(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(10) International Publication Number

WO 2005/069823 A2

(51) International Patent Classification: Not classified GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
7ZW), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
(21) International Application Number: European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, F1,
PCT/US2005/001098 FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,
SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,

GQ, GW, ML, MR, NE, SN, TD, TG).

(43) International Publication Date
4 August 2005 (04.08.2005)

(22) International Filing Date: 11 January 2005 (11.01.2005)

Declarations under Rule 4.17:

(25) Filing Language: English — 4540 applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii)) for the following designations AE,
(26) Publication Language: English AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ,

CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS,

(30) Priority Data:
JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,

60/536,776 15 January 2004 (15.01.2004) US
MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM,
PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY,
(71) Applicant and TJ, ™, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA,
(72) Inventor: SONG, Jun [US/US]; 9 Briarbrook Drive, Bri- ZM, ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ,
arcliff Manor, NY 10510 (US). NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM,
AZ, BY, KG, KZ, MD, RU, TJ], TM), European patent (AT,
(81) Designated States (unless otherwise indicated, for every BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR,
kind of national protection available): AE, AG, AL, AM, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK,
AT, AU, AZ,BA, BB, BG, BR, BW,BY, BZ, CA, CH, CN, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GW, ML, MR, NE, SN, TD, TG)
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, — of inventorship (Rule 4.17(iv)) for US only

KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, Published:

PH, PL, PT,RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, — without international search report and to be republished
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, upon receipt of that report
7ZW.

For two-letter codes and other abbreviations, refer to the "Guid-
(84) Designated States (unless otherwise indicated, for every — ance Notes on Codes and Abbreviations” appearing at the begin-
kind of regional protection available): ARIPO (BW, GH, ning of each regular issue of the PCT Gazette.

(54) Title: CENTRALIZED TRANSACTIONAL SECURITY AUDIT FOR ENTERPRISE SYSTEMS

(57) Abstract: This invention provides a method to achieve centralized security audit for an authentication and authorization and
access control system. At the transaction entry point, a transaction ID is created and associated with an audit-request and audit-
response object. The entry point can be in a firewall (401), IDS (402), Proxy Server (403), Web Server (404) and Application Server
(405). The implementation can be in hardware or software. As the request is passed downstream, a logging event occurring at any
& desired audit point will be added into the audit-request object during the downstream or audit-response object during the upstream.
m The accumulated logging event data will then be output to a persistent storage device (203) at the central location, which can be
& anywhere between the entry point to the end point of the transaction. This request-response based transactional auditing method
& is then applied to an Identity Management System in order to provide centralized secure audit for authentication, authorization,

access control and single sign-on, multi-domain and multi-tiered server systems. Those multi-tiered enterprise systems can include
O firewall (401), IDS (402), proxy server (403), web server (404), application server (405), Web Services (414), MQ server (406) and

mainframe SERVER (407). This audit method can also be applied to pass requests over a system that needs to redirect the requests
g over multiple external networks such as the Internet.

69823 A2 | IV 0 A0 R 0 A R

10

15

20

25

30

WO 2005/069823 ‘ PCT/US2005/001098

TITLE
CENTRALIZED TRANSACTIONAL SECURITY AUDIT FOR ENTERPRISE
| SYSTEMS
REFERENCE TO A SEQUENCE LISTING, A TABLE, OR A COMPUTER
PROGRAM LISTING APPENDIX

[0001] A computer program listing is attached as Appendix l.

] BACKGROUND OF THE INVENTION

[0002] This invention relates to the art of centralized auditing of
authentication, authorization and access control procedures for client computers
to access networked servers and services. More particularly, this invention
relates to bentraﬁzed auditing in the technologies of firewalls, intrusion detection
systems (IDSs), intrusion prevention systems (IPSs), proxy servers, and multi-
server, multi-domain, single-sign-on systems. '

[0003] As the impact of the Internet continues to alter the economic
landscape, companies are experiencing a fundamental shift in how they do
business. Business processes involve complex interactions between companies
and their customers, suppliers, partners and employees. Businesses also
interact with vendors and suppliers in placing orders and obtaining payments.
Businesses must also make a wide array of information and services available
to their employees, generating further interactions. One of the key business
requirements is to be able to audit the activities of a particular customer to
whom the multiple services are provided by service providers. Those service
providers can be a single organization or multiple organizations, and those
services can be interconnected through both Internet and intranet. The service
providers and the serviées then define a system held together by a computer
network.

[0004] Protection of a system may have many components. One of
these, authentication, is the process of verifying the identity of a party
requesting information from or sending information to the system. Authentication
is generally accomplished through the use of passwords.

[0005] Authorization determines whether a user has privileges
(viewing, modifying, etc.) with regard to a resource of the system. For instance,
a system administrator can determine which users have access to a system and
what privileges each user has within the system (i.e., access to certain files, a

1

10

15

20

25

30

WO 2005/069823 PCT/US2005/001098

particular service, etc.). Authorization is usually performed after authentication.
In other words, if a user requests access to a system resource, the system will
first verify or authenticate the identity of the user and then determine whether
that user has the right to access the system’s resource. Access control is the
mechanism to grant or deny the requestor access to the resources requested
based on the results of authentication and authorization.

[0006] Audit logs are records of the sequential activities of a user that
constitute trails of that user’s activities. These logs also provide protection by
enforcing accountability, i.e., by allowing an auditor to trace a user's activities,
which are either related to a resource or actually performed on a resource. Audit
trails themselves must be secure from unauthorized alterations; for instance,
unauthorized users cannot be allowed to remove evidence of their activities
from an audit log. Auditing requests and actions generates a huge amount of
information; therefore, any system generating audit trails must have the
capability to store the information and process it efficiently.

[0007] As service systems become increasingly complex, a service is
often required to access multiple sub-services across multiple layers and
networks. Thus a centralized audit is required to log all the activities of a
particular ﬁser during a service transaction and archive the log at a central
location for processing that information in a reliable and efficient manner.

[0008] The prior art teaches systems that log access system events.
See for example, US publication 20020116642, filed by Joshi et al, and
International application WO 0205487 filed by Oblix, Inc. When an access
system event occurs, a log entry is created for that access system event.
Information from an identity profile is stored in the log entry. The identity profile
pertains to a first user. The first user is the entity that caused or was involved
with the access system event. In one embodiment, the access system includes
identity management and access management functionality.

[0009] However, the above-described process is not transactional and
request-response based. The disadvantage of using this method is that it relies
too heavily on LDAP (lightweight directory access protocol) or databases for
storing the log entry at the logging point. When a transaction requires many
layers of services, which can be in multiple tiers or even require access to
another server cluster across the Internet, the accessibility of LDAP or

10

15

20

25

30

WO 2005/069823 PCT/US2005/001098

databases can be too limiting. On the other hand, frequently accessing
databases for writing consumes significant resources and generally degrades
the performance of the service significantly. Also, this method cannot be used
from an extra-net to access the intra-net, since the access of internal database
resources is usually not allowed at by firewall.. Another drawback of this method
is that it is fairly complicated to implement.

[0010] There is other method and system in the prior art for
authenticating and auditing access by a user to non-natively secured
applications. This system is described in US patent 5748890 issued to Goldberg
et al. However, this method is not transactional and request-response based
and the underlying authentication model is tied to native authentication system.
This method cannot provide centralized auditing for multi-tier server systems
and across the Internet.

[0011] The prior art also teaches the establishment of log files to
create an audit trail, but this method is not useful in single sign-on and multi-
tiered service systems. See US patent 5,864,665, issued to Tran. The method
also does not include a transaction-based, central auditing capability.

[0012] There is also a single-sign-on process, disclosed in US
publication 2002/0099671 filed by Mastin Crosbie et al, for a client who wishes
to access multiple servers in an environment where the servers employ the
Kerberos authentication process. However, there is no audit trail mechanism for
this process.

[00131 The prior art further includes Internet message headers that
include a message identifier and a message handling trace header for message
handling logging purposes. The standard format for message headers is
explained in “Standard for the Format of ARPA Internet Text Messages,” by
David H Crocker, Department of Electrical Engineering, University of Delaware,
which is available at www.freesoft.org/CIE/RFC/822/index.htm. However, these

message headers are not suited for security audit trail or use over firewalls, DS,

or proxy servers for security audit of transaction-based enterprise systems.
Moreover, it is not clear how these work with an audit-request and audit-
response structure for holding the audit information.

[0014] What is needed is to have a method for keeping track of the
audit trail right from the entry point of the network — even at the beginning of the

3

10

15

20

25

30

WO 2005/069823 PCT/US2005/001098

nrewail — ai e way 1o the point where the response is returned. The method
should be implementable using hardware or software. Also, it should be
transaction-based since multiple operations and interaction with servers,
services and networks can be associated with the request. The method should
have the capability of keeping track of all the events, user activities, including
exceptions, errors and the audit logs from firewall, IDS, proxy server, web
server, application server and workflow. Furthermore, this method should
include the current existing authentication, authorization methods to provide a
centralized security audit that is specific to a particular user, and should be
simple and have minimal impact on the performance of the overall system. This
method should be applicable to as many types of existing systems as possible,
including firewall, intrusion detection systems, proxy server, web server,
application server, messaging services, workflow and mainframe servers over
wired or wireless networks.

[0015] The present invention herein described will present a simple
and straightforward solution to meet the above requirements.

SUMMARY OF THE INVENTION

According to its major aspects and briefly recited, the present invention is
a computer network security system that provides authentication, authorization,
access control and centralized audit for a network. In general, the present
system verifies the user’s identity, grants access rights to the identified user,
allows (or denies) the access request by the access controller and provides a
centralized audit for all transactions in order to protect the security of the
resources available to a network. The system is a request-response based
transactional auditing model that provides centralized security auditing over a
processing device or sequence of processing devices using the concepts
defined in the following steps. At the transaction entry point, a unique
Transaction ID, an audit-request object and an audit-response object are
created. The Transaction ID is added into the audit-request object, which is
next embedded with the incoming request in compliance with the
communication protocol that the incoming request is using downstream during
the request process. The audit-response object should also carry the
Transaction ID. The audit-response object is also embedded with the outgoing
response in compliance with the protocol upstream during the response

4

10

15

20

25

30

WO 2005/069823 . PCT/US2005/001098

process, whereby the transaction id, audit-request object and audit-response
object can be used to identify the transaction and log the events during the
request process and response process at any point of the transaction to provide
centralized security audit. There is thus no way to differentiate the logged
events to which it would belong to without this Transaction ID.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] The following detailed description when taken in conjunction
with the figures presented herein provides a complete disciosure of the
invention. ‘

[0017] FIG 1 shows the overall architecture of the computer network
security system, according to a preferred embodiment of the present invention.

