
(12) STANDARD PATENT (11) Application No. AU 2020235621 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Implicit transform selection in video coding

(51) International Patent Classification(s)
HO4N 19/12 (2014.01) HO4N 191176 (2014.01)
HO4N 19/157 (2014.01) HO4N 19/625 (2014.01)

(21) Application No: 2020235621 (22) Date of Filing: 2020.03.12

(87) WIPO No: W020/186042

(30) Priority Data

(31) Number (32) Date (33) Country
62/817,397 2019.03.12 US
16/815,920 2020.03.11 US

(43) Publication Date: 2020.09.17
(44) Accepted Journal Date: 2024.11.28

(71) Applicant(s)
QualcommIncorporated

(72) Inventor(s)
EGILMEZ, Hilmi Enes;SAID, Amir;SEREGIN, Vadim;KARCZEWICZ, Marta

(74) Agent / Attorney
Madderns Pty Ltd, GPO Box 2752, Adelaide, SA, 5001, AU

(56) Related Art
BROSS B ET AL: "Versatile Video Coding (Draft 4)", no. JVET-M1001, 9 March
2019 (2019-03-09), XP030202602, Retrieved from the Internet [retrieved on
20190309]

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
(1) Organization11111111111111111111111I1111111111111ii111liiili

International Bureau (10) International Publication Number

(43) International Publication Date W O 2020/186042 Al
17 September 2020 (17.09.2020) W IP0I PCT

(51) International Patent Classification: (74) Agent: ROSENBERG, Brian M.; Shumaker & Sieffert,
H04N19/12 (2014.01) H04N19/176 (2014.01) P.A., 1625 Radio Drive, Suite 100, Woodbury, Minnesota
H04N19/157(2014.01) H04N 19/625 (2014.01) 55125 (US).

(21) International Application Number: (81) Designated States (unless otherwise indicated, for every
PCT/US2020/022363 kind ofnational protection available): AE, AG, AL, AM,

(22)InternationalFilingDate: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
12 March 2020 (12.03.2020) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,

DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
(25) Filing Language: English HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,

KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME,
(26)PublicationLanguage: English MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
(30) Priority Data: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,

62/817,397 12 March 2019 (12.03.2019) US SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN, TR,
16/815,920 11 March 2020 (11.03.2020) US TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.

(71) Applicant: QUALCOMM INCORPORATED [US/US]; (84) Designated States (unless otherwise indicated, for every

ATTN: International IP Administration, 5775 Morehouse kind of regional protection available): ARIPO (BW, GH,
Drive, San Diego, California 92121-1714 (US). GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,

UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
(72)Inventors: EGILMEZ,Hilmi Enes;5775 Morehouse Di- TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

ye,SanDiego,California92121-1714(US).SAID,Amir; EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
5775 Morehouse Drive, San Diego, California 92121-1714 MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,
(US). SEREGIN, Vadim; 5775 Morehouse Drive, San TR), OAPI (BF, BJ,CF, CG, CI, CM, GA, GN, GQ, GW,
Diego, California 92121-1714 (US). KARCZEWICZ, RM,ML, MR, NE,SN, TD, TG).

Marta; 5775 Morehouse Drive, San Diego, California
92121-1714 (US).

(54) Title: IMPLICIT TRANSFORM SELECTION IN VIDEO CODING

(57)Abstract: Anexample methodincludes inferring, for a current transform block
o 1102 of a current video block, a transform type from a plurality of transform types that
OBTAINCURRENTTRANSFORM BLOCK includes one or more discrete cosine transforms (DCTs) and one or more discrete

1 sine transforms (DSTs), wherein inferring the transform type comprises: determin
DETERMINETHATCURRENTVIDEO 1104 ing a size of the current transform block; determining whether the current video

BLOCK IS PARTITIONED USING'ISP block is partitioned using intra-subblock partitioning (ISP); and responsive to deter
- 11os mining that the size of the current transform block is less than a threshold and that

- DETERMINE SIZE OF CURRENT
TRANSFORM BLOCK the current video block is partitioned using ISP, selecting a particular DST of the

one or more DSTs as the selected transform type; transforming, using the selected
BOUND&& 18o transform type, the current transform block to obtain a block of reconstructed resid

Yes SIZE LO ER BOUND No ual data for the video block; and reconstructing, based on the reconstructed residual

1 1112 data for the video block, the video block.
SELECT DST-7 SE LECT DCT-2

TRANSFORM CURRENT TRANSFORM
BLOCK USING SELECTED TRANSFORM

- TYPE TO OBTAIN RECONSTRUCTED

BLOCK BASED ON RECONSTRUCTED
11

VIDEO DA TA

FIG. 11

W O 2020/186042 Al 1||||||||||||||||||||||||||||||||||111111||

Published:
- with international search report (Art. 21(3))

WO 2020/186042 PCT/US2020/022363
1

IMPLICIT TRANSFORM SELECTION
IN VIDEO CODING

[0001] This application claims priority to U.S. Patent Application No. 16/815,920, filed

on March 11, 2020, which claims the benefit of U.S. Provisional Patent Application

62/817,397, filed on March 12, 2019, the entire content of which is hereby incorporated

by reference.

TECHNICAL FIELD

[0002] This disclosure relates to video encoding and video decoding.

BACKGROUND

[0003] Digital video capabilities can be incorporated into a wide range of devices,

including digital televisions, digital direct broadcast systems, wireless broadcast

systems, personal digital assistants (PDAs), laptop or desktop computers, tablet

computers, e-book readers, digital cameras, digital recording devices, digital media

players, video gaming devices, video game consoles, cellular or satellite radio

telephones, so-called "smart phones," video teleconferencing devices, video streaming

devices, and the like. Digital video devices implement video coding techniques, such as

those described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263, ITU-T

H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), ITU-T H.265/High Efficiency

Video Coding (HEVC), and extensions of such standards. The video devices may

transmit, receive, encode, decode, and/or store digital video information more

efficiently by implementing such video coding techniques.

[0004] Video coding techniques include spatial (intra-picture) prediction and/or

temporal (inter-picture) prediction to reduce or remove redundancy inherent in video

sequences. For block-based video coding, a video slice (e.g., a video picture or a

portion of a video picture) may be partitioned into video blocks, which may also be

referred to as coding tree units (CTUs), coding units (CUs) and/or coding nodes. Video

blocks in an intra-coded (I) slice of a picture are encoded using spatial prediction with

respect to reference samples in neighboring blocks in the same picture. Video blocks in

an inter-coded (P or B) slice of a picture may use spatial prediction with respect to

reference samples in neighboring blocks in the same picture or temporal prediction with

WO 2020/186042 PCT/US2020/022363
2

respect to reference samples in other reference pictures. Pictures may be referred to as

frames, and reference pictures may be referred to as reference frames.

SUMMARY

[0005] In one example, a method includes inferring, for a current transform block of a

current video block, a transform type from a plurality of transform types that includes

one or more discrete cosine transforms (DCTs) and one or more discrete sine transforms

(DSTs), wherein inferring the transform type comprises: determining a size of the

current transform block; determining whether the current video block is partitioned

using intra-subblock partitioning (ISP); and responsive to determining that the size of

the current transform block satisfies a size threshold and that the current video block is

partitioned using ISP, selecting a particular DST of the one or more DSTs as the

selected transform type; transforming, using the selected transform type, the current

transform block to obtain a block of reconstructed residual data for the video block; and

reconstructing, based on the reconstructed residual data for the video block, the video

block.

[0006] In another example, a device includes a memory configured to store video

blocks; and one or more processors implemented in circuitry and configured to: infer,

for a current transform block of a current video block, a transform type from a plurality

of transform types that includes one or more DCTs and one or more DSTs, wherein, to

infer the transform type, the one or more processors are configured to: determine a size

of the current transform block; determine whether the current video block is partitioned

using ISP; and select, responsive to determining that the size of the current transform

block satisfies a size threshold and that the current video block is partitioned using ISP,

a particular DST of the one or more DSTs as the selected transform type; transform,

using the selected transform type, the current transform block to obtain a block of

reconstructed residual data for the video block; and reconstruct, based on the

reconstructed residual data for the video block, the video block.

[0007] In another example, a computer-readable storage medium stores instructions

that, when executed, cause one or more processors of a video coding device to: infer, for

a current transform block of a current video block, a transform type from a plurality of

transform types that includes one or more DCTs and one or more DSTs, wherein the

instructions that cause the one or more processors to infer the transform type comprise

3

instructions that cause the one or more processors to: determine a size of the current

transform block; determine whether the current video block is partitioned using ISP; and

select, responsive to determining that the size of the current transform block satisfies a

size threshold and that the current video block is partitioned using ISP, a particular DST

of the one or more DSTs as the selected transform type; transform, using the selected

transform type, the current transform block to obtain a block of reconstructed residual

data for the video block; and reconstruct, based on the reconstructed residual data for

the video block, the video block.

[0007a] In another example, a method of decoding video data includes inferring, for a

current transform block of a current video block, a transform type from a plurality of

transform types that includes one or more discrete cosine transforms (DCTs) and one or

more discrete sine transforms (DSTs), wherein inferring the transform type comprises:

determining whether a size of the current transform block satisfies a size

threshold, wherein the size of the current transform block satisfies the size threshold

where the size of the current transform block is greater than or equal to 4 and less than

or equal to 16;

determining whether the current video block is partitioned using intra-subblock

partitioning (ISP);

responsive to determining that the size of the current transform block satisfies

the size threshold and that the current video block is partitioned using ISP, selecting a

particular DST of the one or more DSTs as the selected transform type, wherein

selecting the particular DST comprises selecting the particular DST regardless of an

intra prediction mode selected to predict the current video block, wherein the particular

DST is a DST-7; and

responsive to determining that the size of the current transform block does not

satisfy the size threshold and that the current video block is partitioned using ISP,

selecting a particular DCT of the one or more DCTs as the selected transform type,

wherein the particular DCT is a DCT-2;

transforming, using the selected transform type, the current transform block to

obtain a block of reconstructed residual data for the video block; and

reconstructing, based on the reconstructed residual data for the video block, the

video block,

wherein inferring the transform type for the current transform block

comprises inferring the transform type for the current transform block responsive to

3a

determining that multiple transform selection (MTS) is enabled for the current

video block,

wherein determining whether the current video block is partitioned using ISP

comprises determining, based on values of one or more syntax elements decoded from a

video bitstream, whether the current video block is partitioned using ISP,

wherein the size of the current transform block comprises:

a width of the current transform block; and

a height of the current transform block,

wherein selecting the transform type comprises selecting a transform type for

horizontal use and selecting a transform type for vertical use, the method further

comprising:

selecting the DST-7 as the selected transform type for horizontal use responsive

to determining that the width of the current transform block satisfies a width size

threshold and that the current video block is partitioned using ISP; and

wherein the width threshold equals the height threshold.

[0007b] In another example, a device for coding video data includes a memory

configured to store video blocks; and

one or more processors implemented in circuitry and configured to:

infer, for a current transform block of a current video block, a transform type

from a plurality of transform types that includes one or more discrete cosine transforms

(DCTs) and one or more discrete sine transforms (DSTs), wherein, to infer the

transform type, the one or more processors are configured to:

determine whether a size of the current transform block satisfies a size threshold,

wherein the size of the current transform block satisfies the size threshold where the size

of the current transform block is greater than or equal to 4 and less than or equal to 16;

determine whether the current video block is partitioned using intra- subblock

partitioning (ISP);

select, responsive to determining that the size of the current transform block

satisfies the size threshold and that the current video block is partitioned using ISP a

particular DST of the one or more DSTs as the selected transform type, wherein to

select the particular DST, the one or more processors are configured to select the

particular DST regardless of an intra prediction mode selected to predict the current

video block, wherein the particular DST is a DST-7; and

3b

select, responsive to determining that the size of the current transform block

does not satisfy the size threshold and that the current video block is

partitioned using ISP, a particular DCT of the one or more DCTs as the selected

transform type, wherein particular DCT is a DCT-2;

transform, using the selected transform type, the current transform block to

obtain a block of reconstructed residual data for the video block; and

reconstruct, based on the reconstructed residual data for the video block, the

video block, wherein, to infer the transform type for the current transform block, the

one or more processors are configured to infer the transform type for the current

transform block responsive to determining that multiple transform selection (MTS) is

enabled for the current video block,

wherein, to determine whether the current video block is partitioned using ISP,

the one or more processors are configured to determine, based on values of one or more

syntax elements decoded from a video bitstream, whether the current video block is

partitioned using ISP,

wherein the size of the current transform block comprises:

a width of the current transform block; and

a height of the current transform block

wherein, to select the transform type, the one or more processors are configured

to select a transform type for horizontal use and selecting a transform type for vertical

use, and wherein the one or more processors are further configured to:

select the DST-7 as the selected transform type for horizontal use responsive to

determining that the width of the current transform block satisfies a width size threshold

and that the current video block is partitioned using ISP; and

select the DST-7 as the selected transform type for vertical use responsive to

determining that the height of the current transform block satisfies a height size

threshold and that the current video block is partitioned using ISP, and wherein the

width threshold equals the height threshold.

[0007c] In another example, a computer-readable storage medium storing instructions

that, when executed, cause one or more processors of a video coding device to:

infer, for a current transform block of a current video block, a transform type

from a plurality of transform types that includes one or more discrete cosine transforms

(DCTs) and one or more discrete sine transforms (DSTs), wherein the instructions that

3c

cause the one or more processors to infer the transform type comprise instructions that

cause the one or more processors to:

determine whether a size of the current transform block satisfies a size threshold,

wherein the size of the current transform block satisfies the size threshold where the size

of the current transform block is greater than or equal to 4 and less than or equal to 16;

determine whether the current video block is partitioned using intra-subblock

partitioning (ISP); and

select, responsive to determining that the size of the current transform block

satisfies the size threshold and that the current video block is partitioned using ISP a

particular DST of the one or more DSTs as the selected transform type, wherein the

instructions that cause the one or more processors to select the particular DST comprise

instructions that cause the one or more processors to select the particular DST regardless

of an intra prediction mode selected to predict the current video block, wherein the

particular DST is a DST-7; and

select, responsive to determining that the size of the current transform block

does not satisfy the size threshold and that the current video block is

partitioned using ISP, a particular DCT of the one or more DCTs as the selected

transform type, wherein particular DCT is a DCT-2;

transform, using the selected transform type, the current transform block to

obtain a block of reconstructed residual data for the video block; and

reconstruct, based on the reconstructed residual data for the video block, the

video block, wherein the instructions that cause the one or more processors to infer the

transform type for the current transform block comprise instructions that cause the one

or more processors to infer the transform type for the current transform block responsive

to determining that multiple transform selection (MTS) is enabled for the current video

block,

wherein the instructions that cause the one or more processors to determine

whether the current video block is partitioned using ISP comprise instructions that cause

the one or more processors to determine, based on values of one or more syntax

elements decoded from a video bitstream, whether the current video block is partitioned

using ISP,

wherein the size of the current transform block comprises:

a width of the current transform block; and

a height of the current transform block

3d

wherein the instructions that cause the one or more processors to select

the transform type comprise instructions that cause the one or more processors to select

a transform type for horizontal use and selecting a transform type for vertical use, and

further comprising instructions that cause the one or more processors to:

select the DST-7 as the selected transform type for

horizontal use responsive to determining that the width of the current transform block

satisfies a width size threshold and that the current video block is partitioned using ISP;

and

select the DST-7 as the selected transform type for

vertical use responsive to determining that the height of the current transform block

satisfies a height size threshold and that the current video block is partitioned using ISP,

and

wherein the width threshold equals the height threshold.

[0008] The details of one or more examples of this disclosure are set forth in the

accompanying drawings and the description below. Other features, objects, and

advantages of various aspects of the techniques will be apparent from the description

and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

[0009] FIG. 1 is a block diagram illustrating an example video encoding and decoding

system that may perform the techniques of this disclosure.

[0010] FIGS. 2A and 2B are conceptual diagrams illustrating an example quadtree

binary tree (QTBT) structure, and a corresponding coding tree unit (CTU).

[0011] FIG. 2C is a conceptual diagram illustrating another example quadtree structure

and corresponding tree unit.

[0012] FIG. 3 is a block diagram illustrating an example video encoder that may

perform the techniques of this disclosure.

[0013] FIG. 4 is a block diagram illustrating an example video decoder that may

perform the techniques of this disclosure.

[0014] FIG. 5 is a block diagram illustrating a system for hybrid video encoding with

adaptive transform selection.

3e

[0015] FIG. 6 is a conceptual diagram illustrating separable transform implementation

with horizontal and vertical lines being transformed independently.

[0016] FIG. 7 is a conceptual diagram illustrating an example block for which a video

coder may implicitly derive transforms, in accordance with one or more techniques of

this disclosure.

[0017] FIG. 8 is a conceptual diagram illustrating intra prediction directions.

