CROSS REFERENCE TO PRIORITY APPLICATION

[54] CARDBOARD BOX AND METHOD OF MAKING
SAME

[52] U.S. Cl. .......................................................... 93/39, 93/1,
93/36, 93/41, 93/55.1, 93/58.2

[51] Int. Cl. .......................................................... B31b 1/62,
B31b 1/72, B31b 9/14

[50] Field of Search ............................................... 93/1 (G),
39, 39.1 (P), 55.1 (M), 55.1 (P), 58, 58.2 (DL),
94 (PX), 36 (DA), 41, 56

[56] References Cited

UNITED STATES PATENTS

1,850,164 3/1932 Andrews ........................................ 93/41
2,999,430 9/1961 Riley ........................................ 93/36DA
3,084,882 4/1963 Riley ........................................ 242/71.1
3,147,675 9/1964 Cherrin ........................................ 93/94PX
3,476,023 11/1969 Fuller ........................................ 93/94PX
3,690,423 10/1966 Batterly ....................................... 93/55.1M
4,25,876 re
1,041,285 10/1912 Holly ........................................ 93/39
1,158,211 10/1915 Holly ........................................ 93/39
1,920,810 8/1933 Schmiedel ...................................... 93/39
2,008,608 7/1935 Claff ........................................ 93/36.9

ABSTRACT: A dispensing box for a roll of light-sensitive
tial material wound on a core comprises an inner box having an
open top in which the roll of material is rotatably supported so
that it can be dispensed in incremental lengths by being pulled
across a guide and cutter assembly mounted on the rear edge
of the box. The open top of the inner box is covered by an
outer box having an open end slid down over its open top and
having a hinged cover, which when open, provides easy access
to the outer top of the inner box, and which when closed,
cooperates with the walls of the inner box to provide a light-
tight closure thereon. A novel method of making this box, or
any box having a hinged cover, is to form up two open-ended
boxes of complimentary shape from flat blanks of boxboard,
then telescope the open end of one box onto the open end of
the other and fasten them together near the closed end of the
inner box, score one wall of the outer box to provide a hinge
line thereacross, then cut through the other walls of the outer
box to form a continuous cut joining the two ends of said hinge
line. Preferably, the scored hinge line will be made in the flat
blank for the outer box before it is formed up and will have
emented in covering relation therewith a strip of suitable flexi-
ble material to act as a hinge for the cover.

[72] Inventors Raymond J. Thomas;
William G. McDonald; Walter B. Dunning,
Rochester, N.Y.


[45] Patented June 28, 1971

[73] Assignee Eastman Kodak Company
Rochester, N.Y.

[86] Primary Examiner—Wayne A. Morse, Jr.
Attorneys—Walter O. Hodsdon, Paul R. Holmes and Karl T.
Naramore

3,587,412
CARDBOARD BOX AND METHOD OF MAKING SAME

The present invention relates to cardboard boxes having hinged covers and their manufacture, and particularly to a box for dispensing a roll of light-sensitive material and its method of manufacture.

Certain photographic operations require the use of different lengths of light-sensitive film or paper in different standard widths up to 52 inches. It is customary to supply the different widths of such products in long rolls from which the user unrolls and cuts off different incremental lengths as desired for the job at hand. For the lack of better storage and dispensing facilities the purchaser generally uses the box in which a roll of material is shipped to him for storing and dispensing the material after he receives it. Because these rolls are quite heavy, especially in the wider widths and when the material is film, conventional shipping boxes for rolls of this material are not entirely satisfactory for this dispensing use for one or more of the following reasons: they do not provide an easy access and a reclosable box which is completely light-tight after it has once been opened; they do not suspend the rolls so that a given length of material can be readily pulled therewith as desired and so as to eliminate abrasion and pressure marking of the product due to handling; no means is provided for severing given incremental lengths of material from the roll, etc.

One object of the present invention is to provide an easy access box having a light tight hinged cover allowing desired lengths of material to be readily pulled from a roll, which is rotatably mounted within the box, and across a cutting assembly for severing a given incremental length of material from the roll.

Another object is to provide a novel method of making the above-mentioned box, or any box having a hinged cover, from boxboard or like material.

The novel features that we consider characteristic of our invention are set forth with particularity in the appended claims. The invention itself, however, both as to its organization and its mode of operation, together with additional objects and advantages thereof, will be best understood from the following description when read in connection with the accompanying drawings in which:

FIG. 1 is a front elevational, exploded view showing a box constructed in accordance with the present invention with the cover open and showing the film-cutting means and roll of material 7 mounted in said box separated therefrom in such a way as to indicate how they fit onto and into, respectively, said box;

FIG. 2 is a sectional view taken substantially on line 2-2 of FIG. 1, but showing the cutting means in its assembled position on the box and showing the roll of product in the box in phantom for purposes of clarity;

FIG. 3 is a plan view of the blank of boxboard from which the open-top inner box member of the complete box is formed up;

FIG. 4 is a plan view of the blank boxboard from which the cover is formed up;

FIG. 5 is a plan view of the blank of boxboard from which the band around the bottom of the box is made;

FIG. 6 is an elevational view of the light lock for the cover;

FIG. 7 is an end view of the light lock shown in FIG. 6;

FIG. 8 is an exploded front elevational view showing the shape of the individual components of the box made up from the blanks shown in FIGS. 3-5 and indicating how they are to be assembled;

FIG. 9 is an exploded end view corresponding to FIG. 8;

FIG. 10 is a plan view of a blank of boxboard from which the hinged cover for a box can be made in a novel manner according to the present invention; and

FIG. 11 is a perspective view of an open-bottom box formed up from the blank shown in FIG. 10.

In general, the present box is manufactured from heavy boxboard and comprises an inner box having an open top and to the rear wall of which a cover is hinged so as to drop below the upper edge of the rear wall of the box when in open position.

Two separate pieces of boxboard are attached to the inside of the front of the cover to mate with the inner side of the front wall of the box when the cover is closed for the purpose of providing a lock. The roll of film or paper wound on an open ended core is suspended in the box on a pair of core plugs made of a suitable plastic and having a central hub and four flat side surfaces to support the roll. One core plug is mounted on each end of the roll by having its hub extending into the open end of the roll core and the assembled core plugs and roll are dropped into the box. The flat sides of the core plugs engage the walls of the box to keep the plugs from rotating so that the film is dispensed by the roll rotating on the hubs of these core plugs.

For cutting given incremental lengths of film from the roll the upper back edge of the box is cut down and an extruded plastic cutting guide of the same length as the interior length dimension of the box is placed over the cut-down edge and held in place by a gripping action designed into the extrusion. A cutting knife consisting of an injection molded plastic body with an embedded razor blade slides back and forth along the cutting guide. The knife is restrained to slide in the cutting guide and cannot be removed without first removing the cutting guide from the rear wall of the box. The roll film is dispensed across the cutting guide and the knife is run across the film width, cutting the film in whatever incremental length the customer desires.

If a moisture barrier is needed for the roll of film as originally shipped, it can be provided by a laminate of aluminum foil, clear polypropylene and a thin, heat-sealable coating on the foil side made up in the form of a sleeve. During packaging, the sleeve is pulled over the roll, the ends of the sleeve are folded into the roll core, and the core plugs are inserted to hold the sleeve material in intimate contact with the interior of the roll core. The plumbing action of the core plugs completes the moisture barrier. Before use the sleeve is removed and the core plugs are reinserted into the core ends, or the sleeve may be provided with a suitable rip strip to allow it to be removed without having to lift the roll from the box.

Referring now to the drawings, the complete box 10, constructed in accordance with the present invention, comprises an inner open-top box member 11 having double thickness end walls 12, and single thickness, front and back bottom walls 13, 14 and 15, respectively. The top edge of the backwall 15 is cut down below the top edge of the box to receive a cutting assembly 16. This cutting assembly comprises an extruded plastic cutting guide 17 of the same length as the interior length dimension between the end walls 12 of the inner box member 11. This cutting guide 17 includes two downwardly extending arms 18 and 19 which are spaced apart to slip down onto the cut-down top edge of the backwall 14 of the inner box member 11 and, by reason of the manner that they are extruded, they are adapted to grip the opposite faces of the backwall to firmly hold the cutting guide on the top edge of said wall when it is pushed down upon it. Extending forwardly from the arm 18 and running the full length of the cutting guide 17, there is a slotted box-shaped track 20 which is open at both ends. Slidably mounted in the track 20 is a knife assembly comprising a plastic part forming on an enlarged end 21 slidable confined in the track 20, a narrow neck portion 22 extending upwardly through the slot in the track and terminating in a knob 23 which can be manually grasped to slide the knife assembly along the track. Embedded in the narrow neck portion 22 is a razor blade 24 which extends vertically or at a slight angle to the top of the cutting guide 17. Preferably, the razor blade extends from only one wall of the knife assembly so that it will cut only when the knife assembly is moved in only one direction, to the right looking at FIG. 1. The knife assembly is slid into one of the open ends of the track while the cutting guide is removed from the backwall of the inner box member. After the cutting guide is assembled onto the top of the backwall of the inner box member 11, the knife assembly is restrained by the end walls 12 from becoming disengaged from the track. To allow ready access to the
3,587,412

knob 23 when it is at either end of the track 20, the rear corners of the end walls 12 are notched out as indicated at 25. The cover 28, which is wound on an open-ended core 29, is rotatably suspended within the inner box member 11 by having a core plug 30 inserted into each end of the roll core before it is dropped into the inner box, see FIG. 1. These core plugs 30, which may be made of plastic, have a hub portion 31 which extends into the open end of the roll core and a flange portion 32 having flat sides. When the roll of film with the core plugs inserted into the ends thereof are dropped into the box, see FIG. 2, one or more of the flat sides in the core plug flanges engage one or more of the walls of the inner box 11 to prevent the core plugs from rotating within the box. Consequently, when the film is to be dispensed from the box, the free end of the same is grasped and pulled rearwardly of the box and across the top of the cutting guide 17, the roll of film rotating on the hubs of the core plugs at this time. When the desired length of film is extended across the cutting guide 17, as indicated by broken lines in FIG. 2, then the knob 23 of the knife assembly is grasped and the knife blade 24 is slid across the width of the film to sever the desired length of film from the roll.

The inner box member 11 is formed up from a flat, scored blank of heavy boxboard of the shape shown in FIG. 3. The panel 15 bounded by double score lines 35 and single score lines 36 and 37 is the bottom wall. The panel 14 bounded on two sides by double score lines 38 and the single score line 37 is the backwall. The panel 13 bounded by double score lines 39 and the single score line 36 is the front wall. The double end walls 12 of the inner box are formed by end flaps 12', 12", and 12''' being folded up into over-lapping relation as indicated clearly in FIGS. 8 and 9. This inner box is formed up by first bending up the flaps 12' and 12" along the double score lines 38 and 39, respectively. At this time the free straight edges 40 of the flaps 12' and 12" will be brought into butting relation, see FIG. 9, and then the flaps 12''' are bent up along the double score lines 38 in over-lapping relation with the flaps 12' and 12". The inner box 11 is held in this formed-up condition by stitching the flaps 12''' to the butting flaps 12' and 12" as indicated at 41 in FIG. 9.

Hinged to the rear wall of the inner box member 11 is a cover 45 including a top wall 46, a front wall 47, a backwall 48, and two end walls 49. This cover is formed up from a flat, scored blank of heavy boxboard of the shape shown in FIGS. 4, 5. When the walls or panels 47, 48 and 49 are bent up along single score lines 50 to a perpendicular relation relative to the top wall 46, the cover is maintained in a formed-up condition by joining the butting edges of the walls 47, 48 and 49 in the conventional manner by corner stays 51 as indicated in FIGS. 8 and 9. The lower edge of the end walls of the cover are cut at an angle to the front and back walls as shown to give easy access to the material in the box when the cover is opened. So that the cover will close, the front corners of the end walls 12 of the inner box 11 are cut off at an angle as shown at 52.

So that the outside of the box will have a flush surface when the cover is closed, a band 55 of heavy boxboard of the same gauge as that from which the cover is made is wrapped around the bottom of the inner box. This band 55 is formed up from a flat sheet of boxboard which is in its blanked out and scored condition appears as shown in FIG. 5. The band 55 is scored from top to bottom at lines 56, 57 and 58. When the band is folded along these score lines and the free ends are corner stayed together in the conventional manner as indicated at 59 in FIGS. 8 and 9, a rectangular band is formed which can be slipped up onto the bottom of the box member 11 until its bottom edge is flush with the bottom 16 of the box member 11, see FIG. 2. This band will be cemented, or otherwise attached, to the walls of the box member 11 to keep it in this position thereon.

In order to obtain a satisfactory light lock between the front wall 47 of the cover and the front wall 13 of the inner box 11 when the cover is closed, the front wall of the cover is provided with a light lock 60. As most clearly shown in FIG. 7, this light lock comprises two strips of boxboard 61 and 62 adhered in face-to-face relation in the manner shown. These two strips are each substantially the same length as the inside length dimension of the front wall 47. Strip 61 is slightly wider than strip 62 so that it overlaps the edge of strip 62. The two strips 61 and 62 can be made of the same or different gauge boxboard, but it is imperative that the narrower strip 62 be of a gauge equal to, or greater than, the gauge of boxboard from which the inner box is made. The light lock 60 is fixed to the inside of the front wall of the cover by cementing strip 62 in face-to-face contact with the inside of the front wall of the cover and with the flush edges of strips 61 and 62 butting the inside surface of the top wall 46 as shown in FIG. 9. Inasmuch as the gauge of strip 62 is equal to or greater than the board from which the box member 11 is made, when the cover is closed, the edge of strip 61 extending beyond the edge of strip 62 and spaced from the front wall of the cover will overhang the inside surface of the front wall 13 of the inner box member. Since the inside of the front wall 47 of the cover engages the outside surface 13 of the front wall of the inner box member, and the edge of strip 61 engages the inside surface of the front wall 13 when the cover is closed, a tortuous path is provided between the front wall of the box and the cover through which rays of light cannot pass. As shown in FIG. 6, the corners of the light lock 60 are cut away as indicated at 67 to accommodate the thickness of the double end walls 12 of the inner box member in order to allow the cover to fully close.

The manner of assembling this box will now be described with specific reference to FIGS. 8 and 9. After the inner box 11, the cover 39 and the band 55 are individually formed up in the manner described above, they will appear as shown in FIGS. 8 and 9 which also depict the relation in which they go together. First a narrow stripe of suitable adhesive is applied to one or more of the upright walls of the inner box member 11 adjacent the bottom wall thereof as indicated at 70. The formed-up rectangular band 55 is then telescoped up onto the bottom of the inner box member 11 until the bottom edge thereof is flush with the bottom wall of the inner box member, see FIG. 2. The cover 39 is then telescoped down over the open top of the inner box member 11 until its lower edge butts with the upper edge of band 55. Then a strip of flexible material 71, e.g., Cambic, is adhered to the backwall 48 of the cover 39 and the backwall 55 is then covered with the line of separation between the two to form a hinge for the cover. While in FIG. 9 this hinge strip 71 is shown as being attached to the backwall of the cover 39 before the parts are assembled, this has been done primarily to show where this hinge member will ultimately appear in relation to the cover rather than indicating the order in which the parts are assembled. It is obvious that this hinge strip 71 could, and preferably would, be applied to the backwall of the cover and the backwall of the band after these two parts are telescoped onto the inner box member 11 and into butting relation.

Referring now to FIGS. 10 and 11, we will describe another and a preferred method 11, making the present box which is cheaper and easier to perform than that described since it eliminates at least one part and the operations necessary to forming that part and assembling it in combination with the other parts. It should also be pointed out that while this method is particularly applicable to the production of a dispensing box of the type described, it is not limited to the production of such a box, but finds utility in the production of all types of box having a hinge. Instead of forming the cover 39 and the band 55 as separate components and assembling them separately onto the outer side of the inner box member 11 in the manner described above, these two components are replaced by a single open-bottom box 75 which is formed up from a single blank 76 of heavy boxboard of the shape shown in FIG. 10. The panel 46' of this blank defined by score lines 50' constitutes the top of box 75. Panels 47', 48' and 49' are folded down along score lines 50' at right angles to the top panel 46' and are held in this condi-
tion by having their abutting edges joined by a conventional corner staying operation. It will be noticed that the depths of the sidewalls 49', the front wall 47', and the backwall 48' are equal to each other and equal to the combined depths of the cover 39 and band 55 of the embodiment shown in FIGS. 1-9. In other words, when the box 75 is telescoped down onto the open end of inner box 11 until the edges of the open bottom of the box 75 are flush with the bottom of the box 11, a completely closed box is formed which looks like the completed box of the embodiment shown in FIG. 2 except that it will have no hinge cover as yet.

To form a hinged cover like the cover 39, the panel 48' of the blank 76 is perforated along a line 77 spaced from, and substantially parallel to, the top wall 46'. This forms a frangible hinge line across the backwall which divides this wall into two sections corresponding to the backwall 48 of the cover 39 and the backwall of the band 55 of the embodiment shown in FIG. 2. Since the frangible hinge line 77 will break the first time the cover is bent along it, a strip of frangible hinge material 71', e.g., cambric, is adhered to the panel 48' in superposed relation to this line. It will be seen that the frangible hinge line 77 is provided merely to make it possible to blank the box 75 from a single sheet of boxboard and handle it as a single piece while it is being formed up. While the blank 76 is in its flat condition the light lock 60 can be adhered to the front wall panel 47 in the position indicated.

After the bottomless box member 75 is formed up and a strip 71 of adhesive is applied around the walls of the inner box 11 adjacent the bottom thereof, see FIG. 1, the box member 75 is telescoped down onto the open end of the inner box 11 until the edge of the open bottom of box 75 is flush with the bottom 15 of the inner box 11. When the box members 75 and 11 are thus assembled, the bottom wall 15 of the inner box member 11 forms a bottom for the box member 75 so that in effect there is provided a completely enclosed box having no access to its interior. Now the sidewalls 49' are cut through along diagonal lines 80 extending from opposite ends of the frangible hinge line 77 in the backwall 48' to the front wall and then the front wall 47' is cut through along a line 81 substantially parallel to the top edge of box 75 and joining the two diagonal lines 80. This separates the sidewalls and the front wall of the box 75 along a continuous line joining opposite ends of the hinge line 77 and provides a hinged, or flip-flop, cover for the box like the cover 39 of the embodiment shown in FIGS. 1-9.

The cuts made through the sidewalls and front wall along lines 80 and 81 can be made by hand using the equivalent of a miter box into which the assembled boxes 75 and 11 are placed to control the direction and depth of the cuts made through the entire side and front walls of the box 75 so that they will join and form a continuous line and will not cut through the side and front walls of the inner box member 11. On the other hand, the assembled boxes 75 and 11 could be placed in an especially designed jig, not shown, having three separate power operated knives which would make these three cuts in sequence simultaneously, upon a signal from an operator. The roll of web material 30 can be placed within the inner box before or after the box 75 is assembled onto the box 11 and cut to form the hinged cover. After the box is completely formed and loaded, the hinged cover may be held closed during shipment by a strip of adhesive tape, not shown, placed over the lines of separation 80 and 81 between the hinged cover and the bottom portion of the box. It goes without saying that the outside surfaces of the box 75 and the hinge strip 71 or 71' will preferably be covered with a layer of paper, not shown, which will cover the corner stays, the hinge strip, etc., to give the box the desired finished look.

It will be appreciated that making the box shown in FIGS. 1 and 2 in this last-mentioned manner, rather than in the manner shown and described in connection with FIGS. 3-9, eliminates the need for blanking out, storing, forming up and assembling one component, namely band 55. This not only simplifies and reduces the cost of the manufacture of such a box, but it eliminates the problems which arise in making the mating edges of the top 39 and band 55 meet properly when the parts are assembled as separate components on the inner box member 11.

While we have specifically described and illustrated this last-mentioned method of making a box having a hinged cover in connection with a particular form of dispensing box for web material, it is pointed out that this method would be applicable to the fabrication of any type of boxboard box having a hinged cover. For example, a simple, single-walled box having a hinged cover could be made starting with a blank of boxboard similar to that shown at 76 in FIG. 10 and which forms up into a bottomless box of the type shown in FIG. 11. The dimensions of this box can be altered as desired and the light lock 60 could be omitted from the front wall 47'. Now if a shallow tray formed up from a blank of boxboard in the conventional manner is slipped into and cemented to the inside of the sidewalls of the box, a bottom will be formed in the box and a completely enclosed parallelepiped or cube will be formed. Then by cutting through the sidewalls 49' and the front wall 48' in a continuous line from one end of hinge line 77 to the other end thereof, a cover will be formed on the box which will hinge along hinge 77. The cuts through the sidewalls 49' need not be made on a diagonal as shown above, but may be made parallel to the top and bottom of the box as is generally the case with hinge-top boxes. In making conventional single-walled boxes in this way, the cover will generally be made much more shallow than that shown in the particular dispensing box disclosed so that the box portion proper will be substantially larger than the cover and will possess sufficient rigidity to retain its shape while adequately supporting the cover portion so as to allow it to move to and from an open position relative thereto.

We claim:

1. The method of forming a lightight box with a hinged cover the sidewalls of which box and cover are flush when the cover is closed comprising the steps of:
   a. blanking out and scoring a sheet of flat paperboard to have a bottom wall, two end walls and a front and backwalls;
   b. erecting the end, front and backwalls of said blank relative to said bottom wall and connecting said end walls to said back and front walls to form a first box having an open top;
   c. blanking out and scoring a second sheet of flat paperboard to have a top wall, two end walls, a front wall and a backwall, said backwall scored deeply to provide a frangible hinge line extending parallel to and spaced intermediate of the top and bottom edges of said wall;
   d. adhering a strip o-f flexible material to the backwall in superposed relation with said hinge line to form a hinge;
   e. erecting the end, front and backwalls of said last-mentioned blank relative to said top wall along said score lines and connecting the end walls to said front and backwalls to form a second box having an open bottom end having inside dimensions such that it will telescope onto said first box;
   f. thereafter telescoping said two boxes together so that the open end of said first box lies within said second box and the bottom wall of said first box closes the open bottom of said second box and forms a bottom wall therefor;
   g. then attaching the two box members together adjacent the bottom of said first box to form a closed composite box having six sides; and
   h. cutting through the two end walls and front wall of said second box in a continuous line extending from one end of the hinge line to the other end thereof at intervals equal to the top and bottom walls to provide a hinged cover for said composite box.

2. The method of forming a lightight box having a hinged cover comprising the steps of:
   a. forming a self-sustaining box member having one open wall;
b. forming a second self-sustaining box member having one open wall and which box member is complimentary in shape with said first box member and has inside dimensions such that it will telescope snugly down over the inner box;

c. weakening one wall of said second box member along a line extending the full length of said wall and spaced from and parallel to the closed end of the second box member to provide a hinge line;

d. thereafter telescoping the open wall of said second box member to form a six-sided composite box onto the open wall of said first box member;

e. cementing the two boxes together at a region adjacent the open wall of said second box member; and

f. cutting through the walls of said second box member other than that provided with the hinge line in a continuous line extending from one end of said hinge line to the other end thereof and at a point above the region where the two box members are cemented together to provide a hinged cover for the composite box.

3. The method of forming a box having a hinged cover as defined in claim 2, and including the step of attaching a flexible hinge member to said one wall of said second box member in superposed relation with said hinge line.

4. The method of forming a box with a hinged cover for containing and dispensing discreet lengths of a roll of web material wound on a hollow core and comprising the steps of:

   a. blanking out and scoring a sheet of flat paperboard to have a bottom wall, two end walls of equal height and front and backwalls of less height than said end walls;

   b. forming up said blank along said score lines to form a first box having an open top and front and backwalls of less height than said end walls;

   c. blanking out and scoring a second sheet of flat paperboard to have a top wall, two end walls, a front wall and a backwall of substantially the same height, said backwall scored deeply to provide a frangible hinge line extending parallel to and spaced intermediate of the top and bottom edges of said wall;

   d. adhering a strip of flexible material to the backwall in superposed relation to said hinge line to form a hinge;

   e. forming up said last-mentioned blank along said score lines to form a second box having an open bottom end whose inside dimensions are such that it will telescope onto said first box;

   f. affixing an elongated cutter guide having a cutter slidable lengthwise thereof to the top edge of the backwall of said first box across which a length of web unwound from the roll may be drawn and then cut in discreet lengths;

   g. providing two core plugs, each one adapted to be removably located within said first box adjacent one end wall thereof and adapted to extend into the open ends of the core of the roll of material to rotatably support the roll within said box, each of said core plugs having at least one straight edge engaging a wall of said first box to prevent rotation of the plugs within the box;

   h. telescoping the open bottom of said second box onto the open top of said second box until the top wall of said second box abuts the top edge of the end walls of said first box;

   i. adhering at least one wall of said second box adjacent the open bottom thereof to a corresponding wall of the first box; and

   j. cutting through the end walls of said second box along substantially parallel lines from the hinge line in the backwall containing the same to the front wall and along the full length of the front wall at a point above that where one wall of said second box is adhered to the corresponding wall of said first box to form a hinged cover for the open top of said first box.