发明名称
无粘结剂沸石类吸附剂，制造无粘结剂沸石类吸附剂的方法，以及使用无粘结剂沸石类吸附剂从混合的二甲苯中吸附分离对二甲苯的方法
摘要
本发明提供无粘结剂 BaKX 沸石类吸附剂，其制造方法，以及其在液相吸附分离法中的使用方法。吸附剂包括粘结剂 - 转化的沸石部分，其由 xwt% 的高岭土粘土粘结剂和 (100 - x)wt% 的未转化的沸石 X 形成，其中沸石 X 具有为 2.5 的二氧化硅 /氧化铝摩尔比。高岭土粘土粘结剂在 10 至 20wt% 范围内。Ba 和 K 占据吸附剂内的阳离子可交换位点。以无粘结剂 BaKX 沸石类吸附剂计，K 在 0.25 至 0.9wt% 范围内，Ba 大于 31.6wt%。可将玉米淀粉加入至沸石 X 和高岭土粘土粘结剂以增加吸附剂大孔孔隙率和孔体积。吸附剂产率提高，降低工艺运行成本。也提高了吸附剂的机械强度。
1. 一种无粘结剂 BaKX 沸石类吸附剂，包括：
粘结剂 - 转化的沸石部分，其由 x wt% 的惰性粘土粘结剂和 (100-x) wt% 的沸石 X 形成，其中 x 以无粘结剂 BaKX 沸石类吸附剂计在 10 至 20 wt% 范围内；
其中沸石 X 具有为 2.5±0.5 的二氧化硅：氧化铝摩尔比；和
钡 (Ba) 和钾 (K) 在无粘结剂 BaKX 沸石类吸附剂内的阳离子可交换位点上，其中以无粘结剂 BaKX 沸石类吸附剂计，K 在 0.25 至 0.9 wt% 范围内，Ba 大于 31.6 wt%，并且
其中通过压汞法测得的无粘结剂 BaKX 沸石类吸附剂的总孔体积在 0.25 cc/g 和 0.35 cc/g 之间。

2. 如权利要求 1 所述的无粘结剂 BaKX 沸石类吸附剂，其中在所述无粘结剂 BaKX 沸石类吸附剂的重量百分数内，沸石 X 占 82%，粘结剂 - 转化的沸石 X 占 18%，Ba 占 33%，K 占 0.3%，
和 Na 占 0.11%。

3. 如权利要求 1 所述的无粘结剂 BaKX 沸石类吸附剂，其中以无粘结剂 BaKX 沸石类吸附剂为，在无粘结剂 BaKX 沸石类吸附剂中的阳离子可交换位点上的 Na 小于 0.3 wt%。

4. 如权利要求 1 所述的无粘结剂 BaKX 沸石类吸附剂，其中无粘结剂 BaKX 沸石类吸附剂的总孔体积中的大部分来自尺寸大于 50 nm 的孔。

5. 一种用于生产附聚的无粘结剂 BaKX 沸石类吸附剂的方法 (10)，包括：
形成具有离子可交换位点的附聚物，所述附聚物由沸石 X、高岭土粘土粘结剂和玉米淀粉形成，其中沸石 X 具有为 2.5±0.5 的二氧化硅：氧化铝摩尔比 (12)；
活化所述附聚物以将高岭土粘土粘结剂转化为变高岭土粘土粘结剂，玉米淀粉在活化步骤过程中消散 (13)；
将变高岭土粘土粘结剂转化为粘结剂 - 转化的沸石 (14)；
将附聚物的离子可交换位点与 Ba 和 K 交换以生产附聚的无粘结剂 BaKX 沸石类吸附剂，其中以无粘结剂 BaKX 沸石类吸附剂计，K 在 0.25 至 0.9 wt% 范围内，Ba 大于 31.6 wt% (16)；和
干燥附聚的无粘结剂 BaKX 沸石类吸附剂以固定其水含量 (18)。

6. 如权利要求 5 所述的方法，其中形成附聚物的步骤 (12) 包括：组合沸石 X 和高岭土粘土粘结剂，其中以附聚的无粘结剂 BaKX 沸石类吸附剂为，沸石 X 和高岭土粘土粘结剂的量分别为在 80 和 90 wt% 之间和在 10 和 20 wt% 之间；以及与玉米淀粉混合，以粘结剂 - 转化的沸石和沸石 X 组合的重量百分数计，玉米淀粉的量至多为 5 wt%。

7. 如权利要求 5 所述的方法，其中交换附聚物的离子可交换位点的步骤 (16) 包括将在附聚的无粘结剂 BaKX 沸石类吸附剂内的阳离子可交换位点上的 Na 减少至小于附聚的无粘结剂 BaKX 沸石类吸附剂的 0.3 wt%。

8. 如权利要求 5 所述的方法，其中活化附聚物的步骤 (13) 包括加热附聚物至至少 625℃，以及将变高岭土粘土粘结剂转化为粘结剂 - 转化的沸石的步骤包括用碱金属氢氧化物水溶液苛性煮变高岭土粘土粘结剂。

9. 一种用于从芳族二甲苯混合物中分离对二甲苯的方法 (40)，所述方法包括：
使混合物与无粘结剂 BaKX 沸石类吸附剂接触，所述无粘结剂 BaKX 沸石类吸附剂由具有为 2.5±0.5 的二氧化硅：氧化铝摩尔比的沸石 X 部分和粘结剂 - 转化的沸石部分组成，
其中钡 (Ba) 和钾 (K) 在无粘结剂 BaKX 沸石类吸附剂内的阳离子可交换位点上，其中以无粘结
结剂 BaKX 沸石类吸附剂计，K 在 0.25 至 0.9wt% 范围内，Ba 大于 31.6wt% (42)，并且其中通过压表法测得的无粘结剂 BaKX 沸石类吸附剂的总孔体积在 0.25cc/g 和 0.35cc/g 之间；

使得对二甲苯吸附在无粘结剂 BaKX 沸石类吸附剂上 (44)；

通过残液料流，使得混合物的低选择性吸附的部分从与无粘结剂 BaKX 沸石类吸附剂接触去除 (46)；和

通过使用脱附剂脱附，从无粘结剂 BaKX 沸石类吸附剂纯化和回收对二甲苯 (48)。
无粘结剂沸石类吸附剂，制造无粘结剂沸石类吸附剂的方法，以及使用无粘结剂沸石类吸附剂从混合的二甲苯中吸附分离对二甲苯的方法

技术领域
[0001] 本发明总体上涉及沸石类吸附剂，其制造方法，以及将其用于吸附分离法的方法，更特别地涉及无粘结剂BaKX沸石类吸附剂，它们的制造方法，以及使用无粘结剂BaKX沸石类吸附剂，在液相模拟的移动床吸附法中，从混合的二甲苯中回收对二甲苯的方法。

背景技术
[0002] 模拟的移动床（SMB）吸附法适用于多种大规模石油化学分离中以从混合的二甲苯中回收高纯度对二甲苯（PX）。本文所指的“混合的二甲苯”指包括乙苯苯（EB）、对二甲苯（p-二甲苯或PX）、间二甲苯（MX）和邻二甲苯（OX）的C₆芳族异构体的混合物。高纯度对二甲苯用于生产聚酯纤维、树脂和薄膜。通常将对二甲苯转化为对苯二甲酸（TPA）或对苯二甲酸二甲酯（DMT），然后使其与乙醇酯化反应以形成聚对苯二甲酸乙二醇酯（PET），其为大多数聚酯的原材料。
[0003] 施行模拟的移动床吸附分离法中采用的普遍方法是将吸附剂与用以分离的液体进料逆流。进料和产品以几乎恒定的组成连续地进入和离开吸附床。分离通过利用吸附剂对对二甲苯和其他C₆芳族异构体的亲和力差别来完成。
[0004] 用于模拟的移动床吸附法中的吸附剂通常包括结晶硅酸铝盐沸石，并可包括天然和合成硅铝酸盐沸石。用作对二甲苯选择性吸附剂的合适的结晶硅铝酸盐沸石包括具有硅铝酸盐笼形结构的那些，其中在开放的三维结晶网络中水铝和二氧化硅四面体相互紧密连接。四面体通过共享氧原子而交联，其中在沸石部分或全部脱水之前四面体之间的空间被水分子占据。脱水导致晶体具有分子尺寸的通道交错。在水合形式下结晶硅铝酸盐沸石通常用下式表示：M₂ₓ/ₐO·AlₓO·ₚW₂O₆·ₚH₂O，其中“M”为平衡四面体的电价的阳离子，通常称为可交换阳离子位点，“n”表示阳离子的化合价，“w”表示SiO₂的摩尔数，“y”表示水的摩尔数。这种具有作为吸附剂的用途的结晶硅铝酸盐沸石具有相对完好的孔结构。该具体类型的硅铝酸盐沸石通常通过指定二氧化硅/氧化铝摩尔比和笼形结构的孔尺寸识别。
[0005] 通过结晶硅铝酸盐领域技术人员公知的离子交换法，占据沸石类吸附剂中的可交换阳离子位点的阳离子（M）可被其他阳离子代替。公知结晶硅铝酸盐，如在沸石内的可交换阳离子位点上具有镍和钾阳离子的沸石X，选择性地吸附包含至少一种其他C₆芳族异构体的混合物中的对二甲苯。
[0006] 通常，用于分离方法中的沸石类吸附剂含有分散在无定形材料或无机基体中的沸石类结晶材料，其中具有通道和空穴，使得液体能够进入结晶材料。二氧化硅、氧化铝或某些粘土及其混合物是这种无机基体材料的典型，其用作“粘结剂”以形成或附聚沸石类结晶颗粒，其则将包括细粉末。附聚的沸石类吸附剂可因此为颗粒形式，如挤出物、聚集体、片
剂，大球体，如珠粒、颗粒等。

【0007】粘结剂典型地为憎性的并不对任何吸附有贡献。已努力通过增加吸附剂内的选择性部分（沸石体积）提高吸附剂产率。通过在称为“沸石化”的转化过程中将粘结剂转化为选择性的沸石来增加吸附剂内选择性部分（沸石体积）。而同时保持沸石类吸附剂的强度和大孔孔隙率。该转化过程得到“无粘结剂”沸石类吸附剂。在该转化过程得到吸附剂产率增加的同时，也还寻求对吸附分离法进一步提高工艺性能和降低操作成本。

【0008】因此，需提供一种粘结剂吸附剂和在液相分离法中使用无粘结剂吸附剂从混合的二甲苯中回收高纯度对二甲苯的方法，从而使得工艺性能得以改进，操作成本得以降低。此外，还需要提供一种无粘结剂 BaKX 沸石类吸附剂，其减少加工一定量的进料所需的吸附剂和脱吸附剂的量，且其具有增加的中孔孔隙率和大孔孔隙率，传质速率和机械强度。还需要提供一种用于形成该无粘结剂吸附剂的方法。此外，根据下文对本发明的详细描述和所附权利要求，以及附图与本发明的背景技术，本发明的其他所需的特征和特性将显而易见。

【0009】发明简述

【0010】本发明提供无粘结剂 BaKX 沸石类吸附剂，制备所述无粘结剂 BaKX 沸石类吸附剂的方法，以及使用所述无粘结剂 BaKX 沸石类吸附剂从混合的二甲苯吸附分离对二甲苯的方法。所述无粘结剂 BaKX 沸石类吸附剂包括：

【0011】粘结剂 - 转化的沸石部分，其由 x 重量% (wt %) 的惰性粘土粘结剂和 (100-x) wt% 的沸石 X 形成，其中 x 以无粘结剂 BaKX 沸石类吸附剂计在 10wt% 至 20wt% 范围内；

【0012】其中沸石 X 具有为 2.5±0.5 的二氧化硅：氧化铝摩尔比；和

【0013】钡 (Ba) 和钾 (K) 阳离子在无粘结剂 BaKX 沸石类吸附剂内的阳离子可交换位点上，其中以无粘结剂 BaKX 沸石类吸附剂计，K 在 0.25 至 0.9wt% 范围内，Ba 大于 31.6wt%。在形成粘结剂 - 转化的沸石部分之前，粘结剂 - 转化的沸石部分和沸石 X 可与玉米淀粉混合。以粘结剂 - 转化的沸石部分和沸石 X 组合的 wt% 计，玉米淀粉占 0 至 5 重量%。沸石 X、惰性粘土粘结剂、玉米淀粉、K 和 Ba 的重量百分数基于无挥发物的基底。

【0014】根据示例性的实施方式，用于制备附聚的无粘结剂 BaKX 沸石类吸附剂的方法包括形成具有离子可交换位点的附聚物，所述附聚物由具有为 2.5±0.5 的二氧化硅：氧化铝摩尔比的沸石 X 和惰性粘结剂形成。玉米淀粉也可在附聚物形成步骤过程中加入。然后活化附聚物。在该步骤过程中玉米淀粉烧尽。活化步骤将高岭土粘土粘结剂转化为变高岭土粘土粘结剂。在下个步骤中，将变高岭土粘土粘结剂转化为粘结剂 - 转化的沸石。然后，将附聚物的离子可交换位点与 Ba 和 K 交换，其中以附聚的无粘结剂 BaKX 沸石类吸附剂计，K 在 0.25 至 0.9wt% 范围内，Ba 大于 31.6wt%。然后干燥附聚的无粘结剂 BaKX 沸石类吸附剂以固定其水含量。

【0015】一种用于从芳族二甲苯混合物中分离对二甲苯的方法，所述方法包括：使混合物与无粘结剂 BaKX 沸石类吸附剂接触，所述无粘结剂 BaKX 沸石类吸附剂具有为 2.5±0.5 的二氧化硅：氧化铝摩尔比的沸石 X 部分和粘结剂 - 转化的沸石部分构成，无粘结剂 BaKX 沸石类吸附剂在阳离子可交换位点上含有 Ba 和 K，以无粘结剂 BaKX 沸石类吸附剂计，含量以 wt% 计分别为至少 31.6wt% 和 0.25 至 0.9%。将对二甲苯选择性地吸附在吸附剂上，通过残留液料将混合物的更低选择性吸附的部分从过程中除去。在纯化区纯化对二甲苯。通过在脱附区使用脱附剂脱附回收对二甲苯，并通过提取料流回收。
附图说明

[0016] 下文通过结合如下附图描述本发明，其中同样的数字表示同样的元件，其中：
[0017] 图 1 为根据本发明的示例性实施方式生产无粘结剂 BaKX 沸石类吸附剂的方法的流程图；
[0018] 图 2 为根据本发明的示例性实施方式，用于图 1 的方法中的吸附分离单元的示例性组件吸附剂室的简化的说明；
[0019] 图 3 为说明根据本发明的实施方式在无粘结剂 BaKX 沸石类吸附剂中 K 的重量％与脱附剂/进料 (D/F) 比之间的关系的线性回归图；
[0020] 图 4 为比较根据本发明的实施方式的无粘结剂 BaKX 沸石类吸附剂的 D/F 比与无粘结剂 BaKX2.0 吸附剂的 D/F 比的图；
[0021] 图 5 为比较根据本发明的实施方式的无粘结剂 BaKX 沸石类吸附剂的产率与无粘结剂 BaKX2.0 沸石类吸附剂的产率的图；
[0022] 图 6 为说明优化的沸石类吸附剂配制剂区域的覆盖的轮廓图；
[0023] 图 7 为根据本发明的实施方式，说明包括无粘结剂 BaKX 沸石类吸附剂的不同吸附剂相对传质速率的盒型图；
[0024] 图 8 为根据本发明的实施方式，水磨耗损失 (% 细屑) 对在无粘结剂 BaKX 沸石类吸附剂中沸石 X(wt %) 的线性回归图；
[0025] 图 9 为在根据本发明的示例性实施方式使用玉米淀粉制备的无粘结剂 BaKX 沸石类吸附剂，以及不使用玉米淀粉制备的无粘结剂 BaKX 沸石类吸附剂上的压汞法 (mercury porosimetry) 结果图；和
[0026] 图 10 为根据本发明的示例性实施方式，说明在图 2 的吸附分离单元中使用无粘结剂 BaKX 沸石类吸附剂的方法步骤的流程图。

[0027] 发明详述

[0028] 本发明的如下详述仅为示例性的性质，无意限制本发明或本发明的实施和使用。此外，无意向受本发明的前述背景技术中的任意理论或本发明的下述具体描述。

[0029] 根据本发明的示例性实施方式，无粘结剂 BaKX 沸石类吸附剂包括粘结剂 - 转化的沸石部分。其由 x 重量％(wt %) 惰性粘土粘结剂和 (100-x)wt %沸石 X (结晶硅铝酸盐沸石) 形成，其中 x 以无粘结剂 BaKX 沸石类吸附剂计在 10wt %至 20wt %范围内，其中沸石 X 具有为 2.5±0.5 的二氧化硅 :氧化铝摩尔比。Ba 和 K 在无粘结剂 BaKX 沸石类吸附剂内的阳离子可交换位点上，其中以无粘结剂 BaKX 沸石类吸附剂计，K 在 0.25 至 0.9wt %范围内，Ba 大于 31.6wt %。此外，在形成粘结剂 - 转化的沸石部分之前，惰性粘土粘结剂和沸石 X 可与玉米淀粉混合。以粘结剂 - 转化的沸石部分和沸石 X 组合的 wt %计，玉米淀粉占 0 至 5 重量 %。沸石 X、惰性粘土粘结剂、玉米淀粉、K 和 Ba 的重量百分数基于无挥发物的基底。通过压汞法 (Hg intrusion porosimetry) 测得的无粘结剂 BaKX 沸石类吸附剂的孔体积在 0.25cc/g 和 0.35cc/g 之间。

[0030] 根据本发明的示例性实施方式，沸石 X 包括用于吸附剂中的特定结晶硅铝酸盐沸石。在水合形式下，沸石 X 可以摩尔氧化物如下表示：

[0031] \[0.9 \pm 0.2M_{2}O_{3}:Al_{2}O_{3}:2.5 \pm 0.5SiO_{2}:yH_{2}O\]
其中”M”为至少一个具有不大于3的化合价的阳离子，其平均四面体的电位，通常称为可交换阳离子位点。“n”表示阳离子的化合价，“y”表示水的摩尔数（y为至多为9的值，取决于M为何以及晶体水合的程度）。沸石X具有相等完好的孔结构。由于沸石X是最初制备的，阳离子”M”通常主要为钠，因此被称为钠－型沸石X。定义的沸石X的SiO₂/Al₂O₃摩尔比在2.5±0.5范围内。在优选的实施方式中，沸石X具有在2.3至2.7范围内（优选为2.5）的二氧化硅：氧化铝摩尔比。

图1为根据本发明的示例性实施方式，用于制备无粘结剂BaKX沸石类吸附剂的方法10的流程图。该方法包括由沸石X和惰性粘结剂组成的吸附剂附聚物（步骤12）开始。通过在环境温度下与水混合，使用惰性粘结剂将沸石X附聚至吸附剂珠粒中。在优选的实施方式中，惰性粘结剂包括高岭土粘土，其具有在2.0至2.2范围内（优选为2.0）的二氧化硅：氧化铝摩尔比。高岭土粘土例如可得自U.S.Silica Co., Berkeley Springs, WV。珠粒由80至90wt%的沸石X和10至20wt%的高岭土粘土粘结剂（基于无挥发物的基底）组成。高岭土粘土粘结剂使形成的沸石粉末聚集形成吸附剂珠粒，所述吸附剂珠粒具有0.3mm至0.8mm范围内的粒子尺寸，并具有增加的机械强度，如下的文中的所述的水磨耗测试所示。虽然描述了珠粒形式的附聚物，本发明并不局限于此。沸石X可附聚为其他颗粒形式，如挤出物、聚集体、片剂、大球体、颗粒等。

在示例性实施方式中，添加剂，如玉米淀粉，也可与沸石X和惰性粘结剂在附聚物－形成步骤12过程中混合。为了下文所述的目的，以粘结剂－转化的沸石部分和起始沸石X总组合的重量计，可以0至5.0wt%（基于无挥发物的基底）的量加入玉米淀粉。其他添加剂包括聚合物和纤维。

为了将高岭土粘土粘结剂转化为粘结剂－转化的沸石，在625°C或更高温度活化附聚物以将高岭土粘土粘结剂转化为变高岭土粘土粘结剂（步骤13）。高岭土粘土粘结剂经历吸热的脱羟基反应并转化为无序的变高岭土相。如果先行加入玉米淀粉，在该步骤过程中玉米淀粉烧尽。

然后，在80°C的温度下用氢氧化钠溶液苛性蒸煮变高岭土粘土粘结剂，将变高岭土粘结剂转化为粘结剂－转化的沸石，所述粘结剂－转化的沸石具有在2.0至2.2范围内（优选为2.0）的二氧化硅：氧化铝摩尔比（步骤14）。对1g的变高岭土粘土粘结剂，转化其需要41g的2.4wt%NaOH。转化导致选择性体积增加15%，通过McBain O₂容量测量在液态O₂温度下测定。该测量描述于Donald W.Breck的"Zeolite Molecular Sieves: Structure, Chemistry and Use", John Wiley & Sons, 1974。因此，吸附剂珠粒包括基本上100%沸石与可忽略的惰性粘结剂，形成“无粘结剂”沸石类吸附剂珠粒。吸附剂珠粒包括二氧化硅：氧化铝摩尔比在2.5±0.5范围内（优选为2.5）的沸石X部分（来自起始的沸石X），和二氧化硅：氧化铝摩尔比在2.0至2.2范围内（优选为2.0）的粘结剂－转化的沸石部分。虽然已经描述了高岭土粘土粘结剂转化为粘结剂－转化的沸石，但是本发明并不局限于此。例如，可将其他粘土粘结剂转化为粘结剂－转化的沸石。非限制性例子包括属于多水高岭土类的粘土。此外，虽然已经描述了使用氢氧化钠溶液作为用于粘结剂转化的苛性溶液，本发明并不局限于此。除了氢氧化钠，其他碱金属氢氧化物水溶液可用于转化。非限制性例子包括氢氧化钾溶液或氢氧化钠和氢氧化钾混合物的溶液。

然后，将无粘结剂沸石类吸附剂珠粒暴露至Ba₂⁺、阳离子和K⁺、阳离子用于离子交换...
生产“无粘结剂 BaKX 沸石类吸附剂”（步骤 16）。在优选的实施方式中，无粘结剂沸石类吸附剂颗粒的基本上所有的离子可交换 Na 位点与 Ba 和 K 交换，使得在无粘结剂 BaKX 沸石类吸附剂中 Na 的重量％优选小于 0.3％，最优选小于 0.11％（基于无挥发物的基底）；钡和钾离子对相等量交换，使得基于无挥发物的基底（不包括水）K 在 0.25 至 0.9 重量％范围内，优选 0.3 至 0.75 重量％，以无粘结剂 BaKX 沸石类吸附剂计 Ba 大于 31.6 重量％。

在另一个实施方式中，该交换可在一步骤内使用 Ba 和 K 的混合物，使得在无粘结剂 BaKX 沸石类吸附剂中 Ba 和 K 的重量百分数在上述范围内。可选择地，交换可顺序地发生，在每一步骤交换适当量的离子以产生具有上述范围内的 Ba 和 K 离子重量百分数的无粘结剂 BaKX 沸石类吸附剂。所述单一步骤和可选择的顺序步骤交换总体标记为图 1 中的步骤 16。虽然离子交换被描述为在沸石 X 附聚之后和在转化之后发生，但本发明并不局限于此。与 Ba 和 K 的交换可在沸石 X 附聚之前或在形成附聚物之后转化之前发生，但是可能仍然需要转化之后的一些离子交换，因为氯氧化钠用于将变高岭土转化为沸石。在沸石 X 中的阳离子交换能力计算描述于 Donald W. Breck 的“Zeolite Molecular Sieves: Structure, Chemistry and Use”，John Wiley & Sons, 1974。

然后，干燥无粘结剂 BaKX 沸石类吸附剂以固定其水含量（步骤 18）。就这一点而言，通过洗涤和干燥珠粒至 4 至 7％烧失量（在 900℃的 LOI）活化无粘结剂 BaKX 沸石类吸附剂。干燥通常通过热载体进行，优选在 175℃至 250℃的温度下。吸附剂的水含量在本文中依据公认的在 900℃的 LOI 测试表示。该 LOI 测试描述于 UOP 测试方法 No. UOP954-03（通过 ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA, 19428-2959 USA 提供）。

如上所述，可在珠粒形成阶段过程中，将玉米淀粉加入沸石 X 和粘土粘结剂混合物中。玉米淀粉的加入增加了吸附剂珠粒的中孔孔隙率和大孔孔隙率，如下所述中解释的。如本文中所使用的以及常规地，“大孔”定义为具有大于 50nm 的孔径的孔，“中孔”定义为具有在 2 和 50nm 之间的孔径的孔。大孔孔隙率和中孔孔隙率通过允许氯氧化钠转化溶液流遍粘结剂，而促进粘结剂的转化。大孔和中孔也助于改进无粘结剂 BaKX 沸石类吸附剂的传质速率。

根据本发明的示例性实施方式，无粘结剂 BaKX 沸石类吸附剂可用用于从混合的二甲苯回收对二甲苯的模拟的移动床吸附分离法中。吸附剂对二甲苯为选择性的。在如图 10 所示的一个示例性实施方式中，方法 40 包括使得混合物二甲苯在液相吸附条件下与无粘结剂 BaKX 沸石类吸附剂接触（步骤 42），使得对二甲苯吸附在无粘结剂 BaKX 沸石类吸附剂上（步骤 44），通过液相流，使得混合物的较低选择性吸附的部分从与无粘结剂 BaKX 吸附剂接触去除（步骤 46），和通过在脱附条件下使用脱附剂脱附纯化并回收对二甲苯（步骤 48）。脱附剂从吸附剂置换对二甲苯。吸附条件可包括 148 摄氏度至 177 摄氏度（300 华氏度至 350 华氏度）的温度范围，和需要以确保液相操作的大气压至 3447KPa (500 psig) 的压力范围，优选 690KPa (100 psig) 的压力（下文称为“液相吸附条件”）。优选的循环时间为 20-34 分钟。脱附条件优选包括与用于吸附相同的温度和压力。

在模拟的移动床吸附分离法中，这些步骤在独立的区中进行（如下所述），其在保持在一个或多个吸附室中的吸附剂珠粒内。图 2 显示了简化的四区吸附剂室 20。在模拟的移动床吸附分离法 40 中，使用进料 F 和脱附剂料流 D 的连续流，吸附和置换连续发生，并
允许连续的产出提取物E和残液料流R。在该体系中，是多个液体通路点从吸附剂室流下的渗进运动模拟了包含在吸附剂室20中的吸附剂的向上运动。

【0043】使用多个特别定义的术语来描述模拟的移动床法。术语“进料料流”或“进料入口料流”指通过其进料混合物传送至吸附剂的方法中的料流。进料混合物包含一种或多种提取物组分和一种或多种残液组分。“提取物组分”为被吸附剂较大选择性地保留的化合物或化合物类型，而“残液组分”或“残液材料”为被吸附剂选择性地保留的化合物或化合物类型。本文中进料混合物包含混合的二甲苯。如前所述，本文所用的“混合的二甲苯”指包括乙基苯（EB）、对二甲苯（PX）、间二甲苯（MX）和邻二甲苯（OX）的C₆芳族异构体的混合物。相应地，来自进料料流的乙基苯（EB）和间－和邻－二甲苯（分别为MX和OX）为残液组分和分出的二甲苯（PX）为提取物组分。术语“脱附剂”应通常指能置换提取物组分的材料。用于本文所述方法的合适的脱附剂包括对－二乙基苯（PDEB），但本发明并不局限于此。其他合适的脱附剂包括甲苯和1,2,3,4－四氢化萘。术语“脱附剂料流”或“脱附剂入口料流”表示通过其脱附剂传送至吸附剂的料流。术语“残液料流”或“残液出口料流”指通过其大部分残液组分从吸附剂除去的料流。残液料流的组成可从100%脱附剂变化至基本100%残液组分。术语“提取物料流”或“提取物出口料流”应指通过其已经被脱附剂置换的提取物材料从吸附剂除去的料流。提取物材料的组成可从100%脱附剂变化至基本100%提取物组分。

【0044】吸附剂的术语“选择性孔体积”被定义为从进料料流选择性地保留提取物组分的吸附剂的体积。吸附剂的术语“非选择性空隙体积”为从进料料流选择性地保留提取物组分的吸附剂的体积。该体积包括吸附剂的空穴（其可保留残液组分）和吸附剂颗粒之间的间隙的空隙体积。选择性孔体积和非选择性空隙体积通常表示为容积量。在测量对给定量的吸附剂的吸附物容积和平衡度时，待传送入操作区的所需流体合适的流量上重要。

【0045】当吸附剂“传送”进入操作区（后文中定义和描述的），其非选择性空隙体积与其选择性孔体积一起将液体送入该区中。非选择性空隙体积用于测定半导体在用以置换存在于非选择性空隙体积中的液流的吸附剂的逆流方向传送入相同区的流体的量。如果传送入区中的流体流量小于传送入该区内的吸附剂材料的非选择性空隙体积率，则存在通过吸附剂进入该区的液体净夹带。由于该夹带为存在于吸附剂的非选择性空隙体积中的液流，在大部分情况下，其包括较低选择性保留的进料组分。

【0046】在模拟的移动床法中，在任一时间四个液体通路点是液动的。进料入口料流、脱附剂入口料流、残液出口料流和提取物出口料流通过路可依照需要使用其他通路。与固体吸附剂的该模拟的向上运动一致的是占据吸附剂的空隙体积的液体的运动。因此逆流接触得以维持，从吸附剂室流下的液体流可由泵提供。由于活性液体通路点穿越循环，即，从吸附剂室顶部至底部，室循环泵30穿越需要不同流量的不同区。可提供程控流量控制器（未显示）以设置和调节这些流量。

【0047】活性液体通路点有效地将吸附剂室分成独立的区，每个区具有不同的功能。在本发明的实施方式中，典型地存在三个独立的操作区以进行该方法，虽然在一些情况下可使用任选的第四区。

【0048】参照图2，将吸附区22定义为位于进料入口料流和残液出口料流之间的吸附剂。在该区中，进料料流接触吸附剂，保留提取物组分，出现残液料流。由于通过区22的综合，为从传送入该区的进料料流到传送出该区的残液料流，当从进料入口至残液出口料流时在
该区内的流动被认为是在下游方向。

【0049】 对于在吸附区 22 中的流体流动，紧接的上游为纯化区 24。纯化区 24 被定义为在提取物出口料流和进料入口料流之间的吸附剂。在区 24 中发生的基本操作是通过吸附剂移位进入该区和置换任意留在吸附剂的选择性孔体积内的残液组分，从被传送入区 24 的任意残液组分的吸附剂的选择性空隙体积置换。通过在区 24 上游边界传送一部分离开脱附区 26 的提取物料流材料（在下文中讨论）进入区 24 以进行残液材料的置换而达到纯化。在区 24 中的流体流动是从提取物出口料流至进料入口料流的下游方向。随着吸附剂推动来自吸附剂的非选择性空隙体积的选择性空隙体积的残液组分进入区 22，对二甲苯进一步富集。

【0050】 对于区 24 中的流体流动，区 24 紧接的上游为脱附区 26。该脱附区 26 被定义为在脱附剂入口和提取物出口料流之间的吸附剂。吸附区 26 的功能是，使得被传送至该区的脱附剂置换在之前的操作循环中的之前与区 22 中的进料料流接触过程中被保留在吸附剂中的提取物组分。在区 26 中的流体流动基本上与区 22 和 24 同方向。

【0051】 在任选的示例性实施方式中，可能是缓冲区（区 28）。如果使用，被定义为在残液出口料流和脱附剂入口料流之间的吸附剂的该区，相对于至区 26 的流体流动位于紧接的上游。可使用区 28 保存用于脱附步骤的量的脱附剂，因为一部分的从区 22 除去的残液料流可被直接传送入区 28 以置换存在的脱附剂并使其流至脱附区 26。区 28 含有足够的脱附剂，使得可阻止存在于从区 22 被传送入区 28 的残液料流中的残液材料被传送入区 26 从而污染从区 24 除去的提取物料。在其中不使用任选的区 28 的情况下，必须小心监控从区 22 转入区 28 的残液料流，使得可阻止直接从区 22 到区 26 的流动（当在从区 22 流入区 26 的残液料流中存在可观量的残液材料时），以防止提取物出口料流被污染。

实施例

【0052】 以下为具有各种配制剂（配制剂 A-K）的无粘结剂 BaKX 沸石类吸附剂的例子，如下表 1 所示，根据示例性实施方式。仅为说明目的提供实施例，无意以任何方式限制本发明的各种实施方式。

【0053】 根据上述步骤使用 13X1 沸石粉末和高岭土粘土粘结剂制备这些实施例，所述 13X1 沸石粉末具有为 2.5 的二氧化硅；氧化铝摩尔比。

【0054】 表 1

【0055】
<table>
<thead>
<tr>
<th>配剂</th>
<th>沸石，wt%</th>
<th>高岭土粘土粘结剂，wt%</th>
<th>玉米淀粉，wt%</th>
<th>K，wt%</th>
<th>Ba，wt%</th>
<th>Na，wt%</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>82</td>
<td>18</td>
<td>0</td>
<td>0.3</td>
<td>32</td>
<td>0.1</td>
</tr>
<tr>
<td>B</td>
<td>88</td>
<td>12</td>
<td>0</td>
<td>0.3</td>
<td>32</td>
<td>0.2</td>
</tr>
<tr>
<td>C</td>
<td>82</td>
<td>18</td>
<td>5</td>
<td>0.3</td>
<td>33</td>
<td>0.1</td>
</tr>
<tr>
<td>D</td>
<td>88</td>
<td>12</td>
<td>5</td>
<td>0.3</td>
<td>33</td>
<td>0.1</td>
</tr>
<tr>
<td>E</td>
<td>82</td>
<td>18</td>
<td>0</td>
<td>1.0</td>
<td>32</td>
<td>0.2</td>
</tr>
<tr>
<td>F</td>
<td>88</td>
<td>12</td>
<td>0</td>
<td>1.0</td>
<td>32</td>
<td>0.1</td>
</tr>
<tr>
<td>G</td>
<td>82</td>
<td>18</td>
<td>5</td>
<td>1.0</td>
<td>32</td>
<td>0.1</td>
</tr>
<tr>
<td>H</td>
<td>88</td>
<td>12</td>
<td>5</td>
<td>1.0</td>
<td>32</td>
<td>0.1</td>
</tr>
<tr>
<td>I</td>
<td>85</td>
<td>15</td>
<td>2.5</td>
<td>0.7</td>
<td>33</td>
<td>0.1</td>
</tr>
<tr>
<td>J</td>
<td>85</td>
<td>15</td>
<td>2.5</td>
<td>0.7</td>
<td>33</td>
<td>0.1</td>
</tr>
</tbody>
</table>

[0056] 使用特定进料混合物进行本领域公知的脉冲/动态性能评估实验以测定各个配剂的吸附量和选择性。使用由在室的相对端具有入口和出口部分，体积为70cc的吸附剂室组成的动态测试装置。该室保持在温度控制装置内，此外，还使用压力控制设备以在恒定的预设压力下操作该室。将色谱分析设备附接至该室的出口线并用于“在线”分析离开吸附剂室的流出物料流。

[0057] 使用该装置和下述通用程序进行的脉冲测试用于测定各个吸附剂配制剂的选择性、传质和其他数据。通过使得脱附剂流经吸附剂室，用对－乙二基苯填充吸附剂至平衡。在方便的时间，注射稀释在脱附剂中的进料脉冲持续数分钟，所述进料含有已知浓度的未吸附的链烷示踪剂（正－壬烷）和已知浓度的特定芳族异构体（PX、EB、MX和OX）。注射后，重新开始脱附剂流动，在液体－固体色谱操作中洗脱示踪剂和芳族异构体。在在线色谱设备上分析流出物，出现相应组分峰的包封迹线（未显示）。(可选择地，可定期收集流出物样品并事后通过气相色谱分析确认。)也进行动态测试（也称作穿透测试）以测定吸附量、PX/PDEB选择性和传质特性。通过使得甲苯流经吸附剂室首先用甲苯（含有已知浓度的未吸附的链烷示踪剂（正－壬烷））填充吸附剂至平衡。在方便的时间,将该流切换至对二甲苯和对－乙二基苯混合物流。随着时间的过去，对二甲苯和对－乙二基苯通过。通过进料至吸附剂室的对二甲苯和对－乙二基苯的总量减去洗脱出的对二甲苯和对乙二基苯的总量的差，测定吸附量。

[0058] 从得自色谱迹线的信息，依据对提取物组分的容量函数，和相对于另一种异构体和脱附剂对一种异构体的选择性来评价吸附剂性能。对提取物组分吸附剂的容量越高,吸附剂越好。对特定吸附剂增加的容量使得可能减少对特定投料率的进料混合物分离提取物组分所需的吸附剂量。对特定吸附分离所需吸附剂量的减少降低了分离法成本。在经历某经济上所需的寿命的分离法中的在实际使用过程中应当维持吸附剂的良好的初始容量。
仅仅对一个试剂混合物组分相较于另一组分表示对异构体的选择性（B），也可在任意进料混合物组分和吸附剂之间表示。相对选择性在如下方程中表示：

选择性 \(B = \frac{[\text{体积} \% \text{ C}]_A - [\text{体积} \% \text{ D}]_A}{[\text{体积} \% \text{ C}]_B - [\text{体积} \% \text{ D}]_B} \).

其中 C 和 D 为进料料流的两个组分（以体积%表示），下标 A 和 B 分别表示吸附剂的和未吸附的相。因此 C 和 C 分别表示吸附剂（吸附的相）中组分 C 的浓度 D 和 D 分别表示吸附剂中和进料料流中组分 D 的浓度。当通过吸附剂床的进料料流在接触吸附剂床后不改变组成时，达到平衡条件。亦即，在未吸附的（进料料流）相和吸附的相（吸附剂）之间无材料的净转移发生时，达到平衡条件。

当两种组分的选择性达到 1.0 时，不存在另一种组分对另一组分选择被吸附剂吸附；亦即，互相比较，它们两者都被吸附（或不被吸附）至相同的程度。随着选择性（B）变得小于或大于 1.0，存在一种组分对另一组分选择被吸附剂吸附。当比较一种组分 C 相对组分 D 吸附剂的选择性时，大于 1.0 的（B）表明吸附剂内组分 C 吸附。小于 1.0 的（B）将表明组分 D 是优选吸附的，留下未吸附的相中的组分 C。当选择性达到 1.0 时，虽然从残液组分分离提取物组分理论上是可能的，但优选该选择性具有接近或超过 2 的值。选择性越高，越容易进行分离。更高的选择性允许在本方法中使用更少量的吸附剂。理想地，吸附剂相对于所有提取物组分应当具有等于或小于 1 的选择性，以使得所有提取物组分可作为一类被提取，所有被拒绝的残液组分进入残液料流。

对于表 1 中的每个配制剂进行的脉冲/动态性能评估实验的选择性和吸附量结果示于下表 2 中：

<table>
<thead>
<tr>
<th>配制剂</th>
<th>PX/EB</th>
<th>PX/MX</th>
<th>PX/OX Sel</th>
<th>Adsorb. Cap.</th>
<th>PX/PDEB</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.84</td>
<td>5.09</td>
<td>4.55</td>
<td>11.46</td>
<td>1.36</td>
</tr>
<tr>
<td>B</td>
<td>1.84</td>
<td>5.32</td>
<td>4.75</td>
<td>11.08</td>
<td>1.39</td>
</tr>
<tr>
<td>C</td>
<td>1.87</td>
<td>5.18</td>
<td>4.65</td>
<td>11.37</td>
<td>1.41</td>
</tr>
<tr>
<td>D</td>
<td>1.86</td>
<td>5.28</td>
<td>4.88</td>
<td>10.61</td>
<td>1.35</td>
</tr>
<tr>
<td>E</td>
<td>1.80</td>
<td>5.12</td>
<td>4.59</td>
<td>11.34</td>
<td>1.28</td>
</tr>
<tr>
<td>F</td>
<td>1.84</td>
<td>5.37</td>
<td>4.95</td>
<td>10.93</td>
<td>1.30</td>
</tr>
<tr>
<td>G</td>
<td>1.84</td>
<td>5.30</td>
<td>4.70</td>
<td>11.01</td>
<td>1.32</td>
</tr>
<tr>
<td>H</td>
<td>1.84</td>
<td>5.42</td>
<td>5.03</td>
<td>10.51</td>
<td>1.30</td>
</tr>
<tr>
<td>I</td>
<td>1.83</td>
<td>5.17</td>
<td>4.76</td>
<td>10.52</td>
<td>1.33</td>
</tr>
<tr>
<td>J</td>
<td>1.83</td>
<td>5.31</td>
<td>4.77</td>
<td>10.51</td>
<td>1.33</td>
</tr>
<tr>
<td>K</td>
<td>1.84</td>
<td>5.20</td>
<td>4.70</td>
<td>10.58</td>
<td>1.29</td>
</tr>
</tbody>
</table>
其中：

PX/EB Sel = 对二甲苯 / 乙基苯选择性
PX/MX Sel = 对二甲苯 / 间二甲苯选择性
PX/OX Sel = 对二甲苯 / 邻二甲苯选择性

Adsorb. Cap. = 吸附量

PX/PDEB Sel = 对二甲苯 / 对 - 二乙基苯（脱附剂）选择性

基于从这些实验得到的可接受的数据，根据本发明的示例性实施方式，开发平衡 SMB 法建模以预测方法性能和无粘结剂 BaKX 吸附剂的吸附剂产率。该建模的结果示于图 3-7 中。关于用于计算产率的方法建模更详细的信息在 Marco Mazzotti 等人“Robust Design of Countercurrent Adsorption Separation Processes；Multicomponent Systems”，AIChE Journal，1994 年 11 月，Vol. 40, No. 11 中提供。

图 3 显示了无粘结剂 BaKX 吸附剂的配制剂 A-K 中 K 的水平与脱附剂 / 进料比（本文中“D/F 比”）之间的相互关系。D/F 比是重要的工艺参数，对吸附分离法的操作成本具有强烈影响。D/F 比为在模拟的移动床分离法中脱附剂料流量对进料料流量的比。D/F 比转化为加工给定量的进料料流所需的脱附剂的量。优选最低 D/F 比。D/F 越低，从吸附剂置换吸附的对二甲苯需要的脱附剂越少，即，脱附剂需要量有明显减少（相对于加工的进料）。除了显著提高吸附法的产率以外，这还转化为减少的操作成本。虽然需要降低 D/F 比，重要的是可加工的进料量不受影响。

如图 3 中所示，随着增大的 K 水平，D/F 比出乎意料地减小，特别是在配制剂 C 中。配制剂 C 既具有如下所述的高产率，又具有低 D/F，两者都是重要的吸附剂特性。实验的回归 / 设计（DOE）分析表如下：

<table>
<thead>
<tr>
<th>源</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>回归</td>
<td>1</td>
<td>0.0095911</td>
<td>0.0095911</td>
<td>9.18338</td>
<td>0.014</td>
</tr>
<tr>
<td>误差</td>
<td>9</td>
<td>0.0093996</td>
<td>0.0010444</td>
<td></td>
<td></td>
</tr>
<tr>
<td>总值</td>
<td>10</td>
<td>0.0189907</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

其中：

S = 源 = 表示差异的源，来自因子、相互作用或误差；
R^2 = 回归系数；
R^2(adj) = 回归系数（经调节的）；
DF = 来自每个源的自由度。如果因子具有三个水平，则自由度为 2 (n-1)。如果总共有 30 次观察，则自由度为 29 (n-1)；
SS = 组间平方和（因子）和组内平方和（误差）；
分别参照图 4 和 5，将无粘结剂 BaKX 沸石类吸附剂（由配制剂 C 代表）的 D/F 比和产率与由上所述的氧方法制得的无粘结剂 BaKX2.0 吸附剂的 D/F 比和产率相比较。所含 2.0 指该对比吸附剂中的沸石 X 的二氧化硅/氧化铝摩尔比。

如图 4 中所示，算得二氧化硅/氧化铝摩尔比为 2.5 的无粘结剂 BaKX 吸附剂（参照图 3 中的“配制剂 C”）的 D/F 比低于无粘结剂 BaKX2.0 吸附剂（二氧化硅/氧化铝摩尔比为 2.0）的 D/F 比。更特别的是，显示无粘结剂 BaKX 吸附剂（配制剂 C）的 D/F 比为 1.0，与为 1.75 的 BaKX2.0 吸附剂的 D/F 比相比较。因此，使用二氧化硅/氧化铝摩尔比为 2.5 的无粘结剂 BaKX 吸附剂时，比使用无粘结剂 BaKX2.0 吸附剂时，加工给定量的进料所需的吸附剂量更多。

图 5 中示出使用给定的 m_1/m_2 斜面的配制剂 C 和无粘结剂 BaKX2.0 吸附剂的产率（进料速率）比较。m_1/m_2 斜面代表可经过在区 22 和 24 中吸附剂的固定床加工的进料（图 2）。进料流量（并因此是产率）与 m 共（区 22 中的质量流量比）m_2（区 24 中的质量流量比）成比例，如方程 F = m_1/m_2 所示。图 5 的 y 轴代表 m_1，区 22 中的质量流量比（净流体质量流量/吸附的相质量流量）。图 5 的 x 轴代表 m_2，区 24 中的质量流量比（净流体质量流量/吸附的相质量流量）。如果相对于在区 24 中的流量，在区 22 中有更高的流量，可加工更多进料，产率增加。因此，m_1 和 m_2 之间的差距越大，吸附剂的产率越高，即，每单位体积吸附剂在吸附条件下可加工更多进料，所需吸附条件为 148-177 摄氏度（300-350 华氏度）和 20-34 分钟的循环时间。产率（EQT）定义为可被每单位体积吸附剂加工在在提取物中达到 100% 对二苯乙炔和回收的进料量。二氧化硅/氧化铝摩尔比为 2.5 的配制剂 C 相对无粘结剂 BaKX2.0 吸附剂表现出大于 23% 的产率性能优势。

覆盖的轮廓图 6 通过指定为 0.27 至 0.28g/cc 的可接受的产率（EQT）范围（即基于平衡性质的进料速率，其将被最大化）和为 5.08cm 至 6.604cm（2.0 至 2.6 英寸）的可接受的 PX HETP 范围（等理论板高度，其将被最小化）作图。等理论板高度（HETP）的定义解释于文献中，如 Douglas Ruthven 在“Principles of Adsorption and Adsorption Processes”（John Wiley & Sons, Inc., 1984）中的著作。其用以估计和比较不同吸附剂的传质速率。更低的 HETP 值意味着更好的传质速率。因此，当在较短的循环时间下操作 SMB 方法时，保持具有低 HETP 值的吸附剂的性能优势。仍参见图 6，依据两个因子或变量：K 水平（wt%）和沸石 X 的 wt%，区域 30 为可行区域。将第三因子或变量，玉米淀粉水平设定在固定水平，在图 6 中，将玉米淀粉水平设定在最高水平（5%）。图 6 中的区域 30 为两个变量的 K 水平的重量%和沸石 X 的重量%交叠的区域。该区域代表优化的无粘结剂 BaKX
沸石类吸附剂配制剂,其得到同时存在的高产率和传质速率值。可见,配制剂C（来自表1）落入最接近该区域。