WO 2020/186042 PCT/US2020/022363
4

[0018] FIG. 9 is a flowchart illustrating an example method for encoding a current

block.

[0019] FIG. 10 is a flowchart illustrating an example method for decoding a current

block.

[0020] FIG. 11 is a flowchart illustrating an example method for inferring a transform

type for a transform block of a video block, in accordance with one or more techniques

of this disclosure.

DETAILED DESCRIPTION

[0021] In general, this disclosure describes techniques for implicit transform selection

in video coding. As discussed in further detail below, following prediction, such as

intra-prediction or inter-prediction of a block, a video encoder may calculate residual

data for the block. The residual data, such as a residual block, represents sample by

sample differences between the block and a prediction block for the block, formed using

the corresponding prediction mode. The video encoder may apply one or more

transforms to the residual block, to produce transformed data in a transform domain

instead of the sample domain. For example, the video encoder may apply a discrete

cosine transform (DCT). In some examples, the video encoder may utilize different

types of transforms. For instance, the video encoder may use various types of DCT.

[0022] A video decoder may apply an inverse transform when decoding the video data.

Where the video coder may utilize different types of transforms, it may be necessary for

the video decoder to determine which transform was used by the video encoder. In

some examples, the video encoder may explicitly signal (e.g., encode a syntax element

with a value that indicates) which type of transform was used when transforming the

residual data. However, in some examples, it may not be desirable to explicitly signal

the type of transform used (e.g., due to signalling overhead).

[0023] In accordance with one or more techniques of this disclosure, the video decoder

may implicitly determine which type of transform was used when transforming the

residual data. For instance, the video decoder may apply a set of rules to determine

which type of transform was used when transforming the residual data based on side

information available at the video decoder (e.g., either explicitly signaled or implicitly

derived from signaled information). The video encoder may apply the same rules when

determining which type of transform to use. As such, the video encoder and video

WO 2020/186042 PCT/US2020/022363
5

decoder may both determine which type of transform to use without explicit signalling

of the transform type.

[0024] FIG. 1 is a block diagram illustrating an example video encoding and decoding

system 100 that may perform the techniques of this disclosure. The techniques of this

disclosure are generally directed to coding (encoding and/or decoding) video data. In

general, video data includes any data for processing a video. Thus, video data may

include raw, uncoded video, encoded video, decoded (e.g., reconstructed) video, and

video metadata, such as signaling data.

[0025] As shown in FIG. 1, system 100 includes a source device 102 that provides

encoded video data to be decoded and displayed by a destination device 116, in this

example. In particular, source device 102 provides the video data to destination device

116 via a computer-readable medium 110. Source device 102 and destination device

116 may comprise any of a wide range of devices, including desktop computers,

notebook (i.e., laptop) computers, tablet computers, set-top boxes, telephone handsets

such smartphones, televisions, cameras, display devices, digital media players, video

gaming consoles, video streaming device, or the like. In some cases, source device 102

and destination device 116 may be equipped for wireless communication, and thus may

be referred to as wireless communication devices.

[0026] In the example of FIG. 1, source device 102 includes video source 104, memory

106, video encoder 200, and output interface 108. Destination device 116 includes

input interface 122, video decoder 300, memory 120, and display device 118. In

accordance with this disclosure, video encoder 200 of source device 102 and video

decoder 300 of destination device 116 may be configured to apply the techniques for

implicit transform selection. Thus, source device 102 represents an example of a video

encoding device, while destination device 116 represents an example of a video

decoding device. In other examples, a source device and a destination device may

include other components or arrangements. For example, source device 102 may

receive video data from an external video source, such as an external camera. Likewise,

destination device 116 may interface with an external display device, rather than

including an integrated display device.

[0027] System 100 as shown in FIG. 1 is merely one example. In general, any digital

video encoding and/or decoding device may perform techniques for implicit transform

selection. Source device 102 and destination device 116 are merely examples of such

coding devices in which source device 102 generates coded video data for transmission

WO 2020/186042 PCT/US2020/022363
6

to destination device 116. This disclosure refers to a "coding" device as a device that

performs coding (encoding and/or decoding) of data. Thus, video encoder 200 and

video decoder 300 represent examples of coding devices, in particular, a video encoder

and a video decoder, respectively. In some examples, devices 102, 116 may operate in a

substantially symmetrical manner such that each of devices 102, 116 include video

encoding and decoding components. Hence, system 100 may support one-way or two

way video transmission between video devices 102, 116, e.g., for video streaming,

video playback, video broadcasting, or video telephony.

[0028] In general, video source 104 represents a source of video data (i.e., raw, uncoded

video data) and provides a sequential series of pictures (also referred to as "frames") of

the video data to video encoder 200, which encodes data for the pictures. Video source

104 of source device 102 may include a video capture device, such as a video camera, a

video archive containing previously captured raw video, and/or a video feed interface to

receive video from a video content provider. As a further alternative, video source 104

may generate computer graphics-based data as the source video, or a combination of

live video, archived video, and computer-generated video. In each case, video encoder

200 encodes the captured, pre-captured, or computer-generated video data. Video

encoder 200 may rearrange the pictures from the received order (sometimes referred to

as "display order") into a coding order for coding. Video encoder 200 may generate a

bitstream including encoded video data. Source device 102 may then output the

encoded video data via output interface 108 onto computer-readable medium 110 for

reception and/or retrieval by, e.g., input interface 122 of destination device 116.

[0029] Memory 106 of source device 102 and memory 120 of destination device 116

represent general purpose memories. In some example, memories 106, 120 may store

raw video data, e.g., raw video from video source 104 and raw, decoded video data from

video decoder 300. Additionally or alternatively, memories 106, 120 may store software

instructions executable by, e.g., video encoder 200 and video decoder 300, respectively.

Although shown separately from video encoder 200 and video decoder 300 in this

example, it should be understood that video encoder 200 and video decoder 300 may

also include internal memories for functionally similar or equivalent purposes.

Furthermore, memories 106, 120 may store encoded video data, e.g., output from video

encoder 200 and input to video decoder 300. In some examples, portions of memories

106, 120 may be allocated as one or more video buffers, e.g., to store raw, decoded,

and/or encoded video data.

WO 2020/186042 PCT/US2020/022363
7

[0030] Computer-readable medium 110 may represent any type of medium or device

capable of transporting the encoded video data from source device 102 to destination

device 116. In one example, computer-readable medium 110 represents a

communication medium to enable source device 102 to transmit encoded video data

directly to destination device 116 in real-time, e.g., via a radio frequency network or

computer-based network. Output interface 108 may modulate a transmission signal

including the encoded video data, and input interface 122 may modulate the received

transmission signal, according to a communication standard, such as a wireless

communication protocol. The communication medium may comprise any wireless or

wired communication medium, such as a radio frequency (RF) spectrum or one or more

physical transmission lines. The communication medium may form part of a packet

based network, such as a local area network, a wide-area network, or a global network

such as the Internet. The communication medium may include routers, switches, base

stations, or any other equipment that may be useful to facilitate communication from

source device 102 to destination device 116.

[0031] In some examples, source device 102 may output encoded data from output

interface 108 to storage device 116. Similarly, destination device 116 may access

encoded data from storage device 116 via input interface 122. Storage device 116 may

include any of a variety of distributed or locally accessed data storage media such as a

hard drive, Blu-ray discs, DVDs, CD-ROMs, flash memory, volatile or non-volatile

memory, or any other suitable digital storage media for storing encoded video data.

[0032] In some examples, source device 102 may output encoded video data to file

server 114 or another intermediate storage device that may store the encoded video

generated by source device 102. Destination device 116 may access stored video data

from file server 114 via streaming or download. File server 114 may be any type of

server device capable of storing encoded video data and transmitting that encoded video

data to the destination device 116. File server 114 may represent a web server (e.g., for

a website), a File Transfer Protocol (FTP) server, a content delivery network device, or

a network attached storage (NAS) device. Destination device 116 may access encoded

video data from file server 114 through any standard data connection, including an

Internet connection. This may include a wireless channel (e.g., a Wi-Fi connection), a

wired connection (e.g., DSL, cable modem, etc.), or a combination of both that is

suitable for accessing encoded video data stored on file server 114. File server 114 and

WO 2020/186042 PCT/US2020/022363
8

input interface 122 may be configured to operate according to a streaming transmission

protocol, a download transmission protocol, or a combination thereof.

[0033] Output interface 108 and input interface 122 may represent wireless

transmitters/receiver, modems, wired networking components (e.g., Ethernet cards),

wireless communication components that operate according to any of a variety of IEEE

802.11 standards, or other physical components. In examples where output interface

108 and input interface 122 comprise wireless components, output interface 108 and

input interface 122 may be configured to transfer data, such as encoded video data,

according to a cellular communication standard, such as 4G, 4G-LTE (Long-Term

Evolution), LTE Advanced, 5G, or the like. In some examples where output interface

108 comprises a wireless transmitter, output interface 108 and input interface 122 may

be configured to transfer data, such as encoded video data, according to other wireless

standards, such as an IEEE 802.11 specification, an IEEE 802.15 specification (e.g.,

ZigBeeTM), a BluetoothTM standard, or the like. In some examples, source device 102

and/or destination device 116 may include respective system-on-a-chip (SoC) devices.

For example, source device 102 may include an SoC device to perform the functionality

attributed to video encoder 200 and/or output interface 108, and destination device 116

may include an SoC device to perform the functionality attributed to video decoder 300

and/or input interface 122.

[0034] The techniques of this disclosure may be applied to video coding in support of

any of a variety of multimedia applications, such as over-the-air television broadcasts,

cable television transmissions, satellite television transmissions, Internet streaming

video transmissions, such as dynamic adaptive streaming over HTTP (DASH), digital

video that is encoded onto a data storage medium, decoding of digital video stored on a

data storage medium, or other applications.

[0035] Input interface 122 of destination device 116 receives an encoded video

bitstream from computer-readable medium 110 (e.g., storage device 112, file server 114,

or the like). The encoded video bitstream computer-readable medium 110 may include

signaling information defined by video encoder 200, which is also used by video

decoder 300, such as syntax elements having values that describe characteristics and/or

processing of video blocks or other coded units (e.g., slices, pictures, groups of pictures,

sequences, or the like). Display device 118 displays decoded pictures of the decoded

video data to a user. Display device 118 may represent any of a variety of display

devices such as a cathode ray tube (CRT), a liquid crystal display (LCD), a plasma

WO 2020/186042 PCT/US2020/022363
9

display, an organic light emitting diode (OLED) display, or another type of display

device.

[0036] Although not shown in FIG. 1, in some examples, video encoder 200 and video

decoder 300 may each be integrated with an audio encoder and/or audio decoder, and

may include appropriate MUX-DEMUX units, or other hardware and/or software, to

handle multiplexed streams including both audio and video in a common data stream. If

applicable, MUX-DEMUX units may conform to the ITU H.223 multiplexer protocol,

or other protocols such as the user datagram protocol (UDP).

[0037] Video encoder 200 and video decoder 300 each may be implemented as any of a

variety of suitable encoder and/or decoder circuitry, such as one or more

microprocessors, digital signal processors (DSPs), application specific integrated

circuits (ASICs), field programmable gate arrays (FPGAs), discrete logic, software,

hardware, firmware or any combinations thereof. When the techniques are implemented

partially in software, a device may store instructions for the software in a suitable, non

transitory computer-readable medium and execute the instructions in hardware using

one or more processors to perform the techniques of this disclosure. Each of video

encoder 200 and video decoder 300 may be included in one or more encoders or

decoders, either of which may be integrated as part of a combined encoder/decoder

(CODEC) in a respective device. A device including video encoder 200 and/or video

decoder 300 may comprise an integrated circuit, a microprocessor, and/or a wireless

communication device, such as a cellular telephone.

[0038] Video encoder 200 and video decoder 300 may operate according to a video

coding standard, such as ITU-T H.265, also referred to as High Efficiency Video

Coding (HEVC) or extensions thereto, such as the multi-view and/or scalable video

coding extensions. Alternatively, video encoder 200 and video decoder 300 may

operate according to other proprietary or industry standards, such as the Joint

Exploration Test Model (JEM) or ITU-T H.266, also referred to as Versatile Video

Coding (VVC). A recent draft of the VVC standard is described in Bross, et al.

"Versatile Video Coding (Draft 4)," Joint Video Experts Team (JVET) of ITU-T SG 16

WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 13thMeeting: Marrakech, MA, 9-18 January

2019, JVET-M1001-v6 (hereinafter "VVC Draft 4"). The techniques of this disclosure,

however, are not limited to any particular coding standard.

[0039] In general, video encoder 200 and video decoder 300 may perform block-based

coding of pictures. The term "block" generally refers to a structure including data to be

WO 2020/186042 PCT/US2020/022363
10

processed (e.g., encoded, decoded, or otherwise used in the encoding and/or decoding

process). For example, a block may include a two-dimensional matrix of samples of

luminance and/or chrominance data. In general, video encoder 200 and video decoder

300 may code video data represented in a YUV (e.g., Y, Cb, Cr) format. That is, rather

than coding red, green, and blue (RGB) data for samples of a picture, video encoder 200

and video decoder 300 may code luminance and chrominance components, where the

chrominance components may include both red hue and blue hue chrominance

components. In some examples, video encoder 200 converts received RGB formatted

data to a YUV representation prior to encoding, and video decoder 300 converts the

YUV representation to the RGB format. Alternatively, pre- and post-processing units

(not shown) may perform these conversions.

[0040] This disclosure may generally refer to coding (e.g., encoding and decoding) of

pictures to include the process of encoding or decoding data of the picture. Similarly,

this disclosure may refer to coding of blocks of a picture to include the process of

encoding or decoding data for the blocks, e.g., prediction and/or residual coding. An

encoded video bitstream generally includes a series of values for syntax elements

representative of coding decisions (e.g., coding modes) and partitioning of pictures into

blocks. Thus, references to coding a picture or a block should generally be understood

as coding values for syntax elements forming the picture or block.

[0041] HEVC defines various blocks, including coding units (CUs), prediction units

(PUs), and transform units (TUs). According to HEVC, a video coder (such as video

encoder 200) partitions a coding tree unit (CTU) into CUs according to a quadtree

structure. That is, the video coder partitions CTUs and CUs into four equal, non

overlapping squares, and each node of the quadtree has either zero or four child nodes.

Nodes without child nodes may be referred to as "leaf nodes," and CUs of such leaf

nodes may include one or more PUs and/or one or more TUs. The video coder may

further partition PUs and TUs. For example, in HEVC, a residual quadtree (RQT)

represents partitioning of TUs. In HEVC, PUs represent inter-prediction data, while

TUs represent residual data. CUs that are intra-predicted include intra-prediction

information, such as an intra-mode indication.

[0042] As another example, video encoder 200 and video decoder 300 may be

configured to operate according to JEM or VVC. According to JEM or VVC, a video

coder (such as video encoder 200) partitions a picture into a plurality of coding tree

units (CTUs). Video encoder 200 may partition a CTU according to a tree structure,

WO 2020/186042 PCT/US2020/022363
11

such as a quadtree-binary tree (QTBT) structure or Multi-Type Tree (MTT) structure.

The QTBT structure removes the concepts of multiple partition types, such as the

separation between CUs, PUs, and TUs of HEVC. A QTBT structure includes two

levels: a first level partitioned according to quadtree partitioning, and a second level

partitioned according to binary tree partitioning. A root node of the QTBT structure

corresponds to a CTU. Leaf nodes of the binary trees correspond to coding units (CUs).

[0043] In an MTT partitioning structure, blocks may be partitioned using a quadtree

(QT) partition, a binary tree (BT) partition, and one or more types of triple tree (TT)

partitions. A triple tree partition is a partition where a block is split into three sub

blocks. In some examples, a triple tree partition divides a block into three sub-blocks

without dividing the original block through the center. The partitioning types in MTT

(e.g., QT, BT, and TT), may be symmetrical or asymmetrical.

[0044] In some examples, video encoder 200 and video decoder 300 may use a single

QTBT or MTT structure to represent each of the luminance and chrominance

components, while in other examples, video encoder 200 and video decoder 300 may

use two or more QTBT or MTT structures, such as one QTBT/MTT structure for the

luminance component and another QTBT/MTT structure for both chrominance

components (or two QTBT/MTT structures for respective chrominance components).

[0045] Video encoder 200 and video decoder 300 may be configured to use quadtree

partitioning per HEVC, QTBT partitioning, MTT partitioning, or other partitioning

structures. For purposes of explanation, the description of the techniques of this

disclosure is presented with respect to QTBT partitioning. However, it should be

understood that the techniques of this disclosure may also be applied to video coders

configured to use quadtree partitioning, or other types of partitioning as well.

