wo 2007/068568 A 1 |10 0 00 OO 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Pu

21 June 2007 (21.06.2007)

blication Date

(10) International Publication Number

WO 2007/068568 Al

(51) International Patent Classification:

GOGF 21/24 (2006.01)

(21) International Application Number:

PCT/EP2006/068890

(22) International Filing Date:

24 November 2006 (24.11.2006)

(25) Filing Language:
(26) Publication Language:

(30) Priority Data:
11/304,971

(71) Applicant (for all designated States except US): INTER-
NATIONAL BUSINESS MACHINES CORPORA-
TION [US/US]; New Orchard Road, Armonk, New York

10504 (US).

(71) Applicant (for MG only): IBM UNITED KINGDOM
LIMITED [GB/GB]; PO Box 41, Portsmouth, Hampshire

PO6 3AU (GB).

English
English

15 December 2005 (15.12.2005)

Us

(72)
(75)

(74)

(81)

Inventors; and

Inventors/Applicants (for US only): ARROYO, Diana,
Jeanne [US/US]; 8204 Stillwood Lane, Austin, Texas
78757-7635 (US). BLAKLEY 111, George, Robert
[US/US]; 914 Blue Spring Circle, Round Rock, Texas
78681 (US). JAMSEK, Damir [US/US]; 7603 Basil
Cove, Austin, Texas 78750 (US). MUPPIDI, Sridhar
[IN/US]; 6623 Yaupon Drive, Austin, Texas 78759 (US).
WILLIAMS, Ronald, Becker [US/US]; 11035 Crossland
Drive, Austin, Texas 78726 (US). SIMON, Kimberly,
DaShawn [US/US]; 5400 West Parmer Lane, #936,
Austin, Texas 78726 (US).

Agent: LITHERLAND, David, Peter; IBM United
Kingdom Limited, Intellectual Property lLaw, Hursley
Park, Winchester Hampshire SO21 2JN (GB).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS,
JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS,

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR ASSOCIATING SECURITY INFORMATION WITH INFORMATION OBJECTS IN
A DATA PROCESSING SYSTEM

START
—
RETRIEVE LABELSET FOR SOURCE
1210 Egﬂfggggg"ﬁ;&oa PROTECTED ENVIRONMENT FROM [~1280
PROTEGTED ENVIRONMENT DATA
PROTECTED ENVIRONMENT STRUCTURE
!
RETRIEVE LABELSETS FOR
PN sounce o T ©EAGE SET DATA STRUCTURE.
PROTECTED ENVIRONMENT
FOR RESOURCE USING HASH P1 20
! VALUE AND SOURCE PROTECTED
1230~ _ RETRIEVE RESOURCE ENVIRONMENT LABELSET
CONTENT FROM SOURCE
PROTECTED ENVIRONMENT —‘——’l
T l PARSE LABELSETS TO |/1300
1240~ | GENERATE HASTTVALUE IDENTIFY SECURITY POLICIES
BASED ON RETRIEVED]
RESOURCE CONTENT IDENTIFY POLICY
T MODULES ASSOCIATED N 1310
PERFORM LOOKUP WITH SECURITY POLICIES
OPERATION IN RESOURCE]
12501 LABELSET DATA STRUCTURE SEND LABELSETS TO
(HASH TABLE) USING HASH IDENTIFIED POLICY MODULES 1320
VALUE AS AN INDEX T
POLICY MODULES APPLY
VALID ‘o SECURITY POLICIES TO LABELSETS |_, 5
ENTRY IN HASH TABLE TO GENERATE DECISIONS
FOUND? v
1260 COMBINE DECISIONS TO GENERATE
A SINGLE DECISION TO GRANT OR
RETRIEVE LABELSET FOR DENY INFORMATION FLOW REQuEST | 1340
1270 RESOLRCE FROM
IDENTIFIED ENTRY
I GRANT
INFORMATION FLOW
REQUEST?
BLOCK RESOURCE OR 1350
INFORMATION FLOW FROM
1370~ _BEING SENT TO TARGET PASS RESOURCE OR ALLOW
PROTECTED ENVIRONMENT INFORMATION FLOW TO TARGET [~-13g60
AND RETURN ERROR MESSAGE PROTECTED ENVIRONMENT

END

(57) Abstract: In a method for authorizing
information flows based on security information
associated with information objects, a hash key
is generated based on an information object and a
lookup operation is performed in a hash table based
on the hash key. A determination is made whether an
entry in the hash table at an index corresponding to
the hash key identifies a labelset for the information
object. A labelset, identifying a sensitivity of the
information object, is stored in the entry at the index
corresponding to the hash key for the information
object if a labelset for the information object is not
identified in the entry in the hash table. Information
flows involving the information object are authorized
based on a lookup of the labelset associated with the
information object in the hash table. The hash table
may be a multidimensional hash table.

WO 2007/068568 Al

LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY,
MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,
RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

SYSTEM AND METHOD FOR ASSOCIATING SECURITY INFORMATION
WITH INFORMATION OBJECTS IN A DATA PROCESSING SYSTEM

BACKGROUND

Technical Field:

The present invention relates generally to an improved data processing
system and method. More specifically, the present invention is directed
to a system and method for associating security information with

information objects in a data processing system.

Description of Related Art:

A reference monitor is an authorization and enforcement mechanism for
authorizing a source to perform a particular action on a target. Many
reference monitors make use of access control lists (ACLs) for performing
such authorization. These ACLs identify, for each source, the targets
that the source may access and the particular types of access that source
is authorized to have, i.e. what actions the source may perform on the

target.

Most modern reference monitors and security systems make authorization
decisions by comparing “subject” security attributes and “target” security
attributes against a set of security policy rules. Different data types
are often assigned to the subject and target security attributes. One
example illustrating these different data types is provided in the ISO
10181-3 Access Control Framework described at www.opengroup.org
/onlinepubs/009609199/chap3.htm#tagfcih 2. In this exemplary
architecture, four different roles, or data types are provided, i.e.
initiators (sources), targets, access control enforcement functions, and
access control decision functions. This type difference between subject
security attributes and target security attributes adds unnecessary
complexity to the security policy evaluation process in that each possible
combination of subject and target security attributes must be provided
with a security policy rule in order to be evaluated correctly during

runtime.

Additionally, the target security attribute data types are typically based
on the set of operations which may be performed on the target resource.

Thus, the target security attribute type creates an unnecessary linkage

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

between the structure of the application which manages target resources
and the structure of the security policy evaluation subsystem. This in
turn creates unnecessary complexity in the security policy evaluation
subsystem since the security policy must now take into consideration the
semantics of data manipulation by the applications and the semantics of

security policy evaluation.

Moreover, distinguishing the data types of subject security attributes and
target security attributes creates an asymmetry in the security policy
which restricts the security evaluation subsystem to control transfers
from the subject (source) to the target, i.e. the object that will be
receiving information, but does not allow it to control transfers from the
target to the source. In other words, separate policies must be
established for each type of transfer between each pair of subject and
target, thereby leading to even more complexity of the security policy

evaluation subsystem.

For example, assume that there are two Objects A and B. In order to cover
all possible transfers between Objects A and B, four policies must be
established and evaluated when controlling transfers of information: (1) A
can {(or cannot) write to B, (2) A can (or cannot) read from B, (3) B can

(or cannot) read from A, and (4) B can {(or cannot) write to A.

Many different mechanisms have been devised for controlling the transfer
of information between elements of a data processing system. For example,
in U.S. Patent No. 6,766,314 issued to Rodney Burnett, entitled “Method
for Attachment and Recognition of External Authorization Policy on File
System Resources,” an external security database containing auxiliary
attributes for objects in a file system is generated. During a file
access attempt, an identifier of the file is matched against a set of
protected files in the security database. If the file is not in the
database, then there is no protection of the file and the requester is
allowed to access the file. If there is a match in the database, the file
is protected and a determination as to whether a requester will be allowed
to access the file is made based on a set of security rules defined in the

external security attribute.

With the mechanism of U.S. Patent No. 6,766,314, a resource manager
comprises components for retrieving a security policy, components for
intervening in access to the files to be protected, and components

collecting access conditions such as the accessing user and the attempted

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

action. Based on the security policy, the file being accessed, and the
access conditions, a decision is rendered regarding authorization to

access the file.

Thus, in the mechanism of U.S. Patent No. 6,766,314, authorization to
access a file is tied to the identity of the user and the action being
attempted. Thus, the actions being performed are tied to the entities
performing the actions and the file being accessed. As mentioned above,
this creates an unnecessary linkage between the structure of the
application which manages the files and the structure of the security

policy evaluation subsystem.

A similar mechanism is described in U.S. Patent No. 5,765,153. 1In U.S.
Patent No. 5,765,153, a reference monitor is provided which enforces
policies based on subject identities, object names, and actions defined by
the interface of the protected object. Again, by basing authorization
decisions on the identities of the entities and the types of actions being
performed on one identified entity by another identified entity, an
unnecessary linkage is generated that complicates the implementation of a

security policy evaluation subsystem.

SUMMARY

In view of the above, it would be beneficial to have a mechanism for
simplifying the implementation of a security structure with regard to
transfers of information between elements of a data processing system. In
particular, it would be beneficial to have a system and method for
controlling information flows by applying security policies to a common
security attribute type such that the actions involved in the transfers of
information do not complicate the application of the security policies.

The illustrative embodiments provide such a system and method.

In one illustrative embodiment, a method for authorizing information flows
between devices of the data processing system is provided in which
security information is associated information objects. The method may
comprise generating a hash key based on an information object, performing
a lookup operation in a hash table based on the hash key, and determining
if an entry in the hash table at an index corresponding to the hash key
identifies a labelset for the information object. The method may further
comprise storing a labelset, identifying a sensitivity of the information

object, in the entry at the index corresponding to the hash key for the

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

information object if a labelset for the information object is not
identified in the entry in the hash table. The method may further
comprise authorizing information flows involving the information object
based on a lookup of the labelset associated with the information object

in the hash table.

The hash table may be a multidimensional hash table and the hash key may
comprise a plurality of hash keys generated by a plurality of hash

functions, at least one hash function and hash key for each dimension of

the multidimensional hash table. The hash key may be generated using at
least one hash function on content of the information object. The
information object may be a computer file. The hash table may be stored

in a trusted computing base which is separate from a source of the

information object.

Authorizing information flows involving the information object based on a
lookup of the labelset associated with the information object in the hash
table may comprise receiving a request for authorization of an
information flow involving the information object from a first device to a
second device and retrieving contents of the information object from a
source of the information object. Authorizing information flows may
further comprise generating a hash key based on the contents of the
information object, performing a lookup operation in the hash table based
on the hash key to identify a labelset associated with the information
object, and performing one or more authorization operation based on the

labelset associated with the information object.

Performing one or more authorization operations may comprise comparing the
labelset associated with the information object and a labelset of a source
of the information object with a labelset associated with a target of the
information flow. Comparing the labelset associated with the information
object and the labelset of the source with a labelset associated with a
target of the information flow may comprise performing at least one set
theory operation on the labelsets. The at least one set theory operation
may be performed by at least one security policy module identified in the
labelset associated with the information object and the labelset
associated with the target of the information flow. Results generated by
each of the at least one security policy modules may be combined to
generate a single result indicating whether the information flow is

authorized.

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

Storing a labelset, identifying a sensitivity of the information object,
in the entry at the index corresponding to the hash key for the
information object may comprise storing a labelset associated with a
source of the information object in the entry in association with the
information object. The labelset may comprise a labellist element
providing one or more labels of the labelset. The labels in the labellist
may be comprised of a policy type and a value. The policy type may
identify a security policy to be applied to the labelset and the value may
identify a value to be used in evaluating the security policy identified
by the policy type. Each labelset may further comprise a version element
indicating a version of the labelset and a count element indicating a

number of labels included in the labelset.

In another illustrative embodiment, a computer program product comprising
a computer usable medium including a computer readable program is
provided. The computer readable program, when executed on a computing
device, may cause the computing device to generate a hash key based on an
information object, perform a lookup operation in a hash table based on
the hash key, and determine if an entry in the hash table at an index
corresponding to the hash key identifies a labelset for the information
object. The computer readable program may further cause the computing
device to store a labelset, identifying a sensitivity of the information
object, in the entry at the index corresponding to the hash key for the
information object if a labelset for the information object is not
identified in the entry in the hash table. The computer readable program
may further cause the computing device to authorize information flows
involving the information object based on a lookup of the labelset
associated with the information object in the hash table. The computer
readable program may also cause the computing device to perform the
various other operations outlined above with regard to the method

illustrative embodiment.

In yet another illustrative embodiment, a system or apparatus for
authorizing information flows between devices of the data processing
system is provided. The system or apparatus may comprise an information
flow mediator and a labelset storage device coupled to the information
flow mediator. The information flow mediator may generate a hash key
based on an information object, perform a lookup operation in a hash table
stored in the labelset storage device based on the hash key, and may
determine if an entry in the hash table at an index corresponding to the

hash key identifies a labelset for the information object. The

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

information flow mediator may further store a labelset, identifying a
sensitivity of the information object, in the entry at the index
corresponding to the hash key for the information object if a labelset for
the information object is not identified in the entry in the hash table.
The information flow mediator may further authorize information flows
involving the information object based on a lookup of the labelset

associated with the information object in the hash table.

The information flow mediator may authorize information flows involving
the information object based on a lookup of the labelset associated with
the information object in the hash table by receiving a request for
authorization of an information flow involving the information object from
a first device to a second device, retrieving contents of the information
object from a source of the information object, generating a hash key
based on the contents of the information object, performing a lookup
operation in the hash table based on the hash key to identify a labelset
associated with the information object, and performing one or more
authorization operation based on the labelset associated with the

information object.

The information flow mediator may perform one or more authorization
operation by comparing the labelset associated with the information object
and a labelset of a source of the information object with a labelset
associated with a target of the information flow. The information flow
mediator may compare the labelset associated with the information object
and the labelset of the source with a labelset associated with a target of
the information flow by performing at least one set theory operation on

the labelsets.

The at least one set theory operation may be performed by at least one
security policy module identified in the labelset associated with the
information object and the labelset associated with the target of the
information flow. Results generated by each of the at least one security
policy module may be combined to generate a single result indicating

whether the information flow is authorized.

The information flow mediator may store a labelset in the entry at the
index corresponding to the hash key for the information object by storing
a labelset associated with a source of the information object in the entry

in association with the information object.

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

These and other features and advantages of the present invention will be
described in, or will become apparent to those of ordinary skill in the
art in view of, the following detailed description of the exemplary

embodiments of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention will now be described, by way of

example only, and with reference to the following drawings:

Figure 1 is an exemplary block diagram of a distributed, or network, data
processing system in which exemplary aspects of the illustrative

embodiments may be implemented;

Figure 2 is an exemplary block diagram of a server computing device in
which exemplary aspects of the illustrative embodiments may be

implemented;

Figure 3 1is an exemplary block diagram of a client computing device in
which exemplary aspects of the illustrative embodiments may be

implemented;

Figure 4 is an exemplary diagram of an architecture in accordance with an

illustrative embodiment;

Figure 5 is an exemplary diagram of a reference monitor in accordance with

an illustrative embodiment;

Figure ¢ is an exemplary diagram illustrating an exemplary definition of a

labelset in accordance with one illustrative embodiment;

Figure 7A is an exemplary diagram of a first labelset in accordance with

one illustrative embodiment;

Figure 7B 1is an exemplary diagram of a second labelset in accordance with

one illustrative embodiment;

Figure 8 is an exemplary diagram illustrating a first example situation in
which a hash table is used for associating labelsets with resources to
determine whether to grant or deny an information flow request in

accordance with one illustrative embodiment;

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

Figure 9 is an exemplary diagram illustrating a second example situation
in which a hash table is used for associating labelsets with resources to
determine whether to grant or deny an information flow request in

accordance with one illustrative embodiment;

Figure 10 is a flowchart outlining an exemplary operation for granting
tokens to applications, devices, systems, etc. so as to establish a

protected environment;

Figure 11 is a flowchart outlining an exemplary operation for associating
resources with labelsets in accordance with an illustrative embodiment;

and

Figure 12 is a flowchart outlining an exemplary operation for
authenticating an information flow request in accordance with one

illustrative embodiment.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The illustrative embodiments are directed to mechanisms for improving the
implementation of security in the flow of information between a source and
a target. The mechanisms of the illustrative embodiments may be
implemented on information flows that occur entirely within a single
computing device or may be implemented on information flows between
computing devices, such as in a distributed or networked data processing
system. Therefore, Figures 1-3 hereafter are provided as examples of data
processing environments in which the mechanisms of the illustrative
embodiments may be implemented. Figures 1-3 are only illustrative and are
not intended to state or imply any limitation with regard to the types of
data processing environments in which the mechanisms of the illustrative
embodiments may be implemented. To the contrary, many modifications may
be made to the depicted data processing environments without departing

from the spirit and scope of the present invention.

With reference now to the figures, Figure 1 depicts a pictorial
representation of a network of data processing systems in which exemplary
aspects of the illustrative embodiments may be implemented. Network data
processing system 100 is a network of computers in which the present
invention may be implemented. Network data processing system 100 contains

a network 102, which is the medium used to provide communications links

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

between various devices and computers connected together within network
data processing system 100. Network 102 may include connections, such as

wire, wireless communication links, or fiber optic cables.

In the depicted example, server 104 is connected to network 102 along with
storage unit 106. In addition, clients 108, 110, and 112 are connected to
network 102. These clients 108, 110, and 112 may be, for example,
personal computers or network computers. In the depicted example, server
104 provides data, such as boot files, operating system images, and
applications to clients 108-112. (Clients 108, 110, and 112 are clients to
server 104. Network data processing system 100 may include additional
servers, clients, and other devices not shown. In the depicted example,
network data processing system 100 is the Internet with network 102
representing a worldwide collection of networks and gateways that use the
Transmission Control Protocol/Internet Protocol (TCP/IP) suite of
protocols to communicate with one another. At the heart of the Internet
is a backbone of high-speed data communication lines between major nodes
or host computers, consisting of thousands of commercial, government,
educational and other computer systems that route data and messages. Of
course, network data processing system 100 also may be implemented as a
number of different types of networks, such as for example, an intranet, a
local area network (LAN), or a wide area network (WAN). Figure 1 is
intended as an example, and not as an architectural limitation for the

present invention.

Referring to Figure 2, a block diagram of a data processing system that
may be implemented as a server, such as server 104 in Figure 1, is
depicted in which exemplary aspects of the illustrative embodiments may be
implemented. Data processing system 200 may be a symmetric multiprocessor
(SMP) system including a plurality of processors 202 and 204 connected to
system bus 206. Alternatively, a single processor system may be employed.
Also connected to system bus 206 is memory controller/cache 208, which
provides an interface to local memory 209. 1I/0 Bus Bridge 210 is
connected to system bus 206 and provides an interface to I/0 bus 212.
Memory controller/cache 208 and I/0 Bus Bridge 210 may be integrated as
depicted.

Peripheral component interconnect (PCI) bus bridge 214 connected to I/0
bus 212 provides an interface to PCI local bus 216. A number of modems
may be connected to PCI local bus 216. Typical PCI bus implementations

will support four PCI expansion slots or add-in connectors.

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

10

Communications links to clients 108-112 in Figure 1 may be provided
through modem 218 and network adapter 220 connected to PCI local bus 216

through add-in connectors.

Additional PCI bus bridges 222 and 224 provide interfaces for additional
PCI local buses 226 and 228, from which additional modems or network
adapters may be supported. In this manner, data processing system 200
allows connections to multiple network computers. A memory-mapped
graphics adapter 230 and hard disk 232 may also be connected to I/0 bus
212 as depicted, either directly or indirectly.

Those of ordinary skill in the art will appreciate that the hardware
depicted in Figure 2 may vary. For example, other peripheral devices,
such as optical disk drives and the like, also may be used in addition to
or in place of the hardware depicted. The depicted example is not meant

to imply architectural limitations with respect to the present invention.

The data processing system depicted in Figure 2 may be, for example, an
IBM eServer pSeries system, a product of International Business Machines
Corporation in Armonk, New York, running the Advanced Interactive

Executive (AIX) operating system or LINUX operating system.

With reference now to Figure 3, a block diagram illustrating a data
processing system is depicted in which exemplary aspects of the
illustrative embodiments may be implemented. Data processing system 300
is an example of a client computer. Data processing system 300 employs a
peripheral component interconnect (PCI) local bus architecture. Although
the depicted example employs a PCI bus, other bus architectures such as
Accelerated Graphics Port (AGP) and Industry Standard Architecture (ISA)
may be used. Processor 302 and main memory 304 are connected to PCI local
bus 306 through PCI Bridge 308. PCI Bridge 308 also may include an
integrated memory controller and cache memory for processor 302.
Additional connections to PCI local bus 306 may be made through direct

component interconnection or through add-in boards.

In the depicted example, local area network (LAN) adapter 310, small
computer system interface (SCSI) host bus adapter 312, and expansion bus
interface 314 are connected to PCI local bus 306 by direct component
connection. In contrast, audio adapter 316, graphics adapter 318, and
audio/video adapter 319 are connected to PCI local bus 306 by add-in

boards inserted into expansion slots. Expansion bus interface 314

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

11

provides a connection for a keyboard and mouse adapter 320, modem 322, and
additional memory 324. SCSI host bus adapter 312 provides a connection
for hard disk drive 326, tape drive 328, and CD-ROM drive 330. Typical
PCI local bus implementations will support three or four PCI expansion

slots or add-in connectors.

An operating system runs on processor 302 and is used to coordinate and
provide control of various components within data processing system 300 in
Figure 3. The operating system may be a commercially available operating
system, such as Windows XP, which is available from Microsoft Corporation.
An object oriented programming system such as Java may run in conjunction
with the operating system and provide calls to the operating system from
Java programs or applications executing on data processing system 300.
“Java” is a trademark of Sun Microsystems, Inc. Instructions for the
operating system, the object-oriented programming system, and applications
or programs are located on storage devices, such as hard disk drive 326,

and may be loaded into main memory 304 for execution by processor 302.

Those of ordinary skill in the art will appreciate that the hardware in
Figure 3 may vary depending on the implementation. Other internal
hardware or peripheral devices, such as flash read-only memory (ROM),
equivalent nonvolatile memory, or optical disk drives and the like, may be
used in addition to or in place of the hardware depicted in Figure 3.
Also, the processes of the present invention may be applied to a

multiprocessor data processing system.

As another example, data processing system 300 may be a stand-alone system
configured to be bootable without relying on some type of network
communication interfaces As a further example, data processing system 300
may be a personal digital assistant (PDA) device, which is configured with
ROM and/or flash ROM in order to provide non-volatile memory for storing

operating system files and/or user-generated data.

The depicted example in Figure 3 and above-described examples are not
meant to imply architectural limitations. For example, data processing
system 300 also may be a notebook computer or hand held computer in
addition to taking the form of a PDA. Data processing system 300 also may

be a kiosk or a Web appliance.

The illustrative embodiments provide mechanisms for controlling the flow

of information between elements of computing devices or networks of

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

12

computing devices. This control of information flow may be performed
completely within a single computing system, such as completely between
elements within server 104 or elements within client computing devices
108-112 in Figure 1. For example, the mechanisms of the illustrative
embodiments may be used to control the flow of information between one or
more applications running on processor 202 and one or more applications
running on processor 204 in Figure 2, or even one application running on
processor 302 and another application running on processor 302 in Figure
3. Furthermore, the mechanisms of the illustrative embodiments may
control information flow between one or more applications and other
resources, or directly between one or more resources in the computing
device, e.g., portions of memory, an I/0 controller, a network interface,

etc.

The mechanism of the illustrative embodiments may also be used to control
information flow between computing devices or systems in a larger
distributed or network data processing environment, such as that shown in
Figure 1. Thus, for example, the mechanism of the illustrative embodiment
may be provided in a server, such as server 104, and used to control
information flow between one client computing device 108 and the other
client computing devices 110, 112 or even storage system 106. In short,
the mechanisms of the illustrative embodiments may be used to control
information flow between any two software and/or hardware elements of one

or more data processing devices.

With the mechanisms of the illustrative embodiments, applications,
devices, systems, and other software and/or hardware entities of a data
processing system are associated with protected environments, also
referred to as “partitions,” that are identified by unique security
associations (SAs). The SAs are associlated with security information data
structures that identify the security policies to be applied to the
information flows into and out of the entities as well as the sensitivity
of the items of information that may be maintained in each of the

entities.

In the illustrative embodiments, these security information data
structures are provided as labelsets, although the present invention is
not limited to such representations of security information. To the
contrary, any representation for identifying which security policies are
to be applied to the information flows may be used without departing from

the spirit and scope of the present invention.

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

13

In addition, items of information, i1.e. resources, may be associated with
labelsets using a hash table data structure. A hash key is generated

based on the contents of the resource. The hash key is used as an index
into the hash table data structure to thereby identify an entry having a

labelset that is associated with the resource.

The labelsets generated by the illustrative embodiments describe
information only in terms of sensitivity and not in terms of the
operations which are used to transform or transmit the information. This
separation of concerns enables the implementation of a very simple policy
decision mechanism by decoupling the semantics of security policy
evaluation from the semantics of data manipulation by applications,
devices, systems and other entities in the data processing system.
Moreover, the use of the labelsets permits security policies and rules to
be defined in terms of set theory operations, e.g., set union,
intersection, and complement operations. The security policies and rules
are not concerned with the particular actions being performed in an
information flow, but merely the sensitivities of the information that may
be maintained by the entities involved and the sensitivity of the

information that is the subject of the information flow.

In handling an information flow request from an entity in the data
processing system, the labelsets for the source and target protected
environments may be provided to a policy framework which parses the
labelsets to identify which security policies are referenced by the
labelsets. Policy modules associated with the identified security
policies may then be provided with the labelsets so as to evaluate the
security policies based on the labelsets for the source and target
protected environments. Each policy module may generate a decision as to
whether an information flow request is to be granted, denied, or no
decision can be made, based on the application of its security policy to
the labelsets. The decisions may be made, for example, by comparing the
labelset of the source protected environment to the labelset of the target

protected environment using set theory operations.

The various decisions may be provided to a decision combinator which
combines the various decisions using combinator rules and generates a
single decision as to whether the information flow request should be
granted or not. If the information flow request is to be granted, then

the information flow is permitted between the source and the target

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

14

protected environments. If the information flow request is to be denied,
the flow of the resource to the target protected environment is blocked

and an error message may be returned.

There are two types of information flows that may be granted, “stream” and
“resource.” If a “resource” information flow is granted, then a single
transfer of the resource is granted between the source and target
protected environments. If a “stream” information flow is granted, then
information is allowed to flow from the source to the target as a stream
until the flow is denied, e.g., because something in the reference monitor
has changed which causes the information flow to be denied, or the stream
is closed. For example, if the target protected environment has updated
its labelset and the new labelset evaluates to a denial of the information

flow, then the stream may be denied after it is initially granted.

In one illustrative embodiment, the resources may be associated with
labelsets using a hash table data structure using a hash of the contents
of the resource as an index into the hash table data structure. 1In such a
case, when an information flow request 1s received, the resource that is
the subject of the information flow may be retrieved from a source
protected environment and hashed using one or more hash functions. For
added security, a multi-dimensional hash and hash table data structure may
be utilized. The generated hash value may be used to perform a lookup of
a labelset corresponding to the resource in a hash table data structure.
If a valid entry is found in the hash table data structure based on the
hash value, the corresponding labelset is retrieved and used with the
security policies. In one illustrative embodiment, the retrieved labelset
for the resource may be combined with the labelset for the source
protected environment to generate an effective labelset which is used to
evaluate against a labelset for the target protected environment. If a
valid entry is not found, or if a “stream” information flow is being
requested, then the labelset for the source protected environment may be
used and may be stored in the hash table in association with the generated

hash value.

With the mechanisms of the illustrative embodiments, labelsets are
maintained completely within the reference monitor and thus, are not
susceptible to unintentional or malicious alteration. The labelsets also
provide a mechanism for eliminating the semantics of data manipulation
from security considerations and allow security considerations to be

performed based on sensitivities of the protected environments and

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

15

resources involved in the information flow. As a result, source and
target protected environments and resources may all make use of a common
security attribute, i.e. the labelsets, for security policy evaluations,
thereby reducing the complexity in the creation and use of security
policies and rules. The labelsets also permit the use of set theory
operations to perform security policy evaluations, thereby again
simplifying the security policies and rules. Moreover, the labelsets may
be associated with resources using a multidimensional hash data structure,
thereby reducing the possibility of unintentional or malicious alteration

of labelsets and reducing the possibility of hash collisions.

Overall Architecture

The mechanisms of the illustrative embodiments make use of an architecture
in which applications/resources are associated with protected environments
such that information flow between protected environments is controlled in
accordance with established security information data structures that
identify security policies to be applied to information flows, e.g.,
labelsets. Figure 4 is an exemplary block diagram depicting an
architecture 400 in accordance with one illustrative embodiment. As shown
in Figure 4, the architecture 400 includes a plurality of protected

r”

environments 410-430, also referred to as “partitions,” which may
communicate with one another via the communications medium 440. An
authenticator 450 and a reference monitor 460 are also provided in the
depicted architecture.

r”

The protected environments 410-430, or “partitions,” may be comprised of
one or more applications, one or more data processing devices, one or more
data processing systems, one or more data processing device resources, or
the like. 1In one illustrative embodiment, each existing application,
device, resource, or system is associated with a separate protected

r”

environment or “partition,” which acts as a proxy for communication with
the reference monitor 460. The protected environments 410-430 are logical
representations of the applications, devices, systems and/or resources in
the architecture 400. These logical representations are maintained in the
reference monitor 460 and are used, along with the other mechanisms of the
illustrative embodiment, to govern the interaction of one protected

environment with another with regard to information flow.

The reference monitor 460 mediates all communications between the

protected environments 410-430. The communication medium 440 ensures that

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

16

this mediation is performed on all communications between the protected
environments by refusing to route communications directly from one
protected environment to another and instead requiring that all
communications flow through the reference monitor 460. In order to ensure
that all communications flow through the reference monitor 460, routing
mechanisms may be provided in the communication medium 440 that redirect
communications from being routed to the target protected environment to

the reference monitor 460.

The communication medium 440 may comprise any type of communication
infrastructure, protocols, and the like. For example, the communication
medium 440 may comprise buses, routers, networks, buffers, storage
devices, addressing mechanisms, etc. and protocols including TCP/IP, SCSI,
PCI, and the like. Regardless of the particular infrastructure or
protocols used, the communication medium 440 is configured such that all
communications out of a protected environment 410-430 first flow through
the reference monitor 460 before being routed to the target protected

environment 410-430 of the communication.

For example, in a networked environment, all protected environments
410-430 communicate through the communication medium 440 which performs
the routing of network traffic. In a simple illustrative embodiment, a
router may be used to route traffic from one protected environment 410-430
to another. To ensure all communications are mediated by the resource
monitor 460, the router may be configured to restrict all incoming network
traffic to be forwarded to the reference monitor 460 and all outgoing

traffic can only come from the reference monitor 460.

Any entities in the protected environments 410-430 that need to
communicate with another protected environment 410-430 must submit
requests to communicate to the reference monitor 460 for authorization.
Thus, for a single direction of information flow, a source of the
communication must submit an information flow request to the reference
monitor 460 requesting to communicate with the target of the
communication. For a bi-directional information flow, both the source and
the target (which will act as the source in the reverse direction) must

submit information flow requests to the reference monitor 460.

This requirement for both entities to submit information flow requests in
a bi-directional communication is based on the fact that the illustrative

embodiment is directed to controlling the flow of information, not

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

17

particular actions being performed. Thus, while a first entity may be
authorized to send information to a second entity, that second entity may
not be authorized to send information back to the first entity. In other
words, the authorization of one direction of information flow does not
necessarily mean that a reverse direction of information flow is also

authorized.

The reference monitor 460 may make use of labelsets associated with the
protected environments 410-430 to determine which directions of
information flow between protected environments are permitted and which
are not. These labelsets are not permitted to be accessed outside of the
trusted base of the reference monitor 460. Thus, the labelsets are not

provided to the protected environments 410-430.

The authenticator 450, in response to authentication assertions submitted
by applications, devices, systems, and other types of “entities” of
protected environments 410-430, performs authentication on the entities of
the protected environment 410-430 to verify that the entities that will
later submit information flow requests to the reference monitor 460 are
authorized entities of a verified protected environment 410-430. Such
authentication may take the form of password authentication, certificate
authentication, or any other known authentication mechanism. The
authentication assertion may be made by an entity, for example, at an
initialization time of the entity, upon recovery of the entity after a

failure, or the like.

Upon the authenticator 450 verifying the assertion of the entity in the
protected environment 410-430, the authenticator 450 issues a token for
the requestor. The requestor may then use this token to request the
reference monitor 460 to generate and associate a labelset for the

protected environment 410-430.

Based on the token issued by the authenticator 450, the reference monitor
460 determines which labelset to associate with the protected environment.
For example, the reference monitor 460 may provide the token to each
security policy module of a security policy framework to thereby obtain
labels from each security policy module for the particular token, or

optionally a default label if no specific labels for this token are found.

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

18

Once the token is used to generate the labelset, the labelset is
associated with a security association in the reference monitor 460. The
security association is a unique identifier of the communication
connection between a particular protected environment or partition and the
reference monitor 460. The particular values used for generating the
security association are dependent upon the particular implementation of
the present invention. For example, in one illustrative embodiment, a
combination of a communication identifier, e.g., TCP/IP address, secure
socket identifier, and session identifier may be used to generate a unique
security association (SA). Alternatively, only the secure socket
identifier and session identifier may be used to generate a SA for a
particular protected environment or partition. Other types of information
and other combinations of information may be used so long as a unique
identifier may be generated for each protected environment or partition

being managed by the reference monitor 460.

This unique security association is generated within the reference monitor
460 and is not accessible outside the reference monitor 460. The SA is
stored in association with the labelset generated for the protected
environment/partition in a data structure associated with the reference
monitor 460. Using this security association, the reference monitor 460
may quickly determine a labelset associated with a source of a request.
That is, by looking at the information regarding the communication
connection with the source protected environment, which is present, for
example, in the header information of the request, the reference monitor
may generate a SA for the request and perform a lookup of the SA in the
data structure to obtain the associated labelset. In this way, the
reference monitor 460 for use in handling information flow requests from

the protected environments 410-430.

A token may be used to identify security attributes that are recognizable
by the reference monitor 460. For example, a user may authenticate with
an authenticator 450 using a user ID and password. The authenticator may
provide the protected environment, from which the user’s request for
authentication was received, with a token with the following attribute:
“userc”. The reference monitor 460 may receive the token and build a
labelset for the protected environment. For example, a reference monitor
460 running with the Group-DAC and BLP policies may already have userc
associated with “IBM-GROUP” and “NEWHIRE-GROUP” as Group-DAC assignments
and “CONFIDENTIAL” as a BLP assignment, for example. These labels may be

added to a labelset for the protected environment.

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

19

A SA for the protected environment may then be generated by the reference
monitor 460 based on the connection information for the protected
environment. The SA is then stored in association with the generated
labelset in the reference monitor 460. Thereafter, when a request 1is
received from the protected environment, a SA is generated by the
connection information for the request and is used to retrieve the

labelset.

The SA essentially serves as an internal identifier of the protected
environment 410-430 and is generated from the connection to the reference
monitor 460. This security association may be used in information flow
requests to thereby identify the protected environment from which an
information flow request was received. For example, when a protected
environment 410-430 connects to the reference monitor 460, it provides a
protected environment name. This name may be stored in the reference
monitor 460 in association with the protected environment’s associated
unique security association (unknown to the outside world) and related
labelset. The protected environment names may be used by a source
protected environment to identify a target protected environment in an

information flow request.

For example, protected environment A may connect to the reference monitor
460 and identify its name as “PARTITIONA” (protected environments may also
be referred to as “partitions” in the context of the present invention).
Protected environment B may connect to the reference monitor 460 and
identify its name as “PARTITIONB”. If protected environment A wants to
send information to protected environment B, protected environment A sends
an information flow request to the reference monitor 460 indicating the
target of the information flow to be “PARTITIONB.” The reference monitor
460 will then do the appropriate labelset lookup, as described hereafter,

and execute an authorization decision for the information flow request.

The labelsets permit the reference monitor 460 to perform set theory on
the labelsets of the source and target protected environments 410-430 to
determine which information flows are permitted and which are denied, as
will be described in greater detail hereafter. Based on the decision made
by the reference monitor 460 as to whether an information flow is
permitted, the communication may be allowed to flow through to the target

protected environment or it may be blocked by the reference monitor 460.

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

20

Reference Monitor Architecture

Figure 5 is an exemplary block diagram of a reference monitor 500 in
accordance with one illustrative embodiment. As shown in Figure 5, the
reference monitor 500 includes a communication manager (CM) 510 with a
listener sub-component 512, an information flow mediator (IFM) 520, a
policy framework 530 having a decision combinator 532 and a plurality of
policy modules 534-538. 1In addition, a protected environment labelset
data structure 540 and resource labelset data structure 550 are maintained

during runtime.

The listener 512 listens for information flow requests from protected
environments 410-430 in Figure 4. For example, the listener 512 may
listen to particular ports for information flow requests directed to that
port by applications, devices, and/or systems in protected environments
410-430. The information flow requests may be, for example, a
communication message identifying the resource that is the subject of the
information flow, the source protected environment of the information flow
from which the resource is obtained, and the target protected environment

of the information flow to which the resource is provided.

In one illustrative embodiment, the information flow requests designate
the protected environment name of the target protected environment. From
this protected environment name, the labelset associated with the target
protected environment may be retrieved. From connection information
provided in the information flow request or obtained inherently from the
ports, sockets, etc. via which the information flow request is received,
the reference monitor may generate a SA for the request and use this SA to

retrieve the labelset associated with the source protected environment.

For example, the information flow request may have a format consisting of

a message type and a message body as follows:

Message Type Message Body

Table 1 - Information Flow Request Message Format

The message type 1s the type of message that is being sent to or from the
reference monitor 500 and the message body contains the related

information that corresponds to the message type. The reference monitor

500, in response to receiving an information flow request message, may

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

21

respond with a response message, 1f configured in a verbose mode of
operation, or a reply message, 1if the reference monitor 500 is configured
to not be in a verbose mode of operation. These different message types

are formatted as follows:

Message Type Message Body

Response <Result> <Major Description Response > <Minor Description

Response >

Table 2 - Reference Monitor Response Message Format

Message Type Message Body

Reply <Reply Message>

Table 3 - Reference Monitor Reply Message Format

In one illustrative embodiment, the message type for messages sent to the
reference monitor 500 may be infoFlowRequestStreamOpen,
infoFlowRequestStreamSend, infoFlowRequestStreamClose, or
infoFlowRequestResource. Each of these information flow request messages
and the reference monitor 500 response or reply messages will be described

hereafter.

The infoFlowRequestStreamOpen message type 1s used to cause the reference
monitor to make a call to the IFM 520 requesting an information flow
request decision to grant or deny an information stream from the source
protected environment to the target protected environment. If the
information stream is granted, the source and target security association
pair is added to an entry in an open information flow streams table that
is used to determine if an information flow can be forwarded to the target
protected environment by the reference monitor. If the
infoFlowRequestStreamOpen message results in the target protected
environment’s labelset being updated, the reference monitor 500 will close
any existing streams of the target protected environment and will notify
all source protected environments of the stream closures within a reply

message type.

The infoFlowRequestStreamOpen message type has an associated message body

that identifies the target protected environment with which the

10

15

20

25

30

35

40

WO 2007/068568

PCT/EP2006/068890
22

information stream is to be established. 1In an illustrative embodiment,

the message body i1s comprised of the target protected environment token.

In response to the infoFlowRequestStreamOpen message, the reference

monitor 500 may return one of the following response messages:

Message Type

Message Body

response <Result> <Major Description Response > <Minor Description
Response

response SUCCESS FLOW_GRANTED

response SUCCESS FLOW_GRANTED TARGET LS UPDATED

response SUCCESS FLOW_DENIED

response FATILURE INVALID PARM

response FATLURE MSG_OUT_OF SEQ

response FATILURE INTERNAL ERROR

response FATLURE COMPONENT_BUSY

Table 4 - Response Messages to infoFlowRequestStreamOpen Message

Messages having a major description response consisting of the

“FLOW _GRANTED” result from the IFM 520, result in a new entry of the

source and target
added to the open
reference monitor
consisting of the

source and target

protected environments’ security association pair being
information flow streams table maintained by the

500.
“FLOW DENIED” result from the IFM 520, results in a

The message having the major description response

protected environment security association pair not

being added to the open information flow streams table. Similarly, the

messages having major description responses of “INVALID PARM,”

“MSG_OUT OF SEQ,” “INTERNAL ERROR,” and “COMPONENT BUSY” also result in

the security association pair not being added to the open information flow

streams table.

The message having the minor description response

“TARGET LS UPDATED” is the message returned by the reference monitor 500

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

23

when the IFM 520 determines that the target labelset has to be updated and

the streams associated with the target labelset are closed down.

The following replay message 1s sent to protected environments when the
reference monitor 500 is in verbose mode and when a stream is forced
closed by the reference monitor 500 (e.g., when an

infoFlowRequestStreamOpen results in the target labelset being updated):

Message Type Message Body

reply <Reply Message>

reply referenceMonitor streamClosed <Target Name>

Table 5 - Stream Closed Reply Message

The infoFlowRequestStreamSend message type is used by a source protected
environment to send information to a target protected environment once the
information stream has been granted by the reference monitor 500. When
the reference monitor 500 receives this request, the reference monitor 500
validates that an entry in the open information flow streams table exists
for the source and target protected environments’ security association
pair thereby indicating that the stream information flow has been
previously granted. The reference monitor 500 then forwards the
information to the target protected environment within a reply message.

The following is the format of the infoFlowRequestStreamSend message:

Message Type Message Body
infoFlowRequestStreamSend <Target Name> <Information>
Table 6 - infoFlowRequestStreamSend Message Format

The following are the various types of response messages that the
reference monitor may generate in response to the

infoFlowRequestStreamSend message:

Message Type Message Body

response <Result> <Major Description Response > <Minor Description

Response >

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

24
response SUCCESS SUCCESS
response FATILURE INVALID PARM
response FATLURE MSG_OUT_OF SEQ
response FATLURE REQ DENIED
response FATILURE INTERNAL ERROR
response FATLURE COMPONENT_BUSY
Table 7 - Response Messages to infoFlowRequestStreamSend Message

If the response message has a major description response of a “SUCCESS”
result from the IFM 520, then the target protected environment receives
the information from the source protected environment. The other major
description responses will result in the target protected environment not

receiving the information from the source protected environment.

The following is a reply message format that may be generated in response

to the infoFlowRequestStreamSend message:

Message Type Message Body

reply <Reply Message>

reply <Source Name> <Information>

Table 8 - Reply Message to infoFlowRequestStreamSend Message

This reply message may be used by the reference monitor 500 to send the
information from the source protected environment to the target protected
environment, for example.

The infoFlowRequestStreamClose message type is used by a source protected
environment to close an open stream to a target protected environment.
When the reference monitor 500 receives this request, the reference

monitor 500 halts all stream information flow from the source protected

environment to the target protected environment. The reference monitor

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

25

500 then removes the source and target protected environments’ security
association pair entry from the open information flow streams table. The

infoFlowRequestStreamClose message has the following format:

Message Type Message Body
infoFlowRequestStreamClose <Target Name>
Table 9 - infoFlowRequestStreamClose Message Format

The possible responses that the reference monitor 500 may make to an
infoFlowRequestStreamClose message are essentially the same as shown in
Table 7 above with the exception that the “REQ DENIED” response message

would not be returned by the reference monitor 500.

The infoFlowRequestResource message type 1s used by a source protected
environment to request authorization and delivery of a resource, e.g., a
file, chat text, or other type of bundled portion of data that is not part
of a continuous data stream, to a target protected environment. When the
reference monitor 500 receives this message type, the reference monitor
500 makes a call to the IFM 520 requesting an information flow request
decision to grant or deny the resource to flow from the source protected
environment to the target protected environment. If the information flow
is granted, then the resource is transferred to the target protected
environment within a reply message type. If the request results in the
target protected environments’ labelset having to be updated, the
reference monitor 500 will close existing streams of the target protected
environment and notify the source protected environments of the stream
closures within a reply message type if the reference monitor 500 is
configured in verbose mode. If the information flow is denied, the
resource is not transferred to the target protected environment. The

infoFlowRequestResource message has the following format:

Message Type Message Body
infoFlowRequestResource <Target Name> <Resource>
Table 10 - infoFlowRequestResource Message Format

The possible responses from the reference monitor 500 to the

infoFlowRequestResource message are essentially the same as shown in Table

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

26

4 above. The following reply message 1s sent to protected environments

when the reference monitor 500 grants the resource information flow:

Message Type Message Body

reply <Reply Message>

reply <Source Name> <Resource>

Table 11 - Reply Message for infoFlowRequestResource Message

Returning to Figure 5, when the reference monitor 500 receives an
information flow request from a protected environment, such as the
protected environment 410, through the listener 512 of the CM 510, the CM
510 sends a request to the IFM 520 for an authorization decision. The
authorization decision is one that determines whether the information flow
is to be permitted from the source protected environment, e.g., protected
environment 410, to the target protected environment, e.g., protected
environment 430. The authorization decision may be made based on a
comparison of the target protected environment labelset to one or both of

the source protected environment’s labelset and the resource’s labelset.

In illustrative embodiments, the IFM 520, in response to receiving the
request for authorization of the information flow, may perform a lookup of
the identifiers, e.g., the SA of the source protected environment and the
protected environment name of the target protected environment, in the
protected environment data structure 540. As a result of this lookup
operation, the IFM 520 retrieves the source and target protected
environments’ associated labelsets from the protected environment data
structure 540 and provides these labelsets to the policy framework 530.
If the lookup operation results in one or more of the source and target
protected environments not having an associated labelset, the request may
be denied. Alternatively, a default labelset may be utilized for the

protected environment that does not have an associated labelset.

In addition to associating labelsets with the source and target protected
environments, the reference monitor 500 may also associate labelsets with
individual items of information, i.e. information objects, using the
resource labelset data structure 550. As will be discussed in greater
detail hereafter, in one illustrative embodiment, the labelset of the

individual item of information, or an effective labelset generated from

10

15

20

25

30

WO 2007/068568 PCT/EP2006/068890

27

the labelset of the individual item of information and a labelset of the
source protected environment, may be compared to the labelset of the
target protected environment if a labelset for the individual item of
information exists in the reference monitor 500. If a labelset for the
item of information does not exist in the reference monitor 500, a
labelset for the source protected environment may be used and associated

with the item of information.

The labelsets essentially define a list of security policies which the
policy framework 530 interprets and dispatches to the appropriate policy
modules 534-538 for processing. The policy modules 534-538 may use any of
a number of different types of algorithms for performing evaluations of
the labelsets to generate a decision. For example, the policy modules
534-538 may make use of a Chinese Wall algorithm, a Bell LaPadula
mandatory access control (MAC) algorithm, a group discretionary access

control (DAC) algorithm, or the like.

Once all of the individual evaluations are processed by the policy modules
534-538, the policy framework 530 combines the individual decisions to
generate a final decision. The decision combinator 532 of the policy
framework 530 serves to aggregate the decisions of the individual policy
modules 534-538 and uses a combinator policy, i.e. a set of combinator
rules, provided in the decision combinator 532 to produce one decision,

i.e. grant or deny the information flow.

For example, the decision combinator 532 may aggregate the decisions of
each individual policy module 534-538 by using ternary logic to evaluate
the results from each policy module 534-538 which can produce the results:
GRANTED, DENIED, or NO DECISION. The decision combinator 532 may operate
based on a combinator policy file that contains one or more combinator
policies. By default, the combinator policy file may contain a default

combinator policy as described below:

((admin RESULT = GRANTED)

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

28

OR (blp RESULT = GRANTED)
)

where admin and blp are two policy modules and the combinator policy
indicates that if either of these policy modules returns a “GRANTED”

result, then the information flow is granted.

The combinator policy file may be customized by an administrator using the

following syntax, which will be interpreted by a combinator policy parser:

<combinator rule> ::= <expression>
<expression> 1= (NOT <expression>) |
(<expression>) |

(<expression> AND <expression>) |

(<expression> OR <expression>) |

(<policy module name> RESULT =

<result>)

<result> ::= GRANTED |

DENIED |

NO_DECISION

In making decisions as to whether a particular information flow will be
permitted or denied, the mechanisms of the illustrative embodiments make
such decisions only upon the labelsets of the source protected
environment, the target protected environment, and the individual items of
information, i.e. the resource labelsets, if any. In this manner, the
“actions” that are being performed in a transaction, which in known
systems must be considered in determining whether two entities must
communicate, are eliminated from the evaluation in the illustrative

embodiments.

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

29

In effect, the minimalist reference monitor 500 of the illustrative
embodiments bases decisions only upon the sensitivity of the objects, i.e.
the items of information involved in the information flow, and the
authorization level of the subjects, i.e. the source and target protected
environments. This allows the reference monitor 500 to be treated as a
“black box” thereby simplifying the implementation and significantly
reducing the size of the reference monitor 500 since not every possible
action between every pair of source and target entities must be modeled in

the reference monitor 500.

In addition, the level of security provided by the operation of the
reference monitor 500 is not dependent upon the level of the security of
the protected entity. This is especially important when the mechanisms of
the illustrative embodiments are used to protect existing entities whose
level of security is poor or unknown and which may not be able to be
modified to provide better security. In other words, because the labelsets
and their associations are maintained completely within the reference
monitor 500, the security, or lack thereof, of the protected entities does
not negatively affect the security offered by the reference monitor 500.
The security of the reference monitor 500 is dependent only upon the level

of security defined in the labelsets.

Labelsets

As mentioned above, the mechanisms of the illustrative embodiments make
use of labelsets, which may be stored in association with partition names
and security associations in the protected environment data structure 540,
to govern the security evaluations performed by the policy framework 530.
These labelsets may be created and managed by reference monitor 500 and
are used to identify the source and target security characteristics which
need to be known in order to make an authorization decision for an
information flow. Similarly, as mentioned above and discussed hereafter,
labelsets may be provided and stored in the resource labelset data

structure 550 for individual items of information.

Figure 6 1s an exemplary diagram illustrating an exemplary definition of a
labelset in accordance with one illustrative embodiment. As shown in
Figure 6, the labelset includes a labelset name element <labelset>
assoclated with a version element <version> indicating the version of the
<labelset>. The version element is the assigned version number of the

data structure. The version element is composed of a major element

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

30

<major> and a minor element <minor>. The major element is the assigned
major version number of the data structure or sub-structure. The major
element’s range is 1 to (264-1). The minor element is the assigned minor
version number of the data structure or sub-structure. The minor

element’s range is 0 to (264-1).

The major and minor elements of the version element may be thought of as
being similar to a software version number, e.g. , Microsoft WordTM

10.6764 where 10 is the “major” version and 6764 is the “minor” version.
The major and minor elements are used to determine if different versions

of labelsets are being compared.

For example, the first time the reference monitor 500 is started,
labelsets may get created with major version 1 and minor version 0 (1.0
). The admin policy module may be the only policy module available during
the first startup. While the initial start up of the reference monitor
500 is up and running, the reference monitor 500 administrator may set up
the reference monitor 500 to add a BLP policy module the next time the
reference monitor 500 is started. Before the system is restarted the
administrator may also add a resource which will assign a labelset with
just the admin policy values since it is the only policy module running at

the current time and gets assigned a major and minor version of 1.0.

After the system restarts the BLP policy module is added. A first
protected environment (partitionA) may then attempt to send a resource to
a second protected environment (partitionB). Since the policy modules
have been updated, the new major and minor elements are “1” and “1” or
1.1. Thus, any newly generated labelsets will have a version element of
“"1.1.” Since the resource labelset that is trying to be sent is 1.0, the
reference monitor 500 knows it need to update the labelset before

evaluating an authorization request.

A count element <count> is also provided that indicates the number of
labels included in the label list element <labellist>. The count

element’s range is from 1 to 65535.

The label list element <labellist> is composed of label elements <label>
which are in turn composed of one policy type element <policy type> and
one value element <value>. The policy type element <policy type> is an

enumerated value identifying the security policy associated with the label

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

31

element. Table 1 below shows an example list of the policy types that may

be used with the mechanisms of an illustrative embodiment.

Name Value Description

Blp 1 Bell La-Padula Security Model Based on Information Sensitivity
Groupdac 2 Discretionary Access Control Based on Group Membership
Cw 3 Chinese Wall Security Model

Table 1 - Example Policy Types

The value element is an enumerated value identifying the policy wvalue and
is implementation specific. A simple example is that for BLP, the policy
values may be 1, 2, 3, and 4 to represent UNCLASSIFIED, CONFIDENTIAL,
SECRET and TOPSECRET respectively. For Groupdac, for example, an
organization, such as IBM, may have values of 1, 2, 3, 4, and 5 to
represent IBMER, CONTRACTOR, NEWHIRE, MGR, EXECUTIVE respectively. A
person that is a regular employee at IBM and a recent new hire would thus,

have a labelset including values 1 and 3.

Thus, the policy type identifies which policy is to be applied and the
policy value identifies which specific policy values are evaluated by the
policy. A combination of the policy type and the policy values makes a
complete representation of the security attributes of a protected
environment or resource. For example, if a protected environment is used
to represent a user, the labelset for the user may have the following
values for a reference monitor 500 running the BLP and GROUPDAC policy

modules:

Policy Type: 1 (BLP)

Policy Value: 3 (SECRET)

Policy Type: 1 (BLP)

Policy Value: 2 (CONF.)

Policy Type: 1 (BLP)

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

32

Policy Value: 1 (UNCL.)

Policy Type: 2 (GROUPDAC)

Policy Value: 1 (IBMER)

Policy Type: 2 (GROUPDAC)

Policy Value: 3 (NEWHIRE)

From this labelset it can be determined that the user is a regular
employee of IBM, 1s a newhire, and has access to unclassified,

confidential and secret information.

The labelsets generated by the illustrative embodiments describe
information only in terms of sensitivity and not in terms of the
operations which are used to transform or transmit the information. This
separation of concerns enables the implementation of a very simple policy
decision mechanism by decoupling the semantics of security policy

evaluation from the semantics of data manipulation by applications.

In addition, the labelsets provide a mechanism for defining a single
security attribute type to sources and targets, i1.e. a labelset consisting
of a set of security attribute labels. In this way, the labelsets of the
illustrative embodiments eliminate the distinction between active subjects
and passive resources. The labelsets of the illustrative embodiments
restrict their attention to the flow of information between a source and a

target, each of which has the same abstract security attribute type.

In using these labelsets to perform decisions on whether to authorize or
deny a flow of information, the policy framework may make use of a
relatively simple group of set-theoretic rules built from the source and
target labelsets using the set union, intersection, and complement
operations. Thus, the policy framework permits a flow of information if
the policy framework decides that the source and target labelsets are
“compatible.” In this way, a single simple rule may be used to control
all flows of information between any source and any target, from the
source to the target. This same rule may also be applied for a reverse
direction of flow from any target (which now operates as a source) to any

source (which now operates as a target). Simple set theory is applied by

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

33

the rule to determine if the flow of information is to be permitted or

not.

As an example to illustrate this functionality in the policy framework
made possible by the use of labelsets, consider the two example labelsets
provided in Figures 7A and 7B. Figure 7A 1s an exemplary diagram of a
first labelset in accordance with one illustrative embodiment that may be
associated with a first protected environment. Figure 7B is an exemplary
diagram of a second labelset in accordance with one illustrative

embodiment that may be associated with a second protected environment.

In the labelset 700 of Figure 7A, a labellist 710 is provided having three
labels 720, 730, and 740, hence the count element 702 is set to a value of
“3.” The three labels 720, 730 and 740 have enumerated values 722, 732
and 742 of “3,7” “2,” and “1.” The label 722 corresponds to a sensitivity
level of “secret,” the label 732 corresponds to a sensitivity level of
“confidential,” and the label 742 corresponds to a sensitivity level of
“unclassified.” In addition, each label has an associated security policy
type 724, 734, and 744 having a value of “1,” which corresponds, for
example, to a “Multilevel” or “MLS” security policy in this particular

example.

In the labelset 750 of Figure 7B, a labellist 760 is provided having a
single label 770, hence the count element 752 is set to a value of “1.”
The label 770 has an enumerated value 772 of “1.” Thus, the label 770
corresponds to a sensitivity level of “unclassified.” Similar to the
security policy types in the labelset 700, the label 770 has a security
policy type of “1.”

As discussed previously above with regard to Figure 5, in response to an
information flow request from a source protected environment, the
information flow mediator 520 of the reference monitor 500 retrieves the
labelsets for the source protected environment, target protected
environment, and possibly the item of information that is the subject of
the information flow, from protected environment data structure 540 and
resource labelset data structure 550. 1In this particular example, it will
be assumed that the labelset 700 corresponds to a source protected
environment and the labelset 750 corresponds to a target protected

environment, and that a labelset for the item of information is not used.

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

34

The retrieved labelsets 700 and 750 are provided to the policy framework
530 which parses the labelsets 700 and 750 and determines which policy
types are identified in the various labels of the labelsets. The
labelsets 700 and 750 are then provided to the policy modules 534-538
corresponding to the policy types identified in the labelsets 700 and 750.
The policy modules 534-538 then generate decisions as to whether the
information flow is to be granted or denied. These decisions are returned
to the policy framework 530 which combines these decisions using the
decision combinator 532. The decision combinator 532 combines the various
decisions to thereby generate a single decision as to whether the
information flow is to be granted or denied. The final decision is
provided to the communication manager 510 which then operates to either
permit the information flow to continue to the target protected

environment or to block the information flow.

In the present example, the policy framework 530 parses the labelsets 700
and 750 and determines that the security policy type “1” is used by the
labels in the labelsets 700 and 750 which corresponds to the “MLS”
security policy. As a result, the policy framework 530 may send the
labelsets 700 and 750 to the policy module 534 which corresponds to the
“MLS” security policy.

The MLS security policy, in the present example, contains a rule that
states that information may flow from a source protected environment to a

target protected environment if the following condition is met:

if {mlsvalues of source} is subset of {mlsvalues of target}

Applying this rule to the labelsets 700 and 750 results in the information
flow from the source protected environment to the target protected
environment being denied. This is because the values in labelset 700 are
not a subset of the values in labelset 750, i.e. the set {3, 2, 1} is not
a subset of the set {1}. In other words, the information flow is blocked
because information may not flow from a potentially secret source

protected environment to an unclassified protected environment.

On the other hand, information flow may be authorized under the same MLS
policy and rule in the opposite direction, i.e. from the target protected
environment (which would now act as a source) to the source protected
environment (which would now act as a target). This is because the set

{1} is a subset of the set {3, 2, 1}. In other words, information may

WO 2007/068568 PCT/EP2006/068890
35

flow from an unclassified source protected environment to a potentially

secret target protected environment.

Once an information flow has been authorized using the reference monitor
500 of the illustrative embodiments, the flow of information from the
source protected environment to the target protected environment may
continue without having to perform the authorization again until the
stream of information flow is discontinued. That is, the mechanisms of
the illustrative embodiments may be used to authorize a stream of
information flow from a source protected environment to a target protected
environment.

Alternatively, the mechanisms of the illustrative embodiments may also be
used to authorize a single transfer of information from a source protected
environment to a target protected environment, such as in the case of a
file transfer, for example. The mechanisms of the illustrative
embodiments operate substantially the same whether the mechanisms are used
to authorize streams of information flow or a single transfer of

information.

As mentioned above, policy rules may be established for performing
authorization not only based upon the labelsets of the source and target
protected environments, but also upon the labelsets of the particular
items of information that are being transferred. However, it should be
noted that even when the labelsets of the items of information are
considered in the authorization operation, the decisions are based solely
on the sensitivities of the item of information and the source and target
protected environments. That is the labelsets of the source and target
protected environments are a measure of the sensitivity of the information
that the source and target protected environments may maintain. The
labelset of the item of information is a measure of the sensitivity of the
item of information. Thus, decisions as to whether an information flow is
to be granted or denied are based on the sensitivities of the entities
involved in the information flow, not upon the particular actions that are
being performed as part of the information flow, e.g., reading, writing,

etc.

In one illustrative embodiment, when using the labelsets associated with a
source and target protected environment and the item of information, the
information flow mediator 520 first tries to retrieve a labelset
associated with the item of information from the resource labelset data

structure 550. If a labelset is not established for the item of

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

36

information, then a labelset for the source protected environment is used
in the evaluation made by the policy framework 530, i.e. the labelset of
the source protected environment is compared to the labelset of the target
protected environment in accordance with the applicable policy rules to
determine if the information flow is to be granted or denied. If a
labelset is present in the resource labelset data structure 550 for the
item of information, then that labelset is used along with the source
protected environment labelset and thus, is compared, by the policy
framework 530, to the target protected environment labelset to determine

if the information flow is to be granted or denied.

In an alternative illustrative embodiment, all of the labelsets for the
source protected environment, target protected environment, and the item
of information may be evaluated by the policy framework 530 when
determining whether to grant or deny the information flow. For example,
security policy rules may be established that perform set theory
operations on all three sets. O0f course, such an embodiment is more
complex and will require additional processing cycles to perform the
policy evaluation. However, a more complex control of information flows
may be made possible by including all three labelsets in the policy

evaluation.

Moreover, in one illustrative embodiment, if a labelset is provided for an
item of information that is the subject of the information flow, this
labelset may be combined, in accordance with combinatory rules associated
with a security policy module, with the labelset for the source protected
environment to generate an effective labelset. This effective labelset
may then be compared with the target labelset in policy modules of the

policy framework to thereby generate authorization decisions.

Thus, as shown above, the labelsets of the illustrative embodiments
provide a simple mechanism for defining the sensitivity of a protected
environment with which they are associated. The use of these labelsets
permits the simplification of the security policies that are applied to
these labelsets since such security policies need only be concerned with
the sensitivities of the source, target, and possibly the item of
information, as defined by the labelsets. Because the particular actions
being performed are removed from consideration during the authorization
process, the security policies need not have rules to govern each possible
action that may be performed by each combination of a source and target.

This decoupling of the semantics of security policy evaluation from the

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

37

semantics of data manipulation greatly reduces the complexity of the

security policies and rules that make up the security policies.

Furthermore, in order to make decisions based on these sensitivities,
simple set theory operations may be used to define the rules of the
security policies that operate on the labelsets. Because the security
policies use set theory to implement their associated algorithm, the same
small set of rules may be applied to any information flow request,
regardless of the particular source protected environment and target

protected environment.

Moreover, since all of the entities involved in an information flow, i.e.
the source and target protected environments and the item of information,
make use of the same security attribute type, i.e. the labelset, the
issues associated with differing attribute types having to be accommodated
in the security policies are avoided. Thus, the mechanisms of the
illustrative embodiments greatly simplify the implementation of a security
framework for governing information flows. Because of this
simplification, the rate at which information flows may be processed by
the reference monitor is increased. In addition, because the labelsets
and security policies are maintained completely within the reference
monitor, tampering with the labelsets or security policies is made more
difficult and the security of the system as a whole is improved over
systems in which elements of the security mechanisms are distributed to

non-secure computing devices.

ASSOCIATING LABELSETS WITH RESOURCES

With reference again to Figure 5, associating security labels with
resources, such as in the resource labelset data structure 550, may be
performed in many different ways. In order to build a highly assurable
system, the mechanism that manages these labelsets, e.g., the reference
monitor 500, should avoid accidentally corrupting the labelsets while
processing information flow requests. In addition, the system should
eliminate the possibility of malicious alteration of labelsets, even by

privileged system administration personnel.

One possibility is to store the labelset information with the resource to
which it applies, e.g., the item of information, such as a file, portion
of chat text, or other packaged portion of data that is not part of a

continuous data stream, and implementing a special privilege and

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

38

authorization mechanism to restrict access to the labelset information.
There are two problems with this approach. First, an integrity failure in
the system which manages the items of information and associated labelset
information can result in unauthorized changes to labelsets. That is, if
a user can alter a file on the file system, they can also alter the
labelset that is also stored with the file on the file system. With the
illustrative embodiments herein, although a user may be able to alter a
file on a file system, the user cannot alter the labelset within the
reference monitor 500 because the labelsets are not accessible outside of

the reference monitor 500.

Second, applications which are not designed to accommodate labelsets
cannot be protected. That is, since, in such an embodiment, the security
mechanism, i.e. the reference monitor 500, expects the application or
protected environments to pass the labelset information to the security
mechanism, if an application or protected environment does not support the
use of labelset information, it cannot provide the necessary labelset
information to the security mechanism. As a result, the security
mechanism has no access to labelset information for the application or
protected environment and thus, cannot ensure the security of information

flows from the application or protected environment.

The mechanisms of the illustrative embodiments address these problems by
enabling the storage of information labelsets inside a trusted computing
base, i.e. the reference monitor 500, which is separate from the
repositories in which the information itself is stored, i.e. the
repositories in the protected environments. The mechanisms of the
illustrative embodiments associate labelsets with the information to which
they refer through the use of a hash table which may be provided in the
resource labelset data structure 550, for example. A hash key is
generated, by the information flow mediator 520 of the reference monitor
500, for example, based on the content of the resource, e.g., the item of
information. The hash key is used as an index into a table of labelsets,
e.g., resource labelset data structure 550 and may be used to a retrieve
labelset associated with a particular item of information that is the

basis for the hash key.

The first time a resource is encountered by the reference monitor 500, the
information flow mediator 520 of the reference monitor 500 computes a hash
key of the resource and stores an appropriate labelset in the resource

labelset data structure 550 at the index corresponding to the computed

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

39

hash key. If the resource has been registered in the reference monitor
500 by an administrator, then computing the hash key of the resource will
result in a matching entry of the labelset data structure 550 being
identified. If the resource has not been registered by the administrator,
then the resource will take the same labelset as the source protected
environment. The generation of hash keys as indices into a hash table is
generally known in the art and thus, the details of hashing are not

provided herein.

Once the resource has been assigned a labelset, any renaming of the
resource, e.g., renaming a file, does not affect the association of the
hash key with the labelset because the hash key is generated based on the
content of the resource, which in this case has not changed. Thus, merely
changing the name associated with a resource does not change the
resource’s hash key and thus, does not change the labelset associated with

the resource.

However, any change in the content of the resource creates, from the
viewpoint of the reference monitor 500, a new resource, a new hash key,
and a new labelset association. Thus, so much as a single bit change in
the content of the resource causes a new hash table entry to be created
for the resource. The hash table permits the trusted computing base,
e.g., reference monitor 500, to efficiently recognize resources and store
their labelsets while permitting the resources themselves to be stored
outside the trusted computing base in unmodified, and possibly untrusted,

applications.

In order to avoid problems associated with accidental or maliciously
induced hash collisions, a multi-dimensional hash table may be used in the
resource labelset data structure 550. A different hash function may be
employed in each dimension of the multi-dimensional hash table. Thus,
generating a table index collision, which would be required to “forge” a
labelset, requires an adversary to find a string whose hash image collides
with that of a chosen resource simultaneously in all the hash functions
used to implement the multidimensional table. This is very improbable and
provides a great deal of security with regard to the association of hash

keys with labelsets for resources.

The use of the hash table to make the association of resources with
labelsets ensures that the labelset associated with a specific datum can

always be recovered by the trusted computing based, e.g., reference

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

40

monitor 500, and the information storage format of an application does not
have to be changed to accommodate labelsets because the labelsets are not
stored with the information to which they apply. Moreover, whenever a
datum is changed in any way, the trusted computing base (e.g., reference
monitor 500) may recognize the change, because the modified datum will
have a different hash, and may determine that a new labelset needs to be
applied to the modified datum. Furthermore, no integrity failure, or
malicious action, originating in an application or anywhere else outside
the trusted computing base can modify either the association between a
datum and its labelset or the labelset itself since both the association
and the labelset are stored inside the trusted computing base and are
never passed out of the trusted computing base.

Figures 8 and 9 provide examples illustrating the use of a hash table to
assoclate labelsets with resources when handling information flow
requests. Figure 8 illustrates such an example when an entry
corresponding to a resource is present in the hash table. Figure 9
illustrates such an example when an entry corresponding to a resource is

not present in the hash table.

As shown in Figure 8, application 2 requests resource 2 from the

resource_ system. Thus, the resource system would be in the source
protected environment 810, application 2 would be in a target protected
environment 820, and resource 2 is an item of information for the
information flow. The request is provided to the trusted computing base
830, which in the illustrative embodiments is the reference monitor 500,
for example. While the illustrative embodiments will consider the trusted
computing base 830 to be the reference monitor 500, the present invention
is not limited to such, and any trusted computing base may be used without

departing from the spirit and scope of the present invention.

The trusted computing base intercepts the request, such as via the
communication medium 440 in Figure 4. The request may be an information
flow request, such as described previously above, that identifies the name
of the target protected environment 820. The security association of the
source protected environment and the name of the target protected
environment may be used with protected environment data structure 840 to

retrieve labelsets associated with the protected environments 810 and 820.

In response to the information flow request, the trusted computing base
830 retrieves the contents of the item of information, i.e. resource 2,

from the source protected environment 810 and performs the appropriate

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

41

hash function(s) on the complete contents of the item of information. The
hash function(s) may be a single hash function or, in the case of a
multidimensional hash table embodiment, multiple hash functions of
differing types. The resulting hash key is used to index into the

resource labelset data structure 850.

In the depicted example, an entry 1is present in the resource labelset data
structure 850 for the generated hash key. As a result, the trusted
computing base 830 retrieves labelset 2 from the resource labelset data
structure 850 and uses this labelset 2 along with the labelset for the
source protected environment (labelset 1) to create an effective labelset.
This effective labelset is compared against the labelset for the target
protected environment 820, i.e. labelset 4 obtained from the protected
environment data structure 840 based on the name of the target protected
environment 820 provided in the information flow request. The comparison
is performed in accordance with the policies identified in the retrieved
labelsets using the policy framework 530 in Figure 5 and its associated
policy modules 534-538 and decision combinator 532, as discussed
previously. Based on the results of the comparison, the information flow
is either granted or denied. If granted, the requested resource, i.e.
resource 2, 1is allowed to flow to the target protected environment 820.

If denied, the trusted computing base 830 blocks the flow of the requested
resource, i.e. resource 2, to the target protected environment 820 and may
return an error message to the requestor, e.g., application 2 in target

protected environment 820.

In another example, shown in Figure 9, a similar operation is performed,
in which application 1 requests resource 1 from the resource system. In
this example, application 1 is the target protected environment 860 and
the resource system is the source protected environment. The

resource system sends an information flow request to the trusted computing
base 830 requesting resource 1 to be sent to application 1. In this case,
when resource 1 is retrieved from the source protected environment 810,
the hash of the complete contents of resource 1 does not have an
associated entry in the resource labelset data structure 850. In this
case, the trusted computing base 830 stores the labelset associated with
the source protected environment, e.g., labelset 1, in an entry in the
hash table of the resource labelset data structure 850 at an index
corresponding to the computed hash key for the contents of resource 1.

The trusted computing base 830 then compares this labelset for the source

protected environment 810, i.e. labelset 1, to the labelset for the target

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

42

protected environment 860 to determine whether the information flow

request will be granted or denied.

It should be noted that at no time in the above operations is any
information about the labelsets or any information about the hash wvalues
which associate labelsets with resources, passed from the trusted
computing base 830 to any application, system, or protected environment
outside the trusted computing base 830. Thus, the security of the
labelsets and the association of labelsets with resources is ensured

against unintentional or malicious modification.

It should also be noted that while the above examples illustrate a
comparison of a labelset associated with a resource, e.g., an item of
information, or a source protected environment with the target protected
environment labelset, the present invention is not limited to such.
Rather, as mentioned previously, in more complex embodiments, policies and
rules may be established for comparing all three labelsets to determine

whether to grant or deny an information flow request.

Thus, the illustrative embodiments provide mechanisms for associating
labelsets with resources and protected environments in a secure manner and
using these labelsets with policies to authorize or deny information
flows. A secure indexing mechanism and token association mechanism are
provided for associating labelsets with resources and protected
environments. The labelsets themselves provide a mechanism for
simplifying policy decisions by allowing policies and rules to be defined
in terms of set theory operations to be applied to the labelsets to

determine if an information flow is to be granted or denied.

Figures 10-12 are flowcharts outlining exemplary operations of an
illustrative embodiment for associating labelsets with protected
environments and resources and using such labelsets to perform
authorization operations on information flow requests. It will be
understood that each block of the flowchart illustrations, and
combinations of blocks in the flowchart illustrations, can be implemented
by computer program instructions. These computer program instructions may
be provided to a processor or other programmable data processing apparatus
to produce a machine, such that the instructions which execute on the
processor or other programmable data processing apparatus create means for
implementing the functions specified in the flowchart block or blocks.

These computer program instructions may also be stored in a

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

43

computer-readable memory or storage medium that can direct a processor or
other programmable data processing apparatus to function in a particular
manner, such that the instructions stored in the computer-readable memory
or storage medium produce an article of manufacture including instruction
means which implement the functions specified in the flowchart block or

blocks.

Accordingly, blocks of the flowchart illustrations support combinations of
means for performing the specified functions, combinations of steps for
performing the specified functions and program instruction means for
performing the specified functions. It will also be understood that each
block of the flowchart illustrations, and combinations of blocks in the
flowchart illustrations, can be implemented by special purpose
hardware-based computer systems which perform the specified functions or
steps, or by combinations of special purpose hardware and computer

instructions.

Figure 10 is a flowchart outlining an exemplary operation for granting
tokens to applications, devices, systems, etc. so as to establish a
protected environment. While the operations shown in Figure 10 may be
used to authenticate and generate a protected environment for
applications, devices, systems, and other sources of information flow
requests, it will be assumed for simplification of this description, that

the entity being authenticated is an application.

As shown in Figure 10, the operation starts by the authenticator receiving
an authentication assertion from an application (step 1010). The
application is authenticated using any known authentication methodology,
e.g., password authentication, security certificates, etc. (step 1020).
The authenticator determines whether the application has been successfully
authenticated or not (step 1030). If not, the authenticator does not
issue a token to the application and returns an error message to the

application (step 1040).

If the application has been successfully authenticated, the authenticator
issues a token to the application (step 1050). The token is also provided
to the reference monitor (step 1060) which uses the token to generate an
appropriate labelset for the application in a protected environment data
structure (step 1070). A security association is generated for the

protected environment based on connection information and then stored in

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

44

association with the generated labelset (step 1080). The operation then

terminates.

Figure 11 is a flowchart outlining an exemplary operation for associating
resources with labelsets in accordance with an illustrative embodiment.

As shown in Figure 11, the operation starts by the reference monitor
receiving resource content and security attributes for which a labelset is
to be generated and associated (step 1110). The reference monitor
generates a hash key by performing at least one hash function on the
complete contents of the resource (step 1120). The reference monitor
generates a labelset from the security attributes provided and associates
the labelset for the resource with the generated hash key (step 1130) and
stores the labelset in a hash table data structure at an index

corresponding to the hash key (step 1140). The operation then terminates.

Figure 12 is a flowchart outlining an exemplary operation for
authenticating an information flow request in accordance with one
illustrative embodiment. As shown in Figure 12, the operation starts with
the reference monitor receiving an information flow request from a
protected environment (step 1210). The reference monitor retrieves the
labelset for the source and target protected environment from the
protected environment data structure based on the security association
generated for the source protected environment and the name of the target
protected environment passed with the information flow request (step
1220). The reference monitor retrieves the resource that is the subject
of the information flow request from its source protected environment
(step 1230). Optionally, if a single information transfer is being
performed, the reference monitor may generate a hash value using at least
one hash function on the complete contents of the retrieved resource (step
1240). The reference monitor may then optionally perform a lookup
operation in a resource labelset data structure using the hash value as an

index (step 1250).

The reference monitor may then optionally determine if a valid entry in
the resource labelset data structure is identified at the index
corresponding to the hash value (step 1260). If so, the reference monitor
retrieves the labelset from the identified entry in the resource labelset
data structure (step 1270). If not, the reference monitor retrieves the
labelset for the source protected environment from the protected

environment data structure (step 1280). The reference monitor then

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

45

generates an entry in the resource labelset data structure at the index
corresponding to the generated hash value and the labelset for the source

protected environment is stored in this entry (step 1290).

It should be appreciated that steps 1230-1290 are performed if a single
transfer of information is being performed, i.e. a resource is being
transferred between the source protected environment and the target
protected environment. In the case of a stream information flow, steps

1230-1290 may be skipped in the operation shown in Figure 12.

The reference monitor parses the labelsets for the source and the target
protected environment, and optionally the resource, to identify the
security policies referenced in the labelsets (step 1300). The reference
monitor identifies which policy modules correspond to the identified
security policies (step 1310) and sends the labelsets to the identified
policy modules (step 1320). The policy modules may optionally generate an
effective labelset from the resource and source labelsets and then apply
the security policies to the labelsets to generate decisions as to whether
the information flow request should be granted or not (step 1330). A
decision combinator combines the various decisions from the various policy
modules into a single final decision as to whether the information flow

request should be granted or not (step 1340).

The reference monitor determines whether the information flow request
should be granted (step 1350). If so, the reference monitor passes the
resource, or allows the information flow, to the target protected
environment (step 1360). If not, the reference monitor blocks the passing
of the resource, or the information flow, to the target protected
environment and returns an error message to a submitter of the information

flow request (step 1370). The operation then terminates.

Examples of Processing of Information Flow Requests

The following are examples of the processing of information flow requests.
These examples are offered to show the various possible information flow
processing operations that may be performed using the mechanisms of the
illustrative embodiments described above. As mentioned above, there are
two types of information flows that are handled by the mechanisms of the
illustrative embodiment: information streams and resource transfers.

First, examples of the processing of information stream requests will be

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

46

discussed followed by a discussion of examples of the processing of

resource information flow requests.

When attempting to open an information flow stream, a requesting entity in
a protected environment may use the Information Flow Request Stream Open
method to request the opening of an information flow stream between the
requesting entity and the target entity. There are three scenarios that
may be encountered in response to the Information Flow Request Stream Open
method being invoked: (1) grant of an Information Flow Request Stream Open
Request; (2) denial of an Information Flow Request Stream Open Request;
and (3) grant of an Information Flow Request Stream Open Request with a

Target Labelset Update. Each of these scenarios is describe below.

In a first scenario, a successful infoFlowRequestStreamOpen method
invocation which grants a stream open with the reference monitor in
verbose mode is described. In this example, a first protected environment
(hereafter referred to as “partitions”), i.e. Partition 1, sends an
infoFlowRequestStreamOpen request with the target partition name,
Partition2, to the communication manager of the reference monitor. The
communication manager of the reference monitor first calls

cm_check partiton table() to ensure the source partition has an entry in
a Partition table, which may be provided in Protected Environment Data
Structure 540, for example. Next the communication manager (CM) of the
reference monitor calls cm get target security association() to get the
target partition’s security association. A final check is made to ensure
the stream does not already exists by calling

cm_check exisitng open stream().

After these checks complete, the CM makes a call to the information flow
mediator (IFM) to request authorization to open a information flow stream
by calling ifm authorize stream open{() with the source security
association and target security association as parameters and waits for a
response. The IFM first makes two separate internal calls to

ifm get labelset () to get the associated labelset for both the source and
target partitions. These labelsets are retrieved from the IFM Partition
Labelset table, which may also be provided as part of the Protected
Environment Data Structure 540, for example. Next, the IFM calls

pf auth decision() to request an authorization decision from the policy
framework. The policy framework returns a result code of SUCCESS and a
major code of FLOW GRANTED indicating that the flow is granted. A NULL is

returned as the value for the new target labelset as a result of the

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

47

pf auth decision() call. The IFM sends a success response to the CM

indicating that the information flow is granted.

When the call completes successfully, a major reason code indicating that
the flow is GRANTED is included in the response. The CM then adds the
source and target security association pair to an Open Information Flow
Streams table, which may be maintained in association with the CM, by
calling cm_add open stream entry() and sends a success message to

Partition 1 indicating that the information flow is granted.

In a second scenario, a successful infoFlowRequestStreamOpen method
invocation which denies a stream open is described. In this example,
Partition 1 sends an infoFlowRequestStreamOpen request with the target
partition name, Partition 3, to the CM. The CM then follows the same
checks as in the sequence described above with regard to the first

scenario.

After these checks complete, the CM then makes a call to the IFM to
request authorization to open an information flow, as previously
described. However in this scenario, the pf auth decision() returns a
result code of SUCCESS and a major code of FLOW DENIED indicating that the
flow is denied. A NULL is returned as the value for the new target
labelset indicating that no updates were made to the target labelset as a

result of the pf auth decision() call.

When the call completes successfully, a major reason code indicating that
the flow is DENIED is included in the response. The CM does not add the
stream to the Open Information Flow Streams table because of the DENIED
response from the IFM. Instead, the CM sends a success message to

Partition 1 indicating that the information flow is denied.

In a third scenario, a successful infoFlowRequestStreamOpen method
invocation which grants a stream open request that results in an update of
the target partition’s security attributes is described. In addition,
the reference monitor is configured in verbose mode. In this example,
Partition 4 sends an infoFlowRequeStreamOpen request with the target
partition name, Partition 2, to the CM. The CM then follows the same
checks as in the sequence describe previously with regard to the first

scenario.

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

48

After these checks complete, the CM makes a call to the IFM to request
authorization to open an information flow. The policy framework returns a
result code of SUCCESS and a major code of FLOW GRANT indicating that the
information flow is granted. A new target labelset is also returned from
the pf auth decision() call. The IFM then makes an internal call to

ifm update partition table() which updates the target partition entry with
the new labelset returned from the pf auth decision(). After the IFM
Partition table is updated, the IFM sends a success response to the CM
indicating that the information flow is granted and the target labelset

was updated.

Now that the target partition labelset has been updated, the CM must close
any open streams that reference Partition 2 by calling

cm_close existing open streams target() and

cm_close existing open streams source(). Since an open stream exists
from a source partition, Partition 1, to the target partition, Partiton 2,
the CM notifies Partitionl of the closed stream by sending a reply message
type within the call to cm close existing open streams target(). The CM
then adds the new stream to the Open Information Flow Streams table by
calling cm_add open stream entry() and then sends a success message to
Partition 4 indicating that the information flow is granted.

After having opened an information flow stream, the stream may need to be
closed at a later time. The mechanisms of the illustrative embodiments
provide a process for closing open streams. As an example, Partition 1
may send an infoFlowRequestStreamClose request with the target partition

name, Partition 2, to the CM. The CM first calls

cm_check partition table() to ensure the source partition has an entry in
the Partition table. Next the CM calls
cm_get target security association() to get the target partition’s

security association. After these calls complete successfully, the CM
calls cm delete existing open stream(), which removes the stream from the
Open Information Flow Streams table. The CM then sends a success message

to Partition 1.

As mentioned above, in addition to providing functionality for information
flow streams, the mechanisms of the illustrative embodiments also may
process resource information flow requests in which a single transfer of a
resource between a source protected environment, or partition, and a
target protected environment is performed. As with the information flow
streams discussed above, there are three scenarios of processing of an

Information Flow Resource Request that are handled by the illustrative

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

49

embodiments: (1) grant of an Information Flow Resource Request; (2) denial
of an Information Flow Resource Request; and (3) grant of an Information
Flow Resource Request with a Target Labelset Update. Each of these

scenarios is describe below.

In a first scenario of the information flow resource request processing, a
successful infoFlowRequestResource method invocation which sends a
resource to the target partition with the reference monitor in verbose
mode is described. In this example, Partition 1 sends an

infoFlowRequestResource request with the target partition name, Partition

2, to the CM. The CM first calls cm check partition table() to ensure
the source partition has an entry in the Partition table. Next the CM
calls cm get target security association() to get the target partition’s

security association.

After these checks complete successfully, the CM makes a call to the IFM
to request authorization to send a information flow resource by calling
ifm authorize resource flow() with the rescurce, the source and target
security associations as parameters, and waits for a response. The IFM
makes two separate internal calls to ifm get labelset() to get the
associlated labelset for both the source and target partitions. These
labelsets are retrieved from the IFM Partition Labelset table. The IFM
then makes an internal call to ifm get resource labelset() to get the
labelset for the resource. The resource labelset is retrieved from the
IFM Resource Labelset table, which may be provided as part of resource

labelset data structure 550, for example.

The IFM then calls pf auth decision() to request an authorization
decision from the policy framework. The policy framework returns a result
code of SUCCESS and a major code of FLOW GRANTED indicating that the flow
is granted. A NULL is returned as a value for the new target labelset
indicating that no updates were made to the target labelset as a result of

the pf auth decision() call.

When the call completes successfully, a major reason code indicating that
the flow is GRANTED is included in the response. The CM then calls
cm_flow information(), which forwards the information to the target
partition within a reply message type and sends a success message to

Partition 1 indicating that the information flow is granted.

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

50

In a second scenario, a successful infoFlowRequestResource method
invocation which denies a resource flow with the reference monitor in
verbose mode is described. In this example, Partition 1 sends an
infoFlowRequestResource request with the target partition name, Partition
3, to the CM. The CM then follows the same checks as in the sequence
describe above with reference to the first scenario of the information

flow resource request processing.

After these checks complete, the CM makes a call to the IFM to request
authorization to send a resource information flow, in a similar manner as
described above. In this scenario, however, the pf auth decision{()
returns a result code of SUCCESS and a major code of FLOW DENIED
indicating that the flow is denied. A NULL is returned as the value for
the new target labelset indicating that no updates were made to the target

labelset.

When the call completes successfully, a major reason code indicating that
the flow is DENIED is included in the response. The CM does not forward
the resource to the target partition because of the DENIED response from
the IFM. Instead the CM sends a success message to Partition 1 indicating

that the information flow is denied.

In a third scenario, a successful infoFlowRequestResource method
invocation which grants a resource information flow request that results
in an update of the target partition’s security attributes. In addition,
the reference monitor is configured in verbose mode. In this example,
Partition 4 sends an infoFlowRequestResource request with the target
partition name, Partition 2, to the CM. The CM then follows the same
checks as in the sequence describe above with reference to the first

scenario of the information flow resource request processing.

After these checks complete, the CM makes a call to the IFM to request
authorization to send a resource information flow in a similar manner as
previously described. 1In this scenario, however, the pf auth decision{)
method returns a result code of SUCCESS and a major code of FLOW GRANTED
indicating that the flow is granted. A new target labelset is also
returned from the pf auth decision() call. The IFM then makes an
internal call to ifm update partition table(), which updates the target
partition entry with the new labelset returned from the pf auth decision(

). After the IFM Partition table is updated, the IFM sends a success

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

51

response to the CM indicating that the information flow is granted and the

target labelset was updated.

When the call completes successfully, a major reason code indicating that
the flow is GRANTED with a minor reason code of TARGET LS UPDATED is

included in the response.

Now that the target partition labelset has been updated, the CM must close
any open streams that reference Partition 2 by calling

cm_close existing open streams target() and

cm_close existing open streams source(). Since an open stream exists
from source partition, Partition 1, to target partition, Partiton 2, the
CM notifies Partition 1 of the closed stream by sending a reply message
type within the call to cm close existing open streams target(). The CM
then calls cm flow information(), which forwards the information to the
target partition within a reply message type and sends a success message

to Partition 4 indicating that the information flow is granted.

With the above scenarios, the policy framework is called to perform an
authorization decision and return a result of FLOW GRANTED or FLOW DENIED.
In response to a pf auth decision() call, the policy framework first
calls pf check registered modules table() to check that the source,
resource and target labelsets each contain references to policy modules
that are registered with the reference monitor instance. The policy
framework then creates a temporary evaluation results table by calling

pf create evaluation results table(). This table temporarily stores the
evaluation results generated by a given policy module and will be used by

the decision combinator to produce a final authorization decision.

The policy framework then extracts individual policy module labelsets for
the source, resource, and target labelsets by calling
pf _extract pm labelsets(). These extracted labelsets are sent to the

appropriate policy module for evaluation.

The policy framework then calls pm evaluate() so that a policy module
will evaluate the extracted policy module labelsets for the source,
resource, and target labelsets based on the policy and produce an
evaluation result of GRANTED or DENIED, as well as a new target labelset
if applicable. The pm first calls pm get effective labelset() to get the
effective labelset by combining the source and resource labelsets based on

the policy module policy. Next, the policy module calls pm evaluate() to

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

52

request an authorization evaluation of the effective labelset and the
target labelset. The PM returns a result code of SUCCESS and a major code
of either FLOW GRANTED or FLOW DENIED based on the evaluation of the

labelsets. A new target labelset may also be returned if applicable.

The policy module then calls pf update temp evaluation results table() to
store the individual evaluation results generated by a policy module for
the source, resource, and target labelsets and corresponding new target
labelsets (if applicable). If a policy module does not generate a new

target labelset, it will return a NULL for the new target labelset.

Once all the appropriate policy modules have produced evaluation results
and corresponding results have been stored, the policy framework calls

pf generate final auth decision(). In this call, the decision combinator
evaluates the results stored in the evaluation results table against the
combinator policy and produces a final authorization decision of GRANTED
or DENIED. After the decision combinator returns the final result of
GRANTED or DENIED and the new target labelset (if any) to the policy

framework, the policy framework sends the final result to the IFM.

Comparison of Exemplary Aspects of the Illustrative Embodiments to Known

Approaches

The mechanisms of the illustrative embodiments differ from known
approaches and methodologies in many respects, some of which will be
discussed hereafter. Primarily, the benefits obtained from the use of the
mechanisms of the illustrative embodiments are as follows. First, the
labelsets are maintained completely within the reference monitor and thus,
are not susceptible to unintentional or malicious alteration. Second, the
labelsets provide a mechanism for eliminating the semantics of data
manipulation from security considerations and allow security
determinations to be performed based on sensitivities of the protected
environments and resources involved in the information flow. As a result,
source and target protected environments and resources may all make use of
a common security attribute, i.e. the labelsets, for security policy
evaluations, thereby reducing the complexity in the creation and use of

security policies and rules.

Third, the labelsets also permit the use of set theory operations to
perform security policy evaluations, thereby again simplifying the

security policies and rules. Fourth, the labelsets may be associated with

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

53

resources using a multidimensional hash data structure, thereby reducing
the possibility of unintentional or malicious alteration of labelsets and

reducing the possibility of hash collisions.

In addition, known systems require an intermediary device to perform
transfers between one source of information to another source of
information. For example, in a file transfer from one file server to
another file server, an intermediary is typically required to request the
file from a first file server and then to transmit the received file to
the second file server. With the illustrative embodiments, because the
mechanisms operate on information flows and are not concerned with the
particular actions performed in information flow, file transfers may be
made directly between the first and second file servers, assuming that
they are authorized by security policies implemented by the reference

monitor.

It is important to note that while the present invention has been
described in the context of a fully functioning data processing system,
those of ordinary skill in the art will appreciate that the processes of
the present invention are capable of being distributed in the form of a
computer readable medium of instructions and a variety of forms and that
the present invention applies equally regardless of the particular type of
signal bearing media actually used to carry out the distribution.

Examples of computer readable media include recordable-type media, such as
a floppy disk, a hard disk drive, a RAM, CD-ROMs, DVD-ROMs, and
transmission-type media, such as digital and analog communications links,
wired or wireless communications links using transmission forms, such as,
for example, radio frequency and light wave transmissions. The computer
readable media may take the form of coded formats that are decoded for

actual use in a particular data processing system.

The description of the present invention has been presented for purposes
of illustration and description, and is not intended to be exhaustive or
limited to the invention in the form disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the art. The
embodiment was chosen and described in order to best explain the
principles of the invention, the practical application, and to enable
others of ordinary skill in the art to understand the invention for
various embodiments with various modifications as are suited to the

particular use contemplated.

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890
54
CLAIMS
1. A method for authorizing information flows between devices of a data

processing system, the method comprising:

generating a hash key based on an information object;

performing a lookup operation in a hash table based on the hash key;

determining if an entry in the hash table at an index corresponding to the

hash key identifies a labelset for the information object;

storing a labelset, identifying a sensitivity of the information object,

in the entry at the index corresponding to the hash key for the

information object if a labelset for the information object is not

identified in the entry in the hash table; and

authorizing information flows involving the information object based on a

lookup of
table.
2. The

the labelset associated with the information object in the hash

method of claim 1, wherein the hash table is a multidimensional

hash table and the hash key comprises a plurality of hash keys generated

by a plurality of hash functions, at least one hash function and hash key

for each dimension of the multidimensional hash table.

3. The

least one

4. The
file.

5. The
computing
6. The
involving

method of claim 1, wherein the hash key is generated using at

hash function on content of the information object.

method of claim 1, wherein the information object is a computer

method of claim 1, wherein the hash table is stored in a trusted

base which is separate from a source of the information object.

method of claim 1, wherein authorizing information flows

the information object based on a lookup of the labelset

associated with the information object in the hash table comprises:

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

55

receiving a request for authorization of an information flow
involving the information object from a first device to a second device;
retrieving contents of the information object from a source of the

information object;

generating a hash key based on the contents of the information

object;

performing a lookup operation in the hash table based on the hash

key to identify a labelset associated with the information object; and

performing one or more authorization operation based on the labelset

associated with the information object.

7. The method of claim 6, wherein performing one or more authorization
operation comprises comparing the labelset associated with the information
object and a labelset of a source of the information object with a

labelset associated with a target of the information flow.

8. The method of claim 7, wherein comparing the labelset associated
with the information object and the labelset of the source with a labelset
associated with a target of the information flow comprises performing at

least one set theory operation on the labelsets.

9. The method of claim 8, wherein the at least one set theory operation
is performed by at least one security policy module identified in the
labelset associated with the information object and the labelset
associated with the target of the information flow, and wherein results
generated by each of the at least one security policy module are combined
to generate a single result indicating whether the information flow is

authorized.

