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cludes acquiring, for each of a plurality of
individuals, a geometric model and estim-
ated blood flow characteristics of at least
part of the individual's vascular system; ex-
ecuting a machine learning algorithm on the
geometric model and estimated blood flow
characteristics for each of the plurality of in-
dividuals; identifying, using the machine
learning algorithm, features predictive of
blood flow characteristics corresponding to
a plurality of points in the geometric mod-
els; acquiring, for a patient, a geometric
model of at least part of the patient's vascu-
lar system; and using the identified features
to produce estimates of the patient's blood
flow characteristic for each of a plurality of
points in the patient's geometric model.
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SYSTEMS AND METHODS FOR ESTIMATING BLOOD FLOW
CHARACTERISTICS FROM VESSEL GEOMETRY AND PHYSIOLOGY

RELATED APPLICATION

[001] This application claims priority to U.S. Patent Application No.
13/895,893, filed May 16, 2013, which claims the benefit of priority under 35 U.S.C. §
119 to U.S. Provisional Application No. 61/700,213 filed September 12, 2012, the
entire disclosures of which are hereby incorporated by reference in their entirety.

FIELD OF THE INVENTION

[002] Various embodiments of the present disclosure relate generally to
medical imaging and related methods. More specifically, particular embodiments of
the present disclosure relate to systems and methods for estimating patient-specific

blood flow characteristics from vessel geometry and physiology.

BACKGROUND

[003] A functional assessment of arterial capacity is important for treatment
planning to address patient needs. Recent studies have demonstrated that
hemodynamic characteristics, such as Fractional Flow Reserve (FFR), are important
indicators to determine the optimal treatment for a patient with arterial disease.
Conventional assessments of these hemodynamic characteristics use invasive
catheterizations to directly measure blood flow characteristics, such as pressure and
flow velocity. However, despite the important clinical information that is gathered,
these invasive measurement techniques present severe risks to the patient and
significant costs to the healthcare system.

[004] To address the risks and costs associated with invasive measurement,
a new generation of noninvasive tests have been developed to assess blood flow

characteristics. These noninvasive tests use patient imaging (such as computed
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tomography (CT)) to determine a patient-specific geometric model of the blood
vessels and this model is used computationally to simulate the blood flow using
computational fluid dynamics (CFD) with appropriate physiological boundary
conditions and parameters. Examples of inputs to these patient-specific boundary
conditions include the patient’s blood pressure, blood viscosity and the expected
demand of blood from the supplied tissue (derived from scaling laws and a mass
estimation of the supplied tissue from the patient imaging). Although these
simulation-based estimations of blood flow characteristics have demonstrated a level
of fidelity comparable to direct (invasive) measurements of the same quantity of
interest, physical simulations demand a substantial computational burden that can
make these virtual, noninvasive tests difficult to execute in a real-time clinical
environment. Consequently, the present disclosure describes new approaches for
performing rapid, noninvasive estimations of blood flow characteristics that are

computationally inexpensive.

SUMMARY

[005] Systems and methods are disclosed for deriving a patient-specific
geometric model of a patient’s blood vessels, and combining this geometry with the
patient-specific physiological information and boundary conditions. Combined, these
data may be used to estimate the patient’s blood flow characteristics and predict
clinically relevant quantities of interest (e.g., FFR). The presently disclosed systems
and methods offer advantages over physics-based simulation of blood flow to
compute the quantity of interest, such as by instead using machine learning to
predict the results of a physics-based simulation. In one embodiment, disclosed
systems and methods involve two phases: first, a training phase in which a machine

learning system is trained to predict one or more blood flow characteristics; and
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second, a production phase in which the machine learning system is used to
produce one or more blood flow characteristics and clinically relevant quantities of
interest. In the case of predicting multiple blood flow characteristics, this machine
learning system can be applied for each blood flow characteristic and quantity of
interest.

[006] According to one embodiment, a method is disclosed for estimating
patient-specific blood flow characteristics. The method includes acquiring, for each
of a plurality of individuals, a geometric model and estimated blood flow
characteristics of at least part of the individual's vascular system; executing a
machine learning algorithm on the geometric model and estimated blood flow
characteristics for each of the plurality of individuals; identifying, using the machine
learning algorithm, features predictive of blood flow characteristics corresponding to
a plurality of points in the geometric models; acquiring, for a patient, a geometric
model of at least part of the patient’s vascular system; and using the identified
features to produce estimates of the patient’s blood flow characteristic for each of a
plurality of points in the patient's geometric model.

[007] According to another embodiment, a system is disclosed for estimating
patient-specific blood flow characteristics. The system includes a data storage
device storing instructions for estimating patient-specific blood flow characteristics;
and a processor configured to execute the instructions to perform a method including
the steps of: acquiring, for each of a plurality of individuals, a geometric model and
estimated blood flow characteristics of at least part of the individual's vascular
system; executing a machine learning algorithm on the geometric model and
estimated blood flow characteristics for each of the plurality of individuals; identifying,

using the machine learning algorithm, features predictive of blood flow
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characteristics corresponding to a plurality of points in the geometric models;
acquiring, for a patient, a geometric model of at least part of the patient’s vascular
system; and using the identified features to produce estimates of the patient’s blood
flow characteristic for each of a plurality of points in the patient’'s geometric model.

[008] Additional objects and advantages of the disclosed embodiments will
be set forth in part in the description that follows, and in part will be apparent from
the description, or may be learned by practice of the disclosed embodiments. The
objects and advantages of the disclosed embodiments will be realized and attained
by means of the elements and combinations particularly pointed out in the appended
claims.

[009] Itis to be understood that both the foregoing general description and
the following detailed description are exemplary and explanatory only and are not

restrictive of the disclosed embodiments, as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

[010] The accompanying drawings, which are incorporated in and constitute
a part of this specification, illustrate various exemplary embodiments and together
with the description, serve to explain the principles of the disclosed embodiments.

[011] FIG. 1 is a block diagram of an exemplary system and network for
estimating patient-specific blood flow characteristics from vessel geometry and
physiological information, according to an exemplary embodiment of the present
disclosure.

[012] FIG. 2 is a block diagram of an exemplary method for estimating
patient-specific blood flow characteristics from vessel geometry and physiological

information, according to an exemplary embodiment of the present disclosure.
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DESCRIPTION OF THE EMBODIMENTS

[013] Reference will now be made in detail to the exemplary embodiments of
the disclosure, examples of which are illustrated in the accompanying drawings.
Wherever possible, the same reference numbers will be used throughout the
drawings to refer to the same or like parts.

[014] The present disclosure describes certain principles and embodiments
for providing advantages over physics-based simulation of blood flow to compute
patient-specific blood flow characteristics and clinically relevant quantities of interest.
Namely, the presently disclosed systems and methods may incorporate machine
learning techniques to predict the results of a physics-based simulation. For
example, the present disclosure describes an exemplary, less processing-intensive
technique, which may involve modeling the fractional flow reserve (FFR) as a
function of a patient’s vascular cross-sectional area, diseased length, and boundary
conditions. The cross-sectional area may be calculated based on lumen segment
and plaque segment, among other things. The diseased length may be calculated
based on plaque segment and stenosis location, among other things. The boundary
conditions may reflect patient-specific physiology, such as coronary flow (estimated
from myocardial mass), outlet area, and hyperemic assumptions, to reflect that
different patients have different geometry and physiologic responses.

[015] In one embodiment, fractional flow reserve may be modeled as a
function of a patient’s boundary conditions (f(BCs)), and a function of a patient’s
vascular geometry (g(areaReductions)). Although the patient's geometry may be
described as a function of “areaReductions,” it should be appreciated that this term
refers, not just to changes in patient’s vascular cross-sectional area, but to any

physical or geometric characteristics affecting a patient’s blood flow. In one
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embodiment, FFR can be predicted by optimizing the functions “f* and “g” such that
the difference between the estimated FFR (FFRcT scalingLaw) @nd the measured FFR
(mFFR) is minimized. In other words, machine learning techniques can be used to
solve for the functions that cause the estimated FFR to approximate the measured
FFR. In one embodiment, the measured FFR may be calculated by traditional
catheterized methods or by modern, computational fluid dynamics (CFD) techniques.
In one embodiment, one or more machine learning algorithms may be used to
optimize the functions of boundary conditions and patient geometry for hundreds or
even thousands of patients, such that estimates for FFR can reliably approximate
measured FFR values. Thus, FFR values calculated by CFD techniques can be
valuable for training the machine learning algorithms.

[016] Referring now to the figures, FIG. 1 depicts a block diagram of an
exemplary system and network for estimating patient-specific blood flow
characteristics from vessel geometry and physiological information. Specifically,
FIG. 1 depicts a plurality of physicians 102 and third party providers 104, any of
whom may be connected to an electronic network 100, such as the Internet, through
one or more computers, servers, and/or handheld mobile devices. Physicians 102
and/or third party providers 104 may create or otherwise obtain images of one or
more patients’ cardiac and/or vascular systems. The physicians 102 and/or third
party providers 104 may also obtain any combination of patient-specific information,
such as age, medical history, blood pressure, blood viscosity, etc. Physicians 102
and/or third party providers 104 may transmit the cardiac/vascular images and/or
patient-specific information to server systems 106 over the electronic network 100.
Server systems 106 may include storage devices for storing images and data

received from physicians 102 and/or third party providers 104. Sever systems 106
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may also include processing devices for processing images and data stored in the
storage devices.

[017] FIG. 2 is a block diagram of an exemplary method for estimating
patient-specific blood flow characteristics from vessel geometry and physiological
information, according to an exemplary embodiment of the present disclosure. The
method of FIG. 2 may be performed by server systems 106, based on information
received from physicians 102 and/or third party providers 104 over electronic
network 100.

[018] In one embodiment, the method of FIG. 2 may include a training
method 202, for training one or more machine learning algorithms based on
numerous patients’ blood flow characteristic estimates, and a production method 204
for using the machine learning algorithm results to predict a particular patient’s blood
flow characteristics.

[019] In one embodiment, training method 202 may be performed based on
FFR estimates generating using CFD techniques for hundreds of patients. Training
method 202 may involve acquiring, for each of a plurality of individuals, e.g., in digital
format: (a) a patient-specific geometric model, (b) one or more measured or
estimated physiological parameters, and (c) values of blood flow characteristics.
Training method 202 may then involve, for one or more points in each patient’s
model, creating a feature vector of the patients’ physiological parameters and
associating the feature vector with the values of blood flow characteristics. For
example, training method 202 may associate an estimated FFR with every point in a
patient’s geometric model. Training method 202 may then train a machine learning
algorithm (e.g., using processing devices of server systems 106) to predict blood

flow characteristics at each point of a geometric model, based on the feature vectors
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and blood flow characteristics. Training method 202 may then save the results of the
machine learning algorithm, including feature weights, in a storage device of server
systems 106. The stored feature weights may define the extent to which patient
features or geometry are predictive of certain blood flow characteristics.

[020] In one embodiment, the production method 204 may involve estimating
FFR values for a particular patient, based on results of executing training method
202. In one embodiment, production method 204 may include acquiring, e.g. in
digital format: (a) a patient-specific geometric model, and (b) one or more measured
or estimated physiological parameters. For multiple points in the patient’s geometric
model, production method 204 may involve creating a feature vector of the
physiological parameters used in the training mode. Production method 204 may
then use saved results of the machine learning algorithm to produce estimates of the
patient’s blood flow characteristics for each point in the patient-specific geometric
model. Finally, production method 204 may include saving the results of the
machine learning algorithm, including predicted blood flow characteristics, to a
storage device of server systems 106.

- [021] Described below are general and specific exemplary embodiments for
implementing a training mode and a production mode of machine learning for
predicting patient-specific blood flow characteristics, e.g. using server systems 106
based on images and data received from physicians 102 and/or third party providers
104 over electronic network 100.

GENERAL EMBODIMENT

[022] In a general embodiment, server systems 106 may perform a training
mode based on images and data received from physicians 102 and/or third party

providers 104 over electronic network 100. Specifically, for one or more patients,



WO 2014/042899 PCT/US2013/057546
server systems 106 may acquire a digital representation (e.g., the memory or digital
storage [e.g., hard drive, network drive] of a computational device such as a
computer, laptop, DSP, server, etc.) of the following items: (a) a patient-specific
model of the geometry for one or more of the patient’s blood vessels; (b) a list of one
or more measured or estimated physiological or phenotypic parameters of the
patient; and/or (c) measurements, estimations or simulated values of all blood flow
characteristic being targeted for prediction. In one embodiment, the patient-specific
model of the geometry may be represented by a list of points in space (possibly with
a list of neighbors for each point) in which the space can be mapped to spatial units
between points (e.g., millimeters). In one embodiment, the list of one or more
measured or estimated physiological or phenotypic parameters of the patient may
include blood pressure, blood viscosity, patient age, patient gender, mass of the
supplied tissue, etc. These patient-specific parameters may be global (e.g., blood
pressure) or local (e.g., estimated density of the vessel wall at a particular location).

[023] For every point in the patient-specific geometric model for which there
is a measured, estimated or simulated value of the blood flow characteristic, server
systems 106 may then create a feature vector for that point. The feature vector may
be a numerical description of the patient-specific geometry at that point and
estimates of physiological or phenotypic parameters of the patient. The feature
vector may contain both global and local physiological or phenotypic parameters,
where: for global parameters, all points have the same numerical value; and for
local parameters, the value(s) may change at different points in the feature vector.
Server systems 106 may then associate this feature vector with the measured,

estimated or simulated value of the blood flow characteristic at this point.
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[024] Server systems 106 may then train a machine learning algorithm to
predict the blood flow characteristics at the points from the feature vectors at the
points. Examples of machine learning algorithms that can perform this task are
support vector machines (SVMs), multi-layer perceptrons (MLPs), and mulitivariate
regression (MVR) (e.g., weighted linear or logistic regression). Server systems 106
may then save the results of the machine leaming algorithm (e.g., feature weights) to
a digital representation (e.g., the memory or digital storage [e.g., hard drive, network
drive] of a computational device such as a computer, laptop, DSP, server, etc.).
[025] Also in a general embodiment, server systems 106 may perform a

production mode based on images and data received from physicians 102 and/or
third party providers 104 over electronic network 100. For a patient on whom a
blood flow analysis is to be performed, server systems 106 may acquire a digital
representation (e.g., the memory or digital storage [e.g., hard drive, network drive] of
a computational device such as a computer, laptop, DSP, server, etc.) of (a) a
patient-specific model of the geometry for one or more of the patient’s blood vessels;
and (b) a list of one or more estimates of physiological or phenotypic parameters of
the patient. In one embodiment, the patient-specific model of the geometry for one
or more of the patient’s blood vessels may be represented as a list of points in space
(possibly with a list of neighbors for each point) in which the space can be mapped to
spatial units between points (e.g., millimeters). The list of one or more estimates of
physiological or phenotypic parameters of the patient, may include blood pressure,
blood viscosity, patient age, patient gender, the mass of the supplied tissue, etc.
These parameters may be global (e.g., blood pressure) or local (e.g., estimated
density of the vessel wall at a location). This list of parameters must be the same as

the list used in the training mode.

10
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[026] For every point in the patient-specific geometric model, server systems

106 may create a feature vector that consists of a numerical description of the
geometry and estimates of physiological or phenotypic parameters of the patient.
Global physiological or phenotypic parameters can be used in the feature vector of
all points and local physiological or phenotypic parameters can change in the feature
vector of different points. These feature vectors may represent the same parameters
used in the training mode. Server systems 106 may then use the saved results of
the machine learning algorithm produced in the training mode (e.g., feature weights)
to produce estimates of the blood flow characteristics at each point in the patient-
specific geometric model. These estimates may be produced using the same
machine learning algorithm technique used in the training mode (e.g., the SVM,
MLP, MVR technique). Server systems 106 may also save the predicted blood flow
characteristics for each point to a digital representation (e.g., the memory or digital
storage [e.g., hard drive, network drive] of a computational device such as a
computer, laptop, DSP, server, etc.).

EXEMPLARY EMBODIMENT

[027] In one exemplary embodiment, server systems 106 may perform a
training mode based on images and data received from physicians 102 and/or third
party providers 104 over electronic network 100. Specifically, for one or more
patients, server systems 106 may acquire a digital representation (e.g., the memory
or digital storage [e.g., hard drive, network drive] of a computational device such as a
computer, laptop, DSP, server, etc.) of (a) a patient-specific model of the geometry
for the patient’s ascending aorta and coronary artery tree; (b) a list of measured or
estimated physiological or phenotypic parameteré of the patient; and (c)

measurements of the FFR when available.

11
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[028] In one embodiment, the patient-specific model of the geometry for the
patient’s ascending aorta and coronary artery tree may be represented as a list of
points in space (possibly with a list of neighbors for each point) in which the space
can be mapped to spatial units between points (e.g., millimeters). This model may
be derived by performing a cardiac CT imaging study of the patient during the end
diastole phase of the cardiac cycle. The resulting CT images may then be
segmented manually or automatically to identify voxels belonging to the aorta and to
the lumen of the coronary arteries. Once all relevant voxels are identified, the
geometric model can be derived (e.g., using marching cubes).

[029] In one embodiment, the list of measured or estimated physiological or
phenotypic parameters of the patient may be obtained and may include: (i) systolic
and diastolic blood pressures; (ii) heart rate; (iii) hematocrit level; (iv) patient age,
gender, height, weight, general health status (presence or absence of diabetes,
current medications); (v) lifestyle characteristics: smoker/non-smoker; and/or (vi)
myocardial mass (may be derived by segmenting the myocardium obtained during
the CT imaging study and then calculating the volume in the image; the mass is then
computed using the computed volume and an estimated density (1.05g/mL) of the
myocardial mass.

[030] In one embodiment, measurements of the FFR may be obtained when
available. If the measured FFR value is not available at a given spatial location in
the patient-specific geometric model, then a numerically computed value of the FFR
at the point may be used. The numerically computed values may be obtained from a
previous CFD simulation using the same geometric model and patient-specific

boundary conditions derived from the physiological and phenotypic parameters listed

above.

12
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[031] For every point in the patient-specific geometric model for which there
is a measured, estimated or simulated value of the blood flow characteristics, server
systems 106 may create a feature vector for that point that contains a numerical
description of physiological or phenotypic parameters of the patient and a description
of the local geometry. Specifically the feature vector may contain: (i) systolic and
diastolic blood pressures; (ii) heart rate; (iii) blood properties including: plasma, red
blood cells (erythrocytes), hematocrit, white blood cells (leukocytes) and platelets
(thrombocytes), viscosity, yield stress; (iv) patient age, gender, height, weight, etc.;
(v) diseases: presence or absence of diabetes, myocardial infarction, malignant and
rheumatic conditions, peripheral vascular conditions, etc.; (vi) lifestyle
characteristics: presence or absence of current medications/drugs, smoker/non-
smoker; (vii) characteristics of the aortic geometry (Cross-sectional area of the aortic
inlet and outlet, Surface area and volume of the aorta, Minimum, maximum, and
average cross-sectional area, etc.); (viii) characteristics of the coronary branch
geometry; and (ix) one or more feature sets.

[032] In one embodiment, the characteristics of the coronary branch
geometry may include: (i) volumes of the aorta upstream/downstream of the
coronary branch point; (ii) cross-sectional area of the coronary/aorta bifurcation
point, i.e., inlet to the coronary branch; (iii) total number of vessel bifurcations, and
the number of upstream/downstream vessel bifurcations; (iv) average, minimum, and
maximum upstream/downstream cross-sectional areas; (v) distances (along the
vessel centerline) to the centerline point of minimum and maximum
upstream/downstream cross-sectional areas; (vi) cross-sectional of and distance
(along the vessel centerline) to the nearest upstream/downstream vessel bifurcation;

(vii) cross-sectional area of and distance (along the vessel centerline) to the nearest

13
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coronary outlet and aortic inlet/outlet; (viii) cross-sectional areas and distances
(along the vessel centerline) to the downstream coronary outlets with the
smallest/largest cross-sectional areas; (ix) upstream/downstream volumes of the
coronary vessels; .and (x) upstream/downstream volume fractions of the coronary
vessel with a cross-sectional area below a user-specified tolerance.

[033] In one embodiment, a first feature set may define cross-sectional area
features, such as a cross-sectional lumen area along the coronary centerline, a
powered cross-sectional lumen area, a ratio of lumen cross-sectional area with
respect to the main ostia (LM, RCA), a powered ratio of lumen cross-sectional area
with respect to the main ostia, a degree of tapering in cross-sectional lumen area
along the centerline, locations of stenotic lesions, lengths of stenotic lesions,
location and number of lesions corresponding to 50%, 75%, 90% area reduction,
distance from stenotic lesion to the main ostia, and/or irregularity (or circularity) of
cross-sectional lumen boundary.

[034] In one embodiment, the cross-sectional lumen area along the coronary
centerline may be calculated by extracting a centerline from constructed geometry,
smoothing the centerline if necessary, and computing cross-sectional area at each
centerline point and map it to corresponding surface and volume mesh points. In
one embodiment, the powered cross-sectional lumen area can be determined from
various source of scaling laws. In one embodiment, the ratio of lumen cross-
sectional area with respect to the main ostia (LM, RCA) can be calculated by
measuring cross-sectional area at the LM ostium, normalizing cross-sectional area of
the left coronary by LM ostium area, measuring cross-sectional area at the RCA
ostium, and normalizing cross-sectional area of the right coronary by RCA ostium

area. In one embodiment, the powered ratio of lumen cross-sectional area with

14



WO 2014/042899 PCT/US2013/057546
respect to the main ostia can be determined from various source of scaling laws. In
one embodiment, the degree of tapering in cross-sectional lumen area along the
centerline can be calculated by sampling centerline points within a certain interval
(e.g., twice the diameter of the vessel) and compute a slope of linearly-fitted cross-
sectional area. In one embodiment, the location of stenotic lesions can be calculated
by detecting minima of cross-sectional area curve, detecting locations where first
derivative of area curve is zero and second derivative is positive, and computing
distance (parametric arc length of centerline) from the main ostium. In one
embodiment, the lengths of stenotic lesions can be calculated by computing the
proximal and distal locations from the stenotic lesion, where cross-sectional area is
recovered.

[035] In one embodiment, another feature set may include intensity features
that define, for example, intensity change along the centerline (slope of linearly-fitted
intensity variation). In one embodiment, another feature set may include surface
features that define, for example, 3D surface curvature of geometry (Gaussian,
maximum, minimum, mean). In one embodiment, another feature set may include
volume features that define, for example, a ratio of total coronary volume compared
to myocardial volume. In one embodiment, another feature set may include
centerline features that define, for example, curvature (bending) of coronary

centerline, e.g., by computing Frenet curvature:

[036] Kk = '?;fg", where p is coordinate of centerline

[037] or by computing an inverse of the radius of circumscribed circle along
the centerline points. Curvature (bending) of coronary centerline may also be

calculated based on tortuosity (non-planarity) of coronary centerline, e.g., by

computing Frenet torsion :

15
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[038] = %ﬁl, where p is coordinate of centerline

[039] In one embodiment, another feature set may include a SYNTAX
scoring feature, including, for example, an existence of aorto ostial lesion, detection
of a lesion located at the origin of the coronary from the aorta; and/or dominance (left
or right).

[040] In one embodiment, another feature set may include a simplified
physics feature, e.g., including a fractional flow reserve value derived from Hagen-
Poisseille flow assumption (Resistance~Area™%). For example, in one embodiment,
server systems 106 may compute the cross-sectional area of the origin (LM ostium
or RCA ostium) of the coronary from the aorta (4,) with aortic pressure (P,);
compute cross-sectional area of coronary vessel (4;) at each sampled interval (L;);
determine the amount of coronary flow in each segment of vessel using resistance
boundary condition under hyperemic assumption (Q;); estimate resistance at each

sampled location (R;) based on:

[041] R, = a; 25t + By, where:
[042] Nominal value y = dynamic viscosiy of blood, a; = 1.0, 8; =0, y; =
2.0 (Hagen — Poisseille).

[043] Server systems 106 may estimate pressure drop (AP;) as AP; =

Q;R; and compute FFR at each sampled location as FFR; = %' Locations of

0

cross-sectional area’ minima or intervals smaller than vessel radius may be used for
sampling locations. Server systems 106 may interpolate FFR along the centerline
using FFR;, project FFR values to 3D surface mesh node, and vary «;, B;, y; and
obtain new sets of FFR estimation as necessary for training, such as by using the

feature sets defined above to perturb parameters where q;, 8; can be a function of
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the diseased length, degree of stenosis and tapering ratio to account for tapered
vessel; and @; can be determined by summing distributed flow of each outlet on the
basis of the same scaling law as the resistance boundary condition
(outlet resistance « outlet area™'3%), However, a new scaling law and hyperemic
assumption can be adopted, and this feature vector may be associated with the
measurement or simulated value of the FFR at that point. Server systems 106 may
also train a linear SVM to predict the blood flow characteristics at the points from the
feature vectors at the points; and save the results of the SVM as a digital
representation (e.g., the memory or digital storage [e.g., hard drive, network drive] of
a computational device such as a computer, laptop, DSP, server, etc.).

[044] In an exemplary production mode, servers systems 106 may , for a
target patient, acquire in digital representation (e.g., the memory or digital storage
(e.g., hard drive, network drive) of a computational device such as a computer,
laptop, DSP, server, etc.). (a) a patient-specific model of the geometry for the
patient’s ascending aorta and coronary artery tree; and (b) a list of physiological and
phenotypic parameters of the patient obtained during training mode. In one
embodiment, the patient-specific model of the geometry for the patient’'s ascending
aorta and coronary artery tree may be represented as a list of points in space
(possibly with a list of neighbors for each point) in which the space can be mapped to
spatial units between points (e.g., millimeters). This model may be derived by
performing a cardiac CT imaging of the patient in the end diastole phase of the
cardiac cycle. This image then may be segmented manually or automatically to
identify voxels belonging to the aorta and the lumen of the coronary arteries. Once
the voxels are identified, the geometric model can be derived (e.g., using marching

cubes). The process for generating the patient-specific model of the geometry may
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be the same as in the training mode. For every point in the patient-specific
geometric model, the server systems 106 may create a feature vector for that point
that consists of a numerical description of the geometry at that point and estimates of
physiological or phenotypic parameters of the patient. These features may be the |
same as the quantities used in the training mode. The server systems 106 may then
use the saved results of the machine learning algorithm produced in the training
mode (e.g., feature weights) to produce estimates of the FFR at each point in the
patient-specific geometric model. These estimates may be produced using the same
linear SVM technique used in the training mode. The server systems 106 may save
the predicted FFR values for each point to a digital representation (e.g., the memory
or digital storage [e.g., hard drive, network drive] of a computational device such as a
computer, laptop, DSP, server, etc.).

[045] In one embodiment, the above factors (i) thru (viii) (“Systolic and
diastolic blood pressures” thru “Characteristics of the coronary branch geometry”)
may be considered global features, which are applicable to all points within a given
patient’s geometric model. Also, items (ix) thru (xv) (“Feature Set I: Cross-sectional
area feature” thru “Feature Set VII: Simplified Physics feature”) may be considered
features that are local to specific points within a given patient’'s geometric model. In
addition, features (i) thru (vi) may be considered variables within the function of
boundary conditions, f(BCs), while features (vii) thru (xv) may be considered
variables within the function of geometry, g(areaReductions), on that page. It will be
appreciated that any combination of those features, modified by any desired
weighting scheme, may be incorporated into a machine learning algorithm executed

according to the disclosed embodiments.
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[046] Other embodiments of the invention will be apparent to those skilled in

the art from consideration of the specification and practice of the invention disclosed
herein. It is intended that the specification and examples be considered as

exemplary only, with a true scope and spirit of the invention being indicated by the

following claims.
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What is claimed is:

1. A method for determining patient-specific blood flow characteristics, the
method comprising:

acquiring, for each of a plurality of individuals, a geometric model and blood
flow characteristics of at least part of the individual's vascular system;

executing a machine learning algorithm on the geometric model and blood
flow characteristics for each of the plurality of individuals;

identifying, using the machine learning algorithm, features predictive of blood
flow characteristics corresponding to a plurality of points in the geometric models;

acquiring, for a patient, a geometric model of at least part of the patient’s
vascular system; and

using the identified features to determine a blood flow characteristic of the

patient for at least one point in the patient’s geometric model.

2. The method of claim 1, further comprising:
acquiring, for each of the plurality of individuals, one or more physiological

parameters; and

executing the machine learning algorithm further based on the one or more

physiological parameters.

3. The method of claim 2, wherein executing the machine learning
algorithm comprises:
for a plurality of points in the geometric model for each of the plurality of

individuals, creating a feature vector of the points or the physiological parameters;

and
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associating the feature vector for each of the plurality of individuals with the

blood flow characteristics of the corresponding individual.

4. The method of claim 3, wherein executing the machine learning
algorithm further comprises:
training the machine learning algorithm to predict blood flow characteristics at

various points based on the associated feature vectors.

5. The method of claim 3, wherein each feature vector includes one or
more of:

systolic and diastolic blood pressﬁres, heart rate, blood properties, individual
age, individual gender, individual height, individual weight, presence or absence of
disease, lifestyle characteristics, characteristics of aortic geometry, and

characteristics of the coronary branch geometry.

6. The method of claim 3, wherein each feature vector includes one or
more of:
a cross-sectional area feature set, an intensity feature set, a surface feature

set, a volume feature set, a centerline feature set, and a simplified physics feature

set.

7. The method of claim 1, further comprising:
identifying, using the machine learning algorithm, weights of features
predictive of blood flow characteristics corresponding to a plurality of points in the

geometric models; and
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storing the identified weights to a storage device.

8. The method of claim 2, wherein using the identified features to
determine the patient’s blood flow characteristic comprises:

for each of a plurality of points in the patient's geometric model, creating a
feature vector of the patient’s physiological parameters corresponding to feature

vectors acquired for each of the plurality of individuals.

9. The method of claim 2, wherein the physiological parameters include
one or more of a heart rate, a hematocrit level, a blood pressure, a blood viscosity,
an individual's age, an individual's gender, an individual's weight, an individual

lifestyle characteristic, and a mass of supplied tissue.

10.  The method of claim 1, wherein the machine learning algorithm
includes one or more of: a support vector machine (SVM), a multi-layer perceptron
(MLP), a multivariate regression (MVR), a tree-based classifier, and a weighted

linear or logistic regression.

11.  The method of claim 1, further comprising
displaying the determined blood flow characteristic of the patient for at least
one point in the patient’s geometric model to a physician or transmitting the

determined blood flow characteristic over a network.

12. A system for estimating patient-specific blood flow characteristics, the

system comprising:
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a data storage device storing instructions for determining patient-specific
blood flow characteristics; and
a processor configured to execute the instructions to perform a method
including the steps of:
acquiring, for each of a plurality of individuals, a geometric model and
blood flow characteristics of at least part of the individual's vascular system;
executing a machine learning algorithm on the geometric model and
blood flow characteristics for each of the plurality of individuals;
identifying, using the machine learning algorithm, features predictive of
blood flow characteristics corresponding to a plurality of points in the geometric
models;
acquiring, for a patient, a geometric model of at least part of the
patient’s vascular system; and
using the identified features to determine a blood flow characteristic of

the patient for at least one point in the patient’'s geometric model.

13.  The system of claim 12, wherein the processor is further configured for:
acquiring, for each of a plurality of individuals, one or more physiological

parameters; and

executing the machine learning algorithm further based on the one or more
physiological parameters.
14.  The system of claim 13, wherein executing the machine learning

algorithm comprises:
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for a plurality of points in the geometric model for each of the plurality of
individuals, creating a feature vector of the physiological parameters; and
associating the feature vector for each of the plurality of individuals with the

blood flow characteristics of the corresponding individual.

15.  The system of claim 14, wherein executing the machine learning
algorithm further comprises:
training the machine Iearning algorithm to predict blood flow characteristics at

various points based on the associated feature vectors.

16.  The system of claim 14, wherein each feature vector includes one or
more of:

systolic and diastolic blood pressures, heart rate, blood properties, individual
age, individual gender, individual height, individual weight, presence or absence of
disease, lifestyle characteristics, characteristics of aortic geometry, and

characteristics of the coronary branch geometry.

17.  The system of claim 14, wherein each feature vector includes one or

more of:

a cross-sectional area feature set, an intensity feature set, a surface feature
set, a volume feature set, a centerline feature set, and a simplified physics feature

set.

18.  The system of claim 12, wherein the processor is further configured for:
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identifying, using the machine learning algorithm, weights of features
predictive of blood flow characteristics corresponding to a plurality of points in the

geometric models; and

storing the identified weights to a storage device.

19.  The system of claim 13, wherein using the identified features to
determine the patient’s blood flow characteristic comprises:

for each of a plurality of points in the patient’'s geometric model, creating a
feature vector of the patient’s physiological parameters corresponding to feature

vectors acquired for each of the plurality of individuals.

20. The system of claim 13, wherein the physiological parameters include
one or more of heart rate, hematocrit level, blood pressure, blood viscosity, individual
age, individual gender, individual weight, individual lifestyle characteristic, and a

mass of supplied tissue.

21.  The system of claim 12, wherein the machine learning algorithm
includes one or more of: a support vector machine (SVM), a multi-layer perceptron

(MLP), a multivariate regression (MVR), and a weighted linear or logistic regression.

22. A non-transitory computer-readable medium storing instructions that,
when executed by a computer, cause the computer to perform a method including:
acquiring, for each of a plurality of individuals, a geometric model and blood

flow characteristics of at least part of the individual's vascular system;
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executing a machine learning algorithm on the geometric model and blood
flow characteristics for each of the plurality of individuals;
identifying, using the machine learning algorithm, features predictive of blood
flow characteristics corresponding to a plurality of points in the geometric models;
acquiring, for a patient, a geometric model of at least part of the patient’s
vascular system; and |
using the identified features to determine a blood flow characteristic of the

patient for at least one point in the patient’s geometric model.
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