(19)

US 20120203740A1

a2y Patent Application Publication o) Pub. No.: US 2012/0203740 A1

United States

Ben-Dyke et al.

(43) Pub. Date:

Aug. 9, 2012

(54) METHOD AND SYSTEM FOR (60) Provisional application No. 60/615,793, filed on Oct.
IMPLEMENTING AN ENHANCED DATABASE 4, 2004, provisional application No. 60/671,172, filed
on Apr. 12, 2005.
(75) Inventors: Andy David Ben-Dyke, Malvern
(GB); Tom Longshaw, Publication Classification
Worcestershire (GB); Gary Pratley, (51) Int.CL
gloucestg (GEE})éKeith Summers, GO6F 17/30 (200601)
oss-on-Rye (GB) (52) US.CL ... 707/639; 707/803; 707/797; 707/E17.054
(73) Assignee: RAINSTOR LIMITED, (57) ABSTRACT
Gloucester (GB)
In one embodiment, a method for storing a snapshot of data in
(21) Appl. No.: 13/447,060 a database includes creating a root indirection set for the
snapshot of data and maintaining a deleted pattern in the
(22) Filed: Apr. 13, 2012 database. The deleted pattern is not removed from a pattern
’ set for a node in a table of the database when the pattern is
s deleted in the database. The method includes providing
Related U.S. Application Data access to the snapshot of data using the created root indirec-
(63) Continuation of application No. 11/244,347, filed on tion set, the created root indirection set accessing the deleted
Oct. 4, 2005. pattern.
Address Surname | Frequency Address | First Name | Frequency Address } City Frequency Address Age ‘ Frequency
131 119 120 132 125 126 133 127 128 134 129 130
a5 | Bolon i o | Andiew 4 o | Cloucester | 1 D 35 I
{\326 Jones 1 IE:%] Bob 1 lcfé London 2 1D426 40 2
g:; Smith 3 331 Jim 1 l(ii Manchester 3 537 45) 1
A4 . D4
Wright 1 '
138 e 122 123 148 ? :

121

124

US 2012/0203740 A1

Aug. 9,2012 Sheet 1 of 47

Patent Application Publication

e1 "Old

001
S¥ Uopuoy wif ynwg -
0} I21S3Youe MIIpUY uojjog
43 1215990010 qog yaug
Ge I9)SoYoUBIN MmaIpuy sauof
49 uopuoy MaIpUYy W3um
v 13}5aUOUE MAIPUY g
$01 23V €01 AND Ns oureN 1] - 101 oureums

(1201

601

801

LO]

901

col

US 2012/0203740 A1

Aug. 9,2012 Sheet 2 of 47

Patent Application Publication

q1 "OIA

1ZI
811 1 pIT Y3
A €11 ynws
o11 1 711 souof
SI 111 uorog
Amuocgcwmoco:co“m 611 sureuing

US 2012/0203740 A1

Aug. 9,2012 Sheet 3 of 47

Patent Application Publication

O DI

vl 121
¥4 [44

il 8¢l

u
4 0s v I W3um oY
A4! 1 1 LET

Ia)sayoue un |
I) 94 eq £ Youe & 1 if cq £ plug ey
4! Evi opl 9¢l

uopuo 0 sauo
C 4 7a 4 puo] 79 [qod 7q I [v
94| [44! 6¢l Stl

I3)s30n0 MaIpuy uojjo
I 43 1a 1 } 19 D 14 1puy . 19 1 Nog v
0t1 621 144! 871 L £el 9zt 41 zel 0zt 611 el

Aousnbaig a8y SSaIppY Asuanbaiy A SSOIpPY Kousnbaiy | oureN jsmj | ssarppy Aouanbai,g aureumg SSAIPPY

US 2012/0203740 A1

Aug. 9,2012 Sheet 4 of 47

Patent Application Publication

0s1
I 6¢l 8¢tl 991
1d 144 9d
I |41 LET 591
td eV ¢d
1 vl Lel ¥91
d eV L
I 6¢l LET £91
Iq A4 e
I 6¢€1 9¢1 91
1d v (42!
I 6¢1 oel 191
1d 1V 14
Aouanbas] sy 7o SS3IppY

US 2012/0203740 A1

Aug. 9,2012 Sheet 5 of 47

Patent Application Publication

IS1

ol "DIA

0¢1

z 91 124 SL1
ad £D cd
I Svl 144! vLl
1d 136) pd
I 8yl 341 £L1
46l (49} td
I Lyl 341 (42
£d 7 £
I 8vi it IL1
¥a D 14
Kosuanbo1] wSry U1 SSaIppy

1 6¢1 8€1 991
[A4 9d
I |84 LE] o9l
ed £V sd
I ovl LEl 1221
[4: 134 ¥4
I 6¢1 LET €91
14 124 td
1 6€l 9¢l1 91
1d A4 (41
I 6¢1 sel 191
1d 184 &1
Kouoanborg 8y el | SSAIpPY

US 2012/0203740 A1

Aug. 9,2012 Sheet 6 of 47

Patent Application Publication

H"OM
€61
[4A €91 981
4 ¢d 99
SL1 191 681
¢d 4 49
141 91 121!
4 vd 123)
pL1 91 £81
vd d D
tL1 991 z81
ed 9d (43
SLI €91 181
¢d 3 19
W3y SSOIppY

L

US 2012/0203740 A1

Aug. 9,2012 Sheet 7 of 47

Patent Application Publication

31 'O

A 171
€21 (441
(4 0$ ta ! waum vV
1 134 £d £ TISYOUEN | €D I aif €q ¢ prug 127
4 4 wa [4 uopuo] (%] 1 qogq rAT| 1 sauof (A4
! s¢ 1a I 191530n019 1D 14 malpuy 19 I uoyjog v
Kouanbaiy By SS3IppY fouanbarg i) $SIPpY Aousnbar] | sweN is11g | sssrppy Kousnbar] | swewng | ssaippy
! [£: 124 94
[4 4 £0 cd I £q 124 sd
1 1d €D vd [[4:! £y ¥4
1 +a 40} £d I 1d 124 td
1 €a [40] ¢ I 1d (A4 d
1 ¥a 12 14 I 19 184 14
Kouanbarg WSy yo1 SSaIppy Asuanbaig nsry ¥o1 SSAIPPY
161 051
zd % | 9D
sd 14 199)
[£:¢ ¥d 0
bd [4: €0
€d 94 [49]
ccl Sd X 1D
narg a1 | ssappy

Patent Application Publication Aug. 9,2012 Sheet 8 of 47

217

207
@)
216

BOO

211

203
oJor

206

201
OOk,
200

209

205
215

202
204
@ 208
o 214

US 2012/0203740 A1

FIG. 2

US 2012/0203740 A1

Aug. 9,2012 Sheet 9 of 47

Patent Application Publication

¢ O

60t
Kouanbaiy pawaiaut pue

sisIxguIaned wmay

80¢ L0€
uraped ppe pue 94 (Mau uraped sy
MaNsTureped wmsy

ON

90¢
waped ppe pue
MaNSTuIoped winoy

mau
wiaged-qns puodas §

ON

£0E
#ou
ulaped-qns 1suyg S|

vot
waned ppe pue
MmaNsTushed wsy

208
wiaped 10j swaped
-qns suIag

i

106
ssred uraped-qns
yum wayed Anuapy

00¢ weig

US 2012/0203740 A1

Aug. 9,2012 Sheet 10 of 47

Patent Application Publication

v OId

00v

11y ~N 01y ~
9661 V 81N

D

Y1y ~ tly ~ [A8% ~N
00¥ aeAd onig

O

O

US 2012/0203740 A1

Aug. 9,2012 Sheet 11 of 47

Patent Application Publication

9 K |

CE
f

508
aseqeiep ul 3jqe) piing

i

$0¢
ssa1-qns
WOl 331} [eUl 2qUISSY

i

£0S $921-qns
3JRI5U9T 0} UOIIE[2LI0D 10
Aureurpes Aq sprag dnoin

f

208
SUOTIR[ALIOD

10 Sap)IfeuIpIRD SuIULA)aQ

!

108

PIoY Yaed
10J SOM[BA JO 195 SUIULA(]

00s

Patent Application Publication Aug. 9,2012 Sheet 12 0f47 US 2012/0203740 Al

< o

—_ v S

o =1

= - B

= B S
o L J
S
3 &)

o~ o~ o

= o o o S

) o]

—_ w

—

e ® 8

601
602
603
604

Patent Application Publication Aug. 9,2012 Sheet 13 0f47 US 2012/0203740 Al

614
e
609

613
d
608

AN
FIG. 6b

612
617
c
607
b
606

611

618

616

615
N
a

605

601
602
603
604

Patent Application Publication Aug. 9,2012 Sheet 14 of 47 US 2012/0203740 Al

FIG. 6¢

US 2012/0203740 A1

Aug. 9,2012 Sheet 15 of 47

Patent Application Publication

P9 "OIA

C
{

$99
aseqerep uj 9jqes pling

f

#99
1S1] payIos Suisn 2913 up
sp[ay Jo wonisod suiuiialag

i

£99
Kyieurpres Jo Jap1o
Surpusose ojut sp[oly sHOS

i

299

PIaYy yoea
0y Arreurpres ay) spndwo))

f

199
MELE
31} JO Spal} Y auTWLIA)a(]

1

=)

099

Patent Application Publication Aug. 9,2012 Sheet16 of47 US 2012/0203740 Al

Y
manufacturer
701
year of manufacture
702
color
703
use code
704
premium
705
FIG. 7a

|
FIELD

US 2012/0203740 A1

Aug. 9,2012 Sheet 17 of 47

Patent Application Publication

ALTTVNIAQYVD

4L O

01L S0L
0001 wniwaid
60L v0L
z 3pod asn
80L £0L
Y4 10[00
LOL oL
ov SIMOBJNURW JO JedK
90L 10L
08 Jamjoejnuew

i

aTdid

Patent Application Publication Aug. 9,2012 Sheet 18 0f47 US 2012/0203740 Al

FIG. 7c

year manufacturer premium

color
703

use code
704

US 2012/0203740 A1

Aug. 9,2012 Sheet 19 of 47

Patent Application Publication

pug

€8Ol

£08
aseqejep U1 3(qe; pIng

f

908
$32.3-qs
wolj 221 [eUl AQUIASSY

i

S08
dnoig

1[oea 10] 931-qns © ppng

f

08 Anfeurpres
30§ anjea 3o Suisn
SI511-gns our spjay dnoiny

f

€08
Anpeutpres jo 1apio
Suipusdse o3ul Sp[aYy SPOS

f

708
pley yoes
10§ Ayeutpres a1 opndwo)

f

108
: 2jqe)
3} JO SP[9Y A MUY

1

ueig

008

US 2012/0203740 A1

Aug. 9,2012 Sheet 20 of 47

Patent Application Publication

ALITVNIQAVD

q8 "OIA

6C8 618
S SISALIP JO Isquiny
878 818
z X3S ISALIp
LT8 L18
0021 UOISSTUILIOD
978 918
¥ ouelq
578 18
0001 waiwsid
vZ8 vis
z apoo asn
(XA €18
§T 1000
778 48!
o 2UMIIBINUBW JO J824
178 118
08 IaImjorjnueL

A

Qi

HOTVA
ONIdNOYO

US 2012/0203740 A1

Aug. 9,2012 Sheet 21 of 47

ALITVNIQHEVD

98 D14

LES LT8 L18
¢ 0021 UOISSTWIIO0D [4%’
7 dN10Y¥O
93] §8 18
3 0001 wnjwaid
1€8 128 118
I 08 J2mjorInuew
(4% (44 18 1v8
I 410¥D
1 0¥ 2IyorIhURH JO 189K
£es €8 €18
I §T 10]03
6€8 mmw‘ 618
0 S SIDALIp JO Jaqunu
9¢8 978 918
0 ¥ youelq 0%8
0 dNOAD
8¢8 878 818
0 [4 X35 1AL
123 vT8 vi8
0 7 3po2 asn aTdd

Patent Application Publication

i

US 2012/0203740 A1

Aug. 9,2012 Sheet 22 of 47

Patent Application Publication

P8 "D

218 €18 618 918 318 v18
184 10103 SIJALIP -
e w Jo 1oquunu q q X3S IJALID apod asn
118 _—“- _-n—- .—“v ‘—“v
.—Oh—-uu&.«:&—:

") O ()

L18 S18
UOISSTUITO0) wmnimaid
e e 00008) 158 e 058
0000021 | 2768 00000t9 €68

ok

US 2012/0203740 A1

Aug. 9,2012 Sheet 23 of 47

Patent Application Publication

806

3

anfea wmasy

SOA .
A 106 0N P21 0 enba anjea
[10113 WMy © §30U213)91

Isjuteg

ON

506
¢ongea pisiy enbs
anfea Jajuiod saoq

v06
¢annod ut parogs
PI31} 10} anfea §]

ON

7 €06
San[eA Jo3os ul 206
anjeA 151§ 29ULIJRI 9A- STTON 90yeA Pja1J 5]
1sured saoq

006 =S

Patent Application Publication Aug. 9,2012 Sheet 24 0of47 US 2012/0203740 Al

FIG. 10a

qoT1 “OIA

US 2012/0203740 A1

se01
T+Xaput=xapu

[xaput]fo]yivdansaazimnsas

9601 pug i
£E01

Sap

peol
°N

(4301
A (xapur][(yiod
= [xapurjf1jyod

Aug. 9,2012 Sheet 25 of 47

1601
[J=imsaa

g O=xapus

£

3] Y

&

oh

=

=

-

= 007

S Upiayf)o [emd={1]Jyiod

= {4+ U1 f0=1) 207

2

o A

=

«

=

) 6201 Mel§

~N

=

-

90T DA

US 2012/0203740 A1

901
NnSayUOISS1dxa U4 0d

umgel

L¥01
(wianwdyuy
= jnsayuaissaddxa udayod

*

S0l
Sk

o0l
N

€01
{Jesun
iynsayssasdxa uisyod

Aug. 9,2012 Sheet 26 of 47

ol
(1004'y10d) 10 Jusa110d
= wiaiwd

h

1701
(" “Putororyivd = yod

(0v01 HeIs

Patent Application Publication

POT “OIA

US 2012/0203740 A1

Gl T
4 T 4
4 0$ +a 1 wBum A
—
1 87 £d £ Iagsapouely | €D 1 wf ¢d 3 g £y
[4 oy a 4 uopuo (s 1 qog d I souof [A4
I SE 1a 1 338300015 1D 14 malpuy 1d 1 uojog 1v
Aouanbasg a8y SSAIPPY Kouanbaiy A SsaIppy Aauanbaig | aweN Isay | sseappy Asuanbaig | sureumg | ssalppy

Aug. 9,2012 Sheet 27 of 47

Patent Application Publication

I 14 124 9d
4 a £ o4 I £d £V sd
1 1a £D vd 1 [4: £V va
I va 0 £d 1 €1 £V ¢
1 £d 0 2d I 19 A (|
1 va 10 14 I 19 v 19
Kouanbasg Wy3ry go1 SSAIPPY Aouanbaig W3y 8o SSaIppy
e (15
u " 90 9901
sd 13 so | 5901
14 v o | F90T
vd P &0 | o0 {90 '¢O '¥D ‘€D tH 1D} — 50T
¢ od © | Dot ot YSOT T
N s
=T s ¢ 19 wﬂ\ﬂm\\\\\\' {S%‘cz'1 ‘0t — 50
3y §oT | ssappy _ ~ ,
ot o1 0 eor

Patent Application Publication Aug. 9,2012 Sheet 28 0f47 US 2012/0203740 Al

FIG. 10e

en
|

v

Patent Application Publication Aug. 9,2012 Sheet 29 0of47 US 2012/0203740 Al

FIG. 10f

US 2012/0203740 A1

Aug. 9,2012 Sheet 30 of 47

Patent Application Publication

(44} A
4 0s ¥a S0 = Ll @ 1 M3um vy
1 47 £d I weyBmung | L0 I wip £d 3 ynug &
4 4 za £ Jajsayoueiy [30) I qod 434 1 sauof v
1 33 1a K/ uopuo 0 ¥ moIpuy £ /1 uojjog v
Kouanbaig ofy SSaIppY \ 1 kgmuozoxv [fe) Aouanbaiy | swreN isug | ssaippy »wﬁ:w&m uE«E%m SSIPPY
ﬁwozcohm S / §S21ppY \ /
/ \ ™ ™
€80T /0T
I 9 . 144 94
[4 7d £ | & 1 td £V 5]
1 1 © | w ! 4 £v £
1 va 0 | o I 19 £V x|
1 €a 48] zd I £ v 4|
i 146 10 14 I g 1v 1d
Aouanbarg &y go SSAIpPY Kouanbaiy] w3ry g1 SSAIPPY
Tl [y
Zd ¢q 9o | 9901
¢4 & D S301
14 vd ¥D | P90T
pd 7 o | 90T {99 D ¥D ‘€D 7O 1D} — SN
£d o8 > | Tor ooy PSOT 7T ,
N s
T 2 H 19 T {s'v‘c T 10} — 800
w3y w1 | ssappy I% ; Jlm
P §501 S10 TSo0T S0

US 2012/0203740 A1

Aug. 9,2012 Sheet 31 of 47

Patent Application Publication

1601 4 wmyay

LI IK |

9601
(sun.iisa0 125d)yurapeguasur S8\
(wsapod)10 quionegmau=d
S601
1 + Aousmboifd = dousnboyfd ~ [* N
A
N £601
(sunuaa0 125 usanpd) ey J8uyorew = d
A
594
0601"
(ed “id) = uaapnd 1o
1
©8601
6801
(q3uesas ‘mBLrusspodipasu = ¢d 197 1601
(125 wianodyussye Suyorew = d
! \
8801)
(Wories yfopusapvdyiasu = id 137
+ L3801
SBA {(1aspagreas!

9801 Hei§

US 2012/0203740 A1

Aug. 9,2012 Sheet 32 of 47

Patent Application Publication

1601 dumyay

101 "OIA

9601
(stinwizao 1as dyussgeguasuy
(wi2pvd)10 uiayre gmau=d
$601 . .
1 + Aouanbasf'd — fouanbayfd N k
[
- 98601

N £601
b (suniuzao a5 uisnpdwspegduryorw = d

48601 MW>

0601
(7d “Id) = uaaywd yary

!

6801
(1314105 ‘yBreusapodypasuy = id 1]

!

8801
(Yo 125 oy usaynd)posur = Id 13

i

1601
(o5 uaaypdyusyegSunprew = d

i
ON

L8301

{(ashagyeartst

9801 1®IS

US 2012/0203740 A1

Aug. 9,2012 Sheet 33 of 47

Patent Application Publication

lo1 o1

¥S0T1 pug

£601
31dry feurBuo
Yarm o[dny papasui yo uonisod demg

A

T501
91dm pajepdn pasuy

A

1501
parepdn 3uraq ojdm reurSuo sejeq

0501 e1g

US 2012/0203740 A1

Aug. 9,2012 Sheet 34 of 47

Patent Application Publication

T
NYHLLYd 40 SHONVILSNI

eI1 "OId

8TIT 0001

L1171 86T LOTT A 3JAL,
9111 €7T 9011 . AL
SIIT LEZ CSOTT WD SIAL
PIIT SEI vOT1 .8 3L,
EIIT Lp1 €011 .V SIN,,

Z111 swiaped Jo “ou

7011 IsImoeynueu

i

i

1011
NYHALLYd

US 2012/0203740 A1

Aug. 9,2012 Sheet 35 of 47

NYdLLVd
LS¥Id 40 NOILYJO1

]

qI1 "Old
8911 0001
LTI €58 €911 L1 €STT WV I,
PLIT 81L POTT €1 PSTT WF ST,
SLIT 18% SOTT LET S WD FPAL
9LTT 8ST 9911 €2 911 .d 3L,
LLIT 0 L9TT 8ST LSTT W3 3N,
1911 198350 7911 swsaped jo ‘ou CST11 faarorjnuew
A A

Patent Application Publication

1011
NYALLVd

US 2012/0203740 A1

Aug. 9,2012 Sheet 36 of 47

Patent Application Publication

6071 pug QA

el1 O

80Z1
usaped ag 10§
anJeA 1351J0 SY) JUSWILIIU]

$0c1
swsajied sy) Jo ows 103
IN[BA 19510 3y} Amwtaq

Lott
wahied 10§ 19530
1 23108 10 Kowawr
pajeaoj[e 0 ajdm Lip

A

£021
Hos
woy Sunmsas susaged
JO 19p10 SUTHISa

9021
o[dny xau 3y) 103
urapred Jo anfea Ayuapy

A

ﬁ

ON

S0T1
4319¥) Jo pug

[44]
20145p a3e10J5 T U0 10

Krowsw vt eare 2200[1Y

3

1021
3]qe) pauos 10) 2Fei0)S
10 Srowsw sunuLaq

00Z1 Has

Patent Application Publication Aug. 9,2012 Sheet370f47 US 2012/0203740 Al

1250
1252
1251
1253

FIG. 12b

0
1
257
258
259
480
481
482
483

US 2012/0203740 A1

Aug. 9,2012 Sheet 38 of 47

Patent Application Publication

60T1 pud

et
J08
UONIIIPUI 1001 10 QLY
Sunnsas oy w sded as0)

le—sax.

BET "OIA

———

3021
usaged 3y ro3
AN[RA J251J0 3L JUSWIIOU]

4

LOT1
uraned 103 jasj30
12 53e1035 20 AIDWwow
pa1ea0]ie 01 3jdm Aum

%

SaR

01¢1
{yotew wayed
UoN|As §30(

90¢€1
s[dny 3xau
3y 304 susapied 1108 pue
Aaanbyuanoaras Ajnuapy

%

N

94
{319% Jo pug

]

pozl
swaned a1 0 yors o}
anjea J9s3J0 A ATUITRQ

4

€0zI
uos
wieyy Sunmsal sureyed
JO 19pI0 Suu g

A4
991A2p 95RI0)S ® U0 10

AIOWa Wy BaY 31800)[Y

4

1071
3{qe} pauos 10 23el0)s
10 K1owaw MU

001 verg

US 2012/0203740 A1

Aug. 9,2012 Sheet 39 of 47

Patent Application Publication

6S¢1 pug

aeT "Dl

]

9¢tl
[1+1v15=ta015
[-+XopLI=Xxapu
[amis]d=[xapuzjo]
sdeg ;noynm
0 Kere [eury oyu Adoo

7y
Sop

xapupplayJsprayimis]

85¢€1
o Kelre wney

1231

i ASXIPUL S
— 5oy, [¢a>xaput s]]

ON-——

LSET
(1+¥epuppray=xapujpiay*
az18" [xapugp)ayf]spyatj=140;5)
19sgo wianed eyl
asn pue wisyed 1xu 0 0n

¢19dwos o Aeire
SI

]

€€l
lo=xapusprarf
‘O=Xaput ‘Q=1avIs]
s3]qeLieA dzZi[elIu]
A

(432
[o feire ajeooyiv]

ade101s
10 Kiowaw 3ye20] Y
A

16€1
[()az15125100.4=4 197
ajqeLieA
9ZIS Jasqns 10§

0SETdX MR

US 2012/0203740 A1

Aug. 9,2012 Sheet 40 of 47

Patent Application Publication

(454!

ep] "DIA

00%1

8Ivl C¢ 80FI d
LIFT ¥T LoVl 4
91v1 TT 90¥1 d
SIYY L1 SOPL O
vIvl vE vovi _"m
EIvl €T vl v
0Iv1 *%e 10v1 sweu

(44121

US 2012/0203740 A1

Aug. 9,2012 Sheet 41 of 47

Patent Application Publication

ari “O14

00$1
8TV OF 8141 ¢ 801 4
vmz_ow PIPT b€ Atk
LT1 02 LIPT +2 LOYT 9
9ZH1 07 oIY1 T2 901 a
€Tl 07 £Itl €7 €0v1 v
STHI SI SIvl LI S0v1 D
0Tyl Ao Hos o113 10p] oweu

US 2012/0203740 A1

Aug. 9,2012 Sheet 42 of 47

Patent Application Publication

W1 “OIA
0€b1
6L¥1 00086 6971 O 6Sp1 [
8LY1 000°ST 89+1 81 8SPI 1
LLYT 000°S8 Lo¥1 St LSYT H
9L¥1 000°017 99%1 0§ 9sr1 O
23. 000011 SO¥1 T€ Sspl 4
vLET 000°08 Yol vT bSvl d
€LPT 000°CH €9%1 T g1 a
YL 000°62 91 L1 432 8)
IL¥T 00082 191 ¥¢ ISP1 €
OLPT 000°LS 09v1 €T 0Sy1 v
Tyl dwoour byl o3e Op¥T sureu

US 2012/0203740 A1

Aug. 9,2012 Sheet 43 of 47

Patent Application Publication

PY1 "DIA

98%1 51

9LPT 000012 99%1 0S 9S¥1 D
68%1 68 6LF1 00086 69¥1 OF 6SPI [
L8Y1 LL LLPT 000°S8 L9¥I SE LS¥] H
1841 69 1Lb1 o%f 1991 ¥€ IS¢l 4
S8yl S8 SLYT 000011 S9PT 7€ SSpT g
¥8¥1 09 bLYT 000°08 vopl 9T PSPl 4
081 8t 0LP1 000°LS 09¥1 €T 0S¥l v
€891 1t ELYT 000°CH £9%1 7T gsvl a
88F1 2T 8LYT 000°ST 89¢1 81 gsvl 1
861 67 UYL 00067 9Pl LI WD
thpl Aoy nos Thbl swodw b1 o8¢ Obp1 oureu

US 2012/0203740 A1

Aug. 9,2012 Sheet 44 of 47

Patent Application Publication

W1 “OIA

0Lyl

981 $SI 9L¥T 000°01C 99%1 0S 9s¥1 D
6371 68 6Lb1 00036 691 Of 65p1 I
S8¥1 <8 SLYT 000011 Sovl € Ssv1 4
L8YI LL LLY1 000'S8 LOVI S€ LS¥1 H
18%1 69 1LPT 000'8L 19%1 € 15¢1 @
v8¥1 09 pLYT 00008 Yol 2 PSPl 4
081 8% 0LYT 000°LS 09%1 €2 0S¥l vV
vl 1p €LVT 000°€H €OVl 72 €Sl a
8¥1 67 ILP1 00062 wopT LI srl 0
88¥1 7T 8LVT 000°ST 80%1 81 86p1 1
gppl Koy 1os Thb1 swoouy Itb1 oe bl dureu

US 2012/0203740 A1

Aug. 9,2012 Sheet 45 of 47

Patent Application Publication

[§391
NAALLYd 40 SHONV.LSNI

ﬁ

839!
NYHLLVd 40 SHONVISNI

]

[}
BST "DIA
8esT ¢
PEST 1 veeT Lty
£ecl T €761 S0t
751 suieped Jo sou 7TS1 Jequmu Korod 1261
NAALLYd
11391
BIST ¢
SISt 1 SOST LTy
pIST 1 POST C6¢
EIST 1 £0S1 SOE
1051
suiayed Jo "ou Taqunu £orjod
TIsl ned] T0S1 139 | N¥ALLYd

i

01¢1

i

US 2012/0203740 A1

Aug. 9,2012 Sheet 46 of 47

Patent Application Publication

QST O

09¢1

L.

§9ST #9651
Loy S0t

0581

96sT -

Lty

gecl
S6¢

¥SS1
S0€

US 2012/0203740 A1

Aug. 9,2012 Sheet 47 of 47

Patent Application Publication

O0¢T "O1A

7 | 0951

€961 ¥OSI1
Ltr Sog

€961

0581

9sS1 5661
Ly S6¢

1457
S0t

1

US 2012/0203740 Al

METHOD AND SYSTEM FOR
IMPLEMENTING AN ENHANCED DATABASE

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of U.S. patent
application Ser. No. 11/244,347, filed 5 Oct. 2005, which
claims the benefit of U.S. Provisional Patent Application No.
60/615,793, filed 4 Oct. 2004 and U.S. Provisional Patent
Application No. 60/671,172, filed on 12 Apr. 2005, each of
which is expressly incorporated herein in its entirety by ref-
erence thereto.

[0002] This application relates to U.S. Provisional Patent
Application No. 60/615,793, filed 4 Oct. 2004 and PCT
Application No. PCT/GB01/05627, each of which is
expressly incorporated herein in its entirety by reference
thereto.

COPYRIGHT NOTICE

[0003] A portion of the disclosure of this patent document
contains material that is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or patent disclosure as
it appears in the Patent and Trademark Office, patent file or
records, but otherwise reserves all copyright rights whatso-
ever.

FIELD OF THE INVENTION

[0004] The present invention relates to a method and sys-
tem for implementing an enhanced database and enhanced
database operations.

BACKGROUND INFORMATION

[0005] Conventional database management systems incur
greater operating overhead using more resources as they grow
larger. Businesses rely on fast database performance in the
execution of normal commercial operations and, in particular,
would benefit from gains made in, database efficiency and
performance. The present invention is a significantly
enhanced implementation of a database as well as enhanced
database operations that result in greater efficiency, particu-
larly with larger databases.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1a is a diagram illustrating a table of data that
may appear in a database system.

[0007] FIG. 15 is a diagram illustrating a leaf node pattern
set for a field according to one embodiment of the present
invention.

[0008] FIG.1cisadiagram illustrating the leaf node pattern
sets for all the fields in a table according to one embodiment
of the present invention.

[0009] FIG. 1d is a diagram illustrating a pattern set for a
branch node according to one embodiment of the present
invention.

[0010] FIG.1eis anillustration of both branch node pattern
sets for a particular table according to one embodiment of the
present invention.

[0011] FIG. 1f7is an illustration of the root node pattern set
for a table according to one embodiment of the present inven-
tion.

Aug. 9,2012

[0012] FIG. 1gis an illustration of the entire tree structure
ofa particular table with the pattern sets for each node accord-
ing to one embodiment of the present invention.

[0013] FIG. 2 is a diagram illustrating an example binary
tree structure representation of a tuple in a table of a database
highlighting the different types of patterns that may be iden-
tified according to one embodiment of the present invention.
[0014] FIG. 3 is a diagram illustrating the logic used in
incorporating one particular efficiency enhancement into the
pattern identification process for patterns based on subordi-
nate pattern pairs, according to one embodiment of the
present invention.

[0015] FIG. 4 is a diagram illustrating a binary tree struc-
ture representing an example tuple of a table according to one
embodiment of the present invention.

[0016] FIG. 5 is a diagram illustrating the process of gen-
erating a tree design or layout for a table according to one
embodiment of the present invention.

[0017] FIG. 6a is a diagram illustrating a two-dimensional
array where the fields of the table are positioned as leaf nodes
according to one embodiment of the present invention.
[0018] FIG. 6b is a diagram illustrating the two-dimen-
sional array with the addition of the links between the leaf
nodes and the branch and root nodes according to one
embodiment of the present invention.

[0019] FIG. 6cisadiagramillustrating a more conventional
binary tree representation of the fields of a table as determined
according to the subtree function in one embodiment of the
present invention.

[0020] FIG. 6d is a block diagram illustrating a simple
process for designing a table of an example database accord-
ing to one embodiment of the present invention.

[0021] FIG. 7a is a diagram showing 5 example fields that
can be designed into a tree using a simple process according
to one embodiment of the present invention.

[0022] FIG. 7b is a diagram listing the example fields and
their cardinalities determined according to one embodiment
of the present invention.

[0023] FIG. 7¢ is a diagram illustrating the resulting tree
design using the simple process according to one embodi-
ment of the present invention.

[0024] FIG. 8a is a diagram illustrating a further refined
tree design process according to one embodiment of the
present invention.

[0025] FIG. 85 is a diagram illustrating the example fields
and their associated cardinality values for the refined tree
design process according to one embodiment of the present
invention.

[0026] FIG. 8¢ is a diagram illustrating the grouping of the
fields into sub-lists using a logarithmic value of the cardinal-
ity for each field according to one embodiment of the present
invention.

[0027] FIG. 8dis a diagram illustrating the final tree result-
ing from the refined tree design process according to one
embodiment of the present invention.

[0028] FIG. 9 is a flowchart illustrating the process of test-
ing whether a field in a tuple is equal to a given value accord-
ing to one embodiment of the present invention.

[0029] FIG. 10q is a diagram illustrating a binary tree rep-
resentation of a table identifying a lowest-level common
branch node for three leaf nodes (fields) according to one
embodiment of the present invention.

[0030] FIG. 105 is a flowchart illustrating the process used
to determine the path the lowest-level common node for a set

US 2012/0203740 Al

of'leaf nodes or fields used in an expression according to one
embodiment of the present invention.

[0031] FIG.10c is a flowchart illustrating the process for on
demand evaluation of an expression according to one
embodiment of the present invention.

[0032] FIG. 104 is a diagram illustrating a root indirection
set and how it relates to the pattern sets for the nodes in a tree
structure of a table according to one embodiment of the
present invention.

[0033] FIG. 10e is a diagram illustrating the tree structure
of'atuple in the data set of a table and showing the pattern and
its frequency at each node of the tuple according to one
embodiment of the present invention.

[0034] FIG.10fis a diagram illustrating the tree structure of
a tuple in the data set of a table showing the pattern for the
deleted tuple and its frequency at each node after the tree has
been traversed and the pattern frequencies decremented
according to one embodiment of the present invention.
[0035] FIG.10gis a diagram illustrating the pattern sets for
each node of a table according to one embodiment of the
present invention.

[0036] FIG. 10/ is a flowchart illustrating the insert opera-
tion for a binary tree representation of the table according to
one embodiment of the present invention.

[0037] FIG. 10iis a flowchart illustrating a variation of the
insert operation for a binary tree representation of the table
according to one embodiment of the present invention.
[0038] FIG.10jis a flowchart illustrating the update opera-
tion according to one embodiment of the present invention.
[0039] FIG. 11qa is diagram illustrating the patterns and
number of instances for each pattern that are stored in
memory or on a storage device and referenced by pointers in
the representation of the table for the data set according to one
embodiment of the present invention.

[0040] FIG. 115 is a diagram illustrating the offset values
for a table sorted in reverse alphabetical order by manufac-
turer according to one embodiment of the present invention.
[0041] FIG. 12a is a flowchart illustrating the overall sort-
ing process according to one embodiment of the present
invention.

[0042] FIG. 125 is a diagram illustrating a further example
of the sorting process according to one embodiment of the
present invention.

[0043] FIG. 13a is a flowchart illustrating the combination
of a selection or query operation with a sorting operation
according to one embodiment of the present invention.
[0044] FIG.13bis a flowchart illustrating the consolidation
process for a subset of the data from a table according to one
embodiment of the present invention.

[0045] FIG. 14a is a diagram illustrating an example table
to be sorted using an expression according to one embodi-
ment of the present invention.

[0046] FIG. 145 is a diagram illustrating the sorted table
with the expression value shown according to one embodi-
ment of the present invention.

[0047] FIG. 14c is a diagram illustrating a data set for an
example table.
[0048] FIG. 144 is a diagram illustrating the table in sorted

order by age and then income and showing the sort field orkey
value for each tuple of the table according to one embodiment
of the present invention.

[0049] FIG. 14eis a diagram illustrating the data set for the
table in sorted order by expression according to one embodi-
ment of the present invention.

Aug. 9,2012

[0050] FIG. 15a is diagram illustrating the patterns and
number of instances for each pattern that are stored in
memory or on a storage device and referenced by pointers in
a representation of two tables for two data set according to
one embodiment of the present invention.

[0051] FIG. 154 is a diagram illustrating a tree-structure
representation of a table for an insurance policies data set and
a table for an insurance claims data set according to one
embodiment of the present invention.

[0052] FIG. 15¢ is a diagram illustrating a tree-structure
representation of the joining of the data sets for two tables
according to one embodiment of the present invention.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS

[0053] According to one embodiment of the present inven-
tion, a database is created from a set of data (i.e., a “data set™)
by identitying the patterns in the data set, storing the patterns
in memory (or on a storage device), and generating a repre-
sentation of the database structure using pointers to the stored
patterns. The use of pointers to store the patterns can greatly
reduce the amount of memory or other space required to store
the data set by replacing duplicate patterns with additional
pointers, which are normally considerably smaller in size. In
addition, the use of pointers may allow for more rapid search-
ing, sorting, and other operations on the database because
they can be performed using the patterns to represent many
records (tuples) in a single operation. The present invention
incorporates such a database as described in PCT Application
WO 02/063498, METHOD OF QUERYING A STRUC-
TURE OF COMPRESSED DATA, the entirety of which is
expressly incorporated by reference herein.

[0054] The terms tuple, row, and record are used inter-
changeably throughout this specification. The example
embodiment illustrated below refers to a tuple identifying the
relational nature of the resulting database according to this
embodiment of the present invention. The present invention
may also be implemented using a hierarchical or other data-
base model in alternative embodiments of the present inven-
tion. The following examples and embodiments often
describe the present invention using a data set for a tableina
database. However, the embodiments described can also be
used across several tables rather than for a single table only
and the descriptions should not be considered as limiting the
present invention to operating only on a single table of a
database.

[0055] FIG. 1a is a diagram illustrating a table of data that
may appear in a database system. This table contains four (4)
fields: surname 101, first name 102, city 103, and age 104.
There are six (6) tuples (rows or records) 105-110 as indi-
cated. In a tree structure representation of this table according
to one embodiment of the present invention, each of these
fields corresponds to a leaf node in the tree and the values of
the field are, the patterns for the leaf node. In one embodiment
of the present invention, the unique patterns for each node,
including the leat nodes for the fields, are stored in memory or
on a storage device and a pointer in the table references the
stored pattern. In addition, the number of instances of the
pattern in the table is also stored along with the pattern and
may be referenced by the same pointer to the pattern. In an
alternative embodiment of the present invention, a second
pointer to the number of instances may be used in the table
though, in the example embodiment, this is not the case. FI1G.
15 is a diagram illustrating a leaf node pattern set for a field

US 2012/0203740 Al

according to one embodiment of the present invention. The
unique patterns 111-114 along with the number of instances
115-118 of these patterns occur in the table are included in the
pattern set for the leat node (i.e., field) of the table according
to this embodiment. The patterns are stored only once in the
pattern set and each additional occurrence of the pattern
results in incrementing the number of instances for the pat-
tern. FIG. 115 shows a pattern set 151 with four patterns for
the surname field along with the associated number of
instances. The patterns are “Bolton” 111, “Jones” 112,
“Smith” 113, and “Wright” 114 with a respective number of
instances of 1 115, 1 116, 3 117, and 1 118. As previously
stated, this pattern information is stored in memory or on a
storage device and is referred to by pointers in the table. The
titles “Surname” 119 and “Instance” 120 are shown only for
the sake of clarity in the illustration and, in this embodiment,
are not stored with the pattern information. The patterns in the
pattern set are also stored in a sorted canonical order accord-
ing to this example embodiment though, in other embodi-
ments, ordering the patterns in the pattern set may not occur.
Also as previously discussed, a single pointer refers to a
pattern and its number of instances though in an alternative
embodiment a separate pointer may be used for the number of
instances. The number of instances is determined from the
tuples 105-110 in the original data set of table 100. For
example, the pattern “Bolton” 111 occurs only in a single
tuple 109 of the table and, therefore, the pattern has only 1
instance 115. In another example, the pattern “Smith” 113
occurs inthree tuples 105, 108, 110 of the table and, therefore,
the pattern has 3 instances 117. FIG. 15 illustrates the pattern
set for a single field or leaf node of the table and is only one
example of the pattern sets for the table 100 according to this
embodiment of the present invention.

[0056] FIG.1cisadiagram illustrating the leaf node pattern
sets for all the fields in a table according to one embodiment
of'the present invention. The pattern set for the surname field
orleaf node 121 shown in FIG. 15 is also shown in FIG. 1¢. In
addition, the pattern set for the first name field or leaf node
122, the city field/leaf node 123, and the age field/leaf node
124 are also shown. Each of the pattern sets 121-124 includes
the unique patterns for the field or leaf node along with the
number of instances for the pattern in the field as previously
described. For example, the first name pattern set 122
includes the first name patterns and their associated number
of'instances. The headings for the patterns 119, 125, 127,129
and the number of instances 120, 126, 128, 130 are shown
only for the sake of clarity in the illustration and are not
otherwise stored according to this embodiment as previously
described. The additional column address 131-134 are also
shown for the sake of clarity and contain “addresses” for each
of'the patterns (and the associated number of instances) in the
pattern set. The pointers in the table generally refer to the
addresses for these pattern values. The addresses are shown
here merely to facilitate the explanation of this embodiment
of the present invention and the addresses are not stored
values in the pattern sets (at least in accordance with this
embodiment).

[0057] In addition to the leaf nodes (the fields) in a table, a
tree structure representation of the table also includes branch
nodes (a combination of leaf nodes and/or other branch
nodes) as previously discussed according to one embodiment
of'the present invention. In a binary tree structure according to
this embodiment, each branch node contains patterns based
on two subordinate nodes. FIG. 14 is a diagram illustrating a

Aug. 9,2012

pattern set for a branch node according to one embodiment of
the present invention. The pattern set 150 for the branch node
in a binary tree contains patterns that are composed of pat-
terns from its two subordinate nodes (either leaf and/or
branchnodes). A left node pattern 167 and a right node pattern
168 combine to make the branch node pattern and the number
of'instances 169 is also included for the pattern. As previously
stated the headers and address column are shown only for the
sake of clarity in the illustration and is not otherwise be stored
along with the pattern information according to this embodi-
ment. The pattern set for the branch node does not repeat the
patterns for the subordinate nodes but instead includes point-
ers to those patterns according to this embodiment. As a
result, the pattern set of a branch node is a pair of pointers—
one for the left pattern and one for the right pattern—and a
number of instances (or frequency) for the pattern. Based on
the original data set for the table 100, the branch node pattern
set 150 includes pointers to two subordinate leaf nodes for
surname 121 and first name 122. The patterns for branch node
pattern set 150 are: Al 135 (the pointer to the “Bolton”
pattern) and B1 139 (the pointer to the “Andrew” pattern) with
a frequency (number of instances) of 1 stored at address E1
161; A2 136 and B1 139 with frequency of 1 at address E2
162; A3 137 and B1 139 with frequency of 1 at address E3
163; A3 137 and B2 140 with frequency of 1 at address FE4
164; A3 137 and B3 141 with frequency of 1 at address E5
165; and A4 138 and B1 139 with frequency of 1 ataddress E6
166. The branch node pattern set 150 shown in FIG. 1d is only
one of the branch nodes for the table 100.

[0058] FIG. 1eis anillustration of both branch node pattern
sets for a particular table according to one embodiment of the
present invention. One branch node pattern set 150 was
already described in FIG. 1d. A second branch node pattern
set 151 includes pointers to two subordinate leaf nodes for
city 123 and age 124. The patterns for this second branch node
pattern set are: C1 142 (the pointer to the “Gloucester” pat-
tern) and D4 148 (the pointer to the 52 pattern) with frequency
(i.e., number of instances) of 1 at address F1 171; C2 143 and
D3 147 with frequency 1 at address F2 172; C2 143 and D4
148 with frequency 1 at address F3 173; C3 144 and D1 145
with frequency 1 at address F4 174; and C3 144 and D2 146
with frequency of 2 at address F5 175. The patterns in the
branch nodes 150, 151 reflect the unique combinations of
patterns that exist in the original data set 100 for the table.
[0059] FIG. 1fis an illustration of the root node pattern set
for a table according to one embodiment of the present inven-
tion. The root node pattern set 153 includes pointers to both
the branch nodes 150, 151 described in FIG. 1e. The left and
right pointers contain the addresses of the patterns in the
branch node pattern sets according to this example. The pat-
terns for the root node pattern set 153 are: E3 163 and F5 175
at address G1 181; E6 166 and F3 173 at address G2 182; E2
162 and F4 174 at address G3 183; E4 164 and F1 171 at
address G4 184; E1161 and F5 175 at address G5 185; and E5
165 and F2 172 at address G6 186. The frequency or number
of instances at the root table is omitted from the example
shown in FIG. 1f'because it is generally redundant as most
tables will not have multiple tuples with identical data in all
the fields. It is however possible to have such identical tuples
and therefore a frequency or number of instance value may be
used with the patterns at the root node in one embodiment of
the present invention. The patterns in the root set (i.e., the root
node data set) represent each of the tuples in the table.

US 2012/0203740 Al

[0060] FIG. 1g is an illustration of the entire tree structure
of'a particular table with the pattern sets for each node accord-
ing to one embodiment of the present invention. The tree
structure reflects the original table data shown in FIG. 1a
represented in a tree structure with the patterns stored at each
of the leaf nodes 121-124 and pointers to the patterns or to
other pointers stored at each of the branch 150, 151 and root
153 nodes.

Identifying Patterns in a Data Set:

[0061] A pattern may refer to one value in a field of a table
as well as to a combination of values from multiple fields of
the table. For example, a pattern for a leaf node is a value for
afield represented by the leaf node. If the leaf node represents
the field vehicle manufacturer, a pattern for the leaf node may
be, for example, “Mfg A”. A pattern may also represent the
value for abranch node in a tree. A branch node is a node with
subordinate or child nodes (two subordinate or child nodes for
each branch in a binary tree). A pattern for a branch node
represents the values for at least two leaf nodes in a binary
tree. For example, a branch node may have two subordinate or
child leaf nodes representing the fields vehicle manufacturer
and year of manufacture. A pattern for this branch node may
include, for example, {Mfg A, 1996}. The pattern in this
example represents one pairing of values from the subordi-
nate/child nodes. In the case where a branch node has at least
one subordinate branch node, the pattern for the parent branch
node will contain a grouping of at least 3 field values for the
at least 3 leaf nodes at some point subordinate to the parent
branch node. In summary, a pattern may be one value in the
set of values for a field in a table (a pattern at a leaf node of a
tree) or a pattern may be a grouping of values from the set of
values for at least two fields in a table (a pattern at a branch
node of a tree).

[0062] According to one embodiment of the present inven-
tion, the identification of data patterns in a data set for a table
may be an important element in storing the patterns in
memory or on a storage device and using pointers in the table
to reference the data patterns. The use of pointers in the tuples
(rows or records) of the table may allow greater efficiency
through faster database operation and decreased storage
required to implement a database according to the present
invention. A pointer to a stored pattern replaces each data
pattern that is encountered during the building of the example
table in a database according to this embodiment. The use of
a pointer to reference a pattern may occur for any type of
pattern encountered. For example, a pointer may be used for
any of the patterns at one of the four different types of nodes
that may be encountered in a binary tree representation of a
tuple of data in a database table as discussed below. Accord-
ing to one embodiment of the present invention, all the data
patterns in a table are stored in pattern sets in memory or on a
storage device and the representation of each tuple is imple-
mented by using pointers to the stored patterns.

[0063] FIG. 2 is a diagram illustrating an example binary
tree structure representation of a tuple in a table of a database
highlighting the different categories of patterns that may be
identified according to one embodiment of the present inven-
tion. The binary tree structure 200 for the tuple begins at its
highest point with a root node “R” 201, which identifies the
tuple. In this embodiment, the root node 201 contains the
tuple identification information that should remain in order to
retain an accurate account of the tuples in the table of a
database according to this embodiment of the present inven-

Aug. 9,2012

tion. From the root node “R” 201, the binary tree 200
branches to two nodes 202, 203 each containing pointers to
one or more stored patterns. At any level of the binary tree 200
the contents of a node may be pointers to stored patterns
according to this embodiment. For example, both of the first
two nodes 202, 203 resulting from the branching from the
root node 201 may contain pointers to their own respective
stored pattern sets.

[0064] The first node 202 represents one particular type of
node: a branching node with a subordinate leaf node and
another subordinate branching node—i.e., Branching node
with Leaf and Other nodes (BLO). This branching node 202
contains a pointer to a BLO pattern. The BLO pattern itself
being a pair of pointers with the first pointer to the subordinate
leaf node 204 pattern (i.e., a field value) and the second
pointer to the subordinate branch node 205 pattern, in this
case another BLO branching node. Any pattern for a branch-
ing node and for the root node will contain a pair of pointers
to other patterns because of the binary tree structure used
according to this embodiment of the present invention. This
second BLO branching node 205 branches to another leaf
node 209 and to a different type of branching node 208 that
branches to two subordinate leafnodes—i.e., Branching node
with Leaf Pair (BLP). This BLP branching node 208 contains
aBLP pattern and branches to two leafnodes 214,215. ABLP
pattern is a pair of pointers with the first pointing to a first leaf
node 214 pattern and the second pointing to a second leaf
node 215 pattern. Unlike the root node and the branching
nodes, leaf nodes contain pointers to field values instead of to
other pointers—the leaf nodes correspond to the fields in the
table—according to this embodiment. On the other side of the
binary tree 200 from the root node 201, the second node 203
is yet another type of branching node with two subordinate
branching nodes—i.e., Branching node with Other node and
Other node (BOO). This BOO branching node 203 contains a
BOO branching pattern and branches to a BLP branching
node 206 and a BLO branching node 207. A BOO branching
pattern is a pair of pointers with the first pointing to first
branching node 206 pattern and the second pointing to a
second branching node 207 pattern. The first branching node
206 is a BLP node branching to two subordinate leaf nodes
210, 211. The second branching node 207 is a BLO node
branching to a subordinate leaf node 212 and a subordinate
BLP branching node 213. This BLP branching node 213 itself
branches to two subordinate leaf nodes 216, 217. Though the
nodes in the tree structure, particularly the branching nodes,
have been distinguished, all nodes other than leaf nodes in the
tree structure will contain pointers to patterns consisting of
two pointers, one each for a pattern from the immediate two
subordinate nodes, according to this embodiment of the
present invention. Leaf nodes represent the fields of the table
and will contain pointers to actual field values that are stored
as part of the pattern set for the field/leaf node according to
this embodiment.

[0065] FIG. 2 illustrates different types of nodes that may
exist in a binary tree representation of a tuple of a database
table according to one embodiment of the present invention.
However, FIG. 2 does not necessarily illustrate the use of
binary tree structures in the generation of an example table or
database as it does not incorporate other example database
building techniques such as unbalancing/re-balancing the
binary tree and replacement of leaf and branch patterns that
may be utilized according to one embodiment of the present
invention.

US 2012/0203740 Al

[0066] One process according to the example embodiment
of the present invention is to replace multiple occurrences of
a data pattern in a table with multiple pointers to a single
instance of the data pattern. According to this process, the
data patterns for a field or node are stored in a pattern set in
memory or on a storage device and pointers are used in the
nodes of the table to reference the stored patterns in the
pattern set. This reduces the amount of memory and/or disk
space required to implement a table or database resulting in
improved efficiency. In other words, a repeated pattern in a
table is replaced by multiple pointers to a single instance of
the pattern stored in memory or on a storage device. For this
reason, a determination whether a data pattern is new needs to
be made each time a data pattern is identified. For example,
when a pattern is encountered for a table, a search operation
may be conducted to determine if the pattern has already been
encountered—i.e., an instance of the pattern has already been
recorded in the pattern set for the field or node of the table.
The time required to conduct this search operation is propor-
tional to number of already encountered patterns—in particu-
lar, it is proportional to log(n) where n represents the number
of different patterns already encountered for the table of the
database. As a result of this proportionally increasing execu-
tion cost for the search operation, a reduction in the number of
search operations conducted may greatly improve the effi-
ciency in the building of the example database.

[0067] One method to reduce the number of search opera-
tions conducted is related to the type of data pattern encoun-
tered. According to one embodiment of the present invention,
the type of data pattern is first determined when a data pattern
is encountered (e.g., leaf, BLP, BLO, and BOO). For a leaf
pattern (i.e., a field value), no reduction in the number of
search operations may be feasible. Therefore, the encoun-
tered leaf pattern may need to be compared with the set of
already encountered patterns to determine if the leaf pattern is
new. If the pattern is new, it is added to the set of encountered
patterns and a pointer may be used to replace the pattern in the
representation of the tuple of the table. A frequency value of
1 may also be assigned to the pattern according to one
embodiment of the present invention. If the pattern already
exists, the frequency counter may be updated (i.e., incre-
mented) and a pointer may be used to replace the pattern in the
representation of the tuple for the table. The remaining pat-
terns (e.g., BLP, BLO, and BOO—branch node patterns)
represent a pair of patterns that can occur in a binary tree
representation of atuple of a table. For these patterns based on
a pair of subordinate patterns, the pattern may be new regard-
less of whether its subordinate patterns are new or already
exist because the combination of the subordinate patterns
may be new. However, it is a certainty that if either of the
subordinate patterns is new, the pattern itself will be new. For
this reason, if a new first subordinate pattern is encountered,
the second subordinate pattern does not need to be compared
in order to determine if the pattern itself is new—it is a
certainty that the pattern is new. This situation allows for an
efficiency enhancement to be made in the pattern identifica-
tion process by reducing the number of search operations for
patterns based on subordinate pattern pairs (e.g., BLP, BLO,
and BOO patterns—branch node patterns) according to one
embodiment of the present invention. This efficiency results
in only searching half the subordinate patterns where the first
subordinate pattern encountered is new.

[0068] FIG. 3 is a diagram illustrating the logic used in
incorporating one particular efficiency enhancement into the

Aug. 9,2012

pattern identification process for patterns based on subordi-
nate pattern pairs, according to one embodiment of the
present invention. According to this embodiment, one of the
subordinate patterns is first compared with existing patterns
to determine if it is new. Based on this determination for the
first subordinate pattern, the second subordinate pattern may
or may not be compared. It is not relevant which subordinate
pattern is first compared and the example shown in FIG. 3 can
easily be reversed. The new pattern function may begin 300
with an identification of the pattern 301 and a determination
of'the sub-patterns 302. A first sub-pattern, in this example the
left sub-pattern in a binary tree representation, is compared
303 with existing patterns to determine if it is new. The
comparison process for the subordinate pattern returns a fre-
quency value indicating how many times the sub-pattern has
already been identified in the table in one embodiment of the
present invention. A frequency of 1, in one embodiment of the
present invention, indicates that this is the first time that the
sub-pattern has been encountered and, therefore, it is new. A
frequency greater than 1 indicates that the sub-pattern is not
new. p.leftPattern.frequency is an example of a variable that
may contain the frequency value for the first sub-pattern of
the pattern. If the sub-pattern is new (i.e., the frequency is 1),
the new pattern function may add the pattern (with a fre-
quency of 1) and terminate 304 indicating that the pattern is
also new. If the first sub-pattern is not new, the second sub-
pattern needs to be compared. In this example, the second
sub-pattern is the right sub-pattern in a binary tree represen-
tation and is also compared 305 with existing patterns to
determine ifitis new. If a frequency of 1 is encountered for the
second sub-pattern indicating that it is new, the new pattern
function may add the pattern (with a frequency of 1) and
terminate 306 indicating that the pattern is new (because one
of its sub-patterns was new). p.rightPattern.frequency is an
example of a variable that may contain the frequency value
for the second sub-pattern of the pattern. If the frequency is
greater than 1 for the second sub-pattern, the pattern itself
needs to be compared 307 with already encountered patterns
to determine if it is new. The result of this comparison 307 will
determine if the pattern is new and the appropriate value will
be returned either indicating the pattern is new 308 or that it
already exists 309. The process as illustrated in FIG. 3 can be
made further efficient by first performing pattern identifica-
tion of leaf patterns (i.e., the field values) then incrementally
increasing the hierarchy of the branch patterns up to the root
pattern. In this manner, subordinate patterns will already be
compared allowing for the retrieval of the frequency values
instead of comparisons against other stored patterns.

Tree Design:

[0069] According to one embodiment of the present inven-
tion, a table of data can be represented using a tree-structure
and in particular a binary tree-structure. According to this
embodiment, a single tree contains the value for the datain a
tuple or row of a table and a forest or conglomeration of trees
(with a similar structure) represent the data in the entire table.
In other words, the forest or set of trees represents the table
while a single tree represents a tuple or row of the table. A
tree-structure does not contain the field values and patterns
found in the tree but only outlines the placement and organi-
zation of the nodes and where the field values are located (i.e.,
which leaf nodes represent which fields). In a binary tree-
structure, all nodes are either leaf nodes (terminal nodes) with
no subordinate or child nodes or they are branch or root nodes

US 2012/0203740 Al

with exactly two subordinate/child nodes. In other words, in
a binary tree structure, all nodes either do not branch (i.e.,
have no subordinate nodes) or branch to exactly two subor-
dinate nodes. Nodes that do not branch are termed leaf nodes
and may be thought of as leaves in the binary tree. Nodes that
branch to two subordinate nodes may be termed branch nodes
and may be thought of as the branching points in the binary
tree. The first branching node in a binary tree may be termed
the root node and may be thought of as the trunk or root of the
binary tree. As previously discussed, the fields of a table are
represented by leaf nodes in the binary tree. The patterns at
the leaf nodes are the values of the field. Branch nodes rep-
resent a pairing or grouping of the values from all the subor-
dinate leaf nodes.

[0070] FIG. 4 is a diagram illustrating a binary tree struc-
ture representing an example tuple of a table according to one
embodiment of the present invention. In this example dia-
gram, the table represented contains five fields: manufacturer,
year of manufacture, color, use code, and premium. The tuple
presented by the binary tree shown in the FIG. 4 has the
following values for the fields {Mfg A, 1996, Blue, Private,
400}. Leaf nodes in the binary tree represent the field values
with: leaf node 1 401 representing the manufacturer field, leaf
node 2 402 representing the year of manufacture field, leaf
node 5 405 representing the color field, leaf node 8 408
representing the use code field, and leaf node 9 409 represent-
ing the premium field. Though the leaf nodes in FIG. 4 rep-
resent the fields of the table in the order that they were origi-
nally presented, the order of the fields does not need to be
maintained in the leaf nodes for the example embodiment of
the present invention. The field values at the leaf nodes are
“Mfg A” 410 at leaf node 1 401, “1996” 411 at leaf node 2
402, “Blue” 412 at leaf node 5 405, “Private” 413 at leaf node
8408, and “400” 414 at leaf node 9 409. The branch nodes in
this binary tree are branch node 3 403, branch node 4 404, and
branch node 7 407. The root node 406 is the first branching
node in the tree. The pattern for each branch node depends on
the subordinate leaf nodes. For example, the pattern for
branch node 3 403 is {Mfg A, 1996} according to the embodi-
ment shown in FIG. 4. The pattern for branch node 4 404 is
{Mfg A, 1996, Blue} according to the embodiment shown in
FIG. 4. The pattern for branch node 7 407 is {Private, 400}
according to the embodiment shown in FIG. 4.

[0071] The ordering and position of a leaf node represent-
ing a field of the table greatly affects the efficiency of the tree
design and table organization of the example database
according to one embodiment of the present invention. For
example, the performance of a search operation is determined
by the number of unique patterns at each node (i.e., position)
in the tree-structure. A node or position may be represented
using an (X,y) coordinate system where X is the number of
steps from the left to right across the level (numbered from 0)
and y is the height above the lowest level of the tree (also
numbered from 0). In other words, the x-value may be viewed
as the horizontal axis value and the y-value may be viewed as
the vertical axis value for the node in the tree. Using this (x,y)
coordinate system (i.e., Cartesian coordinates), a formula for
determining the minimum and a formula for determining the
maximum number of unique patterns for a node may be
implemented according to one embodiment of the present
invention. The equation for the minimum number of unique
patterns, in one embodiment of the present invention, is:

npMIN(x,y)=max(NP(a,5)), where (a,b)echildren(xy)

Aug. 9,2012

npMIN(x,y) is a function determining the Number of Patterns
Minimum (npMIN) at a particular branch node in a tree—leaf
nodes will have the set of unique values (patterns) for the field
and no calculations need to be made for subordinate/child
nodes as must be done for branch nodes. The branch node is
identified using the (X,y) position identification as discussed
earlier. The function is solved by determining the Number of
Patterns (NP) for each of the immediate subordinate/child
nodes of the branch node, the subordinate node identified
using the (a,b) convention for the position to differentiate it
from the (x,y) convention used for the branch node. The
“max” function in the equation indicates using the larger of
the two values (for a binary tree) for the number of patterns for
the two subordinate nodes of the branch node. According to
this equation, the minimum number of unique patterns for a
branch node is equal to the larger of the two values for the
number of unique patterns for the subordinate or child nodes
of the branch node. For example, if a branch node has two
subordinate leaf nodes, one subordinate leaf node for manu-
facturers with 10 unique patterns {Mfg 1, Mfg 2, Mfg 3, Mfg
4, Mfg 5, Mfg 6, Mfg 7, Mfg 8, Mfg 9, Mfg 10} and another
subordinate leaf node for automobile colors with 5 unique
patterns {Red, Green, Blue, Black, Grey}, the minimum
number of unique patterns for the branch node is 10—the
larger of the two values for the unique number of patterns for
the two subordinate leaf nodes. Described another way, the
minimum number of unique patterns at a branch node must
include at least one instance of each pattern/value in the set of
values for the subordinate/child nodes. Therefore, a subordi-
nate leaf node with 10 unique values in its set of values
requires a minimum of at least 10 different patterns occurring
in the parent branch node according to this embodiment of the
present invention. Because the patterns/values from the sub-
ordinate nodes can fully correlate (e.g., Mfg 1 is always Red),
the minimum unique patterns at a branch node equal the
greater of the two values for the unique number of patterns for
each subordinate/child node of the branch node.

[0072] Inaddition to the equation for the minimum number
of patterns at a branch node, an equation for the maximum
number of patterns at a branch node may also be imple-
mented. One example of an equation for the maximum num-
ber of patterns is, according to one embodiment of the present
invention, as follows:

npMAX (x,y)=min(IINP(a,b),R), where (a,b)echildren
)
npMAX(x,y) is the function to determine the Number of
Patterns Maximum (npMAX) at a particular branch node in a
tree. The branch node is identified using the (x,y) position
identification as discussed earlier. As with the minimum func-
tion (npMIN) discussed above, the solution to the npMAX
function requires a determination of the Number of Patterns
(NP) for each of the subordinate or child nodes of the branch
node. Unlike the minimum function (npMIN), a product of
the number of unique patterns for each of the subordinate or
child nodes is taken and compared to the number of tuples or
rows in the table with the lesser of the two values (i.e., the
product and the number of tuples) used as the final value.
Using the same example used above for the minimum func-
tion (npMIN), if a branch node has two subordinate leaf nodes
for the fields automobile manufacturer and color, the product
of the two values for the unique number of patterns for each
subordinate node equals 50 (i.e., 10 manufacturers*5 colors).
This value, 50, is compared to the total number of tuples for
the table—e.g., 40 tuples—and the lesser value (in this

US 2012/0203740 Al

example 40) is used as the maximum number of unique pat-
terns that can occur for a branch pattern according to this
embodiment of the present invention.

[0073] Because a binary tree structure is used to represent
the tuples of the table, the minimum and maximum number of
unique pattern functions (npMIN and npMAX) can be further
refined by replacing the (a,b) position convention for the
subordinate or child nodes with the same (x,y) convention
used for the branch node resulting in the following redefined
functions:

npMIN(x,y)=max(NP(2x,y-1), NP(2x+1,y-1))

npMAX(x,y)=min(NP(2x,y-1)*NP(2x+1,y-1), R)

The minimum pattern function (npMIN) is equal to the maxi-
mum or greater value of the number of unique patterns from
either of the two subordinate nodes. The maximum pattern
function (npMAX) is equal to the minimum or lesser value of
the product of the number of unique patterns for the two
subordinate nodes or the total number of tuples or rows for the
table (R).

[0074] When the actual number of unique patterns at a
branch node is closer to the minimum value (npMIN) rather
than the maximum value (npMAX), query and other opera-
tions on the data may be more efficient thereby improving the
performance of the example database according to one
embodiment of the present invention. One method to struc-
ture the tree in order to reduce the number of unique patterns
at a branch node is to group closely correlated fields accord-
ing to one embodiment of the present invention. Correlation
refers to the direct relationship between the values for two
different fields in a table of the database (or, for example, the
patterns for two different leaf nodes in the tree). Using the
previous example, the patterns/values in an automobile
manufacturer field may have a correlation to the patterns in
the automobile color field. If the pattern “Mfg 1” in the
manufacturers field is always “Red”, a pattern in the color
field, and “M{fg 2” is always “Green” and so on, a strong or
complete correlation between the patterns in the fields exists
as each automobile manufacturer would be correlated to one
automobile color. At the other extreme, the patterns or values
for both fields would be completely uncorrelated if each
automobile manufacturer produced automobiles in every one
of the automobile colors. The direct correlation between the
fields may range from no correlation (i.e., completely uncor-
related) as discussed above to a strong or complete correlation
also discussed above with any degree of correlation in
between. Using the above example, if the automobile manu-
facturer field is completely correlated to the automobile color
field and their representative leaf nodes are both subordinate
to the same branch node, there would only be 10 branch
patterns for the 10 manufacturers with each manufacturer
correlating to a single color value. If the automobile manu-
facturer field is completely uncorrelated to the automobile
color field and their representative leaf nodes are both subor-
dinate to the same branch node, there would be 50 branch
patterns because each of the 10 manufacturers may produce
cars in all 5 of the automobile colors. In a previously dis-
cussed example, the 40 tuples in the table indicate that there
is little correlation between these fields as the value of 40
more closely resembles the completely uncorrelated value of
50 rather than the completely correlated value of 10.

[0075] In another embodiment of the present invention, a
sub-binary tree (a subset of the binary tree beginning at a
branch node instead of the root node) that has n subordinate

Aug. 9,2012

leaf nodes (leaves) with the patterns at each leaf node having
similar’frequencies or alternatively the leaf nodes having a
similar number of patterns could be replaced with a single
n-ary node with the same number of leaves that also retains a
count of the frequencies of the sub-leaves.

[0076] For example using FIG. 4, a sub-binary tree begin-
ning at node 4 404 has 3 leaf nodes: node 1 401, node 2 402,
and node 5 405. If pattern frequencies or alternatively the
number of patterns are similar, the sub-binary tree may be
replaced with node 4 404 having 3 subordinate nodes (no
longer a binary tree) without the intermediate branch node 3
403. This may be particularly advantageous where a stronger
correlation between the patterns in the sub-binary tree exists.
[0077] As previously stated, a stronger correlation in the
patterns of two subordinate nodes result in a parent branch
node having closer to the minimum number of patterns rather
than to the maximum number of patterns. By reducing the
actual patterns at the branch node, the number of patterns is
reduced in all further parent branch nodes. In other words, the
stronger the correlation between two sets of patterns for sub-
ordinate nodes, the closer their combination size will be to the
minimum possible value and because the parent node pattern
size will be smaller, its parents can be smaller in pattern size
and so on. The reduction in the number of patterns in the
parent nodes results in a decreased amount of memory and
storage usage as well as expedited execution of a query pro-
cess on the data according to this embodiment of the present
invention. The way the tree is designed, therefore, becomes
very important in optimizing the database.

[0078] In selecting a tree design or layout, correlation may
be used to achieve more optimal outcomes. In one embodi-
ment with a tree with p leaf sets (leaves), there is a possible p!
orderings of the fields with 2% possible layouts or designs for
the tree. As the number of fields increase or the number of
tuples or rows (i.e., the set of values for the field) increase, it
becomes increasingly impractical to determine the correla-
tion between the fields. Therefore, finding another solution to
achieve similar results where correlation values are not avail-
able can provide a near optimal solution without the consid-
erable overhead determining correlation involves. Ideally,
this other solution will require additional time or resources in
a linearly progressing manner to the quantity of data and not
in a greater than linearly progressing manner or else this
solution will become too cumbersome for very large data sets.
One such solution is the use of a cardinality value in place of
correlation according to one embodiment of the present
invention.

[0079] The cardinality of a field is the number of unique
values (patterns) that the field contains in the entire data set
for the field—in other words all the unique values that are
used for the field. For example, in a data set of size R (the
number of tuples or rows for the table), a unique key field
would have a cardinality of R (all the values for the field are
unique). The maximum number of values for a field (or pat-
terns for a leaf node) is R because you can not have more
values than tuples or rows in the table. Therefore, in this
example, the minimum number of values for each parent
branch node above the unique key must be R, which will
always be greater than or equal to the number of patterns for
any other leaf node. Because the number of patterns for the
parent branch node is a minimum of R, if the leaf node for the
field appears 10 levels below the root node there will be at
least 10R patterns necessary to represent the table (10
levels*R as the minimum per level) in this example. However,

US 2012/0203740 Al

if the leaf node for the field appears immediately below the
root node there will only be a minimum of 2R patterns nec-
essary to represent the table (2 levels*R). Therefore, placing
the leaf node representing fields with high cardinality closer
to the root node reduces the number of patterns necessary to
represent the table and results in lower memory and storage
usage as well as more efficient query execution in a manner
similar to using field correlation. Regardless of the placement
of the leaf nodes for the fields, there will always be a mini-
mum of R patterns in the root node to represent all the tuples
in a table. The maximum number of patterns in any field is R,
the number of tuples (a field can only have one pattern in any
given tuple, so even if a key is unique there can only be R of
them in the entire database). The minimum number of pat-
terns is always 1 because the field must always have a value
(even if the value is NULL) in every tuple. According to one
embodiment of the database, there will be R root nodes for a
table because it allows the original order of the tuples in the
table to be recorded. Although it is theoretically possible to
have two completely identical tuples in a table, the occurrence
is rare in practice and using a complicated mechanism to
remove the duplicated pattern in the root node while retaining
the original ordering of the tuples in the table may be less
efficient. In an alternative embodiment of the present inven-
tion, it is possible to remove duplication of patterns at the root
node. The above example illustrates how using cardinality
can achieve similar results as correlation according to one
embodiment of the present invention. The principle differ-
ence between the two is in the amount of time (resources)
required to determine cardinality as Opposed to correlation.
Using a simple function to calculate the time taken to deter-
mine the cardinality can be represented as O(n*p) while the
time taken to determine correlation would take O(n*p®)
where n represents the number of tuples in the table and p
represents the number of fields in each tuple of the table.

[0080] FIG. 5 is a diagram illustrating the process of gen-
erating a tree design or layout for a table according to one
embodiment of the present invention. The first step 501 in the
process 500 is determining the set of values (i.e., the patterns)
for each field of the database table. The cardinalities or cor-
relations between the fields are next determined 502. As pre-
viously discussed, the calculation of cardinality may be more
efficient than calculating the correlation between fields and
takes only time O(n) to compute instead of time O(n?). How-
ever, a correlation may provide more useful information in
generating the tree structure representation of the table and
should therefore be used when available. Even though the
correlation may be more useful, it is not calculated instead of
cardinality and is used only if already available in the example
embodiment of the present invention. Ordering the fields in
the tree representation of the table in order to take advantage
of'a common cardinality or high correlation is the third step
503 in the process depicted in FIG. 5. Fields with common
cardinality or high correlation are ordered so they share a
common parent or, in other words, so that they are both
subordinate or child nodes of the same parent branch node.
Grouping fields with common cardinality or high correlation
may reduce the number of patterns that may exist at the parent
branch node and for other ancestor (i.e., preceding) nodes.
After grouping fields with common cardinality or high cor-
relation 503, the tree for the table is assembled 504 from the
sub-trees or branches created in the grouping process 503.
The grouping step 503 and the assembly step 504 can be
iterative in order to produce a final tree from the assembly of

Aug. 9,2012

branches determined through the grouping 503 and assembly
504 processes. The final step in the process of designing a
tree-structure to represent a table in the database 500 is the
building of the table 505 based on the determined free-struc-
ture.

[0081] The third step 503 in the process 500 involves the
grouping of fields (or clustering of nodes) and generating
sub-trees based on these groupings. In order to accomplish
this task, a function to determine the sub-tree structure may be
required. For example, the function subtree(list,h) is defined
below and takes as its parameters a list of the fields for the
table—list—and a minimum height for any node in the sub-
tree—h. The list of fields can be in any order (though the
grouping process 503 provides a sorted list which is used as
part of the process) and the minimum height is the height in
levels (further described below) of the branch node or sub-
tree. The subtree function may return a list of equal length as
the list provided; the returned list specifying the positions for
each field and node. In one embodiment of the present inven-
tion, the subtree function may be specified as follows:

subtree(list,h) =
let width = 27le dengihtiiso) i
let diff = (length(list) — width)*2 in
let x=0, y=hin
letresult =[] in
for (i=0; i<diff; i++)
result.append((x,y))

while (x<width)
result.append((x,y))
X =x+1

Applying the subtree function to a list of fields {a,b,c,d,e} of
length 5 (i.e., containing 5 fields) and with a minimum height
of 0 (h=0) results in a width=2""Ves2tenghlisi))—4 where
length(list)=length({a,b,c,d,e})=5, log,(length(list))=log,(5)
=2.322, int(log,(length(list)))=int(2.322)=2 and a diff=2 in
the above equation. The resulting set of Cartesian coordinates
(x,y) for the nodes corresponding to the fields is {(0,0), (1,0),
(1,1, 2,1, 3,1}

[0082] FIG. 6a is a diagram illustrating a two-dimensional
array where the fields of the table are positioned as leaf nodes
in accordance with the above example according to one
embodiment of the present invention. The array 600 contains
4 rows 601-604 and 4 columns 611-614. The fields of the
table are arranged as the leaves (i.e., leaf nodes) of the tree
beginning at the lowest level of the tree and/or array 600.
Using the (x,y) coordinates for the fields returned by the
subtree function, the fourth or lowest row 604 of the array 600
corresponds to the y-coordinate value 0, the next higher or
third row 603 corresponds to the y-coordinate value 1, and so
on. The columns of the array 600 begin with the lefimost or
first column 601 which corresponds to the x-coordinate value
0, the next or second column 602 corresponds to the x-coor-
dinate value 1, and so on. The array 600 may be considered
the first quadrant or quandrant I in a two-dimensional planar
system with the x-axis being the horizontal axis and the y-axis
being the vertical axis with both axes beginning with value 0
(zero) and incrementing by a value of 1. According to this
embodiment, the field values and corresponding (X,y) coor-
dinates returned by the subtree function are as follows:

US 2012/0203740 Al

Field: Coordinates (x,y):

(0,0)
(1,0)
(LD
@0
G.D

oo o

Using the coordinates to place the fields in the array results in:
field “a” 605 being placed in the fourth row 604 and first
column 611 corresponding to coordinates (0,0); field “b” 606
being placed in the fourth row 604 and second column 612
corresponding to coordinates (1,0); field “c” 607 being placed
in the third row 603 and second column 612 corresponding to
coordinates (1,1); field “d” 608 being placed in the third row
603 and third column 613 corresponding to coordinates (2,1);
and field “e” 609 being placed in the third row 603 and fourth
column 614 corresponding to coordinates (3,1).

[0083] FIG. 6b is a diagram illustrating the two-dimen-
sional array with the addition of the links between the leaf
nodes and the branch and root nodes according to one
embodiment of the present invention. The array 600 is the
same as the array 600 shown in FIG. 6a with the addition of
the links and non-leaf nodes. The links are created according
to this embodiment by taking the first pair in a row and linking
them to the leftmost open cell in the preceding row of the
array. For example, fields “a” 605 and “b” 606 are paired in
the fourth row 604 of the array 600 and linked to the first open
cell 615 in the third row 603 of the array 600 representing a
parent branch node for the leaf nodes (cells) for the fields. At
the third row 603, this new branch node 615 is paired with the
field “c” 607 leaf node and linked to the first open cell 616 in
the second row 602 of the array 600 representing another
branch node 616. Fields “d” 608 and “e” 609 are also paired
and linked to the next open cell in the second row 617 in the
array 600 representing another branch node 617. The two
branch nodes 616, 617 of the second row 602 of the array 600
are paired and linked to the first open cell in the first row 601
of the array 600 thus representing the root node for the tree.
The process described above allows a tree-structure to be
designed and represented in an array using the subtree or
other function according to one embodiment of the present
invention.

[0084] FIG. 6c¢isadiagram illustrating a more conventional
binary tree representation of the fields of atable as determined
according to the subtree function in one embodiment of the
present invention. The fields of the table {a,b,c,d,e} are dis-
played as the leaf nodes 651-655 of the tree. As discussed
above, the leaf nodes are linked creating the branch nodes
656-658 of the tree and ultimately linking to the root node 659
of the tree. The above example shown in FIGS. 6a-6c¢ illus-
trate a simple method for designing an example database
table.

[0085] FIG. 6d is a block diagram illustrating a simple
process for designing a table of an example database accord-
ing to one embodiment of the present invention. This process
begins by determining the fields of the table 661 as the first
step. A second step 662 computes the cardinality of each field
in the table. The fields are sorted into an ascending order of
cardinality as the third step 663 in the process. The sorted field
list is then supplied in the fourth step 664 to the subtree
function in order to determine the coordinates for the fields as

Aug. 9,2012

leaf nodes in a tree representation of the table. The returned
coordinates are used to generate a table array for the fields of
the table in the fifth step 665. As discussed later in this
application, a three-dimensional array may be used with the
third dimension representing the rows or tuples of the table
and where the array cells contain pointers to the values for the
fields according to one embodiment of the present invention.

[0086] The process shown in FIG. 6d can be further illus-
trated using another example. FIG. 7a is a diagram showing 5
example fields that can be designed into a tree using a simple
process according to one embodiment of the present inven-
tion. The five example fields are “manufacturer” 701, “year of
manufacture” 702, “color” 703, “use code” 704, and “pre-
mium” 705. These fields are examples that may be included in
the details for automobiles. The first step in the process 661 is
determining the fields as is shown in FIG. 7a. Determining the
cardinalities for each of these fields, the second step in the
process 662, is performed and the results are shown in FIG.
7b. FIG. 7b is a diagram listing the example fields and their
cardinalities determined according to one embodiment of the
present invention. The cardinality value for the manufacturer
field 701 is 80 706. The cardinality value for the year of
manufacture field 702 is 40 707. The cardinality value for the
color field 703 is 25 708. The cardinality value for the use
code field 704 is 2 709. The cardinality value for the premium
field 705 is 1000 710. Sorting the fields into an ascending
order by cardinality, the third step in the process 663, results
in a sorted list of the fields as {use code, color, year of
manufacture, manufacturer, premium}. Using the subtree
function discussed above, the sorted list is provided in order
to obtain field coordinates in the fourth step ofthe process 664
with the coordinates used to generate the tree in the fitth step
of the process 665. FIG. 7¢ is a diagram illustrating the
resulting tree design using the simple process according to
one embodiment of the present invention. The fields 701-705
are arranged as the leafnodes 701-705 with new branch nodes
711-713 identified along with a root node 714. The simple
tree design process described above is an effective method for
designing and generating a tree for a table according to one
embodiment of the present invention but becomes increasing
less optimal in situations involving larger deviations in the
cardinality counts of the fields.

[0087] In order to improve the optimal nature of the tree
design, the tree design process can be further refined to take
into account the potential for large deviations in the cardinal-
ity between the fields. FIG. 8a is a diagram illustrating a
further refined tree design process according to one embodi-
ment of the present invention. The first three steps in this
refined process are similar to the simple process shown in
FIG. 6d. This refined process begins with a first step 801 to
determine the fields of the table. A second step 802 is the
calculation of the cardinality of each field in the table. FIG. 85
is a diagram illustrating the example fields and their associ-
ated cardinality values for the refined tree design process
according to one embodiment of the present invention. The
examples fields and their cardinality values are: “manufac-
turer” field 811 with a cardinality value of 80 821; “year of
manufacture” field 812 with a cardinality value of 40 822;
“color” field 813 with a cardinality value of 25 823; “use
code” field 814 with a cardinality value of 2 824; “premium”
field 815 with a cardinality value of 1000 825; “branch” field
816 with a cardinality value of 4 826; “commission” 817 with
a cardinality value of 1200 827; “driver sex” field 818 with a
cardinality value of 2 828; and “number of drivers” field 819

US 2012/0203740 Al

with a cardinality value of 5 829. After the cardinality for the
fields is determined 802, the fields are sorted into an ascend-
ing order of cardinality as the third step 803 in the process.
The resulting sorted list of fields is {use code, driver sex,
branch, number of drivers, color, year of manufacture, manu-
facturer, premium, commission}. The fourth step 804 in the
refined process is new and was not part of the simple process
shown in FIG. 6d. The fourth step 804 is the grouping of fields
into sub-lists using a logarithmic value for the cardinalities to
determine how this grouping occurs. In order for this group-
ing to occur, a grouping value may be calculated using the
following equation: int(log;(cardinality)). Using this equa-
tion, a base 10 logarithmic value of the cardinality is deter-
mined and this value is converted to an integer by dropping
any residual fractional value. The resulting integer may be
used to generate the sub-lists. FIG. 8¢ is a diagram illustrating
the grouping of the fields into sub-lists using a logarithmic
value of the cardinality for each field according to one
embodiment of the present invention. Using the equation
int(log, ,(cardinality)), a grouping value is determined for
each field using that field’s cardinality. For example, the
grouping value for the use code field 814 with a cardinality of
2 824 is 0 834. The grouping value for the driver sex field 818
is also O (zero) 838 as is the grouping values 836, 839 for the
branch field 816 and the number of drivers field 819, respec-
tively. These four fields 814, 818, 816, 819 all have a grouping
value of zero 834, 838, 836, 839 and all form group 0 840 in
this example. The color field 813, year of manufacture field
812, and manufacturer field 811 all have a grouping value of
1833, 832,831 and form group 1 841. The premium field 815
and commission field 817 both have a grouping value of 3
835, 837 and form group 2 842. The fields in each of the
groups still maintain the ascending order of cardinality deter-
mined in the third step 803 of the process in this example. The
fifth step 805 in the refined tree design process is the building
of'a sub-tree for each of the groups. The subtree function may
be used to generate the sub-trees for each group by providing
the subtree function the list of fields for that group. The first
group, group 0 840, will generate a sub-tree with four leaves
or leaf nodes for the four fields contained in the group. The
second group, group 1 841, will generate a sub-tree with three
leaves or leatnodes for the three fields contained in the group.
The third group, group 2 842, will generate a sub-tree with
two leaves or leaf nodes for the two fields contained in the
group. The sixth and final step 806 in the process is generating
the final tree by combining the sub-trees for each group. In a
process similar to the tree generation for the array described
earlier, the sub-trees for the first two groups (group 0 840 and
group 1 841) may be linked to a branch node with this branch
node and the sub-tree for the third group being linked to the
root node. The groups are intentionally linked together in
sequence beginning with the first group in order to force the
higher cardinality fields (those with the higher grouping val-
ues) to higher positions in the tree. This will result in a
reduced number of potential patterns at the branch nodes of
the tree with the overall effect of greater efficiency in manipu-
lating the data in the table and the tree—e.g., resulting in
greater efficiency when searching the table.

[0088] FIG.8dis a diagram illustrating the final tree result-
ing from the refined tree design process according to one
embodiment of the present invention. The group 0 840 sub-
tree is joined into the final tree at a branch node 850 and
includes at its leaf nodes the fields user code 814, driver sex
818, branch 816, and number of drivers 819 organized

Aug. 9,2012

according to cardinality and position returned by the subtree
function. The group 1 841 sub-tree is joined into the final tree
at a branch node 851 and includes at its leaf nodes the fields
color 813, year 812, and manufacturer 811. The group 2 842
sub-tree is joined into the final tree at a branch node 852 and
includes at its leaf nodes the fields premium 815 and com-
mission 817. The group 0 840 and group 1 841 sub-trees are
linked to a branch node 853 which in turn is linked with the
group 2 842 sub-tree to the root node 854 of the final tree. The
values at each node indicate the maximum possible patterns
or values that can occur at the node. For example, the values
at the leaf node indicate all the possible unique values for that
field. At the branch nodes, the values indicate the maximum
possible combinations based on the values of the subordinate
or child nodes. These branch node values are determined by
multiplying the values of the subordinate nodes. The maxi-
mum possible values are shown to indicate the efficiency
achieved by using a logarithmic value to group the fields with
the fields with greater cardinality being grouped together and
included in the final tree at a higher level (i.e., closer to the
root node 854) according to the example embodiment of the
present invention. The use of this refined process may sub-
stantially reduce the number of patterns that can occur
according to other tree designs for the same fields and may
provide a more optimal solution to the tree design process.

Null Value Representation:

[0089] As part of the process of generating the example
database, patterns in the data of a database table are identified
and stored according to one embodiment ofthe present inven-
tion. Inorder to accomplish this pattern identification task, for
any given field in a table, a set of all values that are present in
the field is generated. Each value is included only once in this
set of values for the field. For example, if an integer field of a
table contains the values 1, 3, 5, 3, 7, 1, 5, 6 in various tuples
of the table, a set of values {1, 3, 5, 7, 6} is generated for the
field. The values 1, 3, and 5 are only included once in this set
of values even though they each occur twice in the original
data set of the database table.

[0090] In addition to storing values for the field, the data in
atable of the database may also be examined and represented
in a binary tree structure. According to one embodiment of the
present invention, each tuple in the table is represented by a
binary tree. The binary trees may then be manipulated in a
manner where the leaves and branches of the binary tree are
reorganized in order to facilitate a comparison of the binary
trees for the table. Patterns may be found as follows: in the
field value shown at a leaf of the binary tree—a leaf pattern;
at a branch in the binary tree with a left and right leaf pat-
terns—a pair of leaf patterns; at a branch in the binary tree
with a subordinate leaf pattern and another pattern (branch
pattern); and at a branch in the binary tree with two subordi-
nate non-leaf patterns (branch pattern). Leaf patterns may be
found at each leaf in the binary tree (i.e., for each field).
Branch patterns may be identified at each branching point
indicating at least one of a left branch and a right branch
value, which may also include its own subordinate patterns.
Each pattern is stored in memory and is generally referred to
by reference using a pointer. In other words, the pointer
contains an address where the pattern is stored. Multiple
occurrences of a single pattern result in the pattern being
stored once with additional pointers to the same stored pat-
tern. In this manner, a pattern that occurs 15 times in the table
is only stored once with at most 15 pointers to the pattern

US 2012/0203740 Al

value. As a result of this process, the data in the table is
reduced to a set of stored patterns and the trees for each tuple
of the table are reduced with pointers replacing leaf and
branch patterns whenever possible except at the root level (a
root level structure needs to be maintained to maintain an
accurate ordering of the tuples). Depending on the degree of
pattern repetition, this process can significantly reduce the
amount of space (in memory or on disk) required to represent
the data.

[0091] For most types of data patterns for the fields of a
tuple, the pattern is encoded as a pointer to a location where
the actual pattern is stored. For example, a simple pattern
“blue” for a field “color” may be stored as a pointer in the
“color” field (or associated leaf in a tree) for the tuple, the
pointer containing an memory address where the actual pat-
tern “blue” is stored. Alternatively, it is also possible to
directly encode a leaf pattern (i.e., a field value) rather than an
address in the pointer. For example, if there are 5 values in a
set of values fora field {0, 1, 3, 5, and 8}, the field value could
be encoded into the pointer by storing the binary value of the
field value instead of an address in the pointer. In this
example, the pointer may contain the binary sequence “0000”
for value (or pattern) 0, “0001” for value (or pattern) 1,
“0011” for value (or pattern) 3, “0101” for value (or pattern)
5, and “1000” for value (or pattern) 8. The database system
can, using some meta-data indicating the contents for a field,
determine whether the pointer contains a field value or a
memory address based on the pointer contents and can handle
the different types of pointers separately. For example, in the
case of an address, the database will map the field value to the
memory address of the pattern. In the case of a field value, the
database will map the field value to the contents of the pointer.
In other words, the pointer is either interpreted as pointing to
amemory address or it is interpreted as a value. Incorporating
a mix in these two types of pointers may reduce the overall
size of the database.

[0092] Ina 32-bit computer system where the pointer con-
tains an address referencing an integer data pattern (e.g., a leaf
pattern or field value), a pointer requires 32-bits of informa-
tion for the pointer (i.e., for the address) and an additional
32-bits to represent the pattern (e.g., the integer) referenced
by the pointer. Using the above example where the field
values 0, 1, 3, 5, and 8 are the leaf patterns being referenced,
a total of 5 pointers (5%32-bits) addressing the 5 patterns
(5*32-bits) requires a total of 320-bits to implement (i.e., 5
pointers*32-bits+5 values*32-bits=320-bits). However,
encoding the pattern (in this example the field value) into the
pointer itself adds an additional requirement for a 32-bit value
to identify the data type of the field (e.g., pointer contains
value not address) while combining the pointer and pattern
(i.e., value) into the pointer resulting in only 192-bits to
implement (i.e., 5 pointers*32-bits+32-bits for the field
type=192-bits). Incorporating the pattern into the pointer
itself reduces the memory or disk space required to represent
the field from 320-bits to 192-bits in this simple and limited
example. The potential space savings may be significantly
greater where a greater number of patterns are referenced.

[0093] One problem that may arise in storing a pattern in a
pointer rather than in using only addresses is the situation in
which the pointer represents a NULL value. A NULL value is
used by some database systems to indicate that no value has
been entered in a particular field of a tuple. How the NULL
value is represented or referenced by the pointer is generally
handled according to two methods. First, the entire set of

Aug. 9,2012

values that can be included in a 32-bit pointer include integers
falling into the range of —-23* to 2°*~1. The NULL value may
be represented by using a particular value to represent NULL
(e.g., —2°"). The second method uses an additional bit (i.e.,
33-bits) to represent 22 integers and may allow for an extra
NULL value or pattern. In the first case, one potential value is
lost to the pointer, and in the second case an additional bit
needs to be used resulting in an additional n bits of storage,
where n represents the total number of fields.

[0094] According to one embodiment of the present inven-
tion, using the first value of the set of values for the pointer to
represent NULL allows for NULL to be represented without
sacrificing a value in a pointer or adding additional bits to the
pointer. As previously discussed, pointers reference, through
their addresses or pattern values, a set of values for the field.
Including a NULL value as the first value in the set of values
for the field allows for NULL to be represented with only
32-bits*f additional space required for this NULL value
where f represents the total number of fields. This situation
applies to both cases where the pointer contains an address
and when the pointer contains a pattern or value directly. In
the case of a pointer containing an address, the first value in
the set of values referenced by the pointers for the field may be
the NULL pattern or value. In the case of a pointer containing
a value, the first value in the set of values contained by the
pointer for the field may be the NULL pattern or value.
[0095] One example of a modified query engine in order to
provide a select operation for including a NULL value and for
allowing the use of patterns or values incorporated directly
into the pointer is, according to one embodiment of the
present invention, presented below.

select(f,v,r)=
let d=dataSettingsFor(f) in

if(v==NULL)
return pointerFor(f,r)==d.startAddressOfSet

else if (datalsPointerFor(d))
return pointerFor(fr)==v

else
return valueAt(pointerFor(f,r))==v

In this example code, the select function for a field “” of the
database, a value of the field “v”, and a reference to a stored
pattern “r” is executed according to 3 cases. The appropriate
case is determined by examining the data settings for the field
“d” which may include the above described example use of an
extra 32-bits to identify the type of data contained for the field
(e.g., whether the pointer contains values or patterns instead
of addresses). In the first case, we are testing if the field
contains a NULL value (i.e., v=NULL). In this case, the
pointer is set to the first address in the set of addresses or, in
other words, the first value in the set of values for the field. In
the second case, the pointer contains the value for the field and
not a reference to a value. In the third case, the pointer con-
tains a reference to a value in the set of values for the field. In
this case, we test whether the data pointed to by the reference
(i.e., address) is equal to the requested value.

[0096] FIG. 9 is a flowchart illustrating the process of test-
ing whether a field in a tuple is equal to a given value accord-
ing to one embodiment of the present invention. According to
this embodiment, a comparison is made between the original
field value in the tuple of the table and the value generated for
the pointer or referenced by the pointer as part of the process
to use pointers to represent the fields of a tuple in a database

US 2012/0203740 Al

table. The process begins 900 with one or more comparisons
based on the field value being represented by the pointer.
According to the embodiment depicted in FIG. 9, the first
comparison 902 is a determination whether the field value
being represented by the pointer is NULL. If the value is
NULL, a second determination 903 is made to determine if
the pointer references the first value in the set of values for the
field. As previously discussed, the first value in the set of
values for the field is used to represent the NULL value for the
field. If the pointer does reference the first value in the set of
values for the field, either the NULL value or other appropri-
ate value may be returned 908 indicating that an appropriate
pointer has been generated. If the pointer references another
value or contains a different reference (i.e., address), an error
value is returned 907 indicating that the pointer incorrectly
reflects the value of the field. If the field value to be repre-
sented by the pointer is not NULL, the process further deter-
mines whether the pointer is storing the field value 904 rather
than areference (i.e., an address) to a value in the set of values.
If the pointer is storing the field value instead of a reference,
a determination is made as to whether the stored value in the
pointer equals the field value 905. If the pointer value equals
the field value, either the pointer value or other appropriate
value is returned 908 indicating that an appropriate pointer
has been generated. If the pointer value does not equal the
field value, an error value is returned 907 indicating that the
pointer incorrectly reflects the value of the field. If the pointer
does not store the value of the field directly, a determination is
made as to whether the value referenced by the pointer (i.e.,
the value at the address contained in the pointer) is equal to the
field value 906. If the referenced value equals the field value,
either the referenced value or other appropriate value is
returned 908 indicating that an appropriate pointer has been
generated. If the referenced value does not equal the field
value, an error is returned 907 indicating that the pointer
incorrectly reflects the value of the field. The process accord-
ing to this embodiment not only outlines a procedure to check
for the proper generation of a pointer for a field in a tuple of
database table, it highlights the three main categories of val-
ues that a pointer may contain according to this embodiment:
NULL value; directly containing a field value; and containing
a reference or address to a field value.

Evaluating an Expression

[0097] Many database operations may be implemented
using an expression rather than a particular value. For
example, a sort operation, a search or query operation, and a
count operation may be executed using an expression or func-
tion in addition to or instead of using a field or field value.
Expressions are often used in database operations but are
typically implemented in conventional database systems by
computing the expression for each tuple of the table for the
operation (e.g., a query operation). For example, if a query
operation is executed looking for all tuples where age is
greater that 21 years old, the age field of every tuple is exam-
ined to determine if the tuple matches the query requirements
for anage greaterthan 21 years old. According to one embodi-
ment of the present invention, the structure of a database and
its component tables as described above allow expressions to
be evaluated in a more efficient manner.

[0098] Thetree structure of a tuple according to the present
invention may be used to implement an expression (i.e., a
function). For example, if an expression uses three fields (leaf
nodes) as arguments, the lowest level (i.e., closest to the leaf

Aug. 9,2012

nodes and farthest away from the root node) common node
for the three fields/leaf nodes in the tree structure may first be
determined. FIG. 10a is a diagram illustrating a binary tree
representation of a table identifying a lowest-level common
branch node for three leaf nodes (fields) according to one
embodiment of the present invention. If an expression (i.e., a
function) uses three fields (e.g., f}, f,, and f;) as arguments,
the first common node is the lowest-level node where the
paths (from the root node to the leaf node for the field) to the
three fields join. The first field f; 1001, second field £, 1002,
and third field f; 1003 are leaf nodes in the tree structure 1000
of the table. Even though, the paths to first two fields f; 1002,
f, 1003 share a share or join at a common branch node 1005
early, a common branch node for all three fields is desired.
The paths to the three fields 1001-1003 first join at node X
1004, which is the lowest-level node common to the paths for
all three fields. This embodiment of the present invention for
using expressions in database operations achieves the greatest
efficiency gains over conventional database systems where
the number of patterns stored for the first common branch
node X 1004 is less than the number of tuples in the table.

[0099] A function may be used to determine the lowest-
level common node for the set of fields used as arguments in
the expression according to one embodiment of the present
invention. FIG. 105 is a flowchart illustrating the process used
to determine the path the lowest-level common node for a set
of'leaf nodes or fields used in an expression according to one
embodiment of the present invention. The first step 1030 in
the process is to retrieve the paths to the fields f; 1001, £, 1002,
and f5 1003. Variables are next initialized 1031. A loop is then
executed 1032 where each element of the path that is the same
for all the paths 1033 is copied into the results 1035. As soon
as a path element is encountered that is different among the
three paths 1034, the processing ceases 1032 and the result is
the path to the lowest-level common node. Once the path for
the lowest-level common node X 1004 is determined, the
expression can be evaluated for each unique pattern at the
lowest-level common node according to one embodiment.
The results may be stored with the pattern at the lowest-level
common node where the expression value can be recalled by
using the already determined path to the lowest-level com-
mon node.

[0100] In one embodiment of the present invention, the
steps for computing the value of the expression and looking
up the value using the path from the root node can be com-
bined so that the expression value is calculated on demand.
FIG. 10c¢ is a flowchart illustrating the process for on demand
evaluation of an expression according to one embodiment of
the present invention. The first step 1041 in this process is
determining the path the first node (i.e., the lowest level node)
in the tree structure where the paths to all the fields used as
arguments in the expression are joined (i.e., where they share
a common node). The pattern for this first node is retrieved as
the second step 1042 in the process. The third step 1043 in this
process is determining whether an expression value has
already been computed for the pattern. If a value for the
expression has already been computed 1044, the expression
value is returned 1046. If a value for the expression has not yet
been computed 1045, a computation step 1047 is executed
where the expression (i.e., the function) is executed using the
field values and the resulting expression value is stored along
with the pattern at that node and returned by the function.
Storing the pattern at each node, in this embodiment, allows
subsequent visits to the pattern at this first node of the tuple to

US 2012/0203740 Al

retrieve and return the stored expression value 1046 rather
than having the evaluate the expression again.

[0101] One benefit of this embodiment is that the expres-
sion is evaluated only at most M times where M is the number
of unique patterns for the first node. The expression needs to
be evaluated only once for each pattern (i.e., unique combi-
nation of fields) and, if a subset of the root set is being used,
less than M evaluations need to be made. The performance
characteristics for evaluating the expression from the root
node of the tuple instead of implementing the embodiment
above has a time required to evaluate any field used as an
argument in the expression related to O(length(path(root,
field))), where root is the root node for the tuple. Using the
embodiment described above, the time required to evaluate
any field used as an argument in the expression is related to
O(length(path(X,field))), where X is the first node (lowest
level node) where the paths of the fields used as arguments in
the expression join (i.e., share a common node). If there are
fields used as arguments in the expression and n root set
elements (i.e., tuples), the performance for evaluating the
expression from the root node instead of implementing the
embodiment described above is O(n*f*length(path(root,
field))). The performance for evaluating the expression using
the techniques of the embodiment described above is
O(M*f*length(path(X,field))+n*length(path(root, X)),
where the first half of the calculation is the determination of
the evaluation value from the first node X and the second half
is the determination of the path from the root node, root, to the
first node X. If the evaluation value has already been deter-
mined and is stored with the pattern at the first node X as
described above, the performance time is related to O(length
(path(root, X))) which is the time taken to follow the path
from the root node, root, to first node, X (i.e., the lowest level
common node for the field arguments in the expression).

Derived Fields

[0102] A data set may be further augmented by adding
additional fields that are calculated from other field values in
the data set according to one embodiment of the present
invention. In other words, a derived field is a new column or
field in the data set for a table that did not appear in the
original data set but was instead computed from the original
data set. For example, a field “data of birth” may appear in the
original data set for a table and may be used to calculate a
derived field “age”. Using a derived field may be particularly
advantageous where the value in the derived field is often
used for querying or sorting the data in the table. For example,
if an age value is often used to query the table data or to sort
on the table data, using a derived age field may improve the
efficiency of the database system. A derived field value may
be calculated at the time the data for a tuple is added or
updated in a the table. For example if a new tuple for a person
is added to a table, the derived age field value for the tuple is
calculated using the data of birth field. If the data of birth field
is NULL (i.e., there is no data in the field), the age field may
also take a NULL value. Computing the derived field during
the loading or updating of the data for a tuple according to one
embodiment of the present invention may improve the per-
formance of the derived field but results in an additional
storage requirement for the derived field value. According to
one embodiment of the present invention, only the unique
values for the derived field along with the number of instances
for the derived field pattern are stored in memory or on a
storage device. The representation of the table may contain

Aug. 9,2012

pointers to these values as it does for other field values. The
overhead for implementing a derived field according to this
embodiment is the additional storage required to store the
unique patterns and number of instances as well as the point-
ers for each tuple. Though relatively efficient compared to
conventional methods for using derived fields in a database
management system, adding additional derived fields to a
table or changing the definition of an existing derived field
may still require a pass through the entire data set to generate
the derived field values which, depending upon the circum-
stances, may result in an undesirable impact on the efficient
operation of the database management system.

[0103] Inanother embodiment of the present invention, an
expression (i.e., a function) is used to implement a derived
field rather than calculating and storing a computed value. An
expression is stored for the derived field and the expression is
evaluated when the derived field is used rather than comput-
ing the value of the derived field earlier as in the previously
discussed embodiment. The use of an expression reduces the
amount of space in memory or on a storage device required to
implement the derived field. In addition, the use of an expres-
sion allows derived fields to be added, modified, and removed
in an easier manner generally using less resources than oth-
erwise required. Also, the use of an expression for a derived
field allows the derived field values to be dynamic in that they
reflect the latest calculation rather than a previously made
calculation. For example, a derived age field implemented as
an expression results in a calculation made using the current
date when the derived is used rather than an age determined
the last time the tuple was added or modified or when the
derived fields was added.

[0104] Implementing a derived field using an expression
may only require the modification of the function that
retrieves the value of the field according to one embodiment
of'the present invention. According to this embodiment of the
present invention, the definition of a path may be expanded to
include not only the previously described path to a node value
but also a path may contain the details of an expression. For
example if an expression is used to add a derived value to a
table, a path may lead to the expression that can be evaluated
when the derived value for a tuple is needed according to this
embodiment. The expression for the added derived value may
be stored along with the pattern data for the other fields of the
table so that a function retrieving the value (e.g., a path-
ToField() function) may retrieve the expression. The val-
ueOf() function retrieves the value (i.e., pattern) for a field £
ofatabletas previously described. According to this embodi-
ment of the present invention, the valueOf() function is
modified below to allow a determination if a path points to an
expression or a value and, if it points to an expression, to
evaluate the expression and return the results.

path=pathToField(f}t)
if (path.containsExpression())

return evaluate(path.expression(),root,t)
else

return valueForPath(path,root,t)

As stated above, the path to a field f of a table t is first
determined then evaluated according to the valueOf() func-
tion used in one embodiment of the present invention. If the
path is to an expression, the expression is evaluated and the
expression value is returned. If the path is not to an expression

US 2012/0203740 Al

but to a field, the value of the field is retrieved. A path is
retrieved as previously described but an additional test (the if
statement) is added to determine if the path is for an expres-
sion. If the path is for an expression, the value for the derived
field is computed using the expression otherwise the value of
the field is retrieved for the path as previously described.

Root Indirection Set

[0105] FIG. 104 is a diagram illustrating a root indirection
set and how it relates to the pattern sets for the nodes in a tree
structure of a table according to one embodiment of the
present invention. In FIG. 104, the binary tree structure for the
data set of a table is represented at a root node 153 by pairs of
pointer (one pointer for a left branch 1058 and one pointer for
a right branch 1059) for each of the tuples in the table. Each
pointer for a branch contains the address of either another pair
of pointers for a subordinate branch node or it contains the
address of a pattern (e.g., a data value) for a field in the tuple
of the table (a leaf pattern in the tree). In the example shown
in FIG. 104, each of the pointers in the left branch 1058 of the
root node 153 point to a pair of pointers in a subordinate
branch node 150 and each of the pointers in the right branch
1059 of the root node 153 also point to a pair of pointers in
another subordinate branch node 151. In turn, the pointers in
the left and right branch of these two branch nodes 150, 151
point to leaf patterns (i.e., field values) at subordinate leaf
nodes 121,122, 123, 124 in the tree structure for the table. For
the root node 153, a root indirection set may be generated to
facilitate access to and/or processing of the tuples in the
table—the root indirection set facilitates database operations
on the table. A root indirection set 1050 is a list or set of
pointers containing the addresses of the pointer pairs in the
root node according to one embodiment of the present inven-
tion. In FIG. 104, the root indirection set 1050 is shown as a
set of pointers (an array of pointers) beginning with pointer 0
1051 and continuing until pointer 5 1056 with each pointer
1051-1056 corresponding to a pair of pointers 1061-1066 in
the root node 153 (a tuple in the table). The root indirection set
1057 is also alternatively shown with the corresponding
addresses for the pointer pairs 1061-1066 in the root node 153
(the tuples) illustrating that the pointers contain addresses to
the pointer pairs in the root node. In the example shown in
FIG. 10d, the pointers 1051-1056 in the root indirection set
1050 are numbered beginning with 0 and continuing until n—1
where n is the number of tuples in the table (which correspond
to pointer pairs 1061-1066 in the root node 153). In this
embodiment, the pointers 1051-1056 in the root node are
maintained in the same order as the pointer pairs 1061-1066
for the tuples in the root node 153 in order to preserve the
existing tuple ordering. For example, the first pointer (pointer
0) 1051 in the root indirection set 153 contains the address G1
1061 of the first tuple (pointer pair) in the root node 153.
Similarly, the second pointer (pointer 1) 1052 in the root
indirection set 153 contains the address G2 1062 of the sec-
ond tuple (pointer pair) in the root node 153, the third pointer
(pointer 2) 1053 contains address G3 1063, the fourth pointer
(pointer 3) 1054 contains address G4 1064, the fifth pointer
(pointer 4) 1055 contains address G5 1065, and the sixth
pointer (pointer 5) 1056 contains address G6 1066 according
to this embodiment. A root indirection set may be used to
allow faster manipulation of the tuples of a table when execut-
ing any number of database operations.

[0106] A rootindirection set 1050 may exist for each table
(root node set) in a database and additional root indirection

Aug. 9,2012

sets may be used for specific operations as needed according
to one embodiment of the present invention. For example, a
primary or original root indirection set may exist for each
table (root node set) to allow faster delete, insert, and update
operations as discussed in the following sections. Additional
root indirection sets may also be used for other operations
such as sorting, partitioning, and joining as discussed later in
this specification. According to this embodiment, the same
root indirection set does not need to be used for all database
operations (though they are based on the same data). In a sort
operation as part of a database query, a copy of the root
indirection set may be made and the order of the pointers in
the root indirection set copy may be altered to produce the
sorted tuple results without changing the underlying tuple
order (and the original root indirection set). A query or search
operation may also use a root indirection set that is a subset of
all the tuples in the data set for the table. For example using
FIG. 104, a search or query operation may return the first,
fourth, and fifth tuples of a table with a root indirection set of
10,3, 4} containing pointers to the first 1061, fourth 1063, and
fifth 1064 pointer pairs in the root node 153 corresponding to
the tuples of the table.

Delete Operation

[0107] Using a primary root indirection set for a table, a
tuple in the data set for a table may be in part deleted by
removing the reference (i.e., the pointer) in the root indirec-
tion set addressing the tuple of the table. If a root indirection
set is used to access the tuple data for the table, the absence of
a pointer will eliminate accessing that particular tuple of the
table.
[0108] In one embodiment of the present invention, the
pointer is replaced by an illegal value (i.e., a value that can’t
be used as a pointer) such as, for example, a negative value. A
negative value may be used instead of eliminating the pointer
altogether because it preserves the order of the tuples espe-
cially where the pointers to the patterns for the tuple may still
exist at the nodes of the table. For example, a root indirection
set containing 10 pointers to tuples in the data set for a table
may be initially represented as follows:

[0109] {0,1,2,3,4,5,6,7,8,9} (RIS1)
In the root indirection set above (RIS1), each pointer value
represents the address in the root node for each tuple of the
table—e.g., the address of the pair of pointers corresponding
to the tuple in the root node for a binary tree representation of
the table. If the fourth tuple of the table is deleted, according
to this embodiment the fourth pointer (i.e., pointer value 3) is
replaced with an illegal (e.g., negative) value resulting in the
root indirection set containing the following new example
values:

[0110] {0,1,2,-1,4,5,6,7,8, 9} (RIS2)
Database operation algorithms using the root indirection set
need to be properly structured in this embodiment to ignore
illegal (e.g., negative) values when they occur. Therefore,
when a database operation algorithm using the root indirec-
tion set encounters a negative value, that negative value is
ignored as if it did not exist. For example, an algorithm
processing the tuples of a table according to the modified root
indirection set RIS2 above would ignore the -1 value.
[0111] In another alternative embodiment of the present
invention, a deleted tuple may be reflected in the root indi-
rection set by using a negative value of the actual pointer
value (address). For example if a pointer has a value 3 (the 3
referring to a memory or storage address) addressing a tuple

US 2012/0203740 Al

in the data set of a table, deleting the tuple may result in
resetting the pointer value to -3 to reflect the deletion of the
tuple. Using the original root indirection to set RIS1 above as
an example, deleting the fourth tuple of a table results in the
root indirection set pointer value for the tuple (e.g., 3) being
set to the negative of its value (i.e., =3). The resulting root
indirection set is shown below.
[0112] {0,1,2,-3,4,5,6,7, 8,9} (RIS3)

In this embodiment as in the previous embodiment, the value
of the pointer for the deleted tuple is negative and it is still
ignored by the database operation algorithms as discussed
above. However, this alternative embodiment has the added
benefit that the deletion of the tuple can be reversed or undone
by taking the absolute value of the pointer. For example, the
root indirection set RIS3 above reflects the deletion of a tuple
(i.e., the fourth tuple) in a table. The deletion of this tuple can
be reversed by taking the absolute value of the pointer value
(e.g., the absolute value of -3) to restore the deleted tuple in
the root indirection set. The resulting root indirection set is the
original root indirection set RIS1. Though this example may
simplify the contents of the pointer for explanation, the use of
anegative or other inverse pointer value may be used to delete
apointer in a root indirection set in a manner to facilitating an
option to undo the deletion.

[0113] The above embodiments have only dealt with the
deletion of a tuple in the root indirection set. In addition, the
deletion of a tuple needs to be reflected in the data set for the
table. Traditionally, deleting a tuple of data resulted in the
actual erasing or removing of the information from the table.
According to one embodiment of the present invention, the
tree structure representation of a table allows the actual data
patterns to be stored separately from the table structure.
According to this embodiment, a frequency indicating the
number of times that a pattern (i.e., a value) occurs in the table
is stored along with the pattern. As a result, deleting a tuple of
a table necessitates updating the frequency associated with a
pattern found in the tuple of the table. For example if a table
contains information about an individual including the city in
which they live, deleting a tuple requires decreasing the fre-
quency for the associated city (e.g., London for the deleted
tuple) by 1 to reflect the deletion of one instance of the pattern
(e.g., London) in the table.

[0114] Updating the pattern frequencies for the data set of
the table to reflect the deletion of a tuple can be achieved by
traversing the tree representation of the deleted tuple decre-
menting the frequency for each occurrence of a pattern in the
deleted tuple. This can be accomplished using any method of
tree traversal that visits all the nodes in the tree representation
of the tuple once (visiting a node more than once during the
tree traversal may have an unintended consequence of decre-
menting the frequency by more than the one value in the
deleted tuple). Tree traversals are conventionally well known
and refer to the sequential processing of each node in a tree
structure, which is inherently a non-sequential data structure.
Traversal methods are characterized by the sequence in which
the nodes of the tree are processed. Three common types of
traversal for binary trees are pre-order, post-order and in-
order traversal. A pre-order traversal method visits each node
before any child nodes are visited. A post-order traversal
method visits each node after all its child nodes have been
visited. An in-order traversal method visits each node after
visiting all its left-branch child nodes but before visiting any
of'its right-branch child nodes. According to one embodiment

Aug. 9,2012

of'the present invention, an in-order traversal method is used
though the present invention may work with many other
traversal methods.

[0115] The following algorithms for tree traversal assume
that the structure of a node in a binary tree has a pattern (i.e.,
a value) and may have a left and right child node value. The
following is an example of an in-order traversal function:

visit(node)
if (node != NULL)
visit(node.left)
process node.pattern
visit(node.right)

According to this above example in-order traversal function,
each left child node is processed before the parent node and
each right child node is processed after the parent node is
processed. The following is an example of a pre-order tra-
versal function:

visit(node)
if (node != NULL)
process node.pattern
visit(node.left)
visit(node.right)

The above pre-order traversal function visits and processes
each node before any of its child nodes are processed. An
example of a post-order traversal is as follows:

visit(node)
if (node != NULL)
visit(node.left)
visit(node.right)
process node.pattern

In the above post-order traversal function, all child nodes are
processed before any parent nodes. As stated above, an in-
order traversal of the tree structure for the table is used though
other traversal functions may be used in other embodiments
of the present invention. The following in-order function is
used to decrement the frequency of the patterns for the deleted
tuple in the data set of the table.

decrement__frequency(p) =
if (p =NULL)
decrement__frequency(p.left)
p-frequency = p.frequency -1
decrement__frequency(p.right)

The decrement_frequency() function operates recursively
and begins by finding the lowest level left branching pattern
(p.left) at a child node to process (as long as itis not NULL in
value) and continues an in-order traversal of the tree. The
processing done at each node for the pattern in the deleted
tuple is simply to decrement the pattern frequency
(p.frequency=p.frequency-1) to reflect the reduced fre-
quency of the pattern due to the deletion of the tuple.

US 2012/0203740 Al

[0116] FIG. 10e is a diagram illustrating the tree structure
of'atuple in the data set of a table and showing the pattern and
its frequency at each node of the tuple according to one
embodiment of the present invention. The patterns shown are
the patterns for the tuple at each node of the table. The data set
for the table may have multiple patterns for each node. The
frequency shown is the frequency ofthe pattern at that node in
the overall data set for the table (the pattern occurs only once
for the tuple shown). For example, at one branch node 1071
the pattern “A” 10774 occurs in the tuple 1069 and its fre-
quency in the entire data set of the table is 1 1078a meaning
it only occurs in this tuple 1069 of the table. The root node
1070 for the deleted tuple 1069 branches to two child nodes in
the binary tree 1071, 1072 each containing a pattern for the
tuple. The left child node 1071 is a branch node itself having
one child leaf node 1073 and a second child branch node
1074, which in turn is made up of two leaf nodes 1075, 1076.
The right child node 1072 of the root node 1070 is a leaf node
(a terminal node containing a field value). At each node, the
number of instances (the frequency) of each pattern in the
table are shown along with the pattern for the tuple. For
example, the pattern “A” 1077a at branch node 1071 has a
frequency of 1 1078a indicating that the pattern occurs only
once at that node in the table for this tuple. As the tree is
traversed the frequency or number of instances for each pat-
tern is decremented to reflect the deletion of the tuple. In the
example above, the 1 instance 1078a of the pattern “A” 1077a
at the branch node 1071 is reduced during the decrementing
process to zero instances of the pattern. In a similar manner
the frequency value or number of instances of all the patterns
at each node in the tuple are reduced.

[0117] FIG.10fis a diagram illustrating the tree structure of
a tuple in the data set of a table showing the pattern for the
deleted tuple and its frequency at each node after the tree has
been traversed and the pattern frequencies decremented
according to one embodiment of the present invention. The
nodes are the same for all the tuples in the data set of the table
only the pattern at each node may be different for each tuple.
For this reason, the nodes shown in FIG. 10f'match the nodes
in FIG. 10e and include a root node 1070, three branch nodes
1071,1072,1074 and four leaf nodes 1073,1075,1076,1072.
The patterns at each of the nodes correspond to the patterns
for the deleted tuple. The frequency for each pattern reflects
the decrease of 1 instance or occurrence due to the tuple being
deleted—every frequency value is one less in FIG. 10fthan in
FIG. 10e. For example at a branch node 1071, the frequency
of'the pattern “A” 10775 is reduced from its original value of
1 1078a to its new value of 0 10785 reflecting a decrease of
one occurrence of the pattern due to the tuple being deleted.
Though the process is straightforward a special situation may
occur when decrementing the frequency results in a fre-
quency value of zero as illustrated in the examples shown in
FIGS. 10e and 10/

[0118] When a pattern has a frequency of zero in the data
set of a table, the pattern is not being used by any of the tuples
in the table and, therefore, is not reachable through any of the
pointer pairs in the root node. Additionally, a pattern having a
frequency of zero indicates that all the patterns above it (pat-
terns at parent and ancestor nodes) also have a frequency of
zero. For this reason, a pattern with a frequency of zero can be
removed from the pattern set for the node of the table. Accord-
ing to one embodiment of the present invention, a pattern with
a frequency of zero is not removed because the adverse
impact of the removal outweighs the minimal additional

Aug. 9,2012

space (memory or storage) saved by no longer storing the
pattern. In this embodiment when the data set of the table is
first built (or it is optimized according to one embodiment of
the present invention), a continuous area of memory or stor-
age is allocated to the pattern set. As additional patterns are
added to the pattern set for the node in the tree structure
representation of the table, these additional patterns are stored
in an overrun pattern set in memory or storage outside the
originally allocated continuous pattern space. If a pattern is
deleted from the continuous pattern space, the gap created in
the continuous pattern space may need to be closed by mov-
ing other patterns within the continuous pattern space. This
can be very computationally and resource expensive. Addi-
tionally, accessing and searching for patterns in the overrun
pattern set is less efficient than accessing and searching for
patterns in the continuous pattern space. Therefore, deleting a
pattern from the continuous pattern space reduces the number
of'patterns that can be more efficiently accessed and searched.
This presents no problems if the pattern is deleted but should
the pattern be added back into the table at a future time, the
overall performance of the database may be adversely
impacted as the pattern will now be in the overrun pattern set
rather than in the continuous pattern space. Also, a pattern
once in the data set of a table is more likely to again recur at
some future time. An insert or update operation adding a new
pattern to the pattern set requires additional resources and
time that can be avoided by leaving the pattern in the pattern
set. The overhead for the pattern is generally very low and
consists of the space (memory or storage) required for the
pattern and an integer for its frequency. For these reasons, if a
frequency of a pattern becomes zero as a result of a tuple
being deleted from the data set of the table, the pattern is not
deleted from the pattern set according to this embodiment of
the present invention. In an alternative embodiment, the pat-
tern may be deleted but the problems discussed above may
occur.

Insert Operation

[0119] Aninsertoperation allows a new tuple to be inserted
into the tree representation for the table according to one
embodiment of the present invention. The inserted tuple may
be viewed as another set of patterns combined to form the
tuple. If all the patterns in the inserted tuple already exist in
the data set for the table, no additional patterns need to be
added to the pattern set for a node. However if a new pattern
is contained in the tuple, that new pattern needs to be added to
the pattern set so that pointers in the tree structure represen-
tation of the tuple can refer to the pattern. In one embodiment
of the present invention discussed above, the data set for the
table is initially stored in one continuous block of memory.
Additional patterns added later to this data set of patterns for
the table may exceed the block of memory initially allocated
to this continuous block of memory. Therefore, the additional
patterns may be stored in an “overrun pattern set” or “overrun
set”. The dynamic nature of the data in a database makes it
inefficient to try to determine and allocate sufficient continu-
ous memory space for the patterns at each node (i.e., root,
branch and leaf nodes) in the data set for the table. Therefore
using an overrun set to handle the additional patterns inserted
after the database is built (or alternatively optimized in
another embodiment of the present invention) can solve this
problem with little additional cost. The result for each node
may be a pattern set consisting of two parts: an initial pattern
set in a continuous block of memory generated when the

US 2012/0203740 Al

database was built or later optimized; and a second overrun
pattern set containing all the additionally inserted patterns
after the database was last built or optimized. Using an over-
run pattern set simplifies the insertion process while still
retaining the benefits of the present invention as outlined
herein but it may require more memory to store each pattern
and may be slightly less efficient due to the use of non-
continuous space to store the additional patterns. One pos-
sible implementation of an overrun set is a balanced binary
tree of patterns.
[0120] One example of the use of an initial and an overrun
pattern set for a leaf node (field) in a table using a balanced
binary tree structure is illustrated in the following embodi-
ment. If a field f contains integers, the initial pattern set
(indicated in square brackets []) may contain the following
patterns (values):

[0121] [7, 11, 14, 18, 23, 26, 37]
As stated above, these patterns (integers) are stored in con-
secutive memory addresses. If the data can be updated (as is
generally the case), an overrun pattern set is created to store
any new patterns. Initially, the overrun pattern set (indicated
in braces{ }) for the node is empty with field f containing the
following patterns:

[0122] [7,11,14,18,23,26,37]1{}
A new tuple is added to the table. If the new tuple contains a
value for fof*“9”, a determination is made that “9” is not in the
original pattern set nor in the overrun pattern set so it must be
added to the overrun pattern set. This results in field f now
containing the following patterns:

[0123] [7, 11,14, 18,23, 26,37] {9}
Ifanother new tuple is added containing a valued for fof “5”,
a determination is again made as to whether the value “5”
already exists in the original pattern set or in the overrun
pattern set. In this case, “5” exists in neither set. This results
in field/containing the following patterns:

[0124] [7,11, 14,18, 23,26,37]1{5, 9}
The value “5” is placed before the “9” according to the bal-
anced binary tree structure of the overrun pattern set. Even-
tually, field f may contain several additional (overrun) pat-
terns as shown in the example below.

[0125] [7,11,14,18,23,26,37]1{5,9, 12,24, 36}
A balanced binary tree pattern set may have an average search
time of O(1n(IT1)) representing order of log of size T where T
is the balanced binary tree. Other structures such as a hash
table or other extensible data structure may be used for the
pattern sets in other embodiments of the present invention.
[0126] FIG.10gis a diagram illustrating the pattern sets for
each node of a table according to one embodiment of the
present invention. The pattern set for the root node 153 is
shown at the top of the tree structure for the table. Each
pattern in the pattern set is identified by an address and con-
sists of two pointers 1058, 1059: one each for the left 150 and
right 151 subordinate child nodes in a binary tree structure. If
there is no child node, a pointer may refer to a NULL value
indicating that no subordinate child node exists for that
branch in the tree. Unlike the subordinate nodes (i.e., the
branch and leaf nodes), the root node 153 contains a pattern
set for each tuple of the table and therefore neither needs nor
contains a frequency for each pattern according to this
embodiment of the present invention. In the branch nodes
150, 151, the pattern set is identified by an address and con-
sists of two pointers for a left and a right subordinate node as
well as a frequency indicating how many times the pattern
(i.e., the combination of the left and right values) occurs at

Aug. 9,2012

this node in the tree structure representation of the table. The
two branch nodes 150, 151 in the FIG. 10g contain 6 and 5
patterns respectively. The leaf nodes 121-124 are terminal
nodes in the tree structure to representation of the table and, as
such, the patterns at the leat nodes do not point to other values
butinstead contain the actual field values for the data set of the
table. These leaf node patterns are identified by an address
and consist of a field value and a frequency indicating how
many times the field value occurs in the data set of the table.
For example, the pattern set for last names 121 contains the
field value (pattern) “Bolton” 1080 which occurs once 1081
in the data set for the table—meaning that one tuple in the
table contains a last name of “Bolton” 1081.

[0127] When a new tuple is inserted into the table, any new
field values (patterns at the leaf nodes) must be added to the
pattern set of the appropriate leaf nodes. For any existing field
values (patterns at the leafnodes) for new tuple, the frequency
of the existing field value may be incremented to reflect the
new occurrence (incidence) of the pattern in the table. For
example, a new tuple inserted into the table may contain
information for an individual living in “London” 1082 requir-
ing the frequency for the pattern “London” 1082 in the city
pattern set 123 to be incremented from 2 1083 to 3 to reflect
the additional occurrence of the value in the tuples of the
table. This is a simple operation for any existing patterns that
are in the new tuple. However, a new tuple inserted into the
table may contain information for a city not already in the
pattern set (e.g., “Birmingham” 1084) requiring the new city
pattern (e.g., “Birmingham™ 1084) to be added to the city
pattern set 123 with a frequency of 1 1085 for this one new
occurrence of the value. As discussed above, a continuous
block of memory may be allocated to the pattern set 123 when
the table is built or when an optimization function is run
reorganizing the data. Using a continuous block of memory
may enhance the efficiency of the database. When an inserted
tuple is added after the continuous block of memory has been
allocated, the new patterns from the inserted tuple are added
to the overrun pattern set for the node according to one
embodiment of the present invention. Using the above
example, the new city pattern “Birmingham” 1084 is then
added to the overrun pattern set for the city leafnode 123. The
use of a continuous block of memory or storage when a
pattern is built or optimized is according to one embodiment
of'the present invention. Other than discussed herein, the use
of a continuous block of space (memory or storage) for the
pattern set has no other impact on these database operations,
which can still function properly where other storage con-
figurations for the pattern sets are used (e.g., all continuous or
all non-continuous memory or storage space for the pattern
sets). For example in an alternative embodiment of the
present invention, pattern sets may be stored in a non-con-
tinuous manner making the entire pattern set function like the
overrun pattern set. In this alternative embodiment, the per-
formance of database operations on the pattern set may be less
efficient than otherwise possible but the database operations
function in the same manner as described herein.

[0128] When inserting a tuple into a table according to this
embodiment, patterns need to be either added or updated (i.e.,
the frequency incremented) for all the nodes in the tree struc-
ture representation of the table for the inserted tuple. F1G. 104
is a flowchart illustrating the insert operation for a binary tree
representation of the table according to one embodiment of
the present invention. The process may begin examining the
leaf node patterns first and then the branch node patterns in a

US 2012/0203740 Al

recursive manner similar to how a data set for a table is
initially built or how it may be optimized in an optimization
function. If a pattern at a leaf node already exists, its fre-
quency is incremented. If a pattern at a leaf node is new, the
pattern is added to the overrun set with a frequency of one. A
pattern for a branch node is examined in a similar manner by
first determining if it already exists and, if so, incrementing its
frequency. If a pattern does not already exist, it is added to the
overrun set for the branch node with a frequency of one. For
each pattern in the process, the process begins 1086 by first
determining whether or not the pattern is for a leaf node or
not. If the pattern is for a leaf node, a pointer is set 1091 to a
matching pattern (i.e., a search is conducted for a matching
pattern) in the initial pattern set (the pattern set in the con-
tinuous block of memory or storage) for the leaf node. If no
matching pattern is found, the pointer has a NULL value
otherwise it will contain the address of the pattern in the
pattern set. For this reason, the value of the pointer is checked
1092. If the pointer value is not NULL, a matching pattern
was found and the frequency for the pattern is incremented
1095 and the pointer is returned 1097. If the pointer value is
NULL, the pointer is again set 1093 to a matching value (i.e.,
a search for the pattern is conducted) but this time in the
overrun pattern set for the node. Another determination of the
returned pointer value 1094 is made to determine if the
pointer contains an address to a matching value in the overrun
pattern set or if the returned pointer value is NULL. If a
matching pattern is found in the overrun pattern set (i.e., the
pointer value is not NULL), the frequency for the pattern is
incremented 1095 and the pointer is returned 1097. If a
matching pattern is not found in the overrun pattern set (i.e.,
the pointer value is NULL), the new pattern is added to the
overrun pattern set 1096 with a frequency of 1 and the pointer
is given the address of this new pattern. The pointer to this
new pattern in the overrun pattern set is then returned 1097. If
a pattern belongs to a branch node instead of leat node 1087,
a pointer is set 1088 to address the left branch child pattern.
The recursive nature of the insert operation ensures that any
child pattern is added to the appropriate pattern set and avail-
able to the branch node. A pointer is also set 1089 to address
the right branch child pattern for the branch node. These two
pointers (for the left branch and the right branch) are then
used to determine the pattern 1090 for the branch node. After
the pattern for the branch node is determined, the process
executes 10984 in a similar manner as discussed above for the
leaf node patterns with a search for a matching pattern con-
ducted first in the initial pattern set 1091 and, if no match is
found in the initial pattern set, in the overrun pattern set 1093
according to this embodiment of the present invention. The
overrun pattern sets may be used for both branch and leaf
nodes for the tree structure of the table according to this
embodiment. The above examples illustrate how the leaf node
(field) patterns are first examined in a recursive manner
before branch node patterns are examined in order to ensure
that underlying patterns are first addressed according to this
embodiment. The process outlined above according to one
embodiment of the present is for a binary tree representation
of the table. Other storage or logical organization structures
for the data in alternative embodiments of the present inven-
tion require appropriate modification to the process as out-
lined.

[0129] A wvariation to the above insert process in one
embodiment of the present invention may improve perfor-
mance by omitting the determination of whether a branch

Aug. 9,2012

pattern is new and assume that the branch pattern will always
be new. Either the search for a matching pattern in the initial
pattern set for the branch node may be omitted or both the
search for a matching pattern in the initial pattern set and the
overrun pattern may be omitted in alternate embodiments of
this variation. FIG. 10i is a flowchart illustrating a variation of
the insert operation for a binary tree representation of the
table according to one embodiment of the present invention.
According to this embodiment, the pattern for the branch
node is determined as previously discussed 1088-1090, how-
ever, matching the pattern to the initial pattern set 1091 for the
branch node does not occur and an assumption 10985 is made
that the pattern is new regarding the initial pattern set. At this
point, a search is made 1093 of the overrun pattern set for the
branch node determining 1094 whether the pattern already
exists in the overrun pattern set. If the pattern already exists,
its frequency is updated 1095 and the pattern is returned 1097.
If'the pattern does not already exist, the new pattern is inserted
1096 into the overrun pattern set and the pattern is returned
1097 as previously discussed. In an alternative embodiment
of'this variation in addition to assuming that the pattern for the
branch node is new in relation to the initial pattern set, an
assumption 1098¢ is made that the pattern for the branch node
is new for both the initial pattern set and the overrun pattern
set. According to this variation, after the branch pattern is
determined as previously discussed 1088-1090 the pattern is
inserted into the overrun pattern set 1096. The difference
between the embodiments shown in FIG. 107 and the embodi-
ment shown in FIG. 10/ is that after branch pattern is deter-
mined, the operation continues at a later step (shown by lines
10985 and 1098¢ in FIG. 10i versus line 1098q in FIG. 10%)
in the flowchart. The method outlined in the first embodiment
above in FIG. 10i skips the search of the base pattern set but
still searches the overrun pattern set (shown by line 10985). In
an alternative embodiment of the present invention, the inser-
tion operation may be further modified to skip this second
search of the overrun pattern set and instead directly insert the
pattern 1096 into the overrun pattern set (as shown by line
1098¢). In this alternative embodiment, the operation for the
branch node pattern continues at an even later step 1096 in the
flowchart. In either variation, the insert operation is consid-
erably quicker because it omits—the search phase 1091, 1093
(either the first search phase or both search phases) consider-
ably expediting the process. This is particularly relevant con-
sidering that the branch nodes may contain considerably
more patterns that the subordinate leaf nodes. One disadvan-
tage of these embodiments is that the improved performance
is made at the expense of memory or storage resulting from
the potential duplication of patterns that would otherwise be
identified.

[0130] Implementing this embodiment incorporating a
variation to the insert process may require additional changes
that may result in reduced efficiencies and/or otherwise
require alterations to other sections described herein. For
example, using a balanced binary tree structure for the over-
run set may no longer be possible if a pattern can be included
multiple times in the overrun set—doing so runs counter to
the definition of a balanced binary tree. In another example,
the existing algorithms/functions may need to be modified to
handle the occurrence of multiple identical patterns in the
data set (pattern set) for a field (a leaf node).

[0131] The above embodiment variations become particu-
larly advantageous with pattern sets having a high initial
cardinality (i.e., where repeat patterns are uncommon or are

US 2012/0203740 Al

less common). Conversely, the disadvantages become sub-
stantially greater in pattern sets expressing little initial cardi-
nality. For this reason, an alternative embodiment of the
present invention may incorporate a method for measuring
the cardinality of a branch node with this cardinality value
determining how an insert operation is executed on a pattern
for a branch node. For example, an initial cardinality value
may be used with the first embodiment variation above
because it only skips the first initial pattern set. In this case,
the variation skips the search of the initial pattern set for a
node where the cardinality of the pattern set for the node
exceeds a particular threshold. This cardinality may be deter-
mined when the initial pattern set is built and/or when it is
updated during an optimization process. By determining the
cardinality value during the initial build of the data set for the
table or when an optimization process is run on the data set
(updating the initial data set) the cardinality can readily be
available and used to determine whether this embodiment
variation is used to process a pattern for a branch node.
[0132] Inaddition to adding the new patterns in the inserted
tuple to the patterns sets for each node in the tree structure
representation of the table and incrementing the frequency for
existing patterns in the inserted tuple, an insert operation also
adds an entry to a root indirection set for the table according
to one embodiment of the present invention. If a root indirec-
tion set is being used for the table, the inserted tuple is added
using a pointer to the newly inserted root node for the tuple.
Because the root indirection set maintains the order of the
tuples in the table, the pointer to the newly inserted tuple is
added to the end of the root indirection set according this
embodiment. For example, the following root indirection set
contains a set of pointers to root patterns for the tuples of a
table:

[0133] {0,1,2,3,4,5} (RIS 4)
Each pointer contains the address of the root node pattern of
atuple. Inserting a new tuple results in an additional pointer in
the root indirection. According to the embodiment discussed
above, the new pointer is appended at the end of the root
indirection set resulting in a new root indirection set:

[0134] {0,1,2,3,4,5, 6} (RIS5)
The newly inserted tuple is identified by pointer 6 in the root
indirection set above (RIS 5). In other embodiments of the
present invention, the newly inserted tuple or pointer to the
tuple may be placed elsewhere in the table and/or elsewhere in
the root indirection set.

Update Operation

[0135] An update operation is another database operation
that may be performed on the data set of a table using a root
indirection set according to one embodiment of the present
invention. During an update operation the contents of the data
for a tuple of a table are modified. In addition to a possible
modification in the root node, the actual data stored in the leaf
nodes (the pattern sets) for a field in the binary tree represen-
tation of the table and intervening branch nodes may also
need to be modified according to this embodiment. The pos-
sible implications of an update operation on the data set for
the table (the tree representation) are further illustrated using
the root indirection sets and figures discussed below.

[0136] An update operation may be implemented accord-
ing to one embodiment of the present invention as a combi-
nation of a delete operation and an insert operation. FIG. 107
is a flowchart illustrating the update operation according to
one embodiment of the present invention. The update begins

Aug. 9,2012

1050 by executing a first step 1051 wherein a tuple is deleted
as previously discussed. Using a root indirection set example
where the values in the set represent the pointers to the tuples
(i.e., pointer pairs in the root node), an original root indirec-
tion set may contain ten entries:

[0137] {0,1,2,3,4,5,6,7,8,9}
The deletion of a tuple (e.g., the fourth tuple identified by
pointer 3) results in a negative value as previously discussed.
For example in an embodiment where a simple negative value
isused to indicate a deleted tuple, the original root indirection
is modified to reflect the deletion as follows:

[0138] {0,1,2,-1,4,5,6,7,8,9}
The second step 1052 in the update operation according to
this embodiment is the insertion of the updated record as
discussed above (an insert operation). As previously dis-
cussed, an inserted tuple may be appended to the root indi-
rection set. According to this embodiment, the root indirec-
tion set reflecting the deletion above is then appended to
reflect the inserted and updated tuple as follows:

[0139] {0,1,2,-1,4,5,6,7,8,9,10}
The third step 1053 is restoring the order of the tuples to
reflect the update. To restore the order of the tuples, the newly
inserted tuple needs to be moved to (swapped with) the posi-
tion of the deleted tuple in the root indirection set. This may
be accomplished by simply swapping the pointers to the
deleted tuple with the pointer to the inserted tuple resulting in
the following root indirection set:

[0140] {0,1,2,10,4,5,6,7,8,9,-1}
The result is the inserted and updated tuple is in the same
order as the original deleted tuple. The above embodiment
accomplishes an update operation by deleting and inserting a
tuple. The order given above is only one possible example and
the order between inserting the updated tuple and the deletion
operation on the original tuple may be switched in another
embodiment of the present invention.

Sorting

[0141] According to one embodiment of the present inven-
tion, the process for building the example database identifies
patterns in the data sets and replaces the patterns in the tables
of the example database with pointers to the pattern stored
elsewhere in memory or on a storage device. In this manner,
the size of a table is greatly reduced resulting in something
similar to a three-dimensional array of pointers, which can be
rapidly sorted. For example, the computational complexity of
conventional sorting algorithms determines their execution
time. Some conventional sorting algorithms have an average
execution time to sort a conventional data set of size n that is
proportional to O(n log(n)). These conventional sorting algo-
rithms may include traditional binary tree sorting, heap sort-
ing (i.e., heap sorts), and merge sorting to name a few. Other
conventional sorting algorithms may be less efficient with an
average execution time O(n?). An example of this type of
sorting algorithm is traditional bubble sorting. Conventional
techniques exist to improve the performance of sorting algo-
rithms by using key comparisons with average sort execution
times proportional to O(n log(k)), where k is the size of the
key space. According to one embodiment of the present
invention, a majority of sorting operations can be reduced to
an average execution time proportional to O(n) with only a
few circumstances requiring average execution times propor-
tional to O(n log(n)). This improvement in sorting execution
times are partially a result of the representation of the data set
using pointers as described in the following embodiments

US 2012/0203740 Al

rather than the traditional database representation storing
actual patterns. In addition, this improvement is also due to
maintaining the data in the database in a sorted ordered by
pattern that, as discussed later, can greatly reduce sort opera-
tion execution times according to one embodiment of the
present invention. One embodiment of the sorting operation is
discussed in greater detail in the following section.

[0142] As discussed above in the pattern recognition sec-
tion, the identification of patterns in the data set results in a
pointer being stored for each pattern according to one
embodiment of the present invention—the pointer pointing to
the pattern and the number of instances of the pattern in the
table. According to this embodiment, each pattern in a tuple or
row of a table is replaced by a pointer pointing to the pattern
and the number of instances of the pattern in the table. The
pointers point to a condensed listing of the unique patterns
and instances (i.e., the pattern frequency) with duplicate pat-
terns normally found in the table removed.

[0143] FIG. 11qa is diagram illustrating the patterns and
number of instances for each pattern that are stored in
memory or on a storage device and referenced by pointers in
the representation of the table for the data set according to one
embodiment of the present invention. A first column 1101 in
FIG. 11a lists the patterns that exist in the manufacturer field
1102 of the table in this example data set. As previously
discussed, the patterns for a single field equal the values of
that field while patterns spanning multiple fields equal a
grouping of the appropriate values from the appropriate fields
of the table according to this embodiment. In the example
shown in FIG. 114, the manufacturer field 1102 contains 5
different patterns (in this case field values): “Mfg A” 1103,
“Mifg B” 1104, “Mfg C” 1105, “Mfg D 1106, and “Mfg E”
1107. Each of the patterns in the manufacturer field 1102 is
listed along with number of times the pattern occurs 1112 in
the data set for the table—the number of instances of the
pattern in the data set. The number of pattern instances 1111
for each pattern in the manufacturer field 1102 is shown. For
example, the pattern “Mfg A” 1103 occurs 147 times 1113
(i.e., there are 147 instances of the pattern “Mfg A” in the data
set for the table). In other words, for the field “manufacturer”
1102 in a table, the value “Mfg A” occurs in 147 tuples or
rows of the table. The instances of the other patterns are as
follows: “Mfg B 1104 occurs 135 times 1114; “Mfg C” 1105
occurs 237 times 1115; “Mfg D 1106 occurs 223 times 1116;
and “Mfg E” 1107 occurs 258 times 1117. A total number of
pattern instances 1118, which equals the number of tuples or
rows for the table, is also shown in FIG. 114 even though this
information is not stored in memory or on a storage device in
this embodiment of the present invention. In an alternative
embodiment, a total of the instances 1118 may be stored for
each set of patterns. The 1000 total instances of all the pat-
terns 1118 is the sum of the instances for each pattern and
represents the total number of tuples or rows for the table.

[0144] FIG.11aisillustrative ofthe use of pointers for each
pattern in a tuple or row of the table according to one embodi-
ment of the present invention. Instead of a pattern for the
manufacturer field 1102 being stored repeatedly for each row,
it is stored only once with many pointers to the pattern. As
previously stated, pointers are typically smaller in size than
the patterns and this may result in a considerable reduction in
the amount of memory or storage space required to represent
the pattern in a table. According to this embodiment of the
present invention, a number of instances of the pattern in the
table is also stored along with the pattern and is referenced in

Aug. 9,2012

the same manner as the pattern. In the example in FIG. 9a,
1000 pointers are used in the tuples or rows of the table to
reference the patterns in the manufacturer data set as indi-
cated by the total number of pattern instances 1118 for the
table.

[0145] FIG. 12a is a flowchart illustrating the overall sort-
ing process according to one embodiment of the present
invention. According to this embodiment of the present inven-
tion, the sorting process begins 1200 by using the number of
instances determined for each pattern in the table to deter-
mine the total amount of memory or storage required for the
resulting sorted table as the first step in the overall sorting
process 1201. The total amount of memory or storage
required is calculated by determining the number of pointers
representing each tuple of the table, the size of the pointers
(e.g., 32-bit pointers in a 32-bit memory addressing system),
and the number of tuples in the table (i.e., the total number of
instances for each pattern in the table. In the example depicted
in FIG. 9a, each pattern in the data set for the field (e.g., the
manufacturer field) is referenced by a pointer in at least one
tuple of the table where the field contains the data set pattern.
The total number of instances 1118 for all the patterns is equal
to the total number of tuples in the table—in this example,
1000. If more than one field exists for each tuple, the total
number of tuples for the table remains the same but the
amount of memory or storage space increases by the amount
of additional pointers required for each tuple. An area in
memory or storage is then allocated 1202 for the sorted table
(i.e., the table resulting from the sort). The third step 1203 is
to determine the order of the patterns in the sorted table (i.e.,
the table after the sorting occurs) which is then followed by
determining the resulting offset values 1204 for the patterns.
The offset values are determined using the sorted order of the
patterns 1203 and the number of instances of each pattern to
determine the offset from the start of the allocated memory.
For example, using the patterns and number of instances
provided in the example in FIG. 11a, sorting the rows into
reverse alphabetical order based on manufacturer results in
“Mfg E” 1107 being the first pattern in the sorted list. FIG.
115 is a diagram illustrating the offset values for a table sorted
in reverse alphabetical order by manufacturer according to
one embodiment of the present invention. Since “Mfg E”
1157 is the first pattern in the sorted table, there is no offset
(i.e., the offset is equal to 0) 1177 for the “Mfg E” patterns
which begin at the start of the allocated memory or storage
space. “Mifg D” 1156 is the second pattern in the sorted order
and, therefore, the offset for the “Mfg D” patterns begins at
offset position 258 1176 reflecting the 258 tuples that contain
“Mfg E” 1167 (at offsets 0-257) that precede it. Each offset is
the position in the allocated memory or storage where the first
(or next) element in the sort group will be stored. The offsets
for the other patterns are similarly determined with the offset
for “Mfg C” 1155 beginning at 481 1175 (reflecting the 258
tuples containing “Mfg E” 1167 at offsets 0-257 followed by
the 223 tuples containing “Mfg D” 1166 at offsets 258-480),
the offset for “Mfg B” 1154 beginning at 718 1174, and the
offset for “Mfg A” 1153 beginning at 853 1173.

[0146] After determining the initial offset values for the
patterns 1204, the sorting process continues by examining
each tuple of the existing table in order to generate the sorted
table. The first step in this sub-process for each tuple 1205 is
a determination whether the end of the table has been reached.
If not, the value of the pattern for the next tuple is identified
1206. Using the offset for the pattern determined earlier 1204,

US 2012/0203740 Al

the tuple is written to the new sorted table in the allocated
memory or storage at the offset value for the pattern 1207. The
offset value for the pattern is then incremented 1208 and the
determination of whether the end of the table has been
reached 1205 is again made. On reaching the end of the table
1205, the sorting process may terminate 1209 at which time
the table will be sorted in the allocated memory or storage.

[0147] The sorting process embodiment can be further
illustrated showing an example of the use of offset values to
the memory or storage areas for the sorted table. FIG. 1256 is
adiagram illustrating a further example of the sorting process
according to one embodiment of the present invention. FIG.
125 illustrates the areas in the memory or storage for each
tuple of the table sorted in reverse alphabetical order as pre-
viously described. The numbers refer to the offset value in the
allocated memory or storage and include enough memory or
storage to contain a tuple worth of data for the table. Offset 0
1250 is the first position or beginning of the memory or
storage space used for the sorted table data. During the sorting
process, if the first tuple of the table is represented by a pair of
pointers (p,,.p,) (Which as previously described point to other
pointers and eventually to the leaf sets or field values) even-
tually referencing a pattern “Mfg C” 1155 and a number of
instances 237 1165 (e.g., p,—“Mfg C” eventually) then this
first tuple is stored at offset 481 1251 (the offset value iden-
tified for the “Mfg C” pattern) in the allocated memory or
storage and the offset for the “Mfg C” pattern is incremented
to 482. If the second tuple of the table is represented by a pair
of pointers (p,.p,) eventually referencing a pattern “Mfg D”
1156 and a number of instances 223 1166 (e.g., p.—“Mfg D”
eventually) then this second tuple is stored at offset 258 1252
(the offset value identified for the “Mfg D” pattern) in the
allocated memory or storage and the offset for the “Mfg D”
pattern is incremented to 259. If the next tuple of the table is
represented by a pair of pointers (p,,p,) eventually referenc-
ing a pattern “Mfg C” 1155 and a number of instances 237
1165 (e.g., p,—“Mftg C” eventually) then this next tuple is
stored at offset 482 1253 (the previously incremented offset
for the “M{fg C” pattern) in the allocated memory or storage
and the offset for the “Mfg C” pattern is incremented to 483.
FIG. 125 illustrates the sorting of only three tuples from the
original representation of the table into the new sorted repre-
sentation of the table. The remaining offset positions in the
allocated memory or storage for the sorted table remain
empty and will eventually be filled as the sorting process
continues to examine each of the tuples of the table. At the
conclusion of the sorting process, all 1000 tuples of the
example table are sorted into the allocated memory or storage
using the offset values according to one embodiment of the
present invention.

[0148] The sub-process 1205-1208 that executes for each
tuple of the table as part of the overall sorting process per-
forms the calculations for executing the sorting process as
outlined in FIGS. 124 and 126 above. According to one
embodiment of the present invention, the following offset
process illustrates some of the calculations that are performed
as part of this sub-process.

total=0
fieldSet = fieldSetFor(ft)
for (i=0; i<fieldSet.length; i++)
fieldSet[i].offset = total
total = total + fieldSet[i].length
result = new int[t.rootSet.length]
for (i=0; i<result.length; i++)

Aug. 9,2012

-continued

f = valueFor(f,t.rootSet[i])
result[f.offset] =1
f.offset = f.offset + 1

The above offset process performs a single pass through the
pattern set (e.g., as shown in FIG. 9a) to compute the initial
offset values for each pattern. The fieldSet[i].offset stores the
offset value for each pattern beginning with the first pattern.
Forthe first pattern, the value of the total variable equals 0 and
is used for the first offset value. The fieldSet[i].length value is
the number of instances of the pattern and is added to the total
variable to generate the next offset value. By the completion
of'this pass through the patterns (the first loop), each pattern
will have an offset value. The second loop represents a single
pass through all the tuples of the original pre-sorted table (the
root table)—t.rootSet. The variable result.length represents
the number of tuples in the table. For each tuple, the pattern
stored in the sorted table f is set to the pattern in the original
table valueFor(ft.rootSet[i]).

[0149] The above offset process is used during the sorting
process according to one embodiment of the present inven-
tion. The sorting process rearranges the tuple data in the
memory or storage allocation for the sorted table to sequen-
tially place patterns in sort order according to the sorting
pattern value and by instance. In another embodiment of the
present invention, an alternative process to determine the
offset may be used.

[0150] The offset process shown above involves a single
pass through the set of patterns for the table to compute the
initial offset values and then a single pass through the set of
tuples in the original or root table to sort the tuples. The time
to compute the sort is proportional to O(m+n) where m is the
number of patterns (the first pass or loop in the offset process)
and n is the number of tuples in the table (the second pass or
loop in the offset process). The upper bound of the time to
compute the sort is proportional to O(n) because m<=n where
n dominates this computation.

[0151] As previously discussed, the patterns are structured
as a tree in the representation of the table, therefore the time
required for the sort operation may be determined not by n
(the number of tuples in the table) but by f, the number of
fields in each tuple. Where a table contains only a single field,
performance remains proportional to n as previously dis-
cussed because f'is one. However, if a table contains multiple
fields, the performance of the sort operation may be consid-
ered proportional to log(f). The above example performance
calculations for one embodiment of the present invention
reflect the utility and efficiency of the embodiment as com-
pared to conventionally known sorting techniques. The sort-
ing operation in this embodiment may include other effi-
ciency in consideration of the use of pointers rather than
actual table data and through the use of the offset values
during the sorting process.

[0152] In an alternative embodiment of the present inven-
tion, the offset values may be stored along with the patterns
and number of instances in memory or storage instead of
calculating them during the sort operation. An example of this
embodiment is reflected in FIG. 115 where the pattern (for
manufacturer), number of instances of the pattern in the table,
and the offset value of the first instance of the pattern are
specified. For each field in a tuple of the table, the pointers
allow not only the pattern to be retrieved but also the offset

US 2012/0203740 Al

value. Therefore, the offset value is readily available. As
previously discussed, to sort a table according to a single field
requires time proportional to n, the number of tuples in the
table. By storing the offset value, the first loop in the offset
process that examines each of the patterns can be eliminated
where the sorting process uses the default order of the filed.
This reduces any influence of m on the execution time of the
sorting process in some sorting cases.

[0153] According to one embodiment as previously dis-
cussed, the sorting process generates a new sorted table in
memory or storage containing n pairs of pointers (one pair for
each tuple storing the root node pattern) and therefore
requires 2nP bits to store, where P is the number of bits per
pointer (typically 32 or 64) representing the typically
addressing size of the computer system. The pairs of pointers
in the sorted table are identical to the pairs of pointers in the
original, root table but are only in a different order. The
sorting operation does not alter the pair of pointers only their
order in the table. Therefore, instead of generating a sorted
table containing n rows of the pointer pairs, a single pointer to
atuple in the root table could be stored in sorted order instead
according to another embodiment of the present invention.
Instead of the sort operation generating a new sorted table, a
root indirection set (i.e., a sorted set of pointers to the tuples
in the root or original table) could be generated instead. The
root indirect set uses just nP bits because only one pointer is
stored for each tuple in the table. Therefore, using a root
indirection set according to this embodiment may use halfthe
memory to perform the sort operation for a table with a single
field.

[0154] Combining a selection or query operation on one
particular field along with a sort operation on the same or
other field presents additional challenges above those dis-
cussed for the previous embodiments of the sort operation. A
selection or query operation is the identification of a subset of
the data in the table. For example, if a table contains infor-
mation about automobiles and one particular field is the age in
years of the car, a selection or query specifying SELECT
WHERE age<5 may resultin only those tuples of the table for
which the age field value is less than 5. Selection or query
operations are common when using databases. In conjunction
with a selection or query operation, a specification is often
made regarding the order in which to present the selection or
query results. Specifying the order of the results is a sort
operation combined with the selection or query operation.
Under these circumstances, not all of the tuples of the table
are of interest and, therefore, the offset values are no longer
relevant as the results will generally not include every tuple of
the table. One solution (embodiment) to handle this situation
may include recalculating the number of instances of the
patterns for the subset of data returned by the selection or
query operation and the new associated offset values. How-
ever, the recalculation of the number of instances of the pat-
tern for the subset is time consuming and results in values that
are only valid for that selection or query operation. In another
solution according to one embodiment of the present inven-
tion, the sorting process is conducted as previously described
with the addition of two new steps: a selection or query
matching operation and the removal of gaps in the resulting
sorted table or root indirection set.

[0155] FIG. 13a is a flowchart illustrating the combination
of a selection or query operation with a sorting operation
according to one embodiment of the present invention. The
flowchart for the combination of a selection or query opera-

Aug. 9,2012

tion with a sorting operation according to this embodiment is
similar to the flowchart for the sorting operation identified in
FIG. 12a. For example, the offset values are still calculated
using all the tuples as previously discussed. However, one
step is slightly changed and two new steps are added as shown
by the bold border for those operations. During the processing
of'each row in the original or root table 1205-1008, the value
of'the selection/query pattern and sort pattern are retrieved for
each tuple 1306 instead of only the sort pattern. The selection/
query pattern is necessary to determine if the tuple satisfies
the selection/query requirements 1310 specified for the
operation. In the above example, the age pattern for each
automobile may be the selection/query pattern. If the value of
the age pattern for the tuple is less than 5 then it satisfies the
selection/query requirements 1310 and further processing
including writing the tuple or generating a root indirection set
pointer in the allocated memory or storage 1207 occurs. This
step 1207 uses the sort pattern to determine where the tuple or
root indirection set pointer is written by using the offset value
for the sort pattern. This offset value is then incremented
1208. If the value of the age pattern (in this example) is 5 or
more then it does not satisfy the selection/query requirements
1310 and the tuple is ignored—no further processing of the
tuple occurs. After all the tuples have been examined in light
of the selection/query criteria, gaps in the resulting sorted
table or root indirection set are closed 1311. Gaps exist
because all the memory or storage allocated for the operation
will not be used if all the tuples do not meet the selection/
query criteria. The result may look like the partial sort results
shown in FIG. 1256 with blocks of memory or storage con-
taining pointers interspersed with blocks of memory or stor-
age that are not used and contain no pointers. In order to
consolidate the results, the consolidation process 1311 copies
the pointers to the resulting sorted table subset or root indi-
rection set in a manner removing the gaps according to one
embodiment of the present invention. In another embodi-
ment, the consolidation process 1311 closes the gaps in the
results after they have been transferred to an intermediate
memory or storage space. In either case, the size of the used
and unused allocated memory or storage needs to be deter-
mined according to the blocks (one block for each pointer for
a root indirection set or one block for each tuple for a table
subset) used and unused. In one embodiment, this can be
determined by taking the final offset value for each pattern
and subtracting the starting offset value to determine the
number of offset positions used for each pattern. For example,
if the “Mfg D” manufacturer starts at offset value 258 (as
determined in step 1204) and after the selection/criteria
matching 1310 and sort are complete the offset value for “Mfg
D” is 266, a determination that 266-258=8 cars of “Mfg D”
are in the subset can be made.

[0156] FIG. 13bis a flowchart illustrating the consolidation
process for a subset of the data from a table according to one
embodiment of the present invention. According to the
embodiment illustrated in FIG. 134, the selection/query
determination and sorting of the tuples from the original root
data set occurs with the resulting pointers (either for the tuples
or for the root indirection set) stored in an array p containing
gaps—unused blocks—as previously discussed. The subset
of'the root data set (the original or root table) resulting from
the selection or query criteria is referred to as t in the example
shown in FIG. 135. The consolidation process begins in a first
step 1351 by determining the size of the subset t (i.e., the
number of tuples in subset t) and setting a variable r to rep-

US 2012/0203740 Al

resent this information. An array of r pointers is allocated
1352 in memory or storage as array o if a root indirection set
is being used. Otherwise C*r pointers are used for array o,
where the number of subset tuples r times is multiplied by a
coefficient C specifying the number of pointers representing
each pattern—e.g., 2 in the previous embodiments discussed
above. The next step 1353 is to initialize a number of counting
variables. The variable start represents the block or position in
the original array p (the block of memory or storage) which
has the gaps that are being closed. The variable index repre-
sents the current block in memory or storage (the array posi-
tion) allocated in array o, which is initially set to zero. The
variable fieldIndex represents the counter to sequentially
examine the patterns as they appear in sort order. The field-
Index variable is used in the fields [fieldIndex].offset value to
retrieve the final offset value for the pattern. For example, if
only 8 occurrences of the pattern “Mfg D, which began at
offset 258 in the above example, match the selection or query
criteria, the final offset value for the “Mfg D” pattern will be
266 (258+8=266). If the “Mfg D” pattern is the second pat-
tern, the fields[1].offset will be 266 for the second pattern
“Mfg D” (the count begins at O for the first pattern). After
these variables are initialized, a loop is executed 1354 until
the index variable tracking the position in array o reaches the
size of the subset r indicating that all the gaps have been
closed and array o is complete. Within this first loop 1354 a
second loop is executed for each pattern 1355. This second
loop 1355 begins for each pattern at its initial offset in array p
and continues block-by-block (or tuple-data by tuple-data)
until the final offset value for the pattern (all the data for the
pattern) is reached. For each block of data (pointer or set of
pointers) for the pattern, the value in array o is set to the
current value in array p 1356 resulting in gaps between the
patterns being removed. The counter for array o, index, and
the counter for array p, start, are then incremented 1356. Once
the counter for array p, start, exceeds the final offset value for
the pattern 1355, fields| fieldIndex].offset, the start variable is
set to the initial offset value of the next pattern 1357 and the
fieldIndex variable is incremented to the next pattern 1357
thus skipping over the gaps in array p. Once all the gaps have
been removed 1354-1357, the consolidation process returns
array o 1358 as either an array of pointers in sorted order to the
tuples in the root or original table that satisfy the selection/
query criteria if a root indirection set is used or as an array of
pointers in sorted order representing the tuples in the root or
original table that satisfy the selection/query criteria if an
actual subset is generated. The above example illustrates only
one possible consolidation process for a combination of
selection or query operation with a sorting operation. In other
embodiments, other consolidation processes may be used to
implement the present invention.

[0157] The previous examples have described one embodi-
ment of the present invention where sorting of a table is
performed using a single pattern or field from the table. How-
ever, it is also possible to sort the data using multiple patterns
or fields. According to one embodiment of the present inven-
tion, a sorting process using multiple fields can be imple-
mented by using the previously described sorting process on
the patterns in a reverse sort order for the patterns. For
example, if a table containing the fields vehicle manufacturer
and age of vehicle is to be sorted first by manufacturer then by
age within manufacturer, the above described sorting process
can be used to sort the data first by age and then the resulting
set of data sorted by age can then be sorted by manufacturer.

Aug. 9,2012

The result is a final data set first sorted by manufacturer then
by age within manufacturer. The term data set is used instead
of'table because this process for sorting by multiple fields can
also be used in conjunction with a selection or query opera-
tion resulting in only a subset of the table data being used.
[0158] Building the root or original table in a manner where
the tuples are already sorted by pattern or field may improve
the sorting operation by allowing two of the steps—1203
determining the order of the patterns and 1204 determining
the offset value for each pattern—to be eliminated where the
natural order (the original or root order) is used for the sort.
This can improve the performance of the sort operation by
reducing or eliminating several calculations that are part of
the process outlined above. The resulting benefit is that to
performance more closely achieves O(log(n)) or O(log(m))
rather than O(n+m log(m)) that otherwise occurs, where n
represents the number of tuples and m represents the number
of patterns. Building the root or original table in a manner
where the tuples are sorted according to a unique key for the
table is particularly performance enhancing according to one
embodiment of the present invention. Sorting on an unsorted
unique key requires time proportional to O(n log(n)) to com-
plete, which is the average sort time of many conventional
sorting algorithms. By sorting the table by unique key when
the table is generated or amended, future sorting operations
can still function efficiently because sorting on the unique key
can be avoided.

Sort by Expression

[0159] According to one embodiment of the present inven-
tion, using derived fields or an expression, both of which were
previously discussed, can further expand the sorting process.
A derived field may be calculated and added to the data set for
a table and is treated as any other field according to one
embodiment of the present invention. An expression is calcu-
lated at the time an operation (e.g., a sort operation) is
executed and is not stored with the data set for the table
according to one embodiment of the present invention. A sort
by expression operation uses an expression as part of the sort
process.

[0160] Sorting conducted according to the previously dis-
cussed embodiments of the present invention used single or
multiple patterns in a table to produce the sorted ordering of
data. Combining some of these previously discussed tech-
niques allows for the implementation of a sort operation using
anexpression in addition to or in place of using a pattern value
according to one embodiment of the present invention. Unlike
the values for a pattern that are part of the data set for a table,
an expression is acomputation using the values of the patterns
in the table and it is not stored for future use in one embodi-
ment of the present invention—unlike derived fields.

[0161] Inthis embodiment, an expression is a computation
made during the sorting process using at least one of the fields
from the data set for the table. For example, an expression
may involve a mathematical calculation such as S*int(age/5).
According to this example, a derived field value age, as pre-
viously discussed, is divided by 5, the integer value of this
quotient is taken and multiplied by 5 yielding the expression
value to be used in conducting the sort operation. Another
example of an expression involving a mathematical calcula-
tion is the expression premium-claim which uses a difference
obtained by subtracting the value of an insurance claim (i.e.,
the claim field value) from the value of an insurance premium
(i.e., the premium field value). These are only a few examples

US 2012/0203740 Al

of possible expressions that may be used according to this
embodiment. The use of an expression for a sort operation
may require a new or modified sorting process according to
this embodiment of the present invention.

[0162] The sorting process as previously described accord-
ing to one embodiment of the present invention used sort
“bins” determined according to the unique patterns of the sort
field. Memory or storage space was allocated for the sorted
data, the memory was partitioned using offset values to cre-
ated blocks of space or sort bins for each unique value in the
sort field or key and a single pass through the tuples of the
table was made with each tuple being assigned to the appro-
priate bin or block of space. The sort process for multiple
fields worked the same way sorting by the individual sort
fields (sort keys) in reverse order according to one embodi-
ment described above. The sorting process using an expres-
sion is similar but uses a modification of these previously
described techniques accounting for the addition of one or
more expressions.

[0163] FIG. 14a is a diagram illustrating an example table
to be sorted using an expression according to one embodi-
ment of the present invention. In FIG. 144, a table 1400
contains two fields: a name field 1401 and an age field 1411.
Though FIG. 14a shows a conventional table, as previously
discussed a table according to one embodiment of the present
invention contains pointers to the patterns which are stored in
memory or on a storage device. The data set of the patterns for
the table 1400 is stored in memory or on a storage device.
According to this example, there are six name patterns
1402—-A” 1403, “B” 1404, “C” 1405, “D” 1406, “E” 1407,
and “F” 1408—and six age patterns—23 1413, 34 1414, 17
1415,221416,24 1417, and 32 1418. The combination of the
patterns for name and age are unique resulting in a single
name being matched to a single age according to the example
shown in FIG. 14a. However, it is possible, for example, that
an age may be paired with more than one name (e.g., A has an
age of 23 and M has an age of 23). Using the first example
expression above, 5*int(age/S), a sort by expression opera-
tion may be executed. The expression 5*int(age/5) groups age
values into five-year bands where ages in the range of 0-4
result in an expression value of 0, ages in the range of 5-9
result in an expression value of 5, ages in the range of 10-14
result in an expression value of 10, etc. Sorting the tuples of
the table based on this expression and sorting in an ascending
order (whether by default or specified) results in the table
reorganized according to FIG. 145.

[0164] FIG. 145 is a diagram illustrating the sorted table
with the expression value shown according to one embodi-
ment of the present invention. The third column shown is the
expression value used as the sort field or key for the sort by
expression operation. The sort field or key appears in an
ascending sorted order as a result of the sort operation on the
table data using the expression. The sort field or key values in
the third column shown in FIG. 145 do not appear as part of
the table or data set after the sort by expression operation
concludes and, as a result, some of the previously described
sorting techniques can no longer be directly applied. There-
fore, executing a sort operation using an expression may
necessitate the use of a modified sort process—a sort by
expression process—according to one embodiment of the
present invention. One example of a sort by expression pro-
cess is listed below.

Aug. 9,2012

sort(t,f)

for each bin in sorted data
keys[i] = fn(bin[i].key)
sort(keys)
reorder bins using keys

The sort by expression process begins by conducting a pre-
viously described sort operation on the table t using a sort
field f representing a field used in the expression for the
table—in this example, the age field. As previously described,
the sort operation, according to one embodiment of the
present invention, allocates an area of memory for the sorted
table and then determines “bins” or subsets of the allocated
memory by computing offset values. These bins are deter-
mined using the unique patterns for the sort field. Tuples from
the table are then copied to the appropriate bins, which are
arranged by sort order, in the tuple order in which they appear
in the original table. The sort by expression process calculates
the expression value for each of the determined bins (the
unique patterns for the sort field f) resulting in a determination
of the sort field or key (the expression value) for the sort by
expression operation. These sort fields or keys (sort expres-
sion values) are then reorganized in a sorted order with the
bins being reorganized according to these keys. Because of
the initial sort based on the field used in the expression, the
sort field/key for the sort by expression operation only needs
to be determined once for each bin and the bins as a whole can
be rearranged according to the sorted order of these sort
fields/keys. In FIG. 145, the table data is sorted according to
field age 1410 used by the expression. The sort field or key
1420 for the sort by expression operation is then determined
for each bin and placed in sorted order and the bins are
reorganized accordingly. The bins in FIG. 145 are organized
byage—171415,221416,231413,241417,321418,and 34
1414—and determine the sort field or key for the sort by
expression operation.

[0165] Further examining the sort by expression process,
an execution or performance assessment may be made by
examining each of the subordinate steps. The initial sort
operation sort(t,f) takes O(n) operations as previously
described. Determining or collecting the keys (i.e., the sort
expression values) for the bins (i.e., for each unique pattern in
the sort by expression field) takes O(m) operations where m
is the number of unique patterns for the sort by expression
field f. The keys are then sorted taking O(m log(m)) opera-
tions and resulting in a sorted list of the keys (i.e., sort expres-
sion values). As shown in FIG. 125, the bins from the initial
sort are then reordered according to the key (i.e., sort expres-
sion) value. The reordering of the bins generally takes O(n)
operations. According to this information, the entire sort by
expression process requires an execution time related to
O(2n+m+m log(m)) operations. As previously discussed, n
will generally be larger than m in most circumstances and
with most data sets and n can be significantly larger than m in
some circumstances. For this reason, the value of n will gen-
erally be the more significant variable in this equation. Where
n is significantly larger than m, performance will approach
O(n) and where n and m are closer in size, performance will
more closely approximate O(m log(m)) which is the average
performance of many conventional sorting techniques.
[0166] The sort by expression process evaluates the func-
tion for the expression m times during the sort operation

US 2012/0203740 Al

where m is the number of unique patterns for the sort by
expression field for, in other words, the number of sort bins in
the initial sort. Evaluating the expression for m (i.e., for each
occurrence of a unique pattern) rather than n (i.e., for each
tuple in the data set for the table) may result in a significant
improvement in performance where n is greater than m. The
more significant the difference between n and m, the greater
the performance gained by using the initial sort bins to evalu-
ate the expression rather than on a row-by-row basis requiring
n calculations of the expression (i.e., execution of the expres-
sion function) as is generally done in conventional database
management systems. The above description for implement-
ing a sort operation based on an expression can also be
applied to a partition or join operation as well, especially
because both are based on the basic sort process as described
later in this document.

[0167] The embodiment discussed above describes the
implementation of a sort by expression operation where the
expression is based on a value for a single field in the data set
for the table. In another embodiment of the present invention,
the sort by expression operation may be conducted using an
expression involving multiple fields in a table. If the sort
expression uses multiple fields to determine a single key (i.e.,
sort by expression value), there is little change from the sort
by expression process described above. According to one
embodiment where multiple fields are used to generate a
single key (sort by expression) value, a minor variation of the
sort by expression process may be used as follows.

sort(t,f;...f,)

for each bin in sorted data
keys[i] = fn(bin[i].key)

sort(keys)

reorder bins using keys

The sort by expression process conducts the initial sort using
the multiple fields as previously described. The order of the
fields in this initial sort does not matter as any resulting sort
bin organization for the combination of the field values/pat-
terns will be reordered later. The initial sort by the multiple
fields creates bins for each unique combination of the patterns
for the multiple fields with each bin containing any corre-
sponding tuples (or root indirection sets for the tuples) of the
table. The keys (sort by expression values) are then determin-
ing using the multiple fields. The keys are then sorted and the
bins reordered as previously described resulting in a success-
ful sort by expression using multiple fields in the expression.
[0168] Using the multiple fields alters the performance
characteristics of the sort by expression process. The perfor-
mance of the sort by expression process using a single field
had an execution time related to O(2n+m+m log(m)) opera-
tions. The sort by expression process using multiple fields has
an expected performance related to O2n+M+M log(M))
operations, where M is the total number of unique patterns
resulting from the various combinations of the multiple fields
used in the expression for the sort by expression operation.
For example, if a sort by expression operation is conducted
for the expression 5*int(age/5)+int(int(income/1000)/2), the
unique patterns M for the different combinations of the fields
age and income determine the performance of the sort by
expression operation. FIG. 14¢ is a diagram illustrating a data
set for an example table. In one embodiment of the present
invention, the data set for the table would contain unique

Aug. 9,2012

pattern values and their number of instances stored in
memory or on a storage device with a table representation
containing the structure of the table with pointers to the stored
patterns and number of instances. Instead, a conventional
table format is illustrated in FIG. 14¢ to simplify the expla-
nation provided for the sort by expression operation involving
multiple fields according to one embodiment of the present
invention. The table 1430 contains 3 fields: name 1440, age
1441, and income 1442. The expression for the sorting opera-
tion uses the values from two of these fields: age 1441 and
income 1442. As described in the sort by expression process
for multiple fields above, the table is first sorted according to
the fields in the sort expression. Because the order of the fields
in the sort is not relevant to the final result, either the age 1441
or income 1442 field can be the first sort field. As previously
discussed in the sorting section, when conducting a sort
operation with multiple sort fields, a sort is first conducted for
the last sort field, then a second sort is conducted on the first
sort results for the next to last sort field, etc. (i.e., reverse sort
order). In this example, the first sort field is age 1441 and then
income 1442 and, as a result, we first sort by income 1442
then use those results to sort by age 1441. FIG. 144 is a
diagram illustrating a sorted table in order by age and then
income and showing the sort expression value (the sort key)
for each tuple of the table according to one embodiment of the
present invention. According to the embodiment previously
described, the key (sort expression value) is not calculated for
each tuple of the table but is calculated for each sort bin. In the
case of multiple fields used in a sort expression, the bins are
determined by the unique pattern for the combination of field
values. The unique values are as follows from the sorted (by
age then income) data set: 17 1462—29,000 1472; 18 1468—
15,000 1478; 22—1463—43,000 1473; 23 1460—57,000
1470; 24 1464—380,000 1474; 32 1465—110,000 1475; 34
1461—78,000 1471; 35 1467—85,000 1477; 40 1469—98,
000 1479; and 50 1466—210,000 1476. According to this
example, each tuple has a unique pattern combination of the
age and income field values with each combination being its
own sort bin. According to this example, a sort key (sort
expression value) is calculated for each bin (in this case each
tuple) and the sort key is shown in a fourth column 1443. The
keys are then sorted and the bins are rearranged according to
the sorted keys. FIG. 14e is a diagram illustrating the data set
for the table in sorted order by expression according to one
embodiment of the present invention. Reordering the sort bins
using the sort keys (the sort expression values) results in a
final table organization sorted according to the expression
using multiple fields. The key values are not stored with the
table and are only calculated for the sort by expression opera-
tion and, therefore, are not listed in conjunction with the final
table according to this embodiment.

[0169] In addition to the above examples where a sort by
expression operation using a single field and a sort by expres-
sion operation using multiple fields are described, a sort by
expression operation using multiple expressions may also be
implemented according to one embodiment of the present
invention. The use of multiple expressions is similar to sort-
ing using multiple fields as previously described. According
to this embodiment, a sort by expression operation for the last
expression—whether using single or multiple fields—is first
conducted, then a sort by expression operation for the next to
lastexpression is then conducted until the final sort by expres-
sion operation for the first expression is conducted (i.e., the
sort by expression operations are conducted in reverse

US 2012/0203740 Al

expression order—Ilast first). The sort by expression opera-
tions for multiple expressions results in a table sorted first by
the first expression, second by the second expression, etc. The
sort by expression operations each work as outlined above
depending upon if a single field or multiple fields are a used
for the sort expression. A sort by expression process for
multiple expressions, according to one embodiment of the
present invention, is shown below.

count = expressionsTotal
for(i=0; i<expressionsTotal; i++)
t = sort(t,expression[count]f,...expression[count]f,)
for each bin in sorted data
expression[count].keys[j] = expression[count].fu(bin[j].key)
sort(expression[count].keys)
reorder bins using expression[count].keys
count = count - 1

The sort by expression process for multiple expressions is
similar to the previous sort by expression process except that
a loop is executed for each expression with the sorting begin-
ning with the last expression and continuing until the first
expression—the final expression for, which a sort operation is
conducted—is executed.

Partition Operation (Partitioning)

[0170] The sorting process can be used to implement par-
titioning and joining according to one embodiment of the
present invention. Partitioning is the dividing of a table and
possibly its associated data set. For example, if a table con-
tains information about automobiles, it may be partitioned
into subsets of data according to the manufacturer. One
example of this type of partition operation is to group and
separate all the tuples for “Mfg A”, “Mfg B”, etc. This
example divides information by complete tuple according to
one embodiment of the present invention. For example, divid-
ing the automobile information by manufacturer results in the
complete tuple of automobile data for the manufacturer being
included into the partitioned subset (i.e., partition). Accord-
ing to this embodiment, the sorting process previously dis-
cussed can be used to group the data in a table according to the
partition field or partition key and generate the partitions
accordingly. The partition field or partition key is the pattern
or field value that is the basis for the sorting and separation of
the data in the table—in the above example, the manufacturer
field value/pattern. Though the examples for this embodiment
use a single partition field, it is possible to partition a table
using multiple fields or patterns in other embodiments of the
present invention.

[0171] According to this embodiment of the present inven-
tion if the manufacturer field has 5 associated patterns 1103-
1107 as illustrated in FIG. 11a, partitioning the table will
result in 5 partitions of the original data set for the table one
containing all the tuples for “Mfg A”, a second partition
containing all the tuples for “Mfg B”, etc. The number of
partitions resulting from this embodiment depends on the
number of patterns in the partition field. If there are in patterns
in the partition field (e.g., m manufacturers), there will be m
partitions resulting from the partition operation according to
this embodiment of the present invention. Each of the result-
ing partitions can then be used for further sorting operations,
selection or query operations, statistical calculations or other
database operation as if the partition was its own table. For

Aug. 9,2012

example, a table containing automobile registrations at a uni-
versity can be partitioned into subsets by automobile manu-
facturer that can further be queried. A selection or query
operation may be executed on the partition for “Mfg A” to find
all automobiles that are under 2 years old and registered after
a certain date. Though this information may alternatively be
obtained by combining a more detailed selection or query
operation (or multiple selection/query operations) with a sort-
ing operation as previously discussed, the use of a partition
operation to generate a partition may also be used. According
to one embodiment of the present invention, using a partition
operation may be particularly advantageous when a number
of subsequent operations are to be performed on each data
subset. A partition operation may also allow or assist in the
efficient computing of complex statistics for each partition.
According to one embodiment of the present invention, the
partition process is based on the sort process previously dis-
cussed and is shown as follows.

table=frequenciesFor(ft)
s=sort(t,)
fieldIndex=0
count=0
for(i=0; i<size(t); i++)
if (count==0)
p[fieldIndex] = newPartition(table[fieldIndex].name,t)
count = table[fieldIndex].frequency
fieldIndex = fieldIndex + 1
p[fieldIndex-1].addRoot(s.rootAt(i))
count = count - 1

The value t is the table to be partitioned and f'is the partition
field according to which the table is partitioned. The table is
first sorted and the two counter variables fieldIndex and count
are initialized (set to 0). After the sorting of the table, a for
loop is executed going through each tuple of the table one at
a time partitioning the tuples by the partition field.

[0172] The partition operation is a linear process similar to
the sort process as previously described. A first pass through
the table is executed to sort the tuples and a second pass
through the sorted table is executed to assemble the partitions
according to this embodiment.

[0173] In one embodiment of the present invention, the
partitions are virtual tables in that they share leaf and branch
nodes with the parent table. For this reason, the only unique
information for the partition is its root indirection set refer-
encing the already existing parent table tuples making the
partition efficient and quick to compute, manipulate, and
store. For example, a partition on a 32 bit computer system
may use approximately 4n bytes to store the entire set of
partitions for the table according to this embodiment, where n
is the number of tuples in the table.

[0174] The combination of a selection or query operation
with the sorting process as previously described can be used
as the basis for a partitioning of the data set according to
another embodiment of the present invention. According to
this embodiment, all the data in the table is not partitioned as
described in the previous embodiment and a partition is only
generated for a subset of the data (i.e., tuples) in a table.
According to this alternative embodiment, if a table includes
information about automobiles a partition or subset may only
be generated for tuples related to one manufacturer. In the
previous embodiment, the entire table would be partitioned as
a result of the partition operation with one partition for each

US 2012/0203740 Al

manufacturer. According to this embodiment, a partition only
for the desired (i.e., selected) manufacturer will be generated.
The partition process for this alternative embodiment is simi-
lar to the partition process for the previous embodiment
except that a partition is only generated for the desired parti-
tion field value/pattern.

[0175] The previous partition embodiments grouped and
separated the table data by complete tuple. In the first embodi-
ment, a root indirection set was generated for each partition
with one partition for every value/pattern in the partition field.
In the second embodiment, a root indirection set was gener-
ated for the sole partition for the selected partition field value/
pattern. In both cases, the root indirection set referenced the
complete tuple in the parent table from which the partition
was generated. In another embodiment of the present inven-
tion, a partition operation may be used to split the tuples of the
table with the fields and patterns being partitioned rather than
the tuples. This embodiment is the opposite of the join opera-
tion discussed below and illustrated later in FIGS. 155 and
15c.

Join Operation (Joining)

[0176] The sorting process can also serve as the basis for a
join operation according to one embodiment of the present
invention. A join operation is the combination of two tables
into a single resulting joined table. For example, a table or
data set of automobile information for cars made by manu-
facturer “Mfg A” may be combined with a table or data set of
automobile information for cars made by manufacturer “Mfg
B”. This example of a join operation is the opposite operation
to a partitioning operation as described above. According to
this example, both tables share a similar structure in that they
have the same fields for each tuple of data. The join operation
according to this example merely merges the two tables shar-
ing the same structure into a single joined table. This can be
done by appending the data from one table to the other table
or by creating a new table and adding the information from
the two merging tables according to previously discussed
embodiments of the present invention. This type of a join
operation is different from other types of join operations and
will be referred to as a merge operation to distinguish it and to
avoid any confusion.

[0177] Another type of join operation is the joining of the
tuples from two tables that do not share the same structure
(i.e., do not have all the same fields for their tuples). In this
second type of join operation, tuples from the first or “left”
table are associated with data from the second or “right” table
according to some criteria. For example, a join operation for
a table of insurance claims with a table of insurance policies
may use an insurance policy identifier or insurance policy
number to identify the insurance policy details to which each
claim applies. According to this example, the resulting joined
table will contain a tuple for each insurance claim but each
tuple will also contain details about the insurance policy to
which the insurance claim applies. Under these circum-
stances, the insurance policy number may be repeated in
numerous claims (tuples) which apply to the same insurance
policy. This may result in a loss of data normalization under
the relational database model but this will not affect the join
operation according to this embodiment of the present inven-
tion.

[0178] FIG. 15qa is diagram illustrating the patterns and
number of instances for each pattern that are stored in
memory or on a storage device and referenced by pointers in

Aug. 9,2012

a representation of two tables for two data sets according to
one embodiment of the present invention. The information for
the first pattern 1501 referenced by pointers from a first table
1510 are patterns for an insurance policy number 1502.
According to the example illustrated in FIG. 13a, only 3
patterns for insurance policy number 1502 exist: 305 1503,
395 1504, and 427 1505. The number of instances for each
pattern 1511 is the number of times the pattern occurs 1512 in
the tuples of the first table 1510. Insurance policy number 305
1503 occurs 1 time 1513, policy 395 1504 occurs 1 time 1514,
and policy 427 1505 also occurs 1 time 1515. The 3 instances
in total for these patterns 1518 should match the total number
of tuples in the first table 1510. The information for the
second pattern 1521 referenced by pointers from a second
table 1530 are patterns for an insurance policy number 1522
for insurance claims. According to the example illustrated in
FIG. 13a, only 2 patterns for insurance policy number 1522
for the insurance claims exist: 305 1523 and 427 1524. Insur-
ance policy number 395 1504 that occurs in the data set for the
firsttable 1510 is not associated with any claims in the second
table 1530 and, therefore, the pattern 395 does not show up in
the insurance policy numbers 1522 for the second table 1530.
The number of instances for each pattern 1531 is the number
of times the policy number pattern occurs 1532 in the tuples
of the second insurance claims table 1530. Insurance policy
number 305 1523 occurs 2 times (i.e., is associated with two
claims 1533 and policy 427 1524 occurs only 1 time (i.e., is
associated with only one claim 1534. The total number of
instances 1532 for the policy number patterns 1522 is 3 1538
(i.e., 2 for policy 305 and 1 for policy 427) which equals the
total number of tuples for the second insurance claims table
1530.

[0179] FIG. 154 is a diagram illustrating a tree-structure
representation of a table for an insurance policies data set and
a table for an insurance claims data set according to one
embodiment of the present invention. The first tree structure
1550 is a representation of the first insurance policies table
1510 previously discussed. A tree structure is shown for each
tuple of the table. The first tuple 1551 is shown beginning
with a root node (identifying the tuple) and containing the
insurance policy number 305 1554 as a leaf pattern. The
second tuple 1552 is shown beginning with a root node and
containing, the insurance policy number to 395 1555 as a leaf
pattern. The third tuple 1553 is shown and contains an insur-
ance policy number 427 1556 as a leaf pattern. Each of the
insurance policy nodes show a value of 1 indicating that there
is only 1 instance of the pattern in the data set for the table.
The other node values and patterns are not shown. The second
tree structure 1560 is a representation of the second insurance
claims table 1530 previously discussed. A tree structure is
also shown for each tuple of the table. The first tuple 1561 is
shown and contains information regarding a first claim for
insurance policy number 305 1564. The second tuple 1562 is
shown and contains information regarding a first claim for
insurance policy number 427 1565. The third tuple 1563 is
shown and contains information regarding a second claim for
insurance policy number 305 1564. The node values for
policy 305 1564 and 427 1565 reflect the number of instances
that each pattern occurs in the data set for the claims table
1530—2 instances for policy 305 and 1 instance for policy
427. Additional patterns and node values are not shown for
the insurance claims table 1560. FIG. 155 is illustrative of the
different circumstances that exist for joining tables whose
structures do not match. The tree structure for the first data set

US 2012/0203740 Al

1550 and the second data set 1560 may contain different
nodes and patterns as reflected by the other nodes for which
data is not included in FIG. 155.

[0180] According to one embodiment of the present inven-
tion, joining the table for insurance policies with the table for
insurance claims results in a new root node for each tuple with
the root node sitting above the previous root nodes for the
tuple data in the individual tables. FIG. 15¢ is a diagram
illustrating a tree-structure representation of the joining of the
data sets for two tables according to one embodiment of the
present invention. The data set for the insurance policies table
1550 is joined to the data set for the insurance claims table
1560 resulting in a joined data 1570 containing the data from
both. According to this embodiment, the joining process joins
only the data from the tuples in the insurance policies table
1550 that have an insurance policy number 1554, 1556 that
match an insurance policy number 1564, 1565 in the tuples of
the insurance claims table 1560. For example, a tuple 1552 in
the insurance policies table 1550 that does not match a policy
number in the insurance claims table 1560 is not joined to the
insurance claims table 1560. For this reason, the tuple 1552
for insurance policy number 395 1555 is not joined to the
insurance claims table 1560 as indicated by the shading in
FIG. 15c¢. The tuples that are joined are joined by creating a
new root node in the joined table linking the information for
the insurance policy number in the insurance policies table
1550 to the policy number for claims in the insurance claims
table 1560. For example, insurance policy number 305 1564
appears in tuples for 2 claims 1561, 1563 in the insurance
claims table 1560. In this situation, a new root node 1571,
1573 is generated for each tuple 1561, 1563 in the insurance
claims table 1560 linking the insurance policy tuple 1551 for
policy number 305 1554 to each of these claims 1561, 1563.
Another claim tuple 1562 for insurance policy number 427
1565 is also linked to the insurance policy information 1553
for policy number 427 1556 in the insurance policies table
1550 in the example shown in FIG. 15¢.

[0181] FIG. 15c¢ illustrates the join operation conducted
using a single join field—insurance policy number—even
though the joined tuples may contain many fields or patterns.
Inother embodiments of the present invention, it is possible to
conduct the join operation using multiple fields or patterns in
the data set rather only one field/pattern as shown in FIG. 15c¢.
[0182] The above example for joining the two data sets is
facilitated by the use of pointers as previously discussed
according to at least one embodiment of the present invention.
Because pointers are used, the underlying data (e.g., the insur-
ance policy numbers 1503-1505 and associated number of
instances 1513-1515 stored for the insurance policies data set
1510, 1550 and the insurance policy numbers 1523-1524 and
associated number of instances 1533-1534 stored for the
insurance claims data set 1530, 1560) remain unaffected by
the joining of the data sets. Instead, the resulting joined table
only needs to incorporate pointers to the data stored in
memory or on a storage device according to one embodiment
of the present invention.

[0183] Onemethod of determining which tuples in the table
data sets to be joined is to examine every possible pairing of
data and determine whether it belongs in the resulting joined
table. Implementing this type of process takes time propor-
tional to n, *n,, where n, and n, are the sizes of the data sets
(the number of patterns for the join field in the data set) for the
insurance policies 1510, 1550 and the insurance claims 1530,
1560. Depending on the size of the data sets to be joined, the

Aug. 9,2012

number of combinations that need to be tested according to
this method can be potentially very large. For the example
given in FIG. 15¢, this involves an execution time propor-
tional to the 6 (3*2) combinations that must be tested accord-
ing to this method. This method is obviously inefficient and
an alternative method for joining the tables is used according
to one embodiment of the present invention.

[0184] There are a number of types of join operations used
in database systems. One example is a equi-join or natural
join where two tuples are joined where they both have a
matching join “key”. The type of join operation illustrated in
FIG. 15c¢ is an equi-join where tuples from the two data sets
are only joined if their join field or join key (in this example,
the insurance policy number) match. For an equi-join, the size
of the resulting joined table can be determined using the
following join size determination process according to one
embodiment of the present invention.

s =patternSetFor(f,,t,)
so,=patternSetFor(f>,t,)
total=0
i=0; j=0
while (i<size(s,)) && (j<size(s,))
if (s.patterns[i]==s,.patterns[j])
total = total+s,.sizeFor[i]*s,.sizeFor[j]
i=i+1; j=j+1
else if (s,.patterns[i]<s,.pattern[j])
i=i+1
else
j=j+1

The values t, and t, represent the two tables to be joined and
f, and f, represent the shared fields (i.e., the join field or join
key) according to this embodiment. The join size determina-
tion process is predicated on both data sets being in sorted
order as the determination s,.patterns[i]<s,.patternsalj]
would otherwise not function properly. This join size deter-
mination process applies to an equi-join and can be illustrated
using the example join shown in FIGS. 13a-13c. Using the
insurance policies table 1550 to determine the pattern set s,
1510 and the insurance claims table 1560 to determine the
pattern set s, 1530, the join size determination process is
illustrated as follows. According to the process, the variables
iand j and the join size count total are initialized (set to 0). The
while loop executes as long as the counters i and j are less than
the size of the insurance policies data set (i.e., 3 patterns) and
the insurance claims data set (i.e., 2 patterns) respectively. On
the first iteration of the while loop, a determination is made
whether the patterns for the data sets match. In this case,
s, .pattern[0]=305=s,.pattern|[0] so the join size count total is
incremented by the number of instances for pattern 305 1503
in the first data set 1510 (i.e., 1 1513) multiplied by the
number of instance of the pattern 305 1523 in the second data
set 1530 (i.e., 2 1533) resulting in total=0+1*2=2. The
counters i and f are incremented (i.e., i=1 and j=1) and the
while loop executes again. In this second iteration of the while
loop, the patterns do not match and s,.pattern[1]=395 and
s,.pattern[1]=427. Because s,.pattern[1]<s,.pattern[1], the
counter i only is incremented (i.e., i=2 and j=1). On the third
and final iteration of the while loop, the patterns match with
s,.pattern[2]=427=s,.pattern|[1] so the join size count total is
incremented by the product of the number of instances (i.e., 1
1515*1 1534 respectively) resulting in total=2+1%*1=3. The
join size process therefore calculates a join size of 3. As is

US 2012/0203740 Al

clear from the preceding examples, the sorted nature of the
two data sets 1510 and 1530 may be necessary for the proper
performance of this example process.

[0185] According to one embodiment of the present inven-
tion, the join process is similar to the join size determination
process. The equi-join join process for two tables t;, and t,
with two shared fields f, and £, (i.e., the join field or join key)
according to this embodiment is listed below.

s =sort(t,f)
so=sort(t,,f>)
i=0; j=0
while (i<size(s;))
if (valueFor(f,,s, [j])==valueFor(f} s, [i]))
k=0
while (valueFor(f,,s, [j+k])==valueFor(f},s,[i]))
add(s,[i],s>[j+k])
k=k+1
else if (valueFor(f,,s,[j])<valueFor(f,,s,[i]))
=i+t
else
i=i+1

The above equi-join join process is similar to the join size
determination process previously discussed except that the
tables are first sorted and no join count total is maintained. In
addition, the add function is the joining of the matching tuples
from both tables. As previously discussed, the sorting of the
tables takes O(n,) steps to execute the first sort and O(n,)
steps to execute the second sort. The while loop for the equi-
join join process will take at most O(max(n, +n,, n,)) steps to
complete where n; and n, are the sizes of the data sets to be
joined and nj is the size of the final joined data set. Because
the first branch of the if statement combines the processing of
the second and third branches of the if statement, every time
a result uses this first branch the overall steps are reduced
resulting in O(n, +1n,) being the worst case number of steps to
be performed for the equi-join join process.

[0186] An equi-joinis only one example of a database join
operation. For other types of join operations, variations of the
above equi-join join process may be used to implement the
other join operations according to one embodiment of the
present invention. For example, another type of join operation
may be termed a “left outer join” operation. In the equi-join
example provided above and in FIGS. 156 and 15¢, insurance
policy number 395 1555 did not match any tuples in the
claims table 1560 and therefore the insurance policy data
1552 for policy 395 1555 was omitted from the resulting
joined table. A “left outer join” would include a tuple for
policy 395 in the resulting joined table but would have all the
data (i.e., the fields) for the claims portion of the joined tuple
set to a NULL value. To implement the “left outer join”
operation, a modification of the join size determination pro-
cess and the equi-join join process may be used. According to
one embodiment of the present invention, a modified join size
determination process as shown below can be used for the
“left outer join” operation.

s =patternSetFor(f,t,)
s,=patternSetFor(f,,t,)

total=0

i=0; j=0

while (i<size(s;)) && (j<size(s,))

Aug. 9,2012

-continued

if (s.patterns[i]==s,.patterns[j])
total = total+s,.sizeFor[i]*s,.sizeFor[j]
i=i+1; j=j+1
else if (s,.patterns[i]<s,.pattern[j])
i=i+1
total=total+1
else
j=j+1

The join size determination is the same for both the equi-join
operation and the “left outer join” operation except that for
the “left outer join” the total is incremented for all patterns in
the “left” data set—even for those where no match is found.
The changes to the join size determination process (i.e., an
additional line in this case) made from the equi-join operation
to the “left outer join” operation is shown in bold above. A
“left outer join” operation may be particularly useful where
the “right” data set requires the existence of the join key or
join field before allowing data to be included in the data set
and table. For example, to add a claim to the insurance claim
table, a requirement may be in place that the insurance policy
number must already exist in the insurance policies table with
the insurance policies table serving as the lookup table for the
policy number in the insurance claims table. In this situation,
it would not be possible to have a tuple in the insurance claims
table (the “right” data set) that does not match a tuple in the
table for the “left” data set though the table for the “left” data
set may have tuples that do not match the data in the table for
the “right” data set. In these circumstances, the “left outer
join” operation is particularly useful in making sure that all
tuples are included in the resulting joined table.

[0187] According to one embodiment of the present inven-
tion, a “left outer join” join process is shown below as a
modification of the equi-join join process previously dis-
cussed.

s =sort(t;,f;)
so=sort(t,,f>)
nullTree = nullTree(t,)
i=0; j=0
while (i<size(s;))
if (valueFor(f,,s,[j])==valueFor(f},s,[i]))

while (valueFor(f,,s,[j+k])==valueFor(f},s,[i]))
add(s, [i].s:[j+k])
k=k+1
else if (valueFor(f,,s,[j])<valueFor(f,s,[i]))
j=j+1
else
add(s, [i], nullTree)
i=i+1

The nullTree(t,) is a tuple or tree in the table for the second or
“right” data set with NULL values for all the patterns in the
tuple/tree. This NULL value tuple for the “right” data set is
then joined to the tuple in the table for the “left” data set where
the data (i.e., the join key or join field) in the tuple for the left
data set does not match the data (i.e., the join key or join field)
in the “right” data set. This is reflected in the second use of the
add function. The additions to the equi-join join process to
implement a “left outer join” join process are shown in bold.

[0188] The equi-join join operation and the “left outer join”
operation are only two examples of possible join operations

US 2012/0203740 Al

that may be implemented according to at least one embodi-
ment of the present invention. Other join operations may be
implemented in a similar manner using minor modification to
the join size determination process and join process discussed
above according to one embodiment of the present invention.

Archiving

[0189] The necessity to maintain increasingly greater
amounts of data to comply with, for example, current gov-
ernment regulatory requirements, such as Sarbanes-Oxley
and Basle 2, may create burdens that conventional archiving
techniques are ill equipped to satisty. According to one
embodiment of the present invention, implementing the
present invention as discussed above may provide a mecha-
nism for successtul meeting the archiving requirements that
demand increasingly greater storage and rapid accessibility.
[0190] This embodiment of the present invention favorably
addresses several archiving issues and criteria. For example,
one challenge raised by archiving is the accessibility of the
archived data. Having archived data readily accessible online
over an information network (e.g., the Internet) may provide
the best accessibility to the data. However, conventional
archiving systems typically implement means further remov-
ing the archived data from online accessibility. Deploying
tape storage based backup procedures, for example, are less
practical as they further remove the archived data from rapid
online access and may also be more failure prone than optical
or hard disk online storage formats. This embodiment of the
present invention reduces the amount of memory or storage
space used for an archive thereby facilitating its storage on
more immediately accessible media. This reduction in the
amount of memory or storage space to store an archive
coupled with the fully searchable (i.e., the user is able to query
the archived data) nature of the archive provides significant
advantages over conventional archives.

[0191] One particular advantage according to this embodi-
ment of the present invention is that a compression in the data
occurs without any data loss. The patterns themselves are
uniquely stored while addresses to the patterns are used in the
tree structure representation of each tuple in a table. In this
manner, the amount of memory or storage space necessary for
the data set of a table may be substantially reduced over other
conventional database management systems. In this manner,
an archive may be stored using less memory or storage than
otherwise conventionally necessary.

[0192] Another particularly advantageous benefit of this
embodiment of the present invention is obtained when
archiving snapshots of data in a database. A snapshot is copy
of'the data that exists in the database at one particular point in
time. Because a snapshot of data from a database will share a
considerable amount of data with other snapshots of the data-
base and with the current data in the database, it is possible to
achieve greater archiving efficiency. As described above, the
patterns in the data set of a table are uniquely stored and
pointers to the patterns are used in the representation of the
table. The overlap between the patterns used in one archived
snapshot and another archived snapshot and between an
archived snapshot and the current data set may be substantial.
Therefore, the patterns for all the snapshots may be stored
together in a single pattern set for the table (i.e., not broken
down into separate pattern sets for each archived snapshot). A
root indirection set as previously described may then be used
for each archived snapshot to indicate the grouping of pat-
terns for the tuples in the snapshot. In other words, adding an

Aug. 9,2012

archive of data (e.g., a snapshot of the database) may be
implemented by simply adding a root indirection set for the
archive. In addition, the delete function described herein
would instead of erasing data (according to one embodiment
above) would instead remove a tuple from the root indirection
set for the current table of the database. Also, the update
function described herein would instead of erasing data (ac-
cording to one embodiment above) would instead add any
new patterns to the pattern set for the table and create a new
entry to the root indirection set for the current table of the
database. In this manner, the patterns used in the root indi-
rection set for the archive are preserved even though they may
no longer be reachable (i.e., used) in the current database.

[0193] In addition to this embodiment of the present inven-
tion, other advantages of this embodiment include:

[0194] The following example illustrates the memory or
storage savings that may be achieved according to this
embodiment of the present invention used for implementing
multiple archives. According to this example, a table contain-
ing one million tuples (records) having a total size of 200 MB
(200 bytes per tuple) is going to be archived according to this
embodiment. Assuming that there is 80% compression (i.e.,
reduction in the amount of space necessary) resulting from
the savings in memory or storage space that occurs when
patterns are stored uniquely with pointers for each tuple
pointing to the unique patterns, the archive of the data uses 40
MB of data to store the patterns. In addition, as previously
discussed a root indirection set may then be used by the
archive to indicate its component tuples. As previously dis-
cussed, a root indirection set may use four bytes per tuple in
a 32-bit system resulting in 4 MB of space for the one million
tuples in the root indirection set of the archive. Combined
with the 40 MB of storage, the archive uses 44 MB of space
(40 MB for the storage of the patterns and pointers and 4 MB
for the root indirection set). If a second archive (e.g., a second
snapshot of the table data) is generated where 10% of the
patterns are different from (new over) the first archive, an
additional 4 MB of memory or storage space is necessary for
these different patterns in addition to the 4 MB for the root
indirection set for the second archive resulting in 52 MB of
space for both archives (44 MB for the first archive+4 MB
extra patterns for the second archive (10% of 40 MB)+4 MB
for the root indirection set for the second archive=52 MB).
This 52 MB represents considerably less memory or storage
space than the 88 MB (44 MB per archive) that would other-
wise be required if the two snapshots were stored separately.
This savings in memory or storage space is in addition to the
savings that occur from storing the patterns uniquely and
using pointers to point to the patterns. In a conventional
archiving system, the above example may require 400 MB for
both archives (200 MB for each archive) whereas this
embodiment of the present invention not only reduces the
memory or storage for the archives to 88 MB (44 MB each)
but further reduces their size by sharing the duplicated pat-
terns resulting in only 52 MB of memory or storage. Each
additional snapshot that is added to the this archive further
increases the memory or storage space savings according to
this embodiment of the present invention.

[0195] As previously stated, an archive unlike a current
database (the database that is in current use) may be moved to
a persistent storage media other than an online memory struc-
ture or storage space for which the above embodiments have
been described. This may raise an issue regarding the immu-
tability of the data relating to the use of pointers to the

US 2012/0203740 Al

memory addresses of patterns. If the database is move to a
persistent storage structure, the address of the patterns
changes. When the database is reloaded into a memory struc-
ture or other readily accessible storage structure, the pointers
may no longer refer to accurate pattern addresses. In order to
correct for this potential problem when moving an archive to
another media, the addresses are transformed into offset val-
ues (i.e., relative addresses) indicating an offset position in
memory or storage with the pointers referencing the offset
values. When the archive is restored (reloaded), the offset
values are transformed from a relative address back to an
actual address with the pointers referring to the actual
address. In this manner, problems with the addressing of
patterns may be avoided. This embodiment may also be used
when moving the current database as well. According to one
embodiment of the present invention, active data may be kept
in memory (which is more readily accessible) while less
active data may be stored on a persistent storage media such
a disk from which it may be loaded into memory when
needed. The short delay resulting from the loading of data into
to memory may be acceptable considering the other perfor-
mance gains and, in particular, with the less frequent access-
ing of the data not already in memory.
[0196] Inanother embodiment of the present invention, the
use of snapshots as described above may be used to perform
time series analysis on the data in the database. For example,
each snapshot captures the data in the database at a particular
period of time. Using specified snapshots that are stored
together allows for changes in the data over time to be exam-
ined indicating trends. This may be accomplished by running
queries on each snapshot desired for the analysis using those
snapshots’ root indirection sets. According to this embodi-
ment, time series analysis may be performed without any
extra aggregation and indexing of the data as may be required
in conventional specialty database allowing time series analy-
sis.
What is claimed is:
1. A method for storing a snapshot of data in a database,
comprising:
creating a root indirection set for the snapshot of data;
maintaining a deleted pattern in the database, wherein the
deleted pattern is not removed from a pattern set for a
nodein a table of the database when the pattern is deleted
in the database; and
providing access to the snapshot of data using the created
root indirection set, the created root indirection set
accessing the deleted pattern.
2. A method for performing a time series analysis on datain
a database, comprising:
creating a root indirection set for each snapshot of data to
be used in the time series analysis, wherein current data
is treated as an already existing snapshot for the time
series analysis;
designating a plurality of snapshots of data to be used in the
time series analysis, wherein the root indirection sets of
the snapshots of data are identified;
generating a query for the time series analysis, the query to
be executed on all the designated snapshots of data; and
comparing query results as part of the of the time series
analysis.
3. A method for partitioning a table of a database as a
function of at least one partition field, comprising:
sorting the table according to the at least one partition field;
and

Aug. 9,2012

generating a root indirection set for each value of the at
least one partition field, the root indirection set contain-
ing at least one pointer to a tuple in the table wherein the
value of the at least one partition field for the root indi-
rect set matches the value of the at least one partition
field for the tuple.

4. A method for partitioning a table of a database as a
function of at least one partition field, comprising:

sorting the table according to the at least one partition field;

selecting a plurality of tuple blocks in the sorted table,

wherein, for each selected tuple block, all tuples of the
respective tuple block share a same value of the at least
one partition field; and

subsequently generating a root indirection set for each

selected tuple block, the root indirection set containing,
for each of the tuples of the tuple block, a pointer to the
tuple.

5. The method of claim 4, wherein:

each tuple has a single value for each of at least one field of

the table;

the table is stored in the database as a tree including a

plurality of nodes, each of the nodes being associated
with a respective one of a plurality of pattern sets, each
set having at least one respectively pattern;

the patterns include:

leaf patterns, each of which represents a single value for
a respective one of the fields of the table; and

branch patterns, each of which points, one of (a) directly
and (b) indirectly via other branch patterns, to only a
single respective combination of two or more leaf
patterns, the combination including only a single leaf
pattern for each of corresponding two or more of the
fields of the table;

the plurality of nodes includes a root node for the table;

each pattern of the pattern set associated with the root node

represents a respective one of the tuples of the table and,

for each field of the table, one of:

does not refer to a leaf pattern, thereby indicating that a
value for the field is NULL; and

one of directly and indirectly points to a single leaf
pattern; and

each pointer of each of the root indirection sets points to a

respective one of the pattern set associated with the root
node.

6. The method of claim 4, wherein a combination of all of
the selected tuple blocks does not include all of the tuples of
the table.

7. A method for joining a first table and a second table of a
database as a function of at least one join field, comprising:

sorting the first table according to the at least one join field;

sorting the second table according to the at least one join
field;
matching a tuple in the first table with a tuple in the second
table, wherein a value for the at least one join field of the
tuple in the first table is equal to a value for the at least
one join field of the tuple in the second table; and

generating a joined table as a function of the matching tuple
in the first table and the matching tuple in the second
table.

8. The method of claim 7, wherein:

for each of the first and second tables:

the table is stored in the database as a representative tree
including a plurality of nodes, each of the nodes being

US 2012/0203740 Al Aug. 9, 2012
32

associated with a respective one of a plurality of pat- erences a pattern of the root node of the first table and

tern sets, each set having at least one pattern; and a pattern of the root node of the second table; and
the plurality of nodes includes a root node, each pattern generating a root indirection set including a plurality of

of the pattern set associated with the root node repre- pointers, each of the pointers pointing to a respective

senting a respective one of the tuples of the table; and one of the patterns of the root node generated for the
the generating the joined table includes: joined table.

generating for the joined table a root node associated
with a pattern set, each pattern of which directly ref- RooRoowR o E