10. The method of claim 1, wherein storing a labelset, identifying a
sensitivity of the information object, in the entry at the index
corresponding to the hash key for the information object comprises storing
a labelset associated with a source of the information object in the entry

in association with the information object.

11. The method of claim 1, wherein the labelset comprises a labellist

element providing one or more labels of the labelset.

10

15

20

25

30

35

40

WO 2007/068568 PCT/EP2006/068890

56

12. The method of claim 11, wherein the labels in the labellist are
composed of a policy type and a value, wherein the policy type identifies
a security policy to be applied to the labelset and the value identifies a
value to be used in evaluating the security policy identified by the

policy type.

13. The method of claim 11, wherein each labelset further comprises a
version element indicating a version of the labelset and a count element

indicating a number of labels included in the labelset.

14, A computer program product comprising a computer usable medium
including a computer readable program, wherein the computer readable
program, when executed on a computing device, causes the computing device

to carry out the steps of any of claims 1 to 13.

15. An apparatus for authorizing information flows between devices of a

data processing system, the method comprising:

an information flow mediator; and

a labelset storage device coupled to the information flow mediator,
wherein the information flow mediator is operable to perform the steps of

any of claims 1 to 13.

16. A data processing system for authorizing information flows between

devices, comprising:

a first computing device in a first partition of the data processing
system, wherein the first computing device has a source element for

communicating information to a target element;

a second computing device in a second partition of the data
processing system, wherein the second computing device has the target

element; and
a reference monitor, coupled to the first computing device and the
second computing device, that monitors information flows between the first

partition and the second partition, wherein the reference monitor:

generates a hash key based on an information object,

10

15

20

25

30

35

WO 2007/068568 PCT/EP2006/068890

57

performs a lookup operation in a hash table based on the hash key,

determines if an entry in the hash table at an index corresponding to the
hash key identifies a labelset for the information object,

stores a labelset, identifying a sensitivity of the information object, in
the entry at the index corresponding to the hash key for the information
object i1f a labelset for the information object is not identified in the

entry in the hash table, and

authorizes information flows involving the information object based on a
lookup of the labelset associated with the information object in the hash

table.

17. The data processing system of claim 16, wherein the reference

monitor comprises:

a communication manager having a listener for listening for

information flow requests from elements of the data processing system;

an information flow mediator coupled to the communication manager for

determining whether an information flow is to be authorized or denied;

a security data structure storage device coupled to the information flow
mediator that stores security information for elements of the data

processing system; and
a security policy framework coupled to the information flow mediator for
applying one or more security policies to security information for
elements of the data processing system.
18. A computing device, comprising:

a processor; and

a memory, wherein the memory contains instructions which, when

executed by the processor, cause the processor to perform the steps of any

of claims 1 to 13.

WO 2007/068568

PCT/EP2006/068890
s 100
’/ 108
104~ :j
102 Oy Yy
= CLIENT
1 Yy
CLIENT
FIG. 1 STORAGE 12
599;9
106 CLIENT
202~ PROCESSOR PROCESSOR |~ 204
206
SYSTEM BUS Y
<= >
MEMORY 200
208~ CONTROLLER/ | /0 BRIDGE |~210 el
CACHE
ﬁ 214
e 216
209 LOCAL - PCI BUS PGI BUS /
1 MEMORY | BRIDGE ﬂ ﬂ >
2121 VO NETWORK
BUS MODEM ADAPTER
GRAPHICS 222 S S
930-/1__ADAPTER) 218 220
PCI BUS PCI BUS T
BRIDGE <
226
R
232 HARD DISK _— PCI BUS PCI BUS -~
FIG. 2 | BRIDGE <
- Vv N 228

224

WO 2007/068568

PCT/EP2006/068890

2/8
8 304 316
300\ 30\2 30& /
HOST/PCI MAIN AUDIO
PROCESSOR K= cAcHE/BRIDGE [<—>1 MEMORY | | ADAPTER
BUS ﬁ ﬁ
< , ' >
4 Lo
306
SCSI HOST LAN Expésgow GRAPHICS Q/ﬁ’gég/
BUS ADAPTER | | ADAPTER | | |\ 558 | | ADaPTER | | VIDEO
VA i N N N
312 310 314 318 319
—>
326~ Tpisk - g l;
KEYBOARD AND
3081 TAPE K 390--|MOUSE ADAPTER| | MODEM | | MEMORY
_ N N
330~ CD-ROM FIG. 3 322 324
410 420 430
N \ /
PROTECTED PROTECTED PROTECTED
ENVIRONMENT ENVIRONMENT ENVIRONMENT
(COMMUNICATION MEDIUM O
/
440 REFERENCE
AUTHENTICATOR ONTOR
’ N
450 460

FIG. 4

WO 2007/068568 PCT/EP2006/068890

3/8
REFERENCE MONITOR
500
LISTENER
512 540
910~ C__S
COMMUNICATION
MANAGER PROTECTED
—| ENVIRONMENT
DATA
STRUCTURE
520~ INFORMATION FLOW | | “~~———e—
MEDIATOR ——
RESOURCE
L | LABELSET
POLICY DATA
FRAMEWORK STRUCTURE
530"
DECISION 550
COMBINATOR
¢
532
I |
POLICY POLICY POLICY
MODULE MODULE MODULE
((\
534 536 538

FIG. 5

WO 2007/068568 PCT/EP2006/068890

4/8

<labelset>::= <version>: <count>:<labellist>
<version>::= <major>.<minor>
<major>:={1..(264-1)}
<minor>::={0..(264-1)}

<count>:={ordinal > 0}

<labellist>::= <label>*
<label>::=<policy_type>:<value>
<policy_type>:=<version>:{1..(264-1)}
<value>:={1..(284-1)}

FIG. 6

<labelset>
<version>
<major>1</major>
750 <minor>0</minor>
\ </version>
<count>1</count>-" 752
[<labellist>
<label>
<policy type>1</policy type>
<version>
760+ <m'ajor>1 </m?jor>
<minor>0</minor>
</version>
<value>1</value>
</label>
| </labellist> 172
</labelset>

> 770

FIG. 7B

WO 2007/068568 PCT/EP2006/068890

5/8

<labelset>
<version>
<major>1</major>
<minor>0</minor>
</version>
<count>3</count>
<labellist>
[<label>
<policy type>1</policy type>
<version>
<major>1</major>
<minor>0</minor>
</version>
<value>3</value>

72/2 734
/
<policy_type>1</policy type>
<version>
<major>1</major>
<minor=>0</minor>

< /version>
<value>2</value>

’
732 744
. oo
<policy type>1</policy type>
<version>
740- <m§jor>1 </me-1jor>
<minor>0</minor>

</version>
<value>1</value>

-
742

724

7205

| </label>
[<label>

730+ > 710

. </label>
[<label>

| </label>
</labellist>
</labelset>

FIG. 74

WO 2007/068568 PCT/EP2006/068890
6/8
860 | ————— L 1820
1 11
\“'l Application_1 : : Application_2 :‘/
1 i
R — B — FIG. 8
Y
8110 TRUSTED COMPUTING BASE 8)50
= ' R -
SECURITY ASSOCIATION LABELSET HASH KEY LABELSET
Application_1 Labelset_3 E8#2dxa Labelset_2 -
Application_2 Labelset_4
Resource_System Labelset_1
== =
830 : :
1 | Resource_System | |
1
Sl
\ 3 —
| _J
I -
860~ | ——— N — 820
| (I 1
\": Application 1 : : Application_2 r/
l (I 1
e T R FIG. 9
A
810 TRUSTED COMPUTING BASE 85)0
- - R
SECURITY ASSOCIATION LABELSET HASH KEY LABELSET
Application_1 Labelset_3 @1q892¢ Labelset 1 <
Application_2 Labelset_4 E8#2dxa Labelset_2 -
Resource_System Labelset 1
N ——— R S ———— I
P — .
830 I

Resource_System

Resource_1
Resource 2

WO 2007/068568 PCT/EP2006/068890

e

1010~ | RECEIVE AUTHENTICATION
™ ASSERTION FROM
APPLICATION

!

1020 ~ AUTHENTICATE
APPLICATION

1030

SUCCESSFULLY

AUTHENTICATED
2

v

TOKEN IS NOT ISSUED.

OPTIONALLY RETURN
ERROR MESSAGE
, N
ISSUE TOKEN TO 1040
1050-" APPLICATION
PROVIDE TOKEN TO
1060-"| REFERENCE MONITOR
v START
| GENERATE LABELSET
1070 BASED ON TOKEN RECEIVE RESOURCE CONTENT
I 1110~{ FOR WHICH A LABELSET IS TO
GENERATE SECURITY BE ASSOCIATED
ASSOCIATION BASED ON i
COMMUNICATION 1120~ GENERATE HASH KEY BASED
P CONNECTION INFORMATION ON RESOURCE CONTENT
1080 AND STORE SECURITY T
ASSOCIATION IN
ASSOCIATION WITH ASSOCIATE LABELSET
GENERATED LABELSET 11307 WITH HASH KEY
Y
CET‘“VD STORE LABELSET IN HASH TABLE
11401 DATA STRUCTURE AT INDEX
FIG. 10 CORRESPONDING TO HASH KEY
END

FIG. 11

WO 2007/068568

PCT/EP2006/068890

START 8/8
¥
RETRIEVE LABELSET FOR SOURGE
RMAT
1210~ EE%WEE'E‘E(E’SPFREO,\T PROTECTED ENVIRONMENT FROM |~1280
PROTECTED ENVIRONMENT DATA
ENT
PROTECTED liNVIRONM N STRUCTURE
1220~ | RETRIEVE LABELSETS FOR !
™ SOURCE AND TARGET GENERATE ENTRY IN RESOURCE
PROTECTED ENVIRONMENT LABELSET DATA STRUCTURE | g
FOR RESOURCE USING HASH
) VALUE AND SOURCE PROTECTED
1230~ . SSIEL%VER%E%%FL%ECE ENVIRONMENT LABELSET
PROTECTED ENVIRONMENT >
v PARSE LABELSETS TO |_~1300
1240 GENERATE HASH VALUE IDENTIFY SECURITY POLICIES
™ BASED ON RETRIEVED !
RESOURCE CONTENT IDENTIEY POLICY
1 MODULES ASSOCIATED ~_1310
PERFORM LOOKUP WITH SECURITY POLICIES
OPERATION IN RESOURCE 15
12501 LABELSET DATA STRUCTURE SEND LABELSETS TO
(HAwLZ\EBlL\?k’h?ng*)’(ASH IDENTIFIED POLICY MODULES ~ [™-1320
POLICY MODULES APPLY
VALID SECURITY POLICIES TO LABELSETS [230
ENTRY IN HASH TABLE ~>NC TO GENERATE DECISIONS
FOUND? N
1260 COMBINE DECISIONS TO GENERATE
A SINGLE DECISION TO GRANT OR
RETS'EESVCEUL‘;?&%TMF OR DENY INFORMATION FLOW REQUEST | 1340
7
1270 IDENTIFIED ENTRY
L \ GRANT
i O " INFORMATION FLOW
REQUEST?
BLOCK RESOURCE OR 1350
INFORMATION FLOW FROM
1370--1 _ BEING SENT TO TARGET PASS RESOURCE OR ALLOW
PROTECTED ENVIRONMENT INFORMATION FLOW TO TARGET N-1360
AND RETURN ERROR MESSAGE PROTECTED ENVIRONMENT
[-
"y
FIG. 12 END

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2006/068890

A.
INV. GO6

CLASSIFICATION 7 SUBJECT MATTER
F21/24

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation 1o the extent that such documents are included in the fields searched

EPO-Inter

nal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

US 2002/099952 Al (LAMBERT JOHN J [US] ET
AL) 25 July 2002 (2002-07-25)

abstract; figures 3,8

paragraph [0011]
paragraph [0014]
paragraph [0034]
paragraph [0054]
paragraph [0065]
paragraph [0083]
paragraph [0100]

paragraph [0038]
paragraph [0055]
paragraph [0068]
paragraph [0084]

US 2002/035635 Al (HOLDEN JAMES M [US] ET
AL) 21 March 2002 (2002-03-21)

the whole document

US 2005/138393 Al (CHALLENER DAVID C [US]
ET AL) 23 June 2005 (2005-06-23)

1-18

5,16,17

[:I Further documents are listed in the continuation of Box C.

See patent family annex.

* Special catego

*A" document defining the general state of the art which is not
considered to be of particular relevance

citation or other special reason (as specified)

0O document referring to an oral disclosure, use, exhibition or
other means

ries of cited documents :

T later document published after the international filing date

or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the

invention
*E" earlier document but published on or after the international *X* document of particular relevance: the claimed invention
fiing date cannot be considered novel or cannot be considered to
*L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone
which is cited to establish the publication date of another *y* document of particular relevance; the claimed, invention

cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-—
ments, such combination being obvious to a person skilled

P document published prior to the international filing date but in the arl.
later than the priority date clalmed '&" document member of the same patent family
Date of the actual completion of the international search Date of malling of the international search report
31 January 2007 06/02/2007

Name and mailing address of the ISA/

European Patent QOffice, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Powell, David

Form PCT/ASA/210 (se

cond sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2006/068890
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2002099952 Al 25-07-2002 NONE
US 2002035635 Al 21-03-2002 NONE
US 2005138393 Al 23-06-2005 NONE

Form PCT/ISA/210 (patent famlly annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - claims
	Page 57 - claims
	Page 58 - claims
	Page 59 - claims
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - wo-search-report
	Page 69 - wo-search-report

