of the precursor required as the starting point for a given pathway. This will usually be cytosolic or chloroplastic, although it may be some cases be mitochondrial or peroxisomal. The products of transgene expression will not normally require targeting to the ER, the apoplast or the vacuole.

The above described mechanisms for cellular targeting can be utilized not only in conjunction with their cognate promoters, but also in conjunction with heterologous promoters so as to effect a specific cell targeting goal under the transcriptional regulation of a promoter which has an expression pattern different to that of the promoter from which the targeting signal derives.

6.3. Maize transformation

For transformation using immature zygotic embryos, ears are self-pollinated and immature zygotic embryos are obtained approximately 10 days later. Approximately eight hundred immature zygotic embryos are divided among different target plates containing a medium capable of inducing and supporting the formation of embryogenic callus. The immature zygotic embryos are transferred immediately to the same medium but containing 12% sucrose. After 5 hours, the immature zygotic embryos are bombarded with a plasmid or plasmids using the PDS-1000/He device from BioRad. The plasmid or plasmids comprise a selectable marker such as a gene conferring resistance to phosphinotrichin and the novel toxin gene prepared for delivery to and expression in maize according to the above description. The plasmid or plasmids are precipitated onto 1 μm gold particles essentially according to the published procedure from BioRad. The particles are delivered using a burst pressure of 1550 psi of helium. Each target plate is shot twice with the plasmid and gold particle preparation. Since the plasmid or plasmids comprise a chimeric gene coding for resistance to phosphinotrichin this substance is used to select transformed cells in vitro. The selection agent is applied at 10 mg/L on the day of gene delivery and increased to 40 mg/L after approximately one month. The embryogenic callus so obtained is regenerated in the presence of the selection agent phosphinotrichin. Plants are obtained from the phosphinotrichin resistant embryogenic callus lines. The regenerated plants are assayed for resistance to a susceptible insect. All the plants that are resistant to the insect
also express the introduced chimeric novel toxin gene as evidenced by the detection of novel toxin protein in the plant using an ELISA assay. Plants resistant to the insect and expressing the introduced novel toxin gene are transformed.

For transformation of maize using Type I embryogenic callus, the callus is obtained from immature zygotic embryos using standard culture techniques. For gene delivery, approximately 300 mg of the Type I callus is prepared by either chopping with a scalpel blade or by subculturing 3-5 days prior to gene delivery. Prior to gene delivery, the prepared callus is placed onto semi-solid culture medium again containing 12% sucrose. After approximately 4 hours, the tissue is bombarded using the PDS-1000/He Biolistic device from BioRad. The plasmid or plasmids comprising a selectable marker such as a gene conferring resistance to phosphinothricin and the novel toxin gene prepared for delivery to and expression in maize according to the above description are precipitated onto 1 µm gold particles using essentially the standard protocol from BioRad. Approximately 16 hours after gene delivery the callus is transferred to standard culture medium containing 2% sucrose and 1 mg/L phosphinothricin. The callus is subcultured on selection for 8 weeks, after which surviving and growing callus is transferred to standard regeneration medium for the production of plants. The regenerated plants are assayed for resistance to a susceptible insect. All the plants that are resistant to the insect also express the introduced chimeric novel toxin gene as evidenced by the detection of novel toxin protein in the plant using an ELISA assay. Plants resistant to the insect and expressing the introduced novel toxin gene are transformed.

All publications and patent applications mentioned in this specification are indicative of the level of skill of those skilled in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims.
SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT:
 (A) NAME: CIBA-GEIGY AG
 (B) STREET: Klybeckstr. 141
 (C) CITY: Basel
 (E) COUNTRY: Switzerland
 (F) POSTAL CODE (ZIP): 4002
 (G) TELEPHONE: +41 61 69 11 11
 (H) TELEFAX: + 41 61 696 79 76
 (I) TELEX: 962 991

(ii) TITLE OF INVENTION: NOVEL BACILLUS THURINGIENSIS GENE ENCODING A TOXIN ACTIVE AGAINST INSECTS

(iii) NUMBER OF SEQUENCES: 18

(iv) COMPUTER READABLE FORM:
 (A) MEDIUM TYPE: Floppy disk
 (B) COMPUTER: IBM PC compatible
 (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 4003 base pairs
 (B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:
 (A) ORGANISM: Bacillus thuringiensis
 (B) STRAIN: kurstaki
 (C) INDIVIDUAL ISOLATE: CGB316

(ix) FEATURE:
 (A) NAME/KEY: promoter
 (B) LOCATION: 96..124
 (D) OTHER INFORMATION: /function= "putative promoter region"

(ix) FEATURE:
 (A) NAME/KEY: RBS
 (B) LOCATION: 185..190

(ix) FEATURE:
 (A) NAME/KEY: CDS
 (B) LOCATION: 196..3723
 (D) OTHER INFORMATION: /product= "Full-length CryIE(c) protein"

(ix) FEATURE:
 (A) NAME/KEY: misc_feature
 (B) LOCATION: 1191..1590
 (D) OTHER INFORMATION: /note= "This region of the CryIE(c) DNA sequence encodes the amino acid sequence designated Sub-Sequence A"
(ix) FEATURE:
(A) NAME/KEY: misc_feature
(B) LOCATION: 1591..2061
(D) OTHER INFORMATION: /note= "This region of the CryIE(c) DNA sequence encodes the amino acid sequence designated Sub-Sequence B"

(xii) SEQUENCE DESCRIPTION: SEQ ID NO:1:

AAGTATGGGC GAGAANTAAG TGAATTTATTA GCACCCTGGG TCTATTTTAG CCCCAGGGCA 60
TTAATGGATA TTTTTTAATA TTGGTGACAC TTTGTTATT TTTTTCATAGA ATGATTCTATA 120
TACTTTACAT GTCAATACGA TAGAGGCCAA TTAGTTTTAAG AGAACAATAAT TTAATGATGAA 180
AAACGGAGGG TTATA ATG GAT AAT AAT AAT CAA AAT CAA TGC ATA CCT TAC 231
Met Asp Asn Asn Gln Asn Gln Cys Ile Pro Tyr

1 5 10

AAT TGT TTA AGT AAT CCT GAA TTA GAG ATA TTA GAG ATT GAA AGA TCA 279
Asn Cys Leu Ser Asn Pro Glu Leu Glu Ile Leu Glu Ile Glu Arg Ser

15 20 25

AAT AAT ACC GTA GTA GAA GAC ATC ACC TTG GGG CTG AGT CTT CTG CTC 327
Asn Asn Thr Val Val Glu Asp Ile Thr Leu Gly Leu Ser Arg Leu Leu

30 35 40

GTT TCC GCA ATT CCA CTA GGG GAT TTT ATA CTT GGC TTT GAT GTA 375
Val Ser Ala Ile Pro Leu Gly Asp Phe Ile Leu Gly Leu Phe Asp Val

45 50 55 60

ATA TGG GGG GCT TTA GGT CCT TCA GAG TGG GAT ATA TTT TTA GAG CAA 423
Ile Trp Gly Ala Leu Gly Arg Ser Glu Trp Asp Ile Phe Leu Glu Gln

65 70 75
ATT GAG CTA TTG ATC GCC CAA AGA ATA GAG GAA TTT GCT AGG AAT CAG	471		
Ile Glu Leu Leu Ile Gly Gln Arg Ile Glu Glu Phe Ala Arg Asn Gln			
80	85	90	
GCA ATT TCT AGA TTA GAA GGG CTA AGC AAC ATT CTT TAT CGA ATT TAC ACA	519		
Ala Ile Ser Arg Leu Glu Gly Leu Ser Asn Leu Tyr Arg Ile Tyr Thr			
95	100	105	
AAT GCT TTT AAA GAC TGG GAA GCA GAT CCT ACT AAC CTA GAA TTA AAA	567		
Asn Ala Phe Lys Asp Trp Glu Ala Asp Pro Thr Asn Leu Glu Leu Lys			
110	115	120	
GAA GAG ATG CTT ACT CAA TTT AAT GAC ATG AAC AGT GCT TTT ACA ACA	615		
Glu Glu Met Arg Thr Gin Phe Asp Met Asn Ser Ala Phe Thr Thr			
125	130	135	140
GCT ATT CCT CTT TTT TCA GTT CGG GAT TAT GAA CTT CCT CTT TTA TCA	663		
Ala Ile Pro Leu Phe Ser Val Arg Gly Tyr Glu Leu Pro Leu Leu Ser			
145	150	155	
GTA TAT GTT CAA GCT GCA AAT TTA CAT TTA TCA GTT TTA AGA GAT GTT	711		
Val Tyr Val Gin Ala Ala Asn Leu His Leu Ser Val Leu Arg Asp Val			
160	165	170	
TCA GTG TTT GGA CAA CGT TGG GGA TTT GAC GTA GCA ACA GTC AAC CGT	759		
Ser Val Phe Gly Gin Arg Trp Gly Phe Asp Val Ala Thr Val Asn Arg			
175	180	185	
CGT TAT GAT GAT TTA ACT ACG AAT ATA GCC GAC TAC ACA GAT TAT GCT	807		
Arg Tyr Asp Asp Leu Thr Thr Asn Ile Gly Asp Tyr Thr Asp Tyr Ala			
190	195	200	
TTA AGC TGG TAT AAT ACG GGA TTA AAC CGT TTA CCA CGT AAT GAT GGG	855		
Leu Ser Trp Tyr Asn Thr Gly Leu Asn Arg Leu Pro Arg Asn Asp Gly			
205	210	215	220
CGT GCA GGA TGG GCA AGA TTT AAT AGG TTT AGA AGA GAG TTA ACA ATA	903		
Leu Arg Gly Trp Ala Arg Phe Asn Arg Phe Arg Arg Glu Leu Thr Ile

225 230 235

TCA GTA TTA GAT ATT ATT TCT TTT TTC CAA AAT TAC GAT TCT AGA TTA
Ser Val Leu Asp Ile Ile Ser Phe Phe Glu Asn Tyr Asp Ser Arg Leu
240 245 250

TAT CCA ATT CCA ACA ATC TCC CAA TTA ACG GGA GTA TAT ACA GAT
Tyr Pro Ile Pro Thr Ile Ser Gln Leu Thr Arg Glu Val Tyr Thr Asp
255 260 265

CCG GTA ATT AAT ATA ACT GAT TAT AGA GTT ACC CCA AGT TCC GAG ACT
Pro Val Ile Asn Ile Thr Asp Tyr Val Thr Pro Ser Phe Glu Ser
270 275 280

ATT GAA AAC TCA GCC ATT AGA AGC CCC CAT CTT AGT GAT TCC TTA ACT
Ile Glu Asn Ser Ala Ile Arg Ser Pro His Leu Met Asp Phe Leu Thr
285 290 295 300

AAT ATA ATT ATT GAC ACT GAT TTA ATA AGA GST GTT TAC TAT TGG GCA
Asn Ile Ile Ile Asp Thr Asp Leu Ile Arg Gly Val Tyr Tyr Trp Ala
305 310 315

GGA CAT CTT ATA AAT TCT GCG TTT ACC GGG ACC GCT TTT CCA CAT ATA
Gly His Arg Ile Asn Ser Arg Phe Thr Gly Thr Ala Phe Pro His Ile
320 325 330

ATA ACA TCT CCT CAG TAT GGA ATA ACT GCA AAG CCA GAA CCA AGA CGT
Ile Thr Ser Pro Gln Tyr Gly Ile Thr Ala Asn Ala Glu Pro Arg Arg
335 340 345

ACA ATA GCG CCT GGT CCT TTT CAA GGT GTG CCT TCC CTA CTT TAT AGA
Thr Ile Ala Pro Gly Pro Phe Glu Gly Val Pro Ser Leu Leu Tyr Arg
350 355 360

ACA CTA TCA GAC CCT TTC TCC OGA AGA TCA GAC AAT ATT AGT CCA ACC
Thr Leu Ser Asp Pro Phe Phe Arg Arg Ser Asp Asn Ile Ser Pro Thr
365 370 375
365 370 375 380
TTA GGG ATA AAT GTA GTA CAG GGG GTA GGG TTC TTA CAA CCA AAT AAT
Leu Gly Ile Asn Val Val Gln Gly Val Gly Phe Leu Gln Pro Asn Asn
385 390 395

TTT GAA TCT CTA TAT AGA AGG AGA GCA GTC TAT CAT GAT GAG
Phe Glu Ser Leu Tyr Arg Arg Arg Gly Thr Val Asp Ser Leu Asp Glu
400 405 410

TTG CCA ATT GAT GGT GAA AAT CCA TTA GTT GGA TAT AGT CAT CGA TTA
Leu Pro Ile Asp Gly Glu Asn Pro Leu Val Gly Tyr Ser His Arg Leu
415 420 425

AGT CAC GTT ACA TTA ACC AGG TCA TTA TTT AAT ACT AAT ATA ACT AGC
Ser His Val Thr Leu Thr Arg Ser Leu Phe Asn Thr Asn Ile Thr Ser
430 435 440

CTG CCA ACA TTT GTT TGG ACA CAT CAC AGT GCT ACT GAT ACA AAT ACA
Leu Pro Thr Phe Val Trp Thr His His Ser Ala Thr Asp Thr Asn Thr
445 450 455 460

ATT GCT CCA GAT GTC ATT ACC CAA ATA CGG TTA GTA AAG GCT TTC AAT
Ile Ala Pro Asp Val Ile Thr Glu Ile Pro Leu Val Lys Ala Phe Asn
465 470 475

CTT CAT TCA GTT GCC ACG GTT GCT AGA GGG CCA GGA TTT ACA GST GGG
Leu His Ser Gly Ala Thr Val Ala Arg Gly Pro Gly Phe Thr Gly Gly
480 485 490

GAT ATC CTT CGA AGA ACG AAT GGT GST AAC TTT GGA GAT ATG CSG GTA
Asp Ile Leu Arg Arg Thr Asn Val Gly Asn Phe Gly Asp Met Arg Val
495 500 505

AAT ATT ACT GCA CCA CTA CCA AGA TAT GCA GGA AGG ATT GST TAT
Asn Ile Thr Ala Pro Leu Ser Glu Arg Tyr Arg Val Arg Ile Arg Tyr
510 515 520
GCT TCT ACT ACA AAT TTA GCA TTC CAT ACA TCA ATT AAC GGA AGA GCT 1815
Ala Ser Thr Thr Asn Leu Arg Phe His Thr Ser Ile Asn Gly Arg Ala
525 530 535 540

ATT AAT CAG GCG GAT TTT CCA GCT ACT ATG AAT AGT GGG GGT AAT TTA 1863
Ile Asn Gln Ala Asp Phe Pro Ala Thr Met Asn Ser Gly Gly Asn Leu
545 550 555

CAC TCC GGA AGC TTC AGG ATG GCA GGT TTT ACT ACT CCA TTT ACC TTT 1911
Gln Ser Gly Ser Phe Arg Ile Ala Gly Phe Thr Thr Pro Phe Thr Phe
560 565 570

TCA GAT GCA CTA AGC ACA TTC ACA ATA GGT TCT GCT TTT GGC TTC TCT TCA 1959
Ser Asp Ala Leu Ser Thr Phe Thr Ile Gly Ala Phe Gly Ser Ser
575 580 585

GGT AAC GAA GTT TAT ATA GAT CGA ATT GAA TTT GTT CGA GCA GAA GIA 2007
Gly Asn Glu Val Tyr Ile Asp Arg Ile Glu Phe Val Pro Ala Glu Val
590 595 600

ACC TTT GAG GCA GAA TAT GAT CTA GAA AGA GCA CAA AAG GGC GGG AAT 2055
Thr Phe Glu Ala Glu Tyr Asp Leu Glu Arg Ala Gln Lys Ala Val Asn
605 610 615 620

GGG CTG TTT ACT TCT TCT AAT CAA ATC GGC TTA AAA ACA GAT GTA ACG 2103
Ala Leu Phe Thr Ser Ser Asn Glu Ile Gly Leu Lys Thr Asp Val Thr
625 630 635

GAT TAT CAT ATT GAT CAA GTA TCC AAT CTA GGT GAA TGC TTA TGC GAT 2151
Asp Tyr His Ile Asp Glu Val Ser Asn Leu Val Glu Cys Leu Ser Asp
640 645 650

GAA TTT TGT CTG GAT GAA AAG CGA GAA TGG TCC GAG AAA GTC AAA CAT 2199
Glu Phe Cys Leu Asp Glu Lys Arg Glu Leu Ser Glu Lys Val Lys His
655 660 665
GCG GAG CGA CTC AGT GAT GAG CGG AAT TTA CTT CAA GAT CCA AAC TTT
 Ala Lys Arg Leu Ser Asp Glu Arg Asn Leu Leu Gln Asp Pro Asn Phe
 670 675 680

AGA GGG ATC AAT AGA CAA CTA GAC CGT GGC TGG AGA GGA AGT ACG GAT
Arg Gly Ile Asn Arg Gln Leu Asp Arg Gly Trp Arg Gly Ser Thr Asp
 685 690 695 700

ATT ACC ATC CAA GGA GGA GAT GAC GTA TTC AAA GAG AAT TAC GTC ACA
Ile Thr Ile Gin Gly Asp Asp Val Phe Iys Gin Asn Tyr Val Thr
 705 710 715

CTA CCG GGT ACC TTT GAT GAG TGC TAT CCA ACG TAT TTA TAT CAA AAA
Leu Pro Gly Thr Phe Asp Glu Cys Tyr Pro Thr Tyr Leu Tyr Gln Lys
 720 725 730

ATA GAT GAG TCA AAA TTA AAA GCC TAT ACC CGT TAT CAA TTA AGA GGG
Ile Asp Glu Ser Lys Leu Lys Ala Tyr Thr Arg Tyr Gin Leu Arg Gly
 735 740 745

TAT ATC GAG GAT AGT CAA GAC TTA GAA ATC TAT TTA ATT CGC TAC AAT
Tyr Ile Glu Asp Ser Gln Asp Leu Glu Ile Tyr Leu Ile Arg Tyr Asn
 750 755 760

GCA AAA CAT GAA ACA GTA AAT GTG CGA GGT ACG GGT TCT TTA TGG CGG
Ala Lys His Glu Thr Val Asn Val Pro Gly Thr Gly Ser Leu Trp Pro
 765 770 775 780

CTT TCA GTC GAA AGT CCA ATC GGA AAG TGT GGA GAA CTA AAT CGA TGC
Leu Ser Val Glu Ser Pro Ile Gin Lys Cys Gly Glu Leu Asn Arg Cys
 785 790 795

GCG CCA CAC CTT GAA TGG AAT CCT GAT CTA GAT TGT TCC TGC AGA GAC
Ala Pro His Leu Glu Trp Asn Pro Asp Leu Asp Cys Ser Cys Arg Asp
 800 805 810
GGG GAA AAA TGT GCC CAT CAT TCT CAT CAT CAT TIC TCC TTG GAC ATT GAT 2679
Gly Glu Lys Cys Ala His His Ser His His Phe Ser Leu Asp Ile Asp 815 820 825

GTT GGA TGG ACA GAC TTA AAT GAG GAC TTA GGT GTA GTC GGG GTA TCC 2727
Val Gly Cys Thr Asp Leu Asn Glu Asp Leu Gly Val Trp Val Ile Phe 830 835 840

AAG ATT AAG ACG CA GAT GCC CAT GCA AGA TTA GGA AAT CTA GAA TTT 2775
Lys Ile Lys Thr Gln Asp Gly His Ala Arg Leu Gly Asn Leu Glu Phe 845 850 855 860

CTC GAA GAG AAA CCA GTA GGA GAA GCA CTA GCT CTG GTC AAA AGA 2871
Leu Glu Glu Lys Pro Leu Val Gly Glu Ala Leu Ala Arg Val Lys Arg 865 870 875

GCG GAG AAA AAA TGG AGA GAC AAA CTT AAA AAA TIG GAA TTG GAA ACA 2877
Ala Glu Lys Thr Arg Asp Lys Arg Glu Leu Glu Leu Glu Thr 880 885 890

AAT ATT GTT TAT AAA GAG GCA AAA GAA TCT GTA GAT GCT TTA TTT GTA 2919
Asn Ile Val Tyr Lys Glu Ala Asp Ser Val Asp Ala Leu Phe Val 895 900 905

AAC TCT CAA TAT GAT AGA TTA CAA GOG GAT ACC AAC ATC GCG ATG ATT 2967
Asn Ser Glu Tyr Asp Arg Leu Gln Ala Asp Thr Asn Ile Ala Met Ile 910 915 920

CAT GCG GCA GAT AAA CGC GTT CAT AGC ATT CGA GAA GCT TAT CTG CCT 3015
His Ala Ala Asp Lys Arg Val His Ser Ile Arg Glu Ala Tyr Leu Pro 925 930 935 940

GAG CTG TCT GTG ATT CGG GGT GIC AAT GCG GCT ATT TTT GAA GAA TTA 3063
Glu Leu Ser Val Ile Pro Gly Val Asn Ala Ala Ile Phe Glu Glu Leu 945 950 955
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Start Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glu Gly Arg Ile Phe Thr Ala Phe Ser Leu Tyr Asp Ala Arg Asn Val</td>
<td>960</td>
</tr>
<tr>
<td>ATT AAA AAT GGT GAT TTT AAT TAT GSC TTA TCC TGC TGG AAC GTG AAA</td>
<td>965</td>
</tr>
<tr>
<td>Ile Lys Asn Gly Asp Phe Asn Tyr Gly Leu Ser Cys Trp Asn Val Lys</td>
<td>970</td>
</tr>
<tr>
<td>GGG CAT GTA GAT GTA GAA GAA CAA AAC CAC CAC CGT TCG GTC CTT GTT</td>
<td>975</td>
</tr>
<tr>
<td>Gly His Val Asp Val Glu Glu Gln Asn Asn His Arg Ser Val Leu Val</td>
<td>980</td>
</tr>
<tr>
<td>GTT CCG GAA TGG GAA GCA GAA GTG TCA CAA GAA GTT GTC GTC TGT CCG</td>
<td>985</td>
</tr>
<tr>
<td>Val Pro Glu Trp Glu Ala Glu Val Ser Gln Glu Val Arg Val Cys Pro</td>
<td>1000</td>
</tr>
<tr>
<td>GTG GTG GCC TAT ATC CTT CGT GTC ACA GCT TAC AAG GAG GGA TAT GGA</td>
<td>1005</td>
</tr>
<tr>
<td>Gly Arg Gly Tyr Ile Leu Arg Val Thr Ala Tyr Lys Gly Gly Tyr Gly</td>
<td>1010</td>
</tr>
<tr>
<td>GAA GGT TGC GTA ACC ATT CAT GAG ATC GAG AAC AAT ACA GAC GAA CTG</td>
<td>1015</td>
</tr>
<tr>
<td>Glu Gly Cys Val Thr Ile His Glu Ile Glu Asn Thr Asp Glu Leu</td>
<td>1020</td>
</tr>
<tr>
<td>AAG TTT AGC AAC TGT GTA GAA GAG GTA TAT CCA AAC AAC AGC GTA</td>
<td>1025</td>
</tr>
<tr>
<td>Lys Phe Ser Asn Cys Val Glu Glu Glu Val Tyr Pro Asn Asn Thr Val</td>
<td>1030</td>
</tr>
<tr>
<td>ACG TGT AAT GAT TAT ACT GCG ACT CAA GAA GAA TAT GAG GTG ACG TAC</td>
<td>1035</td>
</tr>
<tr>
<td>Thr Cys Asn Asp Tyr Thr Ala Thr Gln Glu Gly Tyr Gly Thr Tyr</td>
<td>1040</td>
</tr>
<tr>
<td>ACT TCT CGT AAT CCA GGA TAT GAC GGA GCC TAT GAA AGC AAT TCT TCT</td>
<td>1045</td>
</tr>
<tr>
<td>Thr Ser Arg Asn Arg Gly Tyr Asp Gly Ala Tyr Glu Ser Asn Ser Ser</td>
<td>1050</td>
</tr>
<tr>
<td>GTA CCA GCT GAT TAT GCA TCA GCC TAT GAA GAA AAA GCG TAT ACA GAT</td>
<td>1055</td>
</tr>
<tr>
<td></td>
<td>1060</td>
</tr>
<tr>
<td></td>
<td>1065</td>
</tr>
<tr>
<td></td>
<td>1070</td>
</tr>
<tr>
<td></td>
<td>1075</td>
</tr>
<tr>
<td></td>
<td>1080</td>
</tr>
<tr>
<td></td>
<td>1085</td>
</tr>
<tr>
<td></td>
<td>1090</td>
</tr>
<tr>
<td></td>
<td>1095</td>
</tr>
<tr>
<td></td>
<td>1100</td>
</tr>
<tr>
<td></td>
<td>1105</td>
</tr>
<tr>
<td></td>
<td>3111</td>
</tr>
<tr>
<td></td>
<td>3159</td>
</tr>
<tr>
<td></td>
<td>3207</td>
</tr>
<tr>
<td></td>
<td>3255</td>
</tr>
<tr>
<td></td>
<td>3303</td>
</tr>
<tr>
<td></td>
<td>3351</td>
</tr>
<tr>
<td></td>
<td>3399</td>
</tr>
<tr>
<td></td>
<td>3447</td>
</tr>
<tr>
<td></td>
<td>3495</td>
</tr>
<tr>
<td></td>
<td>3543</td>
</tr>
</tbody>
</table>
Val Pro Ala Asp Tyr Ala Ser Ala Tyr Glu Glu Lys Ala Tyr Thr Asp
1105 1110 1115
GGA CGA AGA GAC AAT CCT TGT GAA TCT AAC AGA GGA TAT GGG GAT TAC 3591
Gly Arg Arg Asp Asn Pro Cys Glu Ser Asn Arg Gly Tyr Gly Asp Tyr
1120 1125 1130
ACA CCA CTA CCA GCT GCC TAT GTG ACA AAA GAA TTA GAG TAC TTC CCA 3639
Thr Pro Leu Pro Ala Gly Tyr Val Thr Iys Glu Leu Glu Tyr Phe Pro
1135 1140 1145
GAA ACC GAT AAG GTA TGG ATT GAG ATC GGA GAA ACG GAA GGA ACA TTT 3687
Glu Thr Asp Lys Val Trp Ile Glu Ile Gly Glu Thr Gly Thr Phe
1150 1155 1160
ATC GTG GAC AGC GTG GAA TTA CTC ATT GCC AAC GAA TAC AGC GAA TTT 3733
Ile Val Asp Ser Val Glu Leu Leu Leu Met Glu Glu
1165 1170 1175
CAAACACGG TTTAAATAC GTTTTCAAAT CAATTGCAGA AGAGCAGCAT TACAAATAGA 3793
TAAGTAAATT TGTTGTAATGA AAAAAAGGACGA TGACCTCCAT TGGAAACGGAG TAGGTGCGT 3853
TTTACTATGT TATTTTCTAG TAATACATAT GATAGAGCA ACTTAATCAA GCAGAGATAT 3913
TTTCACCTAT CGAGAAAT ATCCTCCTT TTTCCTTTTT TTATTTGGA TATGCTTTAC 3973
TTTGAATOGA AATTAAGCA CTATAAGAG 4003

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1176 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Asp Asn Asn Gln Asn Gln Cys Ile Pro Tyr Asn Cys Leu Ser
1 5 10 15

Asn Pro Glu Leu Glu Ile Leu Glu Ile Glu Arg Ser Asn Asn Thr Val
20 25 30

Val Glu Asp Ile Thr Leu Gly Leu Ser Arg Leu Leu Val Ser Ala Ile
35 40 45

Pro Leu Gly Asp Phe Ile Leu Gly Leu Phe Asp Val Ile Trp Gly Ala
50 55 60

Leu Gly Arg Ser Glu Trp Asp Ile Phe Leu Glu Gln Ile Glu Leu Leu
65 70 75 80

Ile Gly Gin Arg Ile Glu Glu Phe Ala Arg Asn Gln Ala Ile Ser Arg
85 90 95

Leu Glu Gly Leu Ser Asn Leu Tyr Arg Ile Tyr Thr Asn Ala Phe Lys
100 105 110

Asp Trp Glu Ala Asp Pro Thr Asn Leu Glu Leu Lys Glu Glu Met Arg
115 120 125

Thr Gin Phe Asn Asp Met Asn Ser Ala Phe Thr Thr Ala Ile Pro Leu
130 135 140

Phe Ser Val Arg Gly Tyr Glu Leu Pro Leu Leu Ser Val Tyr Val Gin
145 150 155 160

Ala Ala Asn Leu His Leu Ser Val Leu Arg Asp Val Ser Val Phe Gly
165 170 175

Gln Arg Trp Gly Phe Asp Val Ala Thr Val Asn Arg Arg Tyr Asp Asp
180
185
190

Leu Thr Thr Asn Ile Gly Asp Tyr Thr Asp Tyr Ala Leu Ser Trp Tyr
195
200
205

Asn Thr Gly Leu Asn Arg Leu Pro Arg Asn Asp Gly Leu Arg Gly Trp
210
215
220

Ala Arg Phe Asn Arg Phe Arg Arg Glu Leu Thr Ile Ser Val Leu Asp
225
230
235
240

Ile Ile Ser Phe Phe Gln Asn Tyr Asp Ser Arg Leu Tyr Pro Ile Pro
245
250
255

Thr Ile Ser Gln Leu Thr Arg Glu Val Tyr Thr Asp Pro Val Ile Asn
260
265
270

Ile Thr Asp Tyr Arg Val Thr Pro Ser Phe Glu Ser Ile Glu Asn Ser
275
280
285

Ala Ile Arg Ser Pro His Leu Met Asp Phe Leu Thr Asn Ile Ile Ile
290
295
300

Asp Thr Asp Leu Ile Arg Gly Val Tyr Tyr Trp Ala Gly His Arg Ile
305
310
315
320

Asn Ser Arg Phe Thr Gly Thr Ala Phe Pro His Ile Ile Thr Ser Pro
325
330
335

Gln Tyr Gly Ile Thr Ala Asn Ala Glu Pro Arg Arg Thr Ile Ala Pro
340
345
350

Gly Pro Phe Gln Gly Val Pro Ser Leu Leu Tyr Arg Thr Leu Ser Asp
355
360
365

Pro Phe Phe Arg Arg Ser Asp Asn Ile Ser Pro Thr Leu Gly Ile Asn
<table>
<thead>
<tr>
<th>370</th>
<th>375</th>
<th>380</th>
</tr>
</thead>
<tbody>
<tr>
<td>Val Val Gln Gly Val Gly Phe Leu Gln Pro Asn Asn Phe Glu Ser Leu</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>385</th>
<th>390</th>
<th>395</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyr Arg Arg Arg Gly Thr Val Asp Ser Leu Asp Glu Leu Pro Ile Asp</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>405</th>
<th>410</th>
<th>415</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gly Glu Asn Pro Leu Val Gly Tyr Ser His Arg Leu Ser His Val Thr</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>420</th>
<th>425</th>
<th>430</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leu Thr Arg Ser Leu Phe Asn Thr Asn Ile Thr Ser Leu Pro Thr Phe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>435</th>
<th>440</th>
<th>445</th>
</tr>
</thead>
<tbody>
<tr>
<td>Val Trp Thr His His Ser Ala Thr Asp Thr Asn Thr Ile Ala Pro Asp</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>450</th>
<th>455</th>
<th>460</th>
</tr>
</thead>
<tbody>
<tr>
<td>Val Ile Thr Gln Ile Pro Leu Val Iys Ala Phe Asn Leu His Ser Gly</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>465</th>
<th>470</th>
<th>475</th>
<th>480</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala Thr Val Ala Arg Gly Pro Gly Phe Thr Gly Gly Asp Ile Leu Arg</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>485</th>
<th>490</th>
<th>495</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arg Thr Asn Val Gly Asn Phe Gly Asp Met Arg Val Asn Ile Thr Ala</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>500</th>
<th>505</th>
<th>510</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pro Leu Ser Gln Arg Tyr Arg Val Arg Ile Arg Tyr Ala Ser Thr Thr</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>515</th>
<th>520</th>
<th>525</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asn Leu Arg Phe His Thr Ser Ile Asn Gly Arg Ala Ile Asn Gln Ala</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>530</th>
<th>535</th>
<th>540</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asp Phe Pro Ala Thr Met Asn Ser Gly Gly Asn Leu Gln Ser Gly Ser</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>545</th>
<th>550</th>
<th>555</th>
<th>560</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phe Arg Ile Ala Gly Phe Thr Thr Pro Phe Thr Phe Ser Asp Ala Leu</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 565 | 570 | 575 |
Ser Thr Phe Thr Ile Gly Ala Phe Gly Phe Ser Ser Gly Asn Glu Val
 580 585 590

Tyr Ile Asp Arg Ile Glu Phe Val Pro Ala Glu Val Thr Phe Glu Ala
 595 600 605

Glu Tyr Asp Leu Glu Arg Ala Gln Lys Ala Val Asn Ala Leu Phe Thr
 610 615 620

Ser Ser Asn Gln Ile Gly Leu Lys Thr Asp Val Thr Asp Tyr His Ile
 625 630 635 640

Asp Gln Val Ser Asn Leu Val Glu Cys Leu Ser Asp Glu Phe Cys Leu
 645 650 655

Asp Glu Lys Arg Glu Leu Ser Glu Lys Val Lys His Ala Lys Arg Leu
 660 665 670

Ser Asp Glu Arg Asn Leu Leu Gln Asp Pro Asn Phe Arg Gly Ile Asn
 675 680 685

Arg Gln Leu Asp Arg Gly Trp Arg Gly Ser Thr Asp Ile Thr Ile Gln
 690 695 700

Gly Gly Asp Asp Val Phe Lys Glu Asn Tyr Val Thr Leu Pro Gly Thr
 705 710 715 720

Phe Asp Glu Cys Tyr Pro Thr Tyr Leu Tyr Gln Lys Ile Asp Glu Ser
 725 730 735

Lys Leu Lys Ala Tyr Thr Arg Tyr Gln Leu Arg Gly Tyr Ile Glu Asp
 740 745 750

Ser Gln Asp Leu Glu Ile Tyr Leu Ile Arg Tyr Asn Ala Lys His Glu
 755 760 765
Thr Val Asn Val Pro Gly Thr Gly Ser Leu Trp Pro Leu Ser Val Glu
 770 775 780
Ser Pro Ile Gly Lys Cys Gly Glu Leu Asn Arg Cys Ala Pro His Leu
 785 790 795 800
Glu Trp Asn Pro Asp Leu Asp Cys Ser Cys Arg Asp Gly Glu Lys Cys
 805 810 815
Ala His His Ser His His Phe Ser Leu Asp Ile Asp Val Gly Cys Thr
 820 825 830
Asp Leu Asn Glu Asp Leu Gly Val Trp Val Ile Phe Lys Ile Lys Thr
 835 840 845
Gln Asp Gly His Ala Arg Leu Gly Asn Leu Glu Phe Leu Glu Glu Lys
 850 855 860
Pro Leu Val Gly Glu Ala Leu Ala Arg Val Lys Arg Ala Glu Lys Lys
 865 870 875 880
Trp Arg Asp Lys Arg Glu Lys Leu Glu Leu Thr Asn Ile Val Tyr
 885 890 895
Lys Glu Ala Lys Glu Ser Val Asp Ala Leu Phe Val Asn Ser Gln Tyr
 900 905 910
Asp Arg Leu Gln Ala Asp Thr Asn Ile Ala Met Ile His Ala Ala Asp
 915 920 925
Lys Arg Val His Ser Ile Arg Glu Ala Tyr Leu Pro Glu Leu Ser Val
 930 935 940
Ile Pro Gly Val Asn Ala Ala Ile Phe Glu Glu Leu Gly Gly Arg Ile
 945 950 955 960
Phe Thr Ala Phe Ser Leu Tyr Asp Ala Arg Asn Val Ile Lys Asn Gly
Asp Phe Asn Tyr Gly Leu Ser Cys Trp Asn Val Lys Gly His Val Asp
965 970 975

Val Glu Glu Gln Asn Asn His Arg Ser Val Leu Val Val Pro Glu Trp
995 1000 1005

Glu Ala Glu Val Ser Gln Glu Val Arg Val Cys Pro Gly Arg Gly Tyr
1010 1015 1020

Ile Leu Arg Val Thr Ala Tyr Lys Glu Gly Tyr Gly Glu Gly Cys Val
1025 1030 1035 1040

Thr Ile His Glu Ile Glu Asn Thr Asp Glu Leu Lys Phe Ser Asn
1045 1050 1055

Cys Val Glu Glu Glu Val Tyr Pro Asn Asn Thr Val Thr Cys Asn Asp
1060 1065 1070

Tyr Thr Ala Thr Gln Glu Glu Tyr Glu Gly Thr Tyr Thr Ser Arg Asn
1075 1080 1085

Arg Gly Tyr Asp Gly Ala Tyr Glu Ser Asn Ser Ser Ser Val Pro Ala Asp
1090 1095 1100

Tyr Ala Ser Ala Tyr Glu Glu Lys Ala Tyr Thr Asp Gly Arg Arg Asp
1105 1110 1115 1120

Asn Pro Cys Glu Ser Asn Arg Gly Tyr Gly Asp Tyr Thr Pro Leu Pro
1125 1130 1135

Ala Gly Tyr Val Thr Lys Glu Leu Glu Tyr Phe Pro Glu Thr Asp Lys
1140 1145 1150

Val Trp Ile Glu Ile Gly Glu Thr Glu Gly Thr Phe Ile Val Asp Ser
1155 1160 1165
Val Glu Leu Leu Leu Met Glu Glu
1170 1175

(ii) MOLECULE TYPE: protein

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(ix) FEATURE:
(A) NAME/KEY: Region
(B) LOCATION: 1..133
(D) OTHER INFORMATION: /note= "Sub-Sequence A" from CryIE(c)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Ile Thr Ser Pro Gln Tyr Gly Ile Thr Ala Asn Ala Glu Pro Arg Arg
1 5 10 15

Thr Ile Ala Pro Gly Pro Phe Gln Gly Val Pro Ser Leu Leu Tyr Arg
20 25 30

Thr Leu Ser Asp Pro Phe Phe Arg Arg Ser Asp Asn Ile Ser Pro Thr
35 40 45

Leu Gly Ile Asn Val Val Gln Gly Val Gly Phe Leu Gln Pro Asn Asn
Phe Glu Ser Leu Tyr Arg Arg Arg Gly Thr Val Asp Ser Leu Asp Glu
65 70 75 80
Leu Pro Ile Asp Gly Glu Asn Pro Leu Val Gly Tyr Ser His Arg Leu
85 90 95
Ser His Val Thr Leu Thr Arg Ser Leu Phe Asn Thr Asn Ile Thr Ser
100 105 110
Leu Pro Thr Phe Val Trp Thr His His Ser Ala Thr Asp Thr Asn Thr
115 120 125
Ile Ala Pro Asp Val
130

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 157 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(ix) FEATURE:
 (A) NAME/KEY: Region
 (B) LOCATION: 1..157
 (D) OTHER INFORMATION: /note= "Sub-Sequence B" from CryIE(c)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Ile Thr Gln Ile Pro Leu Val Lys Ala Phe Asn Leu His Ser Gly Ala
 1 5 10 15

Thr Val Ala Arg Gly Pro Gly Phe Thr Gly Gly Asp Ile Leu Arg Arg
 20 25 30

Thr Asn Val Gly Asn Phe Gly Asp Met Arg Val Asn Ile Thr Ala Pro
 35 40 45

Leu Ser Gln Arg Tyr Arg Val Arg Ile Arg Tyr Ala Ser Thr Thr Asn
 50 55 60

Leu Arg Phe His Thr Ser Ile Asn Gly Arg Ala Ile Asn Gln Ala Asp
 65 70 75 80

Phe Pro Ala Thr Met Asn Ser Gly Gly Asn Leu Gln Ser Gly Ser Phe
 85 90 95

Arg Ile Ala Gly Phe Thr Thr Pro Phe Thr Phe Ser Asp Ala Leu Ser
 100 105 110

Thr Phe Thr Ile Gly Ala Phe Gly Phe Ser Ser Gly Asn Glu Val Tyr
 115 120 125

Ile Asp Arg Ile Glu Phe Val Pro Ala Glu Val Thr Phe Glu Ala Glu
130 135 140

Tyr Asp Leu Glu Arg Ala Gln Lys Ala Val Asn Ala Leu
145 150 155

(2) INFORMATION FOR SEQ ID NO: 5:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 13 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(ix) FEATURE:
 (A) NAME/KEY: misc_feature
 (B) LOCATION: 1..13
 (D) OTHER INFORMATION: /note= "sequence of a plant consensus translation initiator (Clontech)"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

GTCGACCATG GTC

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 12 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO
(ix) FEATURE:
(A) NAME/KEY: misc_feature
(B) LOCATION: 1..12
(D) OTHER INFORMATION: /note= "sequence of a plant consensus translation initiator (Joshi)"

(x) SEQUENCE DESCRIPTION: SEQ ID NO:6:

TAAACATGG CT

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 3531 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(ix) FEATURE:
(A) NAME/KEY: CDS
(B) LOCATION: 1..3528
(D) OTHER INFORMATION: /product= "Full-length CryIE(d) protein"

(x) SEQUENCE DESCRIPTION: SEQ ID NO:7:

ATG GAT AAT AAT AAT CAA AAT CAA TGC ATA CCT TAC AAT TGT TTA AGT
Met Asp Asn Asn Asn Gln Asn Gln Cys Ile Pro Tyr Asn Cys Leu Ser
1 5 10 15
AAT CCT GAA TIA GAG ATA TTA GAG ATT GAA AGA TCA AAT AAT ACC GTA
Asn Pro Glu Leu Glu Ile Leu Glu Ile Glu Arg Ser Asn Thr Val
20 25 30

GTA GAA GAC ATC ACC TTG GGG CTG AGT CGT CTG CTC GTT TCC GCA ATT
Val Glu Asp Ile Thr Leu Gly Leu Ser Arg Leu Leu Val Ser Ala Ile
35 40 45

CCA CTA GGG GAT TTT ATA CTT GGC TTG TTT GAT GTA ATA TGG GGG GCT
Pro Leu Gly Asp Phe Ile Leu Gly Leu Phe Asp Val Ile Trp Gly Ala
50 55 60

TTA GGT CGT TCA GAG TGG GAT ATA TTT TTA GAG CAA ATT GAG CTA TTG
Leu Gly Arg Ser Glu Trp Asp Ile Phe Leu Glu Gln Ile Glu Leu Leu
65 70 75 80

ATC GCC CAC AGA ATA GAG GAA TTT GCT AGG AAT CAG GCA ATT TCT AGA
Ile Gly His Arg Ile Glu Glu Phe Ala Arg Asn Gln Ala Ile Ser Arg
85 90 95

TTA GAA GGG GTA AAT CCT TAT CGA ATT TAC ACA AAT GCT TTT AAA
Leu Glu Gly Val Ser Asn Leu Tyr Arg Ile Tyr Thr Asn Ala Phe Lys
100 105 110

GAC TGG GAA GCA GAT CCT ACT AAT CTA GAA AAA GAA GAG ATG CGT
Asp Trp Glu Ala Asp Pro Thr Asn Leu Glu Leu Lys Glu Glu Met Arg
115 120 125

ACT CAA TTT AAT GAC ATG AAC AGT GCT TTT ACA ACA GCT ATT CCT CTT
Thr Gln Phe Asn Asp Met Asn Ser Ala Phe Thr Thr Ala Ile Pro Leu
130 135 140

TTT TCA GTT CGA GGT TAT GAA CTT CCT CCT TTA TCA GTA TAT GTT GAA
Phe Ser Val Arg Gly Tyr Glu Leu Pro Leu Leu Ser Val Tyr Val Gln
145 150 155 160

GCT GCA AAT TTA CAT TTA TCA GTT TTA AGA GAT GTT TCA GTG TTT GGA
528
Ala Ala Asn Leu His Leu Ser Val Leu Arg Asp Val Ser Val Phe Gly
165 170 175
Gln Arg Trp Gly Phe Asp Val Ala Thr Ala Asn Arg Arg Tyr Asp Asp
180 185 190
Leu Thr Thr Asn Ile Gly Asp Tyr Thr Asp Tyr Ala Leu Ser Trp Tyr
195 200 205
Asn Thr Gly Leu Thr Arg Leu Pro Arg Asn Asp Gly Leu Arg Gly Trp
210 215 220
Ala Arg Phe Ile Arg Phe Arg Arg Glu Leu Thr Ile Ser Val Leu Asp
225 230 235 240
Ile Ile Ser Phe Phe Gln Asn Tyr Asp Ser Arg Leu Tyr Pro Ile Pro
245 250 255
Thr Ile Ser Gln Leu Thr Arg Glu Val Tyr Thr Asp Pro Val Ile Asn
260 265 270
Ile Thr Asp Tyr Arg Val Thr Pro Ser Phe Glu Ser Ile Glu Asn Ser
275 280 285
Ala Ile Arg Ser Pro His Leu Met Asp Phe Leu Thr Asn Ile Ile Ile
290 295 300
Asp Thr Asp Leu Ile Arg Gly Val Tyr Tyr Trp Ala Gly His Arg Ile
960
305 310 315 320
AAT TCT CGC TTT ACC GGG ACC GCT TTT CCA CAT ATA ATA ACA TCT CCT
Asn Ser Arg Phe Thr Gly Thr Ala Phe Pro His Ile Ile Thr Ser Pro
 325 330 335

340 345 350
CAA TAT GGA ATA ACT GCA AAC GCA GAA CCA AGA CGT ACA ATA GCG CCT
Gln Tyr Gly Ile Thr Ala Asn Ala Glu Pro Arg Arg Thr Ile Ala Pro

355 360 365
GST CCT TTT CAA GST GIG CCT TCC CTA CTT TAT AGA ACA CTA TCA GAC
Gly Pro Phe Gln Gly Val Pro Ser Leu Leu Tyr Arg Thr Leu Ser Asp

370 375 380
CCT TTC TIC GGG AGA TCA GAC AAT ATT AGT CCA ACC GTA GGG ATA AAT
Pro Phe Phe Arg Arg Ser Asp Asn Ile Ser Pro Thr Leu Gly Ile Asn

385 390 395 400
GTA GTA GAG GGG GTA GGG TTC TTA CAC CCC AAT AAT TTT GAA TCT CTA
Val Val Gln Gly Val Gly Phe Leu His Pro Asn Asn Phe Glu Ser Leu

405 410 415
TAT AGA AGG AGA GGG ACA GTA GAT CTC GAT GAG TTG CCA ATT GAT
Tyr Arg Arg Arg Gly Thr Val Asp Ser Leu Asp Glu Leu Pro Ile Asp

420 425 430
GST GAA AAT CCA TTA GTT GGA TAT AGT CAT CGA TTA AGT CAC GTC ACA
Gly Glu Asn Pro Leu Val Gly Tyr Ser His Arg Leu Ser His Val Thr

435 440 445
TTA ACC AGG GCA TTA TTT AAT TCT AAT ATA ACT AGC CTC CGG ACA TTT
Leu Thr Arg Ala Leu Phe Asn Ser Asn Ile Thr Ser Leu Pro Thr Phe

450 455 460
GTT TGG ACA CAT CGC AGT GCT ACT GAT ACA AAA ACA ATT GCT CCA GAT
Val Trp Thr His Arg Ser Ala Thr Asp Thr Lys Thr Ile Ala Pro Asp

- 75 -

1008
1056
1104
1152
1200
1248
1296
1344
1392
GTC ATT ACC CAA ATA CGG TTA GTA AAG GCT TTC AAT CT T CAT TCA G T
Val Ile Thr Gln Ile Pro Leu Val Lys Ala Phe Asn Leu His Ser Gly
465 470 475 480

GCC CCG GTT GCT AGA GGG CCA GGA TTT ACA GGT GGG GAT ATC CTT C G A
Ala Pro Val Ala Arg Gly Pro Gly Phe Thr Gly Gly Asp Ile Leu Arg
485 490

AGA ACG AAT G T GT GAT AAC TTT GGA GAT A 5 A C T G T A A M T A T
Arg Thr Asn Val Gly Asn Phe Gly Asp Ile Arg Val Asn Ile Thr Ala
500 505 510

CCA CTA TCA CAA AG A 5 A T G TA G T A A G A G A T C T G T C T A C T A C A
Pro Leu Ser Gln Arg Tyr Arg Val Arg Ile Arg Tyr Ala Ser Thr Thr
515 520 525

Asn Leu Arg Phe His Thr Ser Ile Asn Gly Arg Ala Ile Asn Gln Ala
530 535 540

GAT TTT CCA G C T A C T A T G A T A G T G G G G T A T T A C A G T C G G A G C
Asp Phe Pro Ala Thr Met Asn Ser Gly Gly Asn Leu Gln Ser Gly Ser
545 550 555 560

TTC AGG ATT GCA GTT ACT ACT CCA TTT ACC T T T C A T G A C T A C F T A
Phe Arg Ile Ala Gly Phe Thr Thr Pro Phe Thr Phe Ser Asp Ala Leu
565 570 575

AGC ACA TTC ACA GTA GCT GGT GCC TTC TCT TCA GGT A A C G A G T T
Ser Thr Phe Thr Ile Gly Ala Phe Gly Phe Ser Ser Gly Asn Glu Val
580 585 590

TAT ATA G A T C G A T T G A A T T G T C G G A G A A C C T T T G A G G C A
Tyr Ile Asp Arg Ile Glu Phe Val Pro Ala Glu Val Thr Phe Glu Ala
595 600 605
Ser Gln Asp Leu Glu Ile Tyr Leu Ile Arg Tyr Asn Ala Lys His Glu
755 760 765

ACA GTA AAT GTG CCA GGT ACG GST TCT TTA TGG CGG CTT TCA GTC GAA
Thr Val Asn Val Pro Gly Thr Gly Ser Leu Trp Pro Leu Ser Val Glu
770 775 780

AGT CCA ATC GGA AAG TGT GGA GAA CTA AAT GCA TGC GCG CCA CAC CTT
Ser Pro Ile Gly Lys Cys Gly Glu Leu Asn Arg Cys Ala Pro His Leu
785 790 795 800 810 815

GAA TGG AAT CCT GAT CTA GAT TGT TCC TGC AGA GAC GGG GAA AAA TGT
Glu Trp Asn Pro Asp Leu Asp Cys Ser Cys Arg Asp Gly Glu Lys Cys
805 810

GCC CAT CAT TCT CAT CAT TTC TCC TGC GAC ATT GAT GTT GGA TGT ACA
Ala His His Ser His His Phe Ser Leu Asp Ile Asp Val Gly Cys Thr
820 825 830

GAC TTA AAT GAG GAC TTA GGT GTA TGG GIG ATA TTC AAG ATT AAG ACG
Asp Leu Asn Glu Asp Leu Gly Val Trp Val Ile Phe Lys Ile Lys Thr
835 840 845

CAA GAT GGC CAT GCA AGA TTA GGA AAT CTA GAA TTT CTC GAA GAG AAA
Gln Asp Gly His Ala Arg Leu Gly Asn Leu Glu Phe Leu Glu Glu Lys
850 855 860

CCA TTA GTA GGA GAA GCA CTA GCT CGT GIG AAA AGA GCG GAG AAA AAA
Pro Leu Val Gly Glu Ala Leu Ala Arg Val Lys Arg Ala Glu Lys Lys
865 870 875 880

TGG AGA GAC AAA CGT GAA AAA TTG GAA TTG GAA ACA AAT ATT GTT TAT
Trp Arg Asp Lys Arg Glu Lys Leu Glu Leu Glu Thr Asn Ile Val Tyr
885 890 895

AAA GAG GCA AAA GAA TCT GTA GAT GCT TTA TTT GTA AAC TCT CAA TAT
Lys Glu Ala Lys Glu Ser Val Asp Ala Leu Phe Val Asn Ser Gln Tyr
2736
GAT AGA TTA CAA GCG GAT ACC AAC ATC GCG ATG ATT CAT GCG GCA GAT
Asp Arg Leu Gln Ala Asp Thr Asn Ile Ala Met Ile His Ala Ala Asp
915 920 925

AAA CGC GTT CAT AGC ATT CGA GAA GCT TAT CGT CCT GAG CTG TCT GTG
Lys Arg Val His Ser Ile Arg Glu Ala Tyr Leu Pro Glu Leu Ser Val
930 935 940

ATT CGG GGT GTG AAT CGG GCT ATT TTT GAA GAA TTA GAA GGG CGT ATT
Ile Pro Gly Val Asn Ala Ala Ile Phe Glu Glu Leu Glu Gly Arg Ile
945 950 955 960

TTC ACT GCA TTC TCC CTA TAT GAT GCG AGA AAT GTG ATT AAA AAT GGT
Phe Thr Ala Phe Ser Leu Tyr Asp Ala Arg Asn Val Ile Lys Asn Gly
965 970 975

GAT TTT AAT TAT GGC TTA TCC TGC TGG AAC GTG AAA GGG CAT GTA GAT
Asp Phe Asn Tyr Gly Leu Ser Cys Trp Asn Val Lys Gly His Val Asp
980 985 990

GTA GAA GAA CAA AAC AAC CAC CGT TCG GTC CTG GTT GTT CGG GAA TGG
Val Glu Glu Gln Asn Asn His Arg Ser Val Leu Val Val Pro Glu Trp
995 1000 1005

GAA GCA GAA GTG TCA CAA GAA GTT CGT GTC TGT CGT CGG GGT GSC TAT
Glu Ala Glu Val Ser Gln Val Arg Val Cys Pro Gly Arg Gly Tyr
1010 1015 1020

ATC CTT CGT GTC ACA GCG TAC AAG GAG GGA TAT GCA GAA GGT TGC GTA
Ile Leu Arg Val Thr Ala Tyr Lys Glu Gly Tyr Gly Glu Gly Cys Val
1025 1030 1035 1040

ACC ATT CAT GAG ATC GAG AAC AAT ACA GAC GAA CTG AAG TTT AGC AAC
Thr Ile His Glu Ile Glu Asn Asn Thr Asp Glu Leu Lys Phe Ser Asn
1045 1050 1055
<table>
<thead>
<tr>
<th>Protein Sequence</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cys Val Glu Glu Glu Val Tyr Pro Asn Asn Thr Val Thr Cys Asn Asp</td>
<td>1060 1065 1070</td>
</tr>
<tr>
<td>Tyr Thr Ala Thr Gln Glu Glu Tyr Glu Gly Thr Tyr Thr Ser Arg Asn</td>
<td>1075 1080 1085</td>
</tr>
<tr>
<td>Arg Gly Tyr Asp Gly Ala Tyr Glu Ser Asn Ser Ser Val Pro Ala Asp</td>
<td>1090 1095 1100</td>
</tr>
<tr>
<td>Tyr Ala Ser Ala Tyr Glu Lys Ala Tyr Thr Asp Gly Arg Arg Asp</td>
<td>1105 1110 1115 1120</td>
</tr>
<tr>
<td>Asn Pro Cys Glu Ser Asn Arg Gly Tyr Gly Asp Tyr Thr Pro Leu Pro</td>
<td>1125 1130 1135</td>
</tr>
<tr>
<td>Ala Gly Tyr Val Thr Lys Glu Leu Glu Tyr Phe Pro Glu Thr Asp Lys</td>
<td>1140 1145 1150</td>
</tr>
<tr>
<td>Val Trp Ile Glu Ile Gly Glu Thr Glu Gly Thr Phe Ile Val Asp Ser</td>
<td>1155 1160 1165</td>
</tr>
<tr>
<td>Val Glu Leu Leu Leu Met Glu Glu</td>
<td>1170 1175</td>
</tr>
</tbody>
</table>

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1176 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xii) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Met Asp Asn Asn Gln Asn Gln Cys Ile Pro Tyr Asn Cys Leu Ser
 1 5 10 15

Asn Pro Glu Leu Glu Ile Leu Glu Ile Glu Arg Ser Asn Asn Thr Val
 20 25 30

Val Glu Asp Ile Thr Leu Gly Leu Ser Arg Leu Leu Val Ser Ala Ile
 35 40 45

Pro Leu Gly Asp Phe Ile Leu Gly Leu Phe Asp Val Ile Trp Gly Ala
 50 55 60

Leu Gly Arg Ser Glu Trp Asp Ile Phe Leu Glu Gln Ile Glu Leu Leu
 65 70 75 80

Ile Gly His Arg Ile Glu Glu Phe Ala Arg Asn Gln Ala Ile Ser Arg
 85 90

Leu Glu Gly Val Ser Asn Leu Tyr Arg Ile Tyr Thr Asn Ala Phe Lys
 100 105 110

Asp Trp Glu Ala Asp Pro Thr Asn Leu Glu Leu Lys Glu Glu Met Arg
 115 120 125

Thr Gln Phe Asn Asp Met Asn Ser Ala Phe Thr Thr Ala Ile Pro Leu
 130 135 140

Phe Ser Val Arg Gly Tyr Glu Leu Pro Leu Leu Ser Val Tyr Val Gln
 145 150 155 160
Ala Ala Asn Leu His Leu Ser Val Leu Arg Asp Val Ser Val Phe Gly
 165 170 175

Gln Arg Trp Gly Phe Asp Val Ala Thr Ala Asn Arg Arg Tyr Asp Asp
 180 185 190

Leu Thr Thr Asn Ile Gly Asp Tyr Thr Asp Tyr Ala Leu Ser Trp Tyr
 195 200 205

Asn Thr Gly Leu Thr Arg Leu Pro Arg Asn Asp Gly Leu Arg Gly Trp
 210 215 220

Ala Arg Phe Ile Arg Phe Arg Arg Glu Leu Thr Ile Ser Val Leu Asp
 225 230 235 240

Ile Ile Ser Phe Phe Gln Asn Tyr Asp Ser Arg Leu Tyr Pro Ile Pro
 245 250 255

Thr Ile Ser Gln Leu Thr Arg Glu Val Tyr Thr Asp Pro Val Ile Asn
 260 265 270

Ile Thr Asp Tyr Arg Val Thr Pro Ser Phe Glu Ser Ile Glu Asn Ser
 275 280 285

Ala Ile Arg Ser Pro His Leu Met Asp Phe Leu Thr Asn Ile Ile Ile
 290 295 300

Asp Thr Asp Leu Ile Arg Gly Val Tyr Tyr Trp Ala Gly His Arg Ile
 305 310 315 320

Asn Ser Arg Phe Thr Gly Thr Ala Phe Pro His Ile Ile Thr Ser Pro
 325 330 335

Gln Tyr Gly Ile Thr Ala Asn Ala Glu Pro Arg Arg Thr Ile Ala Pro
 340 345 350
Gly Pro Phe Gln Gly Val Pro Ser Leu Leu Tyr Arg Thr Leu Ser Asp
355 360 365
Pro Phe Phe Arg Ser Asp Asn Ile Ser Pro Thr Leu Gly Ile Asn
370 375 380
Val Val Gln Gly Val Gly Phe Leu His Pro Asn Asn Phe Glu Ser Leu
385 390 395 400
Tyr Arg Arg Arg Gly Thr Val Asp Ser Leu Asp Glu Leu Pro Ile Asp
405 410 415
Gly Glu Asn Pro Leu Val Gly Tyr Ser His Arg Leu Ser His Val Thr
420 425 430
Leu Thr Arg Ala Leu Phe Asn Ser Asn Ile Thr Ser Leu Pro Thr Phe
435 440 445
Val Trp Thr His Arg Ser Ala Thr Asp Thr Lys Thr Ile Ala Pro Asp
450 455 460
Val Ile Thr Gln Ile Pro Leu Val Lys Ala Phe Asn Leu His Ser Gly
465 470 475 480
Ala Pro Val Ala Arg Gly Pro Gly Phe Thr Gly Gly Asp Ile Leu Arg
485 490 495
Arg Thr Asn Val Gly Asn Phe Gly Thr Gly Gly Asp Ile Arg Val Asn Ile Thr Ala
500 505 510
Pro Leu Ser Gln Arg Tyr Arg Val Arg Ile Arg Tyr Ala Ser Thr Thr
515 520 525
Asn Leu Arg Phe His Thr Ser Ile Asn Gly Arg Ala Ile Asn Gln Ala
530 535 540
Asp Phe Pro Ala Thr Met Asn Ser Gly Gly Asn Leu Gln Ser Gly Ser
Phe Arg Ile Ala Gly Phe Thr Thr Pro Phe Thr Phe Ser Asp Ala Leu
 565 570 575

Ser Thr Phe Thr Ile Gly Ala Phe Gly Phe Ser Ser Gly Asn Glu Val
 580 585 590

Tyr Ile Asp Arg Ile Glu Phe Val Pro Ala Glu Val Thr Phe Glu Ala
 595 600 605

Glu Tyr Asp Leu Glu Arg Ala Gln Lys Ala Val Asn Ala Leu Phe Thr
 610 615 620

Ser Ser Asn Gln Ile Gly Leu Thr Asp Val Thr Asp Tyr His Ile
 625 630 635 640

Asp Gln Val Ser Asn Leu Val Glu Cys Leu Ser Asp Glu Phe Cys Leu
 645 650 655

Asp Glu Lys Arg Glu Leu Ser Glu Lys Val Lys His Ala Lys Arg Leu
 660 665 670

Ser Asp Glu Arg Asn Leu Leu Gln Asp Pro Asn Phe Arg Gly Ile Asn
 675 680 685

Arg Gln Leu Asp Arg Gly Trp Arg Gly Ser Thr Asp Ile Thr Ile Gin
 690 695 700

Gly Gly Asp Asp Val Phe Lys Glu Asn Tyr Val Thr Leu Pro Gly Thr
 705 710 715 720

Phe Asp Glu Cys Tyr Pro Thr Phe Leu Tyr Gln Lys Ile Asp Glu Ser
 725 730 735

Lys Leu Lys Ala Tyr Thr Arg Tyr Gln Leu Arg Gly Tyr Ile Glu Asp
 740 745 750
Ser Glu Asp Leu Glu Ile Tyr Leu Ile Arg Tyr Asn Ala Lys His Glu
 755 760 765
Thr Val Asn Val Pro Gly Thr Gly Ser Leu Trp Pro Leu Ser Val Glu
 770 775 780
Ser Pro Ile Gly Lys Cys Gly Glu Leu Asn Arg Cys Ala Pro His Leu
 785 790 795 800
Glu Trp Asn Pro Asp Leu Asp Cys Ser Cys Arg Asp Gly.Glu Lys Cys
 805 810 815
Ala His His Ser His His Phe Ser Leu Asp Ile Asp Val Gly Cys Thr
 820 825 830
Asp Leu Asn Glu Asp Leu Gly Val Trp Val Ile Phe Lys Ile Lys Thr
 835 840 845
Gln Asp Gly His Ala Arg Leu Gly Asn Leu Glu Phe Leu Glu Glu Lys
 850 855 860
Pro Leu Val Gly Glu Ala Leu Ala Arg Val Lys Arg Ala Glu Lys Iys
 865 870 875 880
Trp Arg Asp Lys Arg Glu Lys Leu Glu Leu Glu Thr Asn Ile Val Tyr
 885 890 895
Lys Glu Ala Lys Glu Ser Val Asp Ala Leu Phe Val Asn Ser Gln Tyr
 900 905 910
Asp Arg Leu Gln Ala Asp Thr Asn Ile Ala Met Ile His Ala Ala Asp
 915 920 925
Lys Arg Val His Ser Ile Arg Glu Ala Tyr Leu Pro Glu Leu Ser Val
 930 935 940
Ile Pro Gly Val Asn Ala Ala Ile Phe Glu Glu Leu Glu Gly Arg Ile
945 950 955 960
Phe Thr Ala Phe Ser Leu Tyr Asp Ala Arg Asn Val Ile Lys Asn Gly
965 970 975
Asp Phe Asn Tyr Gly Leu Ser Cys Trp Asn Val Lys Gly His Val Asp
980 985 990
Val Glu Glu Gln Asn Asn His Arg Ser Val Leu Val Val Pro Glu Trp
995 1000 1005
Glu Ala Glu Val Ser Gln Glu Val Arg Val Cys Pro Gly Arg Gly Tyr
1010 1015 1020
Ile Leu Arg Val Thr Ala Tyr Lys Glu Gly Tyr Gly Glu Gly Cys Val
1025 1030 1035 1040
Thr Ile His Glu Ile Glu Asn Thr Asp Glu Leu Lys Phe Ser Asn
1045 1050 1055
Cys Val Glu Glu Val Tyr Pro Asn Asn Thr Val Thr Cys Asn Asp
1060 1065 1070
Tyr Thr Ala Thr Gln Glu Glu Tyr Glu Gly Thr Tyr Thr Ser Arg Asn
1075 1080 1085
Arg Gly Tyr Asp Gly Ala Tyr Glu Ser Asn Ser Ser Val Pro Ala Asp
1090 1095 1100
Tyr Ala Ser Ala Tyr Glu Glu Lys Ala Tyr Thr Asp Gly Arg Arg Asp
1105 1110 1115 1120
Asn Pro Cys Glu Ser Asn Arg Gly Tyr Gly Asp Tyr Thr Pro Leu Pro
1125 1130 1135
Ala Gly Tyr Val Thr Lys Glu Leu Glu Tyr Phe Pro Glu Thr Asp Lys
Val Trp Ile Glu Ile Gly Glu Thr Glu Gly Thr Phe Ile Val Asp Ser

Val Glu Leu Leu Leu Met Glu Glu

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 133 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(ix) FEATURE:
 (A) NAME/KEY: Region
 (B) LOCATION: 1..133
 (D) OTHER INFORMATION: /note="Sub-Sequence A'from CryIE(d)"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Ile Thr Ser Pro Gln Tyr Gly Ile Thr Ala Asn Ala Glu Pro Arg Arg

Thr Ile Ala Pro Gly Pro Phe Gln Gly Val Pro Ser Leu Leu Tyr Arg
Thr Leu Ser Asp Pro Phe Phe Arg Arg Ser Asp Asn Ile Ser Pro Thr
35 40 45
Leu Gly Ile Asn Val Val Gln Gly Val Gly Phe Leu His Pro Asn Asn
50 55 60
Phe Glu Ser Leu Tyr Arg Arg Arg Gly Thr Val Asp Ser Leu Asp Glu
65 70 75 80
Leu Pro Ile Asp Gly Glu Asn Pro Leu Val Gly Tyr Ser His Arg Leu
85 90 95
Ser His Val Thr Leu Thr Arg Ala Leu Phe Asn Ser Asn Ile Thr Ser
100 105 110
Leu Pro Thr Phe Val Trp Thr His Arg Ser Ala Thr Asp Thr Lys Thr
115 120 125
Ile Ala Pro Asp Val
130

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 157 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(ix) FEATURE:
(A) NAME/KEY: Region
(B) LOCATION: 1..157
(D) OTHER INFORMATION: /note= "Sub-Sequence B' from CryIE(d)"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Ile Thr Gln Ile Pro Leu Val Lys Ala Phe Asn Leu His Ser Gly Ala
1 5 10 15

Pro Val Ala Arg Gly Pro Gly Phe Thr Gly Gly Asp Ile Leu Arg Arg
20 25 30

Thr Asn Val Gly Asn Phe Gly Asp Ile Arg Val Asn Ile Thr Ala Pro
35 40 45

Leu Ser Gln Arg Tyr Arg Val Arg Ile Arg Tyr Ala Ser Thr Thr Asn
50 55 60

Leu Arg Phe His Thr Ser Ile Asn Gly Arg Ala Ile Asn Gln Ala Asp
65 70 75 80

Phe Pro Ala Thr Met Asn Ser Gly Gly Asn Leu Gln Ser Gly Ser Phe
85 90 95

Arg Ile Ala Gly Phe Thr Thr Pro Phe Thr Phe Ser Asp Ala Leu Ser
100 105 110

Thr Phe Thr Ile Gly Ala Phe Gly Phe Ser Ser Gly Asn Glu Val Tyr
115 120 125

Ile Asp Arg Ile Glu Phe Val Pro Ala Glu Val Thr Phe Glu Ala Glu
130 135 140

Tyr Asp Leu Glu Arg Ala Gln Lys Ala Val Asn Ala Leu
145 150 155
(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 31 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid
 (A) DESCRIPTION: primer SON0003 used to construct pSOG10

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

CTCGGATCCAGCAGATTGAAGGTTACAG . 31'
(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

AOGGATCCAACCTCTAGCTGAAAAATGGG

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 26 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid
 (A) DESCRIPTION: primer SON0031 used to construct pSOG19

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

CATGAGGGACTGACCGACGGGGATC

(2) INFORMATION FOR SEQ ID NO:14:
(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 24 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid
 (A) DESCRIPTION: primer SON0010 used to construct pSOG19

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

AGGGATAACAATTTCACACAGGA

(2) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 24 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid
 (A) DESCRIPTION: primer SON0016 used to construct pSOG19

(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GCTACCATGGCCACATAGAACACC

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 23 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid
 (A) DESCRIPTION: primer SON0017 used to construct pSOG19

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

CGAGAGCTGCACTTCAACCTTG

(2) INFORMATION FOR SEQ ID NO:17:
(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 28 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid
 (A) DESCRIPTION: primer SON0039 used to construct pSOG30

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

CGACATGGTACGTCTGTAGAAACCCACA

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 24 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid
 (A) DESCRIPTION: primer SON0041 used to construct pSOG30

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

ATCGCAAGACGGCAACAGGATTC
Claims:

What is claimed is:

1. An isolated DNA molecule encoding a toxin protein of the CrylE type which is active against *Heliothis* species but does not exhibit an activity against *Spodoptera exigua*.

2. An isolated DNA molecule according to claim 1 encoding a toxin protein wherein said toxin protein comprises a sequence selected from the group consisting of Sub-Sequence A (SEQ ID NO:3) and Sub-Sequence B (SEQ ID NO:4) and is active against *Heliothis* species.

3. The isolated DNA molecule of claim 1 wherein said toxin protein comprises both Sub-Sequence A (SEQ ID NO:3) and Sub-Sequence B (SEQ ID NO:4).

4. An isolated DNA molecule according to claim 1 encoding a toxin protein wherein said toxin protein comprises a sequence selected from the group consisting of Sub-Sequence A’ (SEQ ID NO:9) and Sub-Sequence B’ (SEQ ID NO:10) and is active against *Heliothis* species.

5. The isolated DNA molecule of claim 1 wherein said toxin protein comprises both Sub-Sequence A’ (SEQ ID NO:9) and Sub-Sequence B’ (SEQ ID NO:10).

6. The isolated DNA molecule of claim 1, wherein said toxin protein is CrylE(c) having the amino acid sequence set forth in SEQ ID NO:2.

7. The isolated DNA molecule of claim 1, wherein said toxin protein is CrylE(d) having the amino acid sequence set forth in SEQ ID NO:8.

8. The isolated DNA molecule of claim 6 having the nucleotide sequence set forth in SEQ ID NO:1.
9. The isolated DNA molecule of claim 7 having the nucleotide sequence set forth in SEQ ID NO:7.

10. The isolated DNA molecule of any one of claims 1-9, wherein said toxin protein is a recombinant protein.

11. The isolated DNA molecule according to any one of claims 1-10, which has been optimized for expression in plants.

12. The isolated DNA molecule of claim 11 which has been optimized for expression in maize.

13. The isolated DNA molecule of any one of claims 6 to 12 which encodes the toxic core fragment of the toxin protein CryI(c) and CryI(d), respectively.

14. A mutant or variant of any of the isolated DNA molecules according to any one of claims 1 to 13, which are substantially homologous to the said DNA molecules and yield a protein of the CryI type which is active against *Heliothis* species but does not exhibit an activity against *Spodoptera exigua*.

15. An isolated protein molecule of the CryI type which is active against *Heliothis* species but does not exhibit an activity against *Spodoptera exigua*.

16. An isolated protein molecule according to claim 15 having the sequence set forth in SEQ ID NO: 2.

17. An isolated protein molecule according to claim 15 having the sequence set forth in SEQ ID NO: 8.

18. An isolated protein molecule comprising a sequence selected from the group consisting of Sub-Sequence A (SEQ ID NO:3) and Sub-Sequence B (SEQ ID NO:4) and is active against *Heliothis* species.
19. An isolated protein molecule comprising a sequence selected from the group consisting of Sub-Sequence A’ (SEQ ID NO:9) and Sub-Sequence B’ (SEQ ID NO:10) and is active against *Heliothis* species.

20. An isolated protein molecule according to claim 18 comprising both Sub-Sequence A (SEQ ID NO:3) and Sub-Sequence B (SEQ ID NO:4).

21. An isolated protein molecule according to claim 19 comprising both Sub-Sequence A’ (SEQ ID NO:9) and Sub-Sequence B’ (SEQ ID NO:10) and is active against *Heliothis* species.

22. An isolated protein molecule according to any one of claims 15-22 which is a recombinant protein.

23. A mutant or variant of any of the isolated protein molecules according to any one of claims 15 to 22, which are substantially homologous to the said protein molecules and still of the CryIIE type and are active against *Heliothis* species but do not exhibit an activity against *Spodoptera exigua*.

24. A recombinant DNA molecule comprising a DNA molecule encoding a toxin protein of the CryIIE type which is active against *Heliothis* species but does not exhibit an activity against *Spodoptera exigua*.

25. A recombinant DNA molecule comprising at least one of the DNA molecules according to any one of claims 2 to 14.

26. A recombinant DNA molecule according to claim 24 comprising a chimeric DNA construct, wherein the DNA molecule encoding a toxin protein of the CryIIE type which is active against *Heliothis* species but does not exhibit an activity against *Spodoptera exigua* is under the control of expression sequences that are operable in microorganisms and/or plants.
27 A recombinant DNA molecule according to claim 26, comprising a chimeric DNA construct, wherein the DNA molecule according to any one of claims 2 to 14 is under the control of expression sequences that are operable in microorganisms and/or plants.

28. A recombinant DNA molecule according to claim 27, comprising a chimeric DNA construct, wherein the DNA molecule according to any one of claims 11 or 12 is under the control of expression sequences that are operable in plants.

29. A recombinant microorganism transformed with at least one of the isolated DNA molecules according to any one of claims 26 or 27.

30. A recombinant microorganism comprising at least one DNA molecule encoding a toxin protein wherein said toxin protein comprises a sequence selected from the group consisting of Sub-Sequence A (SEQ ID NO:3), Sub-Sequence B (SEQ ID NO:4), Sub-Sequence A' (SEQ ID NO: 9], Sub-Sequence B' (SEQ ID NO: 10] and a combination of Sub-Sequences A (SEQ ID NO:3) B (SEQ ID NO:4); A' (SEQ ID NO: 9], and/or B' (SEQ ID NO: 10], wherein said toxin protein is active against Heliothis species.

31. The recombinant microorganism of claims 29 or 30 wherein said recombinant microorganism is selected from the group consisting of members of the genus Bacillus, Pseudomonas, Caulobacter, Agmellenum, Rhizobium, and Clavibacter or is a baculovirus or yeast.

32. The recombinant microorganism of claim 31 wherein said recombinant microorganism is the nuclear polyhedrosis virus Autographica californica.

33. The recombinant microorganism of claim 31, wherein said recombinant microorganism is Bacillus thuringiensis.

34 An entomocidal composition comprising the recombinant microorganism of any one of claims 29 to 33 in an insecticidally-effective amount together with a suitable carrier.
35. An entomocidal composition comprising an isolated protein molecule according to any one of claims 15 to 23 in an insecticidally-effective amount together with a suitable carrier.

36. A transformed plant comprising at least one DNA molecule encoding a toxin protein wherein said toxin protein comprises a sequence selected from the group consisting of Sub-Sequence A (SEQ ID NO:3), Sub-Sequence B (SEQ ID NO:4), Sub-Sequence A’ (SEQ ID NO: 9), Sub-Sequence B’ (SEQ ID NO: 10) and a combination of Sub-Sequences A (SEQ ID NO:3) B (SEQ ID NO:4); A’ (SEQ ID NO: 9), and/or B’ (SEQ ID NO: 10), wherein said toxin protein is active against *Heliothis* species.

37. A transformed plant comprising the DNA molecule according to any one of claims 1 to 14.

38. A transgenic plant which is transformed with a recombinant DNA molecule according to any one of claims 24 to 28.

39. A transgenic plant according to claim 38 which is transformed with a recombinant DNA molecule according to claim 28.

40. A transformed plant cell comprising the DNA molecule according to any one of claims 1 to 14.

41. A transformed plant cell which is transformed with a recombinant DNA molecule according to any one of claims 24 to 28.

42. A transformed plant cell according to claim 38 which is transformed with a recombinant DNA molecule according to claim 28.

43. A transformed plant cell according to any one of claims 40 to 42 which is a pollen cell or a zygote.
44. The transformed plant or plant cell of any one of claims 36 to 39 wherein said plant and plant cell respectively is selected from the group consisting of maize, wheat, barley, rice, tobacco, cotton, and soybean.

45. The transformed plant or plant cell of claims 32 which is a maize plant and a cell from a maize plant, respectively.

46. A method of producing an isolated DNA molecule encoding a toxin protein of the CryIE type which is active against Heliothis species but does not exhibit an activity against Spodoptera exigua, which method comprises
 (a) isolating total DNA from Bacillus thuringiensis var kurstaki;
 (b) establishing a genomic DNA library in a suitable host organism;
 (c) probing the said library with a suitable probe molecule;
 (d) isolating a clone that hybridizes with the probe molecule; and
 (e) probing the said clone for its insecticidal activity.

47. A method of producing an isolated protein molecule of the CryIE type which is active against Heliothis species but does not exhibit an activity against Spodoptera exigua, which method comprises
 (a) transforming a suitable host organism with a recombinant DNA molecule according to any one of claims 24 to 28.
 (b) growing the so transformed host organism in a suitable medium; and
 (c) isolating the recombinant protein product produced by the transformed host organism upon expression of the toxin gene.

48. A method of producing a recombinant microorganism comprising transforming the said microorganism with a recombinant DNA molecule according to any one of claims 24 to 27.

49. A method of producing a transgenic plant or plant cell according to any one of claims 36 to 45 comprising transforming the said plant and plant cell, respectively, with a recombinant DNA molecule according to any one of claims 24 to 28.
50. A method of producing an entomocidal composition according to any one of claims 34 or 35 comprising mixing the recombinant microorganism of any one of claims 29 to 33 or an isolated protein molecule according to any one of claims 15 to 23 in an insecticidally-effective amount with a suitable carrier.

51. A method of protecting plants against damage caused by an insect pest comprising applying to the plant or the growing area of the said plant an entomocidal composition according to any one of claims 34 or 35.

52. A method of protecting plants against damage caused by an insect pest comprising applying to the plant a toxin protein according to any one of claims 15 to 23.

53. A method of protecting plants against damage caused by an insect pest comprising planting a plant according to any one of claims 36 to 39 and 44 to 45 within an area where the said insect pest may occur.

54. Use of an entomocidal composition according to claim 34 or 35 for protecting plants against damage caused by an insect pest.
Figure 1

1 2 3 4 5 6 7 8 9 10

200 Kd
116 Kd
97 Kd
66 Kd
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>IPC</th>
<th>C12N15/32</th>
<th>C07K14/325</th>
<th>C12N15/82</th>
<th>A01H5/00</th>
<th>A01N63/00</th>
</tr>
</thead>
<tbody>
<tr>
<td>C12N1/21</td>
<td>C12N1/19</td>
<td>/((C12N1/21,C12R1:07,1:38,1:41,1:01)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

| IPC | C07K | C12N | A01H | A01N |

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US, A, 5 296 368 (PAYNE JEWEL ET AL) 22 March 1994 see the whole document ___</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>JOURNAL OF BACTERIOLOGY, vol. 172, no. 12, December 1990 pages 6783-6788, VISSE, B. ET AL. 'A novel Bacillus thuringiensis gene encoding a Spodoptera exigua-specific crystal protein' see figure 3 ___</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>WO, A, 93 09218 (PLANT GENETIC SYSTEMS NV) 13 May 1993 see page 6, line 3 - page 9, line 13 see page 21, line 10 - page 23, line 26 see example 4 ___</td>
<td>1-54</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

Date of the actual completion of the international search

5 September 1995

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel.: (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+ 31-70) 340-3016

Date of mailing of the international search report

20.09.95

Authorized officer

Andres, S

Form PCT/ISA/318 (second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>BIOTECHNOLOGY, vol. 11, February 1993 NEW YORK US, pages 194-200, KÖZIEL, M. ET AL. 'Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis' cited in the application see the whole document</td>
<td>11, 12, 26-28, 36-54</td>
</tr>
<tr>
<td>A</td>
<td>ENTWISTLE, P. et al. 'Bacillus thuringiensis, an environmental biopesticide: theory and practice'; 1993, JOHN WILEY & Sons Ltd. pages 105-124; ELY, S. 'The engineering of plants to express Bacillus thuringiensis delta-endotoxins'</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO-A-9309218</td>
<td>13-05-93</td>
<td>AU-B-657584</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-A-2923992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A-2122261</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-T-7500966</td>
</tr>
</tbody>
</table>