[0046] This disclosure may use "NxN" and "N by N" interchangeably to refer to the

sample dimensions of a block (such as a CU or other video block) in terms of vertical

and horizontal dimensions, e.g., 16x16 samples or 16 by 16 samples. In general, a

16x16 CU will have 16 samples in a vertical direction (y = 16) and 16 samples in a

horizontal direction (x = 16). Likewise, an NxN CU generally has N samples in a

vertical direction and N samples in a horizontal direction, where N represents a

nonnegative integer value. The samples in a CU may be arranged in rows and columns.

Moreover, CUs need not necessarily have the same number of samples in the horizontal

direction as in the vertical direction. For example, CUs may comprise NxM samples,

where M is not necessarily equal to N.

WO 2020/186042 PCT/US2020/022363
12

[0047] Video encoder 200 encodes video data for CUs representing prediction and/or

residual information, and other information. The prediction information indicates how

the CU is to be predicted in order to form a prediction block for the CU. The residual

information generally represents sample-by-sample differences between samples of the

CU prior to encoding and the prediction block.

[0048] To predict a CU, video encoder 200 may generally form a prediction block for

the CU through inter-prediction or intra-prediction. Inter-prediction generally refers to

predicting the CU from data of a previously coded picture, whereas intra-prediction

generally refers to predicting the CU from previously coded data of the same picture.

To perform inter-prediction, video encoder 200 may generate the prediction block using

one or more motion vectors. Video encoder 200 may generally perform a motion search

to identify a reference block that closely matches the CU, e.g., in terms of differences

between the CU and the reference block. Video encoder 200 may calculate a difference

metric using a sum of absolute difference (SAD), sum of squared differences (SSD),

mean absolute difference (MAD), mean squared differences (MSD), or other such

difference calculations to determine whether a reference block closely matches the

current CU. In some examples, video encoder 200 may predict the current CU using

uni-directional prediction or bi-directional prediction.

[0049] Some examples of JEM and VVC also provide an affine motion compensation

mode, which may be considered an inter-prediction mode. In affine motion

compensation mode, video encoder 200 may determine two or more motion vectors that

represent non-translational motion, such as zoom in or out, rotation, perspective motion,

or other irregular motion types.

[0050] To perform intra-prediction, video encoder 200 may select an intra-prediction

mode to generate the prediction block. Some examples of JEM and VVC provide sixty

seven intra-prediction modes, including various directional modes, as well as planar

mode and DC mode. In general, video encoder 200 selects an intra-prediction mode

that describes neighboring samples to a current block (e.g., a block of a CU) from which

to predict samples of the current block. Such samples may generally be above, above

and to the left, or to the left of the current block in the same picture as the current block,

assuming video encoder 200 codes CTUs and CUs in raster scan order (left to right, top

to bottom).

[0051] Video encoder 200 encodes data representing the prediction mode for a current

block. For example, for inter-prediction modes, video encoder 200 may encode data

WO 2020/186042 PCT/US2020/022363
13

representing which of the various available inter-prediction modes is used, as well as

motion information for the corresponding mode. For uni-directional or bi-directional

inter-prediction, for example, video encoder 200 may encode motion vectors using

advanced motion vector prediction (AMVP) or merge mode. Video encoder 200 may

use similar modes to encode motion vectors for affine motion compensation mode.

[0052] Following prediction, such as intra-prediction or inter-prediction of a block,

video encoder 200 may calculate residual data for the block. The residual data, such as

a residual block, represents sample by sample differences between the block and a

prediction block for the block, formed using the corresponding prediction mode. Video

encoder 200 may apply one or more transforms to the residual block, to produce

transformed data in a transform domain instead of the sample domain. For example,

video encoder 200 may apply a discrete cosine transform (DCT), an integer transform, a

wavelet transform, or a conceptually similar transform to residual video data.

Additionally, video encoder 200 may apply a secondary transform following the first

transform, such as a mode-dependent non-separable secondary transform (MIDNSST), a

signal dependent transform, a Karhunen-Loeve transform (KLT), or the like. Video

encoder 200 produces transform coefficients following application of the one or more

transforms.

[0053] As discussed above, a video encoder, such as video encoder 200, may apply

various types of transforms to transform the residual data. The following is an overview

of discrete sine and cosine transforms (DCTs and DSTs). Also, the transform scheme

used in HEVC standard is briefly discussed.

[0054] Discrete sine and cosine transforms.

[0055] Transform indicates the process of deriving an alternative representation of the

input signal. Given an N-point vector x=[xo, xi,..., xN- 1 T and a set of given vectors (fo,

#1, ... , #M-il, x can be approximated or exactly represented using a linear combination

of fo, 41, ... , iM-i, which can be formulated as follows,
M-1

i=0

[0056] where i can be an approximation or equivalent of x, vectorf= [fi, f2, .., fm-i] is

called the transform coefficient vector and {o, 41, ... , #M-i} are the transform basis

vectors.

WO 2020/186042 PCT/US2020/022363
14

[0057] In the scenario of video coding, transform coefficients are roughly non

correlated and sparse, i.e., the energy of the input vector x is compacted only on a few

transform coefficients, and the remaining majority transform coefficients are typically

close to 0.

[0058] Given the specific input data, the optimal transform in terms of energy

compaction is the so-called Karhunen-Loeve transform (KLT), which uses the eigen

vectors of the covariance matrix of the input data as the transform basis vectors.

Therefore, KLT is actually a data-dependent transform and does not have a general

mathematical formulation. However, under certain assumptions, e.g., the input data

forms a first-order stationary Markov processes, it has been proved in the literature that

the corresponding KLT is actually a member of the sinusoidalfamily ofunitary

transforms. The sinusoidalfamily ofunitary transforms indicates transforms using

transform basis vectors formulated as follows:

4m(k)= A eike+B e-ike

[0059] where e is the base of the natural logarithm approximately equal to 2.71828, A,

B, and o are complex in general, and depend on the value of m.

[0060] Example transforms include the discrete Fourier, cosine, sine, and the KLT (for

first-order stationary Markov processes) are members of this sinusoidal family of

unitary transforms. According to S. A. Martucci, "Symmetric convolution and the

discrete sine and cosine transforms," IEEE Trans. Sig. Processing SP-42, 1038-1051

(1994), the complete set of discrete cosine transform (DCT) and discrete sine transform

(DST) families includes totally 16 transforms based on different types, i.e., different

values of A, B, and o, and a complete definition of the different types of DCT and DST

are given below,

[0061] Assume the input N-point vector is denoted as x--[xo, xi,..., xN-1]T anditis

transformed to another N-point transform coefficient vector denoted as y=[yo, yi,..., yN

1T by multiplying a matrix, the process of which can be further illustrated according to

one of the following transform formulation, wherein k ranges from 0 through N-1,

inclusive:

[0062] DCT Type-I (DCT-1):

2 (rmk\

Yk = _-0 Cos (7 -Wo Wi - x,

where if n = 0 or n = N - 1 i, if k 0 or k = N - 1

1, otheriwse 1 1, otheriwse

WO 2020/186042 PCT/US2020/022363
15

[0063] DCT Type-IT (DCT-2):

= N-1 2 7n-(n+0.5)-k
7kn=0 -Cos N-1 "W0 Xn,

where wo (2 ifk 0
1, otheriwse

[0064] DCT Type-III (DCT-3):

y N-1 2 (r-n-(k+0.5)
k n=0 -Cos N "w0'Xn,

where wo (2 if n 0

1, otheriwse

[0065] DCT Type-IV (DCT-4):

N-1 2 7n-(n+0.5)-(k+0.5)
k n0 -COSN

[0066] DCT Type-V (DCT-5):

Yk = - COS -xn NN-0.5

where wo = ifn 0 I2, ifk=0
1, otheriwse 1, otheriwse

[0067] DCT Type-VI (DCT-6):

Yk -m 0 Cos (7-(n+0.5).k) W1

wheewo 1,~ othrwse t1, otheriwse

10068]1DCT Type-VIIT(DCT-7):

Yk nmO W51 X0 ' ya = £ _l COS -0.5)

1(

where = ifn 0 W , ifk=N-1

1, otheriwse 1, otheriwse

[0069] DCT Type-VII (DCT-8):

_ N-1 Cos (r-(+0.5)-(k+0.5)'\
Yk -n=0 N+0.5 N+0.5

[0070] DST Type-I (DST-1):

Ak -no + N+1(

[0071] DST Type-I (DST-2):

WO2020/186042 PCT/US2020/022363
16

zN-1 T2 7-(n+0.5)-(k+1),

k: n=0 Nsin N w0'Xn,

where w0 ifk=N-1
1, otheriwse

[0072] DST Type-III (DST-3):

zN-1 T2 7-(n+1)-(k+0.5)

k =0Nn N "WO0'Xn,

where w0 2, ifn=N-1
1, otheriwse

[0073] DST Type-IV (DST-4):

=yN -1 2 . n-(n+0.5)-(k+0.5)
k n=0 -i Xn0

[0074] DST Type-V (DST-5):

zN-1 2 . r-(n+1)-(k+1)
Yk n=0 .5 k. N+0.5

[0075] DST Type-VI (DST-6):

zN-1 2 . r-(n+0.5).(k+1)
Yk n=0 .5 k. N+0.5

[0076] DST Type-VII (DST-7):

zN-1 2 . r-(n+1).(k+0.5)
Yk n=0 .5 k. N+0.5

[0077] DST Type-VIII (DST-8):

Y N-1 2 -(n+0.5).(k+0.5))
N-.5 N-0.5w

{if n =N - 1 .f-N
where w0 = , , ifk=N

1, otherwise 1, otheriwse

[0078] The transform type is specified by the mathematical formulation of the

transform basis function, e.g., 4-point DST-VII and 8-point DST-VII have the same

transform type, regardless the value of N.

[0079] Without loss of generality, all the above transform types can be represented

using the below generalized formulation:

m 0 Tm,n Xn,

[0080] where T is the transform matrix specified by the definition of one certain

transform, e.g., DCT Type-I~ DCT Type-VIII, or DST Type-I~ DST Type-VIII, and

WO 2020/186042 PCT/US2020/022363
17

the row vectors of T, e.g., [Ti,o, Tii, Ti,2, ... , TiN-] are the i* transform basis vectors. A

transform applied on the N-point input vector is called an N-point transform.

[0081] It is also noted that, the above transform formulations, which are applied on the

1-D input data x, can be represented in matrix multiplication form as below

y=T-x

[0082] where T indicates the transform matrix, x indicates the input data vector, and y

indicates the output transform coefficients vector.

[0083] Transform for 2-Dimensional (2-D) input data.

[0084] The transforms as introduced in the previous section are applied on 1-D input

data, and transforms can be also extended for 2-D input data sources. Supposing Xis an

input MxN data array. The typical methods of applying transform on 2-D input data

include the separable and non-separable 2-D transforms.

[0085] A separable 2-D transform applies 1-D transforms for the horizontal and vertical

vectors of X sequentially, formulated as below:

Y= C -X -RT

[0086] where C and R denotes the given MxM and NxN transform matrices,

respectively. From the formulation, it can be seen that C applies 1-D transforms for the

column vectors of X, while R applies 1-D transforms for the row vectors of X. In the

later part of this document, for simplicity denote C and R as left (vertical) and right

(horizontal) transforms and they both form a transform pair. There are cases when C is

equal to R and is an orthogonal matrix. In such a case, the separable 2-D transform is

determined by just one transform matrix.

[0087] A non-separable 2-D transform first reorganized all the elements of X into a

single vector, namely X', by doing the following mathematical mapping as an example:

X'i-N+j) =XQ,

[0088] Then a 1-D transform T' is applied for X' as below:

Y = T' X

[0089] where T' is an (M*N)x(M*N) transform matrix.

[0090] In video coding, separable 2-D transforms may be applied as it may utilize much

less operation (addition, multiplication) counts as compared to 1-D transform.

[0091] In conventional video codecs, such as H.264/AVC, an integer approximation of

the 4-point and 8-point Discrete Cosine Transform (DCT) Type-II is always applied for

both Intra and Inter prediction residual. To better accommodate the various statistics of

WO 2020/186042 PCT/US2020/022363
18

residual samples, more flexible types of transforms other than DCT Type-II are utilized

in newer video codecs. For example, in HEVC, an integer approximation of the 4-point

Type-VII Discrete Sine Transform (DST) is utilized for Intra prediction residual, which

is both theoretically proved and experimentally validated that DST Type-VII is more

efficient than DCT Type-II for residuals vectors generated along the Intra prediction

directions, e.g., DST Type-VII is more efficient than DCT Type-II for row residual

vectors generated by the horizontal Intra prediction direction. In HEVC, an integer

approximation of 4-point DST Type-VII is applied only for 4x4 luma Intra prediction

residual blocks. The 4-point DST-VII used in HEVC is shown below,

[0092] 4x4 DST-VII:
{29, 55, 74, 84}

{74, 74, 0,-74}

{84,-29,-74, 55}

{55,-84, 74,-29}

[0093] In HEVC, for residual blocks that are not 4x4 luma Intra prediction residual

blocks, integer approximations of the 4-point, 8-point, 16-point and 32-point DCT

Type-II are also applied, as shown below:

[0094] 4-point DCT-II:
{64, 64, 64, 64}

{83, 36, -36, -83}

{64, -64, -64, 64}

{36, -83, 83, -36}

[0095] 8-point DCT-II:
{64, 64, 64, 64, 64, 64, 64, 64}

{89, 75, 50, 18,-18,-50,-75,-89}

{83, 36,-36,-83,-83,-36, 36, 83}

{75,-18,-89,-50, 50, 89, 18,-75}

{64,-64,-64, 64, 64,-64,-64, 64}

{50,-89, 18, 75,-75,-18, 89,-50}

{36,-83, 83,-36,-36, 83,-83, 36}

{18,-50, 75,-89, 89,-75, 50,-18}

[0096] 16-point DCT-II:
{64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64}

{90, 87, 80, 70, 57, 43, 25, 9, -9,-25,-43,-57,-70,-80,-87,-90}

{89, 75, 50, 18,-18,-50,-75,-89,-89,-75,-50,-18, 18, 50, 75, 89}

{87, 57, 9,-43,-80,-90,-70,-25, 25, 70, 90, 80, 43, -9,-57,-87}

{83, 36,-36,-83,-83,-36, 36, 83, 83, 36,-36,-83,-83,-36, 36, 83}

{80, 9,-70,-87,-25, 57, 90, 43,-43,-90,-57, 25, 87, 70, -9,-80}

{?5,-18,-89,-50, 50, 89, 18,-75,-75, 18, 89, 50,-50,-89,-18, 75}

{70,-43,-87, 9, 90, 25,-80,-57, 57, 80,-25,-90, -9, 87, 43,-70}

{64,-64,-64, 64, 64,-64,-64, 64, 64,-64,-64, 64, 64,-64,-64, 64}

{57,-80,-25, 90, -9,-87, 43, 70,-70,-43, 87, 9,-90, 25, 80,-5?}

{50,-89, 18, 75,-75,-18, 89,-50,-50, 89,-18,-75, 75, 18,-89, 50}

WO2020/186042 PCT/US2020/022363
19

{43,-90, 57, 25,-87, 70, 9,-80, 80, -9,-70, 87,-25,-57, 90,-43}

{36,-83, 83,-36,-36, 83,-83, 36, 36,-83, 83,-36,-36, 83,-83, 36}

{25,-70, 90,-80, 43, 9,-57, 87,-87, 57, -9,-43, 80,-90, 70,-25}

{18,-50, 75,-89, 89,-75, 50,-18,-18, 50,-75, 89,-89, 75,-50, 18}

{9, -25, 43,-57, 70,-80, 87,-90, 90,-87, 80,-70, 57,-43, 25, -9}

[0097] 32-point DCT-II:
{64,641

{90,90,88,85,82,78,73,67,61,54,46,38,31,22,13,4,-4,-13,-22,-31,-38,-46,-54,-61,-67,-73,-78,-82,-85,-88,-90,-90

{90,87,80,70,57,43,25,9,-9,-25,-43,-57,-70,-80,-87,-90,-90,-87,-80,-70,-57,-43,-25,-9,9,25,43,57,7 0,80,87 ,90

{90,82,67,46,22,-4,-31,-54,-73,-85,-90,-88,-78,-61,-38,-13,13,38,61,78,88,90,85,73,54,31,4,-22,-46,-67,-82,-90

{89,5,50,18,-18,-50,-75,-89,--8,-75,-,-18,18,50,75,89,89,75,50,18,-18,-50,-75,-89,-89,-5,-50,-18,18,50,75,891

{87,57,9,-43,-80,-90,-70,-25,25,70,90,80,43,-9,-57,-87,-87,-57,-9,43,80,90,70,25,-25,-70,-90,-80,-43,9,57 ,871

{85,46,-13,-67,-90,-73,-22,38,82,88,54,-4,-61,-90,-78,-31,31,78,90,61,4,-54,-88,-82,-38,22,73,90,67,13,-46,-85

