q\;‘\
B . = e moew -
..o‘. l‘:‘ e a‘.i‘g '\\"
e N
. \:

(12) (19) (CA) Brevet-Patent

OFFICE DE LA PROPRIETE NN NN CANADIAN INTELLECTUAL
INTELLECTUELLE DU CANADA ”‘:k PrROPERTY QFFICE (11) (21) (C) 2,200,509
22y 1997/03/20
43) 1997/11/30
(72) BOYLE, Frank J. III, US 45y 2000/02/08
(72) FRANKLIN, Andrew D., US
(72) GAMBILL, Jane, US
(72) PARKER . Charles H., US
(72) SANGER, Dennis R., US
(73) LUCENT TECHNOLOGIES INC., US
51) Int.C1.° HO4M 3/42
30) 1996/05/31 (656,517) US
54) DISPOSITIF POUR FACILITER L’UTILISATION DE
FONCTIONS D APPEL IMMEDIATEMENT OPERANTES
54) ARRANGEMENT FOR FACILITATING PLUG-AND-PLAY
CALL FEATURES
100 101 L
120 O cona]-1-‘-— I
200 317 %90

CONTEXT

AGENT FUNCTION FEATURE C

ADNIN.
AGENT

203

CONTEXT
"7 SERVER

PARTY Y
CONTEXT
AGENT

0 b)) | ,
FEATURE D MANAGER ey o
: 3

PARTY X

CONTEXT 130

204

FEATURE O
ADMIN.
AGENT

333

IFEATURE C uA 3°°|
PARTY X PARTY Y PARTY Y :' 34 221
FEATURE C \ [FEATURE C \| _ |{ FEATURE D Y7 [FEATURE 0 i | o0 FEATURE C
USER /. .\ USER I\ USER USER ; ADMIN.
pouicy 43! 4 _poticy 4351\ policy ;
302 350 352 .
5 ""‘ v . " ~oy
—’ ‘\s\ “.‘ﬁ"-ﬁ a,“.h.-.. \\.‘ 360 -"‘l F[A]URE D _&_
e LR ol Rt ADMIN.
e TRADINGY _|.--*" AGENT 354
Ty ASERVICE |

(57) L mvention est une infrastructure de systeme de (57) A telecommunications system infrastructure that
teleccommunication qui facilite 1'imnsertion d’un logiciel facilitates easy msertion of feature software mto existing
d’implantation de {fonction dans les systemes de such telecommunications systems and easy integration
teleccommunication actuels et 1'mntegration de nouvelles of the new calling features and therr implementing
fonctions d’appel et de leurs logiciels connexes aux software with existing features and their software. The
fonctions existantes et a leurs logiciels connexes. infrastructure comprises the Lucent Technologies

I*I Industrie Canada Industry Canada

OPIC

OFFICE DE LA PROPRIETE

CIPO

(CANADIAN INTELLECTUAL

INTELLECTUELLE DU CANADA 3 PROPERTY OFFICE

L infrastructure de 1'invention comprend le serveur de
communication multimedia MMCX de Lucent
Technologies (100) et des noeuds periphériques
compatibles avec le logiciel intermediaire (101-102)
exccutant le logiciel de communication intermediaire
MMCX de Lucent Technologies (111-112). Le logiciel
d’implantation de fonction a une construction client-
serveur modulaire comportant des gestionnaires de
fonction (modules de serveur 300, 350) travaillant sur le
serveur MMCX et des agents d’administration de
fonction (modules clients 303-353, 304-354) travaillant
sur les noeuds péripheriques. L infrastructure offre un
service contexte (120) et une API contexte (121) pour
enregistrer un gestionnaire de fonction (une politique
d’utilisateur 301-302, 351-352) pour chaque utilisateur,
celui-c1 étant alors autorisé a utiliser la fonction en cause,
une API d’administration (360) pour les communications
entre les gestionnaires de fonction et les agents
d’administration de fonction au noeud periphérique de
I"utilisateur pour personnaliser les politiques
d’utilisateur, et un contexte (une salle de réunion dans le
cyberespace 200) et une API contexte pour incorporer a
un appel les politiques des utilisateurs participant a cet
appel et pour communiquer les ¢vénements relics a
Iappel aux serveurs de fonction et autres logiciels
d'implantation de services. Les ¢€veénements relies a
I’appel sont transmis aux politiques d’utilisateur mises
en cause dans 1"appel qui ont alors la possibilite de réagir
a ces evenements en les autorisant ou en les rejetant. Les
interactions entre les fonctions sont gérées par
’enregistrement des gestionnaires de fonction selon
leurs priorités dans le service contexte; les modules de
haute priorit€¢ peuvent seriellement autoriser ou rejeter
les evenements avant les modules de basse priorite.

I*I Industrie Canada Industry Canada

(11) (21) (C) 2,200,509
22y 1997/03/20
43) 1997/11/30
45) 2000/02/08

MMCX multimedia communications server (100) and
middleware-compliant communications endpoints
(101-102) executing the Lucent Technologies MMCX
communications muddleware (111-112). Feature-
implementing software has a modular client/server
construction, with feature managers (server modules,
300,350) executing on the MMCX server and feature
admimistration agents (client modules, 303-333,
304-354) executing on the endpoints. The infrastructure
provides a context service (120) and a context API (121)
for registering an 1nstance of a feature manager (a user
policy, 301-302, 351-352) for each user upon that user
becoming entitled to the feature, an administration
API (360) for communications between {feature
managers and feature administration agents on the user’s
endpoint to customize the user’s user policies for the
user, and a context (a cyberspace meeting room, 200)
and the context API for mvolving the user policies of
users who are parties to a call in the call and for
communicating call-related events to feature servers and
other service-implementing software. Call-related events
are passed to user policies mvolved 1n the call, and they
are given a chance to react to the events by allowing or
rejecting the events. Interactions between features are
managed by having feature managers register at different
priorities with the context service; higher-priority
modules are serially given an opportunity to allow or
reject events before lower-priority modules.

