（54）发明名称
生物活性空气净化器

（57）摘要
一种生物活性空气净化器，它属于室内空气净化装置，它包括底座、在底座上设置有箱体式外壳、种植箱、水泵、水泵控制器、风扇、置于种植箱中的颗粒状吸附基质、以及种植在种植箱中的植物，其特征在于所述的风扇设置在箱体式外壳的一侧侧壁上；所述的种植箱置于箱体式外壳中，种植箱的上边沿与箱体式外壳的上沿口连接，箱体式外壳与种植箱之间留有空气室，水泵设置在底座的底部，水泵通过管道连接一环形管道，环形管道设置在种植箱与箱体式外壳的连接处，在环形管道朝向种植箱内部一侧的管壁上设有多个均布的灌溉孔。本发明空气净化效率高，噪声低，换水、换植物等操作简单，维护成本低，其颗粒状吸附基质永不失效，从而有效的降低了运行成本。
1. 一种生物活化空气净化器，它包括底座(1)、在所述的底座(1)上设置有箱体式外壳(2)、种植篮(3)、水泵(4)、水泵控制器(5)、风扇(6)、置于种植篮中的颗粒状吸附基质(7)，以及种植在种植篮中的植物，其特征在于所述的风扇(6)设置在箱体式外壳(2)的一侧侧壁上；所述的种植篮(3)置于箱体式外壳(2)中，种植篮(3)的上边沿与箱体式外壳(2)的上沿口(22)连接，箱体式外壳(2)与种植篮之间留有空气室(24)；所述的水泵(4)设置在底座(1)的底部，水泵通过管道连接一环形管道(32)，所述的环形管道设置在种植篮(3)与箱体式外壳(2)的连接处，在环形管道(32)朝向种植篮内部一侧的管壁上设有多个均布的灌溉孔(33)。

2. 如权利要求1中所述的生物活化空气净化器，其特征在于在位所述的风扇(6)设置部位的箱体式外壳(2)处设有凸出窗，所述的凸出窗上设置有出风口(23)。

3. 如权利要求1或2中所述的生物活化空气净化器，其特征在于所述的风扇(6)为仪表风扇。

4. 如权利要求1中所述的生物活化空气净化器，其特征在于所述的种植篮(3)为编织篮，且篮壁和篮底上均设有大量透气孔(31)。

5. 如权利要求4中所述的生物活化空气净化器，其特征在于所述的种植篮(3)为圆形或方形的花盆状编织篮或多孔塑料容器。

6. 如权利要求1中所述的生物活化空气净化器，其特征在于所述的颗粒状吸附基质(7)为活性碳，其粒径为3至5毫米。

7. 如权利要求1中所述的生物活化空气净化器，其特征在于所述的底座(1)为一玻璃鱼缸。
生物活化空气净化器

技术领域：
[0001] 本发明涉及一种生物活化空气净化器，它属于室内空气净化装置，特别是利用植物实现空气净化的技术。

背景技术：
[0002] 室内空气污染将直接影响人的舒适性感受并引起呼吸道疾病。中国正处在城市化快速发展阶段，每年建成的居住及办公用房面积达到数亿平方米，难免有不良建筑材料和家具导致的室内空气污染。同时，室外环境也令人担忧，尤其是几个超大城市，雾霾天气时有发生，PM2.5 超标的天数逐年增多，关系到数亿民众的健康和切身利益，是现阶段我国城镇居民普遍面临和关心的民生问题。为改善人们居住和工作场所的空气质量，迫切需要开发针对各种室内空气净化物的实用的空气净化技术。本发明意在设计一种净化效率高，运行费用低，以及可同时去除多种室内空气污染物的空气净化装置。
[0003] 现有技术中，中国实用新型专利 ZL201120555856.7 公开了一种空气净化装置，如图 1 所示，该空气净化装置由外壳体 1、内壳体 2 微型风机 3、颗粒状吸附基质 4、盆栽植物 5 和为其提供所需水分的补水系统 6 组成；其中，所述外壳体 1 内设置有将所述外壳体 1 分隔成上容置空间 11 和下容置空间 12 的隔板 13，所述隔板 13 上开设有第一类孔 131、所述下容置空间的侧壁上设置有出风口 121；所述微型风机 3 置于所述下容置空间 12 内，且所述微型风机的进风口 31 与所述第一类孔 131 连通；所述上容置空间 11 的开口处形成内折挡沿 14，所述内折挡沿 14 与内壁 15 相交，所述内壁 15 上设置有若干供水气流通的第二类孔 151；所述内壳体 2 的侧壁位于所述外壳体 1 的侧壁和所述内壁 15 之间，与所述外壳体 1 的侧壁和所述内壁 15 共同构成进气室 16，所述内壳体 2 的底壁与所述内壁 15 共同构成盛放所述颗粒状吸附基质 4 的空间；所述盆栽植物 5 栽种于所述颗粒状吸附基质 4 上。
[0004] 上述现有技术的技术方案存在的如下的问题：
[0005] 1）内壳侧壁与外壳的侧壁和内壁共同构成进气室，同时，内壳体的底部与外壳体的内壁又共同构成盛放颗粒状吸附基质的容器，而内壳体同时又是盛水的容器，这样容器底部的颗粒状吸附基质始终都浸泡在水中，使得需净化的空气无法流过这部分颗粒状吸附基质。此外，由于供水气流通的第二类孔设置在所述内壁上，故靠近容器中轴线附近的颗粒状吸附基质中很难有空气流过，所以这部分的颗粒状吸附基质也难以被有效地利用。
[0006] 2）当有孔的外壳内壁被水浸泡时，外壳内壁上的部分第二类孔会因浸没在水中而失去通气作用。当内壳体中水位偏高时，浸没在水中的孔数较多，使得能够通气的孔数变少，空气净化效率下降。当内壳体中水位偏低时，可能导致水泵无法供水。当水位低于泵的进水口上沿时，水泵则无法为植物补水，而此时风机仍然在工作，被处理空气仍在源源不断地流经植物的根部，最终导致植物干枯死亡，且水泵在无水状态下运转将大大减短其使用寿命。也就是说，上述实用新型工作时，应使水位经常处于较低位置以提高空气净化效率，同时又要确保水泵的进水口被浸没于水中，这使得上述实用新型的操作变得复杂。
3）为保证加水总量和防止水溢出，气流通道呈迷宫状布置，使得微型风机效率降低。

4）补水系统结构较复杂，造价较高。而且更换植物时需将导水管和滴灌管取下，栽好植物后再重新安装，操作较复杂。

发明内容：

本发明的目的在于提供一种结构合理，运行成本低，噪音低，净化效率高的生物活化空气净化器。

一种生物活化空气净化器，它包括底座，在所述的底座上设置有箱体式外壳、种植篮、水泵、水泵控制器、风扇、置于种植篮中的颗粒状吸附基质，以及种植在种植篮中的植物，其特征在于所述的风扇设置在箱体式外壳的一侧壁上，所述的种植篮置于箱体式外壳中，种植篮的上边沿与箱体式外壳的上沿口连接，箱体式外壳与种植篮之间留有空气室；所述的水泵设置在底座的底部，水泵通过管道连接一环形管道，所述的环形管道设置在种植篮与箱体式外壳的连接处，在环形管道朝向种植篮内部一侧的管壁上设有多个均布的灌溉口。

所述的风扇设置部位的箱体式外壳处设有凸出窗，在所述的凸出窗上设置有出风口。

所述的风扇为仪表风扇。

所述的种植篮为编织篮，且盆壁上设有大量透气孔。

所述的种植篮为圆柱形或方形的花盆状编织篮或多孔塑料容器。

所述的颗粒状吸附基质为活性炭，其粒径为 3 至 5 毫米。

所述的底座为一玻璃鱼缸。

本发明结构简单，安装和使用方便，且空气净化效率高；美观耐用，噪声低；换水、换植物等操作简单，维护成本低；由于本发明可以产生存在于植物根床中的微生物，使得颗粒状吸附基质永远不失效，从而有效的降低了运行成本。

附图说明：

图 1 为现有技术的结构示意图。

图 2 为本发明的结构示意图。

具体实施方式：

下面结合附图 2，对本发明进行进一步的说明。

在本实施例中，本发明包括底座 1，且底座 1 为一透明箱体结构，在本实施例中所述的底座 1 为一玻璃鱼缸。在具体使用中，可以在底座中养殖水草和小生小动物，使得本发明更具有观赏性，而且养殖用水进行植物灌溉更有利于植物生长，产生良好的循环。在所述的底座 1 上设置有箱体式外壳 2，一种植篮 3 置于箱体式外壳 2 内，种植篮 3 的上边沿与箱体式外壳 2 的上沿口 22 连接，箱体式外壳 2 与种植篮 3 之间留有空气室 24；在本实施例中所述的种植篮 3 为圆柱形或方形的花盆状编织篮或者多孔塑料容器，且篮壁上和篮底部设有
大量透气孔 31。在所述的种植篮中放置颗粒状吸附基质 7，并在颗粒状吸附基质 7 中种植植物。在本实施例中所述的颗粒状吸附基质 7 为活性炭，其粒径为 3 至 5 毫米。

[0023] 在箱体式外壳 2 的一侧壁上设置有一风扇 6。所述的风扇 6 设置于箱体式外壳 2 的外壁，所述的外壳 2 处设有凸出窗，在所述的凸出窗上设置有出风口 23。当风扇被启动后，会使得空气室 24 产生负压，构成一个负压腔，使得室内空气流经颗粒状吸附基质 7，净化过的空气会通过出风窗进入室内。在本实施例中所述的风扇 6 为仪表风扇，可以进一步提高了空气净化效率。

[0024] 为了实现本发明的自动灌溉，本发明的灌溉系统包括如下的部分；所述的水泵 4 设置在底座 1 的底部，水泵通过供水管道连接一环形管道 32，所述的环形管道设置在种植篮 3 的上部，可以作为是种植篮的一部分，在环形管道 32 朝向种植篮内部一侧的管壁上设有多个均布的灌溉孔 33。供水管道可以采用软管的燃料管或者橡胶管。本发明的水泵可以连接一个现有的水泵控制器，使得供水操作可以实现自动化的行为定量化供给。

[0025] 本发明的工作原理和流程如下：

[0026] 外壳的内表面、种植篮的外表面、水面及水面以上的底座内壁共同围成了一个空气室 24，即负压腔。启动风扇 6，会使负压腔产生负压，使得室内空气流经颗粒状吸附基质 7、种植篮 3 上的透气孔 31、空气室 24、风扇 6，最后由出风口 23 排向室内。

[0027] 当种植篮中的植物正常生长时，植物的叶子、茎和根（包括颗粒状吸附基质 7 及盆栽植物的根系）都具有吸附和降解污染物的能力。当室内被污染的空气通过本净化器时，空气中一部分污染物被植物的叶子和茎所吸收，大部分的空气中的污染物被颗粒状吸附基质 7 吸附，并降解。由出风口 23 排向室内的空气则为较清洁的空气，它将逐渐稀释室内空气中的污染成分，使其室内的空气质量得到改善。

[0028] 另一方面，存在于植物根部中的微生物将进一步地降解这些被吸附的有机物，从而使颗粒状吸附基质 7 得以再生。

[0029] 而定时灌溉系统；包括水泵、供水管道、环形管道及环形管道上的灌溉孔，则定时对植物根部浇水，以使颗粒状吸附基质保持湿润并利用植物能够获得必要的水分，即保证植物根部处于最佳的吸水和解有害气体的状态。

[0030] 由于采用独立的种植篮，使得所有颗粒状吸附基质 7 都能与流动的空气接触，提高了空气净化效率。独立的可盛水的底座，使水位的高低不会影响空气净化效率。而且透明的鱼缸式底座也可以养殖水草和小型水生动物，提升了观赏效果。本发明也摒弃了现有技术中的迷宫式暗流通道，采用仪表风扇替代微型风机，进一步提高了空气净化效率。本发明在栽种或更换植物时完全无需拆装补水系统。

[0031] 本发明的使用方法如下：

[0032] 设定水泵控制器 5 工作程序，使灌溉系统能够在正常工作时实现每小时启动水泵一次，持续时间 1 分钟（备注：此工作程序可根据使用习惯、植物种类和环境情况进行调节）。开机前将鱼缸型底座 1 中适当加水（加满水但不至于溢出）。接通电源，此时风扇连续运转，而水泵则按控制器 5 的工作程序运转。使用过程中，当底座 1 中水位降至接近水泵的进水口高度时，需要清洗底座并重新适当加水。如在底座中养殖水草和水生小动物，则根据养殖需要进行补水或换水。
图 1