{83,36,-36,-83,-83,-36,36,83,83,36,-36,-83,-83,-36,36,83,83,36,-36,-83,-83,-36,36,, 83,36,-36,-83,-83,-36,36,831

{82,22,-54,-90,-61,13,?8,85,31,-46,-90,-6?,4,?3,88,38,-38,-88,-?3,-4,6?,90,46,-31,-85,-?8,-13,61,90,54,-22,-82}

{80,9,-70,-87,-25,57,90,43,-43,-90,-57,25,87,70,-9,-80,-80,-9,70,87,25,-57,-90,-43,43,90,57,-25,-87,-7 0,9,801

{78,-4,-82,-73,13,85,67,-22,-88,-61,31,90,54,-38,-90,-46,46,90,38,-54,-90,-31,61,88,22,-67,-85,-13,73,82,4,-781

{?5,-18,-89,-SO,50,89,18,-75,-75,18,89,50,-50,-89,-18,75,75,-18,-89,-SO,50,89,18,-75,-75,18,89,50,-50,-89,-18,51

{73,-31,-90,-22,78,67,-38,-90,-13,82,61,-46,-88,-4,85,54,-54,-85,4,88,46,-61,-82,13,90,38,-67,-78,22,90,31,-731

70,-43,-87,9,90,25,-80,-57,57,80,-25,-90,-9,87,43,-70,-70,43,87,-9,-90,-25,80,57,-57,-80,25,90,9,-87,-43,701

{6?,-54,-?8,38,85,-22,-90,4,90,13,-88,-31,82,46,-?3,-61,61,?3,-46,-82,31,88,-13,-90,-4,90,22,-85,-38,?8,54,-6?}

64,-64,-64,64,64,-64,-64,64,64,-64,-64,64,64,-64,-64,64,64,-64,-64,64,64,-64,-64,64,-64,-64,-64,64,64,-64,-6414}

61,-73,-46,82,31,-88,-13,90,-4,-90,22,85,-38,-78,54,67,-67,-54,78,38,-85,-22,90,4,-90,13,88,-31,-82,46,73,-611

{57,-80,-25,90,-9,-87,43,70,-70,-43,87,9,-90,25,80,-57,-57,80,25,-90,9,87,-43,-70,70,43,-87,-9,90,-25,-80,571

{54,-85,-4,88,-46,-61,82,13,-90,38,67,-78,-22,90,-31,-73,73,31,-90,22,78,-67,-38,90,-13,-82,61,46,-88,4,85,-541

{50,-89,18,75,-75,-18,89,-50,-50,89,-18,-75,75,18,-89,50,50,-89,18,75,-5,-18,89,-50,-50,89,-18,-5,5,18,-89,50

{46,-90,38,54,-90,31,61,-88,22,67,-85,13,73,-82,4,78,-78,-4,82,-73,-13,85,-67,-22,88,-61,-31,90,-54,-38,90,-461

{43,-90,57,25,-87,70,9,-80,80,-9,-70,87,-25,-57,90,-43,-43,90,-57,-25,87,-70,-9,80,-80,9,70,-87 ,25,57,-90,431

{38,-88,73,-4,-67,90,-46,-31,85,-78,13,61,-90,54,22,-82,82,-22,-54,90,-61,-13,78,-85,31,46,-90,67,4,-73,88,-381

36,-83,83,-36,-36,83,-83,36,36,-83,83,-36,-36,83,-83,36,36,-83,83,-36,-36,83,-83,36, 36,-83,83,-36,-36,83,-83,361

{31,-78,90,-61,4,54,-88,82,-38,-22,73,-90,67,-13,-46,85,-85,46,13,-67,90,-73,22,38,-82,88,-54,-4,61,-90,78,-311

{25,-70,90,-80,43,9,-57,87,-87,57,-9,-43,80,-90,70,-25,-25,70,-90,80,-43,-9,57,-87,87,-57,9,43,-80,90,-7 0,251

22,-61,85,-90,73,-38,-4,46,-78,90,-82,54,-13,-31,67,-88,88,-67,31,13,-54,82,-90,78,-46,4,38,-73,90,-85,61,-221

118,-S,?5,-89,89,-?5,50,-18,-18,50,-?5,89,-89,?5,-50,18,18,-50,?5,-89,89,-?,50,-18,-18,50,-?,89,-89,?,-5,18

13,-38,61,-78,88,-90,85,-73,54,-31,4,22,-46,67,-82,90,-90,82,-67,46,-22,-4,31,-54,73,-85,90,-88,78,-61,38,-131

{9,-25,43,-57,70,-80,87,-90,90,-87,80,-70,57,-43,25,-9,-9,25,-43,57,-70,80,-87,90,-90,87,-80,70,-57,43,-25,91

{4,-13,22,-31,38,-46,54,-61,67,-73,78,-82,85,-88,90,-90,90,-90,88,-85,82,-78,73,-67,61,-54,46,-38,31,-22,13,-41

[0098] Transform scheme based on residual quadtree in HEVC.

[0099] To adapt the various characteristics of the residual blocks, a transform coding

structure using the residual quadtree (RQT) is applied in HEVC, which is briefly

described in http://www.hhi.fraunhofer.de/fields-of-competence/image

processing/research-groups/image-video-coding/hevc-high-efficiency-video

coding/transform-coding-using-the-residual-quadtree-rt.html. In RQT, each picture is

divided into coding tree units (CTU), which are coded in raster scan order for a specific

tile or slice. A CTU is a square block and represents the root of a quadtree, i.e., the

coding tree. The CTU size may range from 8x8 to 64x64 luma samples, but typically

64x64 is used. Each CTU can be further split into smaller square blocks called coding

units (CUs). After the CTU is split recursively into CUs, each CU is further divided into

prediction units (PU) and transform units (TU).

[0100] The partitioning of a CU into TUs may be carried out recursively based on a

quadtree approach, therefore the residual signal of each CU is coded by a tree structure

WO 2020/186042 PCT/US2020/022363
20

namely, the residual quadtree (RQT). The RQT allows TU sizes from 4x4 up to 32x32

luma samples. FIG. 2C shows an example where a CU includes 10 TUs, labeled with

the letters a to j, and the corresponding block partitioning. Each node of the RQT is

actually a transform unit (TU). The individual TUs may be processed in depth-first tree

traversal order, which is illustrated in the figure as alphabetical order, which follows a

recursive Z-scan with depth-first traversal.

[0101] The quadtree approach enables the adaptation of the transform to the varying

space-frequency characteristics of the residual signal. Typically, larger transform block

sizes, which have larger spatial support, provide better frequency resolution. However,

smaller transform block sizes, which have smaller spatial support, may provide better

spatial resolution. The trade-off between the two, spatial and frequency resolutions,

may be chosen by the encoder mode decision, for example based on rate-distortion

optimization technique. The video coder may perform a rate-distortion optimization

technique to calculate a weighted sum of coding bits and reconstruction distortion, i.e.,

the rate-distortion cost, for each coding mode (e.g., a specific RQT splitting structure),

and select the coding mode with least rate-distortion cost as the best mode.

[0102] Three parameters may be defined in the RQT: the maximum depth of the tree,

the minimum allowed transform size and the maximum allowed transform size. The

minimum and maximum transform sizes can vary within the range from 4x4 to 32x32

samples, which correspond to the supported block transforms mentioned in the previous

paragraph. The maximum allowed depth of the RQT restricts the number of TUs. A

maximum depth equal to zero means that a CB cannot be split any further if each

included TB reaches the maximum allowed transform size, e.g., 32x32.

[0103] All these parameters interact and influence the RQT structure. Consider a case,

in which the root CB size is 64x64, the maximum depth is equal to zero and the

maximum transform size is equal to 32x32. In this case, the CB has to be partitioned at

least once, since otherwise it would lead to a 64x64 TB, which is not allowed. The RQT

parameters, i.e. maximum RQT depth, minimum and maximum transform size, are

transmitted in the bitstream at the sequence parameter set level. Regarding the RQT

depth, different values can be specified and signaled for intra and inter coded CUs.

[0104] The quadtree transform is applied for both Intra and Inter residual blocks.

Typically the DCT-II transform of the same size of the current residual quadtree

partition is applied for a residual block. However, if the current residual quadtree block

is 4x4 and is generated by Intra prediction, the above 4x4 DST-VII transform is applied.

WO 2020/186042 PCT/US2020/022363
21

[0105] In HEVC, larger size transforms, e.g., 64x64 transform are not adopted mainly

due to its limited benefit considering and relatively high complexity for relatively

smaller resolution videos.

[0106] As noted above, following any transforms to produce transform coefficients,

video encoder 200 may perform quantization of the transform coefficients.

Quantization generally refers to a process in which transform coefficients are quantized

to possibly reduce the amount of data used to represent the coefficients, providing

further compression. By performing the quantization process, video encoder 200 may

reduce the bit depth associated with some or all of the coefficients. For example, video

encoder 200 may round an n-bit value down to an m-bit value during quantization,

where n is greater than m. In some examples, to perform quantization, video encoder

200 may perform a bitwise right-shift of the value to be quantized.

[0107] Following quantization, video encoder 200 may scan the transform coefficients,

producing a one-dimensional vector from the two-dimensional matrix including the

quantized transform coefficients. The scan may be designed to place higher energy (and

therefore lower frequency) coefficients at the front of the vector and to place lower

energy (and therefore higher frequency) transform coefficients at the back of the vector.

In some examples, video encoder 200 may utilize a predefined scan order to scan the

quantized transform coefficients to produce a serialized vector, and then entropy encode

the quantized transform coefficients of the vector. In other examples, video encoder 200

may perform an adaptive scan. After scanning the quantized transform coefficients to

form the one-dimensional vector, video encoder 200 may entropy encode the one

dimensional vector, e.g., according to context-adaptive binary arithmetic coding

(CABAC). Video encoder 200 may also entropy encode values for syntax elements

describing metadata associated with the encoded video data for use by video decoder

300 in decoding the video data.

[0108] To perform CABAC, video encoder 200 may assign a context within a context

model to a symbol to be transmitted. The context may relate to, for example, whether

neighboring values of the symbol are zero-valued or not. The probability determination

may be based on a context assigned to the symbol.

[0109] Video encoder 200 may further generate syntax data, such as block-based syntax

data, picture-based syntax data, and sequence-based syntax data, to video decoder 300,

e.g., in a picture header, a block header, a slice header, or other syntax data, such as a

sequence parameter set (SPS), picture parameter set (PPS), or video parameter set

WO 2020/186042 PCT/US2020/022363
22

(VPS). Video decoder 300 may likewise decode such syntax data to determine how to

decode corresponding video data.

[0110] In this manner, video encoder 200 may generate a bitstream including encoded

video data, e.g., syntax elements describing partitioning of a picture into blocks (e.g.,

CUs) and prediction and/or residual information for the blocks. Ultimately, video

decoder 300 may receive the bitstream and decode the encoded video data.

[0111] In general, video decoder 300 performs a reciprocal process to that performed by

video encoder 200 to decode the encoded video data of the bitstream. For example,

video decoder 300 may decode values for syntax elements of the bitstream using

CABAC in a manner substantially similar to, albeit reciprocal to, the CABAC encoding

process of video encoder 200. The syntax elements may define partitioning information

of a picture into CTUs, and partitioning of each CTU according to a corresponding

partition structure, such as a QTBT structure, to define CUs of the CTU. The syntax

elements may further define prediction and residual information for blocks (e.g., CUs)

of video data.

[0112] The residual information may be represented by, for example, quantized

transform coefficients. Video decoder 300 may inverse quantize and inverse transform

the quantized transform coefficients of a block to reproduce a residual block for the

block. Video decoder 300 uses a signaled prediction mode (intra- or inter-prediction)

and related prediction information (e.g., motion information for inter-prediction) to form

a prediction block for the block. Video decoder 300 may then combine the prediction

block and the residual block (on a sample-by-sample basis) to reproduce the original

block. Video decoder 300 may perform additional processing, such as performing a

deblocking process to reduce visual artifacts along boundaries of the block.

[0113] In accordance with the techniques of this disclosure, a video coder (i.e., video

encoder 200 and/or video decoder 300) may derive, for a current coefficient block of a

video block, a transform type from a plurality of transform types. The video coder may

transform, using the selected transform type, the current transform block (e.g.,

coefficient block) to obtain a block of reconstructed residual data for the video block;

and reconstruct, based on the reconstructed residual data for the video block, the video

block.

[0114] The video coder may infer the transform type based on factors other than an

express signaling of the transform type. As such, the video coder may omit coding of a

syntax element that expressly identifies the transform type for a current block. Some

WO 2020/186042 PCT/US2020/022363
23

examples of factors from-which the video coder may infer the transform type include, a

size of the current block (e.g., a height and/or a width of the current block), whether the

current block is partitioned using intra-subblock partitioning (ISP), and an intra mode of

the current block. The video coder may infer the transform type based on any

combination of factors. For instance, the video coder may infer the transform type for a

current transform block of a current video block based on a size of the current transform

block and whether the current video block is partitioned using ISP. In at least some of

such examples, the video coder may infer the transform type for the current transform

block regardless of an intra prediction mode used to predict the current video block.

[0115] The video coder may select the transform type from a plurality of transform

types that includes one or more discrete cosine transforms (DCTs) and one or more

discrete sine transforms (DSTs). As discussed in further detail below, the one or more

DCTs may include one or more of a DCT-1, a DCT-2, a DCT-3, a DCT-4, a DCT-5, a

DCT-6, a DCT-7, and a DCT-8, and/or the one or more DSTs may include one or more

of a DST-1, a DST-2, a DST-3, a DST-4, a DST-5, a DST-6, a DST-7, and a DST-8.

[0116] As discussed above, the video coder may infer the transform type for a current

transform block based on a size of the current transform block. For instance, the video

coder may select a first transform type for the current transform block responsive to

determining that the size of the current transform block satisfies a size threshold and

select a second transform type for the current transform block responsive to determining

that the size of the current transform block does not satisfy the size threshold. In some

examples, the video coder may determine whether the size of the current transform

block satisfies the size threshold by comparing the size of the current transform block to

a single threshold value. In other examples, the video coder may determine whether the

size of the current transform block satisfies the size threshold by determining whether

the size of the current transform block is greater than a lower bound (e.g., 2, 4, 6) and

less than an upper bound (e.g., 8, 16, 32). If the size of the current transform block is

greater than the lower bound and less than the upper bound, the video coder may

determine that the size of the current transform block satisfies the size threshold.

Similarly, if the size of the current transform block is less than the lower bound or

greater than the upper bound, the video coder may determine that the size of the current

transform block does not satisfy the size threshold.

[0117] Where the current video block is coding unit (CU), the CU may be partitioned

into a plurality of sub-partitions using ISP. Each of the sub-partitions may have an

WO 2020/186042 PCT/US2020/022363
24

associated transform block. As such, where the CU is partitioned using ISP, a plurality

of transform blocks may be associated with the CU. For instance, a 16x16 CU may be

vertically partitioned into four partitions of size 4x16, each of which is associated with a

transform block of size 4x16.

[0118] As discussed above, the video coder may infer the transform type for a current

transform block of a current video block based on whether the current video block is

partitioned using ISP and based on a size of the current transform block. As one

example, responsive to determining that the size of the current transform block satisfies

a size threshold and that the current video block is partitioned using ISP, the video coder

may select a particular DST of the one or more DSTs (e.g., DST-7) as the transform

type for the current transform block. As another example, responsive to determining

that the size of the current transform block does not satisfy the size threshold and that

the current video block is partitioned using ISP, the video coder may select a particular

DCT of the one or more DCTs (e.g., DCT-2) as the transform type for the current

transform block. In either of the aforementioned examples, the video coder may select

the transform type comprises selecting the transform type regardless of an intra

prediction mode used to predict the current video block (e.g., regardless of the angular,

DC, or planar mode used to intra predict the current video).

[0119] In some examples, the video coder may always perform the transform type

inference. In other examples, the video coder may perform the transform type inference

under certain conditions. For instance, the video coder may infer the transform type for

the current transform block responsive to determining that multiple transform selection

(MTS) is enabled for the current video block. The video coder may, in some examples,

determine whether MTS is enabled for the current video block based on the values of

one or more syntax elements (e.g., spsexplicit mtsintra_enabledflag).

[0120] The video coder may, in some examples, infer a transform type for performing

horizontal transformations (i.e., a transform type for horizontal use) and infer a

transform type for performing vertical transformations (i.e., a transform type for vertical

use). The video coder may infer the transform types for horizontal and vertical use

using a common algorithm. For instance, the video coder may infer the transform type

for horizontal use based on whether a width of a current transform block satisfies a

width size threshold and whether a current video block that includes the current

transform block is partitioned using ISP, and infer the transform type for vertical use

based on whether a height of the current transform block satisfies a height size threshold

WO 2020/186042 PCT/US2020/022363
25

and whether the current video block that includes the current transform block is

partitioned using ISP. In some examples, the video coder may use the same size

threshold for both horizontal and vertical transform type inferences. For instance,

where the size thresholds include an upper bound and a lower bound, the upper and

lower bounds of the width size threshold may be equal to the upper and lower bounds of

the height size threshold. As one specific example, the lower bound of both width and

height thresholds may be 4 and the upper bound of both width and height thresholds

may be 16.

[0121] In some examples, to derive (i.e., infer) the transform type for the current

coefficient block, the video coder may select the DST-7 transform to transform any row

or column with less than or equal to a threshold (e.g., 8, 16, 32) number of samples

(e.g., luma samples) and select the DCT-2 transform to transform any row or column

with greater than the threshold number of samples.

[0122] Relative to VVC Draft 4 (e.g., JVET-M1001), an example of the proposed

change can be achieved by replacing the Table 8-15 with the following:

trTypeHor = (nThW >= 2 && nThW <= 16) ? 1 :0

trTypeVer = (nTbH >= 2 && nTbH <= 16) ? 1 :0

where "0" and "1" denote DCT-2 and DST-7 respectively.

[0123] Blocks partitioned using ISP may be prohibited from having rows/columns with

only two samples. As such, this disclosure proposes a 2-point DST-7. The entries of

the 2-point DST-7 matrix may be as follows (which only introduces 4-bytes of additonal

memory):

{ 48 77}

{ 77 -48}

[0124] Alternatively, an example of the proposed change can be achieved by modifying

VVC Draft 4 as follows:

trTypeHor = (nThW >= 4 && nThW <= 16 && nTb W <= nTbH) ? 1 : 0 (8-1029)

trTypeVer=(nThH>=4 && nTbH<=16 && nTbH<=nTbW)?1:0 (8-1030)

where "0" and "1" denote DCT-2 and DST-7 respectively and the changes (i.e., deleted

portions) are in underline and italics.

[0125] This disclosure may generally refer to "signaling" certain information, such as

syntax elements. The term "signaling" may generally refer to the communication of

values syntax elements and/or other data used to decode encoded video data. That is,

WO 2020/186042 PCT/US2020/022363
26

video encoder 200 may signal values for syntax elements in the bitstream. In general,

signaling refers to generating a value in the bitstream. As noted above, source device

102 may transport the bitstream to destination device 116 substantially in real time, or

not in real time, such as might occur when storing syntax elements to storage device 112

for later retrieval by destination device 116.

[0126] FIGS. 2A and 2B are conceptual diagram illustrating an example quadtree

binary tree (QTBT) structure 130, and a corresponding coding tree unit (CTU) 132. The

solid lines represent quadtree splitting, and dotted lines indicate binary tree splitting. In

each split (i.e., non-leaf) node of the binary tree, one flag is signaled to indicate which

splitting type (i.e., horizontal or vertical) is used, where 0 indicates horizontal splitting

and 1 indicates vertical splitting in this example. For the quadtree splitting, there is no

need to indicate the splitting type, since quadtree nodes split a block horizontally and

vertically into 4 sub-blocks with equal size. Accordingly, video encoder 200 may

encode, and video decoder 300 may decode, syntax elements (such as splitting

information) for a region tree level of QTBT structure 130 (i.e., the solid lines) and

syntax elements (such as splitting information) for a prediction tree level of QTBT

structure 130 (i.e., the dashed lines). Video encoder 200 may encode, and video

decoder 300 may decode, video data, such as prediction and transform data, for CUs

represented by terminal leaf nodes of QTBT structure 130.

[0127] In general, CTU 132 of FIG. 2B may be associated with parameters defining

sizes of blocks corresponding to nodes of QTBT structure 130 at the first and second

levels. These parameters may include a CTU size (representing a size of CTU 132 in

samples), a minimum quadtree size (MinQTSize, representing a minimum allowed

quadtree leaf node size), a maximum binary tree size (MaxBTSize, representing a

maximum allowed binary tree root node size), a maximum binary tree depth

(MaxBTDepth, representing a maximum allowed binary tree depth), and a minimum

binary tree size (MinBTSize, representing the minimum allowed binary tree leaf node

size).

[0128] The root node of a QTBT structure corresponding to a CTU may have four child

nodes at the first level of the QTBT structure, each of which may be partitioned

according to quadtree partitioning. That is, nodes of the first level are either leaf nodes

(having no child nodes) or have four child nodes. The example of QTBT structure 130

represents such nodes as including the parent node and child nodes having solid lines

for branches. If nodes of the first level are not larger than the maximum allowed binary

WO 2020/186042 PCT/US2020/022363
27

tree root node size (MaxBTSize), they can be further partitioned by respective binary

trees. The binary tree splitting of one node can be iterated until the nodes resulting from

the split reach the minimum allowed binary tree leaf node size (MinBTSize) or the

maximum allowed binary tree depth (MaxBTDepth). The example of QTBT structure

130 represents such nodes as having dashed lines for branches. The binary tree leaf

node is referred to as a coding unit (CU), which is used for prediction (e.g., intra-picture

or inter-picture prediction) and transform, without any further partitioning. As

discussed above, CUs may also be referred to as "video blocks" or "blocks."

[0129] In one example of the QTBT partitioning structure, the CTU size is set as

128x128 (luma samples and two corresponding 64x64 chroma samples), the

MinQTSize is set as 16x16, the MaxBTSize is set as 64x64, the MinBTSize (for both

width and height) is set as 4, and the MaxBTDepth is set as 4. The quadtree partitioning

is applied to the CTU first to generate quad-tree leaf nodes. The quadtree leaf nodes

may have a size from 16x16 (i.e., the MinQTSize) to 128x128 (i.e., the CTU size). If

the leaf quadtree node is 128x128, it will not be further split by the binary tree, since the

size exceeds the MaxBTSize (i.e., 64x64, in this example). Otherwise, the leaf quadtree

node will be further partitioned by the binary tree. Therefore, the quadtree leaf node is

also the root node for the binary tree and has the binary tree depth as 0. When the

binary tree depth reaches MaxBTDepth (4, in this example), no further splitting is

permitted. When the binary tree node has width equal to MinBTSize (4, in this

example), it implies no further horizontal splitting is permitted. Similarly, a binary tree

node having a height equal to MinBTSize implies no further vertical splitting is

permitted for that binary tree node. As noted above, leaf nodes of the binary tree are

referred to as CUs, and are further processed according to prediction and transform

without further partitioning.

[0130] FIG. 3 is a block diagram illustrating an example video encoder 200 that may

perform the techniques of this disclosure. FIG. 3 is provided for purposes of

explanation and should not be considered limiting of the techniques as broadly

exemplified and described in this disclosure. For purposes of explanation, this

disclosure describes video encoder 200 in the context of video coding standards such as

the HEVC video coding standard and the H.266 video coding standard in development.

However, the techniques of this disclosure are not limited to these video coding

standards, and are applicable generally to video encoding and decoding.

WO 2020/186042 PCT/US2020/022363
28

[0131] In the example of FIG. 3, video encoder 200 includes video data memory 230,

mode selection unit 202, residual generation unit 204, transform processing unit 206,

quantization unit 208, inverse quantization unit 210, inverse transform processing unit

212, reconstruction unit 214, filter unit 216, decoded picture buffer (DPB) 218, and

entropy encoding unit 220. Any or all of video data memory 230, mode selection unit

202, residual generation unit 204, transform processing unit 206, quantization unit 208,

inverse quantization unit 210, inverse transform processing unit 212, reconstruction unit

214, filter unit 216, DPB 218, and entropy encoding unit 220 may be implemented in

one or more processors or in processing circuitry. Moreover, video encoder 200 may

include additional or alternative processors or processing circuitry to perform these and

other functions.

[0132] Video data memory 230 may store video data to be encoded by the components

of video encoder 200. Video encoder 200 may receive the video data stored in video

data memory 230 from, for example, video source 104 (FIG. 1). DPB 218 may act as a

reference picture memory that stores reference video data for use in prediction of

subsequent video data by video encoder 200. Video data memory 230 and DPB 218

may be formed by any of a variety of memory devices, such as dynamic random access

memory (DRAM), including synchronous DRAM (SDRAM), magnetoresistive RAM

(MRAM), resistive RAM (RRAM), or other types of memory devices. Video data

memory 230 and DPB 218 may be provided by the same memory device or separate

memory devices. In various examples, video data memory 230 may be on-chip with

other components of video encoder 200, as illustrated, or off-chip relative to those

components.

[0133] In this disclosure, reference to video data memory 230 should not be interpreted

as being limited to memory internal to video encoder 200, unless specifically described

as such, or memory external to video encoder 200, unless specifically described as such.

Rather, reference to video data memory 230 should be understood as reference memory

that stores video data that video encoder 200 receives for encoding (e.g., video data for

a current block that is to be encoded). Memory 106 of FIG. 1 may also provide

temporary storage of outputs from the various units of video encoder 200.

[0134] The various units of FIG. 3 are illustrated to assist with understanding the

operations performed by video encoder 200. The units may be implemented as fixed

function circuits, programmable circuits, or a combination thereof. Fixed-function

circuits refer to circuits that provide particular functionality, and are preset on the

WO 2020/186042 PCT/US2020/022363
29

operations that can be performed. Programmable circuits refer to circuits that can

programmed to perform various tasks, and provide flexible functionality in the

operations that can be performed. For instance, programmable circuits may execute

software or firmware that cause the programmable circuits to operate in the manner

defined by instructions of the software or firmware. Fixed-function circuits may

execute software instructions (e.g., to receive parameters or output parameters), but the

types of operations that the fixed-function circuits perform are generally immutable. In

some examples, the one or more of the units may be distinct circuit blocks (fixed

function or programmable), and in some examples, the one or more units may be

integrated circuits.

[0135] Video encoder 200 may include arithmetic logic units (ALUs), elementary

function units (EFUs), digital circuits, analog circuits, and/or programmable cores,

formed from programmable circuits. In examples where the operations of video

encoder 200 are performed using software executed by the programmable circuits,

memory 106 (FIG. 1) may store the object code of the software that video encoder 200

receives and executes, or another memory within video encoder 200 (not shown) may

store such instructions.

[0136] Video data memory 230 is configured to store received video data. Video

encoder 200 may retrieve a picture of the video data from video data memory 230 and

provide the video data to residual generation unit 204 and mode selection unit 202.

Video data in video data memory 230 may be raw video data that is to be encoded.

[0137] Mode selection unit 202 includes a motion estimation unit 222, motion

compensation unit 224, and an intra-prediction unit 226. Mode selection unit 202 may

include additional functional units to perform video prediction in accordance with other

prediction modes. As examples, mode selection unit 202 may include a palette unit, an

intra-block copy unit (which may be part of motion estimation unit 222 and/or motion

compensation unit 224), an affine unit, a linear model (LM) unit, or the like.

[0138] Mode selection unit 202 generally coordinates multiple encoding passes to test

combinations of encoding parameters and resulting rate-distortion values for such

combinations. The encoding parameters may include partitioning of CTUs into CUs,

prediction modes for the CUs, transform types for residual data of the CUs, quantization

parameters for residual data of the CUs, and so on. Mode selection unit 202 may

ultimately select the combination of encoding parameters having rate-distortion values

that are better than the other tested combinations.

WO 2020/186042 PCT/US2020/022363
30

[0139] Video encoder 200 may partition a picture retrieved from video data memory

230 into a series of CTUs, and encapsulate one or more CTUs within a slice. Mode

selection unit 210 may partition a CTU of the picture in accordance with a tree

structure, such as the QTBT structure or the quad-tree structure of HEVC described

above. As described above, video encoder 200 may form one or more CUs from

partitioning a CTU according to the tree structure. Such a CU may also be referred to

generally as a "video block" or "block."

[0140] In general, mode selection unit 202 also controls the components thereof (e.g.,

motion estimation unit 222, motion compensation unit 224, and intra-prediction unit

226) to generate a prediction block for a current block (e.g., a current CU, or in HEVC,

the overlapping portion of a PU and a TU). For inter-prediction of a current block,

motion estimation unit 222 may perform a motion search to identify one or more closely

matching reference blocks in one or more reference pictures (e.g., one or more

previously coded pictures stored in DPB 218). In particular, motion estimation unit 222

may calculate a value representative of how similar a potential reference block is to the

current block, e.g., according to sum of absolute difference (SAD), sum of squared

differences (SSD), mean absolute difference (MAD), mean squared differences (MSD),

or the like. Motion estimation unit 222 may generally perform these calculations using

sample-by-sample differences between the current block and the reference block being

considered. Motion estimation unit 222 may identify a reference block having a lowest

value resulting from these calculations, indicating a reference block that most closely

matches the current block.

[0141] Motion estimation unit 222 may form one or more motion vectors (MVs) that

defines the positions of the reference blocks in the reference pictures relative to the

position of the current block in a current picture. Motion estimation unit 222 may then

provide the motion vectors to motion compensation unit 224. For example, for uni

directional inter-prediction, motion estimation unit 222 may provide a single motion

vector, whereas for bi-directional inter-prediction, motion estimation unit 222 may

provide two motion vectors. Motion compensation unit 224 may then generate a

prediction block using the motion vectors. For example, motion compensation unit 224

may retrieve data of the reference block using the motion vector. As another example,

if the motion vector has fractional sample precision, motion compensation unit 224 may

interpolate values for the prediction block according to one or more interpolation filters.

Moreover, for bi-directional inter-prediction, motion compensation unit 224 may

WO 2020/186042 PCT/US2020/022363
31

retrieve data for two reference blocks identified by respective motion vectors and

combine the retrieved data, e.g., through sample-by-sample averaging or weighted

averaging.

[0142] As another example, for intra-prediction, or intra-prediction coding, intra

prediction unit 226 may generate the prediction block from samples neighboring the

current block. For example, for directional modes, intra-prediction unit 226 may

generally mathematically combine values of neighboring samples and populate these

calculated values in the defined direction across the current block to produce the

prediction block. As another example, for DC mode, intra-prediction unit 226 may

calculate an average of the neighboring samples to the current block and generate the

prediction block to include this resulting average for each sample of the prediction

block.

[0143] Mode selection unit 202 provides the prediction block to residual generation unit

204. Residual generation unit 204 receives a raw, uncoded version of the current block

from video data memory 230 and the prediction block from mode selection unit 202.

Residual generation unit 204 calculates sample-by-sample differences between the

current block and the prediction block. The resulting sample-by-sample differences

define a residual block for the current block. In some examples, residual generation unit

204 may also determine differences between sample values in the residual block to

generate a residual block using residual differential pulse code modulation (RDPCM).

In some examples, residual generation unit 204 may be formed using one or more

subtractor circuits that perform binary subtraction.

[0144] In examples where mode selection unit 202 partitions CUs into PUs, each PU

may be associated with a luma prediction unit and corresponding chroma prediction

units. Video encoder 200 and video decoder 300 may support PUs having various sizes.

As indicated above, the size of a CU may refer to the size of the luma coding block of

the CU and the size of a PU may refer to the size of a luma prediction unit of the PU.

Assuming that the size of a particular CU is 2Nx2N, video encoder 200 may support PU

sizes of 2Nx2N or NxN for intra prediction, and symmetric PU sizes of 2Nx2N, 2NxN,

Nx2N, NxN, or similar for inter prediction. Video encoder 200 and video decoder 300

may also support asymmetric partitioning for PU sizes of 2NxnU, 2NxnD, nLx2N, and

nRx2N for inter prediction.

[0145] In examples where mode selection unit does not further partition a CU into PUs,

each CU may be associated with a luma coding block and corresponding chroma coding

WO 2020/186042 PCT/US2020/022363
32

blocks. As above, the size of a CU may refer to the size of the luma coding block of the

CU. The video encoder 200 and video decoder 120 may support CU sizes of 2Nx2N,

2NxN, or Nx2N.

[0146] For other video coding techniques such as an intra-block copy mode coding, an

affine-mode coding, and linear model (LM) mode coding, as few examples, mode

selection unit 202, via respective units associated with the coding techniques, generates

a prediction block for the current block being encoded. In some examples, such as

palette mode coding, mode selection unit 202 may not generate a prediction block, and

instead generate syntax elements that indicate the manner in which to reconstruct the

block based on a selected palette. In such modes, mode selection unit 202 may provide

these syntax elements to entropy encoding unit 220 to be encoded.

[0147] As described above, residual generation unit 204 receives the video data for the

current block and the corresponding prediction block. Residual generation unit 204 then

generates a residual block for the current block. To generate the residual block, residual

generation unit 204 calculates sample-by-sample differences between the prediction

block and the current block.

[0148] Transform processing unit 206 applies one or more transforms to the residual

block to generate a block of transform coefficients (referred to herein as a "transform

coefficient block"). Transform processing unit 206 may apply various transforms to a

residual block to form the transform coefficient block. For example, transform

processing unit 206 may apply a discrete cosine transform (DCT), a directional

transform, a Karhunen-Loeve transform (KLT), or a conceptually similar transform to a

residual block. In some examples, transform processing unit 206 may perform multiple

transforms to a residual block, e.g., a primary transform and a secondary transform,

such as a rotational transform. In some examples, transform processing unit 206 does

not apply transforms to a residual block. As discussed herein, transform processing unit

206 may selectively apply different transforms to different coefficient blocks (i.e.,

blocks of transform coefficients).

[0149] Quantization unit 208 may quantize the transform coefficients in a transform

coefficient block, to produce a quantized transform coefficient block. Quantization unit

208 may quantize transform coefficients of a transform coefficient block according to a

quantization parameter (QP) value associated with the current block. Video encoder

200 (e.g., via mode selection unit 202) may adjust the degree of quantization applied to

the coefficient blocks associated with the current block by adjusting the QP value

WO 2020/186042 PCT/US2020/022363
33

associated with the CU. Quantization may introduce loss of information, and thus,

quantized transform coefficients may have lower precision than the original transform

coefficients produced by transform processing unit 206.

[0150] Inverse quantization unit 210 and inverse transform processing unit 212 may

apply inverse quantization and inverse transforms to a quantized transform coefficient

block, respectively, to reconstruct a residual block from the transform coefficient block.

Reconstruction unit 214 may produce a reconstructed block corresponding to the current

block (albeit potentially with some degree of distortion) based on the reconstructed

residual block and a prediction block generated by mode selection unit 202. For

example, reconstruction unit 214 may add samples of the reconstructed residual block to

corresponding samples from the prediction block generated by mode selection unit 202

to produce the reconstructed block.

[0151] Filter unit 216 may perform one or more filter operations on reconstructed

blocks. For example, filter unit 216 may perform deblocking operations to reduce

blockiness artifacts along edges of CUs. Operations of filter unit 216 may be skipped,

in some examples.

[0152] Video encoder 200 stores reconstructed blocks in DPB 218. For instance, in

examples where operations of filter unit 224 are not needed, reconstruction unit 214

may store reconstructed blocks to DPB 218. In examples where operations of filter unit

224 are needed, filter unit 216 may store the filtered reconstructed blocks to DPB 218.

Motion estimation unit 222 and motion compensation unit 224 may retrieve a reference

picture from DPB 218, formed from the reconstructed (and potentially filtered) blocks,

to inter-predict blocks of subsequently encoded pictures. In addition, intra-prediction

unit 226 may use reconstructed blocks in DPB 218 of a current picture to intra-predict

other blocks in the current picture.

[0153] In general, entropy encoding unit 220 may entropy encode syntax elements

received from other functional components of video encoder 200. For example, entropy

encoding unit 220 may entropy encode quantized transform coefficient blocks from

quantization unit 208. As another example, entropy encoding unit 220 may entropy

encode prediction syntax elements (e.g., motion information for inter-prediction or

intra-mode information for intra-prediction) from mode selection unit 202. Entropy

encoding unit 220 may perform one or more entropy encoding operations on the syntax

elements, which are another example of video data, to generate entropy-encoded data.

For example, entropy encoding unit 220 may perform a context-adaptive variable length

WO 2020/186042 PCT/US2020/022363
34

coding (CAVLC) operation, a CABAC operation, a variable-to-variable (V2V) length

coding operation, a syntax-based context-adaptive binary arithmetic coding (SBAC)

operation, a Probability Interval Partitioning Entropy (PIPE) coding operation, an

Exponential-Golomb encoding operation, or another type of entropy encoding operation

on the data. In some examples, entropy encoding unit 220 may operate in bypass mode

where syntax elements are not entropy encoded.

[0154] Video encoder 200 may output a bitstream that includes the entropy encoded

syntax elements needed to reconstruct blocks of a slice or picture. In particular, entropy

encoding unit 220 may output the bitstream.

[0155] The operations described above are described with respect to a block. Such

description should be understood as being operations for a luma coding block and/or

chroma coding blocks. As described above, in some examples, the luma coding block

and chroma coding blocks are luma and chroma components of a CU. In some

examples, the luma coding block and the chroma coding blocks are luma and chroma

components of a PU.

[0156] In some examples, operations performed with respect to a luma coding block

need not be repeated for the chroma coding blocks. As one example, operations to

identify a motion vector (MV) and reference picture for a luma coding block need not

be repeated for identifying a MV and reference picture for the chroma blocks. Rather,

the MV for the luma coding block may be scaled to determine the MV for the chroma

blocks, and the reference picture may be the same. As another example, the intra

prediction process may be the same for the luma coding blocks and the chroma coding

blocks.

[0157] Video encoder 200 represents an example of a device configured to encode

video data including a memory configured to store video data, and one or more

processing units implemented in circuitry and configured to derive, for a current

coefficient block of a video block, a transform type from a plurality of transform types.

The video coder may transform, using the selected transform type, the current

coefficient block to obtain a block of reconstructed residual data for the video block;

and reconstruct, based on the reconstructed residual data for the video block, the video

block.

[0158] FIG. 4 is a block diagram illustrating an example video decoder 300 that may

perform the techniques of this disclosure. FIG. 4 is provided for purposes of

explanation and is not limiting on the techniques as broadly exemplified and described

WO 2020/186042 PCT/US2020/022363
35

in this disclosure. For purposes of explanation, this disclosure describes video decoder

300 is described according to the techniques of JEM, VVC, and HEVC. However, the

techniques of this disclosure may be performed by video coding devices that are

configured to other video coding standards.

[0159] In the example of FIG. 4, video decoder 300 includes coded picture buffer

(CPB) memory 320, entropy decoding unit 302, prediction processing unit 304, inverse

quantization unit 306, inverse transform processing unit 308, reconstruction unit 310,

filter unit 312, and decoded picture buffer (DPB) 314. Any or all of CPB memory 320,

entropy decoding unit 302, prediction processing unit 304, inverse quantization unit

306, inverse transform processing unit 308, reconstruction unit 310, filter unit 312, and

DPB 314 may be implemented in one or more processors or in processing circuitry.

Moreover, video decoder 300 may include additional or alternative processors or

processing circuitry to perform these and other functions.

[0160] Prediction processing unit 304 includes motion compensation unit 316 and intra

prediction unit 318. Prediction processing unit 304 may include addition units to

perform prediction in accordance with other prediction modes. As examples, prediction

processing unit 304 may include a palette unit, an intra-block copy unit (which may

form part of motion compensation unit 318), an affine unit, a linear model (LM) unit, or

the like. In other examples, video decoder 300 may include more, fewer, or different

functional components.

[0161] CPB memory 320 may store video data, such as an encoded video bitstream, to

be decoded by the components of video decoder 300. The video data stored in CPB

memory 320 may be obtained, for example, from computer-readable medium 110 (FIG.

1). CPB memory 320 may include a CPB that stores encoded video data (e.g., syntax

elements) from an encoded video bitstream. Also, CPB memory 320 may store video

data other than syntax elements of a coded picture, such as temporary data representing

outputs from the various units of video decoder 300. DPB 314 generally stores decoded

pictures, which video decoder 300 may output and/or use as reference video data when

decoding subsequent data or pictures of the encoded video bitstream. CPB memory 320

and DPB 314 may be formed by any of a variety of memory devices, such as dynamic

random access memory (DRAM), including synchronous DRAM (SDRAM),

magnetoresistive RAM (MRAM), resistive RAM (RRAM), or other types of memory

devices. CPB memory 320 and DPB 314 may be provided by the same memory device

WO 2020/186042 PCT/US2020/022363
36

or separate memory devices. In various examples, CPB memory 320 may be on-chip

with other components of video decoder 300, or off-chip relative to those components.

[0162] Additionally or alternatively, in some examples, video decoder 300 may retrieve

coded video data from memory 120 (FIG. 1). That is, memory 120 may store data as

discussed above with CPB memory 320. Likewise, memory 120 may store instructions

to be executed by video decoder 300, when some or all of the functionality of video

decoder 300 is implemented in software to executed by processing circuitry of video

decoder 300.

[0163] The various units shown in FIG. 4 are illustrated to assist with understanding the

operations performed by video decoder 300. The units may be implemented as fixed

function circuits, programmable circuits, or a combination thereof. Similar to FIG. 3,

fixed-function circuits refer to circuits that provide particular functionality, and are

preset on the operations that can be performed. Programmable circuits refer to circuits

that can programmed to perform various tasks, and provide flexible functionality in the

operations that can be performed. For instance, programmable circuits may execute

software or firmware that cause the programmable circuits to operate in the manner

defined by instructions of the software or firmware. Fixed-function circuits may

execute software instructions (e.g., to receive parameters or output parameters), but the

types of operations that the fixed-function circuits perform are generally immutable. In

some examples, the one or more of the units may be distinct circuit blocks (fixed

function or programmable), and in some examples, the one or more units may be

integrated circuits.

[0164] Video decoder 300 may include ALUs, EFUs, digital circuits, analog circuits,

and/or programmable cores formed from programmable circuits. In examples where the

operations of video decoder 300 are performed by software executing on the

programmable circuits, on-chip or off-chip memory may store instructions (e.g., object

code) of the software that video decoder 300 receives and executes.

[0165] Entropy decoding unit 302 may receive encoded video data from the CPB and

entropy decode the video data to reproduce syntax elements. Prediction processing unit

304, inverse quantization unit 306, inverse transform processing unit 308,

reconstruction unit 310, and filter unit 312 may generate decoded video data based on

the syntax elements extracted from the bitstream.

[0166] In general, video decoder 300 reconstructs a picture on a block-by-block basis.

Video decoder 300 may perform a reconstruction operation on each block individually

WO 2020/186042 PCT/US2020/022363
37

(where the block currently being reconstructed, i.e., decoded, may be referred to as a

"current block").

[0167] Entropy decoding unit 302 may entropy decode syntax elements defining

quantized transform coefficients of a quantized transform coefficient block, as well as

transform information, such as a quantization parameter (QP) and/or transform mode

indication(s). Inverse quantization unit 306 may use the QP associated with the

quantized transform coefficient block to determine a degree of quantization and,

likewise, a degree of inverse quantization for inverse quantization unit 306 to apply.

Inverse quantization unit 306 may, for example, perform a bitwise left-shift operation to

inverse quantize the quantized transform coefficients. Inverse quantization unit 306

may thereby form a transform coefficient block including transform coefficients.

[0168] After inverse quantization unit 306 forms the transform coefficient block,

inverse transform processing unit 308 may apply one or more inverse transforms to the

transform coefficient block to generate a residual block associated with the current

block. For example, inverse transform processing unit 308 may apply an inverse DCT,

an inverse integer transform, an inverse Karhunen-Loeve transform (KLT), an inverse

rotational transform, an inverse directional transform, or another inverse transform to

the coefficient block. As discussed herein, transform processing unit 206 may

selectively apply different transforms to different coefficient blocks (i.e., blocks of

transform coefficients).

[0169] Furthermore, prediction processing unit 304 generates a prediction block

according to prediction information syntax elements that were entropy decoded by

entropy decoding unit 302. For example, if the prediction information syntax elements

indicate that the current block is inter-predicted, motion compensation unit 316 may

generate the prediction block. In this case, the prediction information syntax elements

may indicate a reference picture in DPB 314 from which to retrieve a reference block,

as well as a motion vector identifying a location of the reference block in the reference

picture relative to the location of the current block in the current picture. Motion

compensation unit 316 may generally perform the inter-prediction process in a manner

that is substantially similar to that described with respect to motion compensation unit

224 (FIG. 3).

[0170] As another example, if the prediction information syntax elements indicate that

the current block is intra-predicted, intra-prediction unit 318 may generate the

prediction block according to an intra-prediction mode indicated by the prediction

WO 2020/186042 PCT/US2020/022363
38

information syntax elements. Again, intra-prediction unit 318 may generally perform

the intra-prediction process in a manner that is substantially similar to that described

with respect to intra-prediction unit 226 (FIG. 3). Intra-prediction unit 318 may retrieve

data of neighboring samples to the current block from DPB 314.

[0171] Reconstruction unit 310 may reconstruct the current block using the prediction

block and the residual block. For example, reconstruction unit 310 may add samples of

the residual block to corresponding samples of the prediction block to reconstruct the

current block.

[0172] Filter unit 312 may perform one or more filter operations on reconstructed

blocks. For example, filter unit 312 may perform deblocking operations to reduce

blockiness artifacts along edges of the reconstructed blocks. Operations of filter unit

312 are not necessarily performed in all examples.

[0173] Video decoder 300 may store the reconstructed blocks in DPB 314. As

discussed above, DPB 314 may provide reference information, such as samples of a

current picture for intra-prediction and previously decoded pictures for subsequent

motion compensation, to prediction processing unit 304. Moreover, video decoder 300

may output decoded pictures from DPB for subsequent presentation on a display device,

such as display device 118 of FIG. 1.

[0174] In this manner, video decoder 300 represents an example of a video decoding

device including a memory configured to store video data, and one or more processing

units implemented in circuitry and configured to derive, for a current coefficient block

of a video block, a transform type from a plurality of transform types. The video coder

may transform, using the selected transform type, the current coefficient block to obtain

a block of reconstructed residual data for the video block; and reconstruct, based on the

reconstructed residual data for the video block, the video block.

[0175] FIG. 5 is a block diagram illustrating a system for hybrid video encoding with

adaptive transform selection. Video encoder 200' of FIG. 5 may be considered to

illustrate a video encoding system similar to video encoder 200 of FIGS. 1 and 3. For

example, block prediction 202', block transform 206', quantization 208', Inverse

quantization 210', Inverse transform 212', Frame buffer 218', and Entropy coding 220'

of video encoder 200' may be considered to perform operations similar to mode

selection unit 202, transform processing unit 206, quantization unit 208, inverse

quantization unit 210, inverse transform processing unit 212, decoded picture buffer

218, and entropy encoding unit 220 of video encoder 200 of FIG. 3. As shown in FIG.

WO 2020/186042 PCT/US2020/022363
39

5, video encoder 200' may include transform bank 207', which may be configured to

operate in conjunction with Block transform 206'to transform residual data. For

instance, transform bank 207' and block transform 206' may collectively select and

perform various transforms (e.g., various DCT or DST) for each block of prediction

residuals. As discussed above, in some examples, transform bank 207' and block

transform 206' may signal the choice of transform a side information. For instance,

block transform 206' may cause entropy coding 220' to encode a syntax element

explicitly indicating the transform used (i.e., t).

[0176] In some examples, Transform bank 207'and Block transform 206'may compute

the block transforms in a separable manner. For instance, to reduce computation

complexity, transform bank 207' and block transform 206' may transform the horizontal

and vertical lines independently as shown in FIG. 6. In other words, samples along the

horizontal and vertical arrows in FIG. 6 may be transformed independently.

[0177] In video coding standards prior to HEVC, only a fixed separable transform is

used where DCT-2 is used both vertically and horizontally. In HEVC, in addition to

DCT-2, DST-7 is also employed for 4x4 blocks as a fixed separable transform. US

2016-0219290-Al and US-2018-0020218-Al describe adaptive extensions of those

fixed transforms, and an example of AMT in US-2016-0219290-Al has been adopted in

the Joint Experimental Model (JEM) of the Joint Video Experts Team (JVET), Joint

Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11,

JEM Software, https://jvet.hhi.fraunhofer.de/svn/svn_HMJEMSoftware/tags/HM-16.6

JEM-7.0.

[0178] In accordance with one or more techniques of this disclosure, a video coder (e.g.,

a video encoder and/or a video decoder) may perform implicit transform selection. For

instance, the video coder may apply one or more sets of rules to implicitly select a

transform for transforming residual data for a block. In this way, the video coder may

improve coding efficiency. In particular, the techniques of this disclosure enable the

video decoder to obtain the benefits of using adaptive transform selection without the

overhead of actually signalling the transform selected.

[0179] In VVC Draft 4, there are two implicit transform derivations that are relatively

complicated and do not provide good coding performance. This disclosure proposed

simpler alternative derivations that may provide similar or even better

compression/coding performance/efficiency

WO 2020/186042 PCT/US2020/022363
40

[0180] The related techniques in VVC Draft 4 and reference software VTM-4.0) are

discussed below.

[0181] In VVC Draft 4/VTM-4.0, multiple transform selection (MTS) uses a high-level

flag to determine whether the transform is (i) explicitly signaled to select among

multiple candidates, or (ii) implicitly derived based on block shape. In the latter case,

combinations of DST-7 and DCT-2 as horizontal or vertical transforms up to size 16.

Specifically, following block-shape dependent conditions define the implicit MTS in

VTM-4.0:

- If the width and height of a block are equal and both are less than or equal to 16,
DST-7 is used in both horizontal and vertical directions.

- If the width of a block is smaller than its height and it is less than or equal to 16,
DST-7 is in horizontal and DCT-2 is used in vertical direction.

- If the height of a block is smaller than its width and it is less than or equal to 16,
DST-7 is in vertical and DCT-2 is used in horizontal direction.

- Otherwise, DCT-2 is used in both directions.

[0182] In VVC Draft 4/VTM-4.0, when intra-subblock partitioning (ISP) is used to

code luma blocks, a mode-dependent transform selection is made, where horizontal and

vertical transforms (trTypeHor and trTypeVer) are derived based on the following table

in VVC Draft 4.

Table - Specification of trTypeHor and trTypeVer depending on predModelntra
predModefntra trTypeHor trTypeVer

INTRAPLANAR,

INTRAANGULAR31,

INTRAANGULAR32, (nThW >= 4 && (nTbH >= 4 &&

INTRAANGULAR34, nThW <= 16) ? 1 0 nTH <=16) ? 1 :0

INTRAANGULAR36,

INTRAANGULAR37

INTRAANGULAR33,
0 0

INTRAANGULAR35

INTIRAANGULAR2,

INTRA_ANGULAR4,.INTRAANGULAR28,

INTRAANGULAR30, (nThW >= 4 &&
0

INTRAANGULAR39, nThW<= 16) ? 1 :0

INTRAANGULAR41,...,INTRAANGULAR63,

INTRAANGULAR65

INTRAANGULAR3,

INTRAANGULAR5,..., INTRAANGULAR27,

INTRAANGULAR29, (nTbH >=4 &&
0

INTRAANGULAR38, nTH <= 16) ? 1 :0

INTRAANGULAR40,...,INTRAANGULAR64,

INTRAANGULAR66

WO 2020/186042 PCT/US2020/022363
41

[0183] As discussed above and in accordance with one or more techniques of this

disclosure, a video coder may apply one or more rule sets to implicitly derive transform

selection based on available side information.

[0184] As a first example, a video coder may determine that a coding unit/transform

unit (CU/TU) is coded using DST-7 only under certain conditions. For instance, if the

maximum 1-D transform size allowed is N in a codec, the video coder may determine

that DST-7 may be used for all possible sizes. For example, for a given NxM block (as

shown in FIG. 7 whose N rows have M samples each, and its M columns have N

samples), the video coder may determine that N-point DST-7 may be used vertically and

M-point DST-7 may be used horizontally.

[0185] As a second example, for a selected set of dimensions, the video coder may

determine that different combinations of DST-7 and DCT-2 can be used. For instance,

the video coder may determine that DST-7 can be applied for any row or column with

less than or equal to K samples, while DCT-2 can be used to transform any row or

column with number of samples greater than K. For example, in the example of FIG. 7,

if N is smaller than K and M is larger than K, the video coder may determine to use N

point DST-7 vertically and M-point DCT-2 horizontally. Also in the example of FIG. 7,

if both N and M are smaller than K, the video coder may determine to use DST-7 both

horizontally and vertically.

[0186] As a third example, if a CU/TU is partitioned, the video decoder may determine

that all partitions can use the same implicit transform selection scheme. In some

examples, the video coder may use DST-7 for all partitioned sub-blocks (sub TUs or

sub CUs). In some examples, the video coder may use combinations of DST-7 and

DCT-2 depending on the block dimensions after partitioning. In some examples, for

coding blocks that use the intra-subblock partitioning (ISP) in VVC (VTM-4.0), the

video coder may use combinations of DST-7 and DCT-2 depending on the dimensions

of the block as discussed above in the second example. For example, for any row or

column with less than or equal to 16 samples, the video coder may DST-7. Otherwise,

the video coder may use DCT-2 to transform any row or column with number of

samples greater than 16. In some examples, as ISP can have rows/columns with two

samples, the video coder may use 2-point DST-7. In previous standards, 2-point DST-7

has not been used. As such, the video coder may use modified entries of the 2-point

DST-7 matrix as follows:

WO 2020/186042 PCT/US2020/022363
42

{48, 77}

{77, -48}

[0187] As a fourth example, the video coder may derive the transform based on intra

prediction modes (modes are illustrated in FIG. 8). For intra planar and DC modes, the

video coder may use DST-7 in both horizontal and vertical directions. For intra

diagonal angular mode (mode index 34 in FIG. 8), the video coder may use DST-7 in

both horizontal and vertical directions. For angular modes, indexed from 2 to 66, the

video coder may apply different combinations of DSTs/DCTs to certain range of modes

such as predefined intervals of mode indices between mode indices [2, 3, ... , 65, 66].

1) The range of intervals consisting of all angular modes [2,3,...,66] can be
defined as follows for a given integer T between 2 and 30:

a. Ri= [2, ... , (33 - T)]

b. R2= [(34 - T), ... ,(34 + T)]

c. R3= [(35 + T), ... ,66]

2) DST-7 can be applied both horizontally and vertically for the angular modes
in range R2.

3) DST-7 can be applied horizontally and DCT-2 vertically for the angular
modes in range Ri.

4) DCT-2 can be applied horizontally and DST-7 vertically for the angular
modes in range R3.

[0188] As a fifth example, other than DST-7 and DCT-2, the video coder may apply

combinations of different types of DCTs/DSTs (e.g., DST-4 and DCT-8) and 1-D

identity transform.

[0189] As a sixth example, the video coder may apply one or more combinations of the

above examples for intra predicted CU/TUs only.

[0190] As a seventh example the video coder may apply one or more combinations of

the above examples for inter predicted CU/TUs only.

[0191] As an eighth example the video coder may apply one or more combinations of

the above examples used for both intra and inter predicted CU/TUs.

[0192] As a ninth example the video coder may apply one or more combinations of the

above examples used for luma or chroma channels or both luma and chroma channels.

[0193] FIG. 9 is a flowchart illustrating an example method for encoding a current

block. The current block may comprise a current CU. Although described with respect

to video encoder 200 (FIGS. 1 and 3), it should be understood that other devices may be

configured to perform a method similar to that of FIG. 9. For instance, video encoder

200' of FIG. 5 may perform a method similar to that of FIG. 9.

WO 2020/186042 PCT/US2020/022363
43

[0194] In this example, video encoder 200 initially predicts the current block (350). For

example, video encoder 200 may form a prediction block for the current block. Video

encoder 200 may then calculate a residual block for the current block (352). To

calculate the residual block, video encoder 200 may calculate a difference between the

original, uncoded block and the prediction block for the current block. Video encoder

200 may then transform and quantize coefficients of the residual block (354). As

discussed above, video encoder 200 may implicitly derive a transform type to use when

transforming the coefficients of the residual block. For instance, video encoder 200

may derive the transform type using the technique discussed below with reference to

FIG. 11.

[0195] Next, video encoder 200 may scan the quantized transform coefficients of the

residual block (356). During the scan, or following the scan, video encoder 200 may

entropy encode the coefficients (358). For example, video encoder 200 may encode the

coefficients using CAVLC or CABAC. Video encoder 200 may then output the entropy

coded data of the block (360).

[0196] FIG. 10 is a flowchart illustrating an example method for decoding a current

block of video data. The current block may comprise a current CU. Although described

with respect to video decoder 300 (FIGS. 1 and 4), it should be understood that other

devices may be configured to perform a method similar to that of FIG. 10.

[0197] Video decoder 300 may receive entropy coded data for the current block, such as

entropy coded prediction information and entropy coded data for coefficients of a

residual block corresponding to the current block (370). Video decoder 300 may

entropy decode the entropy coded data to determine prediction information for the

current block and to reproduce coefficients of the residual block (372). Video decoder

300 may predict the current block (374), e.g., using an intra- or inter-prediction mode as

indicated by the prediction information for the current block, to calculate a prediction

block for the current block. Video decoder 300 may then inverse scan the reproduced

coefficients (376), to create a block of quantized transform coefficients. Video decoder

300 may then inverse quantize and inverse transform the coefficients to produce a

residual block (378). As discussed above, video decoder 300 may implicitly derive a

transform type to use when transforming the coefficients of the residual block. For

instance, video decoder 300 may derive the transform type using the technique

discussed below with reference to FIG. 11. Video decoder 300 may ultimately decode

the current block by combining the prediction block and the residual block (380).

WO 2020/186042 PCT/US2020/022363
44

[0198] FIG. 11 is a flowchart illustrating an example method for inferring a transform

type for a transform block of a video block, in accordance with one or more techniques

of this disclosure. The techniques of FIG. 11 may be performed by a video coder (e.g.,

video encoder 200 and/or video decoder 300).

[0199] A video coder may obtain a current transform block of a current video block

(1102). The transform block may be a matrix of transform coefficients that is

constructed based on one or more syntax elements decoded from a video bitstream (e.g.,

the syntax elements included in the residual coding syntax table of VVC Draft 4. The

current video block may be a coding unit (CU).

[0200] The video coder may infer a transform type from a plurality of transform types

for the current transform block. The plurality of transform types may include one or

more discrete cosine transforms (DCTs) and one or more discrete sine transforms

(DSTs).

[0201] As discussed above, the video coder may infer the transform type based on one

or more factors, such as whether the current video block is partitioned using ISP and/or

a size of the transform block. As shown in FIG. 11, the video coder may determine that

the current video block is partitioned using ISP (1104). The video coder may determine

that the current video block is partitioned using ISP based on the values of one or more

syntax elements (e.g., sps ispenabled flag, intra subpartitionsmode flag, and/or

intrasubpartitionssplit flag). For instance, based on the intra-subpartitions_split flag

syntax element, the video coder may determine whether the current video block is not

partitioned (e.g., not split), is partitioned horizontally, or is partitioned vertically.

[0202] Responsive to determining that the current video block is partitioned using ISP

(1104), the video coder may determine a size of the current transform block (1106). For

instance, the video coder may determine a width and/or a height of the transform block.

In some examples, the video coder may separately determine transform block size for

each sub-partition. In other examples, the video coder may determine transform block

size for a single partition and utilize the determined size for each partition of the coding

unit.

[0203] The video coder may determine whether the size of the current transform block

satisfies a size threshold. For instance, as shown in FIG. 11, the video coder may

determine whether the size of the current transform block is greater than a lower bound

and less than an upper bound (i.e., whether both (size > lower bound) and (size < upper

WO 2020/186042 PCT/US2020/022363
45

bound) are true) (1108). As discussed above, in some examples, the lower bound may

be 4 samples and the upper bound may be 16 samples).

[0204] Responsive to determining that the size of the current transform block satisfies

the size threshold and that the current video block is partitioned using ISP, the video

coder may select a particular DST of the one or more DSTs as the selected transform

type. For instance, as shown in FIG. 11, responsive to determining that the size of the

current transform block satisfies the size threshold and that the current video block is

partitioned using ISP, the video coder may select DST-7 as the inferred transform type

for the current transform block ("Yes" branch of 1108, 1110). Alternatively, responsive

to determining that the size of the current transform block does not satisfy the size

threshold and that the current video block is partitioned using ISP, the video coder may

select DCT-2 as the inferred transform type for the current transform block ("No"

branch of 1108, 1112).

[0205] The video coder may transform, using the selected transform type, the current

transform block to obtain a block of reconstructed residual data for the video block

(1114). For instance, where the selected transform type is DST-7, the video coder (e.g.,

inverse transform processing unit 212/212' of video encoder 200/200' and/or inverse

transform processing unit 308 of video decoder 300) may transform the coefficients of

the transform block into the reconstructed residual data by applying an inverse DST-7

transform.

[0206] The video coder may reconstruct, based on the reconstructed residual data for

the video block, the video block (1116). For instance, the video encoder may add the

residual data to a block of intra predicted samples for the current block. Where the

video block is partitioned using ISP, the video encoder may add a respective block of

reconstructed residual data to a respective block of intra predicted samples for each

respective sub-partition of the current video block.

[0207] The following numbered examples may illustrate one or more aspects of the

disclosure:

[0208] Example 1. A method of coding video data, the method comprising: deriving,

for a current coefficient block of a video block, a transform type from a plurality of

transform types; transforming, using the selected transform type, the current coefficient

block to obtain a block of reconstructed residual data for the video block; and

reconstructing, based on the reconstructed residual data for the video block, the video

block.

WO 2020/186042 PCT/US2020/022363
46

[0209] Example 2. The method of example 1, wherein the plurality of transform

types includes one or more discrete cosine transforms (DCTs) and/or one or more

discrete sine transforms (DSTs).

[0210] Example 3. The method of example 2, wherein the one or more DCTs include

one or more of a DCT-1, a DCT-2, a DCT-3, a DCT-4, a DCT-5, a DCT-6, a DCT-7,

and a DCT-8.

[0211] Example 4. The method of any of examples 2 and 3, wherein the one or more

DSTs include one or more of a DST-1, a DST-2, a DST-3, a DST-4, a DST-5, a DST-6,

a DST-7, and a DST-8.

[0212] Example 5. The method of any of examples 1-4, wherein deriving the

transform type comprises deriving the transform type based on a size of the current

coefficient block.

[0213] Example 6. The method of example 5, wherein deriving the transform type

based on the size of the current coefficient block comprises selecting the DST-7

transform type where a maximum 1-D transform size allowed is N.

[0214] Example 7. The method of example 6, wherein the current coefficient block

has dimensions of NxM, and wherein selecting the DST-7 transform type comprises

selecting an N-point DST-7 transform for vertical use and selecting an M-point DST-7

transform for horizontal use.

[0215] Example 8. The method of any combination of examples 1-7, wherein

deriving the transform type comprises selecting different combinations of the DST-7

transform and the DCT-2 transform.

[0216] Example 9. The method of example 8, wherein selecting different

combinations of the DST-7 transform and the DCT-2 transform comprises: selecting the

DST-7 transform for any row or column with less than or equal to K samples; and

selecting the DCT-2 transform for any row or column with greater than K samples.

[0217] Example 10. The method of any combination of examples 1-9, further

comprising: responsive to determining that the video block is partitioned into a plurality

of partitions, selecting respective transform types for coefficient blocks of each of the

plurality of partitions using a common rule set.

[0218] Example 11. The method of example 10, wherein selecting respective

transform types for each of the plurality of partitions comprises selecting the DST-7 for

coefficient blocks of all of the plurality of partitions.

WO 2020/186042 PCT/US2020/022363
47

[0219] Example 12. The method of example 10, wherein selecting respective

transform types for each of the plurality of partitions comprises selecting different

combinations of the DST-7 transform and the DCT-2 transform based on dimensions of

the partitions.

[0220] Example 13. The method of example 12, wherein selecting different

combinations of the DST-7 transform and the DCT-2 transform based on dimensions of

the partitions comprises: selecting the DST-7 transform for any row or column with less

than or equal to a threshold number of samples; and selecting the DCT-2 transform for

any row or column with greater than the threshold number of samples.

[0221] Example 14. The method of example 13, wherein the threshold is 16.

[0222] Example 15. The method of any combination of examples 10-14, wherein

partitioning the video block into the plurality of partitions comprises partitioning the

video block using intra-subblock partitioning (ISP).

[0223] Example 16. The method of example 15, wherein transforming using the DST

7 transform comprises transforming the current coefficient block using the following 2

point DST-7 matrix:

{48, 77}

{77, -48}.

[0224] Example 17. The method of any combination of examples 1-16, further

comprising: determining an intra prediction mode used to predict the video block,

wherein deriving the transform type for the current coefficient block of the video block

comprises deriving the transform type for the current coefficient block of the video

block based on the intra prediction mode.

[0225] Example 18. The method of example 17, wherein deriving the transform type

for the current coefficient block of the video block based on the intra prediction mode

comprises: responsive to determining that the intra prediction mode is a planar or a DC

mode, selecting the DST-7 transform for the current coefficient block in both horizontal

and vertical directions.

[0226] Example 19. The method of any of examples 17 or 18, wherein deriving the

transform type for the current coefficient block of the video block based on the intra

prediction mode comprises: responsive to determining that the intra prediction mode is a

diagonal angular mode, selecting the DST-7 transform for the current coefficient block

in both horizontal and vertical directions.

WO 2020/186042 PCT/US2020/022363
48

[0227] Example 20. The method of example 19, wherein the diagonal angular mode is

mode index 34.

[0228] Example 21. The method of any of examples 17-20, wherein deriving the

transform type for the current coefficient block of the video block based on the intra

prediction mode comprises: responsive to determining that the intra prediction mode is

an angular mode, selecting the transform type for the current coefficient block based on

a mode index of the intra prediction mode.

[0229] Example 22. The method of example 21, wherein selecting the transform type

for the current coefficient block based on the mode index of the intra prediction mode

comprises: identifying a range of a plurality of ranges that includes the mode index of

the intra prediction mode; and selecting the transform type for the current coefficient

block based on the identified range.