10

15

20

25

2200509

ARRANGEMENT FOR FACILITATING PLUG-AND-PLAY
CALL FEATURES

Abstract

A telecommunications system infrastructure that facilitates easy
insertion of feature software into existing such telecommunications systems and easy
Integration of the new calling features and their implementing software with existing
features and their software. The infrastructure comprises the Lucent Technologies
MMCX multimedia communications server (100) and middleware-compliant
communications endpoints (101-102) executing the Lucent Technologies MMCX
communications middleware (111-112). Feature-implementing software has a
modular client/server construction, with feature managers (server modules, 300,350)
executing on the MMCX server and feature administration agents (client modules,
303-353, 304-354) executing on the endpoints. The infrastructure provides a context
service (120) and a context API (121) for registering an instance of a feature
manager (a user policy, 301-302, 351-352) for each user upon that user beCorning
entitled to the feature, an administration API (360) for communications between
feature managers and feature administration agents on the user’s endpoint to
customize the user’s user policies for the user, and a context (a cyberspace meeting
room, 200) and the context API for involving the user policies of users who are
parties to a call in the call and for communicating call-related events to feature
servers and other service-implementing software. Call-related events are passed to
user policiés involved in the call, and they are given a chance to react to the events
by allowing or rejecting the events. Interactions between features are managed by
having feature managers register at different priorities with the context service;

higher-priority modules are serially given an opportunity to allow or reject events
before lower-priority modules.

10

15

20

25

30

35

2200509

21 -

ARRANGEMENT FOR FACILITATING PLUG-AND-PLAY

CALL FEATURES
Technical Field

This mvention relates to stored-program-controlled communications
systems, including multimedia communications systems.

Background of the Invention

Iraditionally, adding calling features to switching-system (e.g., central
office or PBX) control software has required modifying existing feature programs
while paying careful attention to interactions between existing features and the new
teatures. For example, implementing call-center features on a PBX that already
provides call-forwarding and call-coverage requires careful coordination between the
two sets of features, ensuring that calls are handled correctly when a call-center
agent enables call-forwarding or call-coverage. In a multimedia telecommunications
System where users are presented with graphical user interfaces, the need to provide
new user interfaces to control new features poses an additional problem: in order for
the endpoint user-interface and the server feature-software to communicate, the
endpoint-to-server protocol generally needs to be updated.

The above-mentioned constraints present an imposing barrier to
developers who are responsible for continuing maintenance and upgrades of the
teatures. These constraints present an even-more imposing barrier to the
development by third-party vendors of new features or of new versions of existing
features. Third parties generally have neither the interest nor the capability to
modify the telecommunications system software in order to make their feature
software fully compatible therewith. Consequently, the telecommunications system
owner 1s dependent exclusively on the system manufacturer for the feature set and
feature upgrades of the system.

Summary of the Invention

This invention is directed to solving these and other problems and
disadvantages of the prior art. Generally according to the invention, there is
provided a telecommunications system infrastructure that facilitates easy insertion of
feature software into an existing said telecommunications system, and easy
integration of the new calling features and their implementing software with existing
features and their software.

Specifically according to one aspect of the invention, a call-control
apparatus that executes feature-implementing software, wherein each call feature is
implemented as a server program and a cooperating client program, has the

following elements. An arrangement (illustratively a context service) for registering

10

15

20

25

30

33

2200503

29

for a user an instance (illustratively a user policy) of a server program that
implements any call feature, in a same manner as any other instances of any server
programs that implement any call features, substantially at any time during operation
of the call-control apparatus to provide the call feature for the user. In other words,
the registration mechanism is identical for all feature-implementing programs, and
operates dynamically. An administration interface (illustratively an application
program interface, or API) for communicating information between the server
program and a cooperating said client program used by the user, in a same manner as
between any other client programs and any server programs that implement any call
teatures, to customize the instance of the server program for the user. In other
words, the administration interface is identical for all feature-implementing
programs. An arrangement (illustratively a context, which is a cyberspace meeting
room, along with the context service) for involving the instance of the server
program In a call to which the user is a party, in a same manner as any other instance
of any server programs that implement any call features, to provide the teature to the
call. In other words, the mechanism for involving feature-implementing programs in
calls 1s also identical for all features.

The above-characterized call-control apparatus provides all the
Interaction that is needed between feature-implementing programs as well as
between feature-implementing programs and other service-implementing programs.
Consequently, substantially any feature-implementing program that complies with
the registration and conforms with the administration and in-call-involvement
communications schemes may be added to and used in the apparatus; the call-control
apparatus automatically effects integration of any such new feature-implementing
program Into the existing environment. _

Preferably, interactions between feature-implementing programs are
managed etficiently by having priorities associated with the individual programs.
Each instance of each server program has a priority associated therewith, and the
arrangement for involving feature-implementing programs in calls includes an
arrangement (1llustratively a context service and its context API) that responds to
occurrence of a request for service (referred to herein as "an event") in the call by
giving instances of server programs that are involved in the call each a chance to
respond to the event in an order of their associated priorities. In other words,
higher-priority programs are given an opportunity to approve or reject events betore
lower-priority programs. The system designer, administrator, or users are allowed to
Change the relative priorities of the feature-implementing programs and thereby
control how features interact with each other. For example, it allows the

10

15

20

25

30

335

2200509

_3 -

administrator to specify whether call coverage is invoked for a call before call
forwarding, or vice versa.

Preferably, the arrangement for involving feature-implementing
programs in calls includes a second interface (illustratively also an API, referred to

herein as the context API) for communicating events between a plurality of server

programs that are involved in the call, in a same manner as between server programs

that are involved in any other calls. In other words, the second communications
Interface is also identical for all feature-implementing programs. The arrangement
responds to receipt through the second interface of a proposal of an event from a first
server program -- 1llustratively the originator of the proposed event -- that is
involved in a call by sending a request for approval of the event through the second
Interface to the first server program and also to other (at least one) second server
programs that are also involved in the call. The arrangement then responds to receipt
through the second interface of approval of the event from both the first and the
second server programs by sending notice of the approval of the event through the
second nterface to both the first and the second server programs -- and preferably to
all server programs that are involved in the call -- to cause the event to be effected.
The arrangement preferably further responds to receipt through the second interface
means of rejection of the event from either the first or the second server program by
forbearing from sending an approval of the event to both the first and the second
S€rver programs to prevent the event from being effected, and preferably also sends
the rejection through the second interface to the first server program to abort the
event.

Specifically according to another aspect of the invention, a method of
controlling calls in an apparatus wherein each call feature is implemented as a server
program and a cooperating client program and which executes the client and the
server programs, comprises the following steps. In response to a user becoming
entitled to a call feature, an instance of the server program that implements the call
feature is registered for the user, in a same manner as any other instance of any
server programs that implement any call features, substantially at any time during
operation of the apparatus, to provide the call feature for the user. Then in response
to the user using the client program, information is communicated between the
server program and the client program through an administration interface, in a same
manner as information is communicated through the administration interface
between any other client programs and any server programs that implement any call
feature, to customize the instance of the server program for the user. Then in

response to the user becoming a party to a call, the instance of the server program 1S

10

15

20

235

30

CA 02200509 1999-11-04

_4 -

involved in the call, in a same manner as any other instance of any server programs
that implement any call features, to provide the feature to the call. Plug-and-play
feature capability is thereby effected for feature-implementing software.

In accordance with one aspect of the present invention there is provided a
call-control apparatus wherein each call feature is implemented as a server program
and a cooperating client program, comprising: means for executing the client and
the server programs; means for registering for a user an instance of a server
program that implements any call feature, in a same manner as any other instances
of any server programs that implement any call features, substantially at any time
during operation of the call-control apparatus to provide the call feature for the
user; an administration interface for communicating information, between the server
program and a cooperating said client program used by the user, in a same manner
as between any other client programs and any server programs that implement any
call features, to customize the instance of the server program for the user; and
means for involving the instance of the server program in a call to which the user
1S a party, In a same manner as any other instance of any server programs that
implement any call features, to provide the feature to the call.

In accordance with another aspect of the present invention there is provided
a method of controlling calls in an apparatus wherein each call feature is
implemented as a server program and a cooperating client program and which
executes the client and the server programs, comprising the steps of: in response to
a user becoming entitled to a call feature, registering for the user an instance of the
server program that implements the call feature, in a same manner as any other
instance of any server programs that implement any call features, substantially at
any time during operation of the apparatus, to provide the call feature for the user;
in response to the user using the client program, communicating information
between the server program and the client program through an administration
Interface, in a same manner as information is communicated through the
administration interface between any other client programs and any server programs
that implement any call feature, to customize the instance of the server program for
the user; and in response to the user becoming a party to a call, involving the

instance of the server program in the call, in a same manner as any other instance

10

15

20

25

30

CA 02200509 1999-11-04

- 43 -

of any server programs that implement any call features, to provide the feature to
the call.

These and other advantages and features of the present invention will
become more apparent from the following description of an illustrative embodiment
of the invention taken together with the drawings.

Brief Description of the Drawings

FIG. 1 is a block diagram of an illustrative multimedia communications
system,

FIG. 2 1s a block diagram of a call-service model implemented by the
system of FIG. 1;

FIG. 3 is a block diagram of a call-feature model implemented by the
system of FIG. 1, which embodies an illustrative implementation of the invention;

FIGS. 4 and 5 are functional flow diagrams of registration procedures of
feature managers and their user policies of the model of FIG. 3;

FIG. 6 1s a functional flow diagram of a feature administration procedure of
a feature administration agent of the model of FIG. 3;

FIG. 7 1s a functional flow diagram of an event-negotiation procedure of a
context and context members of the model of FIG. 3; and

FIG. 8 1s a functional flow diagram of a message-passing procedure of the
context of the model of FIG. 3.

Detailed Description

FIG. 1 shows one possible architecture of a multimedia communications
system. The system comprises a plurality of communications endpoints 101-102
connected by communications links 103 with a communications server 100. The
system of FIG. 1 can be, for example, a telephone system where server 100
comprises a multimedia-enabled switching system such as a Lucent Technologies
Defimty® G3 PBX, endpoints 101-102 comprise video workstations such as the
NCR Vistium® stations, and links 103 comprise high-bandwidth telephone lines
such as ISDN BRI lines. However, in this illustrative example, server 100 is
assumed to be a multimedia-services server such as the Lucent Technologies Inc.
MMCX multimedia communications exchange, endpoints 101-102 are assumed to

be multimedia (including video) workstations, and links 103 are assumed to be a

CA 02200509 1999-11-04

- 4b -

local-area network (LAN) or a wide-area network (WAN). Server 100 and endpoints
101-102 are stored-program-controlled entities. As such, each includes a memory for

storing control software, a processor for executing the stored control programs, and

input and output interfaces to the outside world, as is well known and

10

15

20

25

30

35

2200509

_5.

understood in the art.

According to well-known software-system design principles, the control
sottware 104 of server 100 and endpoints 101-102 is organized in a multi-layer
hierarchy. At the lowest level in the software hierarchy, the control software of
server 100 and endpoints 101-102 in this illustrative example comprises a
conventional operating system 109 -- such as the Lynx® operating system -- that
includes conventional device drivers 108. Next in the hierarchy is a conventional
networking and transport services layer 110 -- such as the Transmission Control
Protocol/Internet Protocol (TCP/IP) -- which provides the information-movement
(1.e., control-signal and information-signal transmission) services between server
100 and endpoints 101-102. Built on top of layer 110 is a middleware layer 111.
Middleware is a term for a software platform that provides network-transparent
support for the development and implementation of network-based distributed-
system applications (e.g., communications services). It is both an applications-
development tool and a run-time environment. It provides a distributed object-based
computing infrastructure including distributed object life-cycle management,
network abstraction, and operating-system and transport-service virtualization. It
therefore allows communications applications to be written independently of the
resident operating system, the network transport, the interworking algorithms, etc. It
also supports a middleware services layer 112 which provides common services that
support various communications applications, such as services for session
management, routing, event collection, service location, etc. Implemented on top of
layers 111 and 112 are applications 113, e.g., specific communications services
programs. Applications 113 communicate with layers 111 and 112 by means of
application program interfaces (APIs) of layers 111 and 112, and communicate with
users and/or administrators via interfaces defined by an interfaces layer 114. In the
case of endpoints 101-102, applications 113 illustratively comprise a version of
Insoft’s Communique!™ collaboration software.

Layers 111 and 112 illustratively comprise the communications
middleware software of the Lucent Technologies Inc. MMCX, heretofore known as
CoMMware. Layer 111 comprises the middleware platform, while layer 112
comprises middleware-compliant service components that make use of the
middleware platform primitives to control calls and their different-media '
components and to supply calling features (like call-coverage and call-forwarding,
tor example.) The service components include service managers (servers) and
service agents (clients).

10

15

20

25

30

35

2200509

-6 -

The middleware platform provides an infrastructure for bringing parties
and multimedia services into communications "contexts' which provide bases for
negotiation of service parameters. Each communications session (e.g., a multimedia
call) is represented by its own context. The architecture provides support for
customizable service negotiation and control software, called "policies", that allows
application and service developers to meet a wide variety of product-and service-
specific needs.

In the model of communications that is presented by the middleware, all
communications take place within a context, and parties and services are associated
with one another as members within the context by a context service. The context
service 1s somewhat analogous to Microsoft Corporation’s Windows™ system. Just
as the Windows system distributes events that reflect a change in the applications’
presentation environment to all applications running in that environment, so does the
context service distribute events which reflect a change in the communications
context to all members of that context. In addition to the event-notification
mechanism, the context service also supports message-passing among context
members, for example, to enable negotiation of interworking parameters between
endpoints and servers with possibly-disparate capabilities.

The middleware effectively provides a signaling overlay on top of the
underlying network architecture, which overlay supports multiparty, end-to-end
negotiation that facilitates the design of interoperable multimedia communications
products and services. Middleware concepts of context, virtual transport, and
trading aid in the provisioning of multiparty, multimedia distributed communications
in heterogeneous environments.

The model of communications that is presented by the middleware is
shown in FIG. 2. The middleware facilitates bringing parties and services together
In a "cyberplace", which is referred to as context 200. A context server 201 manages
context 200 to/from which may be added/dropped the context members. Members
may be parties and services. A logged-in user of an endpoint 101-102 who is a
member of a context is referred to as a party (220-221) to that context. A service is
represented in a context 200 by its service manager 210-211. Parties and services
are treated identically by context server 201, and are referred to simply as
"members". All members in a context 200 are represented by a context agent
facility 202. Each member of context 200 is logically represented 1n context agent
facility 202 by its own corresponding member context agent 203-206 (e.g., its own
virtual port on context agent facility 202). When context 200 changes as a result of
members being added to or dropped from the context, context server 201 alerts all

10

15

20

25

30

35

2200509

-7

members’ context agents 203-206, which in turn notify their corresponding
members. When a new member joins an existing context 200, all members already
In the context are similarly notified, and each has a chance to exchange some initial
'get acquainted" messages with the new member and with other members that were
already in the context. In middleware, this is called "negotiation", since it is
generally used to achieve a common ground for communications between the
members (parties and services) in the context.

The middleware provides support for brokering in three ways. First, the
middleware includes trading service 124, which is a database system that can be used
to locate services based on service characteristics. Services are constructed in a
client/server configuration, with programs that actually provide the services, called
service managers 210-211 (also call services, service components, resource or media
SETVErs, Or resource or media managers), being located in MMCX server 100, and
programs that obtain the services from service managers 210-211 on behalf of
applications in endpoints 101-102, called service agents 230-233 (also called service
clients, or resource or media agents), being located in endpoints 101-102. Service
managers 210-211 can register with trading service 124, giving their service
attributes and capabilities. Trading service 124 provides a query capability to enable
service agents 230-233 to obtain identities of services (i.e., of service managers
210-211) that can meet the common needs of the parties in a context. Secondly,
specialized brokering services 132 can be written, which are servers themselves that
can be brought into a context. A brokering service uses the generic negotiation
mechanism provided by the middleware to gather the service-related attributes of the
parties in the context, enabling it to bring other service managers 210-211 into the
context that can meet their, perhaps diverse, needs. And finally, the middleware
supports the development of implicit brokers which, as policies of context server
201, can examine the attributes of the context and its members to bring services 1nto
the context. This sort of broker might be used, for example, to bring billing services
into the context. These brokering mechanisms can also be used in unison. A
specialized broker may, for example, gather parties’ attributes and formulate a
complex query to trading service 124 to locate the right service.

The middleware provides a framework for introducing a level of
signalling and control for communications sessions that fits logically above the
transport network. This means that software can be written to formalize
communications that are required to set up calls. The middleware supports

codification of the signalling used for service composition and separates it from that
used tor control of bearer channels and network connections. A member context

10

15

20

25

30

335

2200509
.8 -

agent 203-206 of context agent facility 202 utilizes virtual transport to access
underlying transport services for establishing a signalling connection to a context
server 201, which, in turn, is then able to establish signalling connections with other
member context agents 203-206. Context agent facility 202 utilizes a transaction
protocol with context server 201 to create a context 200 for a communications
session and to associate parties 220-221 and service managers 210-211 with the
context. Integral to this transaction protocol, the middleware provides a foundation
for negotiation among parties’ service agents 230-233 and service managers 210-211
which allows media-specific service agents 230-233 and service managers 210-211
to agree on service-specific parameters regarding the communications session. The
specific negotiation protocol, as defined in common for a specific media service, is
implemented in replaceable program entities (policies) which are bound to context
transaction processing.

While the communications model supports familiar communication
system features (with parties and transport), more elaborate communications in
which multiple parties and a rich array of services are added and removed
dynamically are also supported naturally within the model. For example, a two-
party voice call can be turned into a multiparty conference with a video and a
multipoint shared application by adding additional parties, a video-connection
service, and a shared-data service to the context. Further, since the services in a
context may be independent of one another, each can be added and removed at any
time without affecting the others. These attributes of the model result from the
concept of context and the fact that the signalling for bearer-channel connection-
control and for establishment and control of the context are separate.

A second example illustrates additional attributes of this model. If an
Interactive service (such as "800"-number video-catalog shopping) were desired, an
endpoint would be able to request the service and negotiate the attributes of the
service to conform to its own capabilities. But then, the service itself could request
that required ancillary services be added to the context, such as billing, order
processing, and credit card authorization. This illustrates the fundamental symmetry
of the middleware architecture that provides parties and services with the same status
In a context, thus allowing all members the full power of the context transaction
protocol.

As shown in FIG. 1, the middleware 1s constructed as follows. There
are six architectural elements to the middleware platform:

* Context service 120: The context service provides the supporting mechanisms for
the middleware model of communications that provides a context for a

10

15

20

25

30

35

2200509

_9.

communications session in which service providers and service users are treated as
undifferentiated members with equal privileges and capabilities. Context service
120 1s provided by interactions between a context server 201 that manages a context
200 and a context agent 202 that represents the members of the context.
Communications with context service 120 are effected through a context API 121.
Context API 121 is available to both applications software and service modules.
This means that, although policy modules will normally buffer applications from

context transactions, negotiation, and service control, it is possible for applications
to directly react to and influence these activities.

e Naming service 122: A distributed naming database that allows the middleware
and middleware-based applications to access transport addresses associated with a
middleware identifier (CWID). Each service manager 210-211 and party 220-221
has its own CWID. The naming service performs two mappings: 1) a mapping from
a CWID to a transport-independent address (a virtual transport address, or VTA),
and (2) a mapping from a VTA to transport-dependent addresses and attributes. The
attributes associated with each VTA illustratively consist of "attribute name:
attribute value" pairs, where there is a fixed set of attribute names supported.
Service agents 230-233 use the first mapping to get the VTA for a given party or
service manager and then give the resulting VTA to virtual transport service 126,
which calls on naming service 122 to perform the second mapping in order to obtain
actual transport addresses for establishing transport connections to these parties and
service managers. Communications with naming service 122 are effected through a
naming API 123.

