发明名称
具有弱线的研磨制品

摘要
本发明涉及一种经涂敷的研磨制品 (1)，其包括在一面具有研磨涂层 (5) 的背衬 (3)，在所述背衬的另一侧上的附接层 (7)，以及不穿透所述研磨涂层 (5) 的面的弱线 (9)。使用激光束可以形成弱线，所述弱线包括在附接层 (7) 中的透切线 (11) 和在背衬 (3) 中的穿孔 (13)，并且允许研磨制品 (1) 的一部分与另一部分分离。或者，所述研磨制品可以其初始形式使用。
1. 一种经涂敷的研磨制品，包括
 在一侧上具有研磨涂层的背衬，所述研磨涂层包括外表面；
 在所述背衬的另一侧上的附接层，所述附接层包括套环材料；
 其中在所述制品中形成有穿透所述附接层但不穿透所述研磨涂层的外表面的弱线，所述
 弱线允许所述研磨制品的一部分与另一部分分离。

2. 根据权利要求1所述的研磨制品，其中所述弱线包含位于所述背衬中的穿孔，所述
 穿孔不穿透所述研磨涂层的外表面。

3. 根据权利要求1所述的研磨制品，其中所述背衬包含选自纸、膜、泡沫、布以及它们
 的组合的材料。

4. 根据前述权利要求中任一项所述的研磨制品，其中所述研磨涂层包含粘附树脂基质
 中的磨粒，并且所述弱线不延伸进入所述树脂基质中。

5. 根据权利要求1至3中任一项所述的研磨制品，其中两个所述部分中的至少一个为
 另一研磨制品。

6. 根据权利要求1至3中任一项所述的研磨制品，所述制品呈矩形研磨片材的形式，并
 且设置所述弱线以允许将所述片材分离成较小的矩形片材。

7. 根据权利要求1至3中任一项所述的研磨制品，所述制品呈研磨盘的形式，并且设置
 所述弱线以允许移除所述研磨盘的全部从而留下替代形式的研磨盘。

8. 一种制造权利要求1至3中任一项所述的研磨制品的方法，包括将激光束自与所述
 研磨涂层相反的一侧引向所述背衬以在所述制品中形成弱线，所述弱线不穿透所述研磨涂
 层的外表面，所述弱线允许所述研磨制品的一部分与另一部分分离。

9. 根据权利要求8所述的方法，包括控制所述激光束从而在所述背衬中产生不穿透所
 述研磨涂层的外表面的穿孔的步骤。

10. 根据权利要求9所述的方法，其中在所述背衬中产生所述穿孔而不穿透所述研磨
 涂层。

11. 一种制造权利要求1所述的研磨制品的方法，其中使用自与所述研磨涂层相反的
 一侧引向所述背衬的激光束形成所述弱线，以切穿所述附接层，并且在所述背衬中产生不
 穿透所述研磨涂层的外表面的穿孔。

12. 根据权利要求8所述的方法，其中通过CO₂激光器产生所述激光束。

13. 根据权利要求8所述的方法，其中所述激光束还用于从经涂敷的研磨材料幅材来
 切割所述制品和/或在所述研磨制品中切割小孔。
具有弱线的研磨制品

[0001] 相关专利申请的交叉引用
[0002] 本申请要求于 2009 年 8 月 28 日提交的美国临时专利申请号 61/237947 的权益，该专利的公开内容全文以引用方式并入本文。

技术领域
[0003] 本发明涉及研磨制品，具体而言，涉及经涂敷的研磨制品，以及这样的制品的制备方法。

背景技术
[0004] 经涂敷的研磨制品包括在至少一侧上具有研磨涂层的背衬材料。研磨涂层通常包含位于树脂基质中的磨粒，并且可以包括一个或多个层，所述树脂基质起到将磨粒粘结至背衬材料的作用。
[0005] 经涂敷的研磨制品可以多种形式得到，包括片材、盘、和带材。一些经涂敷的研磨制品预期用于手持使用（包括在手持砂磨块上的用途），而另一些预期用于在动力砂磨工具上。从制造观点来看，可能难以达到制造工艺来以合理的价格供应最终使用者所需要的多种形状和尺寸的经涂敷的研磨制品。因此，一制造商家集中于仅仅制造最广泛使用形式的经涂敷的研磨制品，结果是其他产品难于获得和/或相对昂贵。
[0006] 着眼于简化向最终使用者供应经涂敷的研磨片材，已知供应可以自行切成任何所需长度的经涂敷的研磨片材的卷。在 AU 2004100059A(Cetram Pty Limited) 中已经提出，提供研磨纸的卷，所述研磨纸包括穿孔的横向线条以用于将所述纸撕成具有预定尺寸的较小部分。在经涂敷的磨具领域之外，从 US 5712210(Minnesota Mining and Manufacturing Company, Windisch 等) 可知，提供蓬松有弹性的非织造表面处理材料的幅材，所述幅材具有多个纵向间隔开且横向设置的穿孔，以允许所述幅材被分离成研磨表面处理材料的多个片。

发明内容
[0007] 本发明涉及提供经涂敷的研磨制品，该制品为最终使用者提供能够被制品使用的可供选择的形状，并因此适用于超过一种类型的研磨操作。
[0008] 本发明提供一种经涂敷的研磨制品，其包括在一侧上具有研磨涂层的背衬，其中在制品中形成弱线以允许该制品用于其预期目的，而且还允许该制品的一部分与另一部分分离。更具体而言，本发明提供一种经涂敷的研磨制品，其包括在一侧上具有研磨涂层的背衬，其中在制品中形成有不穿透研磨涂层的外表面的弱线，所述弱线允许该研磨制品的一部分与另一部分分离。
[0009] 根据本发明的研磨制品使得能够通过提供较大的研磨产品来满足对于各种研磨产品的需求，所述较大的研磨产品既可以被消费者原样使用，又可以被消费者分离成较小的产品来使用。较大的产品可以以较低的成本来生产，并导致使用较少的包装材料和较少
的库存物品，并且便于配送。此外，当与具有穿过整个产品厚度并因此穿透研磨涂层外表面的穿孔的经涂敷的研磨制品相比，根据本发明的研磨制品可以允许避免某些缺点。例如，穿透研磨涂层的外表面的穿孔能够通过产生可限制产品的使用寿命的折断点而影响涂层的研磨功能。如果它们限定沿着其撕开磨料的线，则它们还可以产生粗糙的边缘，这可能损害研磨涂层并同样限制产品的使用寿命。

[0010] 根据本发明的研磨制品的涂覆层可以包含于树脂基质中的磨粒。更具体而言，研磨涂层可以包含磨粒至少部分地嵌入其中的底胶树脂层;或者磨粒均匀分布在其中的树脂层;或者在树脂基质中含有磨粒的多个层状复合物的层。

[0011] 根据本发明的研磨制品的背衬，可以是多层材料，可以包括纸、膜、泡沫或布的层。

[0012] 根据本发明的研磨制品还可以在背衬远离研磨涂层的一侧上包含附接材料层，以用于将研磨制品附接于工具。附接层可以是粘合剂层，或者是钩环附接体系的一部分。在其中附接层为套环材料的一个实施例中，其可以是背衬的一体式部分或者其可以是通过粘合剂固定于背衬的单独的层。

[0013] 在研磨制品中的弱线可以包含背衬中的穿孔，所述穿孔不穿透研磨涂层的正面，尽管在一些情况下它们可能延伸进入研磨涂层中。背衬中的穿孔可以具有任何适合的形状，包括圆形，并且可以间隔开任何一个适当的距离，所述形状和间隔选择为使得研磨制品仍然适于其预期目的，但是可以通过使制品的一部分与另一部分沿着包含穿孔的弱线分离而在形状上改变。

[0014] 当研磨制品包含附接材料层时，所述附接材料可以沿着弱线而完全切穿。

[0015] 根据本发明的研磨制品可以包括磨料层，所述磨料层中形成多条允许将所述片分离成多个其他研磨制品的弱线。这些研磨制品中的至少一个可以包含至少一条所述弱线。例如，研磨制品可以有硬边研磨片材的形式，所述硬边研磨片材具有至少一条允许将所述片分离成较小的矩形片材的弱线。

[0016] 当/各条所述弱线使用自与研磨涂层相反的一侧引向背衬的激光束来形成。用来形成该/各条线的同一激光设备还可以用来切割材料幅材的经涂敷的研磨制品和/或切割研磨制品中的小孔，从而允许快速而有效地生产研磨制品。

[0017] 已知的是，使用激光器来标记或形成经涂敷的磨料中的切线（cut），尤其用于自材料片切割特定形状的制品。例如：

[0021] 使用激光器设备来制造根据本发明的研磨制品允许容易地从一种产品的生产切换至另一产品的生产，从而便于相对少量的任一产品的经济生产。
附图说明
[0022]根据本发明的研磨制品将仅以举例的方式结合附图进行描述，其中：
[0023]图1是来自根据本发明的研磨制品的研磨侧的平面图；
[0024]图2是来自图1的研磨制品的另一侧的平面图；
[0025]图3是在图1的箭头III的方向上，图1和2的研磨制品的中心部分的放大比例的图示侧视图；
[0026]图4是根据本发明的另一研磨制品的平面图，所述另一研磨制品可以通过采用与用来生产图1至3的制品的相同设备的工艺来制造，以及
[0027]图5A和B示出根据本发明的其他研磨制品。

具体实施方式
[0028]图1至3中所示的研磨制品1为矩形的经涂敷的研磨片材。制品1包括多个层，主要有（参照图3）背衬层3、在背衬层的一侧的研磨涂层5、和在背衬层的另一侧的附接层7。
[0029]背衬层3包含已知适用于经涂敷的研磨制品中的任何片材，并且可以是多层材料。适合的材料包括适当厚度的纸、膜、布和泡沫。
[0030]研磨涂层5包含在起到将粒子粘结到背衬层3的作用的任何适合树脂基质5B中的任何适合的磨粒5A。磨粒5A可以具有已知适用于经涂敷的研磨制品中的任何材料和尺寸。研磨涂层5的树脂基质5B可以包含磨粒至少部分地嵌入其中的常规底胶，和任选的常规复胶。常规上用于经涂敷的磨具中的其他层可以任选地施加在底胶或复胶上。或者，研磨涂层5的磨粒可以基本均匀地分布在该树脂基质中，这样的研磨涂层可以通过将磨粒和树脂的浆料施加于背衬层3上得以实现。作为另一替代方案，研磨涂层5可以包含位于树脂基质中的磨粒的多个成形复合物。这样的成形复合物的实例在US 5152917（Pieper 等人）中有述。
[0031]磨粒和树脂基质均针对研磨片材1的预期用途进行选择，这很好理解。
[0032]附接层7包含适于将研磨制品1附接于工具（如手持磨块或动力砂磨工具）的任何材料。这样的附接材料是众所周知的。如图示，层7为钩环附接体系的套环部分，但是其可以例如为压敏粘合剂层，或者互相啮合的附接体系的部分。在这种情况中，套环附接层7为通过粘合剂层7A层合至背衬层3的单独的层，但是或者其可以为背衬层的一部分式部分。
[0033]在所述范围内，研磨制品1为例如适于手磨使用以研磨表面的常规研磨片材。研磨片材可以直接持在手中或者其可以附接于任何合适类型的手持砂块。
[0034]为了提高研磨片材1的通用性，所述研磨片材1在附接层7的侧面上设有在其中点处的在整个片材上从片材的一侧边缘延伸至另一侧边缘的弱线9。在附接层7内，弱线9具有切线11的形式，所述切线11完全延伸穿过附接层，然而在背衬层3内，弱线9具有优选不穿透进入研磨涂层5的穿孔线13（即，在背衬层中间隔开的通孔的线）的形式。不管是否存在弱线9（将在下文中提供进一步细节），研磨片材1仍然适于上述预期的手持使用。另一方面，如果研磨片材沿着弱线9折叠180°，以使片材的两部分上的研磨涂层5在一起，则其可被整齐地分成两个较小的矩形片材，每一个片材也适于直接手持使用或者用在较小
的手持砂磨块上。
[0035] 研磨片材 1 因而有效地提供两种产品，即由所示的较大研磨片材 1 或者两个较小的研磨片材。制造商因此可以通过生产并供应仅一种产品而满足对于两种产品的需要。
[0036] 弱线 9 有效地利用随机或调整的激光能量束在研磨片材 1 中形成，其使得其在经涂敷的研磨材料内将仅穿透一定深度，该深度对于任何特定材料而言可以通过试验容易地加以确定，并如果需要的话，通过调节激光器的输出功率进行改变。
[0037] 使用激光束来形成弱线 9 的一种优选方法是确定所需的激光束操作参数：(i) 以切穿研磨片材 1 的附接层 7 而不穿透背衬层 3，以及 (ii) 以切穿附接层 7 并在背衬层 3 中产生穿孔而不穿透研磨涂层 5。操作参数例如为激光束的功率或者激光束的功率与其相对于研磨片材 1 的移动速度的组合。然后通过在附接层 7 处引导的激光片材 1 的宽度移动激光束，并且在各自适当的距离 x 和 y 上交替采用操作参数 (i) 和 (ii) 来产生弱线 9。结果将是通过片材 1 的附接层 7 的连续切线 11，和在背衬层 3 中长度为 x 的穿孔 13，穿孔 13 的间隔距离为 y。对于任何特定类型的研磨片材来说，允许将片材 1 分成如上所述的两部分所需的距离 x 和 y 可以容易地通过实验加以确定。或者，弱线 9 可以使用多个叠加的激光束同时或顺序产生。例如，附接层 7 中的连续切线 11 可以在激光束跨经片材 1 的宽度的第一移动过程中产生，而穿孔 13 在激光束跨经片材的随后移动过程中产生。
[0038] 在一些情况下，取决于研磨片材 1 的性质，可能发现必须使连续切线 11 和 / 或穿孔 13 在片材中穿透地更深，但不穿透研磨涂层 5 的正面，以允许将片材整齐地分成两部分。例如，连续切线 11 可以延伸进入或穿过将附接层 7 固定于背衬层 3 的粘合剂层，并且甚至可以部分延伸进入背衬层。同样，背衬层 3 中的穿孔 13 可以部分地延伸进入研磨涂层 5 中，但是应当小心以免确保它不穿透研磨涂层 5 的正面。一般来说，已经观察到较粗糙级别的研磨片材的切割更容易沿着弱线分离并且需要切线 11 和 / 或穿孔 13 较事先地延伸进入片材。
[0039] 如果研磨片材 1 中省略附接层 7，则对于弱线 9 而言仅由片材的背衬层 3 中的穿孔 13（如上所述，可能延伸进入研磨涂层 5 中而不穿透其正面）组成可能就足够了。
[0040] 用来进行上述工艺的激光器设备也可以用来切割经涂敷的研磨材料的幅材的多个研磨片材 1 和 / 或在研磨片材中切割一个或多个小孔，如图所示。所有的激光切割操作均可以在经涂敷的研磨材料的幅材相对于激光器设备的一次通过期间进行，从而允许快速而有效地生产研磨片材。举例来说，图 4 示出类似于图 1 的研磨片材，其中通过用来产生弱线 9 的激光器设备在片材中还切出了山形小孔 15。
[0041] 与需要使用精细构造的模头来产生特定产品的机械切割操作相比，激光器设备可以容易地从一种产品的制造切换成另一种产品的制造，从而允许经济地生产相对少量的任何产品。然而，尽管使用激光器设备有利，但不排除用机械切割设备来生产本发明的研磨制品。
[0042] 可以使用任何适合的激光器设备来进行上述工艺，包括例如已知的 CO2 激光器在内的。为了提供快速加工，应当针对加工中的材料优化设备运行的功率和 / 或速度。适合的激光器设备的一个实例以商品名称“SCX600”可得自 ROFIN-SINAR Technologies, Inc. (Plymouth, MI 48170, USA)，该设备提供约 0.25mm 直径的聚焦激光束。使用这种类型的设备，在以商品名称“Hookit™ 334U”可得自 3M Company (St. Paul, Minnesota, USA) (具有粘
附于纸的背衬层 3 的成环针织织物的附接层 7，和含有氧化铝磨粒的研磨涂层 5）的三种不同级别的研磨片材（P400、P180 和 P80）中产生弱线。激光束在整个片材宽度上以约 380cm/s 的速度移动，引导在附接层 7 处，其中交替使用较低功率脉冲达约 1.5mm 距离和较高功率脉冲达约 0.75mm 的距离。脉冲对于 P400 级别的片材而言分别设置为 27% 和 35% 的功率；对于 P180 级别的片材而言分别设置为 27% 和 46% 的功率；以及对于 P80 级别的片材而言分别设置为 25% 和 27% 的功率。研磨片材的尺寸为 40.64cm（16 英寸）乘以 7.0cm，在各个片材中产生的弱线使其能够被分成两个每个为 20.32cm（8 英寸）乘以 7.0cm 的片材。发现两种片材尺寸均适合用于手持和用在适当尺寸的手持砂磨块上。具体来说，较大的片材可以通过手来使用和 / 或用在砂磨块上而不会在弱线处损坏片材。

[0043] 应当理解，其他经涂敷的研磨制品也可以形成如上所述的弱线。例如，具有至少一条纵向延伸的弱线的合适形状的研磨片材可以通过已知的方式将片材的两个自由端连接在一起而成型为研磨带材。在这种情况下，调节设置的弱线允许选择带材的替代宽度。

[0044] 图 5A 和 5B 显示根据本发明的其他经涂敷的研磨制品。两种制品均呈适于附接于动力砂磨工具的研磨盘的形式。图 5A 的研磨盘 20 具有圆形的弱线 22。所述弱线 22 限定可被移除以在盘中提供中心孔的圆形区域。而图 5B 的研磨盘 24 具有限定周边缘的弱线 24。所述周边缘可被移除以形成具有较小直径的盘。作为另一替代方案，多个圆形的弱线可以限定能够被移除以在研磨盘中提供除中心孔的圆形区域。作为又一替代方案，经涂敷的研磨材料的幅材（能够以卷的形式来提供）可以包含多条允许将片材分成多个研磨制品的弱线。这些研磨制品中的至少一个可以自身包含至少一条弱线。在所有情况下，弱线将允许其中形成弱线的研磨制品用于其预期目的，但是也将允许研磨制品的一部分与另一部分分离。

[0045] 与穿透整个经涂敷的研磨材料的厚度的穿孔相比，如上所述的弱线 9 提供某些优点。穿透研磨涂层的面积的穿孔，如果它们存在于涂层的工作区域内，则可能产生裁片点，所述裁片点能够限制研磨产品的使用寿命。另一方面，如上所述的弱线 9 使得能够避免这种影响。此外，如果沿着常规穿孔（穿透材料的整个厚度）的线撕开研磨材料，则有很高的可能性会形成粗糙边缘，这能够损害研磨涂层 5 并同样限制产品的使用寿命。另一方面，如上所述的弱线 9 使得能够整齐地分开研磨材料。

[0046] 如上所述的具有弱线的研磨制品允许通过提供较大的研磨产品来满足消费者的需求，所述较大的研磨产品既可以被消费者原样使用，又可以分离成较小的产品来使用。较大的产品可以以较低的成本生产，并导致使用较少的包装材料和较少的库存物品，并且便于配送。

[0047] 已参照一个实施例及其可能的变型描述了本发明。对于本领域技术人员将明显的是，在不脱离本发明的范围的情况下，可以对所描述的实施例作出许多改变。
图 5B