发明名称 2-氨基-3-氨基-3-苯基丙烯酸乙酯防治农作物病害的应用

摘要
本发明公开一种化合物2-氨基-3-氨基-3-苯基丙烯酸乙酯防治多种作物上由镰刀菌、锈菌、灰霉菌等多种真菌引起的病虫害的应用以及含有该化合物的增效农药组合物。
1. 下式化合物 2-氨基-3-氨基-3-苯基丙烯酸乙酯防治农作物病害的应用

![化学结构式]

2. 根据权利要求 1 的应用，其中所述农作物病害的病原菌是镰刀菌、锈菌、灰霉菌。

3. 一种农药组合物，其特征在于它含有化合物 2-氨基-3-氨基-3-苯基丙烯酸乙酯和另一种农药化合物作为活性成分，其中 2-氨基-3-氨基-3-苯基丙烯酸乙酯与所述农药化合物的重量比为 1:0.01-100。

4. 根据权利要求 3 所述农药组合物，其中，2-氨基-3-氨基-3-苯基丙烯酸乙酯与所述农药化合物的重量比为 1:0.1-50。

5. 根据权利要求 3 或 4 所述的农药组合物，其中，所述农药化合物是杀菌化合物或杀虫化合物。

6. 根据权利要求 5 所述的农药组合物，其中，所述杀菌化合物是甲氧基丙烯酸酯类杀菌剂、三唑类杀菌剂、酰胺类杀菌剂或其它杂环类杀菌剂；所述杀虫化合物是烟碱类杀虫剂或拟除虫菊酯类杀虫剂。

7. 根据权利要求 6 的农药组合物，其中，所述杀菌化合物选自苯氧菌酯、嘧菌酯、丙环唑、氟菌唑、苯醚菌酯、戊唑醇、三唑酮、恶醚唑、环氧菌唑、氟菌唑、粉锈宁、唑醚胺、苯菌灵、多菌灵、咪鲜胺、溴菌灵、春雷霉素、井冈霉素、代森锰锌、代森锰、代森锌、多菌灵、甲基托布津、福美双、三唑醇、氟吡唑、嘧霉胺、咯菌腈和拌种咯；所述杀虫化合物选自吡虫啉、啶虫脒、噻虫嗪、烯啶虫胺、噻虫胺、噻虫啉、功夫菊酯、溴氰菊酯、氟氯菊酯、高效氯氟菊酯、顺式氯氰菊酯、氧戊菊酯、甲氰菊酯和醚菊酯。

8. 根据权利要求 7 的农药组合物，其中，所述杀菌化合物是三唑酮；所述杀虫化合物是吡虫啉。
说明 书

2-氰基-3-氨基-3-苯基丙烯酸乙酯防治农作物病害的用途

技术领域

本发明涉及化合物2-氰基-3-氨基-3-苯基丙烯酸乙酯防治多种作物上由镰刀菌、锈菌、灰霉菌等病原真菌引起的病害的应用以及含有该化合物的增效农药组合物。

背景技术

在农业植物保护方面，以病虫草害综合治理为原则，不可避免地要采用农药来降低病虫草害的危害，来提高作物产量和质量。农药作为一类重要的农资产品，在中国已有几十年的研究开发、生产应用的历史。首先，生物的多样性使得危害作物和园林的有害生物种类不断变化，对于防治药剂的要求越来越高；其次，农药的长期施用使得有害生物产生抗药性，这就需要农药研究开发人员开发出高效、安全、与环境友好的新型药剂，以满足植物保护的需要。我国新农药和新制剂的研究开发已具备一定的基础，开发出了系列新品种，来满足农业生产的需求。

现有技术中化合物2-氰基-3-氨基-3-苯基丙烯酸乙酯只有作为除草剂使用，至今未见有其它用途的报道。

发明内容

本发明的目的是提供下式化合物2-氰基-3-氨基-3-苯基丙烯酸乙酯防治多种农作物上病害的应用。所述的病害的病原菌可以是例如镰刀菌、锈菌、灰霉菌等。

![化合物结构式]

本发明的另一目的是提供含有上述化合物的杀菌组合物。

本发明的另一目的是提供含有上述化合物与另一农药化合物的增效农药组合物。所述的农药化合物选自其它具有类似或互补杀菌活性的杀菌剂或杀虫剂。在本发明农药组合物中，其每1重量份的2-氰基-3-氨基-3-苯基丙烯酸乙酯与0.01-100重量份的另一种农药化合物相混配。优选的是，每1重量份的2-氰基-3-氨基-3-苯基丙烯酸乙酯与0.1-50重量份的另一种农药化合物相混配。
本发明中采用的化合物 2-氯基-3-氨基-3-苯基丙烯酸乙酯是有效的杀菌剂，对多种作物病害如小麦赤霉病、棉花枯萎病、辣椒疫病、水稻恶苗病、瓜类灰霉病、小麦纹枯病、水稻稻瘟病、麦类锈病等均有效。作为新的杀菌剂，在防治作物病害方面，将为农业生产提供高效、安全的杀菌剂。尤其当对麦类赤霉病的防治效果突出时，更有信心将其作为农用杀菌剂开发。

在本发明中，化合物 2-氯基-3-氨基-3-苯基丙烯酸乙酯还可以与其它类型的农用化学品同时使用，以防治同期发生的病虫草害而达到综合治理的目的，与之可以配伍或混用的药剂有杀菌剂和杀虫剂是多种多样的。杀菌剂可以是：甲氧基丙烯酸酯类杀菌剂、三唑类杀菌剂、酰胺类杀菌剂、其它杂环类杀菌剂等；杀虫剂可以是烟碱类杀虫剂、拟除虫菊酯类杀虫剂等。当病害与虫害同期发生或需要同时用药时可以混合使用，也可以制成组合物制剂施用。

1. 本发明的化合物 2-氯基-3-氨基-3-苯基丙烯酸乙酯是有效的杀虫剂，可以作为农用杀菌剂来防治农业及园艺等作物病害。尤其是小麦赤霉病、棉花枯萎病、辣椒疫病、水稻恶苗病、瓜类灰霉病、小麦纹枯病、水稻稻瘟病、麦类锈病等。

2. 本发明的化合物 2-氯基-3-氨基-3-苯基丙烯酸乙酯是有效的杀虫剂，可以与其它杀虫剂、杀菌剂等混合使用或形成组合物来防治多种病虫害，尤其是多种病虫害同时发生时。与之配伍的杀菌剂可以是：甲氧基丙烯酸酯类杀菌剂、三唑类杀菌剂、酰胺类杀菌剂、其它杂环类杀菌剂等，用于防治水稻稻瘟病、纹枯病、恶苗病等，麦类赤霉病、纹枯病、白粉病、锈病等，棉花枯萎病、炭疽病等，蔬菜白粉病、腐烂病、霜霉病、灰霉病、疫病等，果树黑胫病、斑点落叶病等。与之配伍的杀虫剂可以是烟碱类杀虫剂、拟除虫菊酯类杀虫剂等，用来防治水稻飞虱、叶蝉、稻叶、稻象甲等，防治麦类蚜虫、粘虫等，防治蔬菜蚜虫、粉虱、菜青虫等，防治果树蚜虫等。化合物 2-氯基-3-氨基-3-苯基丙烯酸乙酯的组合物中，每 1 重量份的 2-氯基-3-氨基-3-苯基丙烯酸乙酯与 0.01-100 重量份的一种或多钟上述可配伍的化合物，特别是 0.1-50。

通过在组合物中加入其他的一种或多种农用化学品，使其能比单独的本发明的化合物 2-氯基-3-氨基-3-苯基丙烯酸乙酯具有更广谱的活性。此外，其它杀菌剂可对本发明的化合物 2-氯基-3-氨基-3-苯基丙烯酸乙酯的杀菌活性具有增效作用。可以包含在本发明组合物中的杀菌剂化合物的实例有：苯氧菌酯、嘧菌酯、丙环唑、氟菌唑、
唑醇、度唑醇、三唑酮、恶霉威、环氧菌唑、氟菌唑、粉锈宁、咪酰胺、苯菌灵、
多菌灵、百菌清、丙环唑、春雷霉素、井冈霉素、代森锰锌、代森锰、代森锌、多
氧霉素、甲基托布津、福美双、十三吗啉、氟吗啉、嘧霉胺、咯菌腈、拌种咯等。
优选的是上述 1,2,4-三唑类杀菌剂，特别优选的是三唑酮。其它杀虫剂可对本发明的
化合物 2-氨基-3-氨基-3-苯基烯酸乙酯的杀菌活性具有增效作用，扩大防治谱，提
高作物抵御病虫害的能力，同时降低农药施用成本。可以包含在本发明组合物中的
杀虫剂化合物的实例有：吡虫啉、啶虫脒、噻虫嗪、烯啶虫胺、噻虫胺、噻虫啉、
功夫菊酯、溴氰菊酯、氯氟菊酯、高效氯氟菊酯、顺式氯氟菊酯、氟戊菊酯、甲氰
菊酯、醚菊酯等。优选的是烟碱类杀虫剂，特别优选的是吡虫啉。

3. 本发明还提供了含有化合物 2-氨基-3-氨基-3-苯基烯酸乙酯的杀菌组合物和
增效农药组合物的制备方法。

按照本发明的组合物，优选含量从 1.99 % 重量的活性成分。本发明的载体系满
足下述条件的物质：与活性成分配置后便于施用于带有处理的位点，例如可以是
植物、种子或土壤；或有利于储存、运输或操作。载体可以是固体或液体，包括通
常为液体但已压缩成液体的物质。和可使用任何通常在配制杀菌组合物时所用的载
体。

合适的固体载体包括天然和合成的粘土和硅酸盐例如硅藻土、滑石、硅藻土、硅
酸钙（高岭土）、蒙脱石。云母；碳酸钙；硫酸钙；硫酸铵；合成的氧化硅和合成的
硅酸钙或硅酸铝；元素如碳和硫；天然合成的树脂如苯并呋喃树脂，聚氯乙烯和苯
乙烯聚合物和共聚物；固体多氯苯酚；沥青；蜡如蜂蜡，石蜡。

合适的液体载体包括水；醇如异丙醇和乙醇；酮如丙酮、甲基乙基酮、甲基异丁
基酮和环己酮；醚：芳烃如苯、甲苯和二甲苯；石油烃如煤油和矿物油；氯代
烃如四氯化碳，全氯乙烯和三氯乙烷，通常这些液体的混合物也是适用的。

农药组合物通常加工成浓缩物的形式并以此用于运输，在使用之前由使用者将其
稀释。少量的表面活性剂载体存在有助于稀释过程。这样，按照本发明的组合物中，
至少一种载体优选是表面活性剂，例如组合物可含有至少两种载体，其中至少一种
是表面活性剂。

表面活性剂可以是乳化剂、分散剂或润湿剂；它可以是非离子的或离子的表面活
性剂。合适的表面活性剂的例子包括聚丙烯酸和木素磺酸钠盐和钙盐；分子中含
至少12个碳原子的脂肪酸或脂肪胺或酰胺与环氧乙烷和/或环氧丙烷的缩合物；甘醇，山梨醇，蔗糖和季戊四醇脂肪酸酯和脂肪胺或酰胺与环氧乙烷和/或环氧丙烷的混合物；脂肪酸或烷基苯酚如对辛基苯酚或对辛基甲苯酚与环氧乙烷和/或环氧丙烷的缩合物；这些缩合产物的硫酸盐或磷酸盐；在分子中含有至少10个碳原子硫酸或磷酸酯的碱金属或碱土金属，优选钠盐，例如硫酸月桂酯钠，硫酸仲烷基酯钠，磺化蓖麻油钠盐，磺酸烷基芳基酯钠如十二烷基苯磺酸钠盐。

本发明组合物的实例是可湿性粉剂、制剂、颗粒剂和溶液，可乳化的浓缩剂、乳剂、悬浮浓缩剂、气雾剂、和烟雾剂。可湿性粉剂通常含25、50或75%重量活性成分，且通常除惰性载体之外，还含有3-10%重量分散剂，且若需要加入0-10%重量稳定剂，和/或其它添加剂如渗透剂或粘着剂。粉剂通常可成型为具有与可湿性粉剂相似的组成但没有分散剂的粉剂浓缩剂，在田里进一步用固体载体稀释，得到通常含0.5-10%重量活性成分的组合物。制剂通常制备成具有10-100目（1.676-0.152mm）大小，可用成团或注入技术制备。通常，制剂含0.5-75%重量的活性成分和0-10%重量添加剂如稳定剂、表面活性剂、缓释改良剂。所谓的“可流动干粉”有具有相对高浓度活性成分的相对小的颗粒组成。可乳化浓缩剂除溶剂外，当需要时通常含有共溶剂，1-50%W/V活性成分，2-20%W/V乳化剂和0-20%W/V其它添加剂如稳定剂、渗透剂和腐蚀抑制剂，悬浮浓缩剂通常含有10-75%重量的活性成分、0.5-15%重量的分散剂、0.1-10%重量的其它添加剂如消泡剂、腐蚀抑制剂、稳定剂、渗透剂和粘着剂。水分散剂和乳剂，例如通过用水稀释按照本发明的可湿性粉剂或浓缩物得到的组合物，也列入本发明范围。所说的乳剂可具有油包水或水包油两个类型。
具体实施方式

配方实施例 1：10%乳油

2-氰基-3-氨基-3-苯基丙烯酸乙酯 10 份

吐温 80 12 份

N,N-二甲基甲酰胺 3 份

二甲苯 补足 100 份

配方实施例 2：90%可溶性液剂

2-氰基-3-氨基-3-苯基丙烯酸乙酯 90 份

N-甲基吡咯烷酮 10 份

配方实施例 3：70%可溶性液剂

2-氰基-3-氨基-3-苯基丙烯酸乙酯 70 份

甲基乙基酮 30 份

配方实施例 4：15%悬浮剂

2-氰基-3-氨基-3-苯基丙烯酸乙酯 15 份

乙二醇 10 份

十二烷基苯磺酸钠 5 份

黄原胶 0.5 份

稳定剂 4.5 份

水 65 份

配方实施例 5：25%可湿性粉剂

2-氰基-3-氨基-3-苯基丙烯酸乙酯 25 份

稳定剂 3 份

月桂醇硫酸钠 12 份

木素磺酸钙 10 份

高岭土 50 份
配方实施例 6: 51%悬浮剂

2-氯基-3-氨基-3-苯基丙烯酸乙酯 1 份
三唑酮 50 份
乙二醇 15 份
十二烷基苯磺酸钠 15 份
黄原胶 5 份
水 补足 100 份

配方实施例 7: 71%悬浮剂

2-氯基-3-氨基-3-苯基丙烯酸乙酯 1 份
三唑酮 70 份
乙二醇 10 份
十二烷基苯磺酸钠 10 份
黄原胶 5 份
水 补足 100 份

配方实施例 8: 1.1%可湿性粉剂

2-氯基-3-氨基-3-苯基丙烯酸乙酯 1 份
吡虫啉 0.1 份
稳定剂 3 份
月桂醇硫酸钠 12 份
木素磺酸钙 10 份
高岭土 补足 100 份

配方实施例 9: 18%可湿性粉剂

2-氯基-3-氨基-3-苯基丙烯酸乙酯 10 份
井冈霉素 8 份
稳定剂 3 份
月桂醇硫酸钠 12 份
木素磺酸钙 10 份
高岭土 补足 100 份
配方实施例 10：35%可湿性粉剂

2-氯基-3-氯基-3-苯基丙烯酸乙酯 1 份
吡虫啉 20 份
稳定剂 3 份
月桂醇硫酸钠 12 份
木素磺酸钙 10 份
高岭土 补足 100 份

配方实施例 11：91%可湿性粉剂

2-氯基-3-氯基-3-苯基丙烯酸乙酯 1 份
吡虫啉 90 份
稳定剂 1 份
月桂醇硫酸钠 5 份
木素磺酸钙 2 份
高岭土 补足 100 份

应用实施例 1:

2-氯基-3-氯基-3-苯基丙烯酸乙酯具有较广的杀菌谱试验

方法：含毒介质法。

测定 2-氯基-3-氯基-3-苯基丙烯酸乙酯对多种病菌菌丝生长抑制，将待测药剂 2-氯基-3-氯基-3-苯基丙烯酸乙酯制备成浓度为 20、2、0.2 μg/ml 系列浓度，制成含药培养基，8 小时后分别移入小麦赤霉病、棉花枯萎病、辣椒疫霉病、水稻恶苗病、黄瓜灰霉病、小麦纹枯病病菌的新鲜菌丝块，重复 6 次，放入 25℃培养箱内培养 4 天，测量菌落生长直径，计算菌丝生长抑制率。

表 1 离体抑制多种病菌菌丝生长活性测定

<table>
<thead>
<tr>
<th>病原菌</th>
<th>菌丝生长抑制率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20ug/ml</td>
</tr>
<tr>
<td>小麦赤霉（Gibberella zeae）</td>
<td>100</td>
</tr>
<tr>
<td>棉花枯萎（Fusarium oxysporum）</td>
<td>88</td>
</tr>
<tr>
<td>辣椒疫霉（Phytophthora capsici）</td>
<td>94</td>
</tr>
<tr>
<td>水稻恶苗（Gibberella fujikuroi）</td>
<td>92</td>
</tr>
<tr>
<td>黄瓜灰霉（Botrytis cinerea）</td>
<td>62</td>
</tr>
<tr>
<td>小麦纹枯（Rhizoctonia solani）</td>
<td></td>
</tr>
</tbody>
</table>
2-氨基-3-氨基-3-苯基丙烯酸乙酯以浓度 20、2、0.2ug/ml 对 6 种病原菌离体测定，进行杀菌谱试验结果表明：药剂浓度为 20ug/ml 对小麦赤霉病、棉花枯萎病、辣椒疫霉病、水稻恶苗病、黄瓜灰霉病、小麦纹枯病病原菌表现一定活性，菌丝生长抑制率大于 50%，对其余病原菌活性较差。药剂浓度为 0.2ug/ml 对小麦赤霉病、辣椒疫霉病、水稻恶苗病菌丝生长的抑制率分别为 57%、59%、64%，表现较高活性。

应用实例 2:

2-氨基-3-氨基-3-苯基丙烯酸乙酯对小麦赤霉病普通菌株和抗性菌株的杀菌活性试验。

测定药剂对小麦赤霉病菌丝生长抑制的 EC50 及毒力方程。将待测药剂 2-氨基-3-氨基-3-苯基丙烯酸乙酯、多菌灵分别制备成高浓度母液，将母液加入 50-60℃PDA 培养基中并使之均匀分散，制备成系列浓度的含药培养基。8 小时后分别移入小麦赤霉 G2（抗性菌株）、G4（普通菌株）新鲜菌丝块，重复 6 次，放入 25℃培养箱内培养 3 天，测量菌丝生长直径，计算 EC50 及毒力方程。测试时以多菌灵为对照药剂。具体结果如表 2 所示。结果表明，2-氨基-3-氨基-3-苯基丙烯酸乙酯对多菌灵普通菌株好于多菌灵。2-氨基-3-氨基-3-苯基丙烯酸乙酯对多菌灵抗性菌株与普通菌株活性相近，初步表明与药剂多菌灵不存在交互抗性。

<table>
<thead>
<tr>
<th>菌株</th>
<th>药剂</th>
<th>毒力回归方程</th>
<th>EC50 (ug/ml)</th>
<th>相对毒力指数</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2</td>
<td>多菌灵</td>
<td>Y=1.9666+3.0436X</td>
<td>9.9231</td>
<td>5.65</td>
</tr>
<tr>
<td>G2</td>
<td>2-氨基-3-氨基-3-苯基丙烯酸乙酯</td>
<td>Y=6.5342+2.1241X</td>
<td>0.1895</td>
<td>295.83</td>
</tr>
<tr>
<td>G4</td>
<td>多菌灵</td>
<td>Y=5.9099+3.6195X</td>
<td>0.5606</td>
<td>100</td>
</tr>
<tr>
<td>G4</td>
<td>2-氨基-3-氨基-3-苯基丙烯酸乙酯</td>
<td>Y=6.1185+1.7274X</td>
<td>0.2252</td>
<td>248.93</td>
</tr>
</tbody>
</table>

相对毒力指数 =100×参照药剂 EC50/药剂的 EC50

结果表明，对普通菌株的活性，2-氨基-3-氨基-3-苯基丙烯酸乙酯是多菌灵的 2.5 倍；对抗性菌株，2-氨基-3-氨基-3-苯基丙烯酸乙酯是多菌灵的 52 倍。多菌灵来说，以普通菌株的 EC50 为 100，抗性菌株的相对毒力指数为 5.65；对 2-氨基-3-氨基-3-苯基丙烯酸乙酯来说，对普通菌株和抗性菌株的活性相近。初步表明，本发明的化合
物 2-氨基-3-氨基-3-苯基丙烯酸乙酯与多菌灵的作用机理是不同的，可能不存在交互抗性。

应用实施例 3:

2-氨基-3-氨基-3-苯基丙烯酸乙酯抑制孢子萌芽活性试验

采用培养皿萌芽法。

测定 2-氨基-3-氨基-3-苯基丙烯酸乙酯对小麦赤霉病分生孢子萌芽的抑制作用。配制孢子悬浮液（低倍镜下每视野 40—60 个孢子），与药剂悬浮液等量混合，配制成药剂浓度为 320、160、80、40、20、10 μg/ml 的悬浮液。充分混合后，分别吸取 0.45ml 悬浮液，涂于培养皿中 PSA 平板上，放入 25℃培养箱内培养 6 小时后，倒置显微镜检查孢子萌芽率（每皿随机检查 200 个孢子，以萌芽管长度超过短径作为萌芽）。计算校正萌芽抑制率，求 EC₅₀ 及毒力方程。

表 3 2-氨基-3-氨基-3-苯基丙烯酸乙酯抑制小麦赤霉病分生孢子萌芽试验结果

<table>
<thead>
<tr>
<th>药剂</th>
<th>毒力回归方程 Y=12.937-3.6449x</th>
<th>EC₅₀（ug/ml）</th>
<th>相对毒力指数</th>
</tr>
</thead>
<tbody>
<tr>
<td>硫酸铜</td>
<td></td>
<td>150.50</td>
<td>100</td>
</tr>
<tr>
<td>2-氨基-3-氨基-3-苯基丙烯酸乙酯</td>
<td>Y=0.9276+2.6210x</td>
<td>35.79</td>
<td>420.51</td>
</tr>
</tbody>
</table>

结果表明，2-氨基-3-氨基-3-苯基丙烯酸乙酯对小麦赤霉病分生孢子萌芽有一定的抑制作用，防效较对照药剂硫酸铜好。而多菌灵对小麦赤霉病分生孢子萌芽没有抑制作用。

应用实施例 4:

温室盆栽时 2-氨基-3-氨基-3-苯基丙烯酸乙酯防治小麦赤霉病试验

方法 1：保护作用测定

采用针刺接种法。先将 2-氨基-3-氨基-3-苯基丙烯酸乙酯、多菌灵系列浓度样品均匀地喷洒在小麦（二叶期）上，处理一天后，用大头针刺小麦的第一张叶片中下部，每张叶片上两个孔，再取新鲜菌丝块（直径 5mm）粘在叶片上有孔处，每样品做 8 个重复，用保湿罩保湿，正常光线，湿度 26℃，湿度 95%以上。四天后检查试验结果，测量病斑长度，计算抑制率。2-氨基-3-氨基-3-苯基丙烯酸乙酯对小麦赤霉病病菌采用针刺接种法作保护作用测定，结果见表 4。
<table>
<thead>
<tr>
<th>药剂</th>
<th>菌株</th>
<th>药剂浓度 (ug/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>800</td>
</tr>
<tr>
<td>多菌灵</td>
<td>G2</td>
<td>71.6</td>
</tr>
<tr>
<td></td>
<td>G4</td>
<td>97.8</td>
</tr>
<tr>
<td>2-氨基-3-氨基-3-苯基丙烯酸乙酯</td>
<td>G2</td>
<td>98.3</td>
</tr>
<tr>
<td></td>
<td>G4</td>
<td>98.1</td>
</tr>
</tbody>
</table>

G2 为抗性菌株，G4 为普通菌株

结果表明：不论普通菌株还是抗性菌株，2-氨基-3-氨基-3-苯基丙烯酸乙酯的保护作用相近，活性相当；而多菌灵对抗性菌株的活性明显低于普通菌株。对于普通菌株，两药剂活性相近；而对于抗性菌株，2-氨基-3-氨基-3-苯基丙烯酸乙酯的活性显著优于多菌灵。

方法 2：治疗作用测定

采用针刺接种法。首先用大头针刺小麦（二叶期）的第一张叶片中下部，每张叶片上两个孔，再取新鲜菌丝块（直径 5mm）粘在叶片上有孔处，每样品做 8 个重复，用保湿纸保湿，正常光照，温度 26℃，湿度 95% 以之上。处理一天后，将 2-氨基-3-氨基-3-苯基丙烯酸乙酯、多菌灵系列浓度样品均匀地喷洒在小麦上，三天后检查结果，测量病斑长度，计算抑制率。2-氨基-3-氨基-3-苯基丙烯酸乙酯对小麦赤霉病采用针刺接种法作治疗作用的测定，结果见表 5。

<table>
<thead>
<tr>
<th>药剂</th>
<th>菌株</th>
<th>药剂浓度 (ug/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>800</td>
</tr>
<tr>
<td>多菌灵</td>
<td>G2</td>
<td>8.6</td>
</tr>
<tr>
<td></td>
<td>G4</td>
<td>54.1</td>
</tr>
<tr>
<td>2-氨基-3-氨基-3-苯基丙烯酸乙酯</td>
<td>G2</td>
<td>78.4</td>
</tr>
<tr>
<td></td>
<td>G4</td>
<td>81.2</td>
</tr>
</tbody>
</table>

G2 为抗性菌株，G4 为普通菌株

结果表明：不论普通菌株还是抗性菌株，2-氨基-3-氨基-3-苯基丙烯酸乙酯的治疗作用相近，活性相当；而多菌灵对抗性菌株的活性明显低于普通菌株；2-氨基-3-氨基-3-苯基丙烯酸乙酯优于多菌灵。

应用实例 5:

2-氨基-3-氨基-3-苯基丙烯酸乙酯防治小麦赤霉病田间小区试验
分别设2-氨基-3-氨基-3-苯基丙烯酸乙酯10%乳油制剂50、20、10、5克/亩和多菌灵50、20、10、5克/亩及喷清水的空白对照等处理，每处理重复三次，随机排列，小区面积为25平方米。选在降雨后傍晚施药，人工喷雾保湿三天，15天后调查防效。分级标准执行中国农业部农药检定所生测室所编《农药田间药效试验准则》，以病情指数为反指标来计算防效。

表6 JS399防治赤霉病第20、34天调查结果（南京，2003年5-6月）

<table>
<thead>
<tr>
<th>药剂</th>
<th>剂量</th>
<th>20d</th>
<th>34d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>平均病指</td>
<td>防效（%）</td>
</tr>
<tr>
<td>JS399</td>
<td>5</td>
<td>0.3697</td>
<td>59.88</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.3833</td>
<td>58.40</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.2297</td>
<td>75.07</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.1195</td>
<td>87.03</td>
</tr>
<tr>
<td>多菌灵</td>
<td>5</td>
<td>0.6321</td>
<td>31.39</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.5482</td>
<td>40.50</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.5797</td>
<td>37.08</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.4090</td>
<td>55.61</td>
</tr>
</tbody>
</table>

空白对照的病指为0.9214，空白对照的病指为0.9712。

田间小区筛选试验结果表明，2-氨基-3-氨基-3-苯基丙烯酸乙酯对小麦赤霉的防效明显高于多菌灵；对小麦安全。

应用实施例6:

具有杀菌活性的组合物在防治小麦白粉病和赤霉病中的增效作用试验

在实验室以盆栽小麦为试材，以小麦白粉病和小麦赤霉病为测试病害，以2-氨基-3-氨基-3-苯基丙烯酸乙酯、三唑酮为供试药剂，采用盆栽接种喷雾方法，对两种药剂的相互作用进行测试，结果表明对赤霉病、白粉病的防治具有明显增效作用。

表7 2-氨基-3-氨基-3-苯基丙烯酸乙酯、三唑酮对白粉病的活性测试

<table>
<thead>
<tr>
<th>药剂</th>
<th>剂量(ppm)</th>
<th>防效（%）</th>
<th>混用效果</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-氨基-3-氨基-3-苯基丙烯酸乙酯</td>
<td>1000</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>三唑酮</td>
<td>100</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2-氨基-3-氨基-3-苯基丙烯酸乙酯+三唑酮</td>
<td>100+100</td>
<td>95</td>
<td>增效</td>
</tr>
</tbody>
</table>

表8 2-氨基-3-氨基-3-苯基丙烯酸乙酯、三唑酮对赤霉病的活性测试

<table>
<thead>
<tr>
<th>药剂</th>
<th>剂量(ppm)</th>
<th>防效（%）</th>
<th>混用效果</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-氨基-3-氨基-3-苯基丙烯酸乙酯</td>
<td>1000</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>三唑酮</td>
<td>100</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>2-氨基-3-氨基-3-苯基丙烯酸乙酯+三唑酮</td>
<td>100+100</td>
<td>98</td>
<td>增效</td>
</tr>
</tbody>
</table>
本实施例表明，当2-氨基-3-氨基-3-苯基丙烯酸乙酯与三唑酮组合时，2-氨基-3-氨基-3-苯基丙烯酸乙酯对三唑酮防治白粉病具有增效作用，100ppm防治活性显著提高；三唑酮对2-氨基-3-氨基-3-苯基丙烯酸乙酯防治赤霉病具有增效作用，100ppm时防治赤霉病的活性显著提高。两化合物组合后，产生了意想不到的增效作用。

应用实施例7：

具有杀虫杀菌活性的组合物在防治麦类病虫害中的试验

在田间小麦穗期赤霉病发生初期，由于田间种植密度大、湿度大，麦穗蚜虫处于高发期，将2-氨基-3-氨基-3-苯基丙烯酸乙酯的乳油和吡虫啉可湿粉同时使用，达到了既防治小麦赤霉病，又防治麦穗蚜的效果。初步试验表明，两化合物组合混用后，一方面降低了施药成本；另一方面吡虫啉的应用有利于2-氨基-3-氨基-3-苯基丙烯酸乙酯的乳油防治赤霉病，比单用2-氨基-3-氨基-3-苯基丙烯酸乙酯的乳油的防效好；同时，2-氨基-3-氨基-3-苯基丙烯酸乙酯的乳油有利于吡虫啉防治蚜虫药效的发挥。

表9 药剂混用增效

<table>
<thead>
<tr>
<th>药剂</th>
<th>浓度(PPM)</th>
<th>赤霉病防效%</th>
<th>蚜虫防效%</th>
<th>混用效果</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-氨基-3-氨基-3-苯基丙烯酸乙酯</td>
<td>1000</td>
<td>90</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>吡虫啉</td>
<td>100</td>
<td>75</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>吡虫啉</td>
<td>10</td>
<td>0</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>2-氨基-3-氨基-3-苯基丙烯酸乙酯 + 吡虫啉</td>
<td>1000+10</td>
<td>95</td>
<td>100</td>
<td>增效</td>
</tr>
<tr>
<td>吡虫啉</td>
<td>100+1</td>
<td>80</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

混用或组合物具有实际意义。