[0093] 参见图7,本多种吸附剂的传质速率通过进行脉冲/动态测试结果的PHET分析来估计。评估的吸附剂包括参比非-无粘结剂沸石类吸附剂,其可购得,用于液相吸附分离法中（在图7中被称为“Ref”）,为分析的目的被多次测试的无粘结剂BaKX吸附剂的配制剂
C(表1)，以及所有配制剂A-K全体。传质速率的曲线型图分析（HETP）表明，无粘结剂BaKX
吸附剂的配制剂C的中值传质速率基本等于配制剂A-K（总体测试）的中值传质速率,并低于参比市购非-无粘结剂沸石类吸附剂的中值传质速率。配制剂C的平均传质速率低于参
比吸附剂和配制剂A-K全体的平均传质速率。平均传质速率用点标记。

[0094] 图8显示了吸附剂的磨耗（通过吸附剂细屑%测定）与无粘结剂BaKX吸附剂的配制剂A-K的沸石X的wt%之间的关系。为调查根据本发明的示例性实施方式的无粘结
剂BaKX沸石类吸附剂的磨耗,进行实验室级别的磨耗测试。评估过滤过程中吸附剂的磨耗
和后续细屑释放。细屑的百分数越低,吸附剂的磨耗越低。该测试涉及在摇动台上将无粘
结剂BaKX沸石类吸附剂浸入水中。在环境温度和压力下摇动水和吸附剂30分钟。摇动之
后，从吸附剂通过过滤除去包含细屑的水。干燥收集到的细屑并称重以测定产生的细屑
的百分数。在图8的y轴表示。水磨耗损失对应于吸附剂的机械强度。磨耗起因于缺少机械
强度。通过磨耗损失吸附剂导致增加的操作成本和更短的吸附剂寿命。

[0095] 磨耗测试的结果示于图8中。回归方程为：

[0096] 水磨耗 = -27.28+沸石X的0.3517%

[0097] S = 0.858229 R² = 57.3% R²(adj) = 52.6%。

[0098] 方差分析：

<table>
<thead>
<tr>
<th>源</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>回归</td>
<td>1</td>
<td>8.9042</td>
<td>8.9042</td>
<td>12.09</td>
<td>0.007</td>
</tr>
<tr>
<td>误差</td>
<td>9</td>
<td>6.6290</td>
<td>0.73656</td>
<td></td>
<td></td>
</tr>
<tr>
<td>总值</td>
<td>10</td>
<td>15.5332</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0100] P的值表明水磨耗和沸石X含量之间显著相关。有＞95%的置信度存在相关。

[0101] 磨耗结果表明,随着无粘结剂BaKX沸石类吸附剂中的沸石X的重量百分数增加,
磨耗损失增加。换句话说,随着无粘结剂BaKX沸石类吸附剂中的高岭土粘土粘结剂水平
从10%增加至20%，磨耗损耗减少，从而表明随着粘结剂水平增加吸附剂增加的机械强度。随着增加的机械强度，吸附剂的寿命增加，导致更低的资本和操作成本，以及稳定的工艺操作。
因此，具有更低沸石X的wt%和更高粘结剂-转化的沸石（来自高岭土粘土粘结剂的转化）百分数的无粘结剂BaKX沸石类吸附剂更耐磨耗。

[0102] 孔体积测量和平均孔尺寸测量通过压汞法进行,所述压汞法如UOP测试方法
No.UOP578-02中所述（通过ASTM International,100 Barr Harbor Drive,P.O.Box C700,
West Conshohocken,PA,19428-2959 USA提供）。压汞测量中孔和大孔,但不测量微孔。
用82％沸石(Z)5％玉米淀粉(CS)制备的无粘结剂吸附剂（配制剂C和用82％沸石(Z)
无玉米淀粉制备的无粘结剂BaKX吸附剂（配制剂A）在度透计（其也包含吸附剂）内在某
体积的水银上经受增加的液压。随着在在汞上压力的增大，汞开始侵入或渗透入吸附剂孔中，其最低压力下首先填充最大孔。当压力从略高于大气压至最大 413,688kPa (60,000psi) 逐渐上升时，收集关于侵入的汞对压力的数据。将压力转化为等价的圆柱孔径，且将特定范围内的侵入的总汞体积转化为总孔体积，其平均为平均孔径。结果显示于图 9 中。使用玉米淀粉的配制剂 C 显示出 0.29cc/g 的总孔体积，而不使用玉米淀粉的配制剂 A 显示出 0.25cc/g 的更低的总孔体积。图 9 也显示出，对不使用玉米淀粉的吸附剂中的那些相比，使用玉米淀粉的吸附剂中更大体积的中孔和大孔。孔体积的 11% 来自中孔，孔体积的 89% 来自大孔。使用玉米淀粉的吸附剂的平均孔径为 166nm，大于不使用玉米淀粉的吸附剂中的平均孔径（164nm）。更高孔体积（更高孔隙率）和更大孔尺寸将导致更快的传质速率。X 轴为对数形式以减小 x 轴的长度。

[0103] 由上可知，应当理解本文所述的无粘结剂 BaKX 沸石类吸附剂的示例性实施方式增加吸附分离法的产率并通过使用更少的吸附剂和更少的脱附剂减少操作成本。与现有技术的吸附剂相比，对每吨产品，本发明的吸附剂需要更少脱附剂循环。更少脱附剂循环意味着对每吨产品更低的物料消耗。更高产率意味着使用固定的吸附剂体积可生产更多对二甲苯。此外，无粘结剂 BaKX 沸石类吸附剂表现出更好的传质性质和机械强度。

[0104] 虽然在本发明的上述详细中已经提出至少一个示例性实施方式，应当理解存在大量变体。应当理解示例性实施方式仅为实例，无意以任何方式限制本发明的范围、适用性、或结构。更确切地说，本实施为本领域技术人员实施本发明的示例性实施方式提供了方便的路线图，应当理解在示例性实施方式中所述的功能和排列可进行多种变化，而不背离在随附权利要求及其等价物中所明的本发明的范围。
图 1
图 2
线性回归图
\[\frac{D}{F} = 1.09065 - 0.101838 K \]
\[S = 0.0323172 \quad R-SQ = 50.5\% \quad R-SQ(ADJ) = 45.0\% \]

图 3

D/F 的比较

图 4
预计的 $m_1 - m_2$ 平面的比较

![图5]

保留值：玉米淀粉：5.0

![图6]
图 7
拟合的线图

水磨耗 = -27.28 + 0.3517 沸石

图 8
无粘结剂吸附剂孔尺寸分布

图 9
使混合二甲苯与吸附剂接触

将二甲苯吸附在吸附剂上

去除混合物中低选择性吸附的部分

纯化并回收二甲苯