¢ Trading service 124: Trading in the middleware is service selection based on
combined attributes of the members of a context. Trading service 124 is a database
that supports service registration and the ability to locate service managers 210-211
by required attributes. Trading service 124 has the ability to satisfy queries from
service agents 230-233 that require it to find the "best match" of party attributes to
service attributes. Service managers register with the trading database. Brokers can
be developed in the middleware that use trading service 124 to find a best match for
the collective needs of the members of a context. Communications with trading
service 124 are effected through a trading API 125. .

* Remote object management (ROM) service 127: The ROM service is a simple
object request broker (in the object-oriented programming sense). It uses virtual
transport service 126 to allow object methods to be invoked remotely. ROM service
1277 1s available to both the middleware itself and to applications and policy

modules. Policy modules may make use of ROM service 127 to establish out-of-

10

15

20

25

30

35

2200509

- 10 -

context communications channels with peer or server policy modules. Applications
make use of ROM service 127 to establish client-server connections.

e Virtual transport service 126: An abstraction of transport that presents a common
model for a variety of communications networks. The use of virtual transport
enhances the portability of applications and services and their interoperability in
heterogeneous network environments. Each entity 1n the middleware is given a
virtual transport address (VTA) which allows addressing of and connecting to that
entity in a network-independent manner.

In addition to these elemental services, the middleware provides a
programming framework and associated libraries to facilitate development of run-
time libraries that implement protocols for middleware-compliant service access and
control 130 and brokering services 132. The program entities that are developed
within this framework are objects (in the object-oriented programming sense), called
policy modules or policies, that implement service and access control 130 and
brokering services 132, and constitute the client/server software that provides
services and service access. In other words, service managers 210-211 and service
agents 230-233 are policies that perform the service-specific negotiation and control
functions that are required for service delivery.

To control independently a dynamic mixture of services, the concept of
context provides a place to instantiate a locus of control for the composition of these
services and facilitates the multi-way negotiation needed to deliver the services to a
variety of endpoints. This requires that the detailed attributes of various media
services (feature control mechanisms, encoding choices, transport requirements,
delay and synchronization characteristics, etc.) be understood and agreed-to by
service providers (service managers 110-112) and service users (parties 220-221).

The middleware introduces the idea of "negotiation” among members,

 typically between parties and service managers, to allow services to be provided 1n a

manner that ensures compatibility and consistency of service delivery to the parties.
The middleware provides a framework for incorporating policy modules into a
system that are available for use by applications for performing service-specific
negotiation in reaction to changes to the context. Policy modules can also be used
during service delivery to provide service-control functions. e.g., to tell a video
server which video stream to send. Policy modules are essentially service-specific
run-time libraries that implement service-specific negotiation and control protocols.
Communications by applications 113 with policy modules of service access and
control 130 are effected through a service control API 131.

10

15

20

25

30

35

2200509

- 11 -

Context service 120 with appropriate policy modules enables
deployment of new multimedia services without having to enhance underlying
network equipment. Naming service 122 and trading service 124 also facilitate
service composition by enabling applications to locate the services that are needed to
meet the needs of the members in a context. Brokering services 132 can be created
that perform the function of gathering up appropriate party attributes, formulating
the required trader query, and inviting the returned service manager 1nto the context.
These brokers generally are service-type specific (e.g., audio, video, shared
application), and are implemented as separate services that can be added to a context.
Broker agents work with the brokering server to locate the needed service manager
and add it to the context. In some cases, a broker may be implemented as a policy
module of context server 201 which, by virtue of its ability to eavesdrop on all
context transactions, can perform a service-location function. Naming service 122
complements the brokering service by providing a facility for converting a
middleware entity name to the transport network attributes required to connect to
that entity.

Naming service 122 serves both applications 113 and virtual transport
service 126. Applications typically use naming service 122 to map a qualified
CWID (e.g., an E.164-conformant address, such as a phone number) into a virtual
transport address (VTA, e.g., also an E.164-conformant address). The VTA
appended with a logical-port identifier is *'handed' to virtual transport service 126
which uses naming service 122, once again, to map the qualified VTA to transport-
specific attributes. For example, say that a user has a CWID of 303.538.4071, then
naming service 122 would be used by a context server 201 to map
303.538.4071.context_port to the VTA of that user’s member context agent, which
might be 303.538.4000. When the context server 201 wishes to establish 2
connection to the context agent’s port for accepting context messages, it asks virtual
transport service 126 to establish a connection to 303.538.4000.context _ port.
Virtual transport service 126 would, in turn, use naming service 122 to map
303.538.4000.context_port to the transport specific address(es) of the appropriate
virtual port on context agent 202.

This description of the middleware applies fundamentally to both
MMCX server 100 and endpoints 101-102, although APIs 121, 123, and 125 are the
only portions of services 120, 122, and 124 that are used on endpoints 101-102. A
distributed client/server architecture is utilized whereby client software (service
agents 230-233) in an endpoint 101-102 works cooperatively with server software
(service managers 210-211) in server 100 to provide the brokering services as well

10

15

20

25

30

35

2200509

- 12 -

as the media-control services which provide the value-added communications

services to users.

According to the invention, the above-described infrastructure and call
model are used to provide support for plug-and-play call features in the manner
illustrated in FIG. 3.

Feature software is implemented using the client/server architecture. As
shown in FIG. 3, each feature comprises a feature manager (a server module) 300,
350 on MMCX server 100 and a plurality of feature administration (admin.) agents
(client modules) 303-304, 353-354, one on each endpoint 101-102. Each feature
manager 300, 350 is implemented as one or more user policies 301-302, 351-352,
one for each user 220-221 that is entitled to use the feature. Each user policy 301-
302, 351-352 is one user’s customized instance of the feature manager 300, 350,
respectively. Feature managers 300, 350 and their user policies that are involved in
a call are not members of that call’s context 200, but each communicates with
context 200 through the party context agent 203, 204 of its corresponding party 201,
202. User policies of the same and of different feature managers 300, 350 keep track
of each other through the event-notification mechanisms provided by context service
120, but they generally do not communicate with each other directly through an out-
of-context exchange of messages.

Unlike the feature managers, feature admin. agents 303-304, 353-354
are not implemented as policies. Feature admin. agents do not execute features, but
rather only turn features on and off at endpoints 101-102 and communicate
administrative information between parties 220-221 and feature managers 300, 350.
Feature admin. agents and their corresponding feature managers communicate with
each other outside of context 200 through an administration API 360 that is
implemented at the applications layer 113. Administration API 360 uses trading API
125 and ROM service 127 to locate, and to communicate with, feature managers
300, 350. Graphical user interfaces 114 and feature admin. agents for any number of
teatures can be added to (or deleted from) any endpoint 101-102 at any time, and
administration API 360 enables the interfaces and agents to locate, and to
communicate with, the corresponding feature managers.

In order to make context service 120 aware of their existence, the user
policies of feature managers 300, 350 must register with context service 120. The
registration procedure is shown in FIGS. 4 and 5. Upon its own creation by an
administrator of MMCX server 100, at step 401 of FIG. 4, or upon 1nitialization of
MMCX server 100 (whichever is earlier), at step 400, a feature manager 300, 350
registers separately each of its user policies 301-302, 351-352 with context service

10

15

20

25

30

35

2200509
-13 -

120 of MMCX server 100, at step 402. As part of each registration with context
service 120, a feature manager 300, 350 specifies the priority that has been
administered for each user policy. The priorities for all user policies of a feature
manager may be all the same, or they may be different. When the priority of one or
more of its user policies is administratively changed, the feature manager re-registers
with context service 120 with the new priorities. A feature manager 300, 350 also
registers once with trading service 124 of MMCX server 100, at step 404, before
concluding registration, at step 406.

Subsequently, at any time whenever a new user is administered for
features or an existing user is administered for a new teature, at step 410 of FIG. 5,
each feature manager 300, 350 of the user’s new features registers the user’s new
user policies 301-302, 351-352 with context service 120 of MMCX server, at step
412. As part of the user policies’ registration with context service 120, each feature
manager 300, 350 specifies the priority that has been administered for the new user
policy. Registration of the new user policies then concludes, at step 414.

FIG. 6 shows the feature-administration procedure for feature admin.
agents 303-304, 353-354. When a party 220, 221 logs 1nto an endpoint 101, 102, at
step 500, each feature’s feature admin. agent of the logged-into endpoint uses trading
service 124 to find the identity of the corresponding feature manager 300, 350 for the
corresponding feature, at step 502. The feature admin. agent then uses the identity to
establish a communications connection with the corresponding feature manager via
administration API 360, at step 504, and determines from the feature manager
whether there is a corresponding user policy for the logged-in party 220, 221, at step
506. If there is not a user’s policy for the logged-in party, the logged-in party is not
authorized to use the corresponding feature, and so the feature admin. agent ends
feature administration, at step 510. If a corresponding user policy 1s found and its
identifier is returned by feature manager 300, 350 to the feature admin. agent, the
logged-in party is authorized to use the corresponding feature, and so the feature
admin. agent and the party’s user policy then administer the feature for the party by
exchanging that party’s "terminal translations" data (as that term is commonly used
in the telephony art), at step 508, before ending administration, at step 510. The
terminal translations data that is provided by the party’s user policy will have been
pre-administered by an administrator of server 100, while the terminal translations
data that 1s provided by the feature admin. agent is obtained by feature admin. agent
through interaction with the logged-in party through the feature’s corresponding one
of the interfaces 114 on the endpoint.

10

15

20

25

30

35

2200509
- 14- '

Consider, for example, the administration for the call-forwarding
feature. The call-forwarding user interface on the endpoint invokes the feature
administration API 360, passing it the call-forwarding feature identifier, the identifier
of the user who is administering call-forwarding, and a collection of call-forwarding
admuinistration data, including the identifier of the forwarded-to party and whether
call-forwarding should become enabled or disabled. The feature administration API
360 queries trading service 124 for the identifier of the feature server that matches
the call-forwarding feature identifier, i.e., the call-forwarding feature server. If
trading service 124 successfully returns this identifier, the administration API 360
sends the call-forwarding feature server the user’s identifier and the call-forwarding
administration data. The call-forwarding feature server receives the data and stores
it in 1ts feature translation database. Henceforth, during call processing, the

administration data can be retrieved from the feature translation database and used to
effect the call-forwarding feature.

For purposes of event-negotiation, event context 200 provides for three

types of inter-member communications: proposals from initiators of events to

context, event requests for approval from context to interested policies (those
affected by the event), and event notifications from context to all context members.
Any proposed event that causes a change in context or a change of state of a context
member must be approved by the policies of the acting context member and the
policies of the members being acted on. For example, a request to create a context is
an event that must be approved by all policies of the requestor; a request to add or
delete a member to or from a context or to change a member’s state is an event that
must be approved by all policies of the requestor and the subject of the request; and a
request to destroy a context is an event that must be approved by all policies of the
requestor.

FIG. 7 shows the event-negotiation procedure. When an event proposal
s recetved by context 200 from a policy, at step 600, context 200 determines from
the event which context members need to approve the event, at step 602, and then
sends event requests for approval to the policies of each member which needs to
approve the event --first to the requestor’s policies serially and sequentially in the
order of the policies’ priorities, and then to the policies of the subject or subjects of
the request serially and sequentially in the order of the policies’ priorities. Context
200 first sends an event-approval request to the highest-priority policy of the event-
originator, at step 604. Upon receipt of an event request for approval, at step 630,
each policy that 1s asked for approval of the event executes whatever algorithm it has
been programmed with to determine its approval or rejection, at step 632, and sends

10

15

20

25

30

35

22005039

- -15 -

its reply to context 200, at step 634, before concluding, at step 636. Context receives
the policy’s reply, at step 606, and checks whether it is an approval or a disapproval,
at step 608. If any policy of any member who needs to approve the event replies
with a rejection of the event, as determined at step 608, context 200 notifies the
policy that made the event proposal, at step 621, then ends, at step 622, and the event
1s not effected. If the received reply is an approval, context checks whether it has
sent an event-approval request to each policy of the event originator, at step 610. If
not, context 200 returns to step 604 to send the event-approval request to the next-
highest priority policy of the event originator. If all policies of the event originator
have been sent event-approval requests, context 200 proceeds to steps 612-618 to
repeat the procedure of steps 604-618 for each policy of the event subjects. If all
policies of all context members who need to approve the event reply with an
acceptance of the event, as determined at step 618, context 200 broadcasts
notification of the event to all policies of all members of the context, at step 620, so
that the policies can implement, or take note of, the event, and ends, at step 622. The
event notifications at step 620 are not prioritized. '

The policy priorities do not affect information messages, which are data
messages or requests for information sent between clients and servers through APIs
such as administration API 360, for example. Their handling by APIs is shown in
FIG. 8. Upon receiving an information message, at step 700, an API determines the
message’s destination, at step 702, and forwards the message to that destination, at
step 704, before ending, at step 706.

To provide the above-described communications capabilities, the
various APIs include the following messages.

To allow an administrator of MMCX system 100 and parties 220-221 at
endpoints 101-102 to administer the features, administration API 360 provides a
message that comprises one function (command) and three arguments. The function
1s "administration request”. The arguments are the identifier of the feature that is to
be administered, the identifier of the party for which the administration is being
done, and the administration data for use by the message recipient.

T'o enable feature managers and service managers to register with
context service 120, context API 121 provides a message that comprises one
function and four arguments. The function is "policy registration request'. The
arguments are the identifier of the feature or service, the user policy that is
registering (the registrant), the name of the party represented by the registrant, and
the registrant’s priority.

10

15

20

25

30

335

2200509

- 16 -

To enable feature managers and service managers to register with
trading service 124, trading API 125 provides a message that cbmprises one function
and two arguments. The function is "manager registration request". The arguments
are the 1dentifier of the feature or service that is registering, and the CWID of the
registrant.

To enable feature admin. agents and server agents to find suitable user
policies and service managers via trading service 124, trading API 125 provides two
messages. One message has a function of "server request” from the agent to trading
service 124, and arguments of feature or service ID and feature or service parameters
being requested by the agent. The other message has a function of "server response"”
from trading service 124 to the agent, and an argument of CWID of the feature’s user
policy or the service manager selected by trading service 124.

To enable policies to initiate events, context API 121 provides a
message that comprises any one of six functions and three arguments. The functions
are "create context", "destroy context", "add member", "drop member", "change
state”, and "send message". The arguments are the CWID of the initiator, the new
state 1n the case of the ""change state" function, the CWID of the event subject for the
functions other than "create context" and "destroy context", and the reason for the
event.

To enable event requests for approval to be made, context API 121
provides a message that comprises one function and four arguments. The function is
‘request for approval". The arguments are the function and arguments of the event-
Initiating message.

To enable event approvals and denials, and notification of denials to
event originators, context API 121 provides a message that has one function and one
argument. The function is "approval reply". The argument is either approval or a
failure code.

To enable event notifications, context API 121 provides a message that
comprises one function and four arguments. The function is "event notification".
The arguments are the function and arguments of the event-initiating message.

To enable in-context communication among context members, context
API 121 provides a message that has one function and four arguments. The function
1s "send message'. The arguments are the CWID of the destination party, the ID of
the feature or service being communicated with, the ID of the user policy being
communicated with, and the message data. If the policy ID is omitted, the message

1s sent to all user policies of the identified feature or service.

10

15

20

25

2200509

- 17 -

To allow information-passing between user policies and feature admin.
agents, administration API 360 provides a message that comprises one function and
one argument. The function is "administer". The argument is an arbitrary data field.

Given this infrastructure, almost anyone can create a feature (that is,
feature software) for use therein. Substantially the only requirements placed on the
feature software are that (a) it have a client/server construction, that is, be
constructed as a feature-manager server module plus a feature admin. agent client
module and (b) be compliant with messages of the interfaces (context API 121,
administration API 360, and trading API 125 in this example) that were enumerated
above, and with their functions. Compliance with requirements (a) and (b) above
ensures that the feature can both operate in the system of FIG. 1 and inter-operate
with other features and services of the system of FIG. 1. In other respects, the
internal structure and functionality of the feature are irrelevant to the system of FIG.
I and its various components, both hardware and software.

Of course, various changes and modifications to the illustrative
embodiment described above will be apparent to those skilled in the art. For
example the context service need not be provided by a single server, but may be
distributed across a network of servers. Also, the industry-standard Object
Management Group’s (OMG’s) object request broker (ORB) could be used instead
of the remote object management (ROM) services and the virtual transport (VT)
services. Furthermore, the middleware and its functions could be distributed over a
plurality of servers. Also, additional functions and messages may be added to the
APIs. Or in addition to, or instead of, the context API protocol, the system can
support other multimedia communication protocols (e.g.,.enhanced H.323, H.320,
T.120, and conventional audio telephony protocols). Such changes and
modifications can be made without departing from the spirit and the scope of the
invention and without diminishing its attendant advantages. It is therefore intended
that such changes and modifications be covered by the following claims.

10

15

20

235

30

35

2200509

_18 -

Claims:
1. A call-control apparatus wherein each call feature is implemented as a

server program and a cooperating client program, comprising:

means for executing the client and the server programs;

means for registering for a user an instance of a server program that
implements any call feature, in a same manner as any other instances of any server
programs that implement any call features, substantially at any time during operation
of the call-control apparatus to provide the call feature for the user:

an administration interface for communicating information, between the
server program and a cooperating said client program used by the user, in a same
manner as between any other client programs and any server programs that

implement any call features, to customize the instance of the server program for the
user; and

means for involving the instance of the server program in a call to which
the user is a party, in a same manner as any other instance of any server programs

that implement any call features, to provide the feature to the call.

2. The apparatus of claim 1 wherein:
each instance of each server program has a priority associated therewith;
and
the means for involving comprise
means responsive to occurrence of an event in the call, for giving
Instances of server programs that are involved in the call each a chance to respond to
the event in an order of their associated priorities, to control interaction between the

teatures implemented by the instances of the server programs that are involved in the
call.

3. The apparatus of claim 1 wherein

the means for involving comprise:

a second interface for communicating events between a plurality of
server programs that are involved in the call, in a same manner as between server
programs that are involved in any other calls;

means cooperative with the second interface, responsive to receipt
through the second interface of a proposal of an event from a first server program
that is involved in the call, for sending a request for approval of the event through

the second interface to the first server program and to a second server program that is
also involved in the call;

10

15

20

25

30

2200509

- 19 -

means cooperative with the second interface and responsive to receipt
through the second interface of approval of the event from both the first and the
second server program, for sending the approval of the event through the second
Intertace both to the first server program and to the second server program to cause
the event to be effected, and responsive to receipt through the second interface of
rejection of the event from either the first or the second server program, for
forbearing from sending the approval of the event both to the first server program

and to the second server program to prevent the event from being effected.

4. The apparatus of claim 3 wherein:
each server program has a priority associated therewith, and
the means for sending a request for approval are responsive to the
receipt of the event, for sending the request for approval to the first and the second
server programs serially in an order of the priorities of the first and the second server
programs, to control interaction between the features implemented by the first and
the second server programs.

S. The apparatus of claim 4 further comprising:
means for administratively changing the priorities that are associated

with server programs, to change the interaction between the features implemented by
the server programs.

6. The apparatus of claim 1 wherein:
the administration interface communicates information between the
server program and the cooperating client program used by the user to customize a
registered said instance of the server program for the user; and
the involving means involve a customized registered said instance of the
server program in the call to which the user is a party.

7. The apparatus of claim 1 wherein:
each feature’s server program comprises a plurality of instances of the
server program, one for each user who is entitled to the feature.

8. The apparatus of claim 1 wherein:

the executing means comprise

10

15

20

25

30

35

2200509

=20 -

means for executing the server programs, and

at least one means for executing the client programs;

the server programs, the means for executing the server programs, the
registering means, and the involving means are included in a call controller:

an nstance of the client program of each of at least some of the features
and one of said means for executing the client programs are included in each of at
least one call endpoint; and

the admunistration interface interfaces the at least one call endpoint with
the call controller to communicate information between server programs on the call
controller and the instances of the client programs on the at least one endpoint.

9. A method of controlling calls in an apparatus wherein each call feature
is implemented as a server program and a cooperating client program and which
executes the client and the server programs, comprising the steps of:

In response to a user becoming entitled to a call feature, registering for
the user an instance of the server program that implements the call feature, in a same
manner as any other instance of any server programs that implement any call
features, substantially at any time during operation of the apparatus, to provide the
call feature for the user:

In response to the user using the client program, communicating
Information between the server program and the client program through an
administration interface, in a same manner as information is communicated through
the administration interface between any other client programs and any server
programs that implement any call feature, to customize the instance of the server
program for the user; and

In response to the user becoming a party to a call, involving the instance
of the server program in the call, in a same manner as any other instance of any
server programs that implement any call features, to provide the feature to the call.

10. The method of claim 9 wherein:
each instance of each server program has a priority associated therewith;
and
the step of involving comprises the step of
in response to occurrence of an event in the call, giving instances of
server programs that are involved in the call each a chance to respond to the event in

an order of their associated priorities, to control interaction between the features
implemented by the instances of the server programs that are involved in the call.

2200509

1/5
FIG. 1
100 .
SERVER 104
INTERFACES 114
APPLICATIONS 113

TRADING CONTEXT SERVICE CONTROL

AP0 | ARLTZS | APLI2L f ARLDL
TRADIN || SERVICE ACCESS
124 120 |

BROKER
SERVICES 132

ROM SERVICES 127

VIRTUAL TRANSPORT SERVICES 126
NETWORKING AND TRANSPORT SERVICES 110

OPERATING SYSTEM 108

DEVICE DRIVERS 108

>~103

01 104 1 1402

ENDPOINT

/5

(A01104)
IN39V
g8 301A43S

INIOV
VY OIS

(A210d)
IN39V
8 30IA¥3S

1§¢

¢l

V IS

10}

001

INIIS
INIGVAL

JIIVNVR
V INIS

0gl

LNy
L g 03

1X3INOY
V JIA43S GOZ

HINAS
INJov Dainog | WM L L
v g \s LXIINOD
NOLLONN
. INJOV
IX3INO 002
IXINOD
7207 0C1
¢ I

Xirby, Fades, Gale. Baker

INJIV
‘NIRQV
0 3NLvid

14

"NINQY BN | yisn
J uh_zm_ﬁ: 0 NIV J NNV
e X ALYV
—r YJIOYNYN) NIV
= . 0¢!
2w “
S
2
o cCe INJOY
NN) [X3INOD
ol 0 JuNLV33 AN vawd
XAVd(wyan3s) D
IX3INOD
INJOV €0¢
NINQY A
J N1V NOILONNS IN3OV
00¢ IX3INOJ
00¢ B
IX3INOD 707 071

101 00l e 9Id

Kirby, Eades, Gale. Baker

2200503

FIG. 4 4/5

401 ADMINISTER
NEW FEATURE INITIALIZE)~ 400

REGISTER EACH USER POLICY WITH |- 402
CONTEXT SERVICE, SPECIFYING EACH
POLICY'S PRIORITY

REGISTER ONCE WITH 404
TRADING SERVICE

CN)~ 48

FIG. 5 '
ADMINISTER USER)-~410

REGISTER USER POLICY OF EACH NEW FEATURE FOR |- 412
WHICH USER IS ADMINISTERED WITH CONTEXT SERVICE,
SPECIFYING EACH POLICY'S PRIORITY

CIND)~ 414

FIG. 6
500 —~(PARTY LOGGED IN

OBTAIN IDENTITY OF FEATURE
507 MANAGER FOR THE FEATURE FROM

TRADING SERVICE

ESTABLISH CONNECTION WITH FEATURE
304 MANAGER

306 DOES THE FEATURE MANAGER 1\ .
HAVE A USER POLICY FOR THE
LOGGED-IN PARTY ?

ADMINISTER THE FEATURE BY
EXCHANGING PARTY’S TERMINAL
TRANSLATIONS DATA WITH PARTY’S
USER POLICY FOR THE FEATURE

508

2200509

5/5

RECEIVE EVENT PROPOSAL 600 FIG. 7

DETERMINE EVENT ORIGINATOR 502
. AND SUBJECTS

SEND EVENT APPROVAL REQUEST | __ o,
T0 (NEXT) HIGHEST-PRIORITY freeesmeiesmemesennes i
POLICY OF EVENT ORIGINATOR | e

RECEIVE REPLY [e=eccccccccccen..
608

APPROVAL ? il
YES

NO /“ HAVE ALL POLICIES OF EVENT \¢ 610
ORIGINATOR BEEN CONTACTED 2
YES 612
SEND EVENT APPROVAL REQUEST

‘e RECEIVE APPROVAL
---------- RE) UEST
TO (NEXT) HIGHEST-PRIORITY pe===="""""

POLICY OF EVENT SUBJECTS 514 DETERMINE REPLY 532.
RECEIVE REPLY — s I NN 63{

516
APPROVAL 2 NC (_END_)~"038
It 618

NO,/ HAVE ALL POLICIES OF EVENT
SUBJECTS BEEN CONTACTED ? SEND REJECTION
YES T0_ORIGINATOR
BROADCAST NOTIFICATION
OF EVENT T0 ALL POLICIES | -g9g

OF ALL CONTEXT MEMBERS

CEND)4

630

Yy rr1r1rJrr:r 1o Y e iRl A 0 a0 1 i L I 111"/
.

FIG. 8

RECEIVE MESSAGE)~ /00
DETERMINE DESTINATION 702

SEND MESSAGE TO DESTINATION 1~ /04
(CEND)~ 706
Xirby, Eades, Gale, Baker

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings

