CUSTOM SIZED PLASTIC TOTE HAVING INTERMEDIATE SLEEVE AND METHOD OF MANUFACTURING SAME

Inventor: William J. Vroon, Holland, MI (US)
Assignee: BRADFORD COMPANY, Holland, MI (US)

Appl. No.: 13/307,797
Filed: Nov. 30, 2011

Related U.S. Application Data
Division of application No. 12/728,733, filed on Mar. 22, 2010, now Pat. No. 8,112,859.
Provisional application No. 61/162,898, filed on Mar. 24, 2009.

ABSTRACT
A method of manufacturing a custom sized plastic tote lighter in weight than heretofore known custom sized plastic totes is provided. The method comprises separating an injection molded tote into upper and lower portions by cutting the injection molded tote. A sleeve or middle portion of plastic material is secured to the upper and lower portions of the injection molded tote to create a custom sized plastic tote of a desired height. Alternatively, portions of different injection molded totes may be used to create a custom sized plastic tote. The sleeve may be made from different materials and may be made of multiple pieces.
CUSTOMIZED PLASTIC TOTE HAVING INTERMEDIATE SLEEVE AND METHOD OF MANUFACTURING SAME

CROSS REFERENCE TO RELATED APPLICATIONS

FIELD

[0002] The present invention relates to a tote for use in shipping products.

BACKGROUND

[0003] Injection molded totes are designed to hold parts or products for shipment and/or storage. One exemplary use is in the automotive manufacturing industry. For example, the injection molded tote may be used several times for transporting parts between a part supplier and an automobile or other product assembly plant.

[0004] Injection molded totes have a finite usable life. When the injection molded tote becomes damaged and is no longer useful, the tote is either discarded or ground up as a means of recycling the plastic. Alternatively, the injection molded tote may become obsolete or unwanted if the parts for which the tote is designed are discontinued and the injection molded tote does not adequately fit another part.

[0005] Injection molded totes are made in a limited number of sizes or footprints, and may be color coded to indicate different sizes. The sizes are limited so they fit in a desired manner inside a standard pallet footprint for shipping purposes, which is commonly 48 inches by 45 inches. Therefore, some popular footprints or sizes for injection molded totes are: 24 inches by 22 inches (four totes per layer arranged 2x2) and 24 inches by 15 inches (six totes per layer arranged 3x2), among others. Because these sizes are finite, finding a used injection molded tote of a suitable size and color may be difficult.

[0006] Injection molded totes are made in a limited number of heights so that when loaded and stacked, the height of the pallet load is between 48 and 52 inches or close. For example, one common load is 11 inch tall injection molded totes stacked four high. Injection molded tote tooling is very expensive. In addition, making such tooling for tall injection molded totes (say 23 inches) is difficult.

[0007] It is known to take two standard sized injection molded totes of the same footprint (lengthxwidth), but of different heights, cut them and weld them together to create a custom sized height. One difficulty with using this method to create an injection molded tote of a custom height is that the resulting tote is relatively heavy, and therefore, costly to transport when compared to a tote of the same height manufactured in accordance with the present invention.

[0008] What is needed in the art is a method of manufacturing a custom sized plastic tote from one or more unwanted, obsolete, or damaged injection molded totes. The resulting tote is lighter and, therefore, cheaper and easier to transport than known cut and welded injection molded totes.

SUMMARY

[0009] The present invention provides a method of manufacturing a custom sized plastic tote from one or more injection molded totes. These standard sized injection molded totes may be unwanted, obsolete, or damaged injection molded totes. According to one aspect of the invention, a custom sized plastic tote of a desired height is made by separating an upper portion of an injection molded tote from a lower portion of the injection molded tote. The next step is inserting a sleeve or middle portion of the custom sized plastic tote between the upper and lower portions of the injection molded tote. The next step is securing the middle portion of the custom sized plastic tote to the upper and lower portions of the injection molded tote to create a custom sized plastic tote of a desired height.

[0010] According to another aspect of the invention, the method of manufacturing a custom sized plastic tote of a desired height comprises cutting a first injection molded tote, separating the first injection molded tote into an upper portion and a lower portion. The next step comprises securing one of the upper and lower portions of the first injection molded tote to a plastic sleeve. The last step comprises securing a portion of a second injection molded tote to the sleeve to complete the custom sized plastic tote.

[0011] According to another aspect of the invention, the method of manufacturing a custom sized plastic tote of a desired height comprises cutting first and second injection molded totes, separating each of the injection molded totes into an upper portion and a lower portion. The next step comprises securing one of the upper and lower portions of the first injection molded tote to a plastic sleeve. The last step comprises securing one of the upper and lower portions of the second injection molded tote to the plastic sleeve. The unused portions of the first and second injection molded totes are not used to manufacture the custom sized plastic tote.

[0012] The sleeve of the custom sized plastic tote may be made of multiple pieces of plastic or only one piece of plastic. Securing the upper and/or lower portions of the injection molded tote to the sleeve may be done by any suitable means known in the industry. For example, the upper and/or lower portions of the injection molded tote or totes may be secured to the middle sleeve by riveting, welding, or gluing, to name a few. The middle sleeve, therefore, separates the upper and lower portions of the injection molded totes used to create the customized tote.

[0013] In one embodiment, the middle sleeve may be made of corrugated plastic with the corrugations and flutes extending vertically, thereby enabling the custom sized plastic tote to withstand high compression forces that are encountered when the totes are stacked one on another. Advantageously, stacking strength enables multiple loaded totes to be stacked upon each other without damage to the totes or to any parts therein. Because the corrugated plastic sleeve is made of polyethylene, the same material from which the upper and lower sections of the customized tote are made, the sleeve may be sonic welded at spots to the injection molded tote pieces.

[0014] According to another aspect of the present invention, the sleeve may be made of trilaminate materials, such as Con-Pearl®. Because Con-Pearl® is made of polypropylene,
which does not weld to polyethylene, the sleeve may be riveted to the injection molded tote pieces of the customized plastic tote.

Another aspect of the present invention is color coding. The custom sized plastic tote may be assembled with the middle sleeve and/or its top or bottom pieces from injection molded totes being a chosen color which communicates either the size or contents inside the custom sized plastic tote. Such color coding may provide the same color code scheme as the injection molded tote or totes.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] FIG. 1 is a front perspective view of one embodiment of a custom sized plastic tote in accordance with the present invention;

[0017] FIG. 2A is a front perspective view of an injection molded tote being cut into upper and lower portions;

[0018] FIG. 2B is a front perspective view of the injection molded tote of FIG. 2A following separation into upper and lower portions;

[0019] FIG. 2C is a front perspective view of the projections being removed from the upper portion of the injection molded tote of FIG. 2A;

[0020] FIG. 2D is a front perspective view of the projections being removed from the lower portion of the injection molded tote of FIG. 2A;

[0021] FIG. 2E is a disassembled view of the injection molded tote of FIG. 2A;

[0022] FIG. 2F is a perspective view of the injection molded tote of FIG. 2A being welded together;

[0023] FIG. 3 is a cross-sectional view taken along section line 3-3 of FIG. 1;

[0024] FIG. 4A is a partially disassembled view of an alternative embodiment of a custom sized plastic tote;

[0025] FIG. 4B is a front perspective view of the custom sized plastic tote of FIG. 4A fully assembled;

[0026] FIG. 5 is a partial perspective view of an alternative material for the sleeve of any of the custom sized plastic totes of the present invention;

[0027] FIG. 6 is a partially disassembled view showing a portion of an alternative embodiment of manufacturing a custom sized plastic tote using two injection molded totes;

[0028] FIG. 7A is a partially disassembled view showing an alternative embodiment of custom sized plastic tote; and

[0029] FIG. 7B is a front perspective view of the custom sized plastic tote of FIG. 7A fully assembled.

DETAILED DESCRIPTION OF THE DRAWINGS

[0030] Referring to FIG. 1, there is illustrated a custom sized plastic tote **10** according to one embodiment of the invention. The custom sized plastic tote **10** includes an upper portion, referred to as a rail **12**; a lower portion, referred to as a tray **14**, and a middle portion or sleeve **16** secured to the rail **12** and tray **14**.

[0031] In one embodiment, the custom sized plastic tote **10** includes the components of one injection molded tote **18** shown in FIG. 2A. The injection molded tote **18** may be a used tote, a new tote, a partially damaged tote or any combination thereof. This document does not intend to specify the previous use or condition of injection molded tote **18**. The injection molded tote **18** has a pair of handles **19**, an upper lip **20**, a lower lip **22**, a floor **24** and a plurality of projections **26** extending generally vertically between the upper and lower lips **20, 22** and protruding outwardly beyond the sidewalls **28**.

One method of manufacturing the custom sized plastic tote **10** using portions of injection molded tote **18** is shown in FIGS. 2A-2F.

[0032] As shown in FIG. 2A, the custom sized plastic tote **10** of FIG. 1 is made by cutting the injection molded tote **18** along a generally horizontal plane “P” (indicated by the dashed line in FIG. 2A) using a movable cutting tool **21** having a rotary blade **23**. It will be appreciated by one of ordinary skill in the art that the cutting tool **21** may be stationary, as opposed to movable, and/or may move outside injection molded tote **18** rather than inside injection molded tote **18** and/or may have other types of cutting means, such as a cutting blade that reciprocates rather than rotates. The injection molded tote **18** may be cut or separated into two or more pieces by other methods known in the art of machining.

[0033] It will be appreciated by those of ordinary skill in the art that injection molded totes are available in a limited number of sizes as determined by the length (L1), width (W1), and height (H1). As shown in FIG. 2A, L1 generally indicates the distance between the outer surfaces **30, 32** of opposing sides of the upper and lower lips **20, 22**, respectively, of injection molded tote **18**. W1 generally indicates the distance between the outer surfaces **34, 36** of opposing sides of the upper and lower lips **20, 22**, respectively, of injection molded tote **18**. H1 generally indicates the distance between the upper surface **38** of the upper lip **20** and the lower surface **40** of the lower lip **22** of injection molded tote **18**.

[0034] By way of example, injection molded totes have length and width dimensions of about 24 inches by about 15 inches, about 24 inches by about 22 inches, or about 48 inches by about 15 inches. By way of further example, injection molded tote **18** may have a height, H1, of about 4 or more inches. Thus, each of the rail **12** and the tray **14** may have similar length and width dimensions, though it will be appreciated that the rail **12** may have interior dimensions that are slightly different than the interior dimensions of the tray **14**.

[0035] With reference to FIG. 2B, cutting along generally horizontal plane “P” separates the injection molded tote into two portions, the rail **12** and the tray **14**. By way of further example, the tray **14** may have a height, H2, of about 2¾ inches measured on the inside of the tray **14**, and the rail **12** may have a height, H2, of about 3½ inches. However, it will be appreciated that the height of each of the rail **12** and tray **14** may depend on the height, H1, of the injection molded tote **18**. It will also be appreciated that cutting may remove a portion of the height, H1, such that the sum of the heights H2 and H1 are generally less than H1. Furthermore, cutting may include removing a substantial amount of the material between the rail **12** and the tray **14**. As shown in FIG. 2A, projections **26** are cut along with the sidewalks **28** of the injection molded tote **18**. Although the projections **26** are illustrated as being generally vertically oriented, oriented in other directions and may be other shapes or configurations.

[0036] As shown in FIGS. 2C and 2D, in addition to cutting injection molded tote **18** into two separate pieces, portions of the injection molded tote **18** may also undergo additional machining to remove external protrusions **26** extending outwardly from the sidewalks **28**. As shown in FIG. 2C, a blade **42** extending above an upper surface **44** of a work table **46** cuts and removes the protrusions, trim or projections **26** along one side of the upper portion or rail **12** of injection molded tote **18** as the rail **12** moves in the direction of arrow **48**. This process is repeated four times, one for each side of the rail **12**. A guide
shown in phantom for clarity is used to cut the protrusions 26 off the rail 12 to create relatively smooth sidewalls. As shown in FIG. 2D, the same process is used to remove the protrusions or projections 26 from all four sides of the tray 14 of the injection molded tote 18 after tray 14 has been separated from the rail 12 of injection molded tote 18, as shown in FIG. 2B.

As shown in FIG. 2E, this protrusion removal process provides generally rectangular rail 12 with four sidewalls 52 extending downwardly from the upper lip 20, each sidewall 52 having a relatively smooth outer surface 54 as well as a smooth inner surface 56. This protrusion removal process further provides tray 14 with four sidewalls 58 above lower lip 22, each sidewall 58 having a relatively smooth outer surface 60 as well as a relatively smooth inner surface 62.

These relatively smooth outer surfaces 54, 60 of sidewalls 52, 58 of the rail 12 and tray 14, respectively, fit inside the sleeve 16 and are used to secure the components of the custom sized plastic tote 10 of FIG. 1 together. It will be appreciated that the removal of the external protrusions 26, such as projections and trim and cutting injection molded tote 18 into multiple pieces, may be completed in one or more machining operations. Furthermore, robotic equipment or CNC equipment may be utilized to machine the injection molded tote according to the principles described herein.

FIGS. 1, 2E and 2F show an exemplary embodiment of the sleeve 16 made of one piece of corrugated plastic. However, sleeve of any of the custom sized plastic totes described herein may be made of multiple pieces of corrugated plastic or other plastic material of any desired dimensions. By way of example, and not limitation, sleeve 16 may be made of high density polyethylene (HDPE). As shown, sleeve 16 is formed by bending a sheet of corrugated plastic material to dimensions that enable the sleeve 16 to fit over the treated or machined (as shown in FIGS. 2C and 2D) sidewalls 52, 58 of the rail 12 and tray 14, respectively. The sleeve 16 has an upper edge 61, a lower edge 63, a smooth inner surface 66 and a smooth outer surface 68. As shown in FIG. 2E, opposed side edges 64 of sleeve 16 are joined together along a vertically oriented seam by welding or any other known method. The height, Hs, of sleeve 16, the linear distance between upper and lower edges 61, 63, may be as little as about 2 inches and may be as tall as is practicable in order to protect the selected parts to be stored/transported in the custom sized plastic tote 10 while maintaining sufficient vertical stacking strength.

FIG. 3 illustrates a cross-section of sleeve 16 in which sleeve 16 is made of plastic corrugated material, the corrugations 76 extending vertically. Vertically oriented corrugations 76 provide stacking strength, thereby enabling the custom sized plastic tote 10 to withstand high compression forces that are encountered when the totes are stacked one on another. If desired, the corrugations may extend horizontally. As shown in FIG. 3, the plastic material of sleeve 16 comprises a pair of generally planar face plies, an inner face ply 70 and an outer face ply 72. A plurality of vertically oriented corrugations or partitions 74 extending between the inner and outer face plies 70, 72 define a plurality of channels or flutes 76.

As shown in FIGS. 2E and 2F, upper and lower portions of sleeve 16 fit over the treated or machined sidewalls 52, 58 of the rail 12 and tray 14, respectively, and are secured to them. As shown in FIGS. 2E and 2F, inner surface 66 of sleeve 16 contacts the treated or machined sidewalls 52, 58 of the rail 12 and tray 14, respectively. The upper and lower edges 61, 63 of the sleeve 16 contact the upper and lower lips 20, 22 of the rail 12 and tray 14, respectively. As shown in FIG. 2E, sleeve 16 is secured to the treated or machined sidewalls 52, 58 of the rail 12 and tray 14, respectively, by sonic welding at select spots or locations 78, using a welder 80.

By using a sleeve 16 made of polyethylene, the same plastic material as the injection molded tote 18, the sleeve 16 made of corrugated plastic may be sonically welded at spots 78 to the rail 12 and tray 14. The interior dimensions of the rail 12 and the tray 14 are maintained. Alternatively, sleeve 16 may be secured to the rail 12 and the tray 14 by any suitable means known in the industry. For example, the rail 12 and/or tray 14 may be secured to the sleeve 16 by one or more of riveting, welding, or gluing, to name a few. The sleeve 16, therefore, separates the upper and lower portions of the injection molded tote 18 in the custom made tote 10.

According to another aspect of the present invention, the sleeve may be made of a trilaminate material sold under the name Con-Pearl®. FIG. 5 illustrates this plastic material comprising a pair of generally planar face plies, an inner face ply 82 and an outer face ply 84. A middle ply 86 having a plurality of dimples 88 punches therein is sandwiched between the inner and outer face plies 82, 84 and is secured thereto. The dimples 88 extend between the inner and outer face plies 82, 84. Con-Pearl®, as shown in FIG. 5, is made of a polypropylene plastic different from the polyethylene of the injection molded tote 18. Therefore, sleeve 16 must be riveted or secured in some manner other than welding to the rail 12 and tray 14, respectively. Any of the sleeves shown or described herein may be made of Con-Pearl®, or any other trilaminate or other plastic material.

FIGS. 4A and 4B illustrate another embodiment of custom sized plastic tote 10a being made. This custom sized plastic tote 10a comprises three principal components, like custom sized plastic tote 10, a rail 12a from an injection molded tote, a two-piece sleeve 16a and a tray 14a from an injection molded tote. The rail 12a and tray 14a of custom sized plastic tote 10a may be from the same injection molded tote or different injection molded totes. The sleeve 16a is made from two pieces of plastic material 90a, 90b overlapped in areas 92. As shown in FIG. 4B, the sleeve 16a is riveted with rivets 94 to the treated or machined sidewalls 52a, 58a of the rail 12a and tray 14a. The sleeve 16a may be any type of plastic material described or illustrated herein and/or may be made of any number of desired pieces of plastic material.

FIG. 6 illustrates steps of an alternative method of providing a rail and tray from injection molded totes for use in creating a custom made tote of a desired height in accordance with this invention. Rather than obtain the rail 12 and tray 14 of custom sized plastic tote 10 from one injection molded tote 18, as described above and shown in FIGS. 2A-2B, FIG. 6 shows an alternative method of obtaining a rail and a tray for use in creating a customized plastic tote in accordance with this invention such as rail 12 and tray 14 of custom sized plastic tote 10. Using this method, the rail 12 and tray 14 of custom sized plastic tote 10 are obtained from two different injection molded totes 96a, 96b, which are illustrated as being partially damaged, but need not be damaged. Injection molded tote 96a is separated into upper and lower portions 98, 100, respectively, as shown in FIG. 2A. The upper portion or rail 98 is treated, as shown in FIG. 2C, to remove exterior protrusions 26. The damaged lower portion 100 of injection
molded tote 96a is discarded. Similarly, injection molded tote 96b is separated into upper and lower portions 102, 104, respectively, as shown in FIG. 2A. The lower portion or tray 104 is treated, as shown in FIG. 2D, to remove exterior protrusions 26. The damaged upper portion 102 of injection molded tote 96a is discarded. The treated upper portion of injection molded tote 96a and the treated lower portion of injection molded tote 96b, in combination with a one or multiple piece sleeve of a desired plastic material of a desired height, are used to create a custom sized plastic tote of a desired height.

[0046] FIGS. 7A and 7B illustrate another embodiment of custom sized plastic tote 10b being made. This custom sized plastic tote 10b comprises three principal components, like custom sized plastic totes 10 and 10a, a rail 12b from an injection molded tote, a two-piece sleeve 16b and a tray 14b from an injection molded tote. The rail 12b and tray 14b of custom sized plastic tote 10b may be from the same injection molded tote or different injection molded totes. The sleeve 16b is made from two generally rectangular pieces of plastic material 106a, 106b which may be any plastic material described or illustrated herein. As shown in FIG. 7B, the sleeve 16b is welded with spot welds 108 to the treated or machined sidewalls 52b, 58b of the rail 12b and tray 14b, respectively. Of course, any other securement method, such as rivets, may be used to secure the pieces of plastic material 106a, 106b to the treated or machined sidewalls 52b, 58b of the rail 12b and tray 14b.

[0047] In any embodiment of the present invention described or illustrated herein, the custom sized plastic tote may be color coded in a similar manner as the injection molded tote or totes used to make the finished tote.

[0048] Accordingly, the invention is to be limited only by the scope of the following claims and their equivalents.

1-20. (canceled)

21. A method of manufacturing a custom sized plastic tote comprising:
separating an upper portion of an injection molded tote from a lower portion of said injection molded tote;
providing a four-sided sleeve made of corrugated plastic;
inserting the sleeve between said upper and lower portions of said injection molded tote to form a custom sized plastic tote having an upper portion, a lower portion and a sleeve extending therebetween, the sleeve fitting over sidewalls of said upper and lower portions of said custom sized plastic tote; and
welding said sleeve to said upper and lower portions of the custom sized plastic tote.

22. The method of claim 21 wherein said sleeve is sonically welded to said upper and lower portions of the custom sized plastic tote.

23. The method of claim 21 wherein the corrugations of said sleeve are vertically oriented.

24. The method of claim 21 wherein the sleeve is made of one piece of material having opposed side edges joined together.

25. The method of claim 21 wherein said sleeve is made from multiple pieces of material.

26. The method of claim 25 wherein said sleeve is made from two pieces of material.

27. The method of claim 21 wherein the upper portion of the custom sized plastic tote has handles.

28. The method of claim 21 further comprising removing exterior protrusions of the injection molded tote.

29. The method of claim 21 wherein said sleeve is made of polyethylene.

30. A method of manufacturing a custom sized plastic tote comprising:
separating an upper portion of an injection molded tote from a lower portion of said injection molded tote;
providing a four-sided sleeve made of a tri-laminate material;
inserting the sleeve between said upper and lower portions of said injection molded tote to form a custom sized plastic tote having an upper portion, a lower portion and a sleeve extending therebetween such that the sleeve fits over sidewalls of said upper and lower portions of said custom sized plastic tote; and
riveting said sleeve to said upper and lower portions of the custom sized plastic tote.

31. The method of claim 30 wherein the upper portion of the custom sized plastic tote has handles.

32. The method of claim 30 further comprising removing exterior protrusions of the injection molded tote.

33. The method of claim 30 wherein the sleeve is made of a pair of face plies and a middle ply having a plurality of dimples.

34. The method of claim 30 wherein the sleeve is made of one piece of material having opposed side edges joined together.

35. The method of claim 30 wherein said sleeve is made from multiple pieces of material.

36. The method of claim 35 wherein said sleeve is made from two pieces of material.

37. The method of claim 30 wherein said sleeve is made of polypropylene.

38. A method of manufacturing a custom sized plastic tote comprising:
cutting a first injection molded tote into multiple pieces;
providing a four-sided sleeve made of corrugated plastic;
inserting the sleeve between pieces of said injection molded totes to form a custom sized plastic tote having an upper portion, a lower portion and a sleeve extending therebetween, the sleeve fitting over sidewalls of said upper and lower portions of said custom sized plastic tote; and
welding said sleeve to the sidewalls of the upper and lower portions of the custom sized plastic tote.

39. The method of claim 38 wherein said sleeve is sonically welded to said upper and lower portions of the custom sized plastic tote.

40. The method of claim 38 wherein the corrugations of said sleeve are vertically oriented.

41. The method of claim 38 wherein the sleeve is made of one piece of material having opposed side edges joined together.

42. The method of claim 38 wherein said sleeve is made from multiple pieces of material.

43. The method of claim 42 wherein said sleeve is made from two pieces of material.

44. The method of claim 38 wherein the upper portion of the custom sized plastic tote has handles.

45. The method of claim 38 further comprising removing exterior protrusions of the injection molded tote.

46. The method of claim 38 wherein said sleeve is made of polyethylene.