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SYSTEM AND METHOD FOR MONITORING IN-SITU PROCESSING OF
SPECIMENS USING COHERENT ANTI-STOKES RAMAN SCATTERING (CARS)
MICROSCOPY

CROSS-REFERENCE TO A RELATED APPLICATION

[0001] This application claims the benefit of the filing date of Provisional
Patent Application, Serial No. 61/330,274, filed on April 30, 2010, and Non-
provisional Patent Application, Serial No. 12/778,074 filed on May 11, 2010

which are incorporated herein by reference.

FIELD

[0002] This disclosure relates generally to in-situ process monitoring, and
in particular, to a system and method of monitoring an in-situ processing of a

specimen using coherent anti-Stokes Raman scattering (CARS) microscopy.

BACKGROUND

[0003] Advancement in the manufacturing of microelectronic circuits have
been significant over the past three decades. Currently, millions of transistors
are routinely fabricated into integrated circuits, such as, for example, those
typically used as microprocessors. Microelectronic manufacturing techniques
typically employ photolithography and electron beam lithography to perform

most of the manufacturing of today’s integrated circuits.

[0004] However, there are drawbacks associated with standard
microelectronic manufacturing techniques. For instance, these manufacturing
techniques are generally not capable of creating complex three-dimensional
structures. Additionally, standard microelectronic manufacturing techniques are
typically not able to form curved and/or uneven shapes. Furthermore, these
fabrication techniques are incompatible with many chemical and biological

environments.

[0005] A distinct manufacturing technology that 1s gaining recent
popularity 1s two-photon polymerization (TPP). TPP has several advantages

over standard microelectronic fabrication techniques. For instance, TPP
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manufacturing techniques provide for the creation of complex three-dimensional
microstructures. These techniques also allow the production of geometries with
essentially no topological constraints and with a dimensional resolution smaller
than 100 nanometers (nm). Such complex three-dimensional microstructures
may be coated with electrical conductors and/or semiconductors for uses in
microelectronic and photonic applications.  Additionally, TPP may have
applications in the field of biomedicine, including drug delivery and tissue

engineering.

[0006] TPP essentially entails a nonlinear interaction of light with a
photosensitive material, such as resin. In particular, near-infrared photons are
used to induce two-photon absorption in molecules (e.g., photoinitiators) in
acrylic-based resin, beginning a polymerization process. In such process, highly
cross-linked polymers are formed. More specifically, while an acrylic-based resin
specimen 1s subjected to a TPP process, carbon-carbon double bonds are
homolytically cleaved by action of radicals, forming multiple new carbon-carbon
single bonds. The TPP process entails the use of an ultra-short pulsed laser and
strong focusing lens to subject the specimen with the corresponding radiation to
achieve very accurate geometries. The non-polymerized material of the specimen
may be removed using solutions to leave the freestanding structure. It shall be

understood that TPP may be applied to other types of resins and other materials.

[0007] The characterization, monitoring, and optimization of TPP
processes are issues that are typically given considerable attention. For
instance, attention is often given to how to characterize and measure the
mechanical properties of specimens undergoing TPP processes. Also, attention 1s
often given to how to improve or optimize a TPP process on a particular
specimen. Additionally, attention is often given to how the solvent used to
remove the non-polymerized material affects the remaining structure.
Conventional inspection methods, such as bright-field transmission light
microscopy and scanning electron microscopy (SEM), may not be able to
accurately address these issues. For instance, bright-field transmission light

microscopy may not provide sufficient detail to enable a three-dimensional view
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of the specimen. SEM may not provide sufficient detail about the structural

information of the specimen.

SUMMARY

[0008] An aspect of the disclosure relates to a system and method for in-
situ monitoring of a specimen while undergoing a process. The system comprises
a processing system adapted to perform a defined process on the specimen, and a
coherent anti-Stokes Raman scattering (CARS) microscopy system adapted to in-
situ monitor the specimen. In another aspect, the CARS microscopy system 1is
adapted to in-situ monitor the specimen simultaneous with the defined process
being performed on the specimen by the processing system. In still another
aspect, the CARS microscopy system 1s adapted to perform a measurement of the
specimen while the defined process being performed on the specimen 1s paused

or temporarily halted.

