WO 2004/109471 A2 | 0|00 0 0 DO O 0 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

(43) International Publication Date

(10) International Publication Number

16 December 2004 (16.12.2004) PCT WO 2004/109471 A2

(51) International Patent Classification’: GOOF L. [US/US]; 57 Norman Avenue, Apt.21, New York, NY

11222 (US).

(21) International Application Number:

PCT/US2004/018109 (74) Agent: OSTROW, Seth, H.; Brown Raysman Millstein
Felder & Steiner LLP, 900 Third Avenue, New York, NY

(22) International Filing Date: 7 June 2004 (07.06.2004) 10022 (US).
(25) Filing Language: English (81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
(26) Publication Language: English AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
(30) Priority Data: GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
60/476,815 6 June 2003 (06.06.2003) US KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,

(71) Applicant (for all designated States except US): THE
TRUSTEES OF COLUMBIA UNIVERSITY IN THE
CITY Of NEW YORK [US/US]; 535 West 116th Street,
New York, NY 10027 (US).

(72) Inventor; and
(75) Inventor/Applicant (for US only): CHARNEY, Michael,

MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR VOICE ACTIVATING WEB PAGES

- 135
HSML processor speech 100
/ engine
thread speech
module module / 145
APl =" 115
| {
client _ browser (—
A 125 130
device \120 % 110

web
server

120

140

proxy server

thread 135

e speech
module

module

speech
engine

HSML processor

client
device

115
/

/ 100

browser

(57) Abstract: A method for processing a voice request
for data specifying a web page, the request including a
rule-based grammar statement, the method comprising
identifying a grammar associated with the rule-based
grammar statement, determining whether a first connection
identified as being associated with the grammar is specified
in a data structure identifying one or more connections,
and processing the request in at least a portion of a window
capable of presenting the web page and associated with
the first connection if a first connection identified as
being associated with the grammar is specified in the data
structure.

WO 2004/109471 A2 I} N1I0 Y A08OA0 T 00000 0O

7ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, T], TM), = For two-letter codes and other abbreviations, refer to the "Guid-
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, ance Notes on Codes and Abbreviations" appearing at the begin-
FR, GB, GR, HU, IE, IT, LU, MC, NL,, P, PT, RO, SE, SI, ning of each regular issue of the PCT Gazette.

SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,

GW, ML, MR, NE, SN, TD, TG).

Published:
— without international search report and to be republished
upon receipt of that report

WO 2004/109471 PCT/US2004/018109

SYSTEM AND METHOD FOR VOICE ACTIVATING WEB PAGES
COPYRIGHT NOTICE

A portion of the disclosure of this patent document contains material
which is subject to copyright protection. The copyright owner has no objection to the
facsimile reproduction by anyone of the patent document or the patent disclosures, as it
appears in the Patent and Trademark Office patent files or records, but otherwise reserves
all copyright rights whatsoever.

RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application No.
60/476,815, titled SYSTEM AND METHOD FOR VOICE ACTIVATING WEB
PAGES, filed June 6, 2003, which is hereby incorporated herein by reference in its
entirety.

This application is also related to the following pending patent

applications; each of which is hereby incorporated herein by reference in its entirety:

o Patent Cooperation Treaty International Application No.
PCT/US01/45223, titled A METHOD AND SYSTEM FOR VOICE
ACTIVATING WEB PAGES, filed November 30, 2001, published
June 6, 2002 as International Publication No. WO/02/44887 A2; and

e U.S. Provisional Patent No. 60/250,809, titted A METHOD AND
SYSTEM FOR VOICE ACTIVATING WEB PAGES, filed

December 1, 2000.

WO 2004/109471 PCT/US2004/018109

BACKGROUND OF THE INVENTION

The invention disclosed herein relates generally to voice activating web
pages. More particularly, the present invention provides systems and methods for voice
activating multiple windows containing web pages and complex web pages.

Over the past decade Automated Speech Recognition (“ASR”) systems
have progressed to the point where a high degree of recognition accuracy may be
obtained by ASR systems installed on moderately priced personal computers and
workstations. This has led to a rise in the number of ASR systems available for consumer
and industry applications.

ASR systems rely on voice grammars to recognize vocal commands input
via a microphone and act on those commands. Voice grammars fall into two categories:
rule-based grammars and free speech grammars. Rule-based grammars allow the
recognition of a limited set of predefined phrases. Each rule-based grammar, is invoked,
if an utterance causes an event or set of events to occur. A rule-based grammar is
invoked if an utterance, input via a microphone, matches a speech template
corresponding to a phrase stored within the set of predefined phrases. For example the
user may say "save file" while editing a document in a word processing program to
invoke the save command.

On the other hand, free speech grammars recognize large sets of words in
a given domain such as Business English. These grammars are generally used for
dictation applications. Some examples of these systems are Dragon Naturally Speaking
and IBM ViaVoice 7 Millennium. ASR systems have also incorporated text to speech

(“TTS”) capabilities which enable ASR systems to speak graphically rendered text using

WO 2004/109471 PCT/US2004/018109

a synthesized voice. For example, an ASR system can read a highlighted paragraph
within a word processor aloud through speakers.

ASR systems have been integrated with web browsers to create voice-
enabled web browsers. Voice-enabled web browsers allow the user to navigate the
Internet by using voice commands which invoke rule-based grammars. Some of the
voice commands used by these browsers include utterances that cause the software to
execute traditional commands used by web browsers. For example if the user says
"home" into a microphone, a voice enabled browser would execute the same routines that
the voice-enabled web browser would execute if a user clicked on the "home" button of
the voice-enabled web browser.

In addition, some voice-enabled web browsers create rule-based
grammars based on web page content. As a web page is downloaded and displayed some
voice enabled web browsers create rule-based grammars based on the links contained
within the web page. For example, if web page displayed a link "company home," such a
voice enabled web browser would create a rule-based grammar, effective while the web
page is displayed, such that if a user uttered the phrase "company home" into a
microphone the voice enabled web browser would display the web page associated with
the link. One shortcoming of this approach is that the rules generated from web page
content are fixed over long periods of time because web pages are not redesigned often.
Additionally, the rule-based grammars are generated from web page content, which is
primarily intended for visual display. In effect these systems limit the user to saying what

appears on the screen.

WO 2004/109471 PCT/US2004/018109

Web pages can also incorporate audio elements, which cause sound to be
output. Currently web pages can incorporate audio elements into their web pages in two
ways. The first way to incorporate an audio element is to use audio wave file content to
provide a human sounding voice to a web page. Using audio wave files allows the web
page designer to design the visual and audio portions of the web page independently, but
this freedom and added functionality comes at a high price. The bandwidth required to
transfer binary sound files over the Internet to the end user is extremely large.

The second way to incorporate an audio element is to leverage the
functionality of an ASR system. Voice enabled web browsers may utilize the TTS
functionality of an ASR system in such a way as to have the computer "speak" the
content of a web page. Using this approach causes the bandwidth needed to view the
page with or without the audio element be approximately the same but limits the subject
matter of what the web browser can speak to the content of the web page.

Voice XML (VXML) affords a web page designer with another option.
VXML allows a user to navigate a web site solely through the use of audio commands
typically used over the phone. VXML requires that a TTS translator read a web page to a
user by translating the visual web page to an audio expression of the web page. The user
navigates the web by speaking the links the Iuser wants to follow. With this approach a
user can navigate the Internet by using only the user's voice, but the audio content is
typically generated from web page content that is primarily designed for visual
interpretation; and the visual interface is removed from the user's experience.

Thus, the inventors addressed the need to independently create an audio

component of a web page that does not demand a large amount of transmission

WO 2004/109471 PCT/US2004/018109

bandwidth and exists in conjunction with the visual component of a web page by
inventing the system further described in Patent Cooperation Treaty International
Application No. PCT/US01/45223, which is hereby incorporated herein by reference in
its entirety. The ‘45223 application discloses systems and methods for, among other
things, activating voice content in a single, simple visual web page.

The system of the ‘45223 application controls speech content within a
web page via a proxy server that has access to the same computer device (or sound
output channels of this device) as the browser. The proxy server examines data for
speech content while at the same time feeding all other requested data to the browser. In
the case where a user clicks on a link, data requested by the browser, specified by a URL,
is passed through proxy server to the specified web server. The requested material from
the web server is passed back to the browser.

In the case where a new URL is requested by the user via a speech event
however, the proxy server requests this data (e.g. — executing a specified program or
other command on the web server)] from the specified Web Server via the browser.
Thus, the resultant data needs to be "pushed"” back to the browser. This is accomplished
via the use of the multipart/x-mixed-replace mime type further described in the ‘45223
application. This type causes the browser to hold open the connection between the
browser and the proxy server, and to continue accepting data until a given signal or other
token is sent or the connection is closed. For example, termination may occur because of
anew "click" requested from the browser or because there is no speech content in the
new page. The circumstances for termination are further described in the truth tables as

shown in Fig. 3B of the ‘45223 application and further described therein.

WO 2004/109471 PCT/US2004/018109

The inventors have identified additional improvements, further described
herein, including how to extend the system to work with web pages that contain
complex, aggregate content or content from multiple pages operating simultaneously, for
example in multiple instances or windows of a given browser, or in multiple frames
within a given window.

SUMMARY OF THE INVENTION

The present invention, among other things, addresses the problems
discussed above regarding voice activating web pages.

In one embodiment, the system includes a method for processing a voice
request for data specifying a web page, the request including a rule-based grammar
statement, the method comprising: identifying a grammar associated with the rule-based
grammar statement; determining whether a first connection identified as being associated
with the grammar is specified in a data structure identifying one or more connections;
and processing the request in at least a portion of a window capable of presenting the
web page and associated with the first connection if a first connection identified as being
associated with the gramimar is specified in the data structure. In some embodiments, the
request comprises a request including a rule-based grammar statement having a phrase
portion, a command portion, and a tag portion.

In some embodiments, the system processes the request in at least a
portion of a new window capable of presenting the web page and associated with a
second connection if a first connection identified as being associated with the grammar is
not specified in the data structure. The second connection is added to the data structure

and associated with the grammar. In some embodiments, the new window is also

WO 2004/109471 PCT/US2004/018109

associated with the connection. The system also includes methods for removing
identification of a connection from the data structure if a window associated with that
connection is closed.

In some embodiments, the new window comprises a last window loaded
by a computing device associated with the second connection, an active window at a
computing device associated with the second connection, or is selected according to a
user preference. In some embodiments, the grammar is a grammar associated with a last
window loaded by a computing device associated with a connection, a grammar
associated with an active window at a computing device associated with a connection, or
is selected according to a user preference. The window may include a browser window
or a portion of a window such as a frame.

In some embodiments, the request comprises a request for complex data,
such as a request for complex data embedded in a web page. In some embodiments, the
system examines a header or a footer associated with the request to determine a type of
data requested, for example a header or a footer specifying a mime type. In some
embodiments, the system examines a filename or a file extension associated with the
request to determine a type of data requested.

In some embodiments, the system includes a method for processing a
voice request for data specifying a web page, the method comprising: receiving, from a
connection, data specifying a web page, the data including a rule-based grammar
statement having a phrase portion, a command portion, and a tag portion; determining
whether the connection is specified in a data structure identifying one or more

connections; selecting a grammar associated with the connection from a data structure

WO 2004/109471 PCT/US2004/018109

identifying one or more grammars; and processing the rule-based grammar statement
using the selected grammar in at least a portion of a first window capable of presenting
the web page and associated with the connection if the connection is specified in the data
structure identifying one or more connections.

In some embodiments, the system selects a new grammar associated with
the connection from a data structure specifying one or more grammars and processes the
rule-based grammar statement using the selected grammar in at least a portion of a new
window associated with the connection if the connection is not specified in the data
structure specifying one or more connections. In some embodiments, the system also
adds the connection to the data structure specifying one or more connections and
associates the connection with the new grammar in the data structure specifying one or
more grammars.

In some embodiments, the system includes a method for processing a
voice request for data specifying a web page, the method comprising: receiving a request
for data specifying a web page, the request including a rule-based grammar statement
having a phrase portion, a command portion, and a tag portion; determining whether a
window is associated with the request; and processing the request in at least a portion of
the window associated with the request if a window is associated with the request.

In some embodiments, the system processes the rule-based grammar
statement in at least a portion of a new window if a window is not associated with the
request. In some embodiments, the system identifies a connection associated with the

request and associates the connection with the new window:.

WO 2004/109471 PCT/US2004/018109

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is illustrated in the figures of the accompanying drawings
which are meant to be exemplary and not limiting, in which like references are intended
to refer to like or corresponding parts, and in which:

Fig. 1 is a block diagram of a network architecture for a system to
perform voice activation of web pages according to an embodiment of the invention; and

Fig. 2 is a flow diagram of a method to perform voice activation of web
pages according to an embodiment of the invention.

DETAILED DESCRIPTION

With reference to Fig. 1 embodiments of the invention are presented. Fig.
1 presents a block diagram of a network architecture for a system to perform voice
activation of web pages according to an embodiment of the invention. As shown, the
system includes one or more client devices 100 connected to a network 105, a web server
110, a browser 115, a hyper-speech markup language (“HSML”) processor 120, a thread
module 125, a speech module 130, a speech engine 135, a proxy server 140, and a
browser application program interface (“API”) 145.

A client device 100 may include, for example, a client computer, a
cellular telephone, a personal digital assistant (“PDA”), a tablet PC, and other similar
electronic devices equipped with a processor and capable of supporting a browser 115
software module as further described herein and in the ‘45223 application. Client
devices 100 are communicatively coupled to a web server 110 or other similar server via

anetwork 105. For example, in one embodiment, client devices 100 might be connected

WO 2004/109471 PCT/US2004/018109

to a web server 110 via the Internet, a local area network, a wide area network, a wireless
network, or other similar network or combination thereof,

Client devices 100 execute a browser 115, such as a web browser,
generally configured to receive hypertext markup language (“HTML”) pages and other
data files from the web server 110, as well as associated audiovisual files and other types
files known in the art. For example, in some embodiments, client devices execute the
Internet Explorer browser, the Netscape browser, the Opera browser, and other similar
browsers.

The browser 115 is also communicatively coupled to a hyperspeech
markup language (“HSML”) processor 120 as further described herein and in the ‘45233
application. The HSML processor 120 contains software modules, data structures, and
other program code generally configured to process and ﬁresent web pages containing
HSML data, HTML data, and other associated data such as audiovisual data in the
browser 115 as further described herein and in the ‘45233 application.

In some embodiments, the HSML processor 120 includes a thread module
125 and a speech module 130. The thread module 125 contains additional software
modules, data structures, and other program code generally directed to handling threads
and examining data content that passes between the browser 115 and the web server 110
and other devices connected to the network. The thread mc;dule 125 is communicatively
coupled with the speech module 130.

The speech module 130 contains additional software modules, data
structures, and other program code generally directed to coordinating communications

between the HSML processor 120 and the speech engine 135. For example, the speech

10

WO 2004/109471 PCT/US2004/018109

module 130 might coordinate communications between the HSML processor 120 and a
speech engine 135 such as Dragon Naturally Speaking, IBM ViaVoice, or another
speech engine known in the art. In some embodiments, the speech module 130 is
communicatively coupled to the speech engine 135 and passes HSML data and other
data to the speech engine 135 for processing. In some embodiments, the speech engine
135 passes HSML tag data or other data indicating that the speech module 130 should
activate new page processing functionality or routines to process a new page. The
speech module 140 then returns the address of the new page from the speech engine 135
to the thread module 125 to be communicated to the browser 115, to the web server 110,
or to other computing devices connected to the network. In some embodiments, the
speech module 130 processes pages loading new speech data derived from HSML data
or other data into the speech engine 135 and directs the loading of new grammars and
other information into the speech engine 135.

The speech module 130 also coordinates communications between the
speech engine 135 and the thread module 125. For example, the speech engine 135
might pass HSML tag data or other data indicating that é new page should be passed to
speech module 130 the for processing. The speech module 130 would then return the
address of the new page from the speech engine 135 to the thread module 125 to be
communicated to the browser 115, to the web server 110, or to some other device
connected to the network.

In some embodiments, the HSML processor 120 resides and executes on a
proxy server 140 as shown in Fig. 1. In other embodiments, the HSML processor 120

resides and executes on the same device as the browser or is otherwise communicatively

11

WO 2004/109471 PCT/US2004/018109

coupled to the browser, and merely functions like a proxy server as further described in
the ‘45223 application. In either of these two preceding embodiments, communications
between the web server 110 and the browser 115 thus pass through the HSML processor
120 and are not direct. In some embodiments, the HSML processor 120 uses the
multipart/x-mixed-replace mime type to maintain an open connection between the
browser 115 and the HSML processor 120 or proxy server 140, and to push data to the
browser as further described herein and in the ‘45223 application.

For example, in some embodiments, the system is implemented in a
connectionless manner and maintains addresses, such as per-window addresses, to track
requests associated with windows. A service in a window, such as an applet, accepts
requests (e.g. to update itself, etc.). A process, for example a proxy server 140, or other
process on the client side determines the window to which content should be directed
and handles communications with the speech engine 135.

In other embodiments, the HSML processor 120 resides on the same
device as the browser 115 (or is otherwise communicatively coupled with the browser
115) wherein the HSML processor 120 communicates with the browser via an API 145,
and the HSML processor 120 and the browser 115 both communicate directly with the
web server 110. For example, the browser might contain a plug-in or other similar API
directed to communications with the HSML processor 120 and capable of passing or
executing commands, program instructions, and other data between the HSML processor
120 and the browser 115. Thus, in some embodiments, the browser 115 might receive a

web page with HSML data from the web server 110 and use the API 145 to pass the

12

WO 2004/109471 PCT/US2004/018109

HSML data and associated instructions to the HSML processor 120 for processing as
further described herein.

In some embodiments, the system includes programming, for example an
applet in browser 115, which functions without a separate proxy server 140. For
example, an applet may communicate directly with speech engine 135, with web servers,
with the browser, with other applets, or with other network elements to coordinate page
HSML data and other types of data loading. Thus, a distributional model is presented in
which. applets negotiate with each other regarding which applet has the focus or active
grammar, how to resolve ’rule conflicts, etc. In some embodiments, data structures to
support this functionality are maintained in browser memory or passed between applets
via communication methods known in the art.

Fig. 2 presents a flow diagram of a method to perform voice activation of
web pages according to an embodiment of the invention. The system examines data
passing between the browser 115 and the web server 110 or other server, step 150. For
example, in some embodiments, the browser 115 processes an HTML document or other
document comprising a complex window, such as a window with embedded data. For
example, the browser 115 may process a document containing text, graphics, and other
page assets known in the art.

The binary file for an asset such as a graphic is generally not passed to the
browser 115 with the document, but is instead referenced via an image tag or other
similar markup tag containing a link, such as a uniform resource locator (“URL”) link, to

the binary file containing the asset. The browser 115 then parses the image tag

13

WO 2004/109471 PCT/US2004/018109

containing the link and uses the link to request the binary file for the asset from the web
server 110.

Alternatively, the browser 115 may pass an HTML request or other
request for data, for example a request specifying a new page, to the web server 110.
Thus, the request from the browser 115 to the web server 110 generally contains a mime
type indicating whether the request is for an asset of the current page such as an image
file, an audio file, or other similar asset, or whether the request is an HTML request. The
system examines the data since only HTML requests and other similar requests may
pertain to the HSML functionality of the system as further described in the ‘45223
application.

In embodiments where the HSML processor 120 is a component of or
generally functions as a proxy server 140, the system holds open the connection between
the browser 115 and the HSML processor 120 using the multipart/x-mixed-replace mime
type as described in the ‘45223 application while simultaneously accepting requests for
and examining aggregate data embedded within the current page. In other embodiments,
the HSML processor 120 interacts with an API 145 of the browser 115 to voice enable
web pages. For example, the API 145 examines data to determine whether data
comprises speech events which should be passed to the HSML processor 120 for
processing (along with information regarding the window or frame associated with the
data) or whether data comprises complex data to be handled by the browser as further
described herein and in the ‘45223 application. The HSML processor 120 also processes

speech events and communicate the results to the browser 115 via the API 145,

14

WO 2004/109471 PCT/US2004/018109

Thus, the system examines the request from the browser 115 to the web
server 110 to determine whether the reéuests are requests for aggregate or complex data
embedded with the current page or HTML requests for new data, step 155. In some
embodiments, the system examines a header, a footer, or other data associated with the
request specifying a mime type or other information to determine the type of request.

For example, the request header mime type may indicate that a file is a JPEG file and
thus the system determines that the request is a request for complex data and not a new
HTML request. In some embodiments, request headers, footers, or other data associated
with the request do not specify a mime type or other information corresponding to the
data requested. In these cases, the system determines the type of data content requested
by examining the filename and file extension associated with a request. Thus, if the
request header for a file “picture.gif” did not specify a mime type, the system would try
to guess whether the request was for complex data or new HTML data by examining the
filename “picture.gif” to correlate the file extension “.gif” with a list or other data
structure of known file extensions that are likely to contain complex data rather than new
HTML requests.

If the request is not an HTML request or other request for new data, for
example a request for a new page or a new window, the data is passed directly through to
the server from either the browser (in the case of an API 145 being present) or the HSML
processor 120 functioning similar to a normal proxy server known in the art, step 160. In
embodiments where the HSML processor is functioning like a proxy server, the "master"

connection, the one that specified the multipart/x-mixed-replace mime type to the

15

WO 2004/109471 PCT/US2004/018109

browser, is maintained throughout this process while all data for the given page is
requested.

If, however, the request is for new HTML (or text) data, the data is
considered a new request from the browser 115, and the system determines whether or
not the request was originating by a speech event, step 162. If the event was not
originated by a speech event, for example, if the event was originated by a user mouse-
click or by a user typing a URL into the browser 115 directly, then the system will
process the event as an ordinary HTML request for new data as known in the art and
control will pass to block 175.

In some embodiments, the system detects activity associated with a
connection, for example a request for a new page that does not contain HSML data or a
page closing, and performs a cleanup operation as further described in the ‘45223
application. For example, the system performs a clean-up operation terminating the old
connection with the browser and also generally deletes the previous grammar associated
with that connection.

If the request for new HTML (or text) data was originated by a speech
event, the system determines whether the request came from an existing connection or
from a new browser connection, step 165. For example, in one embodiment, the system
receives a request from a connection, such as data specifying a web page, the data
including a rule-based grammar statement having a phrase portion, a command portion,
anéi a tag portion. In some embodiments, the HSML processor 120 and the browser 115

communicate via the API 145 to evaluate requests for new HTML data. In some

16

WO 2004/109471 PCT/US2004/018109

embodiments, the system uses data structures, functions, processes and other methods
further described in the “Java Speech Grammar Format Specification” available at
http://java.sun.com/products/java-media/speech/forDevelopers/JSGF/JSGF .html#11803
and hereby incorporated herein by reference in its entirety. In other embodiments, the
system contains a connection manager or other software module or software object
directed to managing associations between open or existing connections or sockets and
their associated grammars. For example, a user might have several browser 115
windows open or a browser 115 window with multiple frames open. Each of these
windows or frames is associated with an open connection (via the multipart/x-mixed-
replace mime type server push method or other similar methods) and an associated
speech grammar as further described in the ‘45223 application. Thus, the connection
manager, among other things, examines requests for new HTML data to determine
whether the reciuests come from an existing connection or a new connection.

In some embodiments, the connection manager generally comprises a :
software object that includes two sets of lists or other data structures, functions to add or
delete items from the lists, and functions to recomputed itself and the corresponding lists
as a hash. The two lists include a first list tracking associations between open or existing
connections or sockets to windows or frames and grammars associates with windows or
frames, and a second list tracking associations between speech rules and grammars
associates with speech rules. In some embodiments, a connection may include a thread,
for example where processing occurs in a multi-threaded environments at a client.
Exemplary data structures for these lists according to one embodiment of the invention

are appended hereto as Appendix A. In some embodiments, the connection manager

17

WO 2004/109471 PCT/US2004/018109

comprises a software module or software object associated with the thread module 125
or the API 145. In other embodiments, the connection manager comprises an
independent software module or software object.

If a request comes from an open or existing connection, the connection
manager examines the speech rule contained in or associated with the request, and
performs a lookup against its lists to determine the grammar and connection associated
with the request, step 170. In some embodiments, a new connection is established
between the browser 115 and the web server 110 or the proxy server 140, step 175. In
some embodiments, the new connection with the proxy server 140 is added to the
connection list or other similar data structure maintained by the connection manager. In
some embodiments, the system also tracks connections between the proxy server 140 and
the web server 110 or the browser 115, for example to address threading simultaneous
requests or for other purposes.

The system also evaluates incoming data pertaining to the new connection
to determine if there is a new grammar associated with the new connection. If a new
grammar is associated with the connection, the grammar and any speech rules associated
with it are loaded and also added to the appropriate connection manager lists as
previously described herein. As further described in the ‘45223 application, the system
generally performs a clean-up operation and terminates the old connection between the
browser and the HSML processor 120, and also generally deletes the previous grammar
associated with that connection, step 180. The request or other action is processed in or

otherwise directed to the window or frame corresponding to the new connection, step

18

WO 2004/109471 PCT/US2004/018109

180. Thus, data is fed back to the window associated with the speech request or other
request.

Tn some embodiments, if the request for new HTML data (or text)
described in step 165 is not associated with an open or existing connection or socket, the
connection manager adds the new connection to its list of connections, step 190. The
connection manager also adds any grammar and speech rules associated with that
connection to its lists as previously described herein, step 195. The system processes the
action on the window corresponding to the connection, step 200, control returns to block
150, and the system continues processing data as further described herein and in the
‘45223 application.

In some embodiments, each of the multiple open windows or frames may
have an active associated grammar. In some embodiments, the system must decide how
to process a conflict for a speech event that is contained in multiple active grammars by
determining which of the open windows or frames corresponds to the speech event. For
example, two open windows or frames might contain code associated with the speech
event “return to home page”. Upon processing the speech event or directive indicating
“return to home page”, the system must determine which of the open windows or frames
should be returned to its home page.

In some embodiments, when such a conflict is detected, the system
displays a dialog or other notification requesting user input or other input to select the
appropriate grammar or window which the corresponds to the speech event or directive

or other event.

19

WO 2004/109471 PCT/US2004/018109

In other embodiments, the system selects one grammar to use as a focus
grammar against which speech events and other directives or events will be processed,
and deactivates other grammars. Thus, there is no confusion processing speech events
and other directives or events that are contained in multiple active grammars. All of the
grammars associated with open windows or frames generally remain persistent in
memory, but only one grammar has the focus at any time.

For example, in some embodiments, the system selects the grammar
associated with the last window or frame loaded by the browser 115. In other
embodiments, Fhe system selects the grammar associated with the active browser 115
window. For example, in the Microsoft Windows operating system and other operating
systems with a graphical user interface, multiple windows may be open at the same time,
but these windows are generally presented as layers or otherwise cascaded with the top
window being the active window. In other embodiments, the system may require that
" frames do not contain duplicate speech events or directives or other events.

Systems and modules described herein may comprise software, firmware,
hardware, or any combination(s) of software, firmware, or hardware suitable f01" the
purposes described herein. Software and other modules may reside on servers,
workstations, personal computers, computerized tablets, PDAs, and other devices
suitable for the purposes described herein. Software and other modules may be
accessible via local memory, via a network, ;ria a browser or other application in an ASP
context, or via other means suitable for the purposes described herein. Data structures
described herein may comprise computer files, variables, programming arrays,

programming structures, or any electronic information storage schemes or methods, or

20

WO 2004/109471 PCT/US2004/018109

any combinations thereof, suitable for the purposes described herein. User interface
elements described herein may comprise elements from graphical user interfaces,
command line interfaces, and other interfaces suitable for the purposes described herein.
Screenshots presented and described herein can be displayed differently as known in the
art to input, access, change, manipulate, modify, alter, and work with information.
While the invention has been described and illustrated in connection with
preferred embodiments, many variations and modifications as will be evident to those
skilled in this art may be made without departing from the spirit and scope of the
invention, and the invention is thus not to be limited to the precise details of
methodology or construction set forth above as such variations and modification are

intended to.be included within the scope of the invention.

21

WO 2004/109471 PCT/US2004/018109

APPENDIX A

CONNECTION DATA STRUCTURE
>From SMLApp.java: The main module that handles thread management

//* ConnectionListManager.

/]* Collections provide binary search. This provides a hashtable lookup which believe will be
faster.

J/* Add/rem are a bit slower, but only one add/rem per set of voice pages. One lookup per page

//* Hashtables also makes explicit what our searches will be on (what our keys are).

static class ConnectionListManager { //* Akin to a java "factory". But
the impl is explicitly provided in the declr.
static class Connection {

Socket sockS;
OutputStream 0sO;
InputStream isI; //* Necessary ?
String sGrammar;
boolean bPrevMsgGram = false;
}
static Hashtable hGrammar = new Hashtable(); //* Grammar is the key
static Hashtable hSock =new Hashtable(); //* Socket is the key.

static LinkedList llConnections = new LinkedList();
synchronized static void Add(Connection C) throws ConnectionException {
Dbg printin("SMLApp", Dbg.CONN, "Add", "Connection: " + C +". C.sGrammar: " +
C.sGrammar + ". C.sockS: " + C.sockS);
IlIConnections.add(C);
if ((C.sGrammar == null) || (C.sockS == null)) throw new ConnectionException("Null
Grammar or Socket");
hGrammar.put(C.sGrammar, new Integer(llConnections.indexOf(C)));
hSock.put(C.sockS, new Integer(llConnections.indexOf(C)));

}

synchronized static void Update(Connection C, String sGrammar) throws ConnectionException

{

Dbg println("SMLApp", Dbg.CONN, "Update", "Connection: " + C +". C.sGrammar: "
+ C.sGrammar + ". sGrammar: " + sGrammar + ". C.sockS: " + C.sockS);

if ((sGrammar == null) || (C.sGrammar == null)) throw new
ConnectionException("Null Grammar");

if (1lConnections.indexOf(C) < 0) throw new ConnectionException("Invalid
Connection");

hGrammar.remove(C.sGrammar);

C.sGrammar = sGrammar;

hGrammar.put(C.sGrammar, new Integer(llConnections.indexOf(C)));

}

synchronized static void Rem(Socket sockS) {
Connection C = Lookup(sockS);
Rem(C);
}

22

WO 2004/109471 PCT/US2004/018109

synchronized static void Rem(Connection C) {
Dbg.println("SMLApp", Dbg.CONN, "Rem", "Connection: " + C+". C.sGrammar: " +
C.sGrammar +". C.sockS: " + C.sockS);
1IConnections.remove(C);
RecomputeHashTables();

}

static void RecomputeHashTables() {

hGrammar.clear();

hSock.clear();

Connection C = (Connection) llConnections.getFirst();

if (C == null) return;

int ilndex = 0;

hGrammar.put(C.sGrammar, new Inte ger(ilndex));

hSock.put(C.sockS, new Integer(ilndex)); ilndex++;

while (ilndex < 1iConnections.size()){
C = (Connection) IIConnections.get(ilndex);
hGrammar.put(C.sGrammar, new Integer(ilndex));
hSock.put(C.sockS, new Integer(ilndex));
iIndex-++;

}

synchronized static Connection Lookup(String sGrammar) {
int ilndex = -1;
try {
Dbg.printin("SMLApp", Dbg.CONN, "Lookup", "sGrammar: " + sGrammar);
Object 0Tmp = hGrammar.get(sGrammar);
if (0Tmp == null) return null;

iIndex = ((Integer) oTmp).intValue();
return (Connection) 1IConnections.get(ilndex);

3
catch(IndexOutOfBoundsException e) {
Dbg.printin("SMLApp", Dbg.ERR, "Lookup(sGrammar)",
"IndexOutOfBoundsException: ilndex" + ilndex +".
sGrammar: " + sGrammar);
return null;

}
}

synchronized static Connection Lookup(Socket sockS) {

int ilndex = -1;

try {
Dbg.printin("SMLApp", Dbg.CONN, "Lookup", "sockS" + sockS);
Object oTmp = hSock.get(sockS);
if (0Tmp == null) return null;
iIndex = ((Integer) oTmp).intValue();
return (Connection) liConnections.get(ilndex);

}
catch(IndexOutOfBoundsException €) {
Dbg.println("SMLApp", Dbg.ERR, "ConnectionListManager:Lookup(sockS)",
"IndexOutOfBoundsException: ilndex" + ilndex + ". sockS: "
+ sockS); ‘
return null;

23

WO 2004/109471 PCT/US2004/018109

}

public static class ConnectionException extends Exception {
public ConnectionException(String msg) {

super(msg);
Dbg.println("SMLApp", Dbg.ERR, "ComnectionException", msg);
3}
static ConnectionListManager CLM;
static ConnectionListManager.Connection connGDisplay = null; //* Connection

based on gDisplay grammar lookup.

GRAMMAR DATA STRUCTURE
>From SpeechlO.java:

public class Rule {

String sTag = null;

String sJSGF =null ;

String sJSML = null ;

String sURL = null; //* URL to call when this rule triggered

String SURLSep =null ;

String SURLExt =null ;

int iSpeakJSGF = 0; //* Create speakable phrase from (depth - (iSpeakJSGF-1)) level JSGF.

}
public class EGBlock { //* Embedded Grammar JSGF rules
int iNumRules = 0; //* Number of rules in this block

Rule arRule[] = new Rule[iMaxNumRule]; //* Linked list later...

String sISML = null ;

String sGrammar;

String sEntryPhrase = null;

boolean bDefaultSpeak = true; //* Speak the JSML in this block w/o prompting.
//* false if jsgf present in this block.

public class EGBlockSet {
int ilncReal;
String sGrammar;
EGBIlock[] aEGBlock;

}

static Hashtable hGrammar = new Hashtable(); //* Grammar is the key
static LinkedList IIEGBlockSets = new LinkedList();

synchronized static void Add(EGBlockSet EGBS) throws SpeechIOException {
Dbg, println("SpeechlO", Dbg. GRAMMAR, "Add", "EGBlockSet: " +EGBS +".
EGBS.sGrammar: " + EGBS.sGrammar);
NIEGBlockSets.add(EGBS);
if (EGBS.sGrammar == null) throw new SpeechIOException("Null Grammar");
hGrammar.put(EGBS.sGrammar, new Integer(IIEGBlockSets.indexOf(EGBS)));

}

24

WO 2004/109471 PCT/US2004/018109

synchronized static void Rem(String sGrammar) {
EGBlockSet EGBS = Lookup(sGrammar);
Rem(EGBS);
}

synchronized static void Rem(EGBlockSet EGBS) {
Dbg println("SpeechIO", Dbg.GRAMMAR, "Rem", "EGBlockSet: " + EGBS +".
EGBS.sGrammar: " + EGBS.sGrammar);
NIEGBlockSets.remove(EGBS);
RecomputeHashTables();

}

static void RecomputeHashTables() {

try {

hGrammar.clear();

EGBIlockSet EGBS = (EGBlockSet) IEGBlockSets.getFirst();

if (EGBS == null) return;

int ilndex = 0;

hGrammar.put(EGBS.sGrammar, new Integer(ilndex));

ilndex++;

while (ilndex < IIEGBlockSets.size()){
EGBS = (EGBlockSet) IIEGBlockSets.get(ilndex);
hGrammar.put(EGBS.sGrammar, new Integer(ilndex));
iIndex-++;

}
} catch (java.util NoSuchElementException E) {}
}

synchronized static EGBlockSet[] toArray() {
EGBIlockSet[] aEGBS = new EGBlockSet[1];
aBGBS = (EGBIlockSet[]) IEGBlockSets.toArray(aEGBS);
return aEGBS;

}

synchronized static EGBlockSet Lookup(Siring sGrammar) {
int ilndex = -1;
try {
Dbg.printin("SpeechlO", Dbg. GRAMMAR, "Lookup", "sGrammar: " + sGrammar);
Object oTmp = hGrammar.get(sGrammar);
if (0Tmp == null) return null;

iIndex = ((Integer) oTmp).intValue();
return (EGBlockSet) lIEGBlockSets.get(ilndex);

}

catch(IndexOutOfBoundsException €) {
Dbg println("SpeechIO", Dbg.ERR, "Lookup(sGrammar)",

"IndexOutOfBoundsException: ilndex" + ilndex + ". sGrammar: " +
sGrammar);
return null;
}
}

public static class SpeechlOException extends Exception {

25

WO 2004/109471 PCT/US2004/018109

public SpeechlOException(String msg) {
super(msg); .
Dbg.printin("SpeechIO", Dbg.ERR, "SpeechIOException"”, msg);

3}

26

WO 2004/109471 PCT/US2004/018109

WHAT IS CLAIMED IS:

1. A method for processing a voice request for data specifying a web
page, the request including a rule-based grammar statement, the method comprising:

identifying a grammar associated with the rule-based grammar statement;

determining whether a first connection identified as being associated with
the grammar is specified in a data structure identifying one or more connections; and

processing the request in at least a portion of a window capable of
presenting the web page and associated with the first connection if a first connection
identified as being associated with the grammar is specified in the data structure.

2. The method of claim 1, wherein the request comprises a request
including a rule-based grammar statement having a phrase portion, a command portion,
and a tag portion.

3. The method of claim 1, the method further comprising processing the
request in at least a portion of a new window capable of presenting the web page and
associated with a second connection if a first connection identified as being associated
with the grammar is not specified in the data structure.

4. The method of claim 3, the method further comprising adding the
second connection to the data structure and associating the second connection with the
grammar if the second connection is not specified in the data structure.

5. The method of claim 3, the method further comprising associating the
new window with the connection if the connection is not specified in the data structure.

6. The method of claim 5, wherein the new window comprises a window

selected according to a user preference.

27

WO 2004/109471 PCT/US2004/018109

7. The method of claim 5, wherein the new window comprises a last
window loaded by a computing device associated with the second connection.

8. The method of claim 5, wherein the new window comprises an active
window at a computing device associated with the second connection.

9. The method of claim 1, wherein identifying a grammar comprises
identifying a grammar according to a user preference.

10. The method of claim 1, wherein identifying a grammar comprises
identifying a grammar associated with a last window loaded by a computing device
associated with a connection.

11. The method of claim 1, wherein identifying a grammar comprises
identifying a grammar associated with an active window at a computing device
associated with a connection.

12. The method of claim 1, wherein the window comprises a browser
window.

13. The method of claim 1, wherein at least a portion of the window
comprises a frame.

14. The method of claim 1, wherein the request comprises a request for
complex data.

15. The method of claim 14, wherein the request comprises a request for
complex data embedded in a web page.

16. The method of claim 14, the method further comprising examining a

header or a footer associated with the request to determine a type of data requested.

28

WO 2004/109471 PCT/US2004/018109

17. The method of claim 16, wherein examining a header ér a footer
comprises examining a header or a footer specifying a mime type to determine a type of
data requested. |

18. The method of claim 14, the method further comprising examining a
filename or a file extension associated with the request to determine a type of data
requested.

19. The method of claim 1, the method further comprising removing
identification of a connection from the data structure if a window associated with that
connection is closed.

20. A system for processing a voice request for data specifying a web
page, the request including a rule-based grammar statement, the system comprising:

means for identifying a grammar associated with the rule-based grammar
statement;

means for determining whether a first connection identified as being
associated with the grammar is specified in a data structure identifying one or more
connections; and

means for processing the request in at least a portion of a window capable
of presenting the web page and associated with the first connection if a first connection
identified as being associated with the grammar is specified in the data structure.

21. The system of claim 20, wherein the request including a rule-based
grammar statement comprises a request including a rule-based grammar statement

having a phrase portion, a command portion, and a tag portion.

29

WO 2004/109471 PCT/US2004/018109

22. The system of claim 20, the system further comprising means for
processing the request in at least a portion of a new window capable of presenting the
web page and associated with a second connection if a first connection identified as
being associated with the grammar is not specified in the data structure.

23. The system of claim 22, the system further comprising means for
adding the second connection to the data structure and associating the second connection
with the grammar if the second connection is not specified in the data structure.

24. The system of claim 22, the system further comprising means for
associating the new window with the connection if the connection is not specified in the
data structure.

25. The system of claim 20, wherein the request for data specifying a
web page comprises a request for complex data.

26. A computer usable medium or media storing program code which,
when executed on one or more computerized devices, causes the one or more
computerized devices to execute a method for processing a voice request for data
specifying a web page, the request including a rule-based grammar statement, the method
comprising:

identifying a grammar associated with the rule-based grammar statement;

determining whether a first connection identified as being associated with
the grammar is specified in a data structure identifying one or more connections; and

processing the request in at least a portion of a window capable of
presenting the web page and associated with the first connection if a first connection

identified as being associated with the grammar is specified in the data structure.

30

WO 2004/109471 PCT/US2004/018109

27. The computer usable medium or media of claim 26, wherein the
request including a rule-based grammar statement comprises a request including a rule-
based grammar statement having a phrase portion, a command portion, and a tag portion.

28. The computer usable medium or media of claim 26, the method
further comprising processing the request in at least a portion of a new window capable
of presenting the web page and associated with a second connection if a first connection
identified as being associated with the grammar is not specified in the data structure.

29. The computer usable medium or media of claim 28, the method
further comprising adding the second connection to the data structure and associating the
second connection with the grammar if the second connection is not specified in the data
structure.

30. The computer usable medium or media of claim 28, the method
further comprising associating the new window with the connection if the connection is
not specified in the data structure.

31. The computer usable medium or media of claim 26, wherein the
request for data specifying a web page comprises a request for complex data.

32. A method for processing a voice request for data specifying a web
page, the method comprising:

receiving, from a connection, data specifying a web page, the data
including a rule-based grammar statement having a phrase portion, a command portion,
and a tag portion;

determining whether the connection is specified in a data structure

identifying one or more connections;

31

WO 2004/109471 PCT/US2004/018109

selecting a grammar associated with the connection from a data structure
identifying one or more grammars; and

processing the rule-based grammar statement using the selected grammar
in at least a portion of a first window capable of presenting the web page and associated
with thé connection if the connection is specified in the data structure identifying one or
more connections.

33. The method of claim 32, the method further comprising selecting a
new grammar associated with the connection from a data structure specifying one or
more grammars and processing the rule-based grammar statement using the selected
grammar in at least a portion of a new window associated with the connection if the
connection is not specified in the data structure specifying one or more connections.

34. The method of claim 33, the method further comprising adding the
connection to the data structure specifying one or more connections and associating the
comnection with the new grammar in the data structure specifying one or more
grammars.

35. A method for processing a voice request for data specifying a web
page, the method comprising:

receiving a request for data specifying a web page, the request including a
rule-based grammar statement having a phrase portion, a command portion, and a tag
portion;

determining whether a window is associated with the request; and

processing the request in at least a portion of the window associated with

the request if a window is associated with the request.

32

WO 2004/109471 PCT/US2004/018109

36. The method of claim 35, the method further comprising processing
the rule-based grammar statement in at least a portion of a new window if a window is
not associated with the request.

37. The method of claim 36, the method further comprising identifying a
connection associated with the request and associating the connection with the new

window.

33

WO 2004/109471

L — 135
HSML processor speech / 100
engine
thread speech
module "1 module M ’)45
<« APl | 115
| \ -
; \ browser
dient _,5 1 _ N30
device 120 A

proxy server

r

1/2

| \
thread speech | speech //135
module module " | | engine
HSML processor
N
Y client
device
100
browser

PCT/US2004/018109

-
-
o

web
server

Fig. 1

WO 2004/109471

examine
data

150
/‘

PCT/US2004/018109

request
on existing
connection

Y

170
determine
connection
A
175
establish new J
connection
with server
4
180
clean up —/
4
185
process /
action

2/2

pass to server
and maintain
connection

]

add

connection to list

A

associate
grammar
with connection

Y

process
action

200

Fig. 2

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

