EUROPEAN PATENT APPLICATION
published in accordance with Art. 158(3) EPC

(43) Date of publication: 12.10.2005 Bulletin 2005/41

(21) Application number: 03701777.9

(22) Date of filing: 17.01.2003

(51) Int Cl.7: A63H 30/04

(86) International application number: PCT/JP2003/000382

(87) International publication number: WO 2004/064965 (05.08.2004 Gazette 2004/32)

(84) Designated Contracting States: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

(71) Applicant: NIKKO Co., Ltd. Tokyo 125-0061 (JP)

(72) Inventor: MUKAIDA, Kenji c/o NIKKO CO., LTD. Tokyo 125-0061 (JP)

(74) Representative: Möhring, Friedrich et al Grättinger & Partner (GbR) Wittelsbacherstrasse 5 82319 Starnberg (DE)

(57) To provide a radio control transmitter that generates and transmits a control signal controlling a travelling direction of a toy vehicle, the radio control transmitter comprises: a supporter provided with a bearing section which is spherically recessed at the upper part; a lower case wherein the supporter protrudes through an inner center base; an opening section of an upper case formed at the center wherein the supporter penetrates through; a substrate positioned inside the lower case and perpendicular to the supporter; a plurality of switches which are fixed around a substrate opening section opened on the substrate, and which determine the travelling direction of the toy vehicle; and a control shaft which maintains a plurality of pressing sections positioned on each of the switches, comprising a spherical end axis section which is rotably fixed to the bearing section at the lower part of the control shaft.

TRANSMITTER FOR WIRELESS CONTROL

Fig.5
Description

Technical Field

[0001] The present invention relates to a radio control transmitter having a plurality of switches operable by a single control shaft.

Background Art

[0002] Conventionally, the radio control transmitter that manipulates a toy vehicle such as car models, has a configuration in which one channel is assigned to each of forward/backward control and left/right control whereby each channel is manipulated using two sticks (refer to Patent Literature 1: Japanese Laid-Open Utility Model Publication No. 61-7758).

[0003] Moreover, as for the multifunctional controller, the potentiometers positioned in 4 directions are sensing a rotational angle of the U-shaped gutter protruded by joystick is disclosed (refer to Patent Literature 2; Japanese Laid-Open Patent Publication No. 10-214128).

[0004] Furthermore, by rotating and oscillating the control shaft along with impellers, the joystick type control unit that generates a pulse depending on the amount of rotation of the control shaft is disclosed (refer to Patent Literature 3; Japanese Laid-Open Patent Publication No. 9-134251).

[0005] Herewith, the radio control transmitter having two sticks disclosed in Patent Literature 1, normally, a left-hand side stick is used to control the forward and backward movements of a toy vehicle by arranging to act forward and backward with respect to the manipulator. Moreover, the right-hand side lever stick is used to control the left and right movements of a toy vehicle by arranging to act right and left with respect to the manipulator.

[0006] Nevertheless, this configuration is advantageous for the right-handed users who are able to carry out the sensitive control using a dominant hand, but unsuitable for the left-handed user.

[0007] Moreover, according to Patent Literatures 2 and 3, a great number of components requiring processing precision as shown by the devices such as a plurality of wheels or a plurality of U-shaped groove boards are contained to achieve operation of the shafts in 2 directions. Only then its performance is achieved. Accordingly, they have problems such as high resource costs and increase in the processing procedures.

[0008] Therefore, an objective of the present invention is to provide a radio control transmitter of a toy vehicle being easily operable to both the right-handed and left-handed users. Furthermore, a radio control transmitter that comprises a fewer number of components without involving a complex processing.