[0009] In another aspect of the disclosure, the system further comprises a
scanning mechanism adapted to subject distinct portions of the specimen to the
in-situ monitoring by the CARS microscopy system. In one aspect, the scanning
mechanism 1s adapted to move the specimen. In another aspect, the scanning
mechanism 1s adapted to steer an incident radiation beam directed at the
specimen by the CARS microscopy system. In still another aspect, the scanning
mechanism 1s adapted to steer both a Stokes radiation beam and a pump

radiation beam directed at the specimen by the CARS microscopy system.

[0010] In another aspect of the disclosure, the CARS microscopy system
comprises a Stokes beam source adapted to generate a Stokes radiation beam
with a frequency ws, and a pump radiation beam adapted to generate a pump
radiation beam with a frequency wp. In one aspect, the CARS microscopy system
1s adapted to direct the Stokes radiation beam and the pump radiation beam to
substantially the same region on the specimen. In still another aspect, the
CARS microscopy system 1s adapted to combine the Stokes radiation beam and
the pump radiation beam to generate an incident radiation beam directed at the
specimen, wherein the incident radiation beam has a frequency of substantially

Wp - Ws or Ws - Wpr.
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[0011] In another aspect, the CARS microscopy system comprises at least
one radiation source adapted to generate an incident radiation beam upon the
specimen, and a detector adapted to detect radiation emitted by the specimen in
response to the incident radiation beam. In one aspect, the emitted radiation by
the specimen provides information regarding one or more properties of the
specimen. In still another aspect, the one or more properties of the specimen
comprises a density of the specimen. In yet another aspect, the specimen
comprises a resin, and the one or more properties of the specimen comprises a
degree of polymerization of the resin. Additionally, in another aspect, the
processing system comprises a two-photon polymerization (TPP) processing
system. In still another aspect, the TPP processing system 1s adapted to
generate a TPP radiation beam for performing the TPP process on the specimen,
wherein the TPP radiation beam 1s derived at least in part from the pump or

Stokes radiation beam of the CARS system.

[0012] Other aspects, advantages and novel features of the disclosure will
become apparent from the following detailed description of the invention when

considered in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] FIG. 1 illustrates a block diagram of an exemplary in-situ process

monitoring system in accordance with an embodiment of the disclosure.

[0014] FIG. 2 illustrates a block diagram of another exemplary in-situ
process monitoring system 1n accordance with another embodiment of the

disclosure.

[0015] FIG. 3A illustrates a block diagram of another exemplary in-situ
process monitoring system 1n accordance with another embodiment of the

disclosure.

[0016] FIG. 3B illustrates a block diagram of an exemplary real-time

process monitoring system in accordance with another aspect of the disclosure.
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[0017] FIG. 4 illustrates a flow diagram of an exemplary method of
monitoring a specimen in-situ undergoing a process in accordance with another

aspect of the disclosure.

[0018] FIG. 5 illustrates a flow diagram of another exemplary method of
monitoring a specimen in-situ undergoing a process in accordance with another

aspect of the disclosure.

DETAILED DESCRIPTION OF THE EXEMPLARY EMBODIMENTS

[0019] FIG. 1 illustrates a block diagram of an exemplary in-situ process
monitoring system 100 in accordance with an embodiment of the disclosure. In
summary, the in-situ process monitoring system 100 uses a coherent anti-Stokes
Raman scattering (CARS) microscopy system to scan and monitor a specimen
undergoing a particular process. The CARS microscopy system 1s able to detect
one or more properties of the specimen. For instance, the CARS system 1s able to
detect relative densities in the specimen. Thus, by monitoring a specimen in-situ
undergoing a polymerization process, for example, boundaries of features in the
specimen may be monitored using the CARS microscopy system. This 1s just one
example of many applications of using a CARS microscopy system to perform in-

situ monitoring of samples undergoing processes.

[0020] More specifically, the in-situ process monitoring system 100
comprises a CARS microscopy system 110 used for in-situ monitoring one or
more characteristics of a specimen 150 undergoing a particular process
performed by a specimen processing system 140. The CARS microscopy system
110, 1in turn, comprises a Stokes beam source 112, a pump beam source 114, and
a detector 116; and may also include a scanning mechanism 118. The Stokes
beam source 112 generates a Stokes radiation beam with a frequency ws. The
pump beam source 114 generates a pump radiation beam with a frequency wp.
The Stokes and pump beam may be combined (e.g., one modulates the other)
within the CARS system 110 to generate an incident radiation beam with a
frequency wp - ws (or ws — wp) (e.g., the difference in frequency between the

Stokes radiation beam and the pump radiation beam).
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[0021] The frequency wp - ws of the incident radiation signal may be tuned
to substantially the frequency of a Raman active vibrational mode of at least a
portion the specimen 150. The incident radiation signal interacts with the
specimen 150, which, in response, emits a shorter wavelength pulse. The shorter
wavelength pulse 1s detected by the detector 116 to ascertain information about
one or more properties of the specimen 150. The scanning mechanism 118 is
adapted to move the specimen 150 relative to the incident radiation beam to
allow the beam to interact with different portions or regions of the specimen.
The scanning mechanism 118 may perform this by actually moving the specimen
150 (e.g., by moving the structure (e.g., a stage) that supports the specimen.
Alternatively, or in addition to, the scanning mechanism 118 may be able to

steer the incident radiation beam.

[0022] By spatially scanning the incident radiation beam, a chemical-
specific three-dimensional image of the specimen 150 may be ascertain, which
describes the concentration or density of the excited molecular oscillators within
the specimen. The detected signal 1s proportional to the square of the third-order
susceptibility, and therefore strongly dependent on the number of vibrational
oscillators. Thus, discontinuities in the detected signal are a direct consequence
of density variations in the specimen 150. Thus, while the specimen 150 is
undergoing the process performed by the specimen processing system 140, the
CARS system 110 1s able to generate a three-dimensional image of the density of
the specimen, which 1s useful for many applications, such as optimizing the
processing of the specimen, characterizing the structure and features of the
specimen, detecting defects within the specimen, ascertaining the uniformity of

the specimen, and others.

[0023] FIG. 2 illustrates a block diagram of another exemplary in-situ
process monitoring system 200 in accordance with another embodiment of the
disclosure. The in-situ process monitoring system 200 is similar to that of
system 100, and includes many of the same elements as noted by the same
reference numbers. A difference between the in-situ process monitoring system
200 and system 100 1s that both the Stokes radiation beam and the pump

radiation beam are focused upon the specimen 150. Thus, the incident radiation
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beam 1s generated at substantially the specimen 150. In this case, the scanning
mechanism 118 may steer the Stokes beam and pump beam individually,
although in a manner that they both are focused at substantially the same

region of the specimen 150.

[0024] FIG. 3A illustrates a block diagram of another exemplary in-situ
process monitoring system 300 in accordance with another embodiment of the
disclosure. The in-situ process monitoring system 300 is similar to that of
system 100, and includes many of the same elements as noted by the same
reference numbers. However, in this exemplary embodiment, the specimen
processing system 340 1s a two-photon polymerization processing system, and the
specimen 350 1s a resin. This 1s just to illustrate one application, among many,
of the CARS microscopy system 110. In this example, the CARS microscopy
system 110 may be configured to measure the degree of polymerization while the
resin 1s undergoing the TPP process performed by the specimen processing
system 340. In this regards, the density of the polymerized portion of the resin
350 1s greater than the non-polymerized portion of the resin. Thus, the CARS
microscopy system 110 would be able to provide a three-dimensional image of the
density of the resin 350 while undergoing the TPP process. It shall be
understood that the specimen need not be limited to a resin, but may encompass

many distinct materials.

[0025] FIG. 3B illustrates a block diagram of an exemplary “real-time”
process monitoring system 360 in accordance with another aspect of the
disclosure. The real-time process monitoring system 360 1s similar to the system
300 previously described, and includes many of the same elements as noted by
the same reference numbers. The “real-time” process monitoring system 360
differs with respect to system 300 in that it includes a real-time CARS system
115 in which a portion of the pump radiation beam 1s sent to a TPP process
system 370. The TPP process system 370 generates a TPP radiation beam wr
that 1s derived at least in part from the pump radiation beam wp. The specimen
350 (e.g., a resin) 1s subjected to the TPP radiation beam wr to induce
polymerization in the specimen, and to ultimately form a defined microstructure

based on the TPP process. In such a system 360, the CARS system 115 1s able to
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monitor in “real-time” the specimen 350, while the specimen 1s undergoing the

TPP process performed by the TPP process system 370.

[0026] FIG. 4 illustrates a flow diagram of an exemplary method 400 of
monitoring a specimen in-situ undergoing a process in accordance with another
aspect of the disclosure. In this example, the processing of the specimen is
paused or temporarily halted one or more times in order to perform one or more

CARS measurement on the specimen, respectively.

[0027] More specifically, according to the method 400, the specimen 1is
placed 1n-situ for processing (block 402). Then, an initial CARS measurement of
the specimen may be taken in order to characterize the specimen at the
beginning of the process (block 404). Then, the processing of the specimen is
begun (block 406). The processing of the specimen may be paused prior to
completion of the process to take a measurement of the specimen (block 408).
While the process 1s paused, a CARS measurement of the specimen in-situ 1is
taken (block 410). After the measurement, the process 1s resumed (block 412).
Prior to completion of the process, additional intermediate CARS measurement
of the specimen may be taken. Thus, in this regards, if the process i1s not
complete pursuant to block 414, the operations 408 through 410 may be repeated
to obtain additional CARS measurement of the specimen as desired. When the
process 1s complete pursuant to block 414, a final CARS measurement of the

specimen may be taken (block 416).

[0028] FIG. 5 illustrates a flow diagram of another exemplary method 500
of monitoring a specimen in-situ undergoing a process in accordance with
another aspect of the disclosure. In the previous example, although the
specimen was in-situ, the process being performed on the specimen was paused
or temporarily halted for the purpose of taking a CARS measurement of the
specimen. In this example, the process 1s not halted, and the CARS
measurement of the specimen 1s taken while the process is being performed on

the specimen.

[0029] More specifically, according to the method 500, the specimen 1is

placed 1n-situ for processing (block 502). Then, an initial CARS measurement of
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the specimen may be taken in order to characterize the specimen at the
beginning of the process (block 504). Then, the processing of the specimen is
begun (block 506). The CARS measurement of the specimen may be taken in a
continuous, periodic, or in another manner, while the specimen is undergoing the
defined process (block 508). Prior to completion of the process pursuant to block
510, additional CARS measurements of the specimen may be taken while the
specimen 1s being processed (block 508). When the process is complete pursuant
to block 512, a final CARS measurement of the specimen may be taken (block
512).

[0030] While the invention has been described in connection with various
embodiments, 1t will be understood that the invention 1s capable of further
modifications. This application i1s intended to cover any variations, uses or
adaptation of the invention following, in general, the principles of the invention,
and including such departures from the present disclosure as come within the

known and customary practice within the art to which the invention pertains.
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What 1s claimed 1s:

1. A system for in-situ monitoring of a specimen while undergoing a
defined process, comprising:

a processing system adapted to perform the defined process on the
specimen; and

a coherent anti-Stokes Raman scattering (CARS) microscopy system

adapted to in-situ monitor the specimen.

2. The system of claim 1, wherein the CARS microscopy system 1is
adapted to in-situ monitor the specimen simultaneous with the defined process

being performed on the specimen by the processing system.

3. The system of claim 1, wherein the processing system 1s adapted to
pause the defined process being performed on the specimen, and wherein the
CARS microscopy system 1s adapted to perform the in-situ monitoring of the
specimen while the processing system has paused the defined process performed

on the specimen.
4. The system of claim 1, further comprising a scanning mechanism
adapted to subject distinct portions of the specimen to the in-situ monitoring by

the CARS microscopy system.

5. The system of claim 4, wherein the scanning mechanism 1s adapted

to move the specimen.
6. The system of claim 4, wherein the CARS system 1s adapted to
generate an incident radiation beam directed at the specimen, and wherein the

scanning mechanism 1s adapted to steer the incident radiation beam.

7. The system of claim 4, wherein the CARS system comprises:

10
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a Stokes beam source adapted to generate a Stokes radiation beam
directed at the specimen; and

a pump beam source adapted to generate a pump radiation beam directed
at the specimen;

wherein the scanning mechanism 1s adapted to steer the Stokes and pump

radiation beams.

8. The system of claim 1, wherein the CARS microscopy system
comprises:

a Stokes beam source adapted to generate a Stokes radiation beam with a
frequency ws; and

a pump beam source adapted to generate a pump radiation beam with a

frequency wp.

9. The system of claim 8, wherein the CARS microscopy system is
adapted to direct the Stokes radiation beam and the pump radiation beam to

substantially the same region of the specimen.

10. The system of claim 8, wherein the CARS microscopy system 1is
adapted to combine the Stokes radiation beam and the pump radiation beam to
generate an incident radiation beam directed at the specimen, wherein the

incident radiation beam has a frequency of substantially wp - ws or ws - Wp.

11. The system of claim 1, wherein the CARS microscopy system
comprises:

at least one radiation beam source adapted to generate an incident
radiation beam upon the specimen; and

a detector adapted to detect radiation emitted by the specimen in response

to the incident radiation beam.

12. The system of claim 11, wherein the emitted radiation by the

specimen provides information regarding one or more properties of the specimen.

11
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13. The system of claim 12, wherein the one or more properties of the

specimen comprises a density of the specimen.

14. The system of claim 12, wherein the specimen comprises a resin,
and wherein the one or more properties comprises a degree of polymerization of

the resin.

15. The system of claim 1, wherein the processing system comprises a
two-photon polymerization processing system adapted to perform a TPP process

on the specimen.

16. The system of claam 15, wherein the CARS system 1s adapted to
generate a first radiation beam for real-time monitoring of the specimen,
wherein the processing system 1is adapted to generate a second radiation beam
for performing the TPP process on the specimen, and wherein the second

radiation beam 1s derived from the first radiation beam.

17. A method of in-situ monitoring of a specimen while undergoing a
defined process, comprising:

performing the defined process on the specimen; and

in-situ  monitoring the specimen using coherent anti-Stokes Raman

scattering (CARS) microscopy.

18. The method of claim 17, wherein in-situ monitoring of the specimen
comprises monitoring the specimen while the defined process is being performed

on the specimen.

19. The method of claim 17, further comprising pausing the defined
process being performed on the specimen, wherein the in-situ monitoring of the
specimen 1s performed while the defined process performed on the specimen is

paused.

12
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20. The method of claim 17, wherein in-situ monitoring of the specimen
comprises:

subjecting distinct portions of the specimen to a CARS radiation beam,;
and

detecting an emitted radiation from the specimen in response to the CARS

radiation beam.

21. A method of real-time monitoring of a resin undergoing a two-
photon polymerization (TPP) process, comprising:

performing the TPP process on the resin; and

in-situ  monitoring of the resin using coherent anti-Stokes Raman

scattering (CARS) microscopy while the resin is undergoing the TPP process.

13
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