wo 2016/144544 A1 I} WA 0000 00 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2016/144544 A1l

15 September 2016 (15.09.2016) WIPO I PCT
(51) International Patent Classification: logy Licensing, LLC, Attn: Patent Group Docketing (Bldg.
GO6F 3/06 (2006.01) 8/1000), One Microsoft Way, Redmond, Washington
. L 98052-6399 (US).
(21) International Application Number:
PCT/US2016/019356 (74) Agents: MINHAS, Sandip et al.; Microsoft Corporation,
. - Attn: Patent Group Docketing (Bldg. 8/1000), One Mi-
(22) International Filing Date: crosoft Way, Redmond, Washington 98052-6399 (US).
24 February 2016 (24.02.2016)
. . (81) Designated States (uniess otherwise indicated, for every
(25) Filing Language: English kind of national protection available). AE, AG, AL, AM,
(26) Publication Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(30) Priority Data: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
14/645,085 11 March 2015 (11.03.2015) us HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(71) Applicant: MICROSOFT TECHNOLOGY LICENS- KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
ING, LLC [US/US]; Attn: Patent Group Docketing (Bldg. MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
8/1000), One Microsoft Way, Redmond, Washington PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
98052-6399 (US). SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(72) Inventors: PATEL, Sachin Chiman; Microsoft Techno- L
(84) Designated States (uniess otherwise indicated, for every

logy Licensing, LLC, Attn: Patent Group Docketing (Bldg.
8/1000), One Microsoft Way, Redmond, Washington
98052-6399 (US). RAJPAL, Shiv; Microsoft Technology
Licensing, LLC, Attn: Patent Group Docketing (Bldg.
8/1000), One Microsoft Way, Redmond, Washington
98052-6399 (US). MEHRA, Karan; Microsoft Techno-

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

[Continued on next page]

(54) Title: LIVE CONFIGURABLE STORAGE

(57) Abstract: A system for storing data in a dynamic fashion. The system
includes a storage entity. The storage entity includes portions of a plurality
of different persistent storage devices. Each storage device has a set of con-

5 114
APPS At 116
O\
112 | 110
Data
[102
A
ape Drive
0 =
ssD —/
Hard D
e ’[104 ims Ems
Figure 1

straints. The storage entity is configured to store data in a dynamic fashion in
a layout on the persistent storage devices of the storage entity that meets the
different data requirements for the data while still being within the con-
straints for the persistent storage devices. The storage entity is configured to
change the layout for a portion of the data as requirements related to at least
one of performance or resiliency for a portion of the data change while the
storage entity continues to provide the data from the storage entity.

WO 2016/144544 A1 WAL 00T 00 0 0 O A

SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, __
GW, KM, ML, MR, NE, SN, TD, TG).

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:
— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

Declarations under Rule 4.17:

with international search report (Art. 21(3))

10

15

20

25

30

WO 2016/144544 PCT/US2016/019356

LIVE CONFIGURABLE STORAGE

BACKGROUND

[0001] Computers and computing systems have affected nearly every aspect of modern
living. Computers are generally involved in work, recreation, healthcare, transportation,
entertainment, household management, etc.

[0002] Computer systems often have some type of non-volatile data storage. For
example, computer systems may have one or more hard drives, solid state drives, tape
drives, etc. This non-volatile data storage can have a number of different constraints and
be arranged in a number of different fashions. For example, storage devices may have
various access speeds, sizes, etc. When multiple devices are used, they can be arranged in
various ways to provide certain levels of performance and/or resiliency. For example, if it
is desirable for a system to have fast access to storage, the system may have solid states
drives installed on the system and/or may stripe the data on multiple devices to allow for
quick data access. Different levels of resiliency can be achieved by different mirroring or
parity schemes. For example, a moderate level of resiliency can be achieved by a
mirroring scheme that maintains two copies of data, where the different copies are on one
or more different device arrangements. Even more redundancy can be achieved by having
three copies of data on three different device arrangements. The first example can tolerate
a single device failure while the second example could tolerate two device failures.
Alternatively, various parity schemes, such as RAIDS or RAID6, could be used to obtain
resiliency. Parity schemes use less disk space than mirroring schemes, but have lower
levels of performance because of the need to perform various computations to create the
parity.

[0003] When a system designer designs storage for a system, they will typically
determine general requirements for the data in the system and configure a storage entity
(where an entity can be portions of one or more storage devices arranged to appear as a
particular data silo, such as a volume, to the system) accordingly. However, once a storage
entity is configured for the system, that storage entity is fixed in its constraints. For
example, if so configured, a storage entity will always be simple storage with a fixed
capacity, mirrored storage with a certain number of copies, or parity storage with a certain
resiliency.

[0004] However, data may have certain handling requirements that change over time, or

different data introduced into the system may have different handling requirements. In

10

15

20

25

30

WO 2016/144544 PCT/US2016/019356

particular, data may have certain performance and/or resiliency requirements. Performance
requirements are related to how quickly data can be accessed whereas resiliency
requirements are related to the ability to maintain data availability in the context of
hardware failures or other data access or data loss.
[0005] Presently, system designers may have several different storage entities
configured to meet different data requirements for data. However, if data requirements
change for data, or if new data is introduced into the system having data requirements that
differ drastically from that provided by available storage entities, the system designer may
need to design and add new storage entities and/or make inefficient use of existing storage
entities, such as by storing data in an entity that far exceeds the requirements for the data.
[0006] The subject matter claimed herein is not limited to embodiments that solve any
disadvantages or that operate only in environments such as those described above. Rather,
this background is only provided to illustrate one exemplary technology area where some
embodiments described herein may be practiced.

SUMMARY
[0007] One embodiment illustrated herein includes a method that may be practiced in a
computing environment. The method includes acts for storing data in a dynamic fashion
where data is stored on a live persistent storage entity. The entity is comprised of portions
of a plurality of different persistent storage devices. Each of the storage devices has certain
storage constraints. The data is stored in a manner that meets requirements for the data
while remaining within the constraints for the storage devices. The method includes
identifying requirements for data. The requirements comprise requirements with respect to
at least one of performance or resiliency. The method further includes identifying
constraints of the persistent storage devices in the persistent storage entity. The method
further includes storing the data in a dynamic fashion in a layout on the persistent storage
entity that meets the requirements for the data while still being within the constraints for
the persistent storage devices, such that the layout for the data can change as requirements
for the data change or as other data is operated on in the persistent storage entity.
[0008] Another embodiment includes a system for storing data in a dynamic fashion.
The system includes a storage entity. The storage entity includes portions of a plurality of
different persistent storage devices. Each storage device has a set of constraints. The
storage entity is configured to store data in a dynamic fashion in a layout on the persistent
storage devices of the storage entity that meets requirements for the data while still being

within the constraints for the persistent storage devices. The storage entity is configured to

10

15

20

25

30

WO 2016/144544 PCT/US2016/019356

change the layout for the data as requirements related to at least one of performance or
resiliency for the data change while the storage entity continues to provide the data from
the storage entity.

[0009] This Summary is provided to introduce a selection of concepts in a simplified
form that are further described below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the claimed subject matter, nor is
it intended to be used as an aid in determining the scope of the claimed subject matter.

[0010] Additional features and advantages will be set forth in the description which

follows, and in part will be obvious from the description, or may be learned by the practice

of the teachings herein. Features and advantages of the invention may be realized and
obtained by means of the instruments and combinations particularly pointed out in the
appended claims. Features of the present invention will become more fully apparent from
the following description and appended claims, or may be learned by the practice of the
invention as set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] In order to describe the manner in which the above-recited and other advantages
and features can be obtained, a more particular description of the subject matter briefly
described above will be rendered by reference to specific embodiments which are
illustrated in the appended drawings. Understanding that these drawings depict only
typical embodiments and are not therefore to be considered to be limiting in scope,
embodiments will be described and explained with additional specificity and detail
through the use of the accompanying drawings in which:

[0012] Figure 1 illustrates a storage entity with various hardware devices that can be
dynamically arranged to meet requirements for data;

[0013] Figure 2A illustrates a transition from simple storage to striped storage;
[0014] Figure 2B illustrates a transition from simple storage to mirrored storage;
[0015] Figure 2C illustrates a transition from mirrored storage to parity storage;
[0016] Figure 3 illustrates a storage entity implemented in a cluster environment; and

[0017] Figure 4 illustrates a method of storing data in a dynamic fashion.

10

15

20

25

30

WO 2016/144544 PCT/US2016/019356

DETAILED DESCRIPTION

[0018] Some embodiments illustrated herein implement a dynamically configurable
storage entity. This has the effect that a single storage entity may exhibit multiple different
performance and resiliency characteristics at the same time for different data having
different requirements. In a further example, a single volume may be able to store data in
different ways with respect to performance and resiliency.

[0019] Some embodiments can dynamically configure storage even after initial
configuration, while the storage entity is live (where live means that the storage entity is
storing and providing data). The dynamic configuration allows for changing the way data
is stored over time. Thus, performance and resiliency characteristics can be changed over
time on the storage entity as data requirements change and/or as new data is introduced
into the storage entity. Thus, a storage entity may have changing performance, resiliency,
and size characteristics over time as different storage requirements are needed for the same
or new data.

[0020] Referring now the Figure 1, an example is illustrated. Figure 1 illustrates a
storage entity 102. The storage entity 102 includes a variety of different hardware devices.
For example, the storage entity 102 includes a plurality 104 of hard disk drives, a plurality
106 of solid state drives, and a plurality 108 of tape drives.

[0021] The storage entity 102 can have the various different hardware devices
dynamically configured to achieve certain storage characteristics and to change those
characteristics over time. For example, multiple hardware devices may be used for
mirroring or parity schemes to create redundancy. Alternatively, multiple devices may be
used for striping schemes (such as RAID 0) for better performance when accessing data on
the storage entity 102. Notably, different portions of the same hardware device can be
used for different schemes. Thus for example, a given hard drive may have different
portions of the hard drive used for different schemes. One portion of the hard drive may be
used in implementing a mirroring scheme. A different portion of the hard drive may be
used when implementing the parity scheme. A yet even different portion of the hard drive
may be used to implement the simple storage scheme with no mirroring (such as RAID 1),
parity (such as RAID 5), or striping (such as RAID 0). As data requirements change, or as
new data is received with new requirements, the various hardware devices can be
reconfigured to meet the requirements of the data.

[0022] Embodiments may implement systems and methods for storing data in a dynamic

fashion. The data may be stored on a live persistent storage entity. The live persistent

10

15

20

25

30

WO 2016/144544 PCT/US2016/019356

storage entity is comprised of portions of a plurality of different persistent storage devices.
Each persistent storage device has certain, and often differing, storage constraints. Such
constraints could be capacity, media type, speed, external cache availability and size, data
density, etc. Typically, these constraints contribute to three fundamental characteristics
which are data capacity, performance (i.e. speed at which data can be read or written), and
resiliency. Constraints of individual storage devices can be utilized in various ways to
meet requirements for data.

[0023] Figure 1 illustrates data 110 that is received by the storage entity 102. The data
110 has certain requirements 112 associated with it. For example, the requirements may
specify that the data must be stored in a way that has certain performance and/or resiliency
requirements. Embodiments can therefore identify requirements for data. As noted, the
requirements may include requirements with respect to at least one of performance or
resiliency. For example, with respect to performance, a data requirement may specify that
data must be able to be accessed within a certain amount of time. These requirements may
be met, for example, by using hardware devices having certain access speeds and/or by
using various data striping techniques across multiple hardware devices to achieve better
performance.

[0024] With respect to resiliency, requirements may specify that data must have a
certain level of redundancy and/or that data is safe from loss to within some specified
statistical figure. Resiliency requirements may be met by using hardware devices
employing media with a certain amount of resiliency, by using multiple hardware devices
in one or more mirroring schemes to obtain a certain amount of resiliency, by using
multiple hardware devices in one or more parity schemes to obtain a certain amount of
resiliency, etc.

[0025] Notably, certain techniques for obtaining better performance may affect
resiliency, and vice versa. Thus, embodiments may balance how the various hardware
devices with certain constraints are used to meet requirements for data. Thus,
embodiments may identify constraints of the persistent storage devices in a persistent
storage entity and store the data in dynamic fashion in a layout on the persistent storage
entity that meets the requirements for the data while still being within the constraints for
the persistent storage devices. This is done in a fashion such that the layout for the data
can change as requirements for the data change or as other data is operated on in the

persistent storage entity.

10

15

20

25

30

WO 2016/144544 PCT/US2016/019356

[0026] Notably, requirements 112 for data 110 can be determined in one or more of a
number of different fashions. For example, requirements may be associated directly with
the data 110 using external metadata that can be defined by a user or application.

[0027] In another example, requirements 112 for the data 110 may be determined and
specified based on applications that create or operate on the data 110. Thus, for example,
Figure 1 illustrates a system 114 which includes a plurality of applications 116. Each of
the applications in the plurality of applications 116 may have distinct requirements for
some or all of the data used by those applications. For example, a browser application may
need data to be accessed quickly, but may not be concerned with resiliency as the data can
simple be re-downloaded from the source. Alternatively, a finance application may require
data to be stored in a very resilient fashion. In yet another example, an e-commerce
application may require that data is stored in way that has both high performance and high
resiliency. Thus, in some embodiments, the requirements for data may be determined
based on an application reading or writing the data.

[0028] Data requirements, in alternative or additional embodiments, may be determined
based on users of data. For example, an officer of a company may have both high
performance and high resiliency requirements for data, while a mail-room employee may
have lower performance and/or or resiliency requirements. In a generalized example, data
requirements may be based on the role of a user. In a similar example, data requirements
may be based on the department in an enterprise that reads or writes the data 110. Thus,
for example, data generated or accessed by an accounting department may have different
requirements than data generated or accessed by the human resources department.

[0029] Data requirements, in alternative or additional embodiments, may be determined
based on the heat of data or access patterns for data. Heat of data generally refers to when
data was/is accessed. For example, data that was accessed more recently is warmer than
data that was accessed less recently. Hot data may have higher performance requirements
than data that is less hot.

[0030] Various other factors may be used alone or in combination with each other or
other factors to determine data requirements. Such other factors may include one or more
of service agreements, time of day (or other temporal factor), network characteristics for
networks carrying data, protocols used to interact with data, etc.

[0031] As noted above, data is stored in a dynamic fashion in a layout on the persistent
storage entity that meets the requirements for the data while still being within the

constraints for the persistent storage devices. This is done in a manner such that the layout

10

15

20

25

30

WO 2016/144544 PCT/US2016/019356

for the data can change as requirements for the data change or as other data is operated on
in the persistent storage entity. Thus, for example, requirements for certain data can
change. As the requirements change, the layout can change and hardware devices for a
storage entity can be rearranged for efficient use. Various examples are now illustrated.
[0032] Figures 2A-2C illustrate various examples of dynamically changing the layout
for data in a persistent storage entity.

[0033] Figure 2A illustrates that the layout can be changed to/from a simple data layout
from/to a striped data layout. In particular, in the example illustrated in Figure 2A, data
210 is stored in a simple format on a hard disk drive 204-1. Data requirements for the data
210 may change requiring that the data 210 be stored in a more performant way. This can
be accomplished, for example, by striping the data 210 across multiple hard disk drives.
Thus, in the illustrated example, a portion 210-A of the existing data 210 is left on the hard
disk drive (HDD) 204-1. A portion 210-B of the data 210 is copied to the hard disk drive
204-2, and a portion 210-C of the data 210 is copied to the hard disk drive 204-3. This
allows the data 210 to be accessed more quickly, as is well known for data striping data
storage schemes. This also frees up some space on the hard disk drive 204-1 as the
portions 210-B and 210-C no longer need to be stored on the hard disk drive 204-1. Thus,
the layout can be changed dynamically on a live storage entity while portions of the data
can continue to be stored and provided (e.g. data portion 210-A). Portions of the data (i.e.
portion 210-A) on the HDD 204-1 can be repurposed when moving from a simple layout
to a striped layout. Notably, this process can be reversed if some data requirement is
relaxed, or some other data requirement can be achieved by having all of the data 210
stored in a simple layout.

[0034] Figure 2B illustrates another example where a data layout may be changed
to/from a simple layout from/to a mirrored layout. In particular, Figure 2B illustrates data
210 stored in a simple layout on a hard disk drive 204-1. Data requirements for the data
210 may change and may specify that the data 210 now needs a higher level of resiliency.
The system may determine that this can be accomplished (while still maintaining a
required level of performance) by mirroring the data onto another hard disk drive 204-2.
Thus, the first existing copy of the data 210 will remain in place on the hard disk drive
204-1, while a new copy of the data 210 will be added to the hard disk drive 204-2. As
illustrated, this can be done while an overall storage entity including the hard disk drive
204-1 is live and providing read/write capabilities on the data 210. In fact, the data on the

hard disk drive 204-1 can be repurposed from the simple layout to the mirrored layout

10

15

20

25

30

WO 2016/144544 PCT/US2016/019356

such that efficiencies can be obtained with respect to creating the mirrored layout. As with
the example above, this process can be performed in the reverse if it is determined that the
resiliency requirement has been relaxed. In this case, the second copy of the data 210 (or
alternatively the first copy of the data 210 on the HDD 204-1) can be deleted or
invalidated, freeing up hard disk drive space for use in other data storage.

[0035] Figure 2C illustrates an example of changing from a mirrored layout of data 210
on HDDs 204-1 and 204-2 to a parity layout across drives 204-1, 204-2, and 204-3. In the
illustrated parity layout, data is striped across multiple drives, such that a portion 210-A of
the data 210 is on the first HDD 204-1 and a portion 210-B of the data is on the second
HDD 204-2. In this configuration, read access is performant because of the striping across
multiple drives. In addition to the striped data, parity data is created by performing some
operation, such as a logical XOR, on the data. This parity data is stored on HDD 204-3 as
illustrated by the parity data portion 212. Changing from a mirrored layout to a parity
layout can be accomplished efficiently by retaining the portion 210-A on the first drive
204-1, the portion 210-B on the second drive 204-2, and creating the portion 210-C on the
third drive 204-3. Note that the parity layout may be slower, especially for writes in terms
of performance.

[0036] Note that while in the examples illustrated in Figures 2A-2C, a single layout type
of data storage is illustrated, it should be appreciated that embodiments can be
implemented where several different layout types can be implemented on a single
hardware device. Thus, for example, the same HDD may be used to implement simple
storage for some data, while also being used in a striped storage layout for other data,
while also being used in a mirrored data layout for still other data.

[0037] Referring now to Figure 3, embodiments may be implemented in cluster
environment. In such environments, a backing store, such as the storage devices 102 may
be used as the backing store for storage entities 118-1, 118-2, and 118-3 for systems 114-
1, 114-2 and 114-3 respectively. In this example, each of the storage entities are set apart
for use by the corresponding system, but all of the storage entities are backed and
implemented physically by the storage devices 102. Therefore, all of the systems 114-1
through 114-3 need to be correlated to ensure that one system will not interfere with
another system’s use of the storage devices 102. This can be particularly true as one
storage entity needs to be expanded, which potentially requires changes in another storage

entity to accommodate the expansion.

10

15

20

25

30

WO 2016/144544 PCT/US2016/019356

[0038] One way of accomplishing this might be to pass all accesses of the storage
devices through one of the systems to ensure that all changes to the storage devices 102 do
not interfere with existing uses of the storage devices 102. However, this would create a
bottleneck, namely, the capacity (e.g. processor capacity, memory capacity, network
bandwidth capacity, etc.) of the system through which all access to the storage devices
was routed would be the bottleneck for all access to the storage devices 102.

[0039] To mitigate this, some embodiments use a system of communication between
systems to correlate allocation of storage on the storage devices 102 through a single
system, but distribute the operations on the storage devices 102 across the systems. In
particular, in the example illustrated, each of the systems 114-1, 114-2 and 114-3 are
responsible for a given storage entity 118-1, 118-2, and 118-3 respectively. Any access to
a given storage entity is routed through the corresponding system. One of the systems is
responsible for metadata 120 for the storage devices 102. The system that is responsible
for the metadata 120 may be one of the systems responsible for a storage entity or some
other system. This system may be considered to be the owner of the metadata 120. In the
illustrated example, it will be assumed, for illustration purposes, that system 114-2 is
responsible for the metadata 120.

[0040] A system responsible for a given storage entity (i.e. the owner of the storage
entity) will correlate with the system (i.e. system 114-2) responsible for the metadata when
attempting to perform operations on the storage devices 102 on behalf of the storage
entity. Various messages can be sent between the systems to correlate usage of the storage
devices 102. For example, a message 122 may be sent from a user 124 to a system (e.g.
system 114-1 or any other system convenient to the user 124) to request access (such as
read or write access) to a storage entity (e.g. storage entity 118-3). A message 126 may be
sent between system 114-1 and 114-3 to route the user request to the system 114-3
responsible for the storage entity 118-3. A message 128 may be sent from the system
responsible for the storage entity (e.g. system 114-3) to the system (114-2) responsible for
correlating the metadata 120 to determine if the requested access can be performed.
[0041] The system 114-2 can examine the storage devices 102 to determine if the
storage devices have capacity to accommodate the requirements for data which is the
subject of the access request message 122. For example, the requested data access may
require allocating some storage that meets certain performance and resiliency
requirements. The system 114-2 can consult the metadata 120 to determine if there are

portions of storage devices available to meet these requirements. If there is available

10

15

20

25

30

WO 2016/144544 PCT/US2016/019356

storage in the storage devices 102 that meets these requirements, the system 114-2 can
allocate the storage to the storage entity 118-3 in the metadata 120 and simply send a
message 130 back to the system 114-3 indicating that storage is available (along with
details about how to access the storage) for the system 114-3. The system 114-3 then
knows that the storage entity 118-3 has been adjusted to accommodate the access
requested in the access request message 122. The system 114-3 can then simply perform
the access requested on the storage entity 118-3 and therefore, the backing store, storage
devices 102.

[0042] However, in other scenarios, there may not be sufficient storage resources in the
storage devices 102 to accommodate the access requested in the access request message
122. In this case, the owner system, system 114-2 can attempt various actions to create or
free-up storage resources.

[0043] In a first example, the owner system 114-2 may attempt to identify storage
resources that are not needed by any of the storage entities 118-1, 118-2 and/or 118-3 that
could be voluntarily surrendered. To accomplish this, the owner system 114-2 sends
messages 132-1 and 132-3 to the systems 114-1 and 144-3 respectively. Those systems
could identify resources that could be voluntarily surrendered without effecting important
data. For example, those systems may identify temporary file storage, data marked for
deletion, outdated back-up files, outdated report or log files, etc. Those systems could then
send messages 134-1 and 134-3 indicating the resources that are voluntarily being
surrendered. The owner system 114-2 could also identify any resources it could surrender.
The owner system 114-2 could then update the metadata 120 and inform the system 114-3
what resources had been allocated so that the system 114-3 could service the access
requested in the access request message 122.

[0044] In an alternate example, the messages 132-1 and 132-3 are sent, the systems 114-
1 and 114-3 (as well as the system 114-2) may not identify any resources that they are
willing to voluntarily surrender. In this case, the owner system 114-2 may have to
forcefully move certain data. The owner system 114-2 can identify appropriate
requirements for data in the storage entity. So long as the owner system can move data to a
device configuration within the storage entity that meets the requirements for the data,
resources can be freed up to accommodate the access request of the access request
message 122. The metadata 120 can be updated to reflect the data movement, and the

system 114-3 can be informed by the owner system 114-2 that resources are available at

10

10

15

20

25

30

WO 2016/144544 PCT/US2016/019356

the storage devices 102 to accommodate changes to the storage entity 118-3 to
accommodate the access request specified in the access request message 122.

[0045] Returning now once again to concepts that may be implanted in various types of
systems, the following illustrates specific examples implemented within the context of
storage tiering. Storage tiering allows for portions of storage devices of different media
types to be combined into a single storage entity. Each different data requirement
corresponds to a storage tier. For example, SSDs (Solid State Drive) can be used for faster
performance, while HDDs (Hard Disk Drive) can be used for slower performance, but
may have more capacity. SSDs are more expensive than HDDs, so the performance comes
at a cost. The file system will allocate the location of files and metadata on each storage
tier to optimize for performance, choosing to put more performance sensitive data on the
SSD.

[0046] In some current systems, such as Windows 8.1 and Server 2012 available from
Microsoft Corporation of Redmond Washington, each storage tier must have the same
resiliency settings as other storage tiers in a storage entity. This means that the minimum
number of storage devices must match between the SSD and HDD tier, which leads to a
higher cost. However, by allowing for different resiliency settings for each tier, cost can be
reduced. The different resiliency settings could be directed to resiliency type (simple,
mirror, parity), number of columns (i.e. the minimum number of storage devices in a tier),
storage device failure tolerance, etc.

[0047] Thus, in the illustrated examples below, storage tiers can have different
resiliency settings, such as resiliency type, number of columns, and storage device failure
tolerance. This can be used to facilitate lower cost deployments by not over provisioning a
storage entity to meet data storage requirements.

[0048] In current systems, storage tiers are supported to optimize data placement
between SSDs, and HDDs. However, there are currently a number of constraints: (a) the
resiliency type must be the same between tiers (e.g. mirror, parity); (b) the number of
columns must be the same between tiers (i.e. the same number of disks must be used); (¢)
the number of copies must be the same between tiers; and (d) only fixed provisioning is
supported (meaning that once the system is provisioned, it cannot be changed.

[0049] However, by implementing a dynamic storage system, one or more features may
be realized. For example, embodiments could define additional media types for tiering.
Such media types could be Non-Volatile Dual Inline Memory Module (NVDIMM) (which

is RAM that retains data even if power is lost), cloud storage, or other storage. With

11

10

15

20

25

30

WO 2016/144544 PCT/US2016/019356

dynamic storage, embodiments could support tiers with different resiliency types. For
example, the SSD tier could use mirror, while the HDD tier could use parity. With
dynamic storage, embodiments could support tiers with different column counts. As such,
each tier is bound only by the minimum column count for the associated resiliency type.
With dynamic storage, embodiments could support tiers with different storage device
failure tolerance. For example, the SSD tier could use 2-way mirror, while the HDD tier
could use dual parity. With dynamic storage, embodiments could support tiers with
different resiliency settings on the same media type and even tiers that utilize different
media types. With dynamic storage, embodiments could allow multiple read and write
caches to be supported, each expressed as a separate tier.

[0050] Various resiliency settings can be configured for each tier. Such settings may
include: a resiliency setting name (e.g. simple, mirror, or parity); interleave (i.e., the width
of the stripes); number of columns; number of data copies; and/or storage device failure
tolerance.

[0051] Some embodiments implement a generalized and flexible way of supporting
multiple read and write caches. One example of multiple write caches is the “waterfall”
model where different tiers act as caches for lower tiers. For example, embodiments may
implement a write cache on NVDIMM for the SSD tier, and a write cache on SSD for the
HDD tier.

[0052] Some embodiments implement this by the read or write cache being expressed as
its own tier. This cache tier has an attribute to indicate the purpose of the tier.

[0053] Users can specify a read cache size when creating a storage entity. In this case, a
read cache tier will automatically be created on behalf of the user. Similarly, when
specifying the existing write cache size, a write cache tier will automatically be created.
[0054] A storage tier class definition could include various parameters related to
resiliency. For example, the following illustrates a class definition parameters for storage
tiers, where the definition includes resiliency parameters.

[0055] One parameter may include a friendly name of the storage tier, defined by the
user.

[0056] Another parameter may include a definition of the media type of the storage tier.
This could be, for example, HDD, SSD, NVDIMM, etc. This may be a closed set, where a
user could select an option from the closed set.

[0057] Another parameter may include a definition of the maximum size of the tier on

the storage entity to limit the storage capacity that that tier can consume.

12

10

15

20

25

30

WO 2016/144544 PCT/US2016/019356

[0058] Another parameter may include a user settable description of the storage tier.
[0059] Another parameter may include a field that indicates the number of bytes that
will form a strip in common striping-based resiliency settings. The strip is defined as the
size of the portion of a stripe that lies on one storage device.

[0060] Another parameter may include a field that indicates the number of underlying
storage devices across which data for the storage tier is striped.

[0061] Another parameter may include a field that indicates how many backing storage
devices can fail without compromising data redundancy. For example: RAID 0 cannot
tolerate any failures, RAID 5 can tolerate a single drive failure, and RAID 6 can tolerate 2
failures.

[0062] Another parameter may include a field that indicates the name of the resiliency
setting used on the storage tier.

[0063] Another parameter may include a field that indicates how the tier is being used,
such as for data or some other specialized use."

[0064] Another parameter may include a field that indicates characteristics to describe
the media, when media type is unspecified. The media types may be SSD, HDD,
NVDIMM, etc. Alternatively, this could be more generalized by specifying media
characteristics, such as no-seek penalty.

[0065] Another parameter may include a field that indicates whether the tier is part of
the LBA range of the storage entity. This attribute, in certain embodiments, cannot be set
directly, but is inferred from other attributes such as attributes related to block write cache
or file read cache attributes.

[0066] Another parameter may include a field that specifies whether the tier should use
a block write cache.

[0067] The ability to specify the write cache size or for automatically configuring the
write cache size is supported in some embodiments. Additionally, some embodiments may
support a write cache media type parameter that allows a user to specify which media type
the write cache will go on. If this parameter is not specified, then the write cache will go
on the fastest tier. Similarly, some embodiments include a read cache size parameter and a
read cache media type parameter. In these cases, a cache tier will be created on behalf of
the user.

[0068] For users that want to experiment with various advanced cache configurations,
some embodiments include an option that allows for the user to directly create the cache

tiers. This is specified through a usage parameter for the tier. This allows for the write

13

10

15

20

25

30

WO 2016/144544 PCT/US2016/019356

cache to have a different resiliency from the normal tiers and for multiple write caches to
be defined. It also allows for the location of the write cache to be specified, such as
NVDIMM. If any tier passed to a new storage entity is a write cache tier, then in some
such embodiments, specifying the write cache size or automatic write cache size will not
be allowed.
[0069] Some embodiments include the ability to control which storage tiers are logical
block addressable vs. not addressable. Thus, as noted above, some embodiments are
implemented where each tier has a usage attribute, which indicates how the tier is to be
used. The usage of the tier will determine whether the tier is LBA addressable or not.
[0070] Some embodiments may include binding of tier templates. In particular, if any
resiliency parameters are not specified to a new storage tier, then the resiliency parameters
will be obtained from the storage pool. This binding will occur when the storage entity is
created. If the resiliency settings for the storage pool change at a later point, those changes
will be reflected when the storage entity is created.
[0071] In some embodiments, template tiers are not pre-created by the driver on pool
creation, since it is hard to know what resiliency settings the user will want. For example,
embodiments have no way of knowing whether templates with two copies or three copies
should be created. Therefore, some embodiments defer to the system builder to pre-create
templates if desired.
[0072] The following now illustrates details of driver design for some embodiments.
Since each tier can now have a different column count, either the slab size or the extent
size is allowed to be variable. A slab is the minimum unit of allocation in the LBA range
of the storage entity that corresponds to a storage tier. The extent is the minimum unit of
allocation on an individual storage device. To simplify the management of allocations for
file systems and to support the changing of the storage tiers of slabs the slab size, in some
embodiments, is kept fixed and the extent size will be variable.
[0073] For example, the slab size is calculated as follows:

SlabSize = DataColumns * ExtentSize
[0074] To ensure a fixed slab size across tiers, the following will need to be true (where
1 and 2 represent the parameter for each tier):

DataColumns,; * ExtentSize; = DataColumns, * ExtentSize;
[0075] To ensure a reasonable slab size, additional restrictions can be put in place on the
column count for each tier. The following illustrates examples of the limits and targets for

each parameter:

14

10

15

WO 2016/144544 PCT/US2016/019356

e Slab Size — Target either 8GB or 6GB.
e Extent Size — Target around 1GB. Minimum is 256MB. Extent size is a multiple
of 256MB.
e Data columns — Target 8-16 data columns if there are enough disks.
[0076] If the column count is set to “auto”, then embodiments will choose column
counts that ensure reasonable slab and extent sizes. 8GB may be preferable for slab size,
since it yields extent sizes which are a power of two, which reduces fragmentation. The

following table shows the different possibilities for a slab size of 8GB:

DataColumns ExtentSize
1 8GB

2 4GB

4 2GB

8 1GB

16 512MB

32 256MB

[0077] To support additional column counts, a 6GB slab is supported, which allows for
extents that are a multiple of 3 of the minimum extent size. The downside with this is that
the extent size may no longer be a power of 2, which could cause increased fragmentation
if thin provisioning is supported on tiered spaces. This could be mitigated by allowing a
single extent to be split up into non-contiguous 256MB chunks on disk. The following

table shows the different possibilities for a slab size of 6GB:

DataColumns ExtentSize
1 6GB

2 3GB

3 2GB

4 1.5GB

6 1GB

8 768MB

12 512MB

24 256MB

[0078] The following algorithm is used in some embodiments to determine the column

count and slab size when the column count is set to “auto”:

15

10

15

20

25

30

WO 2016/144544 PCT/US2016/019356

1.

[0079]
1.

[0080]

For each tier, determine the minimum and default column count depending on the
resiliency type:

a. Simple: Minimum = 1, Default = 8

b. Mirror: Minimum = 1, Default = 8

c. Parity: Minimum = NumberOfGroups * 3 + FaultTolerance — 1, Default =

NumberOfGroups * 8 + FaultTolerance — 1
For each tier, determine the number of available drives for the particular media
type.
The starting column count is the smaller of the Default from #1 and the Drives /
NumberOfCopies from #2.
Starting with the 8GB slab, determine the sum of the deltas between the column
count for each tier computed in #3 and the column count in Table 1 that is less than
or equal to the tier column count. Do the same for the 6GB slab. Choose the slab
size that produces the smallest delta, and is therefore a closer match.
The following illustrates an example of implementing the above algorithm.

If the SSD tier has 8 drives and the HDD tier has 16 drives, and both are 2-way
mirror, then the starting column count will be:

a. SSD column count = min(8, 8/2) =4

b. HDD column count = min(8, 16/2) = 8

c. The sum of the delta for the 8GB is 0 since both appear in the table, so the

8GB slab is chosen.

If the SSD tier has 12 drives and the HDD tier has 16 drives, and both are 2-way
mirror, then the starting column count will be:

a. SSD column count = min(8, 12/2) =6

b. HDD column count = min(8, 16/2) = 8

c. The sum of the delta for the 8GB slab=(6-4)+ (8 -8)=2

d. The sum of the delta for the 6GB slab=(6-6)+ (8 -8)=0

e. So, the 6GB slab is chosen, since it has the smallest delta.

If explicit column counts were specified by the user on each tier, then for some

embodiments, a check will first be done to see if it is an exact match in either the 8GB or

6GB table. If it is, then the matching slab size will be used. If it is not, then a default

extent size of 1GB will be chosen for the tier with the largest column count. The slab size

that results from that will be used to determine the extent size for the other tiers. If the

16

10

15

20

25

30

WO 2016/144544 PCT/US2016/019356

resulting extent size for each tier is a multiple of 256MB, then the space creation can
proceed. If not, then the call will fail.
[0081] The following illustrates an example:

1. If column counts of 5 and 10 were specified for each tier, then the tier with 10
columns would be assigned a 1GB extent size, which will produce a 10 * 1GB =
10GB slab size. The tier with 5 columns could get an extent size of 10GB /5 =
2GB. Since this is a multiple of 256MB, this is a valid combination.

2. If column counts of 5 and 7 were specified for each tier, then the tier with 7
columns would be assigned a 1GB extent size, which will produce a 7 * 1GB =
7GB slab size. The tier with 5 columns could get an extent size of 7GB /5 =
1.4GB. Since 1.4GB is not a multiple of 256MB, this is an invalid combination.

[0082] In alternative embodiments, the slab size can be variable and the extent size is
fixed. This avoids fragmentation issues and removes constraints on the column count.
However, to simplify the management of allocations for file systems and to support the
changing of the storage tier of slabs, embodiments are implemented where the slab size
will be kept fixed and the extent size will be variable.

[0083] Keeping the slab size fixed, allows the ability for the file system to change the
storage tier of a slab. As part of its optimization of data placement (keeping hot data on
fast tier and cold data on slower tier), if the file system determines that the requirements
for data corresponding to a slab have changed, it can notify the storage entity to change the
storage tier of the slab. The storage entity can then change the layout as described in
Figures 2A-2C. The advantage of this approach is that the LBA address of the data doesn’t
change from a file system perspective, so file system metadata doesn’t need to be updated,
which is more efficient.

[0084] In summary, data with different requirements may be co-located within a single
storage entity. The layout of the storage entity is composite (hence storage tiers) in order
to accommodate that. In other words, a storage entity can be associated with multiple
storage tiers. Each storage tier defines a layout that accommodates a set of resiliency and
performance requirements. Each storage tier is bound to one or more LBA ranges of the
storage entity; data with requirements that match those accommodated by a storage tier
that resides within the corresponding LBA ranges.

[0085] The following discussion now refers to a number of methods and method acts
that may be performed. Although the method acts may be discussed in a certain order or

illustrated in a flow chart as occurring in a particular order, no particular ordering is

17

10

15

20

25

30

WO 2016/144544 PCT/US2016/019356

required unless specifically stated, or required because an act is dependent on another act
being completed prior to the act being performed.

[0086] Referring now to Figure 4, a method 400 is illustrated. The method 400 may be
practiced in a computing environment. The method 400 includes acts for storing data in a
dynamic fashion where data is stored on a live persistent storage entity (e.g. storage entity
102). The entity is comprised of portions of a plurality of different persistent storage
devices, each having certain storage constraints. For example, such characteristic may
include one or more of capacity, media type, speed, external cache, data density, etc. The
data is stored at the entity in a manner that meets requirements for the data. For example,
the data may have certain performance and/or resiliency requirements. The method 400
includes identify requirements for data, wherein the requirements comprise requirements
with respect to at least one of performance or resiliency (act 402).

[0087] The method 400 further includes identifying constraints of the persistent storage
devices in the persistent storage entity (act 404).

[0088] The method 400 further includes storing the data in a dynamic fashion in a layout
on the persistent storage entity that meets the requirements for the data while still being
within the constraints for the persistent storage devices, such that the layout for the data
can change as requirements for the data change or as other data is operated on in the
persistent storage entity (act 400).

[0089] The method 400 may further include changing the layout for the data in the
persistent storage entity by converting the data from mirrored data to parity data.
Alternatively or additionally, the method 400 may further include changing the layout for
the data in the persistent storage entity by converting the data from striped mirrored data to
non-striped mirrored data. Alternatively or additionally, the method 400 may include
changing the striping width of striped data. Alternatively or additionally, the method 400
may further include changing the layout for the data in the persistent storage entity by
transferring the data from a persistent storage device of a first type to a persistent storage
device of a second type. For example, embodiments may transfer data from SSD to HDD.
This will actually result in a change to the storage capacity of the persistent storage entity.
Thus, embodiments maybe implemented where the storage entity actually changes its
capacity over time. Alternatively or additionally, the method 400 may further include
changing the layout for the data in the persistent storage entity by converting the data from

a device that is resilient to a first number of device failures to a second different number

18

10

15

20

25

30

WO 2016/144544 PCT/US2016/019356

device failures. For example, data may be converted from single parity to dual parity, or
from a 3 way mirror to a 2 way mirror, etc.

[0090] As noted above, embodiments may be implemented where changing the layout
results in a change to the capacity of the persistent storage entity. Embodiments may be
implemented where changing the layout results in a change to the performance of data
access of the data. Embodiments may be implemented where changing the layout results
in a change to the resiliency of the data.

[0091] The method 400 may be practiced where the data requirements are based on one
or more of access patterns for the data (e.g. is the data hot or cold?), application creating
or using the data (e.g. data for an internet browser can be less redundant than data for a
finance application or a quality assurance application), user role of individual accessing
data (e.g. data for the CEO may be required to be more performant and more redundant
than data that is only used by mail room employees), service level agreement, department
of a company producing or using the data, time of day the data, network characteristics,
protocols of data, etc.

[0092] The method 400 may be practiced where identifying constraints of the persistent
storage devices in the persistent storage entity, comprises identifying one or more of
device capacity, drive type, speed, etc.

[0093] Embodiments may include functionality for rearranging data within the storage
entity to accommodate incoming or other data. For example, in some embodiments, as
other data comes into the storage entity, embodiments may determine that no capacity is
available to meet requirements for the data. Embodiments can then identity data that can
have its layout changed and still be within the requirements for the data to create capacity
for the other data. This may be done, for example, by evicting and moving data from one
type of storage to another type of storage to repurpose existing capacity. For example, it
may be determined that data can be moved from SSD storage to HDD storage to create
additional space on the SSD storage. Alternatively, embodiments may change a layout to
change the available capacity of a persistent storage entity. For example, changing the
layout from a mirrored layout to a parity layout will actually increase the size of the
storage entity and create additional space for data storage.

[0094] Further, the methods may be practiced by a computer system including one or
more processors and computer-readable media such as computer memory. In particular,

the computer memory may store computer-executable instructions that when executed by

19

10

15

20

25

30

WO 2016/144544 PCT/US2016/019356

one or more processors cause various functions to be performed, such as the acts recited in
the embodiments.

[0095] Embodiments of the present invention may comprise or utilize a special purpose
or general-purpose computer including computer hardware, as discussed in greater detail
below. Embodiments within the scope of the present invention also include physical and
other computer-readable media for carrying or storing computer-executable instructions
and/or data structures. Such computer-readable media can be any available media that can
be accessed by a general purpose or special purpose computer system. Computer-readable
media that store computer-executable instructions are physical storage media. Computer-
readable media that carry computer-executable instructions are transmission media. Thus,
by way of example, and not limitation, embodiments of the invention can comprise at least
two distinctly different kinds of computer-readable media: physical computer-readable
storage media and transmission computer-readable media.

[0096] Physical computer-readable storage media includes RAM, ROM, EEPROM, CD-
ROM or other optical disk storage (such as CDs, DVDs, etc), magnetic disk storage or
other magnetic storage devices, or any other medium which can be used to store desired
program code means in the form of computer-executable instructions or data structures
and which can be accessed by a general purpose or special purpose computer.

[0097] A “network” is defined as one or more data links that enable the transport of
electronic data between computer systems and/or modules and/or other electronic devices.
When information is transferred or provided over a network or another communications
connection (either hardwired, wireless, or a combination of hardwired or wireless) to a
computer, the computer properly views the connection as a transmission medium.
Transmissions media can include a network and/or data links which can be used to carry
or desired program code means in the form of computer-executable instructions or data
structures and which can be accessed by a general purpose or special purpose computer.
Combinations of the above are also included within the scope of computer-readable media.
[0098] Further, upon reaching various computer system components, program code
means in the form of computer-executable instructions or data structures can be
transferred automatically from transmission computer-readable media to physical
computer-readable storage media (or vice versa). For example, computer-executable
instructions or data structures received over a network or data link can be buffered in
RAM within a network interface module (e.g., a “NIC”), and then eventually transferred to

computer system RAM and/or to less volatile computer-readable physical storage media at

20

10

15

20

25

30

WO 2016/144544 PCT/US2016/019356

a computer system. Thus, computer-readable physical storage media can be included in
computer system components that also (or even primarily) utilize transmission media.
[0099] Computer-executable instructions comprise, for example, instructions and data
which cause a general purpose computer, special purpose computer, or special purpose
processing device to perform a certain function or group of functions. The computer-
executable instructions may be, for example, binaries, intermediate format instructions
such as assembly language, or even source code. Although the subject matter has been
described in language specific to structural features and/or methodological acts, it is to be
understood that the subject matter defined in the appended claims is not necessarily
limited to the described features or acts described above. Rather, the described features
and acts are disclosed as example forms of implementing the claims.

[00100] Those skilled in the art will appreciate that the invention may be practiced in
network computing environments with many types of computer system configurations,
including, personal computers, desktop computers, laptop computers, message processors,
hand-held devices, multi-processor systems, microprocessor-based or programmable
consumer electronics, network PCs, minicomputers, mainframe computers, mobile
telephones, PDAs, pagers, routers, switches, and the like. The invention may also be
practiced in distributed system environments where local and remote computer systems,
which are linked (either by hardwired data links, wireless data links, or by a combination
of hardwired and wireless data links) through a network, both perform tasks. In a
distributed system environment, program modules may be located in both local and remote
memory storage devices.

[00101] Alternatively, or in addition, the functionally described herein can be performed,
at least in part, by one or more hardware logic components. For example, and without
limitation, illustrative types of hardware logic components that can be used include Field-
programmable Gate Arrays (FPGAs), Program-specific Integrated Circuits (ASICs),
Program-specific Standard Products (ASSPs), System-on-a-chip systems (SOCs),
Complex Programmable Logic Devices (CPLDs), etc.

[00102] The present invention may be embodied in other specific forms without
departing from its spirit or characteristics. The described embodiments are to be
considered in all respects only as illustrative and not restrictive. The scope of the invention
is, therefore, indicated by the appended claims rather than by the foregoing description.
All changes which come within the meaning and range of equivalency of the claims are to

be embraced within their scope.

21

WO 2016/144544 PCT/US2016/019356

CLAIMS

1. A computer system comprising:

one or more processors; and

one or more computer-readable media, wherein the one or more computer-readable
media comprise computer-executable instructions that when executed by the one of the
one or more processors cause the one or more processors to perform a computer-
implemented method for storing data in a dynamic fashion, where data is stored on a live
persistent storage entity comprised of portions of a plurality of different persistent storage
devices, each having certain storage constraints, and wherein the computer-implemented
method is comprised of:

identifying requirements for data, wherein the requirements comprise requirements
with respect to at least one of performance or resiliency;

identifying constraints of the persistent storage devices in the persistent storage
entity; and

storing the data in a dynamic fashion in a layout on the persistent storage entity
that meets different data requirements for the data while still being within the constraints
for the persistent storage devices, such that the layout for a portion of the data can change
as requirements for a portion of the data change or as other data is operated on in the
persistent storage entity.

2. The system of claim 1, wherein the storage entity is configured to change
the layout of persistent storage devices while the storage entity is storing and providing
data.

3. The system of claim 1, wherein the storage entity is configured to change
the layout of persistent storage devices from simple to mirrored storage by copying exiting
data from a first persistent storage device to a second persistent storage device while the
storage entity is storing and providing data from the first persistent storage device.

4. The system of claim 1, wherein the storage entity is configured to change
the layout of persistent storage devices from simple to striped storage by copying at least a
portion of exiting data from a first persistent storage device to a second persistent storage
device while the storage entity is storing and providing data from the first persistent
storage device.

5. The system of claim 1, wherein the storage entity is configured to change
the layout of persistent storage devices from simple to parity storage by copying at least a

portion of exiting data from a first persistent storage device to a second persistent storage

22

WO 2016/144544 PCT/US2016/019356

device while the storage entity is storing and providing data from the first persistent
storage device.

6. A computer-implemented method of storing data, the computer-
implemented method being performed by one or more processors executing computer
executable instructions for the computer-implemented method, and the computer-
implemented method comprising:

identifying requirements for data, wherein the requirements comprise requirements
with respect to at least one of performance or resiliency;

identifying constraints of the persistent storage devices in the persistent storage
entity; and

storing the data in a dynamic fashion in a layout on the persistent storage entity
that meets different data requirements for the data while still being within the constraints
for the persistent storage devices, such that the layout for a portion of the data can change
as requirements for a portion of the data change or as other data is operated on in the
persistent storage entity.

7. The computer-implemented method of claim 6, further comprising
changing the layout for the data in the persistent storage entity by converting the data from
mirror to parity.

8. The computer-implemented method of claim 6, further comprising
changing the layout for the data in the persistent storage entity by converting the data from
striped mirror to non-striped mirror.

0. The computer-implemented method of claim 6, further comprising
changing the layout for the data in the persistent storage entity by converting the data from
a device that is resilient to a first number of device failures to a second different number
device failures.

10. The computer-implemented method of claim 6, wherein the data
requirements are based on one or more of access patterns, an application operating on or
creating data, user role of a user creating or operating on data, service agreement levels,
enterprise department generating or operating on data, time of day, network

characteristics, or protocols of data.

23

WO 2016/144544 PCT/US2016/019356

1/4

APPS L116

AN
112 | 110
Data
G
102
'
N
ape Drive]
000]
SSD 1
1106 t
){104 108

Figure 1

PCT/US2016/019356

WO 2016/144544

DT dIn31q

—

44 s g-0.2 s ;
e-+0Z s Z-+0Z s L-+02 S v0i2
€7 2In3ig
0ic 0ic
S ——
2402 s L-+02 s
\AALLEL |
0042 G012+
vy | <D
e-+02 s 2402 s L-+02 s

QO
|
N

¢ v0c

(%Y

L-v0c

|

&
|
(QV

L-v0c

(%Y

QO
|
N

¢ v0c

(%Y

WO 2016/144544 PCT/US2016/019356

3/4

-~ 102

000

1083(

){106

Figure 3

1104

WO 2016/144544 PCT/US2016/019356

4/4

400

402~

Identify Requirements For Data, Wherein The Requirements
Comprise Requirements With Respect To At Least One Of
Performance Or Resiliency

404~

Identify Characteristics Of The Persistent Storage Devices

In The Persistent Storage Entity

406j

Store The Data In A Dynamic Fashion In A Layout On The
Persistent Storage Entity That Meets The Requirements For
The Data While Still Being Within The Constraints For The
Persistent Storage Devices, Such That The Layout For The
Data Can Change As Requirements For The Data Change Or
As Other Data Is Operated On In The Persistent Storage
Entity

Figure 4

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2016/019356

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F3/06
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

paragraphs [0002] - [0012],
[0029], [0046]; figures 2,3

paragraphs [0001],
[0069], [0072],
69; figure 1B

[0008] ,
[0125],

X US 2012/137066 Al (NOLTERIEKE MICHAEL H
[US] ET AL) 31 May 2012 (2012-05-31)
[0017] -

X US 2012/331206 Al (FLYNN DAVID [US] ET AL)
27 December 2012 (2012-12-27)

[0064],
[0157]; claim

1-10

1-10

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

22 April 2016

Date of mailing of the international search report

03/05/2016

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Limacher, Rolf

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

AL) 18 April 2000 (2000-04-18)
abstract

PCT/US2016/019356
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X YAN LIU ET AL: "Ess: A New Storage 1-10
Architecture for Mid/Large Raid",
MACHINE LEARNING AND CYBERNETICS, 2005.
PROCEEDINGS OF 2005 INTERNATIO NAL
CONFERENCE ON GUANGZHOU, CHINA 18-21 AUG.
2005, PISCATAWAY, NJ, USA,IEEE,
PISCATAWAY, NJ, USA,
21 August 2005 (2005-08-21), pages
940-947, XP031387756,
ISBN: 978-0-7803-9091-1
page 941
A EP 1 564 634 A2 (INOSTOR CORP [US]) 1-10
17 August 2005 (2005-08-17)
abstract
A US 5 574 851 A (RATHUNDE DALE F [US]) 1-10
12 November 1996 (1996-11-12)
abstract
column 1, Tine 8 - Tine 11
A US 6 052 759 A (STALLMO DAVID C [US] ET 1-10

Form PCT/ISA/210 (col

ntinuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2016/019356
Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2012137066 Al 31-05-2012 US 2012137066 Al 31-05-2012
US 2012272001 Al 25-10-2012
US 2015212911 Al 30-07-2015

US 2012331206 Al 27-12-2012 CA 2672035 Al 12-06-2008
CA 2672100 Al 12-06-2008
CN 101622594 A 06-01-2010
CN 101681282 A 24-03-2010
CN 101689130 A 31-03-2010
CN 101689131 A 31-03-2010
CN 101690068 A 31-03-2010
CN 101715575 A 26-05-2010
CN 103049058 A 17-04-2013
EP 2100214 Al 16-09-2009
EP 2108143 A2 14-10-2009
EP 2109812 A2 21-10-2009
EP 2109822 Al 21-10-2009
EP 2115563 A2 11-11-2009
EP 2126679 A2 02-12-2009
EP 2126680 A2 02-12-2009
EP 2126698 A2 02-12-2009
EP 2126709 A2 02-12-2009
ES 2507072 T3 14-10-2014
JP 5523835 B2 18-06-2014
JP 5611597 B2 22-10-2014
JP 2010512568 A 22-04-2010
JP 2010512584 A 22-04-2010
JP 2010512586 A 22-04-2010
JP 2010515116 A 06-05-2010
KR 20090087119 A 14-08-2009
KR 20090087498 A 17-08-2009
KR 20090095641 A 09-09-2009
KR 20090097906 A 16-09-2009
KR 20090102788 A 30-09-2009
KR 20090102789 A 30-09-2009
KR 20140133923 A 20-11-2014
US 2008140724 Al 12-06-2008
US 2008140909 Al 12-06-2008
US 2008140910 Al 12-06-2008
US 2008140932 Al 12-06-2008
US 2008141043 Al 12-06-2008
US 2008168304 Al 10-07-2008
US 2008183882 Al 31-07-2008
US 2008183953 Al 31-07-2008
US 2008229079 Al 18-09-2008
US 2008256183 Al 16-10-2008
US 2008256292 Al 16-10-2008
US 2008313312 Al 18-12-2008
US 2008313364 Al 18-12-2008
US 2009132760 Al 21-05-2009
US 2011157992 Al 30-06-2011
US 2011179225 Al 21-07-2011
US 2011252190 Al 13-10-2011
US 2011258512 Al 20-10-2011
US 2011289267 Al 24-11-2011
US 2011296277 Al 01-12-2011
US 2012179869 Al 12-07-2012
US 2012215961 Al 23-08-2012

Form PCT/ISA/210 (patent family annex) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2016/019356
Patent document Publication Patent family Publication

cited in search report date member(s) date
US 2012324311 Al 20-12-2012
US 2012331206 Al 27-12-2012
US 2013024642 Al 24-01-2013
US 2013067294 Al 14-03-2013
US 2013097367 Al 18-04-2013
US 2013124791 Al 16-05-2013
US 2013304872 Al 14-11-2013
US 2014372679 Al 18-12-2014
WO 2008070172 A2 12-06-2008
WO 2008070173 Al 12-06-2008
WO 2008070174 A2 12-06-2008
WO 2008070191 A2 12-06-2008
WO 2008070796 A2 12-06-2008
WO 2008070798 Al 12-06-2008
WO 2008070799 A2 12-06-2008
WO 2008070800 Al 12-06-2008
WO 2008070802 A2 12-06-2008
WO 2008070803 Al 12-06-2008
WO 2008070811 A2 12-06-2008
WO 2008070812 A2 12-06-2008
WO 2008070813 A2 12-06-2008
WO 2008070814 A2 12-06-2008
WO 2008127458 A2 23-10-2008

EP 1564634 A2 17-08-2005 EP 1564634 A2 17-08-2005
SG 114711 Al 28-09-2005
US 2005182992 Al 18-08-2005

US 5574851 A 12-11-1996 NONE

US 6052759 A 18-04-2000 EP 0912941 Al 06-05-1999
us 5875456 A 23-02-1999
us 6052759 A 18-04-2000
WO 9707462 Al 27-02-1997

Form PCT/ISA/210 (patent family annex) (April 2005)

page 2 of 2

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - wo-search-report
	Page 31 - wo-search-report
	Page 32 - wo-search-report
	Page 33 - wo-search-report