Disclosure of Invention

[0009] In order to solve the aforementioned problems, according to claim 1 of the present invention, a radio control transmitter that generates and transmits a control signal controlling a travelling direction of a toy vehicle, which comprises: a supporter provided with a bearing section which is spherically recessed at the upper part; a lower case wherein the supporter protrudes through an inner center base; an opening section of an upper case formed at the center wherein the supporter penetrates through; a substrate positioned inside the lower case and perpendicular to the supporter; and a plurality of switches which are fixed around a substrate opening section opened on the substrate, and which determine the travelling direction of the toy vehicle; and a control shaft which maintains a plurality of pressing sections positioned on each of the switches, comprising a spherical end axis section which is rotably fixed to the bearing section at the lower part of the control shaft.

[0010] According to the radio control transmitter of claim 2 of the present invention, wherein each pressing section corresponds to the plurality of switches, and is held by the other end of an elastic section that hangs down to an edge part of a rib which surrounds the center of the control shaft, and each pressing body is positioned by preparing a pre-determined space from each pressing body in a downward direction to the top part of the switch.

[0011] According to the radio control transmitter of claim 3 of the present invention, wherein the rib installs a lead axis being inscribed to each elastic section and extending downwardly.

[0012] According to the radio control transmitter of claim 4 of the present invention, wherein the elastic section is a combination of the rib and a U-shaped spring.

[0013] According to the radio control transmitter of claim 5 of the present invention, wherein the opening section on the substrate comprises a circular section on the same axis as the control shaft, and grooves extending out from the control shaft towards the direction of the switches.

[0014] According to the radio control transmitter of claim 6 of the present invention, wherein the switches are positioned on the substrate in line symmetry including the control shaft.

[0015] According to the radio control transmitter of claim 7 of the present invention, wherein the switches are positioned on the substrate in point symmetry with respect to the control shaft.

[0016] According to the radio control transmitter of claim 8 of the present invention, wherein the control signal is transmitted at a very high frequency or by being multiplexed into an infrared ray.

[0017] According to the radio control transmitter of claim 9 of the present invention, wherein the switch has a lighting section that flashes if the switch is serially connected to the lightning section and selected.
According to the radio control transmitter of claim 10 of the present invention, wherein the toy vehicle installs a battery as a built-in power source and a chargeable connector terminal which is connected to the battery, that comprises a chargeable connector terminal connected to a built-in power source of a radio receiver and connectable to the chargeable connector terminal installed inside the toy vehicle.

Brief Description of Drawings

FIG. 1 is a front view showing an embodiment of a radio control transmitter in accordance with the present invention.

FIG. 2 is an oblique projection drawing showing an embodiment of a radio control transmitter of which is opened in part in accordance with the present invention.

FIG. 3 is an oblique projection drawing showing an embodiment of a radio control transmitter to which every component is taken out except for switches, in accordance with the present invention.

FIG. 4 is an oblique projection drawing of a substrate showing an embodiment of a radio control transmitter in accordance with the present invention.

FIG. 5 is a cross-sectional view AA of FIG. 1 of an embodiment of a radio control transmitter in accordance with the present invention.

FIG. 6 is an oblique projection drawing of an embodiment of a radio control transmitter in accordance with the present invention.

FIG. 7 is a partial view showing an upper case opening section 51 of an embodiment of a radio control transmitter in accordance with the present invention.

Best Mode for Carrying Out the Invention

Other details, advantages and characteristics of the present invention will be apparent from the following embodiments to be described with reference to the accompanying drawings.

FIG. 1 is a front view showing an embodiment of a radio control transmitter 2 in accordance with the present invention. The radio control transmitter 2 comprises a manipulation knob 6 uprightly standing through an upper plane of the upper case 4 covering the radio control transmitter 2; a window section 7 providing an opening section at the center whereby the root of the manipulation knob 6 penetrates through, which is covered by the manipulation knob 6; a power switch 10 mounted at the edge far from the manipulation knob 6; a charged LED 14 mounted adjacent to the manipulation knob 6 that flashes during the charging of toy vehicle at its charging section; a charging section mounted on the left side of the manipulation knob 6 and a cover 16 for the charging section; and a radio transmission antenna 18 mounted on the power switch 10.

Furthermore, the configuration in accordance with the present invention shall be described by using FIGS. 2 to 5. FIG. 2 is an oblique projection drawing showing the upper side of the manipulation knob 6 of the radio control transmitter 2, and illustrating the inside of the radio control transmitter 2 by cutting a part of the case. An opening section 51 is formed along an outer periphery of the manipulation knob 6.

As shown in the cross section, a substrate 30 is positioned on a plurality of ribs 26 and 28, which uprightly stands from an inner base plane of the lower case 22 covering the lower part of radio control transmitter 2, which are located at the root of the manipulation knob 6.

The window section 7 is prepared below the manipulation knob 6 of the upper case 4. The opening section 51 is prepared in the center of the window section 7. Moreover, a down facing rib 9 is hanging down which is prepared on the inner side of the upper half case to follow around the periphery of the window section 7 to define a circular arc.

FIG.3 is an oblique projection drawing of the substrate 30 whose every component is taken out from the radio control transmitter 2, leaving the push switches 32, 34, 36 and 38 assembled on the surface of the substrate 30, viewed in the same direction as that of FIG.2. FIG. 4 is an oblique projection drawing of the substrate 30 that assembles all components, viewed in the same direction as that of FIG. 3.

As shown in FIGS. 3 and 4, push switches 32, 34, 36 and 38 are arranged in point symmetry with respect to a center axis (regularly spaced in a circle at 90 degrees from one another around a center axis). At the center of the substrate 30, a circular opening 40 having a predetermined diameter is prepared, and the grooves 42, 44, 46 and 48 are formed towards the directions of each of the push switches 32, 34, 36 and 38. In other words, an opening section 40 is formed that combines the shapes of "cross" and "circle".

Push switches 32, 34, 36 and 38 are the switches that allow the electric currents to pass through upon pressing the switches. A spring having an appropriate spring constant is inserted inside the pressing section of the switch. The conductor inside the switch is connected upon pressing the switch. The spring releases the conductor connection upon releasing the switch.

Control shaft 50 is set in position through the opening section 40 of the substrate 30. The control shaft 50 is indicated by referring to FIG. 5. The control shaft 50 comprises: a top section 52 connected to the manipulation knob 6; a rib section 54 structured for pressing the push switches 32, 34, 36 and 38; an axis section 56 integrated with the top section 52; and an end axis section 58 which is a base part of the axis section 56.

The top section 52, which is the upper end of the control shaft 50, has a screw hole 60 at the center of the upper end, and the manipulation knob 6 having a circular screw hole 62 is fixed to the top section 52.

The rib section 54 is extended from the axis
section 56 to a circular hub 64, and the height of the circular hub 64 is lower than the upper case opening section 51 positioned at the point corresponding to the control shaft 50 in the upper case 4. Moreover, a diameter of the circular hub 64 is larger than a diameter of the upper case opening section 51.

[0031] The upper case opening section 51 is positioned at the center of the window section 7 formed on one end of the upper case 4. The form between the opening section 51 and the window section 7 is a bowl form recessed section 53. The axis section 56 protrudes out through the upper case opening section 51.

[0032] The edges of the circular hub 64 hangs down parallel to the axis section 56 only at the positions corresponding to the push switches 32, 34, 36 and 38, thereby joining to the U-shaped springs 66, 68, 70 and 72 at a position shorter than the end axis section 58.

[0033] As for the U-shaped springs 66, 68, 70 and 72, their edges are further extended to the same direction as the circular hub 64, so that the pressing sections 74, 76, 78 and 80 are protruded below the extended section. The pressing sections 74, 76, 78 and 80 are positioned, each of which corresponds to each of the push switches 32, 34, 36 and 38.

[0034] The pressing section 68 and each of the push switches 32, 34, 36 and 38 are positioned to allow a space of less than 1 mm apart from one another. The pressing sections 74, 76, 78, and 80 are of equal length in height. Furthermore, referring to FIG.5 illustrating the cross-section AA of FIG.1, a connecting section that sets and charges a toy vehicle is prepared next to the substrate 30. Electrodes 96 and 98 are respectively positioned and connected to an upper part and lower part of the substrate. Further, the electrodes 96 and 98 are connected to a power source section not illustrated via the power switch 10 prepared on the substrate. For example, if the chargeable electrodes are installed inside a toy vehicle, by contacting the installed chargeable electrodes to electrodes 96 and 98, a chargeable battery inside the toy vehicle is charged by the electrodes 96 and 98 to which power source voltages are supplied.

[0035] The lead axis 82, 84, 86 and 88 extend from the circular hub 64 parallel to the U-shaped springs 66, 68, 70 and 72. Length of each of the lead axis 82, 84, 86 and 88 is longer than the control shaft 50 but it should be set within the length that does not inhibit a tilt of the control shaft 50. This way, even if the control shaft 50 is naturally tilted to any one direction, since any one of the pressing sections 74, 76, 78, and 80 in the tilted direction is supported by each of the push switches 32, 34, 36 and 38, so that the control shaft 50 in the neutral position is configured to stand vertically from the substrate 30.

[0036] The end axis section 58 is integrated with the end axis section 58. The end axis section 58 is processed to have a spherical shape.

[0037] The control shaft 50 configured as above is loaded on a bearing supporter 90 which uprightly stands at the center of the inner base plane of the lower case 22. The bearing supporter 90 installs a bearing section 92 that is spherically recessed at the uppermost section. The height of the bearing supporter 90 is almost identical to the substrate 30 supported by the plurality of ribs 26 and 28, which is positioned so that the upper plane of the substrate 30 and the contact point of the end axis section 58 and the bearing section 92 are equal in height.

[0038] The operations of the radio control transmitter 2 with the above structure in accordance with the present invention will be described.

[0041] The lead axis 82, 84, 86 and 88 in 6 directions, and the center of each arc R is positioned to each apex of a hexagon, which is not illustrated.

[0042] Next, when the control shaft 50 is in the neutral state, that is, under the state of no manipulation, even if the control shaft 50 is tilted by its own weight, the neutral state is maintained still, and the pressing sections 74, 76, 78 and 80 are supported by the push switches 32, 34, 36 and 38 having the spring constant not becoming ON state by the weight of the control shaft 50.

[0043] Herewith, the lead axis 82, 84, 86 and 88 has a freedom of movement given by a slight looseness in the grooves 42, 44, 46 and 48, however, the movement is confined within the grooves 42, 44, 46 and 48, so that the control shaft 50 connected to the lead axis 82, 84, 86 and 88 is configured not to rotate.

[0044] Furthermore, when the control shaft 50 is released so as to cease the tilting of the control shaft 50
in the specific direction, the control shaft 50 returns to its upright position by the repelling forces of both springs in the push switches 32, 34, 36 and 38 and the U-shaped springs 66, 68, 70 and 72. Although the U-shaped spring come in contact with the push switch positioned opposite to the tilted direction, however, since the pressing force does not exceed the repelling forces of both springs installed in the push switches 32, 34, 36 and 38 and the U-shaped springs 66, 68, 70 and 72, such that under no circumstance the push switches 32, 34, 36, 38 positioned opposite to the tilted direction become ON.

As described above, a radio control transmitter that generates and transmits a control signal controlling a travelling direction of a toy vehicle comprises a supporter provided with a bearing section that is spherically recessed at the upper part; a substrate positioned inside the lower case and perpendicular to the supporter; and a plurality of switches which are fixed around a circumference of an elastic section that hangs down to an edge part of the toy vehicle; and a control shaft which maintains a plurality of pressing sections positioned on each of the switching units, comprising a spherical end axis section which is rotably fixed to the bearing section at the lower part of the control shaft. The radio control transmitter is not only simple in configuration but also controls a plurality of switches by using a single control shaft.

Moreover, each pressing section corresponds to the plurality of switches, and is held by the other end of an elastic section that hangs down to an edge part of a rib which surrounds the center of the control shaft, and each pressing body is positioned in a downward direction by preparing a pre-determined space between each pressing body and the top part of the switch. Now that the pressing section has a multiple functions, this contributes to the deletion of a number of structural components of the radio control transmitter. The rib installs a lead axis being inscribed to each elastic section and extending downwardly. This prevents the control shaft 50 from becoming uncontrollable by rotating.

Moreover, the transmission signal used in the above embodiment is the radio signal, however, signal using other electromagnetic waves such as conventional infrared ray is also applicable.

According to the present invention, in a radio control of a toy vehicle, by allowing users to manipulate a toy vehicle with their dominant hand, it becomes easier for both right-handed and left-handed users to manipulate a vehicle toy. Furthermore, a radio control transmitter is provided without involving a complex processing, which comprises a fewer number of components.

Claims

1. A radio control transmitter that generates and transmits a control signal controlling a travelling direction of a toy vehicle, comprising:

 a supporter provided with a bearing section which is spherically recessed at the upper part; a lower case wherein the supporter protrudes through an inner center base; an opening section of an upper case formed at the center wherein the supporter penetrates through; a substrate positioned inside the lower case and perpendicular to the supporter; and a plurality of switches which are fixed around a substrate opening section opened on the substrate, and which determine the travelling direction of the toy vehicle; and a control shaft which maintains a plurality of

 [0050] By transmitting the control signal multiplexed into very high frequency wave or an infrared ray, the control signal is capable of transmitting and receiving the transmission media without relying on the specific electromagnetic waves.

 [0051] The switch has a lighting section that flashes if the switch is serially connected to the lightning section and selected. Thus, the operationality of the switch in use is improved.

 [0052] Moreover, the present invention is not limited to the previously described embodiment, and various modification and improvements to attain the objective of the present invention should be included within the scope of the present invention. For example, in the present invention, 4 switches are positioned in point symmetry, however, 6, 8, or more multiple switches may be positioned for allowing even better control.

 [0053] Moreover, the transmission signal used in the above embodiment is the radio signal, however, signal using other electromagnetic waves such as conventional infrared ray is also applicable.

 [0054] According to the present invention, in a radio control of a toy vehicle, by allowing users to manipulate a toy vehicle with their dominant hand, it becomes easier for both right-handed and left-handed users to manipulate a vehicle toy. Furthermore, a radio control transmitter is provided without involving a complex processing, which comprises a fewer number of components.

pressing sections positioned on each of the switches, comprising a spherical end axis section which is rotably fixed to the bearing section at the lower part of the control shaft.

2. The radio control transmitter according to claim 1, wherein each pressing section corresponds to the plurality of switches, and is held by the other end of an elastic section that hangs down to an edge part of a rib which surrounds the center of the control shaft, and each pressing body is positioned in a downward direction by preparing a pre-determined space between each pressing body and the top part of the switch.

3. The radio control transmitter according to any one of claims 1 and 2 wherein the rib installs a lead axis being inscribed to each elastic section and extending downwardly.

4. The radio control transmitter according to any one of claims 1, 2 and 3 wherein the elastic section is a combination of the rib and an U-shaped spring.

5. The radio control transmitter according to any one of claims 1, 2, 3 and 4 wherein the opening section on the substrate comprises a circular section on the same axis as the control shaft, and grooves extending out from the control shaft towards the direction of the switches.

6. The radio control transmitter according to any one of claims 1, 2, 3, 4 and 5 wherein the switches are positioned on the substrate in line symmetry including the control shaft.

7. The radio control transmitter according to any one of claims 1, 2, 3, 4, 5 and 6 wherein the switches are positioned on the substrate in point symmetry with respect to the control shaft.

8. The radio control transmitter according to any one of claims 1, 2, 3, 4, 5, 6 and 7, wherein the control signal is transmitted at a very high frequency or by being multiplexed into an infrared ray.

9. The radio control transmitter according to any one of claims 1, 2, 3, 4, 5, 6, 7. 8 and wherein the switch has a lighting section that flashes if the switch is serially connected to the lightning section and selected.

10. The radio control transmitter according to any one of claims 1, 2, 3, 4, 5, 6, 7, 8 and 9 wherein the toy vehicle installs a battery as a built-in power source and a chargeable connector terminal which is connected to the battery, that comprises a chargeable connector terminal connected to the built-in power source of a radio receiver and connectable to the chargeable connector terminal installed inside the toy vehicle.

Amended claims under Art. 19.1 PCT

1. A radio control transmitter that generates and transmits a control signal controlling a travelling direction of a toy vehicle, comprising:

 a supporter provided with a bearing section which is spherically recessed at the upper part; a lower case wherein the supporter protrudes through an inner center base; an opening section of an upper case formed at the center wherein the supporter penetrates through; a substrate positioned inside the lower case and perpendicular to the supporter; a plurality of switches which are fixed around a substrate opening section opened on the substrate, and which determine the travelling direction of the toy vehicle; and a control shaft which maintains a plurality of pressing sections positioned on each of the switches, comprising a spherical end axis section which is rotably fixed to the bearing section at the lower part of the control shaft, the radio control transmitter further comprising:

 each pressing section which corresponds to the plurality of switches, and which is held by the other end of an elastic section that hangs down to an edge part of a rib which surrounds the center of the control shaft, and wherein the rib installs a lead axis being inscribed to each elastic section and extending downwardly.

2. The radio control transmitter according to claim 1, wherein the elastic section is a combination of the rib and an U-shaped spring.

3. The radio control transmitter according to claims 1 or 2, wherein the opening section on the substrate comprises a circular section on the same axis as the control shaft, and grooves extending out from the control shaft towards the direction of the switches.

4. The radio control transmitter according to claims 1 to 3, wherein the switches are positioned on the substrate in line symmetry including the control shaft.

5. The radio control transmitter according to claims 1 to 4, wherein the switches are positioned on the substrate in point symmetry with respect to the control shaft.
6. The radio control transmitter according to claims 1 to 5, wherein the control signal is transmitted at a very high frequency or by being multiplexed into an infrared ray.

7. The radio control transmitter according to claims 1 to 6, wherein the switch is serially connected to a lightning section flashing if the switch is selected.

8. The radio control transmitter according to claims 1 to 6, wherein the toy vehicle installs a battery as a built-in power source and a chargeable connector terminal which is connected to the battery, that comprises another chargeable connector terminal connected to a built-in power source of the toy vehicle and connectable to the chargeable connector terminal installed inside the toy vehicle.

Statement under Art. 19.1 PCT

According to the invention disclosed in Japanese Laid-Open Utility Model Application Publication No. 61-006235 which is considered to have a particular relevance to the present invention, "comprises a support boss; a lower case; an upper case; a wiring substrate; a sensing switch; and a stick section; wherein the sensing switch is positioned to allow a space in between its top section and the protrusion; wherein the substrate is a hemisphere continuous to the stick section; wherein the switches are arranged in point symmetry, wherein the wiring substrate mounts a pair of infrared diodes and a battery storage section at its front edge" is disclosed.

According to the invention disclosed in Japanese Laid-Open Patent Application Publication No. 2002-136773 which is considered to have a particular relevance to the present invention, "comprises a switch and a control lever; wherein the control lever 33 is located on the same axis as the pedestal 35, the right turn switch 36 and the left turn switch 37 are symmetrically arranged, and the battery storage section is prepared" is disclosed.

According to the invention disclosed in Japanese Laid-Open Patent Application Publication No. 2002-149256 which is considered to have a particular relevance to the present invention, a stick controller comprising "at least I and more contact section prepared to each axis; a spring section that contacts to said contact section is prepared, for rotating back each axis to the standard position by an elastic force of the spring section, said spring section and the case are formed as one, the elastic force is added to the contact section even if each axis is in the state of returning to the standard position" is disclosed.

According to the invention disclosed in Japanese Laid-Open Patent Application Publication No. 10-254567 which is considered to have a particular relevance to the present invention, "the guide grooves 14A and 14B are formed on the stopper boards 13A and 13B that respectively guide the control shaft 6" is disclosed.

Referring to Japanese Laid-Open Patent Application Publication No. 05-337254 which is considered to have a particular relevance to the present invention, "a switch having a light emitting section" is disclosed.

Referring to Japanese Examined Utility Model Application Publication No. 3024793 which is considered to have a particular relevance to the present invention, a configuration that "incorporates a charging circuit" is disclosed.

Therefore, to make the characteristics of the present invention more apparent, the following points of claims 2 and 3 have been added to the claim 1. The point of claim 2 which is "each pressing section which corresponds to the plurality of switches, and which is held by the other end of an elastic section which hangs down to an edge part of a rib which surrounds the center of the control shaft". The point of claim 3 which is "wherein the rib installs a lead axis being inscribed to each elastic section and extending downwardly."

Moreover, the claims 2 and 3 are deleted. Furthermore, the corresponding correction of the claim 4 is amended.
Fig. 3

Fig. 4
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl A63H30/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl A63H30/04

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where praticable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 61-6235 U (Sony Corp.), 14 January, 1986 (14.01.86), Full text; Figs. 1 to 3 (Family: none)</td>
<td>1-2, 4-10</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2002-136773 A (Fumiaki KAKUKAWA), 14 May, 2002 (14.05.02), Full text; Fig. 7 (Family: none)</td>
<td>1-2, 4-10</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2002-149256 A (Sensatek Kabushiki Kaisha), 24 May, 2002 (24.05.02), Full text; Figs. 1 to 2 (Family: none)</td>
<td>4</td>
</tr>
</tbody>
</table>

[X] Further documents are listed in the continuation of Box C. See parent family annex.

*- Special categories of cited documents:

 "A" document defining the general state of the art which is not considered to be of particular relevance

 "E" earlier document but published on or after the international filing date

 "L" document which may throw doubts on priority claim(s) or which is cited to establish thepublication date of another citation or other special relation (as specified)

 "O" document relating to an oral disclosure, use, exhibition or other means

 "P" document published prior to the international filing date but later than the priority date claimed

- Inter document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

 "*" document member of the same patent family

Date of the actual completion of the international search
20 February, 2003 (20.02.03)

Date of mailing of the international search report
11 March, 2003 (11.03.03)

Name and mailing address of the ISA/ Japanese Patent Office

Authorized officer

Facsimile No.

Form PCT/ISA/210 (second sheet) (July 1998)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 10-254567 A (Sakae Tsushin Kogyo Kabushiki Kaisha), 25 September, 1998 (25.09.98), Full text; Figs. 1, 6, 8 (Family: none)</td>
<td>5</td>
</tr>
<tr>
<td>Y</td>
<td>JP 5-337254 A (Konami Co., Ltd.), 21 December, 1993 (21.12.93), Full text; Figs. 1 to 5 (Family: none)</td>
<td>9</td>
</tr>
<tr>
<td>Y</td>
<td>JP 3024793 U (Kabushiki Kaisha Tomy), 13 March, 1996 (13.03.96), Page 6, line 19 to page 7, line 8; Figs. 1 to 2 (Family: none)</td>
<td>10</td>
</tr>
<tr>
<td>A</td>
<td>JP 62-21505 U (Sanwa Denki Kiki Kabushiki Kaisha), 09 February, 1987 (09.02.87), Page 2, lines 13 to 16; Fig. 1 (Family: none)</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>US 4614847 A (Yasuo SASAO), 30 September, 1986 (30.09.86), Column 3, lines 2 to 7, 28 to 32; Fig. 1 & JP 61-4326 U Page 6, line 17 to page 7, line 2; page 7, line 19 to page 8, line 3; Fig. 1</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>JP 2000-187555 A (Alps Electric Co., Ltd.), 04 July, 2000 (04.07.00), Column 3, line 47 to column 4, line 21; Fig. 6 (Family: none)</td>
<td>3</td>
</tr>
</tbody>
</table>