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DETECTING THE COMPLETION OF PROGRAMMING
FOR NON-VOLATILE STORAGE

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The present invention relates to technology for non-volatile

storage.

Description of the Related Art

[0002] Semiconductor memory devices have become more popular for
use in various electronic devices. For example, non-volatile semiconductor
memory is used in cellular telephones, digital cameras, personal digital
assistants, mobile computing devices, non-mobile computing devices and other
devices. Electrical Erasable Programmable Read Only Memory (EEPROM)
and flash memory are among the most popular non-volatile semiconductor

memories.

[0003] Both EEPROM and flash memory utilize a floating gate that is
positioned above and insulated from a channel region in a semiconductor
substrate. The floating gate is positioned between source and drain regions. A
control gate is provided over and insulated from the floating gate. The
threshold voltage of the transistor is controlled by the amount of charge that is
retained on the floating gate. That is, the minimum amount of voltage that
must be applied to the control gate before the transistor is turned on to permit
conduction between its source and drain is controlled by the level of charge on

the floating gate.

[0004] When programming an EEPROM or flash memory device,
typically a program voltage is applied to the control gate and the bit line is
grounded. Electrons from the channel are injected into the floating gate.

When electrons accumulate in the floating gate, the floating gate becomes



WO 2010/151428 PCT/US2010/037846

negatively charged and the threshold voltage of the memory cell is raised so
that the memory cell is in the programmed state. More information about
programming can be found in U.S. Patent 6,859,397, titled “Source Side Self
Boosting Technique For Non-Volatile Memory;” and U.S. Patent 6,917,542,
titled “Detecting Over Programmed Memory,” both patents are incorporated

herein by reference in their entirety.

[0005] Some EEPROM and flash memory devices have a floating gate
that is used to store two ranges of charges and, therefore, the memory cell can
be programmed/erased between two states, an erased state and a programmed
state that correspond to data “1”” and data “0.” Such a device is referred to as a

binary or two-state device.

[0006] A multi-state flash memory cell is implemented by identifying
multiple, distinct allowed threshold voltage ranges. Each distinct threshold
voltage range corresponds to a predetermined value for the set of data bits.
The specific relationship between the data programmed into the memory cell
and the threshold voltage ranges of the cell depends upon the data encoding
scheme adopted for the memory cells. For example, U.S. Patent No. 6,222,762
and U.S. Patent Application Publication No. 2004/0255090, both of which are
incorporated herein by reference in their entirety, describe various data

encoding schemes for multi-state flash memory cells.

[0007] In some embodiments, the program voltage applied to the control
gate includes a series of pulses that are increased in magnitude with each
successive pulse by a predetermined step size (e.g. 0.2v, 0.3v, 0.4v, or others).
Between pulses, the memory system will verify whether the individual
memory cells have reached their respective target threshold voltage ranges.
Those memory cells that have reached their target threshold voltage range will

be locked out of future programming (e.g., by raising the bit line voltage to
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Vdd). When all memory cells have reached their target threshold voltage

range, programming is complete.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] Figure 1 is a top view of a NAND string.

[0009] Figure 2 is an equivalent circuit diagram of the NAND string.

[0010] Figure 3 is a block diagram of a non-volatile memory system.
[0011] Figure 4 is a block diagram depicting one embodiment of a sense
block.

[0012] Figure SA is a block diagram depicting one embodiment of a

memory array.
[0013] Figure 5B depicts a page of data.

[0014] Figure 6 depicts an example set of threshold voltage distributions

and describes a process for programming non-volatile memory.

[0015] Figure 7 depicts an example set of threshold voltage distributions

and describes a process for programming non-volatile memory.

[0016] Figures 8A—C show various threshold voltage distributions and

describe a process for programming non-volatile memory.

[0017] Figure 9 is a table depicting the order of programming non-volatile

memory in one embodiment.

[0018] Figure 10 depicts an example set of threshold voltage distributions

and describes a process for programming non-volatile memory.
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[0019] Figures 11A-I show various threshold voltage distributions and

describe a process for programming non-volatile memory.

[0020] Figure 12 is a flow chart describing one embodiment of a process

for operating non-volatile memory.

[0021] Figure 13 is a flow chart describing one embodiment of a process

for programming non-volatile memory.

[0022] Figures 14-17 depicts a control gate signal for one embodiment of

non-volatile memory.
[0023] Figure 18 depicts an example set of threshold voltage distributions.
[0024] Figure 19 depicts one example threshold voltage distribution.

[0025] Figures 20-23 depicts a control gate signal for one embodiment of

non-volatile memory.

[0026] Figure 24 is a flow chart describing one embodiment of a process

for programming non-volatile memory.

[0027] Figure 25 is a flow chart describing one embodiment of a process

for programming non-volatile memory.

[0028] Figures 26A, B and C depict a one embodiment of a programming

process that is performed as part of coarse/fine programming.

[0029] Figures 27A, B and C depict a one embodiment of a programming

process that is performed as part of coarse/fine programming.
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DETAILED DESCRIPTION

[0030] In a non-volatile storage system, a set non-volatile storage
clements are subjected to a programming process in order to store a set of data.
Programming can be stopped when all non-volatile storage elements have
reached their target level or when the number of non-volatile storage elements
that have not reached their target level is less than a number of memory cells
that can be corrected using an error correction process during a read operation
(or other operation). The number of non-volatile storage elements that have
not reached their target level can be estimated by counting the number of non-
volatile storage elements that have not reached a condition that is different than

the target level.

[0031] One example of a non-volatile storage system is a flash memory
system that uses the NAND structure, which includes arranging multiple
transistors in series, sandwiched between two select gates. The transistors in
series and the select gates are referred to as a NAND string. Figure 1 is a top
view showing one NAND string. Figure 2 is an equivalent circuit thereof. The
NAND string depicted in Figures 1 and 2 includes four transistors 100, 102,
104 and 106 in series and sandwiched between (drain side) select gate 120 and
(source side) select gate 122. Select gate 120 connects the NAND string to a
bit line via bit line contact 126. Select gate 122 connects the NAND string to
source line 128. Select gate 120 is controlled by applying the appropriate
voltages to select line SGD. Select gate 122 is controlled by applying the
appropriate voltages to select line SGS. Each of the transistors 100, 102, 104
and 106 has a control gate and a floating gate. For example, transistor 100 has
control gate 100CG and floating gate 100FG. Transistor 102 includes control
gate 102CG and a floating gate 102FG. Transistor 104 includes control gate
104CG and floating gate 104FG. Transistor 106 includes a control gate
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106CG and a floating gate 106FG. Control gate 100CG is connected to word
line WL3, control gate 102CG is connected to word line WL2, control gate
104CG is connected to word line WL 1, and control gate 106CG is connected
to word line WLO.

[0032] Note that although Figures 1 and 2 show four memory cells in the
NAND string, the use of four memory cells is only provided as an example. A
NAND string can have less than four memory cells or more than four memory
cells. For example, some NAND strings will include eight memory cells, 16
memory cells, 32 memory cells, 64 memory cells, 128 memory cells, etc. The
discussion herein is not limited to any particular number of memory cells in a
NAND string. One embodiment uses NAND strings with 66 memory cells,
where 64 memory cells are used to store data and two of the memory cells are

referred to as dummy memory cells because they do not store data.

[0033] A typical architecture for a flash memory system using a NAND
structure will include several NAND strings. Each NAND string is connected
to the common source line by its source select gate controlled by select line
SGS and connected to its associated bit line by its drain select gate controlled
by select line SGD. Each bit line and the respective NAND string(s) that are
connected to that bit line via a bit line contact comprise the columns of the
array of memory cells. Bit lines are shared with multiple NAND strings.
Typically, the bit line runs on top of the NAND strings in a direction

perpendicular to the word lines and is connected to a sense amplifier.

[0034] Relevant examples of NAND type flash memories and their
operation are provided in the following U.S. Patents/Patent Applications, all of
which are incorporated herein by reference in their entirety: U.S. Pat. No.
5,570,315; U.S. Pat. No. 5,774,397; U.S. Pat. No. 6,046,935; U.S. Pat. No.
6,456,528; and U.S. Pat. Publication No. US2003/00023438.
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[0035] Other types of non-volatile storage devices, in addition to NAND
flash memory, can also be used. For example, a TANOS structure (consisting
of a stacked layer of TaN-Al,Os-SiN-SiO;, on a silicon substrate), which is
basically a memory cell using trapping of charge in a nitride layer (instead of a
floating gate), can also be used with the technology described herein. Another
type of memory cell useful in flash EEPROM systems utilizes a non-
conductive dielectric material in place of a conductive floating gate to store
charge in a non-volatile manner. Such a cell is described in an article by Chan
et al., "A True Single-Transistor Oxide-Nitride-Oxide EEPROM Device,"
IEEE Electron Device Letters, Vol. EDL-8, No. 3, March 1987, pp. 93-95. A
triple layer dielectric formed of silicon oxide, silicon nitride and silicon oxide
("ONO") is sandwiched between a conductive control gate and a surface of a
semi-conductive substrate above the memory cell channel. The cell is
programmed by injecting electrons from the cell channel into the nitride, where
they are trapped and stored in a limited region. This stored charge then changes
the threshold voltage of a portion of the channel of the cell in a manner that is
detectable. The cell is erased by injecting hot holes into the nitride. See also
Nozaki et al, "A 1-Mb EEPROM with MONOS Memory Cell for
Semiconductor Disk Application,” IEEE Journal of Solid-State Circuits, Vol.
26, No. 4, April 1991, pp. 497-501, which describes a similar cell in a split-
gate configuration where a doped polysilicon gate extends over a portion of the

memory cell channel to form a separate select transistor.

[0036] Another example is described by Eitan et al., “NROM: A Novel
Localized Trapping, 2-Bit Nonvolatile Memory Cell,” IEEE Electron Device
Letters, vol. 21, no. 11, November 2000, pp. 543-545. An ONO dielectric
layer extends across the channel between source and drain diffusions. The
charge for one data bit is localized in the dielectric layer adjacent to the drain,
and the charge for the other data bit is localized in the dielectric layer adjacent

to the source. United States patents Nos. 5,768,192 and 6,011,725 disclose a
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non-volatile memory cell having a trapping dielectric sandwiched between two
silicon dioxide layers. Multi-state data storage is implemented by separately
reading the binary states of the spatially separated charge storage regions

within the dielectric. Other types of memory devices can also be used.

[0037] Figure 3 illustrates a memory device 210 having read/write circuits
for reading and programming a page of memory cells (e.g., NAND multi-state
flash memory) in parallel. Memory device 210 may include one or more
memory die or chips 212. Memory die 212 includes an array (two-dimensional
or three dimensional) of memory cells 200, control circuitry 220, and
read/write circuits 230A and 230B. In one embodiment, access to the memory
array 200 by the various peripheral circuits is implemented in a symmetric
fashion, on opposite sides of the array, so that the densities of access lines and
circuitry on each side are reduced by half. The read/write circuits 230A and
230B include multiple sense blocks 300 which allow a page of memory cells to
be read or programmed in parallel. The memory array 200 is addressable by
word lines via row decoders 240A and 240B and by bit lines via column
decoders 242A and 242B. In a typical embodiment, a controller 244 is
included in the same memory device 210 (e.g., a removable storage card or
package) as the one or more memory die 212. Commands and data are
transferred between the host and controller 244 via lines 232 and between the

controller and the one or more memory die 212 via lines 234.

[0038] Control circuitry 220 cooperates with the read/write circuits 230A
and 230B to perform memory operations on the memory array 200. The
control circuitry 220 includes a state machine 222, an on-chip address decoder
224 and a power control module 226. The state machine 222 provides chip-
level control of memory operations. The on-chip address decoder 224 provides
an address interface between that used by the host or a memory controller to
the hardware address used by the decoders 240A, 240B, 242A, and 242B. The

power control module 226 controls the power and voltages supplied to the
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word lines and bit lines during memory operations. In one embodiment, power
control module 226 includes one or more charge pumps that can create
voltages larger than the supply voltage. Control circuitry 220, the decoders
240 A/B & 242A/B, the read/write circuits 230A/B and the controller 244,

collectively or separately, can be referred to as one or more managing circuits.

[0039] Figure 4 is a block diagram of an individual sense block 300
partitioned into a core portion, referred to as a sense module 480, and a
common portion 490. In one embodiment, there will be a separate sense
module 480 for each bit line and one common portion 490 for a set of multiple
sense modules 480. In one example, a sense block will include one common
portion 490 and eight sense modules 480. Each of the sense modules in a group
will communicate with the associated common portion via a data bus 472. For
further details, refer to U.S. Patent Application Publication 2006/0140007,

which is incorporated herein by reference in its entirety.

[0040] Sense module 480 comprises sense circuitry 470 that determines
whether a conduction current in a connected bit line is above or below a
predetermined threshold level. In some embodiments, sense module 480
includes a circuit commonly referred to as a sense amplifier. Sense module 480
also includes a bit line latch 482 that is used to set a voltage condition on the
connected bit line. For example, a predetermined state latched in bit line latch
482 will result in the connected bit line being pulled to a state designating

program inhibit (e.g., Vdd).

[0041] Common portion 490 comprises a processor 492, a set of data
latches 494 and an 1/O Interface 496 coupled between the set of data latches
494 and data bus 420. Processor 492 performs computations. For example, one
of its functions is to determine the data stored in the sensed memory cell and
store the determined data in the set of data latches. The set of data latches 494

is used to store data bits determined by processor 492 during a read operation.
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It is also used to store data bits imported from the data bus 420 during a
program operation. The imported data bits represent write data meant to be
programmed into the memory. I/O interface 496 provides an interface between

data latches 494 and the data bus 420.

[0042] During read or sensing, the operation of the system is under the
control of state machine 222 that controls the supply of different control gate
voltages to the addressed cell. As it steps through the various predefined
control gate voltages (the read reference voltages or the verify reference
voltages) corresponding to the various memory states supported by the
memory, the sense module 480 may trip at one of these voltages and an output
will be provided from sense module 480 to processor 492 via bus 472. At that
point, processor 492 determines the resultant memory state by consideration of
the tripping event(s) of the sense module and the information about the applied
control gate voltage from the state machine via input lines 493. It then
computes a binary encoding for the memory state and stores the resultant data
bits into data latches 494. In another embodiment of the core portion, bit line
latch 482 serves double duty, both as a latch for latching the output of the

sense module 480 and also as a bit line latch as described above.

[0043] It is anticipated that some implementations will include multiple
processors 492, In one embodiment, each processor 492 will include an output
line (not depicted in Fig. 4) such that each of the output lines is wired-OR’d
together. In some embodiments, the output lines are inverted prior to being
connected to the wired-OR line. This configuration enables a quick
determination during the program verification process of when the
programming process has completed because the state machine receiving the
wired-OR line can determine when all bits being programmed have reached the
desired level. For example, when each bit has reached its desired level, a logic
zero for that bit will be sent to the wired-OR line (or a data one is inverted).

When all bits output a data 0 (or a data one inverted), then the state machine
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knows to terminate the programming process. In embodiments where each
processor communicates with eight sense modules, the state machine may (in
come embodiments) need to read the wired-OR line eight times, or logic is
added to processor 492 to accumulate the results of the associated bit lines
such that the state machine need only read the wired-OR line one time. In
some embodiments that have many sense modules, the wired-OR lines of the
many sense modules can be grouped in sets of N sense modules, and the

groups can then be grouped to form a binary tree.

[0044] During program or verify, the data to be programmed is stored in
the set of data latches 494 from the data bus 420. The program operation,
under the control of the state machine, comprises a series of programming
voltage pulses (with increasing magnitudes) concurrently applied to the control
gates of the addressed memory cells to that the memory cells are programmed
at the same time. Each programming pulse is followed by a verify process to
determine if the memory cell has been programmed to the desired state.
Processor 492 monitors the verified memory state relative to the desired
memory state. When the two are in agreement, processor 492 sets the bit line
latch 482 so as to cause the bit line to be pulled to a state designating program
inhibit. This inhibits the memory cell coupled to the bit line from further
programming even if it is subjected to programming pulses on its control gate.
In other embodiments the processor initially loads the bit line latch 482 and the

sense circuitry sets it to an inhibit value during the verify process.

[0045] Data latch stack 494 contains a stack of data latches corresponding
to the sense module. In one embodiment, there are three (or four or another
number) data latches per sense module 480. In some implementations (but not
required), the data latches are implemented as a shift register so that the
parallel data stored therein is converted to serial data for data bus 420, and vice
versa. In one preferred embodiment, all the data latches corresponding to the

read/write block of m memory cells can be linked together to form a block
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shift register so that a block of data can be input or output by serial transfer. In
particular, the bank of read/write modules is adapted so that each of its set of
data latches will shift data in to or out of the data bus in sequence as if they are

part of a shift register for the entire read/write block.

[0046] Additional information about the structure and/or operations of
various embodiments of non-volatile storage devices can be found in (1)
United States Patent Application Pub. No. 2004/0057287, “Non-Volatile
Memory And Method With Reduced Source Line Bias Errors,” published on
March 25, 2004; (2) United States Patent Application Pub No. 2004/0109357,
“Non-Volatile Memory And Method with Improved Sensing,” published on
June 10, 2004; (3) U.S. Patent Application Pub. No. 20050169082; (4) U.S.
Patent Application Pub. 2006/0221692, titled “Compensating for Coupling
During Read Operations of Non-Volatile Memory,” Inventor Jian Chen, filed
on April 5, 2005; and (5) U.S. Patent Application Pub. 2006/0158947, titled
“Reference Sense Amplifier For Non-Volatile Memory, Inventors Siu Lung
Chan and Raul-Adrian Cernea, filed on December 28, 2005. All five of the
immediately above-listed patent documents are incorporated herein by

reference in their entirety.

[0047] Figure 5A depicts an exemplary structure of memory cell array
200. In one embodiment, the array of memory cells is divided into a large
number of blocks of memory cells. As is common for flash EEPROM systems,
the block is the unit of erase. That is, each block contains the minimum

number of memory cells that are erased together.

[0048] As one example, a NAND flash EEPROM is depicted in Fig. SA
that is partitioned into 1,024 blocks. However, more or less than 1024 blocks
can be used. In each block, in this example, there are 69,624 columns
corresponding to bit lines BLO, BL1, ... BL69,623. In one embodiment, all the

bit lines of a block can be simultaneously selected during read and program
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operations. Memory cells along a common word line and connected to any bit
line can be programmed (or read) at the same time. In another embodiment,
the bit lines are divided into even bit lines and odd bit lines. In an odd/even bit
line architecture, memory cells along a common word line and connected to
the odd bit lines are programmed at one time, while memory cells along a
common word line and connected to even bit lines are programmed at another

time.

[0049] Figure 5A shows four memory cells connected in series to form a
NAND string. Although four cells are shown to be included in each NAND
string, more or less than four can be used (e.g., 16, 32, 64, 128 or another
number or memory cells can be on a NAND string). One terminal of the
NAND string is connected to a corresponding bit line via a drain select gate
(connected to select gate drain line SGD), and another terminal is connected to
the source line via a source select gate (connected to select gate source line

SGS).

[0050] Each block is typically divided into a number of pages. A page is a
unit of programming. One or more pages of data are typically stored in one
row of memory cells. A page can store one or more sectors. A sector includes
user data and overhead data. Overhead data typically includes an Error
Correction Code (ECC) that has been calculated from the user data of the
sector. The controller calculates the ECC when data is being programmed into
the array, and also checks it when data is being read from the array. In some
embodiments, the state machine or other component can calculate and check
the ECC. In some alternatives, the ECCs and/or other overhead data are stored
in different pages, or even different blocks, than the user data to which they
pertain. A sector of user data is typically 512 bytes, corresponding to the size
of a sector in magnetic disk drives. A large number of pages form a block,
anywhere from 8 pages, for example, up to 32, 64, 128 or more pages. Figure

5B depicts data for a page. Depending on the size of the page, the page
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contains many sectors. Each sector includes user data, error correction codes

(ECC), and header information.

[0051] In some memory systems utilizing multi-state memory cells, each
bit of data in a memory cell is in a different page. For example, if an array of
memory cells store three bits of data (eight states or levels of data) per memory
cell, each memory cell stores data in three pages with each of the three bits
being on a different page. Thus, within a block in this example, each word line
is associated with three pages or an integer multiple of three pages. Other

arrangements are also possible.

[0052] The use of error correction coding (ECC) in mass data storage
devices and storage systems, as well as in data communications systems, is
well known. As fundamental in this art, error correction coding involves the
storage or communication of additional bits (commonly referred to as parity
bits, code bits, checksum digits, ECC bits, etc.) that are determined or
calculated from the "payload" (or original data) data bits being encoded. For
example, the storage of error correction coded data in a memory resource
involves the encoding of one or more code words to include the actual data and
the additional code bits, using a selected code. Retrieval of the stored data
involves the decoding of the stored code words according to the same code as
used to encode the stored code words. Because the code bits "over-specify”
the actual data portion of the code words, some number of error bits can be

tolerated, without any loss of actual data evident after decoding.

[0053] Many ECC coding schemes are well known in the art. These
conventional error correction codes are especially useful in large scale
memories, including flash (and other non-volatile) memories, because of the
substantial impact on manufacturing yield and device reliability that such
coding schemes can provide, allowing devices that have a few non-

programmable or defective cells to be useable. Of course, a tradeoff exists
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between the yield savings and the cost of providing additional memory cells to
store the code bits (i.e., the code "rate"). Some ECC codes for flash memory
devices tend to have higher code rates (i.e., a lower ratio of code bits to data
bits) than the codes used in data communications applications (which may

have code rates as low as 1/2).

[0054] Some memory cells are slower to program or erase than others
because of manufacturing variations among those cells, because those cells
were previously erased to a lower threshold voltage than others, because of
uneven wear among the cells within a page, or other reasons. And, of course,
some cells cannot be programmed or erased whatsoever, because of a defect or
other reason. As mentioned above, error correction coding provides the
capability of tolerating some number of slow or failed cells, while still
maintaining the memory as usable. In some applications, a page of data is
programmed by repeatedly applying programming pulses until all memory
cells on that page verify to the desired programmed state. In these
applications, programming terminates if a maximum number of programming
pulses is reached prior to successful verifying of the programmed page,
following which the number of cells that have not yet been verified to the
desired state is compared with a threshold value, which depends on the
capability of the error correction coding that will be used in the reading of data
from that page. In other applications in which the error correction is
sufficiently robust, programming and erasing time is saved by terminating the
sequence of programming or erasing pulses when the number of slow (or error)
cells that are not yet fully programmed or erased is fewer than the number of

bits that are correctable.

[0055] Error correction is typically performed on a sector-by-sector basis.
Thus, each sector will have its own set of ECC codes. This error correction is
convenient and useful because, in one embodiment, the sector is the desired

unit of data transfer to and from the host system.
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[0056] At the end of a successful programming process (with
verification), the threshold voltages of the memory cells should be within one
or more distributions of threshold voltages for programmed memory cells or
within a distribution of threshold voltages for erased memory cells, as
appropriate. Figure 6 illustrates example threshold voltage distributions for the
memory cell array when each memory cell stores two bits of data. Other
embodiments, however, may use more or less than two bits of data per memory
cell (e.g., such as three bits of data per memory cell). Figure 6 shows a first
threshold voltage distribution E for erased memory cells. Three threshold
voltage distributions, A, B and C for programmed memory cells are also
depicted. In one embodiment, the threshold voltages in the distribution E are
negative and the threshold voltages in the A, B and C distributions are positive.
As can be seen, threshold voltage distribution A is the lowest of A, B and C.
Threshold voltage distribution C is the highest of A, B and C.

[0057] Each distinct threshold voltage range of Figure 6 corresponds to
predetermined values for the set of data bits. The specific relationship between
the data programmed into the memory cell and the threshold voltage levels of
the cell depends upon the data encoding scheme adopted for the cells. For
example, U.S. Patent No. 6,222,762 and U.S. Patent Application Publication
No. 2004/0255090, “Tracking Cells For A Memory System,” filed on June 13,
2003, both of which are incorporated herein by reference in their entirety,
describe various data encoding schemes for multi-state flash memory cells. In
one embodiment, data values are assigned to the threshold voltage ranges using
a Gray code assignment so that if the threshold voltage of a floating gate
erroneously shifts to its neighboring threshold voltage distribution, only one bit
will be affected. One example assigns “11” to threshold voltage range E (state
E), “10” to threshold voltage range A (state A), “00” to threshold voltage range
B (state B) and “01” to threshold voltage range C (state C). However, in other

embodiments, Gray code is not used. Although Figure 6 shows four states, the
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present invention can also be used with other multi-state structures including

those that include more or less than four states.

[0058] Figure 6 shows three read reference voltages, Vra, Vrb and Vrc,
for reading data from memory cells. By testing whether the threshold voltage
of a given memory cell is above or below Vra, Vrb and Vrc, the system can
determine what state the memory cell is in. That is, by knowing whether a
memory cell turns on in response to Vra, Vib and Vrc, the processor can figure
out which state the memory cell is in. For example, when reading a memory
cell, if the memory cell turns on in response to receiving Vre but does not turn

on in response to Vrb, then the memory cell is in state B.

[0059] Figure 6 also shows three verify reference voltages Vva, Vvb and
Vve. When programming memory cells to state A, the system will test whether
those memory cells have a threshold voltage greater than or equal to Vva.
When programming memory cells to state B, the system will test whether the
memory cells have threshold voltages greater than or equal to Vvb. When
programming memory cells to state C, the system will determine whether

memory cells have their threshold voltage greater than or equal to Vvc.

[0060] In general, during verify operations and read operations, the
selected word line is connected to a voltage, a level of which is specified for
each read operation (e.g., see read compare levels Vra, Vrb, and Vrc, of Fig. 6)
or verify operation (e.g. see verify levels Vva, Vvb, and Vvc of Fig. 6) in order
to determine whether a threshold voltage of the concerned memory cell has
reached such level. After applying the word line voltage, the conduction
current of the memory cell is measured to determine whether the memory cell
turned on in response to the voltage applied to the word line. If the conduction
current is measured to be greater than a certain value, then it is assumed that
the memory cell turned on and the voltage applied to the word line is greater

than the threshold voltage of the memory cell. If the conduction current is not
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measured to be greater than the certain value, then it is assumed that the
memory cell did not turn on and the voltage applied to the word line is not

greater than the threshold voltage of the memory cell.

[0061] There are many ways to measure the conduction current of a
memory cell during a read or verify operation. In one example, the conduction
current of a memory cell is measured by the rate it discharges or charges a
dedicated capacitor in the sense amplifier. In another example, the conduction
current of the selected memory cell allows (or fails to allow) the NAND string
that includes the memory cell to discharge a corresponding bit line. The
voltage on the bit line is measured after a period of time to see whether it has
been discharged or not. Note that the technology described herein can be used
with different methods known in the art for verifying/reading. More
information about verifying/reading can be found in the following patent
documents that are incorporated hercin by reference in their entirety: (1)
United States Patent Application Pub. No. 2004/0057287; (2) United States
Patent Application Pub No. 2004/0109357; (3) U.S. Patent Application Pub.
No. 2005/0169082; and (4) U.S. Patent Application Pub. No. 2006/0221692.
The read and verify operations described above are performed according to
techniques known in the art. Thus, many of the details explained can be varied
by one skilled in the art. Other read and verify techniques known in the art can

also be used.

[0062] In one embodiment, known as full sequence programming,
memory cells can be programmed from the erased state E directly to any of the
programmed states A, B or C. For example, a population of memory cells to be
programmed may first be erased so that all memory cells in the population are
in erased state E. While a first set of memory cells is being programmed from
state E to state A, a second set of memory cells is being programmed from

state E to state B and a third set of memory cells is being programmed from
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state E to state C. Full sequence programming is graphically depicted by the

three curved arrows of Fig. 6.

[0063] Figure 7 illustrates an example of a two-pass technique of
programming a multi-state memory cell that stores data for two different
pages: a lower page and an upper page. Four states (threshold voltage
distributions) are depicted: state E (11), state A (10), state B (00) and state C
(01). For state E, both pages store a “1.” For state A, the lower page stores a
“0” and the upper page stores a “1.” For state B, both pages store “0.” For state
C, the lower page stores “1” and the upper page stores “0.” Note that although
specific bit patterns have been assigned to ecach of the states, different bit

patterns may also be assigned.

[0064] In a first programming pass, the memory cell’s threshold voltage
level is set according to the data bit to be programmed into the lower logical
page. If that data bit is a logic “1,” the threshold voltage is not changed since it
is in the appropriate state as a result of having been earlier erased. However, if
the data bit to be programmed is a logic “0,” the threshold level of the cell is

increased to be state A, as shown by arrow 530.

[0065] In a second programming pass, the memory cell’s threshold
voltage level is set according to the data bit being programmed into the upper
logical page. If the upper logical page bit is to store a logic “1,” then no
programming occurs since the cell is in one of the states E or A, depending
upon the programming of the lower page bit, both of which carry an upper
page bit of “1.” If the upper page data bit is to be a logic “0,” then the
threshold voltage is shifted. If the first pass resulted in the memory cell
remaining in the erased state E, then in the second phase the memory cell is
programmed so that the threshold voltage is increased to be within state C, as
depicted by arrow 534. If the memory cell had been programmed into state A

as a result of the first programming pass, then the memory cell is further
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programmed in the second pass so that the threshold voltage is increased to be
within state B, as depicted by arrow 532. The result of the second pass is to
program the cell into the state designated to store a logic “0” for the upper page

without changing the data for the lower page.

[0066] In one embodiment, a system can be set up to perform full
sequence writing if enough data is written to fill up a word line. If not enough
data is being written, then the programming process can program the lower
page with the data received. When subsequent data is received, the system will
then program the upper page. In yet another embodiment, the system can start
writing in the mode that programs the lower page and convert to full sequence
programming mode if enough data is subsequently received to fill up an entire
(or most of a) word line’s memory cells. More details of such an embodiment
are disclosed in U.S. Patent Application titled “Pipelined Programming of
Non-Volatile Memories Using Early Data,” Pub. No. 2006/0126390, Serial
No. 11/013,125, filed on 12/14/04, inventors Sergy Anatolievich Gorobets and

Yan Li, incorporated herein by reference in its entirety.

[0067] Figures 8A—C disclose another process for programming non-
volatile memory that reduces the effect of floating gate to floating gate
coupling. In one example of an implementation of the process taught by
Figures 8A-C, the non-volatile memory cells store two bits of data per
memory cell, using four data states. For example, assume that state E is the
erased state and states A, B and C are the programmed states. State E stores
data 11. State A stores data 01. State B stores data 10. State C stores data 00.
This is an example of non-Gray coding because both bits change between
adjacent states A & B. Other encodings of data to physical data states can also
be used. Each memory cell stores two data in two pages. For reference
purposes these pages of data will be called upper page and lower page;
however, they can be given other labels. With reference to state A for the

process of Figures 8 A-C, the upper page stores bit 0 and the lower page stores
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bit 1. With reference to state B, the upper page stores bit 1 and the lower page
stores bit 0. With reference to state C, both pages store bit data 0.

[0068] The programming process of Figures 8A-C is a two-step process.
In the first step, the lower page is programmed. If the lower page is to remain
data 1, then the memory cell state remains at state E. If the data is to be
programmed to 0, then the threshold of voltage of the memory cell is raised
such that the memory cell is programmed to state B'. Figure 8A therefore
shows the programming of memory cells from state E to state B'. State B'
depicted in Figure 8A is an interim state B; therefore, the verify point is

depicted as Vvb', which is lower than Vvb.

[0069] In one embodiment, after a memory cell (on word line WLn is
programmed from state E to state B', its neighbor memory cell (on word line
WLn+1) on the NAND string will then be programmed with respect to its
lower page. For example, after the lower page for a memory cell connected to
WLO is programmed, the lower page for a memory cell (the neighbor memory
cell) on the same NAND string but connected to WL1 can be programmed.
After programming the neighbor memory cell, the floating gate to floating gate
coupling effect will raise the apparent threshold voltage of earlier memory cell
to be programmed if that earlier memory cell had a threshold voltage raised
from state E to state B'. This will have the effect of widening the threshold
voltage distribution for state B', as depicted by threshold voltage distribution
550 in Fig. 8B. This apparent widening of the threshold voltage distribution

will be remedied when programming the upper page.

[0070] Figure 8C depicts the process of programming the upper page. If
the memory cell is in erased state E and the upper page is to remain at 1, then
the memory cell will remain in state E. If the memory cell is in state E and its
upper page data is to be programmed to 0, then the threshold voltage of the

memory cell will be raised so that the memory cell is in state A. If the memory
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cell was in intermediate threshold voltage distribution 550 and the upper page
data is to remain at 1, then the memory cell will be programmed to final state
B. If the memory cell is in intermediate threshold voltage distribution 550 and
the upper page data is to become data 0, then the threshold voltage of the
memory cell will be raised so that the memory cell is in state C. The process
depicted by Figures 8A—C reduces the effect of coupling between floating
gates because only the upper page programming of neighbor memory cells will

have an effect on the apparent threshold voltage of a given memory cell.

[0071] Although Figures 8A—C provide an example with respect to four
data states and two pages of data, the concepts taught by Figures 8A—C can be
applied to other implementations with more or less than four states, different

than two pages, and/or other data encodings.

[0072] Figure 9 is a table that describes one embodiment of the order for
programming memory cells utilizing the programming method of Figures 8A—
C. For memory cells connected to word line WLO, the lower page forms page
0 and the upper page forms page 2. For memory cells connected to word line
WL1, the lower page forms page 1 and the upper page forms page 4. For
memory cells connected to word line WL2, the lower page forms page 3 and
the upper page forms page 6. For memory cells connected to word line WL3,
the lower page forms page 5 and the upper page forms page 7. Memory cells
are programmed according to page number, from page 0 to page 7. In other

embodiments, other orders of programming can also be used.

[0073] Figure 10 illustrates example threshold voltage distributions (also
called data states) for the memory cell array when each memory cell stores
three bits of multi-state data. Other embodiment, however, may use more or
less than three bits of data per memory cell (e.g., such as four or more bits of

data per memory cell).
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[0074] In the example of Figure 10, each memory cell stores three bits of
data; therefore, there are eight valid data states SO-S7. In one embodiment,
data state SO is below 0 volts and data states S1-S7 are above 0 volts. In other
embodiments, all eight data states are above 0 volts, or other arrangements can
be implemented. In one embodiment, the threshold voltage distribution SO is

wider than distributions S1-S7.

[0075] In one embodiment, SO is for erased memory cells. Data is
programmed from SO to S1-S7. As can be seen from Fig. 10, of S1-S7, S1 is
the lowest in magnitude and S7 is the highest in magnitude (e.g. most

extreme).

[0076] Each data state corresponds to a unique value for the three data
bits stored in the memory cell. In one embodiment, SO=111, S1=110, S2=101,
S3=100, S4=011, S5=010, S6=001 and S7=000. Other mapping of data to
states S0-S7 can also be used. In one embodiment, all of the bits of data stored
in a memory cell are stored in the same logical page. In other embodiments,
each bit of data stored in a memory cell corresponds to different logical pages.
Thus, a memory cell storing three bits of data would include data in a first
page, data in a second page and data in a third page. In some embodiments, all
of the memory cells connected to the same word line would store data in the
same three pages of data. In some embodiments, the memory cells connected
to a word line can be grouped into different sets of pages (e.g., by odd and

even bit lines, or by other arrangements).

[0077] In some prior art devices, the memory cells will be erased to state
S0. From state SO, the memory cells can be programmed to any of states S1-
S7. In one embodiment, known as full sequence programming, memory cells
can be programmed from the erased state SO directly to any of the programmed
states S1-S7. For example, a population of memory cells to be programmed

may first be erased so that all memory cells in the population are in erased state
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S0. While some memory cells are being programmed from state SO to state S1,
other memory cells are being programmed from state SO to state S2, state SO to
state S3, state SO to state S4, state SO to state S5, state SO to state S6, and state
SO to state S7. Full sequence programming is graphically depicted by the

seven curved arrows of Fig. 10

[0078] Figure 10 shows a set of target verify levels Vvl, Vv2, Vv3, Vv4,
Vv35, Vv6, and Vv7. These target verify levels are used as comparison levels
during the programming process. For example, when programming memory
cells to state 1, the system will check to see if the threshold voltages of the
memory cells has reached Vvl. If the threshold voltage of a memory cell has
not reached Vvl1, then programming will continue for that memory cell until its
threshold voltage is greater than or equal to Vvl1. If the threshold voltage of a
memory cell has reached Vvl1, then programming will stop for that memory
cell. Target verify level Vv2 is used for memory cells being programmed to
state 2. Target verify level Vv3 is used for memory cells being programmed to
state 3. Target verify level Vv4 is used for memory cells being programmed to
state 4. Target verify level Vv5 is used for memory cells being programmed to
state 5. Target verify level Vvo6 is used for memory cells being programmed to
state 6. Target verify level Vv7 is used for memory cells being programmed to

state 7.

[0079] Figure 10 also shows a set of read compare levels Vrl, Vr2, Vr3,
Vr4, Vr5, Vro, and Vr7. These read compare levels are used as comparison
levels during the read process. By testing whether the memory cells turn on or
remain off in response to the read compare levels Vrl, Vi2, Vr3, Vr4, Vr5,
Vr6, and Vr7 being separately applied to the control gates of the memory cells,

the system can determine which states that memory cells are storing data for.

[0080] Figures 11A-111I disclose another process for programming multi-

state data. Prior to the first step, the memory cells will be erased so that they
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are in the erase threshold distribution of state SO. The process of Figures 11A—
111 assumes that each memory cell stores three bits of data, with each bit for a
given memory cell being in a different page. The first bit of data (the leftmost
bit) is associated with the first page. The middle bit is associated with the
second page. The rightmost bit is associated with the third page. In one
embodiment, the correlation of data states to data is as follows: SO0=111,
S1=110, S2=101, S3=100, S4=011, S5=010, S6=001 and S7=000. However,

other embodiments can use other data encoding schemes.

[0081] When programming the first page (as described in Fig. 11A), if the
bit is to be data “1” then the memory cell will stay in state SO (threshold
voltage distribution 602). If the bit is to be data “0” then the memory cell is
programmed to state S4 (threshold voltage distribution 604). After adjacent
memory cells are programmed, capacitive coupling between adjacent floating
gates may cause the state S4 to widen as depicted in Figure 11B. State SO may
also widen, but there is sufficient margin between SO and S1 to ignore the
effect. More information about capacitive coupling between adjacent floating
gates can be found in U.S. Patent 5,867,429 and U.S. Patent 6,657,891, both of

which are incorporated herein by reference in their entirety.

[0082] When programming the second page (see Fig. 11C), if the memory
cell is in state SO and the second page bit is data “1” then the memory cell
stays in state SO. In some embodiments, the programming process for the
second page will tighten threshold voltage distribution 602 to a new S0. If the
memory cell was in state SO and the data to be written to the second page is
“0,” then the memory cell is moved to state S2 (threshold voltage distribution
606). State S2 has a verify point of C*. If the memory cell was in state S4 and
the data to be written to the memory cell is “1” then the memory cell remains
in S4. However, state S4 is tightened by moving the memory cells from
threshold voltage distribution 604 to threshold voltage distribution 608 for
state S4, as depicted in Fig. 11C. Threshold voltage distribution 608 has a
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verify point of E* (as compared to E** of threshold voltage distribution 604).
If the memory cell is in state S4 and the data to be written to the second page is
a “0” then the memory cell has its threshold voltage moved to state S6

(threshold voltage distribution 610), with a verify point of G*.

[0083] After the adjacent memory cells are programmed, states SO, S2, S4
and S6 are widened due to the floating gate to floating gate coupling, as

depicted by threshold voltages distributions 602, 606, 608 and 610 of Fig 11D.

[0084] Figures 11E, 11F, 11G and 11H depict the programming of the
third page. While one graph can be used, the programming process is depicted
in four graphs for visibility reasons. After the second page has been
programmed, the memory cells are either in states SO, S2, S4 or S6. Figure
11E shows the memory cells that are in state SO being programmed for the
third page. Figure 11F shows the memory cells that are in state S2 being
programmed for the third page. Figure 11G shows the memory cells that are in
state S4 being programmed for the third page. Figure 11H shows the memory
cells that are in state S6 being programmed for the third page. Figure 111
shows the threshold voltage distributions after the processes of Figures 11E,
11F, 11G and 11H have been performed on the population of memory cells

(concurrently or serially).

[0085] If a memory cell is in state SO and the third page data is “1” then
the memory cell remains at state SO. If the data for the third page is “0” then
the threshold voltage for the memory cell is raised to be in state S1, with a

verify point of B (see Fig. 11E).

[0086] If a memory cell is in state S2 and the data to be written in the
third page is “1,” then the memory cell will remain in state S2 (see Fig. 11F).
However, some programming will be performed to tighten the threshold

distribution 606 to a new state S2 with a verify point of C. If the data to be
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written to the third page is “0,” then the memory cell will be programmed to

state S3, with a verify point of D.

[0087] If a memory cell is in state S4 and the data to be written to the
third page is “1” then the memory cell will remain in state S4 (see Fig. 11G).
However, some programming will be performed so that threshold voltage
distribution 608 will be tightened to new state S4 with a verify point of E. Ifa
memory cell is in state S4 and the data to be written to the third page is “0”
then the memory cell will have its threshold voltage raised to be in state SS5,

with a verify point of F (see Fig. 11G).

[0088] If the memory cell is in state S6 and the data to be written to the
third page is “1” then the memory cell will remain in state S6 (see Fig. 11H).
However, there will be some programming so that the threshold voltage
distribution 510 is tightened to be in new state S6, with a verify point at G. If
the third page data is “0” then the memory cell will have its threshold voltage
programmed to state S7, with a verify point at H (see Fig. 11H). At the
conclusion of the programming of the third page, the memory cell will be in

one of the eight states depicted in Figure 111.

[0089] Figure 12 is a flow chart describing a process for operating
memory cells connected to a selected word line. In one embodiment, the
process of Fig 12 is used to program a block of memory cells. In one
implementation of the process of Fig. 12, memory cells are pre-programmed in
order to maintain even wear on the memory cells (step 650). In one
embodiment, the memory cells are preprogrammed to the highest state, a
random pattern, or any other pattern. In some implementations, pre-

programming need not be performed.

[0090] In step 652, memory cells are erased (in blocks or other units) prior
to programming. Memory cells are erased in one embodiment by raising the p-

well to an erase voltage (e.g., 20 volts) for a sufficient period of time and
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grounding the word lines of a selected block while the source and bit lines are
floating. In blocks that are not selected to be erased, word lines are floated.
Due to capacitive coupling, the unselected word lines, bit lines, select lines,
and the common source line are also raised to a significant fraction of the erase
voltage thereby impeding erase on blocks that are not selected to be erased. In
blocks that are selected to be erased, a strong electric field is applied to the
tunnel oxide layers of selected memory cells and the selected memory cells are
erased as electrons of the floating gates are emitted to the substrate side,
typically by Fowler-Nordheim tunneling mechanism. As electrons are
transferred from the floating gate to the p-well region, the threshold voltage of
a selected cell is lowered. Erasing can be performed on the entire memory
array, on individual blocks, or another unit of cells. In one embodiment, after
erasing the memory cells, all of the erased memory cells will be in state E or
S0. One implementation of an erase process includes applying several erase
pulses to the p-well and verifying between crase pulses whether the NAND

strings are properly erased.

[0091] At step 654, soft programming is (optionally) performed to narrow
the distribution of erased threshold voltages for the erased memory cells.
Some memory cells may be in a deeper erased state than necessary as a result
of the erase process. Soft programming can apply programming pulses to
move the threshold voltage of the deeper erased memory cells to the erase

threshold distribution (e.g., state E or SO).

[0092] In step 656, the memory cells of the block are programmed. After
programming, the memory cells of the block can be read (step 658). Many
different read processes known in the art can be used to read data. In some
embodiments, the read process includes using ECC to correct errors. The data
read, is output to the hosts that requested the read operation. The ECC process

can be performed by the state machine, the controller or another device.
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[0093] Figure 12 shows that the erase-program cycle can happen many
times without or independent of reading, the read process can occur many
times without or independent of programming, and the read process can
happen any time after programming. The process of Figure 12 can be
performed at the direction of the state machine using the various circuits
described above. In other embodiments, the process of Figure 12 can be
performed at the direction of the controller using the various circuits described

above.

[0094] Figure 13 is a flow chart describing one embodiment of a process
for performing programming on memory cells connected to a common word
line to one or more target conditions (e.g., data states or threshold voltage
ranges). The process of Figure 13 can be performed one or multiple times
during step 656 of Figure 12. For example, the process of Figure 13 can be
used to program memory cells (e.g., full sequence programming) from state E
or SO directly to any of states A-C (see Fig. 6) or S1-S7 (see Fig. 10).
Alternatively, the process of Figure 13 can be used to perform one or each of
the phases of the process of Fig. 7, one or each of the steps of the process of
Figs. 8A-C, or one or cach of the steps of the process of Figs. 11A-I. For
example, when performing the process of Fig. 7, the process of Fig. 13 is used
to implement the first phase that includes programming some of the memory
cells from state E to state A. The process of Fig. 13 can then be used again to
implement the second phase that includes programming some of the memory
cells from state E to state C while programming other memory cells from state

A to state B.

[0095] Typically, the program voltage applied to the control gate during a
program operation is applied as a series of program pulses. Between
programming pulses are a set of verify pulses to perform verification. In many
implementations, the magnitude of the program pulses is increased with each

successive pulse by a predetermined step size. In step 670 of Figure 13, the
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programming voltage (Vpgm) is initialized to the starting magnitude (e.g.,
~12-16V or another suitable level) and a program counter PC maintained by
state machine 222 is initialized at 1. In step 672, a program pulse of the
program signal Vpgm is applied to the selected word line (the word line
selected for programming). In one embodiment, the group of memory cells
being programmed are all connected to the same word line (the selected word
line). The unselected word lines receive one or more boosting voltages (e.g.,
~9 volts) to perform boosting schemes known in the art. If a memory cell
should be programmed, then the corresponding bit line is grounded. On the
other hand, if the memory cell should remain at its current threshold voltage,
then the corresponding bit line is connected to Vdd to inhibit programming. In
step 672, the program pulse is concurrently applied to all memory cells
connected to the selected word line so that all of the memory cells connected to
the selected word line are programmed concurrently. That is, they are
programmed at the same time (or during overlapping times). In this manner all
of the memory cells connected to the selected word line will concurrently have
their threshold voltage change, unless they have been locked out from

programming,

[0096] In step 674, the states of the selected memory cells are verified
using the appropriate set of target levels. Step 674 includes performing one or
more verify operations. If it is detected that the threshold voltage of a memory
cell has reached the appropriate target level, then that memory cell is locked
out of further programming by, for example, raising its bit line voltage to Vdd

during subsequent programming pulses.

[0097] In step 676, it is checked whether all the memory cells have
reached their target threshold voltages. If so, the programming process is
complete and successful because all selected memory cells were programmed

and verified to their target states. A status of “PASS” is reported in step 678.
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If, in 676, it is determined that not all of the memory cells have reached their

target threshold voltages, then the programming process continues to step 680.

[0098] In step 680, the system counts the number of memory cells that
have not yet reached their respective target threshold voltage distribution. That
is, the system counts the number of cells that have failed the verify process.
This counting can be done by the state machine, the controller, or other logic.
In one implementation, each of the sense block 300 (see Fig. 3) will store the
status (pass/fail) of their respective cells. These values can be counted using a
digital counter. As described above, many of the sense blocks have an output
signal that is wire-Or’d together. Thus, checking one line can indicate that no
cells of a large group of cells have failed verify. By appropriately organizing
the lines being wired-Or together (e.g., a binary tree- like structure), a binary
search method can be used to determine the number of cells that have failed.
In such a manner, if a small number of cells failed, the counting is completed
rapidly. If a large number of cells failed, the counting takes a longer time.
More information can be found in United States Patent Publication
2008/0126676, incorporated herein by reference. In another alternative, cach
of the sense amplifiers can output an analog voltage or current if its
corresponding cell has failed and an analog voltage or current summing circuit

can be used to count the number of cells that have failed.

[0099] In one embodiment, there is one total counted, which reflects the
total number of memory cells currently being programmed that have failed the
last verify step. In another embodiment, separate counts are kept for each data

state.

[00100] In step 682, it is determined whether the count from step 680 is
less than or equal to a predetermined limit. In one embodiment, the
predetermined limit is the number of bits that can be corrected by ECC during

a read process for the page of memory cells. If the number of failed cells is
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less than or equal to the predetermined limit, than the programming process
can stop and a status of “PASS” is reported in step 678. In this situation,
enough memory cells programmed correctly such that the few remaining
memory cells that have not been completely programmed can be corrected

using ECC during the read process (see step 658 of Figure 12).

[00101] In another embodiment, the predetermined limit can be less than
the number of bits that can be corrected by ECC during a read process to allow
for future errors. When programming less than all of the memory cells for a
page, or comparing a count for only one data state (or less than all states), than
the predetermined limit can be a portion (pro-rata or not pro-rata) of the
number of bits that can be corrected by ECC during a read process for the page
of memory cells. In some embodiments, the limit is not predetermined.
Instead, it changes based on the number of errors already counted for the page,

the number of program-erase cycles performed, temperature or other criteria.

[00102] If the number of failed cells is not less than the predetermined
limit, than the programming process continues at step 684 and the program
counter PC is checked against the program limit value (PL). One example of a
program limit value is 20; however, other values can be used. If the program
counter PC is not less than the program limit value PL, then the program
process is considered to have failed and a status of FAIL is reported in step
688. If the program counter PC is less than the program limit value PL, then
the process continues at step 686 during which time the Program Counter PC is
incremented by 1 and the program voltage Vpgm is stepped up to the next
magnitude. For example, the next pulse will have a magnitude greater than the
previous pulse by a step size (e.g., a step size of 0.1-0.4 volts). After step 686,
the process loops back to step 672 and another program pulse is applied to the

selected word line.
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[00103]  Figure 14 shows a portion of the voltage waveform applied to the
selected word line and, therefore, to the control gates of the memory cells
connected to the selected word line during the programming for the process of
Figure13. The waveform shows the programming pulse (Program) applied
during step 672, the verify pulses (Verify) applied during step 674 and the time
period (count failed cells) for counting the failed cells during step 680 for parts
of three iterations of the loops comprising steps 672-686 of Figure 13. The
example of Figure 14 corresponds to the embodiments with two bits per
memory cell and four data states. Therefore, the verify process includes a
verify pulse at Vva, a verify pulse at Vvb and a verify pulse a Vvc. In
embodiments with three bits per memory cell and eight data states, there may
be up to eight verify pulses. Note that some embodiments will use less than all
three or eight verify pulses in some iterations when it is clear that no memory
cell needs to be tested for certain data states. Additionally, embodiments with
different numbers of data states will use different numbers of verify pulses. In
the embodiment of Figure 14, the verify operations (step 674) and the counting
the failed cells (step 680) are performed between programming pulses.
Therefore, as soon as it is determined that all memory cells have verified or
that the number of memory cells that failed verification is less than the
predetermined limit (or a limit that is not predetermined), than the

programming process can stop without applying the next programming pulse.

[00104] Figure 15 shows a portion of another embodiment of the voltage
waveform applied to the selected word line and, therefore, to the control gates
of the memory cells connected to the selected word line during the
programming process of Fig. 13. This waveform shows the programming
pulse (Program) applied during step 672, the verify pulses (Verify) applied
during step 674 and the time period (count failed cells) for counting the failed
cells during step 680 for parts of three iterations of the loops comprising steps

672-686 of Figure 13. In the embodiment of Figure 15, the verify operations
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(step 674) are performed between programming pulses. However, the
counting of the failed cells is performed during the next program pulse, which
can save time. When it is determined that all memory cells have verified or
that the number of memory cells that failed verification is less than the
predetermined limit (or a limit that is not predetermined), than the
programming process can stop; however, the next programming pulse has
already been applied. As discussed above, the results of the verification
process can be stored in latches 494. These latches can be read during the next

program pulse.

[00105]  Figure 16 shows a portion of another embodiment of the voltage
waveform applied to the selected word line and, therefore, to the control gates
of the memory cells connected to the selected word line. This waveform
shows the programming pulse (Program) applied during step 672, the verify
pulses (Verify) applied during step 674 and the time period (count failed cells)
for counting the failed cells during step 680 for parts of three iterations of the
loops comprising steps 672-686 of Figure 13. The embodiment of Figure 16
pertains to a programming process that is only verifying for one state. For
example, when programming data to four, eight or more states, the process
may reach a condition where the memory cells have all reached their target
states except for the memory cells being programmed to the highest state (e.g.,
state C or state S7). At that point, the verify process will only perform a
verify at Vvc (see Fig. 6) or Vv7 (see Fig. 7). Thus, Figure 16 only shows on
verify pulse for testing whether the memory cells the highest data state (or
another state that is not the highest). In another example, the waveform of
Fig. 16 can be used with a programming operation that is only programming to
one state; for example, the first phase of the process of Fig. 7, the process of
Fig. 8A, the process of Figs. 11A or other processes. For programming
operations that program to more than one state, the additional verify pulses can

be added to the waveform, as appropriate. In the embodiment of Figure 16, the
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verify operations (step 674) and the counting the failed cells (step 680) are

performed between programming pulses.

[00106]  Figure 17 shows a portion of another embodiment of the voltage
waveform applied to the selected word line and, therefore, to the control gates
of the memory cells connected to the selected word line. This waveform
shows the programming pulse (Program) applied during step 672, the verify
pulses (Verify) applied during step 674 and the time period (count failed cells)
for counting the failed cells during step 680 for parts of three iterations of the
loops comprising steps 672-686 of Figure 13. Like Fig. 16, the waveform of
Fig. 17 pertains to a programming process that is only verifying for one state.
In the embodiment of Figure 17, the verify operations (step 674) are performed
between programming pulses. However, the counting of the failed cells is

performed during the next program pulse.

[00107] Because the program voltage is applied to all memory cells
connected to a word line, an unselected memory cell (a memory cell that is not
to be programmed) on the word line may become inadvertently programmed.
The unintentional programming of the unselected cell on the selected word line
is referred to as “program disturb.” For example, a memory cell in state E may
have its threshold voltage increased to a level outside of state E. Figure 18
shows threshold voltage versus number of memory cells for data states E, A, B
and C for a population of memory cells during a programming process. State
E is depicted as having a subset of its memory cells, indicated by shaded
region 702, being subjected to program disturb so that their respective
threshold voltage is above the level normally intended to be part of state E.
The program disturb is more severe when programming memory cells to the
highest (most extreme) state (e.g. state C or S7). This is because it generally
takes more voltage pulses to program memory cells to the highest state and the
more pulses applied increases the chance of program disturb. Furthermore,

since the magnitude of the voltage increases with each pulse, the highest data
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state is programmed with higher voltages, which also can increase the chance

of program disturb.

[00108] Figure 18 also shows that some of the memory cells (see shaded
region 704) that are being programmed to highest state C have not yet reached
Vve. In this case, continuing to program the memory cells represented by
shaded region 704 will only exacerbate the program disturb of the memory
cells in shaded region 702. Therefore, the programming process described
above stops the programming of memory cells to the highest state (and other
data states) before all memory cells have reached the target (e.g., have reached
Vve) in order to reduce (or prevent further exacerbation) of the program
disturb. However, the programming is only stopped when the number of
memory cells not fully programmed is less than the number of cells that can be
corrected by ECC, as explained above with respect to steps 680 and 682 of
Figure 13.

[00109] In one embodiment, instead of counting the number of cells that
are below the verify compare value (e.g., Vvc), the system can count the
number of cells that are below an intermediate compare value and use that
count as an estimate of how many cells are below the verify compare value.
For example, Figure 19 shows the threshold voltage distribution for data state
C with verify compare value Vvc and read compare value Vrc. Figure 19 also
shows an intermediate compare value VvcL. In one embodiment of step 680
of Figure 13, the system will count the number of memory cells supposed to be
programmed to state C that have their threshold voltage less than VvcL in
order to estimate the number of memory cells supposed to be programmed to

state C that have their threshold voltage less than Vve.

[00110] The number of memory cells that have their threshold voltage less
than VvcL is proportional to the number of memory cells that have their

threshold voltage less than Vvc. For example, if VvcL is .4-.5v lower than
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Vvc, than the number of memory cells that have their threshold voltage less
than VvcL is approximately one tenth (1/10) of the number of memory cells
that have their threshold voltage less than Vve. If VvcL is .8-1.0v lower than
Vvc, than the number of memory cells that have their threshold voltage less
than VvcL is approximately one hundredth (1/100) of the number of memory
cells that have their threshold voltage less than Vvc. In some implementations,
the number of cells that are counted as being below the compare value will
reduce with a factor of 10 for each .4-.5v. Figure 19 shows shaded region 712
representing those memory cells with a threshold voltage below Vvc and above
Vrc. Shaded region 714 represents those memory cells with a threshold voltage
below Vrc and above VvcL. Shaded region 714 represents those memory cells
with a threshold voltage below VvcL. Thus, the number of memory cells that
have their threshold voltage less than Vvc is the sum of shaded regions
712+714+716. As can be seen this is significantly larger than the number of
memory cells that have their threshold voltage less than VvcL. In some
embodiments, counting the number of memory cells below the intermediate
compare value VvcL will be faster than counting the number of memory cells

below Vvc.

[00111]  Figure 20 shows a portion of the voltage waveform applied to the
selected word line (and, therefore, to the control gates of the memory cells
connected to the selected word line) during the programming process of Fig.
13 for the embodiment of step 680 in which the system will count the number
of memory cells supposed to be programmed to state C that have their
threshold voltage less than intermediate compare value VvcL. If the number of
memory cells supposed to be programmed to state C that have their threshold
voltage less than VvcL is less than or equal to a particular limit (see step 682
of Fig. 13), then the programming process is concluded. Since VvcL is lower
than Vvc, the particular limit compared against is lower than if comparing

against Vvc. In the two examples above, the limit used for VvcL is 10 or 100
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times smaller than the limit used for Vve. The waveform of Figure 20 shows
the programming pulse (Program) applied during step 672, the verify pulses
(Verity) applied during step 674 and the time period (count failed cells) for
counting the failed cells during step 680 for parts of three iterations of the
loops comprising steps 672-686 of Figure 13. In this embodiment, step 680
(count failed cells) includes applying a voltage pulse of VvcL in order to test
whether the memory cells have a threshold voltage of at least VvcL. Other
methods of testing the threshold voltage can also be used. Additionally note
that although the voltage pulse is depicted as a perfect square wave, in reality
the voltage pulse (and the other pulses depicted in this figure and other figures)
is not likely to be a perfect square and in some cases it may be a different

shape than a square wave.

[00112]  The example of Figure 20 corresponds to the embodiments with
two bits per memory cell and four data states. Therefore, the verify process
includes a verify pulse at Vva, a verify pulse at Vvb and a verify pulse a Vvc.
In embodiments with three bits per memory cell and eight data states, there
may be up to eight verify pulses. Note that some embodiments will use less
than all three or eight verify pulses in some iterations when it is clear that no
memory cell needs to be tested for certain data states. Additionally,
embodiments with different numbers of data states will use different numbers
of verify pulses. In the embodiment of Figure 20, the verify operations (step
674) and the counting the failed cells (step 680) are performed between
programming pulses. Therefore, as soon as it is determined that all memory
cells have verified or that the number of memory cells that failed verification is
less than a limit, than the programming process can stop without applying the

next programming pulse.

[00113]  Figure 21 shows a portion of the voltage waveform applied to the
selected word line (and, therefore, to the control gates of the memory cells

connected to the selected word line) for another embodiment of step 680 of
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Figure 13, in which the system will count the number of memory cells
supposed to be programmed to state C that have their threshold voltage less
than VvcL. This waveform shows the programming pulse (Program) applied
during step 672, the verify pulses (Verify) applied during step 674 and the time
period (count failed cells) for counting the failed cells during step 680 for parts
of three iterations of the loops comprising steps 672-686 of Figure 13. In this
embodiment, step 680 (count failed cells) includes applying a voltage pulse of
VvcL in order to test whether the memory cells have a threshold voltage of at
least VvcL. Other methods of testing the threshold voltage can also be used.
In the embodiment of Figure 21, the verify operations (step 674) are performed
between programming pulses. However, the counting of the failed cells (step
680) is performed during the next program pulse. As discussed above, the
results of the verification process can be stored in latches 494. These latches

can be read during the next program pulse.

[00114] Figure 22 shows a portion of the voltage waveform applied to the
selected word line (and, therefore, to the control gates of the memory cells
connected to the selected word line) for another embodiment of step 680 of
Figure 13, in which the system will count the number of memory cells
supposed to be programmed to state C that have their threshold voltage less
than VvcL. This waveform shows the programming pulse (Program) applied
during step 672, the verify pulses (Verify) applied during step 674 and the time
period (count failed cells) for counting the failed cells during step 680 for parts
of three iterations of the loops comprising steps 672-686 of Figure 13. The
embodiment of Figure 16 pertains to a programming process that is only
verifying for one state. For example, when programming data to four, eight or
more states, the process may reach a condition where the memory cells have
all reached their target states except for the memory cells being programmed to
the highest state (e.g., state C or state S7). At that point, the verify process
will only perform a verify at Vvc (see Fig. 6) or Vv7 (see Fig. 7). Thus, Figure
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22 only shows one verify pulse for testing whether the memory cells reached
the highest data state (or another state that is not the highest). The waveform
of Fig. 22 can be used with a programming operation that is only programming
to one state; for example, the first phase of the process of Fig. 7, the process of
Fig. 8A, the process of Figs. 11A or other processes. For programming
operations that program to more than one state, the additional verify pulses can
be added to the waveform, as appropriate. In the embodiment of Figure 22, the
verify operations (step 674) and the counting the failed cells (step 680) are
performed between programming pulses. In this embodiment, like the
embodiment of Figure 21, step 680 (count failed cells) includes applying a
voltage pulse of VvcL in order to test whether the memory cells have a
threshold voltage of at least VvcL. Other methods of testing the threshold

voltage can also be used.

[00115]  Figure 23 shows a portion of the voltage waveform applied to the
selected word line (and, therefore, to the control gates of the memory cells
connected to the selected word line) for another embodiment of step 680 of
Figure 13, in which the system will count the number of memory cells
supposed to be programmed to state C that have their threshold voltage less
than VvcL. This waveform shows the programming pulse (Program) applied
during step 672, the verify pulses (Verify) applied during step 674 and the time
period (count failed cells) for counting the failed cells during step 680 for parts
of three iterations of the loops comprising steps 672-686 of Figure 13. Like
Fig. 22, the waveform of Fig. 23 pertains to a programming process that is only
verifying for one state. In the embodiment of Figure 23, the verify operations
(step 674) are performed between programming pulses. However, the
counting of the failed cells (count failed cells) of step 680 is performed during
the next program pulse. In this embodiment, like the embodiment of Figure
21, step 680 (count failed cells) includes applying a voltage pulse of VvcL in

order to test whether the memory cells have a threshold voltage of at least
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VvcL. In one embodiment, the voltage pulse of VvcL is applied prior to the
next program pulse while the counting of failed cells is performed concurrently
with the next program pulse. Other methods of testing the threshold voltage

can also be used.

[00116]  Figures 20-23 describe the use of a intermediate compare level
(e.g., VvcL) when performing step 680 for memory cells being programmed to
state C. In one set of embodiments, step 680 will be performed on memory
cells being programmed to states other than state C (which is the highest state,
or most extreme state) by counting the number of memory cells that have not
reached the respective verify compare levels (e.g. Vva and Vvb).  Thus,
programming to state A will stop when less than a first predetermined number
of memory cells intended to be programmed to state A have not reached Vva,
programming to state B will stop when less than a second predetermined
number (may be the same or different than the first predetermined number) of
memory cells intended to be programmed to state B have not reached Vvb, and
programming to state C will stop when less than a first predetermined number

of memory cells intended to be programmed to state C have not reached VvcL.

[00117] In another set of embodiment, step 680 and 682 will only be
performed by memory cells being programmed to the highest, or most extreme,

state (e.g. state C or state S7).

[00118] In another set of embodiments, step 680 will use a intermediate
compare value for each state. For example, step 680 will use an intermediate
compare value for memory cells being programmed to state A that is lower
than Vva and step 680 will use an intermediate compare value for memory

cells being programmed to state B that is lower than Vvb.

[00119] In some embodiments, such as where the threshold voltages are
lowered for programming and raised during erase, the intermediate compare

value will be higher than the verify compare value.
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[00120] Figures 20-23 illustrate the use of an intermediate compare level
(e.g., VvcL) with memory cells that store two bits of data. However, the
concepts taught by Figures 20-23 can be applied to memory cells that store
more than two bits of data. For example, counting memory cells that have a
threshold voltage less than he intermediate value in step 680 can be used with
the programming processes of Figures 10 and 11. In one example that includes
memory cells storing three bits of data, step 680 will count memory cells that
have threshold voltages less than the respective verify levels for S1-S6 (e.g.,
Vvl, Vv2, Vv3, Vv4, Vv5, Vvo6) for memory cells being programmed to S1-S6
and count memory cells that are less than Vv7L for memory cells being
programmed to state S7, where VVv7L is .5v (or a different value) less than
Vv7. In one alternative, VV7L can be equal to Vv6, Vv5 or another value near

those values..

[00121] In another example that includes memory cells storing three bits of
data, step 680 will count memory cells that have threshold voltages less than
the respective verify levels for S1-S5 (e.g., Vv1, Vv2, Vv3, Vv4, and Vv5) for
memory cells being programmed to S1-S5, count memory cells that are less
than Vv6L for memory cells being programmed to state S6, and count memory
cells that are less than Vv7L for memory cells being programmed to state S7,

where Vv6L is .5v (or a different value) less than Vvo6.

[00122] Figure 24 describes another embodiment where VvcL is set to be
equal to Vvb, or VV7L is set to be Vv6. Additionally, after determining that
the number of failed cells (e.g., cells having a threshold voltage that is less the
intermediate compare value) is less than the predetermined number, a
predetermined number of one or more additional programming pulses is
applied. In the embodiments that perform step 680 during the next program
pulse (see Figures 21 and 23), the predetermined number of one or more
additional programming pulses are applied after the next program pulse. The

process of Fig. 24 is similar to the process of Fig, 13 (with like reference
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numbers depicting the same steps); however, steps 680 and 682 are replaced by
steps 740-744. Step 740 is similar to step 680 except that VvcL=Vvb or
Vv7L=Vv6. Step 742 is similar to step 682, except the predetermined limit
compared to the failed cells may be different. If the number of failed cells is
greater than the predetermined limit, than the process continues at step 684. If
the number of failed cells is less than or equal to the predetermined limit, than
the process continues at step 744. In step 744, a predetermined number of
programming pulses are applied to the memory cells via the selected word line.
Verify operations (with lockout for memory cells that verify successfully) are
performed between these predetermined number of programming pulses. The
predetermined limit and the predetermined number of programming pulses can
be determined based on simulation or device characterization. In one
embodiment, the limit and the number of programming pulses are set
dynamically based on number of program-erase cycles, temperature or other

factors, rather than be predetermined.

[00123]  Figure 25 describes another embodiment that includes applying a
predetermined number of programming pulses and concluding the
programming after all memory cells intended to be programmed to state B
have sufficiently been programmed to state B. It is assumed that when after all
memory cells intended to be programmed to state B have sufficiently been
programmed to state B, that a small number of memory cells intended to be
programmed to state C do not yet have threshold voltages that have reached
Vvb. The phrase “sufficiently programmed” means that enough memory cells
have reached state B to consider the programming process successful. For
example, when programming a group of memory cells to state B using the
process of Fig. 13, the group of memory cells are sufficiently programmed
when enough memory cells have successfully verified such that the number of
memory cells that have failed verification is less than predetermined limit (e.g.,

the predetermined limit that can be fixed with ECC). At this point, it is
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assumed that less than the predetermined limit of memory cells intended to be
programmed to state C would have failed verification for state B if so tested.
Therefore, only apply a predetermined additional set of one or more
programming pulses and then stop the programming. When applying the
additional set of one or more programming pulses (in this embodiment or the
embodiment of Figure 24), there will be no counting failed cells during or
between the additional set of one or more programming pulses. To achieve
this embodiment, the memory cells being programmed to state C will perform
the process of Fig. 25, while the memory cells being programmed to states A

and B will perform the process of Fig. 13.

[00124] The process of Figure 25 is similar to the process of Figure 13,
with the following exceptions. If, in step 676, it is determined that not all
memory cells have been properly verified, then in step 780 it is determined
whether all memory cells intended to be programmed to state B have
sufficiently been programmed to state B. If not, the process continues at step
684. If all memory cells intended to be programmed to state B have
sufficiently been programmed to state B, then in step 782 a predetermined
number of programming pulses are applied to the memory cells via the
selected word line. Verify operations (with lockout for memory cells that
verify successfully) are performed between these predetermined number of
programming pulses. The number of programming pulses are applied to the
memory cells during step 782 can be determined based on experimentation,
simulation and/or device characterization. The amount of the increment
between programming pulses may affect the number of programming pulses

that are applied to the memory cells during step 782.

[00125] The embodiment of Figure 25 can also be used with memory cells
storing more than two bits of data. For example, the process of Figure 25 can
be used with memory cells being programmed as depicted in Figures 10 and

11H, as well as other programming processes. In one embodiment, when using
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the process of Figure 25 with memory cells storing three bits of data, step 780
test whether all memory cells intended to be programmed to state S6 (the

second highest state) have sufficiently been programmed to state S6.

[00126] One solution for achieving tight threshold voltage distributions,
without unreasonably slowing down the programming process, includes using
a two-phase programming process. The first phase, a coarse programming
phase, includes an attempt to raise a threshold voltage in a faster manner and
paying less attention to achieving a tight threshold voltage distribution. The
second phase, a fine programming phase, attempts to raise the threshold
voltage in a slower manner in order to reach the target threshold voltage, while
also achieving a tighter threshold voltage distribution. One example of a
coarse/fine programming methodology can be found in United States Patent

6,643,188, incorporated herein by reference in its entirety.

[00127]  Figures 26A-C and 27A-C provide more detail of one example of a
coarse/fine programming methodology. Figures 26A and 27A depict the
programming pulses Vpgm applied to the control gate. Figures 26B and 27B
depict the bit line voltages for the memory cells being programmed. Figures
26C and 27C depict the threshold voltage of the memory cells being
programmed. This example uses two verify levels, indicated in the Figures as
Vverl and Vver2. The final target level is Vverl. When a threshold voltage of
the memory cell has reached Vverl, the memory cell will be inhibited from
further programming by applying an inhibit voltage to the bit line
corresponding to that memory cell. For example, the bit line voltage can be
raised to Vinhibit (See Figure 26B and Figure 27B). In one embodiment,
Vinhibit is Vdd. However, when a memory cell has reached a threshold
voltage close to (but lower than) the target value Vverl, the threshold voltage
shift to the memory cell during subsequent programming pulses is slowed
down by applying a certain bias voltage to the bit line, typically in the order of
0.3v to 0.8v. Because the rate of threshold voltage shift is reduced during the
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next few programming pulses, the final threshold voltage distribution can be
narrower than otherwise. To implement this method, a second verify level that
is lower than that of Vverl is used. This second verify level is depicted as
Vver2. When the threshold voltage of the memory cell is larger than Vver2,
but still lower than Vverl, the threshold voltage shift to the memory cell will
be reduced for subsequent programming pulses by applying a bit line bias Vs
(Figure 27B). Note that in this case, two verify operations are required for
each state. One verify operation at the corresponding Vverl for each state, and
one verify operation at the corresponding Vver2 for each state. This may
increase the total time needed to program the memory cells. However, a larger

AVpgm step size can be used to speed up the process.

[00128] Figures 26A, 26B, and 26C show the behavior of a memory cell
whose threshold voltage moves past Vver2 and Vverl in one programming
pulse. For example, the threshold voltage is depicted in Figure 26C to pass
Vver2 and Vverl in between t2 and t3. Thus, prior to t3, the memory cell is in

the coarse phase. After t3, the memory cell is in the inhibit mode.

[00129]  Figures 27A, 27B, and 27C depict a memory cell that enters both
the coarse and fine programming phases. The threshold voltage of the memory
cell crosses Vver2 in between time t2 and time t3. Prior to t3, the memory cell
is in the coarse phase. After t3, the bit line voltage is raised to Vs; therefore,
the memory cell is in the fine phase. In between t3 and t4, the threshold
voltage of the memory cell crosses Vverl; therefore, the memory cell is

inhibited from further programming by raising the bit line voltage to Vinhibit.

[00130] The technology described above with respect to stopping
programming when an estimated number of memory cells that have failed
verification is less than a limit can be used with the coarse/fine programming

described with respect to Figs. 26A-C and 27A-C (or a different type of
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coarse/fine programming). The intermediate value used to estimate the

number of memory cells that have failed verification can be Vver2.

[00131]  One embodiment includes applying a programming signal to a first
set of non-volatile storage elements in order to program the first set of non-
volatile storage elements to a first target condition, determining whether the
amount of non-volatile storage elements of the first set that have not yet
reached an intermediate condition is less than a compare value, and concluding
programming of the first set of non-volatile storage elements in response to
determining that the amount of non-volatile storage elements of the first set
that have not yet reached the intermediate condition is less than the compare

value. The intermediate condition is different than the first target condition.

[00132] One embodiment includes a first set of non-volatile storage
elements and one or more managing circuits in communication with the first
set of non-volatile storage elements. The one or more managing circuits
perform a programming process on the first set of non-volatile storage
clements to program the first set of non-volatile storage elements to a first
target condition. The programming process includes the one or more
managing circuits applying a programming signal to the first set of non-volatile
storage elements and verifying whether the first set of non-volatile storage
elements have reached the first target condition. The one or more managing
circuits determine a number of non-volatile storage clements of the first set
that have not yet reached an intermediate condition during the programming
process. The intermediate condition is different than the first target condition.
The one or more managing circuits conclude the programming process for the
first set of non-volatile storage elements if the number of non-volatile storage
elements of the first set that have not yet reached the intermediate condition is

less than the compare value.
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[00133] One embodiment includes applying a programming signal to a
plurality of non-volatile storage elements in order to concurrently program the
non-volatile storage elements to different target conditions, verifying whether
the non-volatile storage clements have reached their respective target
conditions, counting non-volatile storage elements of the first subset that have
not yet reached an intermediate condition with respect to the highest target
condition, and concluding programming of the non-volatile storage elements in
response to counting less than a predetermined number of the non-volatile
storage elements of the first subset to have not yet reached the intermediate
condition and determining that other non-volatile storage elements intended for
other target conditions of the different target conditions are sufficiently
programmed. Non-volatile storage elements reaching the highest target
condition pass through the intermediate condition. The different target
conditions include a lowest target condition and a highest target condition. The
programming signal includes a set of pulses. The plurality of non-volatile
storage elements includes a first subset of non-volatile storage elements being
programmed to the highest target condition. The verifying includes

performing one or more verifying processes between pulses.

[00134] One embodiment includes applying a programming signal to a
plurality of non-volatile storage elements in order to program the non-volatile
storage elements to different target conditions. The programming signal
includes a set of pulses. The different target conditions include a first target
condition and a second target condition. The plurality of non-volatile storage
elements includes a first subset of non-volatile storage elements being
programmed to the first target condition and a second subset of non-volatile
storage clements being programmed to the second target condition. The
method further comprises verifying whether the second subset of non-volatile
storage eclements have sufficiently reached the second target condition,

applying a predetermined number of one or more pulses to the first subset of
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non-volatile storage elements in response to determining that the second subset
of non-volatile storage elements have sufficiently reached the second target
condition, and concluding programming of the first subset of non-volatile
storage elements in response to and after applying the predetermined number

of one or more pulses to the first subset of non-volatile storage elements.

[00135] The foregoing detailed description of the invention has been
presented for purposes of illustration and description. It is not intended to be
exhaustive or to limit the invention to the precise form disclosed. Many
modifications and variations are possible in light of the above teaching. The
described embodiments were chosen in order to best explain the principles of
the invention and its practical application, to thereby enable others skilled in
the art to best utilize the invention in various embodiments and with various
modifications as are suited to the particular use contemplated. It is intended

that the scope of the invention be defined by the claims appended hereto.
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CLAIMS

I claim:

L. A method of programming non-volatile storage, comprising:

applying a programming signal to a first set of non-volatile storage
elements in order to program the first set of non-volatile storage elements to a
first target condition;

determining whether the amount of non-volatile storage elements of the
first set that have not yet reached an intermediate condition is less than a
compare value, the intermediate condition is different than the first target
condition; and

concluding programming of the first set of non-volatile storage elements
in response to determining that the amount of non-volatile storage elements of
the first set that have not yet reached the intermediate condition is less than the

compare value.

2. The method of claim 1, further comprising:
verifying whether the first set of non-volatile storage elements have

reached the first target condition;

3. The method of claims 1 or 2, wherein the determining whether
the amount of non-volatile storage elements of the first set that have not yet
reached an intermediate condition is less than a compare value comprises:

counting non-volatile storage elements of the first set that have not yet
reached the intermediate condition; and

comparing the number of non-volatile storage elements counted to a

predetermined value.

4, The method of claims 1, 2 or 3, wherein:

the first target condition is a threshold voltage range; and
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the intermediate condition is a threshold voltage level that is a lower

voltage level than the first target condition.

5. The method of claims 1, 2, 3 or 4, wherein:
the first set of non-volatile storage elements are multi-state flash

memory devices.

6. The method of any of claims 1-5, wherein:

the first set of non-volatile storage elements are associated with a set of
threshold voltage ranges, the first target condition is a highest threshold voltage
range of the set of threshold voltage ranges, the intermediate condition is a

threshold voltage value below the highest threshold voltage range.

7. The method of any of claims 2-6, wherein:

the programming signal includes a set of pulses;

the verifying includes performing one or more verifying processes
between pulses; and

the determining includes counting non-volatile storage elements of the
first set that have not yet reached the intermediate condition during at least

some of the pulses.

8. The method of any of claims 1-7, wherein:

the applying of a program signal concurrently programs a plurality of
non-volatile storage elements to different target conditions, the different target
conditions include a lowest target condition and a highest target condition, the
plurality of non-volatile storage elements include the first set of non-volatile

storage elements, the first target condition is the highest target condition.

9. The method of any of claims 2-6 or 8, wherein:

the programming signal includes a set of pulses;
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the verifying includes performing one or more verifying processes
between pulses; and
the determining includes counting non-volatile storage elements of the

first set that have not yet reached the intermediate condition between pulses.

10. The method of any of claims 1-9, wherein:

the programming signal includes a set of pulses;

the first set of non-volatile storage elements are associated with a set of
data states, the first target condition is one of the set of data states, the
intermediate condition is a verify value for a different data state of the set of
data states;

the method further includes applying a predetermined number of one or
more pulses to the first set of non-volatile storage elements in response to
determining that the amount of non-volatile storage elements of the first set that
have not yet reached the intermediate condition is less than the compare value;
and

the programming of the first set of non-volatile storage elements is
concluded after the applying the predetermined number of one or more pulses to

the first set of non-volatile storage elements.

11.  An non-volatile storage apparatus, comprising:

a first set of non-volatile storage elements; and

one or more managing circuits in communication with the first set of
non-volatile storage elements, the one or more managing circuits perform a
programming process on the first set of non-volatile storage elements to
program the first set of non-volatile storage elements to a first target condition,
the programming process includes the one or more managing circuits applying a
programming signal to the first set of non-volatile storage elements and
verifying whether the first set of non-volatile storage elements have reached the

first target condition, the one or more managing circuits determine a number of
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non-volatile storage elements of the first set that have not yet reached an
intermediate condition during the programming process, the intermediate
condition is different than the first target condition, the one or more managing
circuits conclude the programming process for the first set of non-volatile
storage elements if the number of non-volatile storage elements of the first set
that have not yet reached the intermediate condition is less than the compare

value.

12. The non-volatile storage apparatus of claim 11, wherein:
the programming signal includes a set of pulses; and

the one or more managing circuits perform the verifying between pulses.

13. The non-volatile storage apparatus of claims 11 or 12, wherein:
the first set of non-volatile storage elements are multi-state flash

memory devices.

14. The non-volatile storage apparatus of claims 11, 12 or 13, further
comprising:

a second set of non-volatile storage elements, the one or more managing
circuits program the second set of non-volatile storage elements to a second
target condition; and

a third set of non-volatile storage elements, the one or more managing
circuits program the third set of non-volatile storage elements to a third target
condition, the first target condition is the most extreme target condition in

comparison to the second target condition and the third target condition.

15. The non-volatile storage apparatus of claims 11, 12 or 13, further
comprising:

a second set of non-volatile storage elements, the one or more managing
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circuits program the second set of non-volatile storage elements to a second
target condition concurrently with programming the first set of non-volatile
storage elements to the first target condition; and

a third set of non-volatile storage elements, the one or more managing
circuits program the third set of non-volatile storage elements to a third target
condition concurrently with programming the first set of non-volatile storage

elements to the first target condition.

16. The non-volatile storage apparatus of claims 11, 12 or 13,
wherein:

the programming signal includes a set of pulses;

the first set of non-volatile storage elements are associated with a set of
data states, the first target condition is one of the set of data states, the
intermediate condition is a verify value for a different data state of the set of
data states;

the one or more managing circuits apply a predetermined number of one
or more pulses to the first set of non-volatile storage elements in response to
determining that the amount of non-volatile storage elements of the first set that
have not yet reached the intermediate condition is less than the compare value;
and

the programming of the first set of non-volatile storage elements is
concluded after the applying the predetermined number of one or more pulses to

the first set of non-volatile storage elements.
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