[0018] FIG 2 shows the Computer Block Diagram of the computer
network security system, according to a preferred embodiment of the present
invention.

[0019] FIG 3 shows the Firewall Block Diagram of the computer
network security system, according to a preferred embodiment of the present
invention.

[0020] FIG 4 shows the Transactional Audit System of the computer
network security system, according to a preferred embodiment of the present
invention.

[0021] FIG 5 shows the Security Proxy Server High Level View of the
computer network security system, according to a preferred embodiment of the
present invention.

[0022] FIG 6 shows the Authentication Server High Level View of the
computer network security system, according to a preferred embodiment of the
present invention.

[0023] FIG 7 shows the Authentication System of the computer
network security system, according to a preferred embodiment of the present
invention.

[0024] FIG 8 shows the authentication detailed flowchart for Security
Proxy Server of the computer network security system, according to a preferred

embodiment of the present invention.

10

15

20

25

30

WO 2005/069823 PCT/US2005/001098

[0025] FIG 9 shows the authentication detailed flowchart for
Authentication Server of the computer network security system, according to a
preferred embodiment of the present invention.

[0026] FIG 10 shows the User Registry Schema of the computer
network security system, according to a preferred embodiment of the present
invention.

[0027] FIG 11 shows the Authorization System of the computer
network security system, according to a preferred embodiment of the present
invention.

[0028] FIG 12 shows the Web Service protection scenario by using
customizable plug-in module of the computer network security system,

according to a preferred embodiment of the present invention.

DETAILED ESCRIPTION OF PREFERRED EMBODIMENTS

[0029] FIG 1 depicts a security system that provides authentication,
authorization, access control and centralized auditing for a network. In general,
the present system verifies the user’s identity, grants the identity’s access rights,
allows or denies the ‘access request by the access controller and provides a
centralized audit for all transactions to provide security for the resources
available within a network or networks. The transaction-based centralized audit
portion of the present system (hereinafter “Transactional Audit System”)
manages the centralized logs for each transaction. The Transactional Audit
System is embedded in a firewall 401 (FIG 4), IDS 402 (FIG 4), security proxy
server 403 (FIG 4), web server 404 (FIG 4), application server 405 (FIG 4),
Security Proxy Server 413, Web Services 414, MQ server 406 (FIG 4), or
mainframe server 407 (FIG 4). The authentication portion of the present system
(hereinafter “the Authentication System”) manages an end user authentication
process. The Authentication System is incorporated into the Security Proxy
Server 105, the Authentication Server 107 and the User Registry 109, while the
authorization portion of the system (hereinafter “the Authorization System”)
provides security for resources across one or more web servers, application
servers, web services, workflows (not shown), message queue (MQ) servers
and mainframe server. The Authorization System is incorporated into Security
Proxy Server 105 and embedded in the web services, application servers, web

10

15

20

25

30

WO 2005/069823 ’ PCT/US2005/001098

services and mainframe. A key feature of one embodiment of this system is to
provide centralized auditing via a request response based transactional audit
mechanism disclosed by this invention (FIG 4). Another key feature of the
system is that the Transaction Audit System has been incorporated with a
Kerberos Authentication ana Authorization model to provide a multi-server,
multi-domain single sign-on for the enterprise. The Kerberos protocol is well
known to those skilled in the art of Internet security; version 5 is the default for
network authentication for Windows 2000 by Microsoft Corporation, for example.
The Transactional Audit System is further employed to provide security for web
services, workflow, MQ Server and Mainframe Services. Other features include
the special handling of the Web Service Security and a plug-in module
mechanism at the Security Proxy Server 105 to allow business customization of
the Security Proxy Server 105.

[0030} FIG 1 is a block diagram depicting one embodiment for
deploying the present system. FIG. 1 shows web browsers 101 and Client
Applications 102 accessing Security Proxy Server 105 via Internet or Intranet
103. In one embodiment, web browser 101 is standard web browser known in
the art and adapted to run on any suitable type of computer. The transmission
protocol shown in the figure can be either HTTP or HTTPS. Note that HTTP can
only be used in the situation wherein only limited security is required since there
is no confidentiality guaranteed during the network transmission. To reach the
Security Proxy Server 105, a request needs to pass through the first tier firewall
104 and an intrusion detection system (IDS) 115. For a request to reach the
Web Server 108, it has to pass the second firewall 106. The Authentication
Server 107 is also located behind the second firewall 106 to secure the network
against unauthorized access to crucial information, like user profile and access
policies. Web Server 108 is a standard web server, well known in the art, and
provides an end user with access to various resources via Internet 103. Web
Server 108 contains web resources.

[0031] FIG 2 illustrates a high-level block diagram of a computer
system that can be used for the components of the present invention. This
computer system can be implemented as a hardware device to host the firewall,
IDS, proxy server, web server, and application server mentioned in this
invention. Although the firewall and IDS can also be built on dedicated

7

10

15

20

25

30

WO 2005/069823 PCT/US2005/001098

hardware, the present invention will be demonstrated using a general-purpose
computer. The computer system of FIG 2 includes a processor unit 202 and
main memory 201. Processor unit 202 may contain a single microprocessor, or
may contain a plurality of microprocessors for configuring the computer system
as a multi-processor system. Main memory 201 stores, in part, instructions and
data for execution by processor unit 202. If the system of the present invention
is wholly or partially implemented in software, main memory 201 can store the
executable code when in operation. Main memory 201 may include banks of
dynamic random access memory (DRAM) as well as high-speed cache
memory.

[0032] The system of FIG 2 further includes a mass storage device
203, peripheral device(s) 204, user input device(s) 205, portable storage
medium drive(s) 207, a graphics subsystem 208 and an output display 209. For
purposes of simplicity, the components shown in FIG 2 are depicted as being
connected via a single bus 210. However, the components may be connected
through one or more data transport means. For example, processor unit 202
and main memory 201 maybe connected via a local microprocessor bus, and
the, mass storage device 203, peripheral device(s) 204, portable storage
medium drive(s) 207, and graphics subsystem 208 may be connected via one or
more input/output (I/O) buses. Mass storage device 203, which may be
implemented with a magnetic disk drive or an optical disk drive, is a non-volatile
storage device for storing data and instructions for use by processor unit 202. In
one embodiment, mass storage device 203 stores the system software for
implementing the present invention for purposes of loading to main memory
201.

[0033] Portable storage medium drive 207 operates in conjunction
with a portable non-volatile storage medium, such as a floppy disk, to input and
output data and code to and from the computer system of FIG 2. In a preferred
embodiment, the system software for implementing the present invention is
stored on such a portable medium, and is input to the computer system via the
portable storage medium drive 207. One or more peripheral devices 204 may
include any type of computer support device, such as an input/output (I/O)
interface, to add functionality to the computer system. For example, peripheral

10

15

20

25

30

WO 2005/069823 PCT/US2005/001098

device(s) 204 may include a network interface for connecting the computer
system fo a network, a modem, a router, etc.

[0034] User input device(s) 206 provides a portion of a user interface.
User input device(s) 206 may include an alpha-numeric keypad for inputting
alpha-numeric and other information, or a pointing device, such as a mouse, a
trackball, stylus, or cursor direction keys. In order to display textual and
graphical information, the computer system of FIG 2 includes graphics
subsystem 208 and output display 209. Output display 209 may include a
cathode ray tube (CRT) display, liquid crystal display (LCD) or other suitable
display device. Graphics subsystem 208 receives textual and graphical
information, and processes the information for output to display 209.
Additionally, the system of FIG 2 includes output devices 209. Examples of
suitable output devices include speakers, printers, network interfaces, and
monitors.

[0035] The components contained in the computer system of FIG 2
are those typically found in computer systems suitable for use with the present
invention, and are intended to represent a broad category of such computer
components that are well known in the art. Thus, the computer system of FIG 2
can be configured as a firewall, an intrusion detection system, a proxy server, a
personal computer, a workstation, a server, a minicomputer, or any other
computing device. The computer can also include different bus configurations,
networked platforms, multi-processor piatforms, etc. Various operating systems
can be used including Unix, Linux, Windows, Macintosh OS, Paim OS, and
other suitable operating systems.

[0036] FIG 3 depicts typical firewall. A firewall is a computer, router, or
some other communications device that controls data flow between networks.
Generally, a firewall is a first-line defense against attacks from the outside
world. A firewall can be hardware-based or software-based. A hardware-based
firewall is a special router with additional filter and management capabilities. A
software-based firewall runs on top of the operating system and turns a
computer into a firewall. Fig 3 depicts a typical firewall with components, such
as network policy 301, advanced authentication mechanisms 302, packet
filtering 303 and application gateways 304.

10

15

20

25

30

WO 2005/069823 PCT/US2005/001098

[0037] For network policy 301, there are two levels of network policy
that directly influence the design, installation and use of a firewall system. The
higher-level policy is an issue-specific, network access policy that defines those
services that will be aflowed or explicitly denied access to the restricted network,
how these services will be used, and the conditions for exceptions to this policy.
The lower-level policy describes how the firewall will actually go about restricting
the access and filtering the services that were defined in the higher-level policy.
The following sections describe these policies in brief.

[0038] Advanced authentication 302 measures such as smart cards,
authentication tokens, biometrics, and software-based mechanisms are
designed to counter the weaknesses of traditional passwords. While the
authentication fechniques vary, they are similar in that an attacker who has
monitored a connection cannot reuse the passwords generated by advanced
authentication devices. Given the inherent problems with passwords on the
internet, an Internet-accessible firewall that does not use or does not contain
the hooks to use advanced authentication makes litile sense.

[0039] 1P packet filtering 303 is done usually using a packet fiftering
router designed for filtering packets of data as they pass between the router's
interfaces. A packet filtering router usually can filter IP data packets based on
some or all of the following fields:

source |P address,
destination IP address,
TCP/UDP source port, and
TCP/UDP destination port.

[0040] To counter some of the weaknesses associated with packet
filtering routers, firewalls need to use software applications to forward data while
providing filier connections for services such as TELNET and FTP. Such an
application is referred to as a proxy service, while the host running the proxy
service is referred to as an application gateway. Application gateways 304 and
packet filtering routers can be combined to provide higher levels of security and
flexibility than if either were used alone.

[0041] An “intrusion” is an incident caused by someone (such as a
"hacker" or "cracker") attempting to break into or misuse a system. The word
"misuse" is broad, and can reflect something as severe as stealing confidential

10

10

15

20

25

30

WO 2005/069823 PCT/US2005/001098

data or something minor such as misusing your email system for spam. An

. "Intrusion Detection System (IDS)" is a system for detecting such intrusions.

[0042] An Intrusion Detection Systems (IDS) monitors packets on the
network wire and attempts to discover if a hacker/cracker is attempting to break
into a system (or cause a denial-of-service attack). A typical example of IDS is
a system that watches for large number of TCP connection requests (SYN) to
many different ports on a target machine, thus discovering if someone is
attempting a TCP port scan. A Network IDS may run either on the target
machine that watches its own traffic (usually integrated with the stack and
services themselves), or on an independent machine vicariously watching all
network traffic (hub, router, probe). Note that a "network™ IDS may monitor many
machines, whereas the others monitor only a single machine (the one they are
installed on).

[0043] Just like firewall, IDS is a computer, router, or some other
communications device that controls data flow between networks. IDS can be
hardware-based or software-based. In the present invention, a softiware based
IDS is used to demonstrate a Transactional Audit System. However, this should
not limit the scope of this invention.

[0044] -As shown in FIG 1, Application Server 116 can be a standard
J2EE Application Server, well known in the art, and provides the service
specified in J2EE. It can also be other types of application servers and not
specified by J2EE. The communication between the Web Server 108 and
Application Server 116 can be secure socket layer (SSL) enabled or disabled.
The Application Server 116 can host multiple applications and muitiple web
services. A web service is a special type of web application under J2EE. A
request can request services provided from other networks 114 including the
Internet 114.

[0045] MQ Server 112 is a standard Message Queue Server known in
the art and provides the message queue services. The communication between
the Application Server 108 and MQ Server 112 can also be SSL enabled or
disabled. The messages can be encrypted and decrypted based on the SSL
protocol using a software application.

[0046] The Mainframe Server 113 is a standard Mainframe Server

known in the art. Mainframe server can be accessed from the MQ Server 112

11

10

15

20

25

30

WO 2005/069823 PCT/US2005/001098

and also from Application Server 116 via HTTP or HTTPS if an Application
Server, like WEBSPHERE manufactured by IBM, is installed on Mainframe
Server 113.

[0047] The Authentication Server 107 is a gateway for gaining access
to User Registry 109 to authenticate a user or an identity. Also, Authentication
Server 107 controls the access polices that need to be loaded to Security Proxy
Server 105 or any other resources that need to be authorized for a particular
policy defined for that resource. For example, those resources can include Web
Server 106, Application Server 116, Web Services 116 and Mainframe Server
113. Authentication Server 107 will also provide the Kerberos ticket-granting
token (TGT) that contains a user profile and access token to provide single sign-
on access across the enterprise.

[0048] The User Registry 109 includes an LDAP Server 110 or
Remote Database Server (RMDB) 111. User Registry 109 contains the user
profile and the available roles. Each user may be associated with one or more
roles for resource access. |

[0049] The system of FIG 1 is scalable in that there can be many
Security Proxy Servers 105, many Authentication Servers 107, and many Web
Servers 108. In one preferred embodiment, Directory Server 110 is an LDAP
Directory Server and communicates with other servers/modules using LDAP
over SSL or other secured protocol. In other embodiments, RMDB 111 can
implement other protocols or can be other types of data repositories.

[0050] FIG 4 depicts the Transactional Audit System. This
embodiment is the fundamental part of this invention. The goal of the
Transactional Audit System is to solve the problem facing the network security
industry today, which is the inability to centralize auditing of all the activities of
an identity assaciated with an enterprise level of transaction. The activities the
Transactional Audit System can start the audit trail at the entry point when the
identity’s request enters the network, for example, at the firewall. {t will be able
to audit all the events happening during the transaction, either from downstream
or upstream. With this Transactional Audit System, organizations will be able to
keep track of all the access activities that happen in a multi-tiered enterprise
environment and log them at a single location. This system will minimize the

12

10

15

20

25

30

WO 2005/069823 PCT/US2005/001098

overall cost of performing a similar function by current security systems and
provide better performance.

[0051] Network technology is made possible by network
communication protocols. There are elaborate protocols for communication over
the Internet. A protocol is simply a detailed specification of how communication
is to proceed. For two processing devices to communicate, they must both be
using the same protocol. The most basic protocols on the Internet are the
Internet Protocol (IP), which specifies how data is to be physically transmitted
from one computer to another, and the Transmission Control Protocol (TCP),
which ensures that data sent using IP is received in its entirety and without
error. These two protocols, which are referred to collectively as TCP/IP, provide
the foundation for communication. Other protocols use TCP/IP to send specific
types of information such as files and electronic mail.

[0052] Before getting into the detailed description of the Transactional
Audit System, a few concepts require definitions.

[0053] A transaction is a group of sequential operations that will be
invoked by one top-level operation. For example, an HTTP request for account
transfer may invoke a group of sequential operations, such as database access
operations, message queue operations, mainframe operations or other request
over the Internet across other network or networks which contains its own
firewall, IDS, IDP, proxy server, web server, MQ, application server... or
mainframe. A transaction will also include traveling through a workflow within a
processing device.

[0054] A transaction entry point is the point to start a transaction. In
this invention, since once the connection between the source and destination is
established, the firewall or any other security devices simply pass bytes
between the systems, thus the transaction entry point can be designated to be
anywhere after the incoming data stream is received. The following examples
show where the transaction entry point can be designated. But, as those of
ordinary skill will know from the following examples, the definition of transaction
entry point is broader than the examples shown here:

[0055] TCP/IP or UDP/IP connection point: The transaction entry point
is at the connection point when connection is established and the data stream

is received.

13

10

15

20

25

30

WO 2005/069823 PCT/US2005/001098

[0056] A firewall is a barrier that permits incoming authorized
messages to pass but not unauthorized messages. For example, there is one
type of firewall that will decrypt the secure socket layer (SSL) request message
and filter it based on its internal algorithm, then encrypt it and send it to the
destination server. The transaction entry point location is at the point at which
the firewall decides to pass the request forward.

[0057] An Intrusion Detection System (IDS) detects attempts to obtain
access to the resources of a network by those who have not been
authenticated. The transaction point can start at the point after the IDS decides
a request will be allowed to go forward.

[0058] Security Proxy Servers are used when the network designer
wishes for the transaction point to start before the authentication or when the
user has been authorized to access a network resource.

[0059] The above examples can be repeated in wireless connections.

[0060] An Object can be anything that may be represented in digital
form. An object can have “properties’ to represent its characteristics and
“methods” to represent its behavior, as is well known in object-based
programming. The properties of an object are represented by data structure.

[0061] For example: an object can be just a transaction id such as:

www.bytescreen.com:1051741018650:123456789,
or, in addition to the transaction id, which is a property of the object, it can have
an additional property, “logdata’, and a method, such as addlog(), to add
information into the property logdata.

[0062] An audit-request object is an object for representing audit
information during a request process. It should at least contain a transaction id
in its audit-data before the audit data is persisted in persistence storage.

[0063] An audit-response object is an object for representing audit
information during response process. It should at least contain a transaction id
in its audit-data before the audit data is persisted in persistence storage. Note
that an Audit-request object can be the same object as Audit-response object
but does not necessarily have to be the same.

[0064] A unique id is an id that uniquely identifies an identity. For
example, a location parameter and a time parameter plus a random number can
produce a unique id. For example:

14

10

15

20

25

30

WO 2005/069823

[0065] Transaction ID is a unique id that will be associated with the
fransaction.

[0066] Persistent storage device or persistence storage is a digital
storage device that temporarily or permanently holds digital data, for example,
memory, in-memory database, in-memory cache, hard disk, file, or database as
well known in the art.

[0067] Processing device is a device that is capable of processing
digital data, for example, a computer, a firewall, an intrusion detection system, a
proxy server, a web server, an application server, and a mainframe server.

[0068] HTTP Header is a header defined by HTTP protocol or user
defined but satisfying HTTP protocol format, such as the header “Cookie”, well
known in the art.

[0069] Communication protocols enable communicating over the
Internet. A protocol is simply a detailed specification of how communication is to
proceed. For two computers to communicate, they must both be using the same
protocols. The most basic protocols on the Internet are the Internet Protocol
(IP), which specifies how data is to be physically transmitted from one computer
to another, and the Transmission Control Protocol (TCP). Others include but not
limited to UDP/IP, 1IOP, HTTP, SOAP, JMS and TIBCO. The invention here is
applicable to any communication protdcol especially for above-mentioned
protocols.

[0070] XML is Extensible Markup Language, well known in the art.

[0071] SOAP stands for Simple Object Access Protocol, well known in
the art.

[0072] The login-count refers to how many login attempts the user has
failed.

[0073] Access policy defines the rule of how access to a resource is
granted or denied based on the available roles and the roles associated with the
user. For example, an access policy could be the following: a given universal
resource locator (URL) can be only accessed by the role of Adjuster.

[0074] Workflow:

[0075] Workflow represents business process composed of multiple
steps. A workflow can be within the same component/server or across multiple

15

PCT/US2005/001098

10

15

20

25

30

WO 2005/069823

components ar servers. For example, a workflow can be in an application server
which can contain the utilization of (but not limited to) serviet, EJB, COM object
and flow through all those components with business specific steps.

[0076] DOMAIN

[0077] A domain typically represents organization, sub division or a
user registry. For example: ibm.com, bytescreen.com, are internet domain
names. bytescreen.com can also representing the LDAP organization root for
user registry.

[0078] TGT: Kerberos ticket-granting ticket as well known in the art.

[0079] Each enterprise can define its own audit-request object and
audit-response object to store the audit information based on a specific type of
transaction. In appendix 2001, a sample XML schema that specifies an XML
based audit-request and audit-response object has been listed. Please note that
in this case the audit-request object and audit-response object is the same
object.

[0080] A sample XML based on this schema is shown in Appendix
2002.

[0081] The audit data stored in the audit-request object such as in this
XML can be passed downstream along with the request, and can also be
passed upstream along with the response. But exactly how is protocol-
dependent.

[0082] In an HTTP(S) request, the transaction id and audit data can
be passed via HTTP header. We can define an HTTP header named “audit-
data” or any other non-used HTTP header name. Note that one of the fields in
the audit-request object defined in this sample XML is the transaction id, and
the XML shown above can be added into the request body as the vaiue of the
HTTP header audit-data by following the HTTP protocol specified in the art. The
value of the header is composed of a sequence of bytes.

[0083] When the downstream processing system receives the
request, the audit-request object stored in the HTTP header “audit-data” can be
extracted and new audit information can be added into this XML and then again
put into the request boady via HTTP header as discussed above.

[0084] The same header can be passed upstream when the response
process begins. To ensure security, if the fransmission protocol is not a secure

16

PCT/US2005/001098

10

15

20

25

30

WO 2005/069823 PCT/US2005/001098

protocol such as SSL, the audit data XML should be encrypted before putting it
into the audit-data header.

[0085] If the communication protocol was altered during the
transaction process, for example, when the Application Server 405 (FIG 4)
sends the request to MQ Server 406 (FIG 4), the communication protocol can
be in Java Message Service Format. In this case the audit-request object and
audit-response object can be set in the customized JMS Header fields as
specified in the JMS specifications, known in the prior art, to pass it to the
receiving end. It is also possible to include the audit-request object together with
the message itself, but this should be avoided if possible in order to decouple
the security logic and the business logic.

[0086] FIG 4 depicts a sample deployment to demonstrate a request
response based transactional audit flow. The system deployment configuration
may vary according to business needs. For a given communication protocol,
say HTTP(S) in this example, a request is sent to the enterprise system using
the given protocol.

[0087] The block 409 in FIG 4 depicts common processing steps for a
processing node. When a request comes in, it will first be checked to determine
if the request is authorized access to its resource. If authorized, the information
that needs to be audited is audited and the results of the audit are added to the
audit-request object, and the audit-request object will be incorporated into the
request body. If persistence of the audited information is required, the audit-
request object will be made to persist, then the request to the next processing
system will be passed using secured transmission. When the response is
received, the audit information will be added into the audit-response object and
then the audit-response object will be incorporated into the response body.
Then if persistence is required, the audit-response object will be placed into the
persistence storage device. Finally, the response to the parent process system
with secured transmission will be returned.

[0088] The authorization is processing-system dependent. When the
request is in the firewall, the authorization is based on the firewall's
authorization logic. When the authorization is in the IDS, the authorization is
dependent on IDS’s authorization logic. Normally, no user authentication is
done within the firewall or IDS, thus the authorization in the firewall or IDS will

17

10

15

20

25

30

WO 2005/069823 PCT/US2005/001098

normally not depend on the user profile or any roles assigned to the user.
However, at the Security Proxy Server 105 and downstream, the user will be
authenticated and thus the user profile, user assigned roles and user access
policies generally will be used to authorize the user’s request.

[0089] As shown in FIG 4, the requést first reaches the outmost
firewall 401. As in this configuration, the transaction entry point is selected at the
firewall. The firewall inspects the data, and then decides if the access should be
granted or denied. If access is granted, a fransaction id is created. The
transaction id is added to the audit-request object. Next, the audit-request object
is added to the request body via an HTTP header. The request is then sent to
IDS 402 via a secured transmission protocol, for example SSL.

[0090] The IDS 402 will process the request as shown in 409 and
check if the request should be granted or denied based on its detection logic. If
the access is granted, it will add the audit information to the audit-request
object, update the HTTP header audit-data value with the modified audit-
request object and pass the request to security proxy server 403 via a secured
transmission protocol, for example HTTPS.

[0091] The security proxy server will process the request as shown in
409 (in the following sections, a more detailed description about the
authentication and authorization process will be given). If authorized, will add
audit data into audit-request object and then update the HTTP header audit-
data and then pass the request to Web Server 404 via a secured transmission
protocol, for example HTTPS.

[0092] The Web Server 404 will process the request as shown in 409
in the standard web server plug-ins (as described in the art), if authorized, then
pass the request to Application Server 405 via a secured transmission protocol,
such as, for example, SSL.

[0093] In this particular scenario, the Application Server 405 will
process the request as shown in 409 and then pass the request to MQ Server
406 and an external network 408 sequentially. Before it passes through the
request, it will first authorize the access. If granted, it will add the audit
information into the audit-request object and, if the next processing system is
MQ Server 406, add the audit-request object into the JMS message header field

18

10

15

20

25

30

WO 2005/069823 PCT/US2005/001098

or message body and send the request via JMS Message through a secured
transmission protocol (such as SSL) to MQ Server 406.

[0094] If the next processing system in located in the external
network, and assuming the communication protocol is HTTPS, the audit-request
object will be added into HTTP header audit-data or other applicable header,
then incorporated into the request body and passed to the destination server via
external network, such as the Internet 408.

[0095] If the next processing system is a web service 414, known in
the art, the communication protocol is HTTPS. Then the audit-request object is
into HTTP header audit-data or other applicable header, then incorporated into
request body and passed to the security proxy server 413. Then the security
proxy server will authorize the request and pass the request to the Application
Server that is hosting the web service 414,

[0096] Since MQ Server 406 is a Message Queue Server, it will put
the incoming request into the message queue and wait for the MQ client to
retrieve the request message.

[00971 On the other end, the external network 408 will start a new
transaction process with that network and return the response to the Application
Server 405 with the audit information logged with its domain. Note that this
external network must use the transaction id created at the transaction entry
point of the primary network to log the access information located in its domain.
There will be only one transaction id for each transaction.

[0098] The Mainframe Server 407 will process the request as shown
in 409, authorize the request for access and, if granted, allow the request to
access the system and log the audit data into the audit-response object. In this
case, the audit-response object is the audit-request object (the XML string)
obtained from Message Header field.

[0099] The Security Proxy Server 413 will intercept the web service
request and then authorize the request for the access. The authorization
process will be described in the later part. The Security Proxy Server will
retrieve the audit-request object from the HTTP header and log the audit data
into the audit-request object. The audit data include authorization status and
any desirable data that need to be logged. If the access is granted, the Security

19

10

15

20

25

30

WO 2005/069823 PCT/US2005/001098

Proxy Server 413 will pass the request to the destination web service hosted by
an application server 414,

[00100] In the Web Service case, there are two options: one is using
the HTTP Header to pass the audit-request and audit-response object, and the
other is using SOAP over HTTP. With SOAP option, special handling is needed
to pass the audit-request object and audit-response object into request and
response. First, the audit-request object and audit response object has to be
defined by XML. The structure of the XML needs to be defined as an XML
schema as known in the art. The schema that defines the audit-request object
and audit-response object need to be included within the Web Service request
message and response message respectively. During the request process, the
Security Proxy Server 413 will insert the audit-request object into the SOAP
message for request. When web service 414 implementation receives the
request, it will be able to access the audit-request object and add or remove
audit data to or from it. And during the response process, web service 414
implementation will extract the data in the audit-request object and use them to
populate the audit-response object that is embedded in the response. A
software application can then add or remove the audit-data as needed and pass
them back to the parent process Security Proxy Server 413. Security Proxy
Server 413 will extract the audit-response object from the SOAP message body
and incorporate it into the HTTP header in the response. The SOAP message
element that carries the audit-response object needs to be reset as a nil
element.

[00101] The response process is also shown in 409. That is, the audit-
response object is obtained, the audit info is added into the audit-response
object and then the audit-response object is embedded into the response body
so that the response can be returned to the parent processing system.

[00102] A centralized audit point can be selected any given point of the
process. For example, the centralized audit point in this deployment is selected
at the security Proxy Server 412. At the centralized audit point, the audit data in
the audit-response object will be persisted onto a desired persistence storage
device or devices. For example, the audit-response object can be just logged
into a file at the security proxy server in an encrypted format. Then the audit-

20

10

15

20

25

30

WO 2005/069823

response object should be removed from the response body. This is important
because the audit-response object should not be returned to the client.

[00103] What has been described so far has demonstrated how the
Transactional Audit System can be implemented by passing audit-request
object and audit-response object in a request-response based transactional
system.

[00104] The Transaction Audit System described above can also be
used as a data passing or parameter passing mechanism for processing
devices to communicate with each other in a structured manner.

[00105] The data that has been persisted into persistence storage
devices can also be used as input for subsequent transaction invocation since
at those persistence points, data that available is collected data from part of the
transaction..

[00106] The data in the persistence storage is in fact a result of data-
binding of user profile, accessing policies, and business related information.
This data binding mechanism is very important in a enterprise information
system to achieve high performance.

[00107] The persisted data in the persistence storage can be used as
data source for enterprise data replica, provide enterprise system fail over
recovery.

[00108] In what follows a detailed description about how the
Transactional Audit System is incorporated into Kerberos based single-sign-on
system.

[00109] FIG 5 shows the block diagram for a Security Proxy Server
105(FIG 1) and FIG 6 shows the block diagram for Authentication Server 107
(FIG 1). The Security Proxy Server 105 (FIG 1) in this invention is limited to
processing the HTTP request only and the resources it protects are URL
addressable resources.

[00110] A resource can be anything that is possible to address with a
uniform resource locator (URL see RFC 1738). A resource can include a web
page, software application, services, file, database, directory, a data unit, etc. In
one embodiment, a resource is anything accessible to a user on a network. The
network could be the Internet, a LAN, a WAN, or any other type of network.

21

PCT/US2005/001098

WO 2005/069823 PCT/US2005/001098

Table 1, below, provides examples of resources and at least a portion of their

respective URL syntax:

22

10

15

20

WO 2005/069823 PCT/US2005/001098

TABLE 1

Resource URL Encoding

Directory /Sales/

HTML Page /Sales/Collateral/index.html

CGl Script with no query /cgi-bin/testscript.cgi

CGI Script with query /cgi_bin/testscript.cgi?button=on
Application fapps/myapp.exe

Web Services /bytescreen/services/mywebservice

[00111] A URL includes two main components: a protocol identifier and
a resource name separated from the protocol identifier by a colon and two
forward slashes. The protocol identifier indicates the name of the protocol to be
used to fetch the resource. Examples include HTTP, FTP, Gopher, File and
News. The resource name is the complete address to the resource. The format
of the resource name depends on the protocol. For HTTP, the resource name
includes a host name, a file name, a port number (optional) and a reference
(optional). The host name is the name of the machine on which the resource
resides. The file name is the path name to the file on the machine. The port
number is the number of the port to which to connect. A reference is a named
anchor within a resource that usually identifies a specific location within a file.
Consider the following URL:

[00112] “hitp://www.bytescreen.com/bytescreen/sales/index.html.” The
string “http” is the protocol identifier. The siring “www.bytescreen.com” is the
host name. The string “/bytescreen/sales/index.html" is the file name.

[00113] A complete path, or a cropped portion thereof, is called a URL
prefix. In the URL above, the string “/bytescreen/sales/index.html” is a URL
prefix and the string “/bytescreen” is also a URL prefix. The portion of the URL
to the right of the host name and to the left of a query string (e.g. to the left of a
question mark, if there is a query string) is called the absolute path. In the URL
above, “/bytescreen/salesfindex.html” is the absolute path. A URL can also
include query data, which is typically information following a question mark. For
example, in the URL:

23

10

15

20

25

30

WO 2005/069823 PCT/US2005/001098

hito://www.bytescreen.com/bytescreen/sales/index.html?user=smith&dept=sale

S
the query data is “user=smith&dept=sales.”

[00114] A service can be addressed by a URL via
hitp:/Avww.bytescreen.com/bytescreen/sales/index.html?service=moneyTransfo
r&service=accountbalance,

[00115] Although the discussion herein refers to URLs to identify a
resource, other identifiers can also be used within the spirit of the present
invention.

[00116] FIG 5 shows the high level functional block of the Security
Proxy Server 105 (FIG 1). Security Proxy Server will first process the request it
received, parse it and make sure it is an HTTP request by checking each
component of the request against HTTP protocol through the HTTP processor
501. A standard web server will be able to provide HTTP processing capability.
The HTTP processor is implemented within the Web Server and Web Server
plug-in. The authentication processor and authorization processor can be either
implemented within the Web Server plug-in or within an Application Server
known in the art. If the authentication processor is built into an Application
Server and The Web Server has to communicate with the Application Server via
network, an SSL communication between the Web Server and Application
Server has to be enforced. After the HTTP processing, the request will then be
passed to the authentication processor §02 to verify if the user in the request is
indeed the authentic user. If authenticated, the user’s request will be passed to
the authorization processor 503 to see if this user is authorized to access the
resource identified by the URL. If authorized, the request will be routed to the
destination web server via Router 504.

[00117] FIG 6 shows the high level functional block of an
Authentication Server 107 (FIG1). The Authentication Server will first process
the request it received, parse it and make sure it is an HTTP request by
checking each component of the request against HTTP protocol through the
HTTP processor 601. The reason to perform the HTTP checking is that the
Authentication Server is designed only to accept HTTP requests for user
authentication. The standard web server will be able to provide HTTP
processing capability. In the Authentication Server, the processor is

24

10

15

20

25

30

WO 2005/069823

implemented within the Web Server and Web Server plug-in. The authentication
processor can be either implemented within the Web Server plug-in or within an
Application Server known in the art. There should be a user id and password
and optionally a domain name being associated with the HTTP request for
authentication. The communication over the network has to be SSL-enabled or
HTTPS. If the request is valid, the user ID and password will be extracted from
the request and will be passed to the authentication processor 602 to make sure
the user is indeed the one as the user claims, If the user is authenticated, TGT
is created that contains the user profile and will be sent back to the Security
Proxy Server 105 (FIG 1), otherwise, an unsuccessful status is sent back to the
Security Proxy Server 105 (FIG1).

[00118] FIG 7 shows block diagram of the authentication process. In
step 701, Client 710 sends an HTTP request to Security Proxy Server 712. The
request may need to pass firewall 720 and IDS (not shown in FIG 7). Initially,
the request directly requests access to the URL specified. The Security Proxy
Server 712 will check the request and if not authenticated, the server 712 will
then forward it to the Authentication Server 713. The Authentication Server 713
is located inside the second firewall for well-confined security, since the critical
information like the user id and password for connecting to User Registry 714
will be protected if they are within the second firewall. In step 702, the
authentication request will be sent to the Authentication via HTTPS.
Authentications Server 713 will communicate with User Registry 714 to
authenticate the user via step 703. The authentication status will be returned to
Authentication Server by step 705, If the user is authenticated by the User
Registry, the Authentication Server will create a Kerberos token, which contains
user profile and authorized roles associated with the user, otherwise, the
authentication failed status will be returned. The Authentication Server 713 will
return the token (only when authentication is successful) and the status to the
Security Proxy Server via step 706.

[00119] FIG 8 depicts the Authentication Process within Security Proxy
Server 105 (FIG 1).

[00120] Step 801: The HTTP Processor will detect what kind of HTTP
method the request is. Possible HTTP Methods include but not limit to GET,
POST, PUT, and DELETE. The HTTP Processor will then route the request to

25

PCT/US2005/001098

10

15

20

25

30

WO 2005/069823

the corresponding request handler and allow the request handler to do the
following steps.

[00121] Step 802: at the corresponding request handler, create a
transaction ID to indicate the beginning of the transaction. A sample transaction
ID is created here as: hostname:time_in_million_seconds:randomnumber, such
as: Bytescreen:1073509029905:092939.

[00122] The audit-request object is defined based on the XML schema
as listed in appendix 2001 and a sample XML is shown in appendix 2002. The
audit-request object is also used as audit-response object.

[00123] The transaction id is added into the request object.

[00124] Step 803: The URL is checked to see if it is a login URL. A
login URL is a specific URL that is defined for sending login information. This
URL is usually defined in a property file and will loaded into memory during
Security Proxy Server Starting time.

[00125] Step 804: If the request URL is a login URL, then the login is
processed.

[00126] Step 812: If the request URL is not a login URL, then the
request is passed to the Authorization processor.

[00127] Step 805: The login parameters are retrieved from the request.
These parameters include: Userid, Password, Domain Name (for multi-domain
single sign-on), Remote IP address (the ip address of the client), and Remote
Hostname (optionally). The Userid, Domain Name, Remote IP address and
Remote Hostname are logged into audit-request object.

[00128] Step 806: A HTTP POST message is sent to Authentication
Server via TCP/IP or HTTP. The HTTP POST message should be constructed
in accordance with HTTP protocol, as defined in the art. In the HTTP POST
message, the parameters in Step 805 need to be passed to the Authentication
Server. The HTTP POST should use the URL specified in Step 803 with the
followings parameters: Transaction ID, Userid, Password, Domain Name (for
multi-domain single sign-on), Remote IP address (the ip address of the client),
Remote Hostname (optionally) and those fields are embedded into audit-request
object and passed downstream via HTTP header.

[00129] Step 807 The authentication status information is then logged
into the audit-request object. The status information should contain: status code.

26

PCT/US2005/001098

10

15

20

25

30

WO 2005/069823 4 PCT/US2005/001098

[00130] Step 808: The authentication status code is checked.

[00131] Step 813: The authentication-failed reason is logged into audit-
request object. ‘

[00132] Step 814: The audit-request object is made persistent.

[00133] Step 815: The client is nofified of the failed code and the
reason for the failure.

[00134] Step 810: If authentication successful, the following information
is extracted from the authentication result (and decrypted from the Kerberos
TGT): Transaction ID, Authentication Status, Userid, Domain Name, Remote P
address, (optional) Remote Hostname, Kerberos TGT creation time and the
authorized roles for the user.

[00135] Step 811: The following information is added to the audit-
request object: Kerberos TGT creation time and the authorized roles for the user

[00136] Step 816: The Specified time-out value is obtained. This is
specified during the Security Proxy Server startup time. Then the expiration time
is calculated.

[00137] Step 817: The time-out value and expiration time are logged
into audit-request object.

[00138] Step 818: The audit-request object is made persistent. In this
case the XML is just written to a file.

[00139] Step 819: If the user chooses fo use a cookie based single
sign-on method, an encrypted cookie is constructed containing the following:
TransactioniD, UserlD, Domain Name, RemotelP address, Token expired time,
and User authorized roles. Those information shouid aiso be added into audit-
data. Note that the option of selecting the cookie method or session method
should be specified in the configuration at the Security Proxy Server startup
time.

[00140] Step 820: The encrypted cookie is sent to the client via
SetCookie header, and the communication is preferably SSL-enabled for strong
security but it can also be in just HTTP if the security requirement is weak. But
note that the cookie can be easily hacked if just using HTTP.

[00141] Step 821: If the user chooses not to use the cookie method,
the following are saved into a session object and added into audit data:

27

10

15

20

25

30

WO 2005/069823 PCT/US2005/001098

TransactionlD, UserlD, Domain Name, RemotelP address, token expiration
time, User authorized roles, and SessioniD.

[00142] Step 822: The sessionID is sent to client via SetCookie header.
The communication must be SSL-enabled.

[00143] As shown in FIG 6, the Authentication Server contains two
main functiona! blocks: HTTP Processor and Authentication Processor. Since
the HTTP Processor is generally available by standard web servers and its plug-
ins, only the details of the Authentication processor 602 (FIG 6) wili be reviewed
here.

[00144] FIG 9 depicts the Authentication Processor flow chart.

[00145] Step 901: The login parameters are obtained from the request.
These parameters include: Transaction ID, Session ID, Userid, Password,
Domain Name, Remote IP address, and Remote Hostname (optionally).

[00146] Step 902: The audit-request object is obtained from HTTP
header, in the example given, it is an XML String.

[00147] Step 903: The login-count stored with the user is checked to
determine if it is less than the given maximum allowed.

[00148] Step 904: Then the user is authenticated by passing the userid
and password to LDAP or Database. The communication has to be SSL or other
secure communication protocol.

[00149] Step 905: If authenticated, the roles associated with the user
are obtained.

[00150] Step 906: The Kerberos Ticket Granting Token (TGT) is
created. These include: Transaction ID, Userid, Domain Name, Remote [P
address, (optional) Remote Hostname, token expiration time, and Authorized
roles for the user. Note that TGT is a specific type of audit data and can be set
as a part of audit-request object or audit-response object for authorization uses.

[00151] Step 907: Next the TGT is encrypted with a symmetric
encryption algorithm with 128 bit or higher encryption, such as BLOWFISH.

[00152] Step 908: The audit data are logged into the audit-response
abject. In the example shown, the audit-response object is the same as audit-
request object, which is a XML String. One type of information that needs to be
logged is the login-count.

28

10

15

20

25

30

WO 2005/069823

[00153] Step 909: The audit—résponse object is set into the HTTP
header.

[00154] Step 910: The result is then returned to Security Proxy Server
107(FIG 1). The result will include: Status, Encrypted TGT, and the audit-
response object embedded in the HTTP header.

[00155] FIG 10 shows the basic requirement for the user registry. User
registry 109 (FIG 1) contains a user profile that can be stored in LDAP 110 (FIG
1) or Database 111 (FIG 1). Each user should as a minimum have a unique
userid, a password and login-count. Additional user profile information can be
added as needed. The userid uniquely identifies a user, a password
authenticates the user, and the login-count records how many-failed login
attempts this user has made. If the login-count exceeds the maximum allowed
number, the authentication server will not allow the user to continue to try to
login. This limit will protect the system from password cracking and hacking
techniques. Each user is associated with zero or more roles. Each role gives the
user certain privileges. For example, an Insurance company’s claim adjuster
can have two roles: claim adjuster and employee. Those roles are used in the
authorization process to grant or deny a user’s request for a particular service.

[00156] FIG 7 also depicts a typical authorization flow. After a user is
authenticated, the user will be presenting the Kerberos TGT wherever the user
is trying to access the system resource 701. One option is to put the TGT into
the HTTP header and the other is to put TGT into audit data. In the present
implementation of the demonstration, the Cookie header is used. When Security
Proxy Server 712 receives the request, it will invoke the authorization process in
FIG 11 to authorize the user. Once the user is authorized, his request is passed
to Web Server 715 together with the TGT embedded in the HTTP header
downstream and in the same way to Application Server via 724. Application
Server 716 can invoke the authorization process illustrated in FIG 11 to
authorize the request and, if authorized, it will pass to MQ Server 718 via 727.
Alternatively, Application Server 716 will pass the request with the TGT
embedded in the header to the Security Proxy Server 717 via 725. The Security
Proxy Server 717 will invoke the authorization process of FIG 11 to authorize
the request, if authorized, the request will be sent to the Web Service 722 via
726.

29

PCT/US2005/001098

10

15

20

25

30

WO 2005/069823 PCT/US2005/001098

[00157] FIG 11 is the authorization process flowchart. At any
authorization point, for example, Security Proxy Server 721 and 725, Application
Server 716 or Mainframe Server 719, the authorization process shown in FIG 11
can be invoked to authorize a request. The request has to carry the TGT to be
authorizable.

[00158] Here are the processing steps:

[00159] Step 1101: This is an initialization step. It will be only executed
once during the authorization point startup. For example, in Security Proxy
Server 721, it will only happen once at the server startup. During this step, the
encryption/decryption key for TGT and security policies will be loaded. In
general, the security policy will define how the resource protected can be
accessed. The polices will be cached or stored in in-memory database. In this
particular implementation, the policy will contain the following information:

[00160] Resource needs to be protected. In the example, the following
portion defines the protected resources:

[00161] <protected-resource>

<web-resource-collection>
<web-resource-name>ProtectedArea</web-resource-
name>

<url-pattern-module>
<url-pattern>/*</url-pattern>
<filters>
<inbound-process-filter-class/>
<outbound-process-filter-class/>
</filters>

</furl-pattern-module>
</web-resource-collection>
</protected-resource>.

[00162] The roles that are allowed (or denied) for access to this
resource.

[00163] Rules can also be defined as part of the policy. For example,
rule1: only users have role1 are granted Rule2: without role 2, cannot be
granted access. In general, rules will combine user profile, policies, and
business related information to help make resource accessibity decision.

30

10

15

20

25

30

WO 2005/069823

[00164] In the XML example, the portion defines the roles that will be

used in the policy rule:
<auth-constraint>
<role-name>adjuster</role-name>
<role-name>employee</role-name>
</auth-constraint>

[00165] The above sections of XML simply indicated that users with
role “adjuster” or “employee” can access the resource /* (everything under the
root /)

[00166] The policy needs to be loaded from the secured area: namely,
Authentication Server 107 (FIG 1)

[00167] Step 1102: The TGT is retrieved. This token is passed
downstream by HTTP header: Cookie. Only the token from Cookie header is
passed. If the TGT is passed down by other means, for example, in MQ Server,
the token may be passed by JMS Header as filed or even in the message body,
and just retrieved as specified. Since the TGT is encrypted, it must be decrypted
when it is obtained. Then the following is extracted from the token: Transaction
ID, Userid, Domain Name, Remote IP address, (optional) Remote Hostname,
token expiration time, and Authorized roles for the user.

[00168] Step 1103: Authorized roles for the user are checked against
the roles and rules in the policies that carried in either audit data or in-memory
cache, which are based on the policy rule. If not authorized, “authorization-
failed” status is returned. If authorized further, the expiration time is checked
against current time. If time test is satisfactory, “authorization successful” status
is returned.

[00169] Step 1104: The audit-request object is obtained either from
HTTP header or message body, and the following information logged into audit-
request object: Service-id (can be resource such as a URL, or any given service
name), Authorization status (SUCCESS or FAILED code), failed reason (if
failed), policies applicable to the resource, roles used for access, and additional
business related log info (if any).

[00170] Step 1105 The authorization status is checked. If “yes,” then
the system proceeds to 1105; if “no”, then go to 1108.

31

PCT/US2005/001098

10

15

20

25

30

WO 2005/069823 PCT/US2005/001098

[00171] Step 1106: The audit-request object is made persistent and
sent to the persistence storage device if necessary.

[00172] Step 1107: Access is allowed to the resource and the request
is passed downstream.

[00173] Step 1108: An audit-response object based on audit-request
object is created. In the implementation here, the audit-request object — XML

string — is duplicated.

[00174] Step 1109: The audit-response object is made persistent and
forwarded to persistence storage if necessary.

[00175]) Step 1110: The audit-response object is added to the
response.

[00176] Step 1111. The response is then returned to the parent
process system.

[00177] FIG 12 depicts a customizable plug-in module 1204 and 1205
in Security Proxy Server 1201. This plug-in allows dynamic loading of an
inBoundFilter 1204 and an OutBoundFiiter 1205. The InboundFilter will allow
the Security Proxy Server to process the HTTP request before being sent out
the destination resources and the OutBoundFilter will process the HTTP
response before it is sent back to the client.

[00178] These customizable plug-ins allow the Security Proxy Server to
be customizable to satisfy specific needs. For example, it can be used to
perform data validation, data integrity checking, XML transformation and provide
user profile, security prolicies and buiness information data binding. One
important usage is to plug user abstraction service or user profile retrieval and
Kerberos based authentication/authorization via vender provided API
abstraction or service to delegate authentication/authorization process into
proxy server to provide ldentity Management vendor independent infrastructure
for the enterprise. With this layer of user and AP! abstraction, the security
infrastructure will be able to work with all Identity Management Systems vendors
without changing its security infrastructure. The following contains a description
of a method to pass the audit-request object and audit-response object
described in the Transactional Audit System to the SOAP request message and
SOAP response message for Web Service technology.

[00179] Here are the steps to accomplish this:

32

10

15

20

25

30

WO 2005/069823 PCT/US2005/001098

[00180] Step 1: The audit-request object and audit-response object are
defined with XML schema as shown in the example in appendix 2001. Lets refer
it as audit schema. The example in appendix 2001 is only one example. The
schema can be defined to meet each business’ needs.

[00181] Step 2: The audit schema in included into the schema
definitions for the Web Service input request message and output response
message. The root element in the audit schema should be included as one
element in the input request message schema and also in the output response
message schema.

[00182] Step 3: The client code and server code are then generated as
specified in web service technology, as known in the art, with the updated input
request message schema and output the response message schema.

[00183] Step 4: The client 1200 code is then modified in order to pass
the userid, password via either GET or POST request parameters or via HTTP
headers to precede authentication against Security Proxy Server 1201.

[00184] Step 5: Once authenticated as described in the Authentication
Process Earlier, the Security Proxy Server 1201 will send the TGT to the Client
1200 via HTTP header such as SetCookie.

[00185] Step 6: The Client will use HTTP header to pass the TGT for
subsequent access request.

[00186] Step 7: The Security Proxy Server 1201 will invoke the
authorization process to authorize the request.

[00187] Step 8: Once authorized, the Security Proxy Server 1201 will
begin to send the request to the destination web service

[00188] Step 9. Before the request leaves the Security Proxy Server
1201, the InBoundpFilter 1204 will intercept the request (SOAP Message) and
update the audit-request object that was sent by the Client 1200 with the audit-
request object returned from the authorization process into the SOAP Message
in the request.

[00189] Step 10: At the Web Service 1202, the web service
implementation will be able to get the audit-request object from the request
message and be able to add the logging information to it.

33

10

15

20

25

WO 2005/069823

[00190] Steb 11: Web Service Implementation should transfer the
logging information from the audit-request object in the request to the audit-
response ohject in the response.

[00191] Step 12: When the response comes back, the OutBoundFilter
will intercept the response and extract the audit-response object from the SOAP
message and update it (or optionally replace it with a nil-valued audit-response

object).

[00192] Step 13: The extracted audit-response object will be passed to
the client via HTTP header or by other processing devices such as another
application server, as specified by the client.

[00193] Another scenario important to point out is that the method
presented here in securing Web Services does not treat Web Service any
differently than any other web resources. That means, unlike the products
currently available, the invention is a uniform method in dealing with all web
resources, including web service. That means that the audit information
regarding activities of web services will be logged by user, not by the identity of
the service that the user uses to access the web service. This point was also
demonstrated in the descriptions of 413 and 414 in FIG 4.

[00194] In the foregoing descriptions, a Transactional Audit System has
been described that provides centralized security audit for enterprise systems.
The Transactional Audit System is then incorporated into the Kerberos based
multi-domain single sign-on system to provide authentication, authorization,
access control and centralized audit. The covered areas range from firewall,
IDS, security proxy server, web server, application server, web services, MQ
server, Mainframe and external network access.

34

PCT/US2005/001098

10

15

20

25

30

33

40

WO 2005/069823

APPENDIX:
2001 The sample xml schema that defines the audit data structure:
<7xml version="1.0" encoding="UTF-8"7>

<1 eited with XMLSPY vb rel 4 U {hitpAwww ximlepy.com) by dun Song -->

<xs.schema xmlns:xs="http:l/www.w3.orgIZOO1IXMLSchema“ elementFormDefault="qualified"

attriputeFormDefault="unqualified">
<xs:element name="AAA-ARoot">
<xs:annotation>
<xs:documentation>Comment describing your root element</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs.sequence>
<xs-element name="transaction-id” type="xs:string"/>
<xs:element ref="user-profile”/>
<xs:element ref="authentication-audit"/>
<xs:element name="life-span™>
<xs:.complexType>
<xs:sequence>
<xs-element name="creation-time" type="xs:dateTime"/>
<xs:element name="expiration-time" type="xs:dateTime"/>
<xs:element name="timout" type="xs:int"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element ref="audit-trail"/>
<[xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="user-profile">
<xs:complexType>
<xs:sequence>
<xs:element name="userid" type="xs:string"/>
<xs:-element name="user-registry-domain” type="xs:string"/>
<xs:element name="remote-connection-info">
<xs.complexType>
<xs.sequence>
<xs:element name="hostname" type="xs:string" minOccurs="0"/>
<xs:element name="ip-address” type="xs:string"/>
<xs-element name="additional-info" type="xs:string" minOccurs="0"
maxQccurs="unbounded"/>
</xs:sequence>

35

PCT/US2005/001098

10

15

20

25

30

35

40

WO 2005/069823 PCT/US2005/001098

</xs:complexType>
</xs:element>
<xs:element ref="roles"/>
</xs:sequence>
</xs.complexType>
</xs:element>
<xs:element name="audit-trail">
<xs:.complexType>
<xg:sequence>
<xs:element name="service-log" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="service-~id" type="xs:string"/>
<xs:element name="authorization-status" type="xs:string"/>
<xs:element name="faild-reason" type="xs:string" minCccurs="0"
maxQccurs="unbounded"/>
<xs:element name="accessing-role">
<xs:complexType>
<xs:sequence>
<xs:element ref="role" maxOccurs="unbounded"/>
</xs:sequence>
</xs:.complexType>
</xs:element>
<xs:element name="in-coming-request">
<xs:complexType>
<xs:sequence>
<xs:element ref="name" minOcours="0"/>
<xs:element ref="log-info"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element hame="out-going-request" minOccurs="0"
maxQccurs="unbounded">
<xs:complexType>
<xs.sequence>
<xs:element ref="name"/>
<xs:element ref="log-info"/>
</xs:sequence>
</xs.complexType>

</xs:element>

36

10

15

20

25

30

35

40

WO 2005/069823) PCT/US2005/001098

<xs:element name="in-coming-response" minQccurs="0"
maxOccurs="unbounded”>
<xs:complexType>
<xs:sequence>
<xs:element ref="name" minOccurs="0"/>
<xs:element ref="log-info"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="out-going-response">
<xs:complexType>
<xs:sequence>
<xs:element ref="name" minOccurs="0"/>
<xs:element ref="log-info"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="additional-checkpoint" minOccurs="0"
maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element ref="name" minQccurs="0"/>
<xs.element ref="log-info"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="roles">
<xs:complexType>
<xs:sequence>
<xs:element name="description” type="xs:string" minOccurs="0"/>
<xs:element ref="role" minQccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="datetime-format" type="xs:dateTime"/>

37

10

15

20

25

30

35

40

W
0 2005/069823 PCT/US2005/001098

<xs-element name="string-format” type="xs:string"/>
<xs:element name="log-info">
<xs.complexType>
<xs:sequence>
<xs:element name="time-stamp" type="xs:dateTime"/>
<xs:element name="message" type="xs:string" maxOccurs="unbounded"/>
</xs:sequence>
<[xs.compiexType>
</xs:element>
<xs:element name="name" type="xs:string"/>
<xs:element name="role">
<xs:complexType>
<xs:sequence>
<xs-element ref="description" minOccurs="0"/>
<xs:element ref="role-name"/>
<xs-element ref="role-reference" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:.element>
<xs:element name="description" type="xs:string"/>
<xs:element name="role-name" type="xs:string"/>
<xs:element name="role-reference">
<xs:complexType>
<xs:sequence>
<xs-element name="reference” type="xs:string"/>
<fxs:sequence>
</xs:complexType>
</xs.element>
<xs:element name="authentication-audit">
<xs:complexType>
<xs:sequence>
<xs:element name="authenticsation-status" type="xs:string"/>
<xs-element name="faild-reason” type="xs:string" minOccurs="0">
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>
2002 Sample Audit-request object based on the schema listed in 2001.
<7xml version="1.0" encoding="UTF-§"?>
<AAA-ARoot xmins:xsi="http://www.w3.org/2001/XMLSchema-instance“
xsi:noNamespaceSchemaLocation="C:\WebSecure\jssw\conﬂg\core\aaaaroot..xsd">

38

10

15

20

25

30

35

40

WO 2005/069823 PCT/US2005/001098

<transaction-id>www.bytescreen.com: 30405050606:02020304</transaction-id>
<user-profile>
<userid>jsong</userid>
<user-regisiry-domain> bytescreen</user-registry-domain>
<remote-connection-info>
<ip-address>203.245.23.124</ip-address>
<jremote-connection-info>
<roles>
<description>Employee</description>
<role>
<role-name>employee</role-name>
</role> '
<lroles>
<Juser-profile>
<authentication-audit>
<authenticsation-status>success</authenticsation-status>
<faild-reason></faild-reason>
<fauthentication-audit>
<life-span>
<creation-time>2004-01-01T00:00:00</creation-time>
<expiration-time>2004-01-01 T00:20:00</expiration-time>
<timout>120</timout>
<flife-span>
<audit-trail>
<service-log>
<gervice-id>claimservice</service-id>
<authorization-status>sucess</authorization-status>
<accessing-role>
<yole>
<role-name>employee</role-name>
<frole>
<laccessing-role>
<in-coming-request>
<log-info>
<time-stamp>2004-01-01T00:00:02</time-stamp>
<message>enterred access-patient-infomation </message>
<flag-info>
<fin-coming-request>
<gut-going-response>
<log-info>
<time-stamp>2004-01-01T00:00:05</time-stamp>

39

10

15

20

25

30

35

40

WO 2005/069823 PCT/US2005/001098'

<message>exit access-patient-infomation</message>
<flog-info>
</out-going-response>
</service-log>
</audit-trail>
</AAA-ARoot>
2003 Sample Policy XML
<security-constraint>
<display-name>Example Security Constraint</display-name>
<protected-resource>
<web-resource-collection>
<web-resource-name>Protected Area</web-resource-name>
<url-pattern-module>
<url-pattern>/*</url-pattern>
<filters>
<inbound-process-filter-class/>
<outbound-process-filter-class/>
</filters>
</url-pattern-module>
</web-resource-coilection>
</protected-resource>
<excluded-resource>
<web-resource-collection>
<web-resource-name>Exclueded Area</web-resource-name>
<url-pattern-module>
<url-pattern>* jar</url-pattern>
</url-pattern-module>
<url-pattern-module>
<url-pattern>*.jpg</url-pattern>
</url-pattern-module>
<url-pattern-module>
<url-pattern>*.gif</url-pattern>
<lurl-pattern-module>
<url-pattern-module>
<url-pattern>* js</url-pattern>
<lurl-pattern-module>
<url-pattern-module>
<url-pattern>*.css</url-pattern>
<Jurl-pattern-module>
<url-pattern-module>
<url-pattern>*.txt</url-pattern>

40

10

15

20

WO 2005/069823

<furl-pattern-module>
<url-pattern-module>
<url-pattern>*.swf</url-pattern>
<lurl-pattern-moduie>
<url-pattern-module>
<url-pattern>*.mspx</uri-pattern>
<furl-pattern-module>
<url-pattern-module>
<url-pattern>*.pdf</url-pattern>
<lurl-pattern-module>
</web-resource-collection>
</excluded-resource>
<auth-constraint>
<role-name>adjuster</role-name>
<role-name>employee</role-name>
</auth-constraint>
</security-constraint>

41

PCT/US2005/001098

WO 2005/069823 PCT/US2005/001098

WHAT IS CLAIMED IS:
1. Arequest-response based transactional auditing method for providing a

10

15

20

25

30

centralized transactional real-time adaptive identity-driven audit trail over a
processing device or sequence of processing devices connected by wired or
wireless networks, said method comprising the steps of:

1) selecting a communication protocol for transmitting a message from a
first processing device to a second processing device in a transaction
beginning with an incoming request and ending with an outgoing
response to the incoming request

2) creating at least one audit-request object having audit data;

3) embedding the audit-request object into the incoming request wh‘en the
incoming request is in compliance with the communication protocol used
downstiream during a request process;

4) creating at least one audit-response object at the start of a response
process, said audit-response object having audit data;

5) embedding an audit-response object in an outgoing response, said
outgoing response being in compliance with the communication protocol
upstream during the response process;

6) moving the request and the response through a transaction;

. The method as set forth in claim 1, further comprising the steps of:

1) creating a unique Transaction ID for said transaction;

2) adding the Transaction ID to the audit-request object;

3) verifying the audit-response object contains the Transaction ID;

4) altering at least part of the audit data carried in the audit-request object or
audit-response object at desired points during the transaction;

5) saving at least part of the audit data which contains at least the
transaction id in the audit-request object and the audit-response object in
persistence storage at desired points of the transaction, and

6) removing the audit-response object from the outgoing response object
before the outgoing response object leaves the transaction entry point,

whereby the Transaction 1D, audit-request object and audit-response object

may be used to identify the transaction and log the events during the
transaction at any point in order to provide a centralized transactional real-
time adaptive identity-driven audit trail that enables the collection and

42

10

15

20

25

30

WO 2005/069823 PCT/US2005/001098

removal of the event trail log for the transaction, and allowing persistence of
the audit data of the audit-request object and audit-response object at the

centralized user trail repository.

. The method as set forth in claim 2, further comprising the step of

representing the audit-request object and the audit-response object by XML.

. The method as set forth in claim 3, further comprising the step of:

1) keeping the audit data of the audit-request object and the audit-response
object in an encrypted form during the transaction so that the audit data

can be securely transmitted when desired.

. The method as set forth in claim 3, further comprising the steps of:

1) passing downstream said audit-request object by means of at least one
HTTP header; and

2) passing upstream said audit-response object by means of at least one
HTTP header.

. In addition to method as set forth in claim 5, said audit-data contains:

1) userld
the user id is a unique identifier that identifies the user. This field uniquely

links a user to its activities across the enterprise.

. In addition to method as set forth in claim 5, said audit-data contains:

1) session Id
the session id uniquely identify a user session as shown in the art

. In addition to method as set forth in claim 5, said audit-data contains one or

more fields selected from the group consisting of:
1) user registry domain
2) remote connection host
3) remote connection ip address
4) roles assigned to the user
5) any other user related information like user account number
A user profile that contains any user related information such as contact
information, account number associate the said user to other business

information.

. In addition to method as set forth in claim 5, the audit-data contains

1) TGT which contains:
a. transaction id

43

10

15

20

25

30

WO 2005/069823 PCT/US2005/001098

b. userid,
c. token expiration time
d. authorized roles for the user.

10.1n addition to method as set forth in claim 5, the audit-data contains one or

11.

more fields selected from the group consisting of policy fields:

1) resource that needs to be protected

2) roles that specify if the user is allowed or denied for access this resource

3) rules that associate the user with the resource and the roles to decide
who can access the said resource

In addition to method as set forth in claim 5, audit-data contains one or more

fields selected from the group consisting of audit trail fields:

1) service id

2) authorization status

3) failed reason

4) accessing role

5) service accessing time

6) log-info: Business specific information that need to be collected.

The user based audit-trail which contains any business information for the

serviced accessed by the user which can be persisted at the persistence

storage for future use such as audit analysis, usage based billing,

compliance of the regulations such as Sarbanes Oxley and HIPPA, relieve

the corporation liability by providing user activity trail as proof, and the

information can also be retrieved from persistence storage for disaster

recovery and as source for enterprise data replica.

12.1n addition to method as set forth in claim 5, said audit-data contains one or

more fields selected from the group consisting of lifespan fields:
1) Transaction Creation Time
2) Transaction expiration-time
3) Transaction time out
Those lifespan fields can help organizations to do performance analysis,

setup global time out period to ensure global transaction time out integrity.

13.The method as set forth in claim 5, further comprising the steps of:

1) loading security policies into memory in cached form.

14.The method as set forth in claim 13, further comprising the steps of:

44

10

15

20

25

30

WO 2005/069823 PCT/US2005/001098

1)

adding the policies associated with the resources requested for

access to audit-data;

15. The method as set forth in claim 14, further comprising the steps of.

1)
2)

authenticating a user, and
authorizing a user for a given resource

The authentication and authorization process mentioned here are based on
the well-known Kerberos Single-Sign-On System that is applicable to single-
domain or multi-domain scenarios.

16. The method as set forth in claim 15, further comprising the steps of:

1)
2)
3)
4)
5)

6)

authenticating a user in said first device against user registry;
adding authentication event log data into audit-data;

creating a encrypted TGT token of said user;

adding TGT token into audit-data;

forwarding the audit-data containing TGT token to the said first and
then said second processing device handling authorization process,
said audit-data containing said TGT token facilitating processing of
subsequent requests.

returning TGT token to the requesting-client as a ticket for the next

time access with the associated session id,

17.The method as set forth in claim 16, further comprising the steps of:

1)
2)

3)

4)

obtaining TGT token from audit-data,

decrypting TGT token to verify the user and retrieve the followings:
a. userid,

b. token expiration time,

c. roles assigned to said user,

d. other relevant information stored within TGT token.

refrieving the policies associated with the resources for access from
either policy store, in memory cache or audit-data;

authorizing said user based on said TGT token and said policies
retrieved,

adding the authorization event log into said audit data,

granting or denying resources access based on authorization status.
forwarding the audit-data containing TGT token said second
processing device handling authorization process, said audit-data

45

10

15

20

25

30

WO 2005/069823 PCT/US2005/001098

containing said TGT token facilitating processing of subsequent
requests.
18. The method as recited in claim 14, wherein said first processing device is a
proxy server and wherein said method further comprises the step of:

1) adding a module to said proxy server, the module adapted to allow
dynamic loading of an in-bound filter and an out-bound filter that
enable the proxy server to process a HTTP request before sending
the request to a resource and to process a response before returning
the response.

19. The method as set forth in claim 18, further comprising the steps of:

1) obtaining user profile for a user .

20. The method as set forth in claim 19, further comprising the steps of:

1) authenticating said user based on authentication and authorization
API by a API vendor, and

2) authorizing said user for a given resource based on said API

The authentication and authorization process mentioned here are based

on the well-known Kerberos Single-Sign-On System that is applicable to

single-domain or multi-domain scenarios and whereby vendor
independent security infrastructure is achieved across the enterprise.
21.The method as set forth in claim 18, further comprising the steps of:

1) validating data in the request.

2) checking data integrity.

22 The method as set forth in claim 18, further comprising the steps of:
1) performing xml transformation
23 The method as set forth in claim 18, wherein said first processing device and
said second processing device are connected via the internet so that web
services are transfer requests and responses between said first processing
device and said second processing device, and wherein the audit data is
added to the audit-request object and the audit-response object regarding
activities of web services by the identify of the user and not by the identity of
the web services
24.The method as set forth in claim 23, further comprising the steps of.
1) inserting said audit-data via SOAP message,

46

WO 2005/069823 PCT/US2005/001098

2) converting SOAP message form of audit-data from response to other
forms and moving upstream via HTTP header

47

WO 2005/069823 PCT/US2005/001098
| 114
:/
116
\ } 113
SSL/https
hitp(s) /
N
o ’ I 112
d . 108 \
§= K I \
105) -
101 ~ o Application Server
SSL i
Web Server |, SSL . Applications ssL MQ Server {~—H Mgggaer:\e
Web ,l 103 hitp(5) "I web resources « Web Services
Browser oy
L =3 2| =
5 5|8
<o,
L‘J 109 110 T
Security
hm_(_s)_ Proxy
Server ‘ User Registry -~
=
g httpb goation |, SSL
oo v£ " Server
{ClientApp{' *o ?\ -
RS | *~\ \\
\ | s "
102 \ N\
\-
\
\ 104 \
] 107

106

FIG 1

111

WO 2005/069823 PCT/US2005/001098

2/14

205

N

201 Output
Devices

AN

206

Memory

N\

202 Input

Devices

N\

207
Processor
203
Portable
Storage
Mass Storage
/ 208
204
Graphics
Subsystem
209

Peripherals

N\

Output
Display

410

FIG 2

WO 2005/069823 PCT/US2005/001098

3/14
301
Network Policy
305
302
Advanced
authentication
mechanisms
303
Packet filtering
304
application
gateways

FIG3

WO 2005/069823

408

PCT/US2005/001098

414
410 | 412
Transaction ID o
g Created e
& Web
% Services
1 401 a2 > | 403 404 3 &
g = g
3 . = p 39
3 y S P . 405 |89
2 Bl
21 o
req g req req |35 . req req req .
________ﬁ,) Security WebS Application b S:ounty
‘ m Firewall DS " Proxy leb Server Server |4 roxy
¢
resp E_U resp resp Server resp resp resp Ser\ver
S \
g |3
e 2 | 408
MQ Server |
M3
1.Request Processing
a)authorize the request, if access granted, go to b) o
b) add/remove audit info to the audit-request a §
object and add audit-request object into request =
cpersis the audit infomation the audit-request 407 }\
req object to the persistence storage device if required req \
——3__y| b)pass the request to next processing system with — N
__|secures transmission(for example ssl) X
resp |2-Response Processing resp Mainframe Server

a) add/remove audit info to the audit-response
objectand add audit-response object into response

b)persist the audit infomation the audit-request
object to the persistence storage device if required

c)return the response to the parent pracessing
system with secured transmission(for example ssl)

\[409

FIG4

WO 2005/069823

PCT/US2005/001098
5/14
501
URL Processor
§
/ 502
Authentication
Processor
503
Authorization
Processor
504
Router

FIG5

WO 2005/069823 PCT/US2005/001098

6/14

HTTP Processor

Authentication
Processor

FIG 6

WO 2005/069823

710

Client

PCT/US2005/001098

7/14

719

Mainframe Server

721 &
~ /l 718
%‘! MQ Server
720 5
715 716
N 717
m ™~
]
=
=3
e Securiyt Proxy
Web Server Application Server
723 724 PP 725 Server

~

n

»

701 Securiity Proxy
Server
Web Services
2 703
7M2 706 Aulhse:rt‘llc:tion User Registry
7058 722
714

FIG. 7

WO 2005/069823

822

820

send the session
id to the client

801

802

803

)/

detect HTTP
method in request

L

create transaction
id and audit-
request object

is login URL

804
send the
encrypted token to | 821 process login
the client by using
cookie save the user
o profile into session ¢
object 805 get login
819 parameters and
log into audit-
No request (no
password)
construct an 806 l
encrypted token | Yes send a HTTP Post
Message to
Authentication
Server
818
" \
Persist the audit- lo
N g the
request object authentication
. status info
" \ " ’\
log the time-out
and expired time authce]::t:i(c:;zron
into audit-request It !
object resu
809
816
Obtain specified
timeout value and
calcuate the
expired time
Y Yes
811
Log user profle, Extract the
roles and creation | information from
time into audit- authentication
request object result

FIG8

8/14

No

PCT/US2005/001098
812
authorization
processor
815

notify client faild
code and reason

A

persist the audit-
request object

A

log failed reason

810

814

WO 2005/069823

910

909

908

901

902

903

904

914

get login
parameters

A

get audit-request
object from hitp
header

check login-count

A

i

Authenticate the
user

authenticated?

return the resutl to
the Security
Proxy Server via 805 .
response retrieve the roles
assigned to the
user
set audit-response
object into 906 \ !
reszzr;zir tp create the TGT
. token
Y
log the audit data
into audit- < encrypt the token
response object

FIG9

PCT/US2005/001098

update login-count

/ 911

A 4

912

log failed reason
to audit-request
object
and set audit-
response object
into header

A

913

return failed login
result to Security
Proxy Server
together with the
audit-response
object embedded
in the header

WO 2005/069823 PCT/US2005/001098

10/14

User

e
H-userid : string(id)
Lpassword : string(idl)
-login-count

name : string(idl)

FIG 10

WO 2005/069823

1104

1105

1106

1107

Initialize Policy

get the user roles

from Audit-request

object or Kerberos
TGT Token

check user roles
against the policy
for this resource

get the audit-
request object and
log the audit info
into the audit-
request object

s the identity
authorized?

persist the audit-
request object if
necessary

allow the access
to the resouce and
pass the request
downstream

1101

1102

1103

FIG 11

11/14

PCT/US2005/001098

1108

create the audit-
response object

1109

persist the audit-
response object if
necessary

A

1110

add audit-
response object
into the response

N

1111

return response
back to parent
processing system

NN\ N

WO 2005/069823 PCT/US2005/001098

12/14
1202
Web Service
req
1201
1204
. " Security Porxy | plug-
Client Server in 1205
—1
T resp 1203
Authentication
Server
1200

FIG 12

WO 2005/069823 PCT/US2005/001098

13/14

Claim Tree
(not part of the specification)

Claim 1
¥
Claim 2
A
Claim 3
XML
A
Claim 4
Claim 5 N
Encrypt during
HTTP Header transmition
A A A
Claim 8 Claim 6 Claim7 Claim 9 Claim 10 Claim 11 C.laim 1
user profile userid Session ld TGT plocies audit-trail LifeSpai
Y
Claim 13
policy cache
[
To Claim 14

Fig. 13

WO 2005/069823 PCT/US2005/001098
14/14
From Claim 13
Claim 14
adding polices to
audit data
|
Claim 156
Kerberos TGT
Claim 18
Custom-plug-in
A
Claim 16
authentication
A A A
. Claim 23 . .
Claim 19 . Claim 21 Claim 22
get User Profile Web §erv19 e user data validation xmi transformation
identity
Claim 17
\ Authorization
Cliam 20 \
Kerberos based Wi Ssa'm 2 4 .
vendor el Serwce via
independence oap

Fig. 14

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