[0230] Example 23. The method of example 22, wherein identifying the range

comprises: identifying a first range in response to determining that the mode index is

between a first threshold and a second threshold; identifying a second range in response

to determining that the mode index is between the second threshold and a third

threshold; and identifying a third range in response to determining that the mode index

is between the third threshold and a fourth threshold.

[0231] Example 24. The method of example 23, wherein: identifying the first range in

response to determining that the mode index is between the first threshold and the

second threshold comprises identifying the first range in response to determining that

the mode index is within [2, ... , (33 - T)]; identifying the second range in response to

determining that the mode index is between the second threshold and the third threshold

comprises identifying the second range in response to determining that the mode index

is within [(34 - T), ... , (34 + T)]; identifying a third range in response to determining

that the mode index is between the third threshold and the fourth threshold comprises

identifying the third range in response to determining that the mode index is within [(35

+ T), ... , 66]; and T is an integer between 2 and 30.

[0232] Example 25. The method of example 23 or example 24, wherein selecting the

transform type for the current coefficient block based on the identified range comprises:

selecting the DST-7 for horizontal use and the DCT-2 for vertical use in response to

identifying the first range; selecting the DST-7 for horizontal and vertical use in

response to identifying the second range; and selecting the DCT-2 for horizontal use and

the DST-7 for vertical use in response to identifying the third range.

WO 2020/186042 PCT/US2020/022363
49

[0233] Example 26. The method of any of examples 1-25, wherein coding comprises

decoding.

[0234] Example 27. The method of any of examples 1-26, wherein coding comprises

encoding.

[0235] Example 28. A device for coding video data, the device comprising one or

more means Example for performing the method of any of examples 1-27.

[0236] Example 29. The device of example 28, wherein the one or more means

comprise one or more processors implemented in circuitry.

[0237] Example 30. The device of any of examples 28 and 29, further comprising a

memory to store the video data.

[0238] Example 31. The device of any of examples 28-30, further comprising a

display configured to display decoded video data.

[0239] Example 32. The device of any of examples 28-31, wherein the device

comprises one or more of a camera, a computer, a mobile device, a broadcast receiver

device, or a set-top box.

[0240] Example 33. The device of any of examples 28-32, wherein the device

comprises a video decoder.

[0241] Example 34. The device of any of examples 28-33, wherein the device

comprises a video encoder.

[0242] Example 35. A computer-readable storage medium having stored thereon

instructions that, when executed, cause one or more processors to perform the method of

any of examples 1-25.

[0243] It is to be recognized that depending on the example, certain acts or events of

any of the techniques described herein can be performed in a different sequence, may be

added, merged, or left out altogether (e.g., not all described acts or events are necessary

for the practice of the techniques). Moreover, in certain examples, acts or events may

be performed concurrently, e.g., through multi-threaded processing, interrupt

processing, or multiple processors, rather than sequentially.

[0244] In one or more examples, the functions described may be implemented in

hardware, software, firmware, or any combination thereof If implemented in software,

the functions may be stored on or transmitted over as one or more instructions or code

on a computer-readable medium and executed by a hardware-based processing unit.

Computer-readable media may include computer-readable storage media, which

corresponds to a tangible medium such as data storage media, or communication media

WO 2020/186042 PCT/US2020/022363
50

including any medium that facilitates transfer of a computer program from one place to

another, e.g., according to a communication protocol. In this manner, computer

readable media generally may correspond to (1) tangible computer-readable storage

media which is non-transitory or (2) a communication medium such as a signal or

carrier wave. Data storage media may be any available media that can be accessed by

one or more computers or one or more processors to retrieve instructions, code and/or

data structures for implementation of the techniques described in this disclosure. A

computer program product may include a computer-readable medium.

[0245] By way of example, and not limitation, such computer-readable storage media

can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic

disk storage, or other magnetic storage devices, flash memory, or any other medium that

can be used to store desired program code in the form of instructions or data structures

and that can be accessed by a computer. Also, any connection is properly termed a

computer-readable medium. For example, if instructions are transmitted from a

website, server, or other remote source using a coaxial cable, fiber optic cable, twisted

pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and

microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless

technologies such as infrared, radio, and microwave are included in the definition of

medium. It should be understood, however, that computer-readable storage media and

data storage media do not include connections, carrier waves, signals, or other transitory

media, but are instead directed to non-transitory, tangible storage media. Disk and disc,

as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc

(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically,

while discs reproduce data optically with lasers. Combinations of the above should also

be included within the scope of computer-readable media.

[0246] Instructions may be executed by one or more processors, such as one or more

digital signal processors (DSPs), general purpose microprocessors, application specific

integrated circuits (ASICs), field programmable gate arrays (FPGAs), or other

equivalent integrated or discrete logic circuitry. Accordingly, the terms "processor" and

"processing circuity," as used herein may refer to any of the foregoing structures or any

other structure suitable for implementation of the techniques described herein. In

addition, in some aspects, the functionality described herein may be provided within

dedicated hardware and/or software modules configured for encoding and decoding, or

51

incorporated in a combined codec. Also, the techniques could be fully implemented in

one or more circuits or logic elements.

[0247] The techniques of this disclosure may be implemented in a wide variety of

devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of

ICs (e.g., a chip set). Various components, modules, or units are described in this

disclosure to emphasize functional aspects of devices configured to perform the

disclosed techniques, but do not necessarily require realization by different hardware

units. Rather, as described above, various units may be combined in a codec hardware

unit or provided by a collection of interoperative hardware units, including one or more

processors as described above, in conjunction with suitable software and/or firmware.

[0248] Various examples have been described. These and other examples are within the

scope of the following claims.

[0249] The reference to any prior art in this specification is not, and should not be taken

as, an acknowledgement of any form of suggestion that such prior art forms part of the

common general knowledge.

[0250] It will be understood that the terms "comprise" and "include" and any of their

derivatives (e.g. comprises, comprising, includes, including) as used in this specification,

and the claims that follow, is to be taken to be inclusive of features to which the term

refers, and is not meant to exclude the presence of any additional features unless otherwise

stated or implied.

52

CLAIMS

1. A method of decoding video data, the method comprising:

inferring, for a current transform block of a current video block, a transform type from a

plurality of transform types that includes one or more discrete cosine transforms (DCTs) and one or

more discrete sine transforms (DSTs), wherein inferring the transform type comprises:

determining whether a size of the current transform block satisfies a size threshold, wherein

the size of the current transform block satisfies the size threshold where the size of the current

transform block is greater than or equal to 4 and less than or equal to 16;

determining whether the current video block is partitioned using intra-subblock partitioning

(ISP);

responsive to determining that the size of the current transform block satisfies the size

threshold and that the current video block is partitioned using ISP, selecting a particular DST of the

one or more DSTs as the selected transform type, wherein selecting the particular DST comprises

selecting the particular DST regardless of an intra prediction mode selected to predict the current

video block, wherein the particular DST is a DST-7; and

responsive to determining that the size of the current transform block does not satisfy the size

threshold and that the current video block is partitioned using ISP, selecting a particular DCT of the

one or more DCTs as the selected transform type, wherein the particular DCT is a DCT-2;

transforming, using the selected transform type, the current transform block to obtain a block

of reconstructed residual data for the video block; and

reconstructing, based on the reconstructed residual data for the video block, the video block,

wherein inferring the transform type for the current transform block comprises inferring the

transform type for the current transform block responsive to determining that multiple transform

selection (MTS) is enabled for the current video block,

wherein determining whether the current video block is partitioned using ISP comprises

determining, based on values of one or more syntax elements decoded from a video bitstream,

whether the current video block is partitioned using ISP,

wherein the size of the current transform block comprises:

a width of the current transform block; and

a height of the current transform block,

wherein selecting the transform type comprises selecting a transform type for

horizontal use and selecting a transform type for vertical use, the method further comprising:

selecting the DST-7 as the selected transform type for horizontal use responsive to

determining that the width of the current transform block satisfies a width size threshold and that the

53

current video block is partitioned using ISP; and

wherein the width threshold equals the height threshold.

2. The method of claim 1, wherein the one or more DCTs include one or more of a DCT-1, the

DCT-2, a DCT-3, a DCT-4, a DCT-5, a DCT-6, a DCT-7, and a DCT-8.

3. The method of claim 2, wherein the one or more DSTs include one or more of a DST-1, a

DST-2, a DST-3, a DST-4, a DST-5, a DST-6, the DST-7, and a DST-8.

4. A device for coding video data, the device comprising:

a memory configured to store video blocks; and

one or more processors implemented in circuitry and configured to:

infer, for a current transform block of a current video block, a transform type from a plurality

of transform types that includes one or more discrete cosine transforms (DCTs) and one or more

discrete sine transforms (DSTs), wherein, to infer the transform type, the one or more processors are

configured to:

determine whether a size of the current transform block satisfies a size threshold, wherein the

size of the current transform block satisfies the size threshold where the size of the current transform

block is greater than or equal to 4 and less than or equal to 16;

determine whether the current video block is partitioned using intra- subblock partitioning

(ISP);

select, responsive to determining that the size of the current transform block satisfies the size

threshold and that the current video block is partitioned using ISP a particular DST of the one or more

DSTs as the selected transform type, wherein to select the particular DST, the one or more processors

are configured to select the particular DST regardless of an intra prediction mode selected to predict

the current video block, wherein the particular DST is a DST-7; and

select, responsive to determining that the size of the current transform block does not satisfy

the size threshold and that the current video block is partitioned using ISP, a particular DCT of the one

or more DCTs as the selected transform type, wherein particular DCT is a DCT-2;

transform, using the selected transform type, the current transform block to obtain a block of

reconstructed residual data for the video block; and

reconstruct, based on the reconstructed residual data for the video block, the video block,

wherein, to infer the transform type for the current transform block, the one or more

processors are configured to infer the transform type for the current transform block responsive to

determining that multiple transform selection (MTS) is enabled for the current video block,

54

wherein, to determine whether the current video block is partitioned using ISP, the one or

more processors are configured to determine, based on values of one or more syntax elements

decoded from a video bitstream, whether the current video block is partitioned using ISP,

wherein the size of the current transform block comprises:

a width of the current transform block; and

a height of the current transform block

wherein, to select the transform type, the one or more processors are configured to select a

transform type for horizontal use and selecting a transform type for vertical use, and wherein the one

or more processors are further configured to:

select the DST-7 as the selected transform type for horizontal use responsive to determining

that the width of the current transform block satisfies a width size threshold and that the current video

block is partitioned using ISP; and

select the DST-7 as the selected transform type for vertical use responsive to determining that

the height of the current transform block satisfies a height size threshold and that the current video

block is partitioned using ISP, and wherein the width threshold equals the height threshold.

5. The device of claim 4, wherein the one or more DCTs include one or more of a DCT-1, the

DCT-2, a DCT-3, a DCT-4, a DCT-5, a DCT-6, a DCT-7, and a DCT-8.

6. The device of claim 5, wherein the one or more DSTs include one or more of a DST-1, a DST

2, a DST-3, a DST-4, a DST-5, a DST-6, the DST-7, and a DST-8.

7. A computer-readable storage medium storing instructions that, when executed, cause one or

more processors of a video coding device to:

infer, for a current transform block of a current video block, a transform type from a plurality

of transform types that includes one or more discrete cosine transforms (DCTs) and one or more

discrete sine transforms (DSTs), wherein the instructions that cause the one or more processors to

infer the transform type comprise instructions that cause the one or more processors to:

determine whether a size of the current transform block satisfies a size threshold, wherein the

size of the current transform block satisfies the size threshold where the size of the current transform

block is greater than or equal to 4 and less than or equal to 16;

determine whether the current video block is partitioned using intra-subblock partitioning

(ISP); and

select, responsive to determining that the size of the current transform block satisfies the size

threshold and that the current video block is partitioned using ISP a particular DST of the one or more

DSTs as the selected transform type, wherein the instructions that cause the one or more processors to

select the particular DST comprise instructions that cause the one or more processors to select the

55

particular DST regardless of an intra prediction mode selected to predict the current video block,

wherein the particular DST is a DST-7; and

select, responsive to determining that the size of the current transform block does not satisfy

the size threshold and that the current video block is partitioned using ISP, a particular DCT of the one

or more DCTs as the selected transform type, wherein particular DCT is a DCT-2;

transform, using the selected transform type, the current transform block to obtain a block of

reconstructed residual data for the video block; and

reconstruct, based on the reconstructed residual data for the video block, the video block,

wherein the instructions that cause the one or more processors to infer the transform type for the

current transform block comprise instructions that cause the one or more processors to infer the

transform type for the current transform block responsive to determining that multiple transform

selection (MTS) is enabled for the current video block,

wherein the instructions that cause the one or more processors to determine whether the

current video block is partitioned using ISP comprise instructions that cause the one or more

processors to determine, based on values of one or more syntax elements decoded from a video

bitstream, whether the current video block is partitioned using ISP,

wherein the size of the current transform block comprises:

a width of the current transform block; and

a height of the current transform block

wherein the instructions that cause the one or more processors to select the transform type

comprise instructions that cause the one or more processors to select a transform type for

horizontal use and selecting a transform type for vertical use, and further comprising instructions that

cause the one or more processors to:

select the DST-7 as the selected transform type for horizontal use responsive to determining

that the width of the current transform block satisfies a width size threshold and that the current video

block is partitioned using ISP; and

select the DST-7 as the selected transform type for vertical use responsive to determining that

the height of the current transform block satisfies a height size threshold and that the current video

block is partitioned using ISP, and

wherein the width threshold equals the height threshold.

WO 2020/186042 PCT/US2020/022363
1/12

100

SOURCE DEVICE DESTINATION DEVICE
102 116

VIDEO SOURCE DISPLAY DEVICE
104 118

MEMORY MEMORY106
120

VIDEO VIDEO

ENCODER DECODER
200 300

OUTPUT INPUT
INTERFACE INTERFACE

110
108 122

112

114

FIG. 1

WO 2020/186042 PCT/US2020/022363

2/12

130

1 0

1 1 0

FIG. 2A

132

FIG. 2B

WO 2020/186042 PCT/US2020/022363

3/12

a

a

FRE20

VIDEO ENCODER

VIDEO DATA

200

VIDEO DATA

MEMORY

230

TRANSFORM

QUANTIZATION

PROCESSING

+

UNIT

UNIT

208

204

206

MODE SELECTION

UNIT

202

SYNTAX ELEMENTS

MOTION

ESTIMATION

214

INVERSE

INVERSE

ENTROPY

UNIT

TRANSFORM

QUANTIZATION

ENCODING

222

+

PROCESSING

UNIT

UNIT

UNIT

210

220

212

MOTION

COMPENSATION

FILTER UNIT

UNIT

216

224

INTRA-

DECODED

BITSTREAM

PREDICTION

PICTURE

UNIT

BUFFER

226

218

FIG. 3

WO

ENCODED VIDEO

BITSTREAM

VIDEO DECODER

300

CPB

MEMORY

PREDICTION

320

PROCESSING UNIT

304

MOTION

ENTROPY

COMPENSATION

DECODING

UNIT

UNIT

316

302

INTRA-

PREDICTION

UNIT

318

DECODED

INVERSE

310

VIDEO

INVERSE

TRANSFORM

FILTER

QUANTIZATION

DPB

PROCESSING

UNIT

UNIT

314

UNIT

312

306

308

FIG. 4

200'

206'

208'

T() r

Block

Block

Quantization

Separation

Transform

220'

202'

T()

Block

Transform

Entropy

Prediction

Bank

Coding

-207'

218'

212'

Frame

Inverse

Inverse

210'

Buffer

Transform

Quantization

FIG. 5

WO

W

W

H

H

H horizontal

Wvertical

transforms

transforms

FIG. 6

WO 2020/186042 PCT/US2020/022363

8/12

W

N

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

32

68

30

70 72

28

74

26 24

76

22

78

20

80

18 16 14 12 10

8 6 4

0: Planar

1: DC

FIG. 8

2

-2

-4

-6

-8

-10 -12

-14

WO 2020/186042 PCT/US2020/022363

10/12

350

PREDICT CURRENT BLOCK

352
CALCULATE RESIDUAL BLOCK

FOR CURRENT BLOCK

354
TRANSFORM AND QUANTIZE

RESIDUAL BLOCK

356
SCAN COEFFICIENTS OF

RESIDUAL BLOCK

ENTROPY ENCODE 358

COEFFICIENTS

360
OUTPUT ENTROPY CODED
DATA FOR COEFFICIENTS

FIG.9

WO 2020/186042 PCT/US2020/022363

11/12

-370

RECEIVE ENTROPY CODED
DATA FOR CURRENT BLOCK

ENTROPY DECODE DATA TO 372

DETERMINE PREDICTION AND

REPRODUCE COEFFICIENTS

374

PREDICT CURRENT BLOCK

376

INVERSE SCAN REPRODUCED
COEFFICIENTS

INVERSE QUANTIZE AND

INVERSE TRANSFORM 378

COEFFICIENTS TO PRