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(57) ABSTRACT 

In one embodiment, a method for storing a Snapshot of data in 
a database includes creating a root indirection set for the 
Snapshot of data and maintaining a deleted pattern in the 
database. The deleted pattern is not removed from a pattern 
set for a node in a table of the database when the pattern is 
deleted in the database. The method includes providing 
access to the Snapshot of data using the created root indirec 
tion set, the created root indirection set accessing the deleted 
pattern. 
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METHOD AND SYSTEM FOR 
IMPLEMENTING AN ENHANCED DATABASE 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

0001. This application is a continuation of U.S. patent 
application Ser. No. 1 1/244,347, filed 5 Oct. 2005, which 
claims the benefit of U.S. Provisional Patent Application No. 
60/615,793, filed 4 Oct. 2004 and U.S. Provisional Patent 
Application No. 60/671,172, filed on 12 Apr. 2005, each of 
which is expressly incorporated herein in its entirety by ref 
erence thereto. 
0002 This application relates to U.S. Provisional Patent 
Application No. 60/615,793, filed 4 Oct. 2004 and PCT 
Application No. PCT/GB01/05627, each of which is 
expressly incorporated herein in its entirety by reference 
thereto. 

COPYRIGHT NOTICE 

0003) A portion of the disclosure of this patent document 
contains material that is subject to copyright protection. The 
copyright owner has no objection to the facsimile reproduc 
tion by anyone of the patent document or patent disclosure as 
it appears in the Patent and Trademark Office, patent file or 
records, but otherwise reserves all copyright rights whatso 
eVe. 

FIELD OF THE INVENTION 

0004. The present invention relates to a method and sys 
tem for implementing an enhanced database and enhanced 
database operations. 

BACKGROUND INFORMATION 

0005 Conventional database management systems incur 
greater operating overhead using more resources as they grow 
larger. Businesses rely on fast database performance in the 
execution of normal commercial operations and, in particular, 
would benefit from gains made in, database efficiency and 
performance. The present invention is a significantly 
enhanced implementation of a database as well as enhanced 
database operations that result in greater efficiency, particu 
larly with larger databases. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0006 FIG. 1a is a diagram illustrating a table of data that 
may appear in a database system. 
0007 FIG. 1b is a diagram illustrating a leaf node pattern 
set for a field according to one embodiment of the present 
invention. 
0008 FIG.1c is a diagram illustrating the leafnode pattern 
sets for all the fields in a table according to one embodiment 
of the present invention. 
0009 FIG. 1d is a diagram illustrating a pattern set for a 
branch node according to one embodiment of the present 
invention. 
0010 FIG.1e is an illustration of both branch node pattern 
sets for a particular table according to one embodiment of the 
present invention. 
0011 FIG. 1f is an illustration of the root node pattern set 
for a table according to one embodiment of the present inven 
tion. 

Aug. 9, 2012 

0012 FIG. 1g is an illustration of the entire tree structure 
of a particular table with the pattern sets for each node accord 
ing to one embodiment of the present invention. 
0013 FIG. 2 is a diagram illustrating an example binary 
tree structure representation of a tuple in a table of a database 
highlighting the different types of patterns that may be iden 
tified according to one embodiment of the present invention. 
0014 FIG. 3 is a diagram illustrating the logic used in 
incorporating one particular efficiency enhancement into the 
pattern identification process for patterns based on Subordi 
nate pattern pairs, according to one embodiment of the 
present invention. 
0015 FIG. 4 is a diagram illustrating a binary tree struc 
ture representing an example tuple of a table according to one 
embodiment of the present invention. 
0016 FIG. 5 is a diagram illustrating the process of gen 
erating a tree design or layout for a table according to one 
embodiment of the present invention. 
0017 FIG. 6a is a diagram illustrating a two-dimensional 
array where the fields of the table are positioned as leaf nodes 
according to one embodiment of the present invention. 
0018 FIG. 6b is a diagram illustrating the two-dimen 
sional array with the addition of the links between the leaf 
nodes and the branch and root nodes according to one 
embodiment of the present invention. 
0019 FIG. 6c is a diagram illustrating a more conventional 
binary tree representation of the fields of a table as determined 
according to the subtree function in one embodiment of the 
present invention. 
0020 FIG. 6d is a block diagram illustrating a simple 
process for designing a table of an example database accord 
ing to one embodiment of the present invention. 
0021 FIG. 7a is a diagram showing 5 example fields that 
can be designed into a tree using a simple process according 
to one embodiment of the present invention. 
0022 FIG. 7b is a diagram listing the example fields and 
their cardinalities determined according to one embodiment 
of the present invention. 
0023 FIG. 7c is a diagram illustrating the resulting tree 
design using the simple process according to one embodi 
ment of the present invention. 
0024 FIG. 8a is a diagram illustrating a further refined 
tree design process according to one embodiment of the 
present invention. 
0025 FIG. 8b is a diagram illustrating the example fields 
and their associated cardinality values for the refined tree 
design process according to one embodiment of the present 
invention. 
0026 FIG. 8c is a diagram illustrating the grouping of the 
fields into Sub-lists using a logarithmic value of the cardinal 
ity for each field according to one embodiment of the present 
invention. 
0027 FIG. 8d is a diagram illustrating the final tree result 
ing from the refined tree design process according to one 
embodiment of the present invention. 
0028 FIG. 9 is a flowchart illustrating the process of test 
ing whether a field in a tuple is equal to a given value accord 
ing to one embodiment of the present invention. 
0029 FIG. 10a is a diagram illustrating a binary tree rep 
resentation of a table identifying a lowest-level common 
branch node for three leaf nodes (fields) according to one 
embodiment of the present invention. 
0030 FIG. 10b is a flowchart illustrating the process used 
to determine the path the lowest-level common node for a set 
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of leaf nodes or fields used in an expression according to one 
embodiment of the present invention. 
0031 FIG. 10c is a flowchart illustrating the process for on 
demand evaluation of an expression according to one 
embodiment of the present invention. 
0032 FIG. 10d is a diagram illustrating a root indirection 
set and how it relates to the pattern sets for the nodes in a tree 
structure of a table according to one embodiment of the 
present invention. 
0033 FIG. 10e is a diagram illustrating the tree structure 
of a tuple in the data set of a table and showing the patternand 
its frequency at each node of the tuple according to one 
embodiment of the present invention. 
0034 FIG.10f is a diagram illustrating the tree structure of 
a tuple in the data set of a table showing the pattern for the 
deleted tuple and its frequency at each node after the tree has 
been traversed and the pattern frequencies decremented 
according to one embodiment of the present invention. 
0035 FIG. 10g is a diagram illustrating the pattern sets for 
each node of a table according to one embodiment of the 
present invention. 
0036 FIG. 10h is a flowchart illustrating the insert opera 
tion for a binary tree representation of the table according to 
one embodiment of the present invention. 
0037 FIG. 10i is a flowchart illustrating a variation of the 
insert operation for a binary tree representation of the table 
according to one embodiment of the present invention. 
0038 FIG. 10i is a flowchart illustrating the update opera 
tion according to one embodiment of the present invention. 
0039 FIG. 11a is diagram illustrating the patterns and 
number of instances for each pattern that are stored in 
memory or on a storage device and referenced by pointers in 
the representation of the table for the data set according to one 
embodiment of the present invention. 
0040 FIG.11b is a diagram illustrating the offset values 
for a table sorted in reverse alphabetical order by manufac 
turer according to one embodiment of the present invention. 
0041 FIG.12a is a flowchart illustrating the overall sort 
ing process according to one embodiment of the present 
invention. 
0042 FIG.12b is a diagram illustrating a further example 
of the Sorting process according to one embodiment of the 
present invention. 
0043 FIG.13a is a flowchart illustrating the combination 
of a selection or query operation with a sorting operation 
according to one embodiment of the present invention. 
0044 FIG.13b is a flowchart illustrating the consolidation 
process for a Subset of the data from a table according to one 
embodiment of the present invention. 
0045 FIG. 14a is a diagram illustrating an example table 
to be sorted using an expression according to one embodi 
ment of the present invention. 
0046 FIG. 14b is a diagram illustrating the sorted table 
with the expression value shown according to one embodi 
ment of the present invention. 
0047 FIG. 14c is a diagram illustrating a data set for an 
example table. 
0048 FIG.14d is a diagram illustrating the table in sorted 
order by age and then income and showing the sort field or key 
value for each tuple of the table according to one embodiment 
of the present invention. 
0049 FIG. 14e is a diagram illustrating the data set for the 
table in Sorted order by expression according to one embodi 
ment of the present invention. 
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0050 FIG. 15a is diagram illustrating the patterns and 
number of instances for each pattern that are stored in 
memory or on a storage device and referenced by pointers in 
a representation of two tables for two data set according to 
one embodiment of the present invention. 
0051 FIG. 15b is a diagram illustrating a tree-structure 
representation of a table for an insurance policies data set and 
a table for an insurance claims data set according to one 
embodiment of the present invention. 
0.052 FIG. 15c is a diagram illustrating a tree-structure 
representation of the joining of the data sets for two tables 
according to one embodiment of the present invention. 

DETAILED DESCRIPTION OF EXAMPLE 
EMBODIMENTS 

0053 According to one embodiment of the present inven 
tion, a database is created from a set of data (i.e., a “data set) 
by identifying the patterns in the data set, storing the patterns 
in memory (or on a storage device), and generating a repre 
sentation of the database structure using pointers to the stored 
patterns. The use of pointers to store the patterns can greatly 
reduce the amount of memory or other space required to store 
the data set by replacing duplicate patterns with additional 
pointers, which are normally considerably smaller in size. In 
addition, the use of pointers may allow for more rapid search 
ing, Sorting, and other operations on the database because 
they can be performed using the patterns to represent many 
records (tuples) in a single operation. The present invention 
incorporates such a database as described in PCT Application 
WO 02/063498, METHOD OF QUERYING ASTRUC 
TURE OF COMPRESSED DATA, the entirety of which is 
expressly incorporated by reference herein. 
0054 The terms tuple, row, and record are used inter 
changeably throughout this specification. The example 
embodiment illustrated below refers to a tuple identifying the 
relational nature of the resulting database according to this 
embodiment of the present invention. The present invention 
may also be implemented using a hierarchical or other data 
base model in alternative embodiments of the present inven 
tion. The following examples and embodiments often 
describe the present invention using a data set for a table in a 
database. However, the embodiments described can also be 
used across several tables rather than for a single table only 
and the descriptions should not be considered as limiting the 
present invention to operating only on a single table of a 
database. 
0055 FIG. 1a is a diagram illustrating a table of data that 
may appear in a database system. This table contains four (4) 
fields: surname 101, first name 102, city 103, and age 104. 
There are six (6) tuples (rows or records) 105-110 as indi 
cated. In a tree structure representation of this table according 
to one embodiment of the present invention, each of these 
fields corresponds to a leaf node in the tree and the values of 
the field are, the patterns for the leaf node. In one embodiment 
of the present invention, the unique patterns for each node, 
including the leafnodes for the fields, are stored in memory or 
on a storage device and a pointer in the table references the 
stored pattern. In addition, the number of instances of the 
pattern in the table is also stored along with the pattern and 
may be referenced by the same pointer to the pattern. In an 
alternative embodiment of the present invention, a second 
pointer to the number of instances may be used in the table 
though, in the example embodiment, this is not the case. FIG. 
1b is a diagram illustrating a leaf node pattern set for a field 
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according to one embodiment of the present invention. The 
unique patterns 111-114 along with the number of instances 
115-118 of these patterns occur in the table are included in the 
pattern set for the leaf node (i.e., field) of the table according 
to this embodiment. The patterns are stored only once in the 
pattern set and each additional occurrence of the pattern 
results in incrementing the number of instances for the pat 
tern. FIG.11b shows a pattern set 151 with four patterns for 
the surname field along with the associated number of 
instances. The patterns are “Bolton' 111, “Jones' 112, 
“Smith' 113, and “Wright 114 with a respective number of 
instances of 1 115, 1116, 3 117, and 1 118. As previously 
stated, this pattern information is stored in memory or on a 
storage device and is referred to by pointers in the table. The 
titles “Surname 119 and “Instance 120 are shown only for 
the sake of clarity in the illustration and, in this embodiment, 
are not stored with the pattern information. The patterns in the 
pattern set are also stored in a sorted canonical order accord 
ing to this example embodiment though, in other embodi 
ments, ordering the patterns in the pattern set may not occur. 
Also as previously discussed, a single pointer refers to a 
pattern and its number of instances though in an alternative 
embodiment a separate pointer may be used for the number of 
instances. The number of instances is determined from the 
tuples 105-110 in the original data set of table 100. For 
example, the pattern “Bolton' 111 occurs only in a single 
tuple 109 of the table and, therefore, the pattern has only 1 
instance 115. In another example, the pattern "Smith' 113 
occurs in three tuples 105,108, 110 of the table and, therefore, 
the pattern has 3 instances 117. FIG. 1b illustrates the pattern 
set for a single field or leaf node of the table and is only one 
example of the pattern sets for the table 100 according to this 
embodiment of the present invention. 
0056 FIG.1c is a diagram illustrating the leafnode pattern 
sets for all the fields in a table according to one embodiment 
of the present invention. The pattern set for the surname field 
or leaf node 121 shown in FIG.1b is also shown in FIG.1c. In 
addition, the pattern set for the first name field or leaf node 
122, the city field/leaf node 123, and the age field/leaf node 
124 are also shown. Each of the pattern sets 121-124 includes 
the unique patterns for the field or leaf node along with the 
number of instances for the pattern in the field as previously 
described. For example, the first name pattern set 122 
includes the first name patterns and their associated number 
of instances. The headings for the patterns 119, 125, 127, 129 
and the number of instances 120, 126, 128, 130 are shown 
only for the sake of clarity in the illustration and are not 
otherwise stored according to this embodiment as previously 
described. The additional column address 131-134 are also 
shown for the sake of clarity and contain “addresses' for each 
of the patterns (and the associated number of instances) in the 
pattern set. The pointers in the table generally refer to the 
addresses for these pattern values. The addresses are shown 
here merely to facilitate the explanation of this embodiment 
of the present invention and the addresses are not stored 
values in the pattern sets (at least in accordance with this 
embodiment). 
0057. In addition to the leaf nodes (the fields) in a table, a 
tree structure representation of the table also includes branch 
nodes (a combination of leaf nodes and/or other branch 
nodes) as previously discussed according to one embodiment 
of the present invention. In a binary tree structure according to 
this embodiment, each branch node contains patterns based 
on two Subordinate nodes. FIG. 1d is a diagram illustrating a 
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pattern set for a branch node according to one embodiment of 
the present invention. The pattern set 150 for the branch node 
in a binary tree contains patterns that are composed of pat 
terns from its two subordinate nodes (either leaf and/or 
branch nodes). A left node pattern 167 and a right node pattern 
168 combine to make the branch node patternand the number 
of instances 169 is also included for the pattern. As previously 
stated the headers and address column are shown only for the 
sake of clarity in the illustration and is not otherwise bestored 
along with the pattern information according to this embodi 
ment. The pattern set for the branch node does not repeat the 
patterns for the subordinate nodes but instead includes point 
ers to those patterns according to this embodiment. As a 
result, the pattern set of a branch node is a pair of pointers— 
one for the left pattern and one for the right pattern—and a 
number of instances (or frequency) for the pattern. Based on 
the original data set for the table 100, the branch node pattern 
set 150 includes pointers to two subordinate leaf nodes for 
surname 121 and first name 122. The patterns for branch node 
pattern set 150 are: A1 135 (the pointer to the “Bolton” 
pattern) and B1139 (the pointer to the “Andrew' pattern) with 
a frequency (number of instances) of 1 stored at address E1 
161; A2 136 and B1 139 with frequency of 1 at address E2 
162; A3 137 and B1 139 with frequency of 1 at address E3 
163; A3 137 and B2 140 with frequency of 1 at address E4 
164: A3 137 and B3 141 with frequency of 1 at address E5 
165; and A4138 and B1139 with frequency of 1 at address E6 
166. The branch node pattern set 150 shown in FIG. 1dis only 
one of the branch nodes for the table 100. 

0.058 FIG.1e is an illustration of both branch node pattern 
sets for a particular table according to one embodiment of the 
present invention. One branch node pattern set 150 was 
already described in FIG. 1d. A second branch node pattern 
set 151 includes pointers to two subordinate leaf nodes for 
city 123 and age 124. The patterns for this second branch node 
pattern set are: C1 142 (the pointer to the “Gloucester pat 
tern) and D4148 (the pointer to the 52 pattern) with frequency 
(i.e., number of instances) of 1 at address F1171; C2 143 and 
D3 147 with frequency 1 at address F2 172; C2 143 and D4 
148 with frequency 1 at address F3173; C3 144 and D1145 
with frequency 1 at address F4174; and C3 144 and D2146 
with frequency of 2 at address F5 175. The patterns in the 
branch nodes 150, 151 reflect the unique combinations of 
patterns that exist in the original data set 100 for the table. 
0059 FIG. 1 fis an illustration of the root node pattern set 
for a table according to one embodiment of the present inven 
tion. The root node pattern set 153 includes pointers to both 
the branch nodes 150, 151 described in FIG. 1e. The left and 
right pointers contain the addresses of the patterns in the 
branch node pattern sets according to this example. The pat 
terns for the root node pattern set 153 are: E3 163 and F5175 
at address G1 181; E6166 and F3 173 at address G2 182: E2 
162 and F4174 at address G3 183; E4 164 and F1 171 at 
address G4184: E1161 and F5175 at address G5 185; and E5 
165 and F2 172 at address G6 186. The frequency or number 
of instances at the root table is omitted from the example 
shown in FIG. 1.fbecause it is generally redundant as most 
tables will not have multiple tuples with identical data in all 
the fields. It is however possible to have such identical tuples 
and therefore a frequency or number of instance value may be 
used with the patterns at the root node in one embodiment of 
the present invention. The patterns in the root set (i.e., the root 
node data set) represent each of the tuples in the table. 
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0060 FIG. 1g is an illustration of the entire tree structure 
of a particular table with the pattern sets for each node accord 
ing to one embodiment of the present invention. The tree 
structure reflects the original table data shown in FIG. 1 a 
represented in a tree structure with the patterns stored at each 
of the leaf nodes 121-124 and pointers to the patterns or to 
other pointers stored at each of the branch 150, 151 and root 
153 nodes. 

Identifying Patterns in a Data Set: 
0061 A pattern may refer to one value in a field of a table 
as well as to a combination of values from multiple fields of 
the table. For example, a pattern for a leaf node is a value for 
a field represented by the leaf node. If the leaf node represents 
the field vehicle manufacturer, a pattern for the leaf node may 
be, for example, “Mfg. A. A pattern may also represent the 
value for a branch node in a tree. A branch node is a node with 
subordinate or child nodes (two subordinate or child nodes for 
each branch in a binary tree). A pattern for a branch node 
represents the values for at least two leaf nodes in a binary 
tree. For example, a branch node may have two Subordinate or 
child leaf nodes representing the fields vehicle manufacturer 
and year of manufacture. A pattern for this branch node may 
include, for example, {Mfg A, 1996}. The pattern in this 
example represents one pairing of values from the Subordi 
nate/child nodes. In the case where a branch node has at least 
one subordinate branch node, the pattern for the parent branch 
node will contain a grouping of at least 3 field values for the 
at least 3 leaf nodes at some point subordinate to the parent 
branch node. In Summary, a pattern may be one value in the 
set of values for a field in a table (a pattern at a leaf node of a 
tree) or a pattern may be a grouping of values from the set of 
values for at least two fields in a table (a pattern at a branch 
node of a tree). 
0062 According to one embodiment of the present inven 

tion, the identification of data patterns in a data set for a table 
may be an important element in storing the patterns in 
memory or on a storage device and using pointers in the table 
to reference the data patterns. The use of pointers in the tuples 
(rows or records) of the table may allow greater efficiency 
through faster database operation and decreased storage 
required to implement a database according to the present 
invention. A pointer to a stored pattern replaces each data 
pattern that is encountered during the building of the example 
table in a database according to this embodiment. The use of 
a pointer to reference a pattern may occur for any type of 
pattern encountered. For example, a pointer may be used for 
any of the patterns at one of the four different types of nodes 
that may be encountered in a binary tree representation of a 
tuple of data in a database table as discussed below. Accord 
ing to one embodiment of the present invention, all the data 
patterns in a table are stored in pattern sets in memory or on a 
storage device and the representation of each tuple is imple 
mented by using pointers to the stored patterns. 
0063 FIG. 2 is a diagram illustrating an example binary 
tree structure representation of a tuple in a table of a database 
highlighting the different categories of patterns that may be 
identified according to one embodiment of the present inven 
tion. The binary tree structure 200 for the tuple begins at its 
highest point with a root node “R” 201, which identifies the 
tuple. In this embodiment, the root node 201 contains the 
tuple identification information that should remain in order to 
retain an accurate account of the tuples in the table of a 
database according to this embodiment of the present inven 
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tion. From the root node “R” 201, the binary tree 200 
branches to two nodes 202, 203 each containing pointers to 
one or more stored patterns. At any level of the binary tree 200 
the contents of a node may be pointers to stored patterns 
according to this embodiment. For example, both of the first 
two nodes 202, 203 resulting from the branching from the 
root node 201 may contain pointers to their own respective 
stored pattern sets. 
0064. The first node 202 represents one particular type of 
node: a branching node with a subordinate leaf node and 
another Subordinate branching node—i.e., Branching node 
with Leaf and Other nodes (BLO). This branching node 202 
contains a pointer to a BLO pattern. The BLO pattern itself 
being a pair of pointers with the first pointer to the subordinate 
leaf node 204 pattern (i.e., a field value) and the second 
pointer to the subordinate branch node 205 pattern, in this 
case another BLO branching node. Any pattern for a branch 
ing node and for the root node will contain a pair of pointers 
to other patterns because of the binary tree structure used 
according to this embodiment of the present invention. This 
second BLO branching node 205 branches to another leaf 
node 209 and to a different type of branching node 208 that 
branches to two Subordinate leafnodes—i.e., Branching node 
with Leaf Pair (BLP). This BLP branching node 208 contains 
a BLP patternand branches to two leafnodes 214,215. A BLP 
pattern is a pair of pointers with the first pointing to a first leaf 
node 214 pattern and the second pointing to a second leaf 
node 215 pattern. Unlike the root node and the branching 
nodes, leaf nodes contain pointers to field values instead of to 
other pointers—the leaf nodes correspond to the fields in the 
table—according to this embodiment. On the other side of the 
binary tree 200 from the root node 201, the second node 203 
is yet another type of branching node with two subordinate 
branching nodes—i.e., Branching node with Other node and 
Other node (BOO). This BOO branching node 203 contains a 
BOO branching pattern and branches to a BLP branching 
node 206 and a BLO branching node 207. A BOO branching 
pattern is a pair of pointers with the first pointing to first 
branching node 206 pattern and the second pointing to a 
second branching node 207 pattern. The first branching node 
206 is a BLP node branching to two subordinate leaf nodes 
210, 211. The second branching node 207 is a BLO node 
branching to a subordinate leaf node 212 and a subordinate 
BLP branching node 213. This BLP branching node 213 itself 
branches to two subordinate leaf nodes 216, 217. Though the 
nodes in the tree structure, particularly the branching nodes, 
have been distinguished, all nodes other than leaf nodes in the 
tree structure will contain pointers to patterns consisting of 
two pointers, one each for a pattern from the immediate two 
Subordinate nodes, according to this embodiment of the 
present invention. Leaf nodes represent the fields of the table 
and will contain pointers to actual field values that are stored 
as part of the pattern set for the field/leaf node according to 
this embodiment. 

0065 FIG. 2 illustrates different types of nodes that may 
exist in a binary tree representation of a tuple of a database 
table according to one embodiment of the present invention. 
However, FIG. 2 does not necessarily illustrate the use of 
binary tree structures in the generation of an example table or 
database as it does not incorporate other example database 
building techniques such as unbalancing/re-balancing the 
binary tree and replacement of leaf and branch patterns that 
may be utilized according to one embodiment of the present 
invention. 
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0066. One process according to the example embodiment 
of the present invention is to replace multiple occurrences of 
a data pattern in a table with multiple pointers to a single 
instance of the data pattern. According to this process, the 
data patterns for a field or node are stored in a pattern set in 
memory or on a storage device and pointers are used in the 
nodes of the table to reference the stored patterns in the 
pattern set. This reduces the amount of memory and/or disk 
space required to implement a table or database resulting in 
improved efficiency. In other words, a repeated pattern in a 
table is replaced by multiple pointers to a single instance of 
the pattern stored in memory or on a storage device. For this 
reason, a determination whether a data pattern is new needs to 
be made each time a data pattern is identified. For example, 
when a pattern is encountered for a table, a search operation 
may be conducted to determine if the pattern has already been 
encountered—i.e., an instance of the pattern has already been 
recorded in the pattern set for the field or node of the table. 
The time required to conduct this search operation is propor 
tional to number of already encountered patterns—in particu 
lar, it is proportional to log(n) where n represents the number 
of different patterns already encountered for the table of the 
database. As a result of this proportionally increasing execu 
tion cost for the search operation, a reduction in the number of 
search operations conducted may greatly improve the effi 
ciency in the building of the example database. 
0067. One method to reduce the number of search opera 
tions conducted is related to the type of data pattern encoun 
tered. According to one embodiment of the present invention, 
the type of data pattern is first determined when a data pattern 
is encountered (e.g., leaf, BLP, BLO, and BOO). For a leaf 
pattern (i.e., a field value), no reduction in the number of 
search operations may be feasible. Therefore, the encoun 
tered leaf pattern may need to be compared with the set of 
already encountered patterns to determine if the leaf patternis 
new. If the pattern is new, it is added to the set of encountered 
patterns and a pointer may be used to replace the pattern in the 
representation of the tuple of the table. A frequency value of 
1 may also be assigned to the pattern according to one 
embodiment of the present invention. If the pattern already 
exists, the frequency counter may be updated (i.e., incre 
mented) and a pointer may be used to replace the pattern in the 
representation of the tuple for the table. The remaining pat 
terns (e.g., BLP, BLO, and BOO branch node patterns) 
represent a pair of patterns that can occur in a binary tree 
representation of a tuple of a table. For these patterns based on 
a pair of Subordinate patterns, the pattern may be new regard 
less of whether its subordinate patterns are new or already 
exist because the combination of the subordinate patterns 
may be new. However, it is a certainty that if either of the 
subordinate patterns is new, the pattern itself will be new. For 
this reason, if a new first Subordinate pattern is encountered, 
the second Subordinate pattern does not need to be compared 
in order to determine if the pattern itself is new—it is a 
certainty that the pattern is new. This situation allows for an 
efficiency enhancement to be made in the pattern identifica 
tion process by reducing the number of search operations for 
patterns based on subordinate pattern pairs (e.g., BLP, BLO, 
and BOO patterns—branch node patterns) according to one 
embodiment of the present invention. This efficiency results 
in only searching half the subordinate patterns where the first 
Subordinate pattern encountered is new. 
0068 FIG. 3 is a diagram illustrating the logic used in 
incorporating one particular efficiency enhancement into the 
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pattern identification process for patterns based on Subordi 
nate pattern pairs, according to one embodiment of the 
present invention. According to this embodiment, one of the 
Subordinate patterns is first compared with existing patterns 
to determine if it is new. Based on this determination for the 
first Subordinate pattern, the second Subordinate pattern may 
or may not be compared. It is not relevant which subordinate 
pattern is first compared and the example shown in FIG.3 can 
easily be reversed. The new pattern function may begin 300 
with an identification of the pattern 301 and a determination 
of the sub-patterns 302. A first sub-pattern, in this example the 
left Sub-pattern in a binary tree representation, is compared 
303 with existing patterns to determine if it is new. The 
comparison process for the Subordinate pattern returns a fre 
quency value indicating how many times the Sub-pattern has 
already been identified in the table in one embodiment of the 
present invention. A frequency of 1, in one embodiment of the 
present invention, indicates that this is the first time that the 
Sub-pattern has been encountered and, therefore, it is new. A 
frequency greater than 1 indicates that the Sub-pattern is not 
new. p.leftPattern.frequency is an example of a variable that 
may contain the frequency value for the first Sub-pattern of 
the pattern. If the Sub-pattern is new (i.e., the frequency is 1), 
the new pattern function may add the pattern (with a fre 
quency of 1) and terminate 304 indicating that the pattern is 
also new. If the first sub-pattern is not new, the second sub 
pattern needs to be compared. In this example, the second 
Sub-pattern is the right Sub-pattern in a binary tree represen 
tation and is also compared 305 with existing patterns to 
determine if it is new. If a frequency of 1 is encountered for the 
second Sub-pattern indicating that it is new, the new pattern 
function may add the pattern (with a frequency of 1) and 
terminate 306 indicating that the pattern is new (because one 
of its Sub-patterns was new). p.rightPattern.frequency is an 
example of a variable that may contain the frequency value 
for the second sub-pattern of the pattern. If the frequency is 
greater than 1 for the second sub-pattern, the pattern itself 
needs to be compared 307 with already encountered patterns 
to determine if it is new. The result of this comparison 307 will 
determine if the pattern is new and the appropriate value will 
be returned either indicating the pattern is new 308 or that it 
already exists 309. The process as illustrated in FIG. 3 can be 
made further efficient by first performing pattern identifica 
tion of leaf patterns (i.e., the field values) then incrementally 
increasing the hierarchy of the branch patterns up to the root 
pattern. In this manner, Subordinate patterns will already be 
compared allowing for the retrieval of the frequency values 
instead of comparisons against other stored patterns. 

Tree Design: 

0069. According to one embodiment of the present inven 
tion, a table of data can be represented using a tree-structure 
and in particular a binary tree-structure. According to this 
embodiment, a single tree contains the value for the data in a 
tuple or row of a table and a forest or conglomeration of trees 
(with a similar structure) represent the data in the entire table. 
In other words, the forest or set of trees represents the table 
while a single tree represents a tuple or row of the table. A 
tree-structure does not contain the field values and patterns 
found in the tree but only outlines the placement and organi 
zation of the nodes and where the field values are located (i.e., 
which leaf nodes represent which fields). In a binary tree 
structure, all nodes are either leaf nodes (terminal nodes) with 
no subordinate or child nodes or they are branch or root nodes 
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with exactly two subordinate/child nodes. In other words, in 
a binary tree structure, all nodes either do not branch (i.e., 
have no subordinate nodes) or branch to exactly two subor 
dinate nodes. Nodes that do not branch are termed leaf nodes 
and may be thought of as leaves in the binary tree. Nodes that 
branch to two subordinate nodes may be termed branch nodes 
and may be thought of as the branching points in the binary 
tree. The first branching node in a binary tree may be termed 
the root node and may be thought of as the trunk or root of the 
binary tree. As previously discussed, the fields of a table are 
represented by leaf nodes in the binary tree. The patterns at 
the leaf nodes are the values of the field. Branch nodes rep 
resent a pairing or grouping of the values from all the Subor 
dinate leaf nodes. 

0070 FIG. 4 is a diagram illustrating a binary tree struc 
ture representing an example tuple of a table according to one 
embodiment of the present invention. In this example dia 
gram, the table represented contains five fields: manufacturer, 
year of manufacture, color, use code, and premium. The tuple 
presented by the binary tree shown in the FIG. 4 has the 
following values for the fields Mfg A, 1996, Blue, Private, 
400. Leaf nodes in the binary tree represent the field values 
with: leaf node 1401 representing the manufacturer field, leaf 
node 2 402 representing the year of manufacture field, leaf 
node 5 405 representing the color field, leaf node 8 408 
representing the use code field, and leafnode 9409 represent 
ing the premium field. Though the leaf nodes in FIG. 4 rep 
resent the fields of the table in the order that they were origi 
nally presented, the order of the fields does not need to be 
maintained in the leaf nodes for the example embodiment of 
the present invention. The field values at the leaf nodes are 
“Mfg. A 410 at leaf node 1401, “1996” 411 at leaf node 2 
402, “Blue' 412 at leaf node 5405, “Private 413 at leaf node 
8408, and “400'414 at leaf node 9 409. The branch nodes in 
this binary tree are branch node 3403, branch node 4404, and 
branch node 7 407. The root node 406 is the first branching 
node in the tree. The pattern for each branch node depends on 
the subordinate leaf nodes. For example, the pattern for 
branch node 3403 is Mfg.A., 1996} according to the embodi 
ment shown in FIG. 4. The pattern for branch node 4404 is 
{Mfg A, 1996, Blue} according to the embodiment shown in 
FIG. 4. The pattern for branch node 7 407 is Private, 400 
according to the embodiment shown in FIG. 4. 
0071. The ordering and position of a leaf node represent 
ing a field of the table greatly affects the efficiency of the tree 
design and table organization of the example database 
according to one embodiment of the present invention. For 
example, the performance of a search operation is determined 
by the number of unique patterns at each node (i.e., position) 
in the tree-structure. A node or position may be represented 
using an (x,y) coordinate system where X is the number of 
steps from the left to right across the level (numbered from 0) 
and y is the height above the lowest level of the tree (also 
numbered from O). In other words, the x-value may be viewed 
as the horizontal axis value and the y-value may be viewed as 
the vertical axis value for the node in the tree. Using this (x,y) 
coordinate system (i.e., Cartesian coordinates), a formula for 
determining the minimum and a formula for determining the 
maximum number of unique patterns for a node may be 
implemented according to one embodiment of the present 
invention. The equation for the minimum number of unique 
patterns, in one embodiment of the present invention, is: 
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npMIN(x,y) is a function determining the Number of Patterns 
Minimum (npMIN) at aparticular branch node in a tree leaf 
nodes will have the set of unique values (patterns) for the field 
and no calculations need to be made for subordinate? child 
nodes as must be done for branch nodes. The branch node is 
identified using the (x,y) position identification as discussed 
earlier. The function is solved by determining the Number of 
Patterns (NP) for each of the immediate subordinate/child 
nodes of the branch node, the subordinate node identified 
using the (a,b) convention for the position to differentiate it 
from the (x,y) convention used for the branch node. The 
“max’ function in the equation indicates using the larger of 
the two values (for a binary tree) for the number of patterns for 
the two subordinate nodes of the branch node. According to 
this equation, the minimum number of unique patterns for a 
branch node is equal to the larger of the two values for the 
number of unique patterns for the subordinate or child nodes 
of the branch node. For example, if a branch node has two 
Subordinate leaf nodes, one subordinate leaf node for manu 
facturers with 10 unique patterns Mfg. 1, Mfg. 2, Mfg. 3, Mfg. 
4. Mfg. 5, Mfg. 6, Mfg. 7, Mfg. 8, Mfg.9, Mfg 10} and another 
subordinate leaf node for automobile colors with 5 unique 
patterns {Red, Green, Blue, Black, Grey, the minimum 
number of unique patterns for the branch node is 10 the 
larger of the two values for the unique number of patterns for 
the two subordinate leaf nodes. Described another way, the 
minimum number of unique patterns at a branch node must 
include at least one instance of each pattern/value in the set of 
values for the subordinate? child nodes. Therefore, a subordi 
nate leaf node with 10 unique values in its set of values 
requires a minimum of at least 10 different patterns occurring 
in the parent branch node according to this embodiment of the 
present invention. Because the patterns/values from the sub 
ordinate nodes can fully correlate (e.g., Mfg. 1 is always Red), 
the minimum unique patterns at a branch node equal the 
greater of the two values for the unique number of patterns for 
each subordinate? child node of the branch node. 
0072. In addition to the equation for the minimum number 
of patterns at a branch node, an equation for the maximum 
number of patterns at a branch node may also be imple 
mented. One example of an equation for the maximum num 
ber of patterns is, according to one embodiment of the present 
invention, as follows: 

npMAX(x,y)=min(IINP(a,b).R), where (a,b)echildren 
(x,y) 

npMAX(x,y) is the function to determine the Number of 
Patterns Maximum (npMAX) at a particular branch node in a 
tree. The branch node is identified using the (x,y) position 
identification as discussed earlier. As with the minimum func 
tion (npMIN) discussed above, the solution to the npMAX 
function requires a determination of the Number of Patterns 
(NP) for each of the subordinate or child nodes of the branch 
node. Unlike the minimum function (npMIN), a product of 
the number of unique patterns for each of the subordinate or 
child nodes is taken and compared to the number of tuples or 
rows in the table with the lesser of the two values (i.e., the 
product and the number of tuples) used as the final value. 
Using the same example used above for the minimum func 
tion (npMIN), ifa branch node has two subordinate leafnodes 
for the fields automobile manufacturer and color, the product 
of the two values for the unique number of patterns for each 
subordinate node equals 50 (i.e., 10 manufacturers*5 colors). 
This value, 50, is compared to the total number of tuples for 
the table—e.g., 40 tuples—and the lesser value (in this 
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example 40) is used as the maximum number of unique pat 
terns that can occur for a branch pattern according to this 
embodiment of the present invention. 
0073. Because a binary tree structure is used to represent 
the tuples of the table, the minimum and maximum number of 
unique pattern functions (npMIN and npMAX) can be further 
refined by replacing the (a,b) position convention for the 
Subordinate or child nodes with the same (x,y) convention 
used for the branch node resulting in the following redefined 
functions: 

The minimum pattern function (npMIN) is equal to the maxi 
mum or greater value of the number of unique patterns from 
either of the two subordinate nodes. The maximum pattern 
function (npMAX) is equal to the minimum or lesser value of 
the product of the number of unique patterns for the two 
subordinate nodes or the total number of tuples or rows for the 
table (R). 
0074. When the actual number of unique patterns at a 
branch node is closer to the minimum value (npMIN) rather 
than the maximum value (npMAX), query and other opera 
tions on the data may be more efficient thereby improving the 
performance of the example database according to one 
embodiment of the present invention. One method to struc 
ture the tree in order to reduce the number of unique patterns 
at a branch node is to group closely correlated fields accord 
ing to one embodiment of the present invention. Correlation 
refers to the direct relationship between the values for two 
different fields in a table of the database (or, for example, the 
patterns for two different leaf nodes in the tree). Using the 
previous example, the patterns/values in an automobile 
manufacturer field may have a correlation to the patterns in 
the automobile color field. If the pattern “Mfg. 1 in the 
manufacturers field is always “Red”, a pattern in the color 
field, and “Mfg. 2 is always “Green” and so on, a strong or 
complete correlation between the patterns in the fields exists 
as each automobile manufacturer would be correlated to one 
automobile color. At the other extreme, the patterns or values 
for both fields would be completely uncorrelated if each 
automobile manufacturer produced automobiles in every one 
of the automobile colors. The direct correlation between the 
fields may range from no correlation (i.e., completely uncor 
related) as discussed above to a strong or complete correlation 
also discussed above with any degree of correlation in 
between. Using the above example, if the automobile manu 
facturer field is completely correlated to the automobile color 
field and their representative leaf nodes are both subordinate 
to the same branch node, there would only be 10 branch 
patterns for the 10 manufacturers with each manufacturer 
correlating to a single color value. If the automobile manu 
facturer field is completely uncorrelated to the automobile 
color field and their representative leaf nodes are both subor 
dinate to the same branch node, there would be 50 branch 
patterns because each of the 10 manufacturers may produce 
cars in all 5 of the automobile colors. In a previously dis 
cussed example, the 40 tuples in the table indicate that there 
is little correlation between these fields as the value of 40 
more closely resembles the completely uncorrelated value of 
50 rather than the completely correlated value of 10. 
0075. In another embodiment of the present invention, a 
Sub-binary tree (a Subset of the binary tree beginning at a 
branch node instead of the root node) that has n subordinate 
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leaf nodes (leaves) with the patterns at each leaf node having 
similar frequencies or alternatively the leaf nodes having a 
similar number of patterns could be replaced with a single 
n-ary node with the same number of leaves that also retains a 
count of the frequencies of the sub-leaves. 
0076 For example using FIG. 4, a sub-binary tree begin 
ning at node 4404 has 3 leaf nodes: node 1401, node 2402. 
and node 5 405. If pattern frequencies or alternatively the 
number of patterns are similar, the sub-binary tree may be 
replaced with node 4 404 having 3 subordinate nodes (no 
longer a binary tree) without the intermediate branch node 3 
403. This may be particularly advantageous where a stronger 
correlation between the patterns in the sub-binary tree exists. 
0077. As previously stated, a stronger correlation in the 
patterns of two Subordinate nodes result in a parent branch 
node having closer to the minimum number of patterns rather 
than to the maximum number of patterns. By reducing the 
actual patterns at the branch node, the number of patterns is 
reduced in all further parent branch nodes. In other words, the 
stronger the correlation between two sets of patterns for sub 
ordinate nodes, the closer their combination size will be to the 
minimum possible value and because the parent node pattern 
size will be smaller, its parents can be Smaller in pattern size 
and so on. The reduction in the number of patterns in the 
parent nodes results in a decreased amount of memory and 
storage usage as well as expedited execution of a query pro 
cess on the data according to this embodiment of the present 
invention. The way the tree is designed, therefore, becomes 
very important in optimizing the database. 
0078. In selecting a tree design or layout, correlation may 
be used to achieve more optimal outcomes. In one embodi 
ment with a tree with p leaf sets (leaves), there is a possible p! 
orderings of the fields with 2 possible layouts or designs for 
the tree. As the number of fields increase or the number of 
tuples or rows (i.e., the set of values for the field) increase, it 
becomes increasingly impractical to determine the correla 
tion between the fields. Therefore, finding another solution to 
achieve similar results where correlation values are not avail 
able can provide a near optimal solution without the consid 
erable overhead determining correlation involves. Ideally, 
this other solution will require additional time or resources in 
a linearly progressing manner to the quantity of data and not 
in a greater than linearly progressing manner or else this 
Solution will become too cumbersome for very large data sets. 
One such solution is the use of a cardinality value in place of 
correlation according to one embodiment of the present 
invention. 

007.9 The cardinality of a field is the number of unique 
values (patterns) that the field contains in the entire data set 
for the field in other words all the unique values that are 
used for the field. For example, in a data set of size R (the 
number of tuples or rows for the table), a unique key field 
would have a cardinality of R (all the values for the field are 
unique). The maximum number of values for a field (or pat 
terns for a leaf node) is R because you can not have more 
values than tuples or rows in the table. Therefore, in this 
example, the minimum number of values for each parent 
branch node above the unique key must be R, which will 
always be greater than or equal to the number of patterns for 
any other leaf node. Because the number of patterns for the 
parent branch node is a minimum of R, if the leaf node for the 
field appears 10 levels below the root node there will be at 
least 10R patterns necessary to represent the table (10 
levels*Ras the minimum per level) in this example. However, 
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if the leaf node for the field appears immediately below the 
root node there will only be a minimum of 2R patterns nec 
essary to represent the table (2 levels*R). Therefore, placing 
the leaf node representing fields with high cardinality closer 
to the root node reduces the number of patterns necessary to 
represent the table and results in lower memory and storage 
usage as well as more efficient query execution in a manner 
similar to using field correlation. Regardless of the placement 
of the leaf nodes for the fields, there will always be a mini 
mum of R patterns in the root node to represent all the tuples 
in a table. The maximum number of patterns in any field is R. 
the number of tuples (a field can only have one pattern in any 
given tuple, so even if a key is unique there can only be R of 
them in the entire database). The minimum number of pat 
terns is always 1 because the field must always have a value 
(even if the value is NULL) in every tuple. According to one 
embodiment of the database, there will be R root nodes for a 
table because it allows the original order of the tuples in the 
table to be recorded. Although it is theoretically possible to 
have two completely identical tuples in a table, the occurrence 
is rare in practice and using a complicated mechanism to 
remove the duplicated pattern in the root node while retaining 
the original ordering of the tuples in the table may be less 
efficient. In an alternative embodiment of the present inven 
tion, it is possible to remove duplication of patterns at the root 
node. The above example illustrates how using cardinality 
can achieve similar results as correlation according to one 
embodiment of the present invention. The principle differ 
ence between the two is in the amount of time (resources) 
required to determine cardinality as Opposed to correlation. 
Using a simple function to calculate the time taken to deter 
mine the cardinality can be represented as O(n-p) while the 
time taken to determine correlation would take O(np) 
where n represents the number of tuples in the table and p 
represents the number of fields in each tuple of the table. 
0080 FIG. 5 is a diagram illustrating the process of gen 
erating a tree design or layout for a table according to one 
embodiment of the present invention. The first step 501 in the 
process 500 is determining the set of values (i.e., the patterns) 
for each field of the database table. The cardinalities or cor 
relations between the fields are next determined 502. As pre 
viously discussed, the calculation of cardinality may be more 
efficient than calculating the correlation between fields and 
takes only time O(n) to compute instead of time O(n). How 
ever, a correlation may provide more useful information in 
generating the tree structure representation of the table and 
should therefore be used when available. Even though the 
correlation may be more useful, it is not calculated instead of 
cardinality and is used only if already available in the example 
embodiment of the present invention. Ordering the fields in 
the tree representation of the table in order to take advantage 
of a common cardinality or high correlation is the third step 
503 in the process depicted in FIG. 5. Fields with common 
cardinality or high correlation are ordered so they share a 
common parent or, in other words, so that they are both 
subordinate or child nodes of the same parent branch node. 
Grouping fields with common cardinality or high correlation 
may reduce the number of patterns that may exist at the parent 
branch node and for other ancestor (i.e., preceding) nodes. 
After grouping fields with common cardinality or high cor 
relation 503, the tree for the table is assembled 504 from the 
sub-trees or branches created in the grouping process 503. 
The grouping step 503 and the assembly step 504 can be 
iterative in order to produce a final tree from the assembly of 
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branches determined through the grouping 503 and assembly 
504 processes. The final step in the process of designing a 
tree-structure to represent a table in the database 500 is the 
building of the table 505 based on the determined free-struc 
ture. 

I0081. The third step 503 in the process 500 involves the 
grouping of fields (or clustering of nodes) and generating 
Sub-trees based on these groupings. In order to accomplish 
this task, a function to determine the sub-tree structure may be 
required. For example, the function subtree(list.h) is defined 
below and takes as its parameters a list of the fields for the 
table—list—and a minimum height for any node in the Sub 
tree—h. The list of fields can be in any order (though the 
grouping process 503 provides a sorted list which is used as 
part of the process) and the minimum height is the height in 
levels (further described below) of the branch node or sub 
tree. The Subtree function may return a list of equal length as 
the list provided; the returned list specifying the positions for 
each field and node. In one embodiment of the present inven 
tion, the subtree function may be specified as follows: 

subtree(list,h) = 
let width = 2iniog, length(list) in 

let diff= (length (list) - width)*2 in 
let x=0, y=h in 

let result = in 
for (i-0; is diff; i++) 

result.append(x,y)) 
X = x+1 

if (diffe-O) 
y = y+1 
x = diff2 
while (x<width) 

result.append(x,y)) 
x = x+1 

Applying the subtree function to a list of fields {a,b,c,d,e} of 
length 5 (i.e., containing 5 fields) and with a minimum height 
of 0 (h=0) results in a width=2"'82-'8")=4, where 
length(list)-length({a,b,c,d,e})=5, log(length(list))-log2(5) 
=2.322, int(log(length(list))) int(2.322)=2 and a diff=2 in 
the above equation. The resulting set of Cartesian coordinates 
(x,y) for the nodes corresponding to the fields is {(0,0), (1.0), 
(1,1), (2,1), (3,1)}. 
I0082 FIG. 6a is a diagram illustrating a two-dimensional 
array where the fields of the table are positioned as leaf nodes 
in accordance with the above example according to one 
embodiment of the present invention. The array 600 contains 
4 rows 601-604 and 4 columns 611-614. The fields of the 
table are arranged as the leaves (i.e., leaf nodes) of the tree 
beginning at the lowest level of the tree and/or array 600. 
Using the (x,y) coordinates for the fields returned by the 
subtree function, the fourth or lowest row 604 of the array 600 
corresponds to the y-coordinate value 0, the next higher or 
third row 603 corresponds to the y-coordinate value 1, and so 
on. The columns of the array 600 begin with the leftmost or 
first column 601 which corresponds to the x-coordinate value 
0, the next or second column 602 corresponds to the x-coor 
dinate value 1, and so on. The array 600 may be considered 
the first quadrant or quandrant I in a two-dimensional planar 
system with the X-axis being the horizontal axis and the y-axis 
being the vertical axis with both axes beginning with value 0 
(Zero) and incrementing by a value of 1. According to this 
embodiment, the field values and corresponding (x,y) coor 
dinates returned by the subtree function are as follows: 



US 2012/0203740 A1 

Field: Coordinates (x,y): 

(0,0) 
(1,0) 
(1,1) 
(2.1) 
(3,1) 

Using the coordinates to place the fields in the array results in: 
field “a” 605 being placed in the fourth row 604 and first 
column 611 corresponding to coordinates (0,0); field “b' 606 
being placed in the fourth row 604 and second column 612 
corresponding to coordinates (1,0); field'c' 607 being placed 
in the third row 603 and second column 612 corresponding to 
coordinates (1,1); field'd'' 608 being placed in the third row 
603 and third column 613 corresponding to coordinates (2,1); 
and field “e'' 609 being placed in the third row 603 and fourth 
column 614 corresponding to coordinates (3,1). 
0083 FIG. 6b is a diagram illustrating the two-dimen 
sional array with the addition of the links between the leaf 
nodes and the branch and root nodes according to one 
embodiment of the present invention. The array 600 is the 
same as the array 600 shown in FIG. 6a with the addition of 
the links and non-leaf nodes. The links are created according 
to this embodiment by taking the first pairina row and linking 
them to the leftmost open cell in the preceding row of the 
array. For example, fields “a” 605 and “b' 606 are paired in 
the fourth row 604 of the array 600 and linked to the first open 
cell 615 in the third row 603 of the array 600 representing a 
parent branch node for the leaf nodes (cells) for the fields. At 
the third row 603, this new branch node 615 is paired with the 
field “c” 607 leaf node and linked to the first open cell 616 in 
the second row 602 of the array 600 representing another 
branch node 616. Fields “d'' 608 and “e'' 609 are also paired 
and linked to the next open cell in the second row 617 in the 
array 600 representing another branch node 617. The two 
branch nodes 616, 617 of the second row 602 of the array 600 
are paired and linked to the first open cell in the first row 601 
of the array 600 thus representing the root node for the tree. 
The process described above allows a tree-structure to be 
designed and represented in an array using the Subtree or 
other function according to one embodiment of the present 
invention. 

0084 FIG. 6c is a diagram illustrating a more conventional 
binary tree representation of the fields of a table as determined 
according to the subtree function in one embodiment of the 
present invention. The fields of the table {a,b,c,d,e} are dis 
played as the leaf nodes 651-655 of the tree. As discussed 
above, the leaf nodes are linked creating the branch nodes 
656-658 of the tree and ultimately linking to the root node 659 
of the tree. The above example shown in FIGS. 6a-6c illus 
trate a simple method for designing an example database 
table. 

0085 FIG. 6d is a block diagram illustrating a simple 
process for designing a table of an example database accord 
ing to one embodiment of the present invention. This process 
begins by determining the fields of the table 661 as the first 
step. A second step 662 computes the cardinality of each field 
in the table. The fields are sorted into an ascending order of 
cardinality as the third step 663 in the process. The sorted field 
list is then supplied in the fourth step 664 to the subtree 
function in order to determine the coordinates for the fields as 
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leaf nodes in a tree representation of the table. The returned 
coordinates are used to generate a table array for the fields of 
the table in the fifth step 665. As discussed later in this 
application, a three-dimensional array may be used with the 
third dimension representing the rows or tuples of the table 
and where the array cells contain pointers to the values for the 
fields according to one embodiment of the present invention. 
I0086. The process shown in FIG. 6d can be further illus 
trated using another example. FIG. 7a is a diagram showing 5 
example fields that can be designed into a tree using a simple 
process according to one embodiment of the present inven 
tion. The five example fields are “manufacturer 701, “year of 
manufacture” 702, “color” 703, “use code” 704, and “pre 
mium'705. These fields are examples that may be included in 
the details for automobiles. The first step in the process 661 is 
determining the fields as is shown in FIG. 7a. Determining the 
cardinalities for each of these fields, the second step in the 
process 662, is performed and the results are shown in FIG. 
7b. FIG. 7b is a diagram listing the example fields and their 
cardinalities determined according to one embodiment of the 
present invention. The cardinality value for the manufacturer 
field 701 is 80 706. The cardinality value for the year of 
manufacture field 702 is 40707. The cardinality value for the 
color field 703 is 25 708. The cardinality value for the use 
code field 704 is 2709. The cardinality value for the premium 
field 705 is 1000 710. Sorting the fields into an ascending 
order by cardinality, the third step in the process 663, results 
in a sorted list of the fields as {use code, color, year of 
manufacture, manufacturer, premium. Using the subtree 
function discussed above, the sorted list is provided in order 
to obtain field coordinates in the fourth step of the process 664 
with the coordinates used to generate the tree in the fifth step 
of the process 665. FIG. 7c is a diagram illustrating the 
resulting tree design using the simple process according to 
one embodiment of the present invention. The fields 701-705 
are arranged as the leafnodes 701-705 with new branch nodes 
711–713 identified along with a root node 714. The simple 
tree design process described above is an effective method for 
designing and generating a tree for a table according to one 
embodiment of the present invention but becomes increasing 
less optimal in situations involving larger deviations in the 
cardinality counts of the fields. 
I0087. In order to improve the optimal nature of the tree 
design, the tree design process can be further refined to take 
into account the potential for large deviations in the cardinal 
ity between the fields. FIG. 8a is a diagram illustrating a 
further refined tree design process according to one embodi 
ment of the present invention. The first three steps in this 
refined process are similar to the simple process shown in 
FIG. 6d. This refined process begins with a first step 801 to 
determine the fields of the table. A second step 802 is the 
calculation of the cardinality of each field in the table. FIG. 8b 
is a diagram illustrating the example fields and their associ 
ated cardinality values for the refined tree design process 
according to one embodiment of the present invention. The 
examples fields and their cardinality values are: “manufac 
turer” field 811 with a cardinality value of 80 821; “year of 
manufacture' field 812 with a cardinality value of 40 822; 
“color” field 813 with a cardinality value of 25823; “use 
code” field 814 with a cardinality value of 2824; “premium’ 
field 815 with a cardinality value of 1000 825: “branch” field 
816 with a cardinality value of 4826; “commission”817 with 
a cardinality value of 1200827; “driver sex” field 818 with a 
cardinality value of 2828; and “number of drivers' field 819 
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with a cardinality value of 5829. After the cardinality for the 
fields is determined 802, the fields are sorted into an ascend 
ing order of cardinality as the third step 803 in the process. 
The resulting sorted list of fields is use code, driver sex, 
branch, number of drivers, color, year of manufacture, manu 
facturer, premium, commission. The fourth step 804 in the 
refined process is new and was not part of the simple process 
shown in FIG. 6d. The fourth step 804 is the grouping offields 
into Sub-lists using a logarithmic value for the cardinalities to 
determine how this grouping occurs. In order for this group 
ing to occur, a grouping value may be calculated using the 
following equation: int(logo (cardinality)). Using this equa 
tion, a base 10 logarithmic value of the cardinality is deter 
mined and this value is converted to an integer by dropping 
any residual fractional value. The resulting integer may be 
used to generate the Sub-lists. FIG. 8c is a diagram illustrating 
the grouping of the fields into Sub-lists using a logarithmic 
value of the cardinality for each field according to one 
embodiment of the present invention. Using the equation 
int(logo (cardinality)), a grouping value is determined for 
each field using that field's cardinality. For example, the 
grouping value for the use code field 814 with a cardinality of 
2824 is 0834. The grouping value for the driversex field 818 
is also 0 (zero) 838 as is the grouping values 836, 839 for the 
branch field 816 and the number of drivers field 819, respec 
tively. These four fields 814, 818,816,819 all have a grouping 
value of zero 834,838,836, 839 and all form group 0840 in 
this example. The color field 813, year of manufacture field 
812, and manufacturer field 811 all have a grouping value of 
1833,832,831 and form group 1841. The premium field 815 
and commission field 817 both have a grouping value of 3 
835, 837 and form group 2842. The fields in each of the 
groups still maintain the ascending order of cardinality deter 
mined in the third step 803 of the process in this example. The 
fifth step 805 in the refined tree design process is the building 
of a sub-tree for each of the groups. The subtree function may 
be used to generate the Sub-trees for each group by providing 
the subtree function the list of fields for that group. The first 
group, group 0840, will generate a sub-tree with four leaves 
or leaf nodes for the four fields contained in the group. The 
second group, group 1841, will generate a Sub-tree with three 
leaves or leafnodes for the three fields contained in the group. 
The third group, group 2842, will generate a sub-tree with 
two leaves or leaf nodes for the two fields contained in the 
group. The sixth and final step 806 in the process is generating 
the final tree by combining the Sub-trees for each group. In a 
process similar to the tree generation for the array described 
earlier, the sub-trees for the first two groups (group 0840 and 
group 1841) may be linked to a branch node with this branch 
node and the sub-tree for the third group being linked to the 
root node. The groups are intentionally linked together in 
sequence beginning with the first group in order to force the 
higher cardinality fields (those with the higher grouping val 
ues) to higher positions in the tree. This will result in a 
reduced number of potential patterns at the branch nodes of 
the tree with the overall effect of greater efficiency in manipu 
lating the data in the table and the tree—e.g., resulting in 
greater efficiency when searching the table. 
0088 FIG. 8d is a diagram illustrating the final tree result 
ing from the refined tree design process according to one 
embodiment of the present invention. The group 0840 sub 
tree is joined into the final tree at a branch node 850 and 
includes at its leaf nodes the fields user code 814, driver sex 
818, branch 816, and number of drivers 819 organized 
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according to cardinality and position returned by the Subtree 
function. The group 1841 sub-tree is joined into the final tree 
at a branch node 851 and includes at its leaf nodes the fields 
color 813, year 812, and manufacturer 811. The group 2842 
sub-tree is joined into the final tree at a branch node 852 and 
includes at its leaf nodes the fields premium 815 and com 
mission 817. The group 0840 and group 1841 sub-trees are 
linked to a branch node 853 which in turn is linked with the 
group 2842 sub-tree to the root node 854 of the final tree. The 
values at each node indicate the maximum possible patterns 
or values that can occur at the node. For example, the values 
at the leaf node indicate all the possible unique values for that 
field. At the branch nodes, the values indicate the maximum 
possible combinations based on the values of the subordinate 
or child nodes. These branch node values are determined by 
multiplying the values of the subordinate nodes. The maxi 
mum possible values are shown to indicate the efficiency 
achieved by using a logarithmic value to group the fields with 
the fields with greater cardinality being grouped together and 
included in the final tree at a higher level (i.e., closer to the 
root node 854) according to the example embodiment of the 
present invention. The use of this refined process may Sub 
stantially reduce the number of patterns that can occur 
according to other tree designs for the same fields and may 
provide a more optimal solution to the tree design process. 

Null Value Representation: 
I0089. As part of the process of generating the example 
database, patterns in the data of a database table are identified 
and stored according to one embodiment of the present inven 
tion. In order to accomplish this pattern identification task, for 
any given field in a table, a set of all values that are present in 
the field is generated. Each value is included only once in this 
set of values for the field. For example, if an integer field of a 
table contains the values 1, 3, 5, 3, 7, 1, 5, 6 in various tuples 
of the table, a set of values {1, 3, 5, 7,6} is generated for the 
field. The values 1, 3, and 5 are only included once in this set 
of values even though they each occur twice in the original 
data set of the database table. 

0090. In addition to storing values for the field, the data in 
a table of the database may also be examined and represented 
inabinary tree structure. According to one embodiment of the 
present invention, each tuple in the table is represented by a 
binary tree. The binary trees may then be manipulated in a 
manner where the leaves and branches of the binary tree are 
reorganized in order to facilitate a comparison of the binary 
trees for the table. Patterns may be found as follows: in the 
field value shown at a leaf of the binary tree—a leaf pattern; 
at a branch in the binary tree with a left and right leaf pat 
terns—a pair of leaf patterns; at a branch in the binary tree 
with a subordinate leaf pattern and another pattern (branch 
pattern); and at a branch in the binary tree with two subordi 
nate non-leaf patterns (branch pattern). Leaf patterns may be 
found at each leaf in the binary tree (i.e., for each field). 
Branch patterns may be identified at each branching point 
indicating at least one of a left branch and a right branch 
value, which may also include its own Subordinate patterns. 
Each pattern is stored in memory and is generally referred to 
by reference using a pointer. In other words, the pointer 
contains an address where the pattern is stored. Multiple 
occurrences of a single pattern result in the pattern being 
stored once with additional pointers to the same stored pat 
tern. In this manner, a pattern that occurs 15 times in the table 
is only stored once with at most 15 pointers to the pattern 
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value. As a result of this process, the data in the table is 
reduced to a set of stored patterns and the trees for each tuple 
of the table are reduced with pointers replacing leaf and 
branch patterns whenever possible except at the root level (a 
root level structure needs to be maintained to maintain an 
accurate ordering of the tuples). Depending on the degree of 
pattern repetition, this process can significantly reduce the 
amount of space (in memory or on disk) required to represent 
the data. 

0091 For most types of data patterns for the fields of a 
tuple, the pattern is encoded as a pointer to a location where 
the actual pattern is stored. For example, a simple pattern 
“blue” for a field “color may be stored as a pointer in the 
“color field (or associated leaf in a tree) for the tuple, the 
pointer containing an memory address where the actual pat 
term “blue” is stored. Alternatively, it is also possible to 
directly encode a leaf pattern (i.e., a field value) rather than an 
address in the pointer. For example, if there are 5 values in a 
set of values for a field {0,1,3,5, and 8, the field value could 
be encoded into the pointer by storing the binary value of the 
field value instead of an address in the pointer. In this 
example, the pointer may contain the binary sequence "0000 
for value (or pattern) 0, “0001' for value (or pattern) 1, 
“0011” for value (or pattern) 3, “0101' for value (or pattern) 
5, and “1000 for value (or pattern) 8. The database system 
can, using some meta-data indicating the contents for a field, 
determine whether the pointer contains a field value or a 
memory address based on the pointer contents and can handle 
the different types of pointers separately. For example, in the 
case of an address, the database will map the field value to the 
memory address of the pattern. In the case of a field value, the 
database will map the field value to the contents of the pointer. 
In other words, the pointer is either interpreted as pointing to 
a memory address or it is interpreted as a value. Incorporating 
a mix in these two types of pointers may reduce the overall 
size of the database. 

0092. In a 32-bit computer system where the pointer con 
tains an address referencing an integer data pattern (e.g., a leaf 
pattern or field value), a pointer requires 32-bits of informa 
tion for the pointer (i.e., for the address) and an additional 
32-bits to represent the pattern (e.g., the integer) referenced 
by the pointer. Using the above example where the field 
values 0, 1, 3, 5, and 8 are the leaf patterns being referenced, 
a total of 5 pointers (5*32-bits) addressing the 5 patterns 
(5*32-bits) requires a total of 320-bits to implement (i.e., 5 
pointers*32-bits+5 values'32-bits=320-bits). However, 
encoding the pattern (in this example the field value) into the 
pointer itself adds an additional requirement for a 32-bit value 
to identify the data type of the field (e.g., pointer contains 
value not address) while combining the pointer and pattern 
(i.e., value) into the pointer resulting in only 192-bits to 
implement (i.e., 5 pointers*32-bits+32-bits for the field 
type=192-bits). Incorporating the pattern into the pointer 
itself reduces the memory or disk space required to represent 
the field from 320-bits to 192-bits in this simple and limited 
example. The potential space savings may be significantly 
greater where a greater number of patterns are referenced. 
0093. One problem that may arise in storing a pattern in a 
pointer rather than in using only addresses is the situation in 
which the pointer represents a NULL value. A NULL value is 
used by some database systems to indicate that no value has 
been entered in a particular field of a tuple. How the NULL 
value is represented or referenced by the pointer is generally 
handled according to two methods. First, the entire set of 
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values that can be included in a 32-bit pointer include integers 
falling into the range of -2' to 2-1. The NULL value may 
be represented by using a particular value to represent NULL 
(e.g., -2). The second method uses an additional bit (i.e., 
33-bits) to represent 2 integers and may allow for an extra 
NULL value or pattern. In the first case, one potential value is 
lost to the pointer, and in the second case an additional bit 
needs to be used resulting in an additional n bits of storage, 
where n represents the total number of fields. 
0094. According to one embodiment of the present inven 
tion, using the first value of the set of values for the pointer to 
represent NULL allows for NULL to be represented without 
sacrificing a value in a pointer or adding additional bits to the 
pointer. As previously discussed, pointers reference, through 
their addresses or pattern values, a set of values for the field. 
Including a NULL value as the first value in the set of values 
for the field allows for NULL to be represented with only 
32-bits f additional space required for this NULL value 
where frepresents the total number of fields. This situation 
applies to both cases where the pointer contains an address 
and when the pointer contains a pattern or value directly. In 
the case of a pointer containing an address, the first value in 
the set of values referenced by the pointers for the field may be 
the NULL pattern or value. In the case of a pointer containing 
a value, the first value in the set of values contained by the 
pointer for the field may be the NULL pattern or value. 
0.095 One example of a modified query engine in order to 
provide a select operation for including a NULL value and for 
allowing the use of patterns or values incorporated directly 
into the pointer is, according to one embodiment of the 
present invention, presented below. 

select(fiv.r)= 
let d=dataSettingsFor(f) in 

if v==NULL) 
return pointerFor(fr)==d.startAddressOfSet 

else if (dataIsPointerFor(d)) 
return pointerFor(fr)==v 

else 
return valueAt(pointerFor(fr))==v 

In this example code, the select function for a field “f” of the 
database, a value of the field “v', and a reference to a stored 
pattern “r” is executed according to 3 cases. The appropriate 
case is determined by examining the data settings for the field 
“d' which may include the above described example use of an 
extra 32-bits to identify the type of data contained for the field 
(e.g., whether the pointer contains values or patterns instead 
of addresses). In the first case, we are testing if the field 
contains a NULL value (i.e., v=NULL). In this case, the 
pointer is set to the first address in the set of addresses or, in 
other words, the first value in the set of values for the field. In 
the second case, the pointer contains the value for the field and 
not a reference to a value. In the third case, the pointer con 
tains a reference to a value in the set of values for the field. In 
this case, we test whether the data pointed to by the reference 
(i.e., address) is equal to the requested value. 
0096 FIG. 9 is a flowchart illustrating the process of test 
ing whether a field in a tuple is equal to a given value accord 
ing to one embodiment of the present invention. According to 
this embodiment, a comparison is made between the original 
field value in the tuple of the table and the value generated for 
the pointer or referenced by the pointer as part of the process 
to use pointers to represent the fields of a tuple in a database 
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table. The process begins 900 with one or more comparisons 
based on the field value being represented by the pointer. 
According to the embodiment depicted in FIG. 9, the first 
comparison 902 is a determination whether the field value 
being represented by the pointer is NULL. If the value is 
NULL, a second determination 903 is made to determine if 
the pointer references the first value in the set of values for the 
field. As previously discussed, the first value in the set of 
values for the field is used to represent the NULL value for the 
field. If the pointer does reference the first value in the set of 
values for the field, either the NULL value or other appropri 
ate value may be returned 908 indicating that an appropriate 
pointer has been generated. If the pointer references another 
value or contains a different reference (i.e., address), an error 
value is returned 907 indicating that the pointer incorrectly 
reflects the value of the field. If the field value to be repre 
sented by the pointer is not NULL, the process further deter 
mines whether the pointer is storing the field value 904 rather 
thana reference (i.e., an address) to a value in the set of values. 
If the pointer is storing the field value instead of a reference, 
a determination is made as to whether the stored value in the 
pointer equals the field value 905. If the pointer value equals 
the field value, either the pointer value or other appropriate 
value is returned 908 indicating that an appropriate pointer 
has been generated. If the pointer value does not equal the 
field value, an error value is returned 907 indicating that the 
pointer incorrectly reflects the value of the field. If the pointer 
does not store the value of the field directly, a determination is 
made as to whether the value referenced by the pointer (i.e., 
the value at the address contained in the pointer) is equal to the 
field value 906. If the referenced value equals the field value, 
either the referenced value or other appropriate value is 
returned 908 indicating that an appropriate pointer has been 
generated. If the referenced value does not equal the field 
value, an error is returned 907 indicating that the pointer 
incorrectly reflects the value of the field. The process accord 
ing to this embodiment not only outlines a procedure to check 
for the proper generation of a pointer for a field in a tuple of 
database table, it highlights the three main categories of Val 
ues that a pointer may contain according to this embodiment: 
NULL value; directly containing a field value; and containing 
a reference or address to a field value. 

Evaluating an Expression 
0097. Many database operations may be implemented 
using an expression rather than a particular value. For 
example, a sort operation, a search or query operation, and a 
count operation may be executed using an expression or func 
tion in addition to or instead of using a field or field value. 
Expressions are often used in database operations but are 
typically implemented in conventional database systems by 
computing the expression for each tuple of the table for the 
operation (e.g., a query operation). For example, if a query 
operation is executed looking for all tuples where age is 
greater that 21 years old, the age field of every tuple is exam 
ined to determine if the tuple matches the query requirements 
foranage greater than 21 years old. According to one embodi 
ment of the present invention, the structure of a database and 
its component tables as described above allow expressions to 
be evaluated in a more efficient manner. 
0098. The tree structure of a tuple according to the present 
invention may be used to implement an expression (i.e., a 
function). For example, if an expression uses three fields (leaf 
nodes) as arguments, the lowest level (i.e., closest to the leaf 
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nodes and farthest away from the root node) common node 
for the three fields/leaf nodes in the tree structure may first be 
determined. FIG. 10a is a diagram illustrating a binary tree 
representation of a table identifying a lowest-level common 
branch node for three leaf nodes (fields) according to one 
embodiment of the present invention. If an expression (i.e., a 
function) uses three fields (e.g., f f, and f) as arguments, 
the first common node is the lowest-level node where the 
paths (from the root node to the leaf node for the field) to the 
three fields join. The first field f 1001, second field f, 1002, 
and third field f 1003 are leafnodes in the tree structure 1000 
of the table. Even though, the paths to first two fields f. 1002, 
f, 1003 share a share or join at a common branch node 1005 
early, a common branch node for all three fields is desired. 
The paths to the three fields 1001-1003 first join at node X 
1004, which is the lowest-level node common to the paths for 
all three fields. This embodiment of the present invention for 
using expressions in database operations achieves the greatest 
efficiency gains over conventional database systems where 
the number of patterns stored for the first common branch 
node X 1004 is less than the number of tuples in the table. 
0099. A function may be used to determine the lowest 
level common node for the set of fields used as arguments in 
the expression according to one embodiment of the present 
invention. FIG.10b is a flowchart illustrating the process used 
to determine the path the lowest-level common node for a set 
of leaf nodes or fields used in an expression according to one 
embodiment of the present invention. The first step 1030 in 
the process is to retrieve the paths to the fields f. 1001, f. 1002, 
and f 1003. Variables are next initialized 1031. A loop is then 
executed 1032 where each element of the path that is the same 
for all the paths 1033 is copied into the results 1035. As soon 
as a path element is encountered that is different among the 
three paths 1034, the processing ceases 1032 and the result is 
the path to the lowest-level common node. Once the path for 
the lowest-level common node X 1004 is determined, the 
expression can be evaluated for each unique pattern at the 
lowest-level common node according to one embodiment. 
The results may be stored with the pattern at the lowest-level 
common node where the expression value can be recalled by 
using the already determined path to the lowest-level com 
mon node. 

0100. In one embodiment of the present invention, the 
steps for computing the value of the expression and looking 
up the value using the path from the root node can be com 
bined so that the expression value is calculated on demand. 
FIG. 10c is a flowchart illustrating the process for on demand 
evaluation of an expression according to one embodiment of 
the present invention. The first step 1041 in this process is 
determining the path the first node (i.e., the lowest level node) 
in the tree structure where the paths to all the fields used as 
arguments in the expression are joined (i.e., where they share 
a common node). The pattern for this first node is retrieved as 
the second step 1042 in the process. The third step 1043 in this 
process is determining whether an expression value has 
already been computed for the pattern. If a value for the 
expression has already been computed 1044, the expression 
value is returned 1046. If a value for the expression has not yet 
been computed 1045, a computation step 1047 is executed 
where the expression (i.e., the function) is executed using the 
field values and the resulting expression value is stored along 
with the pattern at that node and returned by the function. 
Storing the pattern at each node, in this embodiment, allows 
subsequent visits to the pattern at this first node of the tuple to 
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retrieve and return the stored expression value 1046 rather 
than having the evaluate the expression again. 
0101 One benefit of this embodiment is that the expres 
sion is evaluated only at most Mtimes where M is the number 
of unique patterns for the first node. The expression needs to 
be evaluated only once for each pattern (i.e., unique combi 
nation of fields) and, if a subset of the root set is being used, 
less than M evaluations need to be made. The performance 
characteristics for evaluating the expression from the root 
node of the tuple instead of implementing the embodiment 
above has a time required to evaluate any field used as an 
argument in the expression related to O(length(path(root, 
field))), where root is the root node for the tuple. Using the 
embodiment described above, the time required to evaluate 
any field used as an argument in the expression is related to 
O(length(path(X, field))), where X is the first node (lowest 
level node) where the paths of the fields used as arguments in 
the expression join (i.e., share a common node). If there are f 
fields used as arguments in the expression and n root set 
elements (i.e., tuples), the performance for evaluating the 
expression from the root node instead of implementing the 
embodiment described above is O(nflength(path(root, 
field))). The performance for evaluating the expression using 
the techniques of the embodiment described above is 
O(M*flength(path(X, field))+nlength(path(root, X))), 
where the first half of the calculation is the determination of 
the evaluation value from the first node X and the second half 
is the determination of the path from the root node, root, to the 
first node X. If the evaluation value has already been deter 
mined and is stored with the pattern at the first node X as 
described above, the performance time is related to O(length 
(path(root, X))) which is the time taken to follow the path 
from the root node, root, to first node, X (i.e., the lowest level 
common node for the field arguments in the expression). 

Derived Fields 

0102) A data set may be further augmented by adding 
additional fields that are calculated from other field values in 
the data set according to one embodiment of the present 
invention. In other words, a derived field is a new column or 
field in the data set for a table that did not appear in the 
original data set but was instead computed from the original 
data set. For example, a field “data of birth” may appear in the 
original data set for a table and may be used to calculate a 
derived field “age'. Using a derived field may be particularly 
advantageous where the value in the derived field is often 
used for querying or sorting the data in the table. For example, 
if an age value is often used to query the table data or to sort 
on the table data, using a derived age field may improve the 
efficiency of the database system. A derived field value may 
be calculated at the time the data for a tuple is added or 
updated in a the table. For example if a new tuple for a person 
is added to a table, the derived age field value for the tuple is 
calculated using the data of birth field. If the data of birth field 
is NULL (i.e., there is no data in the field), the age field may 
also take a NULL value. Computing the derived field during 
the loading or updating of the data for a tuple according to one 
embodiment of the present invention may improve the per 
formance of the derived field but results in an additional 
storage requirement for the derived field value. According to 
one embodiment of the present invention, only the unique 
values for the derived field along with the number of instances 
for the derived field pattern are stored in memory or on a 
storage device. The representation of the table may contain 
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pointers to these values as it does for other field values. The 
overhead for implementing a derived field according to this 
embodiment is the additional storage required to store the 
unique patterns and number of instances as well as the point 
ers for each tuple. Though relatively efficient compared to 
conventional methods for using derived fields in a database 
management system, adding additional derived fields to a 
table or changing the definition of an existing derived field 
may still require a pass through the entire data set to generate 
the derived field values which, depending upon the circum 
stances, may result in an undesirable impact on the efficient 
operation of the database management system. 
0103) In another embodiment of the present invention, an 
expression (i.e., a function) is used to implement a derived 
field rather than calculating and storing a computed value. An 
expression is stored for the derived field and the expression is 
evaluated when the derived field is used rather than comput 
ing the value of the derived field earlier as in the previously 
discussed embodiment. The use of an expression reduces the 
amount of space in memory or on a storage device required to 
implement the derived field. In addition, the use of an expres 
sionallows derived fields to be added, modified, and removed 
in an easier manner generally using less resources than oth 
erwise required. Also, the use of an expression for a derived 
field allows the derived field values to be dynamic in that they 
reflect the latest calculation rather than a previously made 
calculation. For example, a derived age field implemented as 
an expression results in a calculation made using the current 
date when the derived is used rather than an age determined 
the last time the tuple was added or modified or when the 
derived fields was added. 
0104 Implementing a derived field using an expression 
may only require the modification of the function that 
retrieves the value of the field according to one embodiment 
of the present invention. According to this embodiment of the 
present invention, the definition of a path may be expanded to 
include not only the previously described path to a node value 
but also a path may contain the details of an expression. For 
example if an expression is used to add a derived value to a 
table, a path may lead to the expression that can be evaluated 
when the derived value for a tuple is needed according to this 
embodiment. The expression for the added derived value may 
be stored along with the pattern data for the other fields of the 
table so that a function retrieving the value (e.g., a path 
ToField() function) may retrieve the expression. The val 
ueOf() function retrieves the value (i.e., pattern) for a field f 
ofa table tas previously described. According to this embodi 
ment of the present invention, the valueOf() function is 
modified below to allow a determination if a path points to an 
expression or a value and, if it points to an expression, to 
evaluate the expression and return the results. 

path=pathToField (ft) 
if (path.containsExpression()) 

return evaluate(path.expression().root,t) 
else 

return valueForPath(path.root,t) 

As stated above, the path to a field f of a table t is first 
determined then evaluated according to the valueOf() func 
tion used in one embodiment of the present invention. If the 
path is to an expression, the expression is evaluated and the 
expression value is returned. If the path is not to an expression 



US 2012/0203740 A1 

but to a field, the value of the field is retrieved. A path is 
retrieved as previously described but an additional test (the if 
statement) is added to determine if the path is for an expres 
sion. If the path is for an expression, the value for the derived 
field is computed using the expression otherwise the value of 
the field is retrieved for the path as previously described. 

Root Indirection Set 

0105 FIG. 10d is a diagram illustrating a root indirection 
set and how it relates to the pattern sets for the nodes in a tree 
structure of a table according to one embodiment of the 
present invention. In FIG. 10d, the binary tree structure for the 
data set of a table is represented at a root node 153 by pairs of 
pointer (one pointer for a left branch 1058 and one pointer for 
a right branch 1059) for each of the tuples in the table. Each 
pointerfor a branch contains the address of either another pair 
of pointers for a subordinate branch node or it contains the 
address of a pattern (e.g., a data value) for a field in the tuple 
of the table (a leaf pattern in the tree). In the example shown 
in FIG. 10d, each of the pointers in the left branch 1058 of the 
root node 153 point to a pair of pointers in a subordinate 
branch node 150 and each of the pointers in the right branch 
1059 of the root node 153 also point to a pair of pointers in 
another subordinate branch node 151. In turn, the pointers in 
the left and right branch of these two branch nodes 150, 151 
point to leaf patterns (i.e., field values) at subordinate leaf 
nodes 121,122, 123,124 in the tree structure for the table. For 
the root node 153, a root indirection set may be generated to 
facilitate access to and/or processing of the tuples in the 
table—the root indirection set facilitates database operations 
on the table. A root indirection set 1050 is a list or set of 
pointers containing the addresses of the pointer pairs in the 
root node according to one embodiment of the present inven 
tion. In FIG. 10d, the root indirection set 1050 is shown as a 
set of pointers (an array of pointers) beginning with pointer 0 
1051 and continuing until pointer 5 1056 with each pointer 
1051-1056 corresponding to a pair of pointers 1061-1066 in 
the root node 153 (a tuple in the table). The root indirection set 
1057 is also alternatively shown with the corresponding 
addresses for the pointerpairs 1061-1066 in the root node 153 
(the tuples) illustrating that the pointers contain addresses to 
the pointer pairs in the root node. In the example shown in 
FIG. 10d, the pointers 1051-1056 in the root indirection set 
1050 are numbered beginning with 0 and continuing until n-1 
where n is the number of tuples in the table (which correspond 
to pointer pairs 1061-1066 in the root node 153). In this 
embodiment, the pointers 1051-1056 in the root node are 
maintained in the same order as the pointer pairs 1061-1066 
for the tuples in the root node 153 in order to preserve the 
existing tuple ordering. For example, the first pointer (pointer 
0) 1051 in the root indirection set 153 contains the address G1 
1061 of the first tuple (pointer pair) in the root node 153. 
Similarly, the second pointer (pointer 1) 1052 in the root 
indirection set 153 contains the address G2 1062 of the sec 
ond tuple (pointer pair) in the root node 153, the third pointer 
(pointer 2) 1053 contains address G3 1063, the fourth pointer 
(pointer 3) 1054 contains address G4 1064, the fifth pointer 
(pointer 4) 1055 contains address G5 1065, and the sixth 
pointer (pointer 5) 1056 contains address G6 1066 according 
to this embodiment. A root indirection set may be used to 
allow faster manipulation of the tuples of a table when execut 
ing any number of database operations. 
0106. A root indirection set 1050 may exist for each table 
(root node set) in a database and additional root indirection 
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sets may be used for specific operations as needed according 
to one embodiment of the present invention. For example, a 
primary or original root indirection set may exist for each 
table (root node set) to allow faster delete, insert, and update 
operations as discussed in the following sections. Additional 
root indirection sets may also be used for other operations 
Such as sorting, partitioning, and joining as discussed later in 
this specification. According to this embodiment, the same 
root indirection set does not need to be used for all database 
operations (though they are based on the same data). In a sort 
operation as part of a database query, a copy of the root 
indirection set may be made and the order of the pointers in 
the root indirection set copy may be altered to produce the 
Sorted tuple results without changing the underlying tuple 
order (and the original root indirection set). A query or search 
operation may also use a root indirection set that is a Subset of 
all the tuples in the data set for the table. For example using 
FIG. 10d, a search or query operation may return the first, 
fourth, and fifth tuples of a table with a root indirection set of 
{0,3,4} containing pointers to the first 1061, fourth 1063, and 
fifth 1064 pointer pairs in the root node 153 corresponding to 
the tuples of the table. 

Delete Operation 
0107 Using a primary root indirection set for a table, a 
tuple in the data set for a table may be in part deleted by 
removing the reference (i.e., the pointer) in the root indirec 
tion set addressing the tuple of the table. If a root indirection 
set is used to access the tuple data for the table, the absence of 
a pointer will eliminate accessing that particular tuple of the 
table. 
0108. In one embodiment of the present invention, the 
pointer is replaced by an illegal value (i.e., a value that can't 
be used as a pointer) such as, for example, a negative value. A 
negative value may be used instead of eliminating the pointer 
altogether because it preserves the order of the tuples espe 
cially where the pointers to the patterns for the tuple may still 
exist at the nodes of the table. For example, a root indirection 
set containing 10 pointers to tuples in the data set for a table 
may be initially represented as follows: 

0109) {0,1,2,3,4,5,6,7,8,9} (RIS1) 
In the root indirection set above (RIS1), each pointer value 
represents the address in the root node for each tuple of the 
table—e.g., the address of the pair of pointers corresponding 
to the tuple in the root node for a binary tree representation of 
the table. If the fourth tuple of the table is deleted, according 
to this embodiment the fourth pointer (i.e., pointer value 3) is 
replaced with an illegal (e.g., negative) value resulting in the 
root indirection set containing the following new example 
values: 

0110) {0, 1, 2, -1,4, 5, 6, 7, 8,9} (RIS2) 
Database operation algorithms using the root indirection set 
need to be properly structured in this embodiment to ignore 
illegal (e.g., negative) values when they occur. Therefore, 
when a database operation algorithm using the root indirec 
tion set encounters a negative value, that negative value is 
ignored as if it did not exist. For example, an algorithm 
processing the tuples of a table according to the modified root 
indirection set RIS2 above would ignore the -1 value. 
0111. In another alternative embodiment of the present 
invention, a deleted tuple may be reflected in the root indi 
rection set by using a negative value of the actual pointer 
value (address). For example if a pointer has a value 3 (the 3 
referring to a memory or storage address) addressing a tuple 
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in the data set of a table, deleting the tuple may result in 
resetting the pointer value to -3 to reflect the deletion of the 
tuple. Using the original root indirection to set RIS1 above as 
an example, deleting the fourth tuple of a table results in the 
root indirection set pointer value for the tuple (e.g., 3) being 
set to the negative of its value (i.e., -3). The resulting root 
indirection set is shown below. 

0112 {0, 1, 2, -3, 4, 5, 6, 7, 8,9} (RIS3) 
In this embodiment as in the previous embodiment, the value 
of the pointer for the deleted tuple is negative and it is still 
ignored by the database operation algorithms as discussed 
above. However, this alternative embodiment has the added 
benefit that the deletion of the tuple can be reversed or undone 
by taking the absolute value of the pointer. For example, the 
root indirection set RIS3 above reflects the deletion of a tuple 
(i.e., the fourth tuple) in a table. The deletion of this tuple can 
be reversed by taking the absolute value of the pointer value 
(e.g., the absolute value of -3) to restore the deleted tuple in 
the root indirection set. The resulting root indirection set is the 
original root indirection set RIS1. Though this example may 
simplify the contents of the pointer for explanation, the use of 
a negative or other inverse pointer value may be used to delete 
a pointer in a root indirection set in a manner to facilitating an 
option to undo the deletion. 
0113. The above embodiments have only dealt with the 
deletion of a tuple in the root indirection set. In addition, the 
deletion of a tuple needs to be reflected in the data set for the 
table. Traditionally, deleting a tuple of data resulted in the 
actual erasing or removing of the information from the table. 
According to one embodiment of the present invention, the 
tree structure representation of a table allows the actual data 
patterns to be stored separately from the table structure. 
According to this embodiment, a frequency indicating the 
number of times that a pattern (i.e., a value) occurs in the table 
is stored along with the pattern. As a result, deleting a tuple of 
a table necessitates updating the frequency associated with a 
pattern found in the tuple of the table. For example if a table 
contains information about an individual including the city in 
which they live, deleting a tuple requires decreasing the fre 
quency for the associated city (e.g., London for the deleted 
tuple) by 1 to reflect the deletion of one instance of the pattern 
(e.g., London) in the table. 
0114 Updating the pattern frequencies for the data set of 
the table to reflect the deletion of a tuple can be achieved by 
traversing the tree representation of the deleted tuple decre 
menting the frequency for each occurrence of a pattern in the 
deleted tuple. This can be accomplished using any method of 
tree traversal that visits all the nodes in the tree representation 
of the tuple once (visiting a node more than once during the 
tree traversal may have an unintended consequence of decre 
menting the frequency by more than the one value in the 
deleted tuple). Tree traversals are conventionally well known 
and refer to the sequential processing of each node in a tree 
structure, which is inherently a non-sequential data structure. 
Traversal methods are characterized by the sequence in which 
the nodes of the tree are processed. Three common types of 
traversal for binary trees are pre-order, post-order and in 
order traversal. A pre-order traversal method visits each node 
before any child nodes are visited. A post-order traversal 
method visits each node after all its child nodes have been 
visited. An in-order traversal method visits each node after 
visiting all its left-branch child nodes but before visiting any 
of its right-branch child nodes. According to one embodiment 
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of the present invention, an in-order traversal method is used 
though the present invention may work with many other 
traversal methods. 

0115 The following algorithms for tree traversal assume 
that the structure of a node in a binary tree has a pattern (i.e., 
a value) and may have a left and right child node value. The 
following is an example of an in-order traversal function: 

visit(node) 
if (node = NULL) 

visit(node.left) 
process node.pattern 
visit(node..right) 

According to this above example in-order traversal function, 
each left child node is processed before the parent node and 
each right child node is processed after the parent node is 
processed. The following is an example of a pre-order tra 
versal function: 

visit(node) 
if (node = NULL) 

process node.pattern 
visit(node.left) 
visit(node..right) 

The above pre-order traversal function visits and processes 
each node before any of its child nodes are processed. An 
example of a post-order traversal is as follows: 

visit(node) 
if (node = NULL) 

visit(node.left) 
visit(node..right) 
process node.pattern 

In the above post-order traversal function, all child nodes are 
processed before any parent nodes. As Stated above, an in 
order traversal of the tree structure for the table is used though 
other traversal functions may be used in other embodiments 
of the present invention. The following in-order function is 
used to decrement the frequency of the patterns for the deleted 
tuple in the data set of the table. 

decrement frequency (p) = 
if (p = NULL) 

decrement frequency(p.left) 
p.frequency = p.frequency -1 
decrement frequency(p.right) 

The decrement frequency() function operates recursively 
and begins by finding the lowest level left branching pattern 
(p.left) at a child node to process (as long as it is not NULL in 
value) and continues an in-order traversal of the tree. The 
processing done at each node for the pattern in the deleted 
tuple is simply to decrement the pattern frequency 
(p.frequency p.frequency-1) to reflect the reduced fre 
quency of the pattern due to the deletion of the tuple. 



US 2012/0203740 A1 

0116 FIG. 10e is a diagram illustrating the tree structure 
of a tuple in the data set of a table and showing the patternand 
its frequency at each node of the tuple according to one 
embodiment of the present invention. The patterns shown are 
the patterns for the tuple at each node of the table. The data set 
for the table may have multiple patterns for each node. The 
frequency shown is the frequency of the pattern at that node in 
the overall data set for the table (the pattern occurs only once 
for the tuple shown). For example, at one branch node 1071 
the pattern 'A' 1077a occurs in the tuple 1069 and its fre 
quency in the entire data set of the table is 11078a meaning 
it only occurs in this tuple 1069 of the table. The root node 
1070 for the deleted tuple 1069 branches to two child nodes in 
the binary tree 1071, 1072 each containing a pattern for the 
tuple. The left child node 1071 is a branch node itself having 
one child leaf node 1073 and a second child branch node 
1074, which in turn is made up of two leaf nodes 1075, 1076. 
The right child node 1072 of the root node 1070 is a leafnode 
(a terminal node containing a field value). At each node, the 
number of instances (the frequency) of each pattern in the 
table are shown along with the pattern for the tuple. For 
example, the pattern “A” 1077a at branch node 1071 has a 
frequency of 1 1078a indicating that the pattern occurs only 
once at that node in the table for this tuple. As the tree is 
traversed the frequency or number of instances for each pat 
tern is decremented to reflect the deletion of the tuple. In the 
example above, the 1 instance 1078a of the pattern"'A' 1077a 
at the branch node 1071 is reduced during the decrementing 
process to Zero instances of the pattern. In a similar manner 
the frequency value or number of instances of all the patterns 
at each node in the tuple are reduced. 
0117 FIG.10f is a diagram illustrating the tree structure of 
a tuple in the data set of a table showing the pattern for the 
deleted tuple and its frequency at each node after the tree has 
been traversed and the pattern frequencies decremented 
according to one embodiment of the present invention. The 
nodes are the same for all the tuples in the data set of the table 
only the pattern at each node may be different for each tuple. 
For this reason, the nodes shown in FIG. 10f match the nodes 
in FIG. 10e and include a root node 1070, three branch nodes 
1071,1072, 1074 and four leaf nodes 1073, 1075, 1076, 1072. 
The patterns at each of the nodes correspond to the patterns 
for the deleted tuple. The frequency for each pattern reflects 
the decrease of 1 instance or occurrence due to the tuple being 
deleted—every frequency value is one less in FIG.10fthan in 
FIG. 10e. For example at a branch node 1071, the frequency 
of the pattern 'A' 1077b is reduced from its original value of 
1 1078a to its new value of 0 1078b reflecting a decrease of 
one occurrence of the pattern due to the tuple being deleted. 
Though the process is straightforward a special situation may 
occur when decrementing the frequency results in a fre 
quency value of Zero as illustrated in the examples shown in 
FIGS. 10e and 10?. 
0118 When a pattern has a frequency of Zero in the data 
set of a table, the pattern is not being used by any of the tuples 
in the table and, therefore, is not reachable through any of the 
pointerpairs in the root node. Additionally, a pattern having a 
frequency of Zero indicates that all the patterns above it (pat 
terns at parent and ancestor nodes) also have a frequency of 
Zero. For this reason, a pattern with a frequency of Zero can be 
removed from the pattern set for the node of the table. Accord 
ing to one embodiment of the present invention, a pattern with 
a frequency of Zero is not removed because the adverse 
impact of the removal outweighs the minimal additional 
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space (memory or storage) saved by no longer storing the 
pattern. In this embodiment when the data set of the table is 
first built (or it is optimized according to one embodiment of 
the present invention), a continuous area of memory or Stor 
age is allocated to the pattern set. As additional patterns are 
added to the pattern set for the node in the tree structure 
representation of the table, these additional patterns are stored 
in an overrun pattern set in memory or storage outside the 
originally allocated continuous pattern space. If a pattern is 
deleted from the continuous pattern space, the gap created in 
the continuous pattern space may need to be closed by mov 
ing other patterns within the continuous pattern space. This 
can be very computationally and resource expensive. Addi 
tionally, accessing and searching for patterns in the overrun 
pattern set is less efficient than accessing and searching for 
patterns in the continuous pattern space. Therefore, deleting a 
pattern from the continuous pattern space reduces the number 
of patterns that can be more efficiently accessed and searched. 
This presents no problems if the pattern is deleted but should 
the pattern be added back into the table at a future time, the 
overall performance of the database may be adversely 
impacted as the pattern will now be in the overrun pattern set 
rather than in the continuous pattern space. Also, a pattern 
once in the data set of a table is more likely to again recur at 
Some future time. An insert or update operation adding a new 
pattern to the pattern set requires additional resources and 
time that can be avoided by leaving the pattern in the pattern 
set. The overhead for the pattern is generally very low and 
consists of the space (memory or storage) required for the 
pattern and an integer for its frequency. For these reasons, if a 
frequency of a pattern becomes Zero as a result of a tuple 
being deleted from the data set of the table, the pattern is not 
deleted from the pattern set according to this embodiment of 
the present invention. In an alternative embodiment, the pat 
tern may be deleted but the problems discussed above may 
OCCU. 

Insert Operation 

0119) An insert operation allows a new tuple to be inserted 
into the tree representation for the table according to one 
embodiment of the present invention. The inserted tuple may 
be viewed as another set of patterns combined to form the 
tuple. If all the patterns in the inserted tuple already exist in 
the data set for the table, no additional patterns need to be 
added to the pattern set for a node. However if a new pattern 
is contained in the tuple, that new pattern needs to be added to 
the pattern set so that pointers in the tree structure represen 
tation of the tuple can refer to the pattern. In one embodiment 
of the present invention discussed above, the data set for the 
table is initially stored in one continuous block of memory. 
Additional patterns added later to this data set of patterns for 
the table may exceed the block of memory initially allocated 
to this continuous block of memory. Therefore, the additional 
patterns may be stored in an “overrun pattern set or “overrun 
set'. The dynamic nature of the data in a database makes it 
inefficient to try to determine and allocate sufficient continu 
ous memory space for the patterns at each node (i.e., root, 
branch and leaf nodes) in the data set for the table. Therefore 
using an overrun set to handle the additional patterns inserted 
after the database is built (or alternatively optimized in 
another embodiment of the present invention) can solve this 
problem with little additional cost. The result for each node 
may be a pattern set consisting of two parts: an initial pattern 
set in a continuous block of memory generated when the 
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database was built or later optimized; and a second overrun 
pattern set containing all the additionally inserted patterns 
after the database was last built or optimized. Using an over 
run pattern set simplifies the insertion process while still 
retaining the benefits of the present invention as outlined 
herein but it may require more memory to store each pattern 
and may be slightly less efficient due to the use of non 
continuous space to store the additional patterns. One pos 
sible implementation of an overrun set is a balanced binary 
tree of patterns. 
0120. One example of the use of an initial and an overrun 
pattern set for a leaf node (field) in a table using a balanced 
binary tree structure is illustrated in the following embodi 
ment. If a field f contains integers, the initial pattern set 
(indicated in square brackets II) may contain the following 
patterns (values): 

0121 7, 11, 14, 18, 23, 26, 37 
As stated above, these patterns (integers) are stored in con 
secutive memory addresses. If the data can be updated (as is 
generally the case), an overrun pattern set is created to store 
any new patterns. Initially, the overrun pattern set (indicated 
in braces {}) for the node is empty with field f containing the 
following patterns: 

(0.122 7, 11, 14, 18, 23, 26, 37 { } 
A new tuple is added to the table. If the new tuple contains a 
value for fof '9', a determination is made that "9" is not in the 
original pattern set nor in the overrun pattern set so it must be 
added to the overrun pattern set. This results in field fnow 
containing the following patterns: 

(0123 7, 11, 14, 18, 23, 26, 37 {9} 
If another new tuple is added containing a valued for fof “5”. 
a determination is again made as to whether the value “5” 
already exists in the original pattern set or in the overrun 
pattern set. In this case, “5” exists in neither set. This results 
in field/containing the following patterns: 

(0.124 7, 11, 14, 18, 23, 26, 37 {5,9} 
The value “5” is placed before the “9” according to the bal 
anced binary tree structure of the overrun pattern set. Even 
tually, field f may contain several additional (overrun) pat 
terns as shown in the example below. 

(0.125 7, 11, 14, 18, 23, 26, 37 {5, 9, 12, 24, 36} 
Abalanced binary tree pattern set may have an average search 
time of O(ln(ITI)) representing order of log of size T where T 
is the balanced binary tree. Other structures such as a hash 
table or other extensible data structure may be used for the 
pattern sets in other embodiments of the present invention. 
0126 FIG. 10g is a diagram illustrating the pattern sets for 
each node of a table according to one embodiment of the 
present invention. The pattern set for the root node 153 is 
shown at the top of the tree structure for the table. Each 
pattern in the pattern set is identified by an address and con 
sists of two pointers 1058, 1059: one each for the left 150 and 
right 151 subordinate child nodes in a binary tree structure. If 
there is no child node, a pointer may refer to a NULL value 
indicating that no subordinate child node exists for that 
branch in the tree. Unlike the subordinate nodes (i.e., the 
branch and leaf nodes), the root node 153 contains a pattern 
set for each tuple of the table and therefore neither needs nor 
contains a frequency for each pattern according to this 
embodiment of the present invention. In the branch nodes 
150, 151, the pattern set is identified by an address and con 
sists of two pointers for a left and a right Subordinate node as 
well as a frequency indicating how many times the pattern 
(i.e., the combination of the left and right values) occurs at 
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this node in the tree structure representation of the table. The 
two branch nodes 150, 151 in the FIG. 10g contain 6 and 5 
patterns respectively. The leaf nodes 121-124 are terminal 
nodes in the tree structure to representation of the table and, as 
Such, the patterns at the leafnodes do not point to other values 
but instead contain the actual field values for the data set of the 
table. These leaf node patterns are identified by an address 
and consist of a field value and a frequency indicating how 
many times the field value occurs in the data set of the table. 
For example, the pattern set for last names 121 contains the 
field value (pattern) “Bolton' 1080 which occurs once 1081 
in the data set for the table—meaning that one tuple in the 
table contains a last name of "Bolton' 1081. 

I0127. When a new tuple is inserted into the table, any new 
field values (patterns at the leaf nodes) must be added to the 
pattern set of the appropriate leaf nodes. For any existing field 
values (patterns at the leafnodes) for new tuple, the frequency 
of the existing field value may be incremented to reflect the 
new occurrence (incidence) of the pattern in the table. For 
example, a new tuple inserted into the table may contain 
information for an individual living in “London 1082 requir 
ing the frequency for the pattern “London 1082 in the city 
pattern set 123 to be incremented from 2 1083 to 3 to reflect 
the additional occurrence of the value in the tuples of the 
table. This is a simple operation for any existing patterns that 
are in the new tuple. However, a new tuple inserted into the 
table may contain information for a city not already in the 
pattern set (e.g., “Birmingham' 1084) requiring the new city 
pattern (e.g., “Birmingham' 1084) to be added to the city 
pattern set 123 with a frequency of 11085 for this one new 
occurrence of the value. As discussed above, a continuous 
block of memory may be allocated to the pattern set 123 when 
the table is built or when an optimization function is run 
reorganizing the data. Using a continuous block of memory 
may enhance the efficiency of the database. When an inserted 
tuple is added after the continuous block of memory has been 
allocated, the new patterns from the inserted tuple are added 
to the overrun pattern set for the node according to one 
embodiment of the present invention. Using the above 
example, the new city pattern “Birmingham' 1084 is then 
added to the overrun pattern set for the city leaf node 123. The 
use of a continuous block of memory or storage when a 
pattern is built or optimized is according to one embodiment 
of the present invention. Other than discussed herein, the use 
of a continuous block of space (memory or storage) for the 
pattern set has no other impact on these database operations, 
which can still function properly where other storage con 
figurations for the pattern sets are used (e.g., all continuous or 
all non-continuous memory or storage space for the pattern 
sets). For example in an alternative embodiment of the 
present invention, pattern sets may be stored in a non-con 
tinuous manner making the entire pattern set function like the 
overrun pattern set. In this alternative embodiment, the per 
formance of database operations on the pattern set may be less 
efficient than otherwise possible but the database operations 
function in the same manner as described herein. 

I0128. When inserting a tuple into a table according to this 
embodiment, patterns need to be either added or updated (i.e., 
the frequency incremented) for all the nodes in the tree struc 
ture representation of the table for the inserted tuple. FIG.10h 
is a flowchart illustrating the insert operation for a binary tree 
representation of the table according to one embodiment of 
the present invention. The process may begin examining the 
leaf node patterns first and then the branch node patterns in a 
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recursive manner similar to how a data set for a table is 
initially built or how it may be optimized in an optimization 
function. If a pattern at a leaf node already exists, its fre 
quency is incremented. If a pattern at a leaf node is new, the 
pattern is added to the overrun set with a frequency of one. A 
pattern for a branch node is examined in a similar manner by 
first determining if it already exists and, if so, incrementing its 
frequency. If a pattern does not already exist, it is added to the 
overrun set for the branch node with a frequency of one. For 
each pattern in the process, the process begins 1086 by first 
determining whether or not the pattern is for a leaf node or 
not. If the pattern is for a leaf node, a pointer is set 1091 to a 
matching pattern (i.e., a search is conducted for a matching 
pattern) in the initial pattern set (the pattern set in the con 
tinuous block of memory or storage) for the leaf node. If no 
matching pattern is found, the pointer has a NULL value 
otherwise it will contain the address of the pattern in the 
pattern set. For this reason, the value of the pointer is checked 
1092. If the pointer value is not NULL, a matching pattern 
was found and the frequency for the pattern is incremented 
1095 and the pointer is returned 1097. If the pointer value is 
NULL, the pointer is again set 1093 to a matching value (i.e., 
a search for the pattern is conducted) but this time in the 
overrun pattern set for the node. Another determination of the 
returned pointer value 1094 is made to determine if the 
pointer contains an address to a matching value in the overrun 
pattern set or if the returned pointer value is NULL. If a 
matching pattern is found in the overrun pattern set (i.e., the 
pointer value is not NULL), the frequency for the pattern is 
incremented 1095 and the pointer is returned 1097. If a 
matching pattern is not found in the overrun pattern set (i.e., 
the pointer value is NULL), the new pattern is added to the 
overrun pattern set 1096 with a frequency of 1 and the pointer 
is given the address of this new pattern. The pointer to this 
new pattern in the overrun pattern set is then returned 1097. If 
a pattern belongs to a branch node instead of leaf node 1087, 
a pointer is set 1088 to address the left branch child pattern. 
The recursive nature of the insert operation ensures that any 
child pattern is added to the appropriate pattern set and avail 
able to the branch node. A pointer is also set 1089 to address 
the right branch child pattern for the branch node. These two 
pointers (for the left branch and the right branch) are then 
used to determine the pattern 1090 for the branch node. After 
the pattern for the branch node is determined, the process 
executes 1098a in a similar manner as discussed above for the 
leaf node patterns with a search for a matching pattern con 
ducted first in the initial pattern set 1091 and, if no match is 
found in the initial pattern set, in the overrun pattern set 1093 
according to this embodiment of the present invention. The 
overrun pattern sets may be used for both branch and leaf 
nodes for the tree structure of the table according to this 
embodiment. The above examples illustrate how the leaf node 
(field) patterns are first examined in a recursive manner 
before branch node patterns are examined in order to ensure 
that underlying patterns are first addressed according to this 
embodiment. The process outlined above according to one 
embodiment of the present is for a binary tree representation 
of the table. Other storage or logical organization structures 
for the data in alternative embodiments of the present inven 
tion require appropriate modification to the process as out 
lined. 

0129. A variation to the above insert process in one 
embodiment of the present invention may improve perfor 
mance by omitting the determination of whether a branch 
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pattern is new and assume that the branch pattern will always 
be new. Either the search for a matching pattern in the initial 
pattern set for the branch node may be omitted or both the 
search for a matching pattern in the initial pattern set and the 
overrun pattern may be omitted in alternate embodiments of 
this variation. FIG.10i is a flowchart illustrating a variation of 
the insert operation for a binary tree representation of the 
table according to one embodiment of the present invention. 
According to this embodiment, the pattern for the branch 
node is determined as previously discussed 1088-1090, how 
ever, matching the pattern to the initial pattern set 1091 for the 
branch node does not occur and an assumption 1098b is made 
that the pattern is new regarding the initial pattern set. At this 
point, a search is made 1093 of the overrun pattern set for the 
branch node determining 1094 whether the pattern already 
exists in the overrun pattern set. If the pattern already exists, 
its frequency is updated 1095 and the pattern is returned 1097. 
If the pattern does not already exist, the new patternis inserted 
1096 into the overrun pattern set and the pattern is returned 
1097 as previously discussed. In an alternative embodiment 
of this variation in addition to assuming that the pattern for the 
branch node is new in relation to the initial pattern set, an 
assumption 1098c is made that the pattern for the branch node 
is new for both the initial pattern set and the overrun pattern 
set. According to this variation, after the branch pattern is 
determined as previously discussed 1088-1090 the pattern is 
inserted into the overrun pattern set 1096. The difference 
between the embodiments shown in FIG.10i and the embodi 
ment shown in FIG. 10h is that after branch pattern is deter 
mined, the operation continues at a later step (shown by lines 
1098b and 1098c in FIG. 10i versus line 1098a in FIG. 10h) 
in the flowchart. The method outlined in the first embodiment 
above in FIG. 10i skips the search of the base pattern set but 
still searches the overrun pattern set (shown by line 1098b). In 
an alternative embodiment of the present invention, the inser 
tion operation may be further modified to skip this second 
search of the overrun pattern set and instead directly insert the 
pattern 1096 into the overrun pattern set (as shown by line 
1098c). In this alternative embodiment, the operation for the 
branch node pattern continues at an even later step 1096 in the 
flowchart. In either variation, the insert operation is consid 
erably quicker because it omits—the search phase 1091, 1093 
(either the first search phase or both search phases) consider 
ably expediting the process. This is particularly relevant con 
sidering that the branch nodes may contain considerably 
more patterns that the subordinate leaf nodes. One disadvan 
tage of these embodiments is that the improved performance 
is made at the expense of memory or storage resulting from 
the potential duplication of patterns that would otherwise be 
identified. 

0.130 Implementing this embodiment incorporating a 
variation to the insert process may require additional changes 
that may result in reduced efficiencies and/or otherwise 
require alterations to other sections described herein. For 
example, using a balanced binary tree structure for the over 
run set may no longer be possible if a pattern can be included 
multiple times in the overrun set—doing so runs counter to 
the definition of a balanced binary tree. In another example, 
the existing algorithms/functions may need to be modified to 
handle the occurrence of multiple identical patterns in the 
data set (pattern set) for a field (a leaf node). 
I0131 The above embodiment variations become particu 
larly advantageous with pattern sets having a high initial 
cardinality (i.e., where repeat patterns are uncommon or are 
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less common). Conversely, the disadvantages become Sub 
stantially greater in pattern sets expressing little initial cardi 
nality. For this reason, an alternative embodiment of the 
present invention may incorporate a method for measuring 
the cardinality of a branch node with this cardinality value 
determining how an insert operation is executed on a pattern 
for a branch node. For example, an initial cardinality value 
may be used with the first embodiment variation above 
because it only skips the first initial pattern set. In this case, 
the variation skips the search of the initial pattern set for a 
node where the cardinality of the pattern set for the node 
exceeds a particular threshold. This cardinality may be deter 
mined when the initial pattern set is built and/or when it is 
updated during an optimization process. By determining the 
cardinality value during the initial build of the data set for the 
table or when an optimization process is run on the data set 
(updating the initial data set) the cardinality can readily be 
available and used to determine whether this embodiment 
variation is used to process a pattern for a branch node. 
0.132. In addition to adding the new patterns in the inserted 
tuple to the patterns sets for each node in the tree structure 
representation of the table and incrementing the frequency for 
existing patterns in the inserted tuple, an insert operation also 
adds an entry to a root indirection set for the table according 
to one embodiment of the present invention. If a root indirec 
tion set is being used for the table, the inserted tuple is added 
using a pointer to the newly inserted root node for the tuple. 
Because the root indirection set maintains the order of the 
tuples in the table, the pointer to the newly inserted tuple is 
added to the end of the root indirection set according this 
embodiment. For example, the following root indirection set 
contains a set of pointers to root patterns for the tuples of a 
table: 

I0133) {0,1,2,3,4,5} (RIS 4) 
Each pointer contains the address of the root node pattern of 
a tuple. Inserting a new tuple results in an additional pointerin 
the root indirection. According to the embodiment discussed 
above, the new pointer is appended at the end of the root 
indirection set resulting in a new root indirection set: 

10134) {0,1,2,3,4, 5, 6} (RIS5) 
The newly inserted tuple is identified by pointer 6 in the root 
indirection set above (RIS 5). In other embodiments of the 
present invention, the newly inserted tuple or pointer to the 
tuple may be placed elsewhere in the table and/or elsewhere in 
the root indirection set. 

Update Operation 

0135 An update operation is another database operation 
that may be performed on the data set of a table using a root 
indirection set according to one embodiment of the present 
invention. During an update operation the contents of the data 
for a tuple of a table are modified. In addition to a possible 
modification in the root node, the actual data stored in the leaf 
nodes (the pattern sets) for a field in the binary tree represen 
tation of the table and intervening branch nodes may also 
need to be modified according to this embodiment. The pos 
sible implications of an update operation on the data set for 
the table (the tree representation) are further illustrated using 
the root indirection sets and figures discussed below. 
0.136 An update operation may be implemented accord 
ing to one embodiment of the present invention as a combi 
nation of a delete operation and an insert operation. FIG. 10i 
is a flowchart illustrating the update operation according to 
one embodiment of the present invention. The update begins 
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1050 by executing a first step 1051 wherein a tuple is deleted 
as previously discussed. Using a root indirection set example 
where the values in the set represent the pointers to the tuples 
(i.e., pointer pairs in the root node), an original root indirec 
tion set may contain ten entries: 

I0137) {0,1,2,3,4,5,6,7,8,9} 
The deletion of a tuple (e.g., the fourth tuple identified by 
pointer 3) results in a negative value as previously discussed. 
For example in an embodiment where a simple negative value 
is used to indicate a deleted tuple, the original root indirection 
is modified to reflect the deletion as follows: 

0138 {0, 1, 2, -1,4, 5, 6, 7, 8,9} 
The second step 1052 in the update operation according to 
this embodiment is the insertion of the updated record as 
discussed above (an insert operation). As previously dis 
cussed, an inserted tuple may be appended to the root indi 
rection set. According to this embodiment, the root indirec 
tion set reflecting the deletion above is then appended to 
reflect the inserted and updated tuple as follows: 

0.139) {0, 1, 2, -1,4,5,6,7,8,9, 10} 
The third step 1053 is restoring the order of the tuples to 
reflect the update. To restore the order of the tuples, the newly 
inserted tuple needs to be moved to (swapped with) the posi 
tion of the deleted tuple in the root indirection set. This may 
be accomplished by simply Swapping the pointers to the 
deleted tuple with the pointer to the inserted tuple resulting in 
the following root indirection set: 

0140) {0, 1, 2, 10, 4, 5, 6, 7, 8, 9, -1} 
The result is the inserted and updated tuple is in the same 
order as the original deleted tuple. The above embodiment 
accomplishes an update operation by deleting and inserting a 
tuple. The order given above is only one possible example and 
the order between inserting the updated tuple and the deletion 
operation on the original tuple may be Switched in another 
embodiment of the present invention. 

Sorting 

0.141. According to one embodiment of the present inven 
tion, the process for building the example database identifies 
patterns in the data sets and replaces the patterns in the tables 
of the example database with pointers to the pattern stored 
elsewhere in memory or on a storage device. In this manner, 
the size of a table is greatly reduced resulting in something 
similar to a three-dimensional array of pointers, which can be 
rapidly sorted. For example, the computational complexity of 
conventional sorting algorithms determines their execution 
time. Some conventional sorting algorithms have an average 
execution time to sort a conventional data set of size n that is 
proportional to O(n log(n)). These conventional Sorting algo 
rithms may include traditional binary tree sorting, heap sort 
ing (i.e., heap sorts), and merge sorting to name a few. Other 
conventional sorting algorithms may be less efficient with an 
average execution time O(n). An example of this type of 
sorting algorithm is traditional bubble sorting. Conventional 
techniques exist to improve the performance of sorting algo 
rithms by using key comparisons with average sort execution 
times proportional to O(n log(k)), where k is the size of the 
key space. According to one embodiment of the present 
invention, a majority of sorting operations can be reduced to 
an average execution time proportional to O(n) with only a 
few circumstances requiring average execution times propor 
tional to O(n log(n)). This improvement in Sorting execution 
times are partially a result of the representation of the data set 
using pointers as described in the following embodiments 
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rather than the traditional database representation storing 
actual patterns. In addition, this improvement is also due to 
maintaining the data in the database in a sorted ordered by 
pattern that, as discussed later, can greatly reduce sort opera 
tion execution times according to one embodiment of the 
present invention. One embodiment of the Sorting operation is 
discussed in greater detail in the following section. 
0142. As discussed above in the pattern recognition sec 

tion, the identification of patterns in the data set results in a 
pointer being stored for each pattern according to one 
embodiment of the present invention—the pointerpointing to 
the pattern and the number of instances of the pattern in the 
table. According to this embodiment, each pattern in a tuple or 
row of a table is replaced by a pointer pointing to the pattern 
and the number of instances of the pattern in the table. The 
pointers point to a condensed listing of the unique patterns 
and instances (i.e., the pattern frequency) with duplicate pat 
terns normally found in the table removed. 
0143 FIG. 11a is diagram illustrating the patterns and 
number of instances for each pattern that are stored in 
memory or on a storage device and referenced by pointers in 
the representation of the table for the data set according to one 
embodiment of the present invention. A first column 1101 in 
FIG.11a lists the patterns that exist in the manufacturer field 
1102 of the table in this example data set. As previously 
discussed, the patterns for a single field equal the values of 
that field while patterns spanning multiple fields equal a 
grouping of the appropriate values from the appropriate fields 
of the table according to this embodiment. In the example 
shown in FIG. 11a, the manufacturer field 1102 contains 5 
different patterns (in this case field values): "Mfg. A 1103, 
“Mfg B' 1104, “Mfg. C 1105, “Mfg. D 1106, and “Mfg. E” 
1107. Each of the patterns in the manufacturer field 1102 is 
listed along with number of times the pattern occurs 1112 in 
the data set for the table—the number of instances of the 
pattern in the data set. The number of pattern instances 1111 
for each pattern in the manufacturer field 1102 is shown. For 
example, the pattern “Mfg A' 1103 occurs 147 times 1113 
(i.e., there are 147 instances of the pattern"Mfg A' in the data 
set for the table). In other words, for the field “manufacturer' 
1102 in a table, the value “Mfg. A’ occurs in 147 tuples or 
rows of the table. The instances of the other patterns are as 
follows: “Mfg. B1104 occurs 135 times 1114; “Mfg. C 1105 
occurs 237 times 1115; “Mfg. D 1106 occurs 223 times 1116; 
and “Mfg E 1107 occurs 258 times 1117. A total number of 
pattern instances 1118, which equals the number of tuples or 
rows for the table, is also shown in FIG.11a even though this 
information is not stored in memory or on a storage device in 
this embodiment of the present invention. In an alternative 
embodiment, a total of the instances 1118 may be stored for 
each set of patterns. The 1000 total instances of all the pat 
terns 1118 is the sum of the instances for each pattern and 
represents the total number of tuples or rows for the table. 
014.4 FIG.11a is illustrative of the use of pointers for each 
pattern in a tuple or row of the table according to one embodi 
ment of the present invention. Instead of a pattern for the 
manufacturer field 1102 being stored repeatedly for each row, 
it is stored only once with many pointers to the pattern. As 
previously stated, pointers are typically smaller in size than 
the patterns and this may result in a considerable reduction in 
the amount of memory or storage space required to represent 
the pattern in a table. According to this embodiment of the 
present invention, a number of instances of the pattern in the 
table is also stored along with the pattern and is referenced in 
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the same manner as the pattern. In the example in FIG. 9a, 
1000 pointers are used in the tuples or rows of the table to 
reference the patterns in the manufacturer data set as indi 
cated by the total number of pattern instances 1118 for the 
table. 

0145 FIG.12a is a flowchart illustrating the overall sort 
ing process according to one embodiment of the present 
invention. According to this embodiment of the present inven 
tion, the sorting process begins 1200 by using the number of 
instances determined for each pattern in the table to deter 
mine the total amount of memory or storage required for the 
resulting sorted table as the first step in the overall sorting 
process 1201. The total amount of memory or storage 
required is calculated by determining the number of pointers 
representing each tuple of the table, the size of the pointers 
(e.g., 32-bit pointers in a 32-bit memory addressing system), 
and the number of tuples in the table (i.e., the total number of 
instances for each pattern in the table. In the example depicted 
in FIG. 9a, each pattern in the data set for the field (e.g., the 
manufacturer field) is referenced by a pointer in at least one 
tuple of the table where the field contains the data set pattern. 
The total number of instances 1118 for all the patterns is equal 
to the total number of tuples in the table in this example, 
1000. If more than one field exists for each tuple, the total 
number of tuples for the table remains the same but the 
amount of memory or storage space increases by the amount 
of additional pointers required for each tuple. An area in 
memory or storage is then allocated 1202 for the sorted table 
(i.e., the table resulting from the sort). The third step 1203 is 
to determine the order of the patterns in the sorted table (i.e., 
the table after the sorting occurs) which is then followed by 
determining the resulting offset values 1204 for the patterns. 
The offset values are determined using the sorted order of the 
patterns 1203 and the number of instances of each pattern to 
determine the offset from the start of the allocated memory. 
For example, using the patterns and number of instances 
provided in the example in FIG. 11a, sorting the rows into 
reverse alphabetical order based on manufacturer results in 
“Mfg E 1107 being the first pattern in the sorted list. FIG. 
11b is a diagram illustrating the offset values for a table sorted 
in reverse alphabetical order by manufacturer according to 
one embodiment of the present invention. Since “Mfg. E” 
1157 is the first pattern in the sorted table, there is no offset 
(i.e., the offset is equal to 0) 1177 for the “Mfg. E’ patterns 
which begin at the start of the allocated memory or storage 
space. “Mfg. D 1156 is the second pattern in the sorted order 
and, therefore, the offset for the “Mfg. D' patterns begins at 
offset position 258 1176 reflecting the 258 tuples that contain 
“Mfg E 1167 (at offsets 0-257) that precede it. Each offset is 
the position in the allocated memory or storage where the first 
(or next) element in the sort group will be stored. The offsets 
for the other patterns are similarly determined with the offset 
for “Mfg. C 1155 beginning at 481 1175 (reflecting the 258 
tuples containing “Mfg E 1167 at offsets 0-257 followed by 
the 223 tuples containing “Mfg. D 1166 at offsets 258-480), 
the offset for “Mfg B' 1154 beginning at 718 1174, and the 
offset for “Mfg. A 1153 beginning at 853 1173. 
0146. After determining the initial offset values for the 
patterns 1204, the sorting process continues by examining 
each tuple of the existing table in order to generate the Sorted 
table. The first step in this sub-process for each tuple 1205 is 
a determination whether the end of the table has been reached. 
If not, the value of the pattern for the next tuple is identified 
1206. Using the offset for the pattern determined earlier 1204, 
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the tuple is written to the new sorted table in the allocated 
memory or storage at the offset value for the pattern 1207. The 
offset value for the pattern is then incremented 1208 and the 
determination of whether the end of the table has been 
reached 1205 is again made. On reaching the end of the table 
1205, the sorting process may terminate 1209 at which time 
the table will be sorted in the allocated memory or storage. 
0147 The sorting process embodiment can be further 
illustrated showing an example of the use of offset values to 
the memory or storage areas for the sorted table. FIG.12b is 
a diagram illustrating a further example of the Sorting process 
according to one embodiment of the present invention. FIG. 
12b illustrates the areas in the memory or storage for each 
tuple of the table sorted in reverse alphabetical order as pre 
viously described. The numbers refer to the offset value in the 
allocated memory or storage and include enough memory or 
storage to contain a tuple worth of data for the table. Offset 0 
1250 is the first position or beginning of the memory or 
storage space used for the sorted table data. During the sorting 
process, if the first tuple of the table is represented by a pair of 
pointers (pp.) (which as previously described point to other 
pointers and eventually to the leaf sets or field values) even 
tually referencing a pattern “Mfg. C 1155 and a number of 
instances 237 1165 (e.g., p->"Mfg C eventually) then this 
first tuple is stored at offset 481 1251 (the offset value iden 
tified for the “Mfg C pattern) in the allocated memory or 
storage and the offset for the “Mfg C pattern is incremented 
to 482. If the second tuple of the table is represented by a pair 
of pointers (pp.) eventually referencing a pattern "Mfg. D' 
1156 and a number of instances 223 1166 (e.g., p.->"Mfg. D' 
eventually) then this second tuple is stored at offset 258 1252 
(the offset value identified for the “Mfg. D' pattern) in the 
allocated memory or storage and the offset for the “Mfg. D' 
pattern is incremented to 259. If the next tuple of the table is 
represented by a pair of pointers (pp.) eventually referenc 
ing a pattern “Mfg. C 1155 and a number of instances 237 
1165 (e.g., p->"Mfg. C eventually) then this next tuple is 
stored at offset 482 1253 (the previously incremented offset 
for the “Mfg C pattern) in the allocated memory or storage 
and the offset for the “Mfg C pattern is incremented to 483. 
FIG.12b illustrates the sorting of only three tuples from the 
original representation of the table into the new sorted repre 
sentation of the table. The remaining offset positions in the 
allocated memory or storage for the Sorted table remain 
empty and will eventually be filled as the sorting process 
continues to examine each of the tuples of the table. At the 
conclusion of the sorting process, all 1000 tuples of the 
example table are sorted into the allocated memory or storage 
using the offset values according to one embodiment of the 
present invention. 
0148. The sub-process 1205-1208 that executes for each 
tuple of the table as part of the overall sorting process per 
forms the calculations for executing the Sorting process as 
outlined in FIGS. 12a and 12b above. According to one 
embodiment of the present invention, the following offset 
process illustrates some of the calculations that are performed 
as part of this sub-process. 

total=0 
fieldSet = fieldSetFor(ft) 
for (i-0; isfieldSet.length; i++) 

fieldSeti).offset = total 
total = total + fieldSeti.length 

result = new intt.rootSet.length 
for (i-0; i-result.length; i++) 
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-continued 

f = valueFor(ft.rootSeti) 
result foffset = i 
f.offset = foffset +1 

The above offset process performs a single pass through the 
pattern set (e.g., as shown in FIG. 9a) to compute the initial 
offset values for each pattern. The fieldSeti.offset stores the 
offset value for each pattern beginning with the first pattern. 
For the first pattern, the value of the total variable equals 0 and 
is used for the first offset value. The fieldSeti.length value is 
the number of instances of the patternand is added to the total 
variable to generate the next offset value. By the completion 
of this pass through the patterns (the first loop), each pattern 
will have an offset value. The second loop represents a single 
pass through all the tuples of the original pre-sorted table (the 
root table)—t.rootSet. The variable result.length represents 
the number of tuples in the table. For each tuple, the pattern 
stored in the sorted table f is set to the pattern in the original 
table valueFor(ft.rootSeti). 
014.9 The above offset process is used during the sorting 
process according to one embodiment of the present inven 
tion. The Sorting process rearranges the tuple data in the 
memory or storage allocation for the sorted table to sequen 
tially place patterns in Sort order according to the sorting 
pattern value and by instance. In another embodiment of the 
present invention, an alternative process to determine the 
offset may be used. 
0150. The offset process shown above involves a single 
pass through the set of patterns for the table to compute the 
initial offset values and then a single pass through the set of 
tuples in the original or root table to sort the tuples. The time 
to compute the sort is proportional to O(m+n) where m is the 
number of patterns (the first pass or loop in the offset process) 
and n is the number of tuples in the table (the second pass or 
loop in the offset process). The upper bound of the time to 
compute the sort is proportional to O(n) because m-n where 
in dominates this computation. 
0151. As previously discussed, the patterns are structured 
as a tree in the representation of the table, therefore the time 
required for the sort operation may be determined not by n 
(the number of tuples in the table) but by f, the number of 
fields in each tuple. Where a table contains only a single field, 
performance remains proportional to n as previously dis 
cussed because f is one. However, if a table contains multiple 
fields, the performance of the sort operation may be consid 
ered proportional to log(f). The above example performance 
calculations for one embodiment of the present invention 
reflect the utility and efficiency of the embodiment as com 
pared to conventionally known sorting techniques. The sort 
ing operation in this embodiment may include other effi 
ciency in consideration of the use of pointers rather than 
actual table data and through the use of the offset values 
during the sorting process. 
0152. In an alternative embodiment of the present inven 
tion, the offset values may be stored along with the patterns 
and number of instances in memory or storage instead of 
calculating them during the sort operation. An example of this 
embodiment is reflected in FIG. 11b where the pattern (for 
manufacturer), number of instances of the pattern in the table, 
and the offset value of the first instance of the pattern are 
specified. For each field in a tuple of the table, the pointers 
allow not only the pattern to be retrieved but also the offset 
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value. Therefore, the offset value is readily available. As 
previously discussed, to sort a table according to a single field 
requires time proportional to n, the number of tuples in the 
table. By storing the offset value, the first loop in the offset 
process that examines each of the patterns can be eliminated 
where the sorting process uses the default order of the filed. 
This reduces any influence of m on the execution time of the 
sorting process in some sorting cases. 
0153. According to one embodiment as previously dis 
cussed, the sorting process generates a new sorted table in 
memory or storage containing n pairs of pointers (one pair for 
each tuple storing the root node pattern) and therefore 
requires 2nP bits to store, where P is the number of bits per 
pointer (typically 32 or 64) representing the typically 
addressing size of the computer system. The pairs of pointers 
in the sorted table are identical to the pairs of pointers in the 
original, root table but are only in a different order. The 
sorting operation does not alter the pair of pointers only their 
order in the table. Therefore, instead of generating a sorted 
table containing n rows of the pointerpairs, a single pointer to 
a tuple in the root table could be stored in sorted order instead 
according to another embodiment of the present invention. 
Instead of the sort operation generating a new sorted table, a 
root indirection set (i.e., a sorted set of pointers to the tuples 
in the root or original table) could be generated instead. The 
root indirect set uses just nP bits because only one pointer is 
stored for each tuple in the table. Therefore, using a root 
indirection set according to this embodiment may use half the 
memory to perform the sort operation for a table with a single 
field. 
0154 Combining a selection or query operation on one 
particular field along with a sort operation on the same or 
other field presents additional challenges above those dis 
cussed for the previous embodiments of the sort operation. A 
selection or query operation is the identification of a Subset of 
the data in the table. For example, if a table contains infor 
mation about automobiles and one particular field is the age in 
years of the car, a selection or query specifying SELECT 
WHERE ages.5 may result in only those tuples of the table for 
which the age field value is less than 5. Selection or query 
operations are common when using databases. In conjunction 
with a selection or query operation, a specification is often 
made regarding the order in which to present the selection or 
query results. Specifying the order of the results is a sort 
operation combined with the selection or query operation. 
Under these circumstances, not all of the tuples of the table 
are of interest and, therefore, the offset values are no longer 
relevantas the results will generally not include every tuple of 
the table. One solution (embodiment) to handle this situation 
may include recalculating the number of instances of the 
patterns for the subset of data returned by the selection or 
query operation and the new associated offset values. How 
ever, the recalculation of the number of instances of the pat 
tern for the Subset is time consuming and results in values that 
are only valid for that selection or query operation. In another 
Solution according to one embodiment of the present inven 
tion, the sorting process is conducted as previously described 
with the addition of two new steps: a selection or query 
matching operation and the removal of gaps in the resulting 
sorted table or root indirection set. 

0155 FIG.13a is a flowchart illustrating the combination 
of a selection or query operation with a sorting operation 
according to one embodiment of the present invention. The 
flowchart for the combination of a selection or query opera 
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tion with a sorting operation according to this embodiment is 
similar to the flowchart for the sorting operation identified in 
FIG. 12a. For example, the offset values are still calculated 
using all the tuples as previously discussed. However, one 
step is slightly changed and two new steps are added as shown 
by the bold border for those operations. During the processing 
of each row in the original or root table 1205-1008, the value 
of the selection/query patternand sort patternare retrieved for 
each tuple 1306 instead of only the sort pattern. The selection/ 
query pattern is necessary to determine if the tuple satisfies 
the selection/query requirements 1310 specified for the 
operation. In the above example, the age pattern for each 
automobile may be the selection/query pattern. If the value of 
the age pattern for the tuple is less than 5 then it satisfies the 
selection/query requirements 1310 and further processing 
including writing the tuple or generating a root indirection set 
pointer in the allocated memory or storage 1207 occurs. This 
step 1207 uses the sort pattern to determine where the tuple or 
root indirection set pointer is written by using the offset value 
for the sort pattern. This offset value is then incremented 
1208. If the value of the age pattern (in this example) is 5 or 
more then it does not satisfy the selection/query requirements 
1310 and the tuple is ignored—no further processing of the 
tuple occurs. After all the tuples have been examined in light 
of the selection/query criteria, gaps in the resulting Sorted 
table or root indirection set are closed 1311. Gaps exist 
because all the memory or storage allocated for the operation 
will not be used if all the tuples do not meet the selection/ 
query criteria. The result may look like the partial sort results 
shown in FIG. 12b with blocks of memory or storage con 
taining pointers interspersed with blocks of memory or Stor 
age that are not used and contain no pointers. In order to 
consolidate the results, the consolidation process 1311 copies 
the pointers to the resulting sorted table subset or root indi 
rection set in a manner removing the gaps according to one 
embodiment of the present invention. In another embodi 
ment, the consolidation process 1311 closes the gaps in the 
results after they have been transferred to an intermediate 
memory or storage space. In either case, the size of the used 
and unused allocated memory or storage needs to be deter 
mined according to the blocks (one block for each pointer for 
a root indirection set or one block for each tuple for a table 
Subset) used and unused. In one embodiment, this can be 
determined by taking the final offset value for each pattern 
and Subtracting the starting offset value to determine the 
number of offset positions used for each pattern. For example, 
if the “Mfg. D' manufacturer starts at offset value 258 (as 
determined in step 1204) and after the selection/criteria 
matching 1310 and sort are complete the offset value for “Mfg 
D” is 266, a determination that 266-258–8 cars of “Mfg. D' 
are in the Subset can be made. 

0156 FIG. 13b is a flowchart illustrating the consolidation 
process for a Subset of the data from a table according to one 
embodiment of the present invention. According to the 
embodiment illustrated in FIG. 13b, the selection/query 
determination and Sorting of the tuples from the original root 
data set occurs with the resulting pointers (eitherfor the tuples 
or for the root indirection set) stored in an array p containing 
gaps—unused blocks—as previously discussed. The Subset 
of the root data set (the original or root table) resulting from 
the selection or query criteria is referred to as t in the example 
shown in FIG.13b. The consolidation process begins in a first 
step 1351 by determining the size of the subset t (i.e., the 
number of tuples in Subset t) and setting a variable r to rep 
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resent this information. An array of r pointers is allocated 
1352 in memory or storage as array o if a root indirection set 
is being used. Otherwise C*r pointers are used for array o, 
where the number of subset tuples r times is multiplied by a 
coefficient C specifying the number of pointers representing 
each pattern—e.g., 2 in the previous embodiments discussed 
above. The next step 1353 is to initialize a number of counting 
variables. The variable start represents the block or position in 
the original array p (the block of memory or storage) which 
has the gaps that are being closed. The variable index repre 
sents the current block in memory or storage (the array posi 
tion) allocated in array o, which is initially set to zero. The 
variable field Index represents the counter to sequentially 
examine the patterns as they appear in sort order. The field 
Index variable is used in the fields field Index.offset value to 
retrieve the final offset value for the pattern. For example, if 
only 8 occurrences of the pattern “Mfg. D', which began at 
offset 258 in the above example, match the selection or query 
criteria, the final offset value for the “Mfg. D' pattern will be 
266 (258+8–266). If the “Mfg. D' pattern is the second pat 
tern, the fields 1...offset will be 266 for the second pattern 
“Mfg. D' (the count begins at 0 for the first pattern). After 
these variables are initialized, a loop is executed 1354 until 
the index variable tracking the position in array o reaches the 
size of the Subset r indicating that all the gaps have been 
closed and array o is complete. Within this first loop 1354 a 
second loop is executed for each pattern 1355. This second 
loop 1355 begins for each pattern at its initial offset in array p 
and continues block-by-block (or tuple-data by tuple-data) 
until the final offset value for the pattern (all the data for the 
pattern) is reached. For each block of data (pointer or set of 
pointers) for the pattern, the value in array o is set to the 
current value in array p 1356 resulting in gaps between the 
patterns being removed. The counter for array o, index, and 
the counterfor array p, start, are then incremented 1356. Once 
the counter for array p, start, exceeds the final offset value for 
the pattern 1355, fieldsfield Index.offset, the start variable is 
set to the initial offset value of the next pattern 1357 and the 
field Index variable is incremented to the next pattern 1357 
thus skipping over the gaps in array p. Once all the gaps have 
been removed 1354-1357, the consolidation process returns 
array o 1358 as eitheran array of pointers in sorted order to the 
tuples in the root or original table that satisfy the selection/ 
query criteria ifa root indirection set is used or as an array of 
pointers in Sorted order representing the tuples in the root or 
original table that satisfy the selection/query criteria if an 
actual Subset is generated. The above example illustrates only 
one possible consolidation process for a combination of 
selection or query operation with a sorting operation. In other 
embodiments, other consolidation processes may be used to 
implement the present invention. 
0157. The previous examples have described one embodi 
ment of the present invention where sorting of a table is 
performed using a single patternor field from the table. How 
ever, it is also possible to sort the data using multiple patterns 
or fields. According to one embodiment of the present inven 
tion, a sorting process using multiple fields can be imple 
mented by using the previously described sorting process on 
the patterns in a reverse sort order for the patterns. For 
example, if a table containing the fields vehicle manufacturer 
and age of vehicle is to be sorted first by manufacturer then by 
age within manufacturer, the above described sorting process 
can be used to sort the data first by age and then the resulting 
set of data sorted by age can then be sorted by manufacturer. 

Aug. 9, 2012 

The result is a final data set first sorted by manufacturer then 
by age within manufacturer. The term data set is used instead 
of table because this process for sorting by multiple fields can 
also be used in conjunction with a selection or query opera 
tion resulting in only a Subset of the table data being used. 
0158 Building the root or original table in a manner where 
the tuples are already sorted by pattern or field may improve 
the sorting operation by allowing two of the steps—1203 
determining the order of the patterns and 1204 determining 
the offset value for each pattern to be eliminated where the 
natural order (the original or root order) is used for the sort. 
This can improve the performance of the sort operation by 
reducing or eliminating several calculations that are part of 
the process outlined above. The resulting benefit is that to 
performance more closely achieves O(log(n)) or O(log(m)) 
rather than O(n+m log(m)) that otherwise occurs, where n 
represents the number of tuples and m represents the number 
of patterns. Building the root or original table in a manner 
where the tuples are sorted according to a unique key for the 
table is particularly performance enhancing according to one 
embodiment of the present invention. Sorting on an unsorted 
unique key requires time proportional to O(n log(n)) to com 
plete, which is the average sort time of many conventional 
sorting algorithms. By sorting the table by unique key when 
the table is generated or amended, future sorting operations 
can still function efficiently because sorting on the unique key 
can be avoided. 

Sort by Expression 

0159. According to one embodiment of the present inven 
tion, using derived fields or an expression, both of which were 
previously discussed, can further expand the Sorting process. 
A derived field may be calculated and added to the data set for 
a table and is treated as any other field according to one 
embodiment of the present invention. An expression is calcu 
lated at the time an operation (e.g., a sort operation) is 
executed and is not stored with the data set for the table 
according to one embodiment of the present invention. A sort 
by expression operation uses an expression as part of the sort 
process. 
0160 Sorting conducted according to the previously dis 
cussed embodiments of the present invention used single or 
multiple patterns in a table to produce the sorted ordering of 
data. Combining some of these previously discussed tech 
niques allows for the implementation of a sort operation using 
an expression in addition to or in place of usingapattern value 
according to one embodiment of the present invention. Unlike 
the values for a pattern that are part of the data set for a table, 
an expression is a computation using the values of the patterns 
in the table and it is not stored for future use in one embodi 
ment of the present invention—unlike derived fields. 
0.161 In this embodiment, an expression is a computation 
made during the sorting process using at least one of the fields 
from the data set for the table. For example, an expression 
may involve a mathematical calculation Such as 5*int(age/5). 
According to this example, a derived field value age, as pre 
viously discussed, is divided by 5, the integer value of this 
quotient is taken and multiplied by 5 yielding the expression 
value to be used in conducting the sort operation. Another 
example of an expression involving a mathematical calcula 
tion is the expression premium-claim which uses a difference 
obtained by Subtracting the value of an insurance claim (i.e., 
the claim field value) from the value of an insurance premium 
(i.e., the premium field value). These are only a few examples 
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of possible expressions that may be used according to this 
embodiment. The use of an expression for a sort operation 
may require a new or modified sorting process according to 
this embodiment of the present invention. 
0162 The sorting process as previously described accord 
ing to one embodiment of the present invention used sort 
“bins' determined according to the unique patterns of the sort 
field. Memory or storage space was allocated for the sorted 
data, the memory was partitioned using offset values to cre 
ated blocks of space or sort bins for each unique value in the 
sort field or key and a single pass through the tuples of the 
table was made with each tuple being assigned to the appro 
priate bin or block of space. The sort process for multiple 
fields worked the same way sorting by the individual sort 
fields (sort keys) in reverse order according to one embodi 
ment described above. The Sorting process using an expres 
sion is similar but uses a modification of these previously 
described techniques accounting for the addition of one or 
more expressions. 
0163 FIG. 14a is a diagram illustrating an example table 
to be sorted using an expression according to one embodi 
ment of the present invention. In FIG. 14a, a table 1400 
contains two fields: a name field 1401 and an age field 1411. 
Though FIG. 14a shows a conventional table, as previously 
discussed a table according to one embodiment of the present 
invention contains pointers to the patterns which are stored in 
memory or on a storage device. The data set of the patterns for 
the table 1400 is stored in memory or on a storage device. 
According to this example, there are six name patterns 
1402 “A” 1403, “B” 1404, “C” 1405, “D 1406, “E” 1407, 
and “F” 1408 and six age patterns—23. 1413, 34 1414, 17 
1415, 221416, 241417, and 321418. The combination of the 
patterns for name and age are unique resulting in a single 
name being matched to a single age according to the example 
shown in FIG. 14a. However, it is possible, for example, that 
an age may be paired with more than one name (e.g., A has an 
age of 23 and M has an age of 23). Using the first example 
expression above, 5*int(age/5), a sort by expression opera 
tion may be executed. The expression 5*int(age/5) groups age 
values into five-year bands where ages in the range of 0-4 
result in an expression value of 0, ages in the range of 5-9 
result in an expression value of 5, ages in the range of 10-14 
result in an expression value of 10, etc. Sorting the tuples of 
the table based on this expression and Sorting in an ascending 
order (whether by default or specified) results in the table 
reorganized according to FIG. 14b. 
0164 FIG. 14b is a diagram illustrating the sorted table 
with the expression value shown according to one embodi 
ment of the present invention. The third column shown is the 
expression value used as the sort field or key for the sort by 
expression operation. The sort field or key appears in an 
ascending Sorted order as a result of the sort operation on the 
table data using the expression. The sort field or key values in 
the third column shown in FIG. 14b do not appear as part of 
the table or data set after the sort by expression operation 
concludes and, as a result, Some of the previously described 
sorting techniques can no longer be directly applied. There 
fore, executing a sort operation using an expression may 
necessitate the use of a modified sort process—a sort by 
expression process—according to one embodiment of the 
present invention. One example of a sort by expression pro 
cess is listed below. 
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sort(t,f) 
for each bin in sorted data 

keysi = fin(bini.key) 
Sort(keys) 
reorder bins using keys 

The sort by expression process begins by conducting a pre 
viously described sort operation on the table t using a sort 
field frepresenting a field used in the expression for the 
table—in this example, the age field. As previously described, 
the sort operation, according to one embodiment of the 
present invention, allocates an area of memory for the Sorted 
table and then determines “bins' or subsets of the allocated 
memory by computing offset values. These bins are deter 
mined using the unique patterns for the sort field. Tuples from 
the table are then copied to the appropriate bins, which are 
arranged by sort order, in the tuple order in which they appear 
in the original table. The sort by expression process calculates 
the expression value for each of the determined bins (the 
unique patterns for the sort field f) resulting in a determination 
of the sort field or key (the expression value) for the sort by 
expression operation. These sort fields or keys (sort expres 
sion values) are then reorganized in a sorted order with the 
bins being reorganized according to these keys. Because of 
the initial sort based on the field used in the expression, the 
sort field/key for the sort by expression operation only needs 
to be determined once for each bin and the bins as a whole can 
be rearranged according to the Sorted order of these sort 
fields/keys. In FIG. 14b, the table data is sorted according to 
field age 1410 used by the expression. The sort field or key 
1420 for the sort by expression operation is then determined 
for each bin and placed in sorted order and the bins are 
reorganized accordingly. The bins in FIG. 14b are organized 
by age 171415,221416, 231413,241417,321418, and 34 
1414—and determine the sort field or key for the sort by 
expression operation. 
0.165. Further examining the sort by expression process, 
an execution or performance assessment may be made by 
examining each of the Subordinate steps. The initial sort 
operation Sort(t,f) takes O(n) operations as previously 
described. Determining or collecting the keys (i.e., the sort 
expression values) for the bins (i.e., for each unique pattern in 
the sort by expression field f) takes O(m) operations where m 
is the number of unique patterns for the sort by expression 
field f. The keys are then sorted taking O(m log(m)) opera 
tions and resulting in a sorted list of the keys (i.e., sort expres 
sion values). As shown in FIG.12b, the bins from the initial 
sort are then reordered according to the key (i.e., sort expres 
sion) value. The reordering of the bins generally takes O(n) 
operations. According to this information, the entire sort by 
expression process requires an execution time related to 
O(2n+m+m log(m)) operations. As previously discussed, in 
will generally be larger than m in most circumstances and 
with most data sets and n can be significantly larger than m in 
Some circumstances. For this reason, the value of n will gen 
erally be the more significant variable in this equation. Where 
n is significantly larger than m, performance will approach 
O(n) and where n and mare closer in size, performance will 
more closely approximate O(m log(m)) which is the average 
performance of many conventional sorting techniques. 
0166 The sort by expression process evaluates the func 
tion for the expression m times during the sort operation 
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where m is the number of unique patterns for the sort by 
expression field for, in other words, the number of sort bins in 
the initial sort. Evaluating the expression form (i.e., for each 
occurrence of a unique pattern) rather than n (i.e., for each 
tuple in the data set for the table) may result in a significant 
improvement in performance where n is greater than m. The 
more significant the difference between n and m, the greater 
the performance gained by using the initial sort bins to evalu 
ate the expression rather than on a row-by-row basis requiring 
n calculations of the expression (i.e., execution of the expres 
sion function) as is generally done in conventional database 
management systems. The above description for implement 
ing a sort operation based on an expression can also be 
applied to a partition or join operation as well, especially 
because both are based on the basic sort process as described 
later in this document. 

0167. The embodiment discussed above describes the 
implementation of a sort by expression operation where the 
expression is based on a value for a single field in the data set 
for the table. In another embodiment of the present invention, 
the sort by expression operation may be conducted using an 
expression involving multiple fields in a table. If the sort 
expression uses multiple fields to determine a single key (i.e., 
sort by expression value), there is little change from the sort 
by expression process described above. According to one 
embodiment where multiple fields are used to generate a 
single key (Sort by expression) value, a minor variation of the 
sort by expression process may be used as follows. 

Sort(t,f...f.) 
for each bin in sorted data 

keysi = finbini.key) 
Sort(keys) 
reorder bins using keys 

The sort by expression process conducts the initial sort using 
the multiple fields as previously described. The order of the 
fields in this initial sort does not matter as any resulting sort 
bin organization for the combination of the field values/pat 
terns will be reordered later. The initial sort by the multiple 
fields creates bins for each unique combination of the patterns 
for the multiple fields with each bin containing any corre 
sponding tuples (or root indirection sets for the tuples) of the 
table. The keys (sort by expression values) are then determin 
ing using the multiple fields. The keys are then sorted and the 
bins reordered as previously described resulting in a Success 
ful sort by expression using multiple fields in the expression. 
0.168. Using the multiple fields alters the performance 
characteristics of the sort by expression process. The perfor 
mance of the sort by expression process using a single field 
had an execution time related to O(2n+m--m log(m)) opera 
tions. The sort by expression process using multiple fields has 
an expected performance related to O(2n+M+M log(M)) 
operations, where M is the total number of unique patterns 
resulting from the various combinations of the multiple fields 
used in the expression for the sort by expression operation. 
For example, if a sort by expression operation is conducted 
for the expression 5*int(age/5)+int(int(income/1000)/2), the 
unique patterns M for the different combinations of the fields 
age and income determine the performance of the sort by 
expression operation. FIG.14c is a diagram illustrating a data 
set for an example table. In one embodiment of the present 
invention, the data set for the table would contain unique 
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pattern values and their number of instances stored in 
memory or on a storage device with a table representation 
containing the structure of the table with pointers to the stored 
patterns and number of instances. Instead, a conventional 
table format is illustrated in FIG. 14c to simplify the expla 
nation provided for the sort by expression operation involving 
multiple fields according to one embodiment of the present 
invention. The table 1430 contains 3 fields: name 1440, age 
1441, and income 1442. The expression for the sorting opera 
tion uses the values from two of these fields: age 1441 and 
income 1442. As described in the sort by expression process 
for multiple fields above, the table is first sorted according to 
the fields in the sort expression. Because the order of the fields 
in the sort is not relevant to the final result, either the age 1441 
or income 1442 field can be the first sort field. As previously 
discussed in the Sorting section, when conducting a sort 
operation with multiple sort fields, a sort is first conducted for 
the last sort field, then a second sort is conducted on the first 
sort results for the next to last sort field, etc. (i.e., reverse sort 
order). In this example, the first sort field is age 1441 and then 
income 1442 and, as a result, we first sort by income 1442 
then use those results to sort by age 1441. FIG. 14d is a 
diagram illustrating a sorted table in order by age and then 
income and showing the sort expression value (the sort key) 
for each tuple of the table according to one embodiment of the 
present invention. According to the embodiment previously 
described, the key (sort expression value) is not calculated for 
each tuple of the table but is calculated for each sort bin. In the 
case of multiple fields used in a sort expression, the bins are 
determined by the unique pattern for the combination of field 
values. The unique values are as follows from the sorted (by 
age then income) data set: 171462–29,000 1472: 181468– 
15,000 1478; 22 1463 43,000 1473; 23 1460- 57,000 
1470; 24 1464 80,000 1474; 32 1465. 110,000 1475: 34 
1461 78,000 1471; 35 1467. 85,000 1477; 40 1469 98, 
000 1479; and 50 1466 210,000 1476. According to this 
example, each tuple has a unique pattern combination of the 
age and income field values with each combination being its 
own sort bin. According to this example, a sort key (sort 
expression value) is calculated for each bin (in this case each 
tuple) and the sort key is shown in a fourth column 1443. The 
keys are then sorted and the bins are rearranged according to 
the sorted keys. FIG. 14e is a diagram illustrating the data set 
for the table in Sorted order by expression according to one 
embodiment of the present invention. Reordering the sort bins 
using the sort keys (the sort expression values) results in a 
final table organization sorted according to the expression 
using multiple fields. The key values are not stored with the 
table and are only calculated for the sort by expression opera 
tion and, therefore, are not listed in conjunction with the final 
table according to this embodiment. 
0169. In addition to the above examples where a sort by 
expression operation using a single field and a sort by expres 
sion operation using multiple fields are described, a sort by 
expression operation using multiple expressions may also be 
implemented according to one embodiment of the present 
invention. The use of multiple expressions is similar to Sort 
ing using multiple fields as previously described. According 
to this embodiment, a sort by expression operation for the last 
expression—whether using single or multiple fields—is first 
conducted, then a sort by expression operation for the next to 
last expression is then conducted until the final sort by expres 
sion operation for the first expression is conducted (i.e., the 
sort by expression operations are conducted in reverse 
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expression order—last first). The sort by expression opera 
tions for multiple expressions results in a table sorted first by 
the first expression, second by the second expression, etc. The 
sort by expression operations each work as outlined above 
depending upon if a single field or multiple fields are a used 
for the sort expression. A sort by expression process for 
multiple expressions, according to one embodiment of the 
present invention, is shown below. 

count = expressions.Total 
for(i=0; i-expressionsTotal; i++) 

t = sort(t.expression countf...expression countf) 
for each bin in sorted data 

expression count.keys = expression count.fn(bin).key) 
Sort(expression count.keys) 
reorder bins using expression count.keys 
count = count - 1 

The sort by expression process for multiple expressions is 
similar to the previous sort by expression process except that 
a loop is executed for each expression with the Sorting begin 
ning with the last expression and continuing until the first 
expression—the final expression for, which a sort operation is 
conducted—is executed. 

Partition Operation (Partitioning) 

0170 The sorting process can be used to implement par 
titioning and joining according to one embodiment of the 
present invention. Partitioning is the dividing of a table and 
possibly its associated data set. For example, if a table con 
tains information about automobiles, it may be partitioned 
into Subsets of data according to the manufacturer. One 
example of this type of partition operation is to group and 
separate all the tuples for “Mfg. A”, “Mfg B, etc. This 
example divides information by complete tuple according to 
one embodiment of the present invention. For example, divid 
ing the automobile information by manufacturer results in the 
complete tuple of automobile data for the manufacturer being 
included into the partitioned Subset (i.e., partition). Accord 
ing to this embodiment, the sorting process previously dis 
cussed can be used to group the data in a table according to the 
partition field or partition key and generate the partitions 
accordingly. The partition field or partition key is the pattern 
or field value that is the basis for the sorting and separation of 
the data in the table in the above example, the manufacturer 
field value/pattern. Though the examples for this embodiment 
use a single partition field, it is possible to partition a table 
using multiple fields or patterns in other embodiments of the 
present invention. 
0171 According to this embodiment of the present inven 
tion if the manufacturer field has 5 associated patterns 1103 
1107 as illustrated in FIG. 11a, partitioning the table will 
result in 5 partitions of the original data set for the table one 
containing all the tuples for “Mfg A', a second partition 
containing all the tuples for “Mfg B, etc. The number of 
partitions resulting from this embodiment depends on the 
number of patterns in the partition field. If there are in patterns 
in the partition field (e.g., m manufacturers), there will be m 
partitions resulting from the partition operation according to 
this embodiment of the present invention. Each of the result 
ing partitions can then be used for further sorting operations, 
selection or query operations, statistical calculations or other 
database operation as if the partition was its own table. For 
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example, a table containing automobile registrations at a uni 
versity can be partitioned into Subsets by automobile manu 
facturer that can further be queried. A selection or query 
operation may be executed on the partition for “Mfg. A to find 
all automobiles that are under 2 years old and registered after 
a certain date. Though this information may alternatively be 
obtained by combining a more detailed selection or query 
operation (or multiple selection/query operations) with a sort 
ing operation as previously discussed, the use of a partition 
operation to generate a partition may also be used. According 
to one embodiment of the present invention, using a partition 
operation may be particularly advantageous when a number 
of Subsequent operations are to be performed on each data 
Subset. A partition operation may also allow or assist in the 
efficient computing of complex statistics for each partition. 
According to one embodiment of the present invention, the 
partition process is based on the sort process previously dis 
cussed and is shown as follows. 

table=frequenciesFor(ft) 
s=sort(t,f) 
fieldIndex=0 
count=0 
for(i=0; i-size(t); i++) 

if (count==0) 
pfield Index) = newPartition(tablefield Index.name,t) 
count = tablefield Index.frequency 
fieldIndex = fieldIndex + 1 

pfield Index-1)...addRoot(s.rootAt(i)) 
count = count - 1 

The value t is the table to be partitioned and f is the partition 
field according to which the table is partitioned. The table is 
first sorted and the two counter variables fieldIndex and count 
are initialized (set to 0). After the sorting of the table, a for 
loop is executed going through each tuple of the table one at 
a time partitioning the tuples by the partition field. 
0172. The partition operation is a linear process similar to 
the sort process as previously described. A first pass through 
the table is executed to sort the tuples and a second pass 
through the sorted table is executed to assemble the partitions 
according to this embodiment. 
0173. In one embodiment of the present invention, the 
partitions are virtual tables in that they share leaf and branch 
nodes with the parent table. For this reason, the only unique 
information for the partition is its root indirection set refer 
encing the already existing parent table tuples making the 
partition efficient and quick to compute, manipulate, and 
store. For example, a partition on a 32 bit computer system 
may use approximately 4n bytes to store the entire set of 
partitions for the table according to this embodiment, where n 
is the number of tuples in the table. 
0.174. The combination of a selection or query operation 
with the Sorting process as previously described can be used 
as the basis for a partitioning of the data set according to 
another embodiment of the present invention. According to 
this embodiment, all the data in the table is not partitioned as 
described in the previous embodiment and a partition is only 
generated for a Subset of the data (i.e., tuples) in a table. 
According to this alternative embodiment, if a table includes 
information about automobiles a partition or Subset may only 
be generated for tuples related to one manufacturer. In the 
previous embodiment, the entire table would be partitioned as 
a result of the partition operation with one partition for each 
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manufacturer. According to this embodiment, a partition only 
for the desired (i.e., selected) manufacturer will be generated. 
The partition process for this alternative embodiment is simi 
lar to the partition process for the previous embodiment 
except that a partition is only generated for the desired parti 
tion field value/pattern. 
(0175. The previous partition embodiments grouped and 
separated the table data by completetuple. In the first embodi 
ment, a root indirection set was generated for each partition 
with one partition forevery value/pattern in the partition field. 
In the second embodiment, a root indirection set was gener 
ated for the sole partition for the selected partition field value/ 
pattern. In both cases, the root indirection set referenced the 
complete tuple in the parent table from which the partition 
was generated. In another embodiment of the present inven 
tion, apartition operation may be used to split the tuples of the 
table with the fields and patterns being partitioned rather than 
the tuples. This embodiment is the opposite of the join opera 
tion discussed below and illustrated later in FIGS. 15b and 
15. 

Join Operation (Joining) 
(0176). The sorting process can also serve as the basis for a 
join operation according to one embodiment of the present 
invention. A join operation is the combination of two tables 
into a single resulting joined table. For example, a table or 
data set of automobile information for cars made by manu 
facturer"Mfg. A” may be combined with a table or data set of 
automobile information for cars made by manufacturer"Mfg 
B'. This example of a join operation is the opposite operation 
to a partitioning operation as described above. According to 
this example, both tables share a similar structure in that they 
have the same fields for each tuple of data. The join operation 
according to this example merely merges the two tables shar 
ing the same structure into a single joined table. This can be 
done by appending the data from one table to the other table 
or by creating a new table and adding the information from 
the two merging tables according to previously discussed 
embodiments of the present invention. This type of a join 
operation is different from other types of join operations and 
will be referred to as a merge operation to distinguish it and to 
avoid any confusion. 
(0177. Another type of join operation is the joining of the 
tuples from two tables that do not share the same structure 
(i.e., do not have all the same fields for their tuples). In this 
second type of join operation, tuples from the first or "left” 
table are associated with data from the second or “right” table 
according to some criteria. For example, a join operation for 
a table of insurance claims with a table of insurance policies 
may use an insurance policy identifier or insurance policy 
number to identify the insurance policy details to which each 
claim applies. According to this example, the resulting joined 
table will contain a tuple for each insurance claim but each 
tuple will also contain details about the insurance policy to 
which the insurance claim applies. Under these circum 
stances, the insurance policy number may be repeated in 
numerous claims (tuples) which apply to the same insurance 
policy. This may result in a loss of data normalization under 
the relational database model but this will not affect the join 
operation according to this embodiment of the present inven 
tion. 
0.178 FIG. 15a is diagram illustrating the patterns and 
number of instances for each pattern that are stored in 
memory or on a storage device and referenced by pointers in 
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a representation of two tables for two data sets according to 
one embodiment of the present invention. The information for 
the first pattern 1501 referenced by pointers from a first table 
1510 are patterns for an insurance policy number 1502. 
According to the example illustrated in FIG. 13a, only 3 
patterns for insurance policy number 1502 exist: 305 1503, 
395 1504, and 427 1505. The number of instances for each 
pattern 1511 is the number of times the pattern occurs 1512 in 
the tuples of the first table 1510. Insurance policy number 305 
1503 occurs 1 time 1513, policy 395.1504 occurs 1 time 1514, 
and policy 427 1505 also occurs 1 time 1515. The 3 instances 
in total for these patterns 1518 should match the total number 
of tuples in the first table 1510. The information for the 
second pattern 1521 referenced by pointers from a second 
table 1530 are patterns for an insurance policy number 1522 
for insurance claims. According to the example illustrated in 
FIG. 13a, only 2 patterns for insurance policy number 1522 
for the insurance claims exist: 305 1523 and 427 1524. Insur 
ance policy number 3951504 that occurs in the data set for the 
first table 1510 is not associated with any claims in the second 
table 1530 and, therefore, the pattern 395 does not show up in 
the insurance policy numbers 1522 for the second table 1530. 
The number of instances for each pattern 1531 is the number 
of times the policy number pattern occurs 1532 in the tuples 
of the second insurance claims table 1530. Insurance policy 
number 305 1523 occurs 2 times (i.e., is associated with two 
claims 1533 and policy 427 1524 occurs only 1 time (i.e., is 
associated with only one claim 1534. The total number of 
instances 1532 for the policy number patterns 1522 is 31538 
(i.e., 2 for policy 305 and 1 for policy 427) which equals the 
total number of tuples for the second insurance claims table 
1530. 

(0179 FIG. 15b is a diagram illustrating a tree-structure 
representation of a table for an insurance policies data set and 
a table for an insurance claims data set according to one 
embodiment of the present invention. The first tree structure 
1550 is a representation of the first insurance policies table 
1510 previously discussed. A tree structure is shown for each 
tuple of the table. The first tuple 1551 is shown beginning 
with a root node (identifying the tuple) and containing the 
insurance policy number 305 1554 as a leaf pattern. The 
second tuple 1552 is shown beginning with a root node and 
containing, the insurance policy number to 3951555 as a leaf 
pattern. The third tuple 1553 is shown and contains an insur 
ance policy number 427 1556 as a leaf pattern. Each of the 
insurance policy nodes show a value of 1 indicating that there 
is only 1 instance of the pattern in the data set for the table. 
The other node values and patterns are not shown. The second 
tree structure 1560 is a representation of the second insurance 
claims table 1530 previously discussed. A tree structure is 
also shown for each tuple of the table. The first tuple 1561 is 
shown and contains information regarding a first claim for 
insurance policy number 305 1564. The second tuple 1562 is 
shown and contains information regarding a first claim for 
insurance policy number 427 1565. The third tuple 1563 is 
shown and contains information regarding a second claim for 
insurance policy number 305 1564. The node values for 
policy 305 1564 and 427 1565 reflect the number of instances 
that each pattern occurs in the data set for the claims table 
1530–2 instances for policy 305 and 1 instance for policy 
427. Additional patterns and node values are not shown for 
the insurance claims table 1560. FIG. 15b is illustrative of the 
different circumstances that exist for joining tables whose 
structures do not match. The tree structure for the first data set 
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1550 and the second data set 1560 may contain different 
nodes and patterns as reflected by the other nodes for which 
data is not included in FIG. 15b. 

0180 According to one embodiment of the present inven 
tion, joining the table for insurance policies with the table for 
insurance claims results in a new root node for each tuple with 
the root node sitting above the previous root nodes for the 
tuple data in the individual tables. FIG. 15c is a diagram 
illustrating a tree-structure representation of the joining of the 
data sets for two tables according to one embodiment of the 
present invention. The data set for the insurance policies table 
1550 is joined to the data set for the insurance claims table 
1560 resulting in a joined data 1570 containing the data from 
both. According to this embodiment, the joining process joins 
only the data from the tuples in the insurance policies table 
1550 that have an insurance policy number 1554, 1556 that 
match an insurance policy number 1564, 1565 in the tuples of 
the insurance claims table 1560. For example, a tuple 1552 in 
the insurance policies table 1550 that does not match a policy 
number in the insurance claims table 1560 is not joined to the 
insurance claims table 1560. For this reason, the tuple 1552 
for insurance policy number 395 1555 is not joined to the 
insurance claims table 1560 as indicated by the shading in 
FIG. 15c. The tuples that are joined are joined by creating a 
new root node in the joined table linking the information for 
the insurance policy number in the insurance policies table 
1550 to the policy number for claims in the insurance claims 
table 1560. For example, insurance policy number 305 1564 
appears in tuples for 2 claims 1561, 1563 in the insurance 
claims table 1560. In this situation, a new root node 1571, 
1573 is generated for each tuple 1561, 1563 in the insurance 
claims table 1560 linking the insurance policy tuple 1551 for 
policy number 305 1554 to each of these claims 1561, 1563. 
Another claim tuple 1562 for insurance policy number 427 
1565 is also linked to the insurance policy information 1553 
for policy number 427 1556 in the insurance policies table 
1550 in the example shown in FIG. 15c. 
0181 FIG. 15c illustrates the join operation conducted 
using a single join field—insurance policy number—even 
though the joined tuples may contain many fields or patterns. 
In other embodiments of the present invention, it is possible to 
conduct the join operation using multiple fields or patterns in 
the data set rather only one field/pattern as shown in FIG. 15c. 
0182. The above example for joining the two data sets is 
facilitated by the use of pointers as previously discussed 
according to at least one embodiment of the present invention. 
Because pointers are used, the underlying data (e.g., the insur 
ance policy numbers 1503-1505 and associated number of 
instances 1513-1515 stored for the insurance policies data set 
1510, 1550 and the insurance policy numbers 1523-1524 and 
associated number of instances 1533-1534 stored for the 
insurance claims data set 1530, 1560) remain unaffected by 
the joining of the data sets. Instead, the resulting joined table 
only needs to incorporate pointers to the data stored in 
memory or on a storage device according to one embodiment 
of the present invention. 
0183) One method of determining which tuples in the table 
data sets to be joined is to examine every possible pairing of 
data and determine whether it belongs in the resulting joined 
table. Implementing this type of process takes time propor 
tional to n*n, where n and n are the sizes of the data sets 
(the number of patterns for the join field in the data set) for the 
insurance policies 1510, 1550 and the insurance claims 1530, 
1560. Depending on the size of the data sets to be joined, the 
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number of combinations that need to be tested according to 
this method can be potentially very large. For the example 
given in FIG. 15c, this involves an execution time propor 
tional to the 6 (3*2) combinations that must be tested accord 
ing to this method. This method is obviously inefficient and 
an alternative method for joining the tables is used according 
to one embodiment of the present invention. 
0.184 There are a number of types of join operations used 
in database systems. One example is a equi-join or natural 
join where two tuples are joined where they both have a 
matching join 'key'. The type of join operation illustrated in 
FIG. 15c is an equi-join where tuples from the two data sets 
are only joined if their join field or join key (in this example, 
the insurance policy number) match. For an equi-join, the size 
of the resulting joined table can be determined using the 
following join size determination process according to one 
embodiment of the present invention. 

S=patternSetFor(ft) 
s2=patternSetFor(ft) 
total=0 
i=0;j=0 
while (i.<size(s)) &&. (<size(s)) 

if (s1-patternsi==S2-patterns) 
total = total+s.sizeForis.sizeFor 
i=1--1;=+1 

else if (spatterns iss-pattern) 
i=i-1 

else 
j=+1 

The values t and t, represent the two tables to be joined and 
f and f, represent the shared fields (i.e., the join field or join 
key) according to this embodiment. The join size determina 
tion process is predicated on both data sets being in Sorted 
order as the determination Spatternsi{s-patternsai 
would otherwise not function properly. This join size deter 
mination process applies to an equi-join and can be illustrated 
using the example join shown in FIGS. 13a-13c. Using the 
insurance policies table 1550 to determine the pattern sets, 
1510 and the insurance claims table 1560 to determine the 
pattern set s 1530, the join size determination process is 
illustrated as follows. According to the process, the variables 
iand and the join size count total are initialized (set to 0). The 
while loop executes as long as the countersiandi are less than 
the size of the insurance policies data set (i.e., 3 patterns) and 
the insurance claims data set (i.e., 2 patterns) respectively. On 
the first iteration of the while loop, a determination is made 
whether the patterns for the data sets match. In this case, 
spatternO=305-spatternO so the join size count total is 
incremented by the number of instances for pattern 305 1503 
in the first data set 1510 (i.e., 1 1513) multiplied by the 
number of instance of the pattern 305 1523 in the second data 
set 1530 (i.e., 2 1533) resulting in total=0+1*2=2. The 
counters i and fare incremented (i.e., i=1 and j=1) and the 
while loop executes again. In this seconditeration of the while 
loop, the patterns do not match and spattern 1395 and 
spattern 1427. Because S pattern 1 <spattern1, the 
counter i only is incremented (i.e., i=2 andj=1). On the third 
and final iteration of the while loop, the patterns match with 
Spattern2-427 S-pattern 1 So the join size count total is 
incremented by the product of the number of instances (i.e., 1 
1515*1 1534 respectively) resulting in total=2+1*1=3. The 
join size process therefore calculates a join size of 3. AS is 
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clear from the preceding examples, the Sorted nature of the 
two data sets 1510 and 1530 may be necessary for the proper 
performance of this example process. 
0185. According to one embodiment of the present inven 

tion, the join process is similar to the join size determination 
process. The equi-join join process for two tables t and t 
with two shared fields f and f, (i.e., the join field or join key) 
according to this embodiment is listed below. 

The above equi-join join process is similar to the join size 
determination process previously discussed except that the 
tables are first sorted and no join count total is maintained. In 
addition, the add function is the joining of the matching tuples 
from both tables. As previously discussed, the sorting of the 
tables takes O(n) steps to execute the first sort and O(n) 
steps to execute the second sort. The while loop for the equi 
joinjoin process will take at most O(max(n+n, n)) steps to 
complete where n and n are the sizes of the data sets to be 
joined and n is the size of the final joined data set. Because 
the first branch of the if statement combines the processing of 
the second and third branches of the if statement, every time 
a result uses this first branch the overall steps are reduced 
resulting in O(n+n) being the worst case number of steps to 
be performed for the equi-join join process. 
0186. An equi-join is only one example of a database join 
operation. For other types of join operations, variations of the 
above equi-join join process may be used to implement the 
other join operations according to one embodiment of the 
present invention. For example, another type of join operation 
may be termed a “left outer join' operation. In the equi-join 
example provided above and in FIGS. 15b and 15c, insurance 
policy number 395 1555 did not match any tuples in the 
claims table 1560 and therefore the insurance policy data 
1552 for policy 395 1555 was omitted from the resulting 
joined table. A "left outer join' would include a tuple for 
policy 395 in the resulting joined table but would have all the 
data (i.e., the fields) for the claims portion of the joined tuple 
set to a NULL value. To implement the “left outer join' 
operation, a modification of the join size determination pro 
cess and the equi-joinjoin process may be used. According to 
one embodiment of the present invention, a modified join size 
determination process as shown below can be used for the 
“left outer join' operation. 

S=patternSetFor(ft) 
s=patternSetFor(ft) 
total=0 
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-continued 

if (s1-patternsi==S2-patterns) 
total = total+s.sizeForis.sizeFor 
i=1--1;=+1 

else if (spatterns iss-pattern) 
i=i-1 
total=total+1 

else 
j=+1 

The join size determination is the same for both the equi-join 
operation and the “left outer join' operation except that for 
the “left outer join the total is incremented for all patterns in 
the “left data set—even for those where no match is found. 
The changes to the join size determination process (i.e., an 
additional line in this case) made from the equi-join operation 
to the “left outer join' operation is shown in bold above. A 
“left outer join' operation may be particularly useful where 
the “right data set requires the existence of the join key or 
join field before allowing data to be included in the data set 
and table. For example, to add a claim to the insurance claim 
table, a requirement may be in place that the insurance policy 
number must already exist in the insurance policies table with 
the insurance policies table serving as the lookup table for the 
policy number in the insurance claims table. In this situation, 
it would not be possible to have a tuple in the insurance claims 
table (the “right data set) that does not match a tuple in the 
table for the “left” data set though the table for the “left” data 
set may have tuples that do not match the data in the table for 
the “right data set. In these circumstances, the “left outer 
join' operation is particularly useful in making Sure that all 
tuples are included in the resulting joined table. 
0187. According to one embodiment of the present inven 
tion, a “left outer join' join process is shown below as a 
modification of the equi-join join process previously dis 
cussed. 

S1=Sort(t,f) 
S2=Sort(t2.f.) 
nullTree = nullTree(t) 
i=0;j=0 
while (issize(s)) 

if (valueFor(fs2)==valueFor(f,Si)) 
k=0 
while (valueFor(fs2+k)==valueFor(f,Si)) 

add(Si,S2+k) 
k=k+1 

else if (valueFor(fS2)<valueFor(f,Si)) 
j=+1 

else 
add (Si), nullTree) 
i=i-1 

The nullTree(t) is a tuple or tree in the table for the second or 
“right data set with NULL values for all the patterns in the 
tuple/tree. This NULL value tuple for the “right data set is 
thenjoined to the tuple in the table for the “left' data set where 
the data (i.e., the join key or join field) in the tuple for the left 
data set does not match the data (i.e., the join key or join field) 
in the “right data set. This is reflected in the second use of the 
add function. The additions to the equi-join join process to 
implement a “left outer join' join process are shown in bold. 
0188 The equi-joinjoin operation and the “left outerjoin' 
operation are only two examples of possible join operations 
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that may be implemented according to at least one embodi 
ment of the present invention. Other join operations may be 
implemented in a similar manner using minor modification to 
the join size determination process and join process discussed 
above according to one embodiment of the present invention. 

Archiving 
0189 The necessity to maintain increasingly greater 
amounts of data to comply with, for example, current gov 
ernment regulatory requirements, such as Sarbanes-Oxley 
and Basle 2, may create burdens that conventional archiving 
techniques are ill equipped to satisfy. According to one 
embodiment of the present invention, implementing the 
present invention as discussed above may provide a mecha 
nism for Successful meeting the archiving requirements that 
demand increasingly greater storage and rapid accessibility. 
0190. This embodiment of the present invention favorably 
addresses several archiving issues and criteria. For example, 
one challenge raised by archiving is the accessibility of the 
archived data. Having archived data readily accessible online 
over an information network (e.g., the Internet) may provide 
the best accessibility to the data. However, conventional 
archiving systems typically implement means further remov 
ing the archived data from online accessibility. Deploying 
tape storage based backup procedures, for example, are less 
practical as they further remove the archived data from rapid 
online access and may also be more failure prone than optical 
or hard disk online storage formats. This embodiment of the 
present invention reduces the amount of memory or storage 
space used for an archive thereby facilitating its storage on 
more immediately accessible media. This reduction in the 
amount of memory or storage space to store an archive 
coupled with the fully searchable (i.e., the user is able to query 
the archived data) nature of the archive provides significant 
advantages over conventional archives. 
0191) One particular advantage according to this embodi 
ment of the present invention is that a compression in the data 
occurs without any data loss. The patterns themselves are 
uniquely stored while addresses to the patterns are used in the 
tree structure representation of each tuple in a table. In this 
manner, the amount of memory or storage space necessary for 
the data set of a table may be substantially reduced over other 
conventional database management systems. In this manner, 
an archive may be stored using less memory or storage than 
otherwise conventionally necessary. 
0.192 Another particularly advantageous benefit of this 
embodiment of the present invention is obtained when 
archiving Snapshots of data in a database. A Snapshot is copy 
of the data that exists in the database at one particular point in 
time. Because a Snapshot of data from a database will share a 
considerable amount of data with other snapshots of the data 
base and with the current data in the database, it is possible to 
achieve greater archiving efficiency. As described above, the 
patterns in the data set of a table are uniquely stored and 
pointers to the patterns are used in the representation of the 
table. The overlap between the patterns used in one archived 
Snapshot and another archived Snapshot and between an 
archived Snapshot and the current data set may be substantial. 
Therefore, the patterns for all the snapshots may be stored 
together in a single pattern set for the table (i.e., not broken 
down into separate pattern sets for each archived Snapshot). A 
root indirection set as previously described may then be used 
for each archived Snapshot to indicate the grouping of pat 
terns for the tuples in the Snapshot. In other words, adding an 
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archive of data (e.g., a Snapshot of the database) may be 
implemented by simply adding a root indirection set for the 
archive. In addition, the delete function described herein 
would instead of erasing data (according to one embodiment 
above) would instead remove a tuple from the root indirection 
set for the current table of the database. Also, the update 
function described herein would instead of erasing data (ac 
cording to one embodiment above) would instead add any 
new patterns to the pattern set for the table and create a new 
entry to the root indirection set for the current table of the 
database. In this manner, the patterns used in the root indi 
rection set for the archive are preserved even though they may 
no longer be reachable (i.e., used) in the current database. 
0193 In addition to this embodiment of the present inven 
tion, other advantages of this embodiment include: 
0194 The following example illustrates the memory or 
storage savings that may be achieved according to this 
embodiment of the present invention used for implementing 
multiple archives. According to this example, a table contain 
ing one million tuples (records) having a total size of 200 MB 
(200 bytes per tuple) is going to be archived according to this 
embodiment. Assuming that there is 80% compression (i.e., 
reduction in the amount of space necessary) resulting from 
the savings in memory or storage space that occurs when 
patterns are stored uniquely with pointers for each tuple 
pointing to the unique patterns, the archive of the data uses 40 
MB of data to store the patterns. In addition, as previously 
discussed a root indirection set may then be used by the 
archive to indicate its component tuples. As previously dis 
cussed, a root indirection set may use four bytes per tuple in 
a 32-bit system resulting in 4 MB of space for the one million 
tuples in the root indirection set of the archive. Combined 
with the 40 MB of storage, the archive uses 44 MB of space 
(40MB for the storage of the patterns and pointers and 4 MB 
for the root indirection set). If a second archive (e.g., a second 
snapshot of the table data) is generated where 10% of the 
patterns are different from (new over) the first archive, an 
additional 4MB of memory or storage space is necessary for 
these different patterns in addition to the 4 MB for the root 
indirection set for the second archive resulting in 52 MB of 
space for both archives (44 MB for the first archive+4 MB 
extra patterns for the second archive (10% of 40 MB)+4 MB 
for the root indirection set for the second archive=52 MB). 
This 52 MB represents considerably less memory or storage 
space than the 88 MB (44 MB per archive) that would other 
wise be required if the two snapshots were stored separately. 
This savings in memory or storage space is in addition to the 
savings that occur from storing the patterns uniquely and 
using pointers to point to the patterns. In a conventional 
archiving system, the above example may require 400MB for 
both archives (200 MB for each archive) whereas this 
embodiment of the present invention not only reduces the 
memory or storage for the archives to 88 MB (44 MB each) 
but further reduces their size by sharing the duplicated pat 
terns resulting in only 52 MB of memory or storage. Each 
additional snapshot that is added to the this archive further 
increases the memory or storage space savings according to 
this embodiment of the present invention. 
0.195 As previously stated, an archive unlike a current 
database (the database that is in current use) may be moved to 
a persistent storage media other than an online memory struc 
ture or storage space for which the above embodiments have 
been described. This may raise an issue regarding the immu 
tability of the data relating to the use of pointers to the 
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memory addresses of patterns. If the database is move to a 
persistent storage structure, the address of the patterns 
changes. When the database is reloaded into a memory struc 
ture or other readily accessible storage structure, the pointers 
may no longer refer to accurate pattern addresses. In order to 
correct for this potential problem when moving an archive to 
another media, the addresses are transformed into offset val 
ues (i.e., relative addresses) indicating an offset position in 
memory or storage with the pointers referencing the offset 
values. When the archive is restored (reloaded), the offset 
values are transformed from a relative address back to an 
actual address with the pointers referring to the actual 
address. In this manner, problems with the addressing of 
patterns may be avoided. This embodiment may also be used 
when moving the current database as well. According to one 
embodiment of the present invention, active data may be kept 
in memory (which is more readily accessible) while less 
active data may be stored on a persistent storage media Such 
a disk from which it may be loaded into memory when 
needed. The short delay resulting from the loading of data into 
to memory may be acceptable considering the other perfor 
mance gains and, in particular, with the less frequent access 
ing of the data not already in memory. 
0196. In another embodiment of the present invention, the 
use of Snapshots as described above may be used to perform 
time series analysis on the data in the database. For example, 
each Snapshot captures the data in the database at a particular 
period of time. Using specified Snapshots that are stored 
together allows for changes in the data over time to be exam 
ined indicating trends. This may be accomplished by running 
queries on each Snapshot desired for the analysis using those 
Snapshots root indirection sets. According to this embodi 
ment, time series analysis may be performed without any 
extra aggregation and indexing of the data as may be required 
in conventional specialty database allowing time series analy 
S1S. 

What is claimed is: 
1. A method for storing a Snapshot of data in a database, 

comprising: 
creating a root indirection set for the Snapshot of data; 
maintaining a deleted pattern in the database, wherein the 

deleted pattern is not removed from a pattern set for a 
node in a table of the database when the pattern is deleted 
in the database; and 

providing access to the Snapshot of data using the created 
root indirection set, the created root indirection set 
accessing the deleted pattern. 

2. A method for performing a time series analysis on data in 
a database, comprising: 

creating a root indirection set for each Snapshot of data to 
be used in the time series analysis, wherein current data 
is treated as an already existing Snapshot for the time 
series analysis; 

designating a plurality of Snapshots of data to be used in the 
time series analysis, wherein the root indirection sets of 
the snapshots of data are identified; 

generating a query for the time series analysis, the query to 
be executed on all the designated Snapshots of data; and 

comparing query results as part of the of the time series 
analysis. 

3. A method for partitioning a table of a database as a 
function of at least one partition field, comprising: 

Sorting the table according to the at least one partition field; 
and 
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generating a root indirection set for each value of the at 
least one partition field, the root indirection set contain 
ing at least one pointer to a tuple in the table wherein the 
value of the at least one partition field for the root indi 
rect set matches the value of the at least one partition 
field for the tuple. 

4. A method for partitioning a table of a database as a 
function of at least one partition field, comprising: 

sorting the table according to the at least one partition field; 
selecting a plurality of tuple blocks in the sorted table, 

wherein, for each selected tuple block, all tuples of the 
respective tuple block share a same value of the at least 
one partition field; and 

Subsequently generating a root indirection set for each 
Selected tuple block, the root indirection set containing, 
for each of the tuples of the tuple block, a pointer to the 
tuple. 

5. The method of claim 4, wherein: 
each tuple has a single value for each of at least one field of 

the table; 
the table is stored in the database as a tree including a 

plurality of nodes, each of the nodes being associated 
with a respective one of a plurality of pattern sets, each 
set having at least one respectively pattern; 

the patterns include: 
leaf patterns, each of which represents a single value for 

a respective one of the fields of the table; and 
branch patterns, each of which points, one of (a) directly 

and (b) indirectly via other branch patterns, to only a 
single respective combination of two or more leaf 
patterns, the combination including only a single leaf 
pattern for each of corresponding two or more of the 
fields of the table; 

the plurality of nodes includes a root node for the table; 
each pattern of the pattern set associated with the root node 

represents a respective one of the tuples of the table and, 
for each field of the table, one of: 
does not refer to a leaf pattern, thereby indicating that a 

value for the field is NULL; and 
one of directly and indirectly points to a single leaf 

pattern; and 
each pointer of each of the root indirection sets points to a 

respective one of the pattern set associated with the root 
node. 

6. The method of claim 4, wherein a combination of all of 
the selected tuple blocks does not include all of the tuples of 
the table. 

7. A method for joining a first table and a second table of a 
database as a function of at least one join field, comprising: 

sorting the first table according to the at least one join field; 
sorting the second table according to the at least one join 

field; 
matching a tuple in the first table with a tuple in the second 

table, wherein a value for the at least one join field of the 
tuple in the first table is equal to a value for the at least 
one join field of the tuple in the second table; and 

generating a joined table as a function of the matching tuple 
in the first table and the matching tuple in the second 
table. 

8. The method of claim 7, wherein: 
for each of the first and second tables: 

the table is stored in the database as a representative tree 
including a plurality of nodes, each of the nodes being 
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associated with a respective one of a plurality of pat- erences a pattern of the root node of the first table and 
tern sets, each set having at least one pattern; and a pattern of the root node of the second table; and 

the plurality of nodes includes a root node, each pattern generating a root indirection set including a plurality of 
of the pattern set associated with the root node repre- pointers, each of the pointers pointing to a respective 
senting a respective one of the tuples of the table; and one of the patterns of the root node generated for the 

the generating the joined table includes: joined table. 
generating for the joined table a root node associated 

with a pattern set, each pattern of which directly ref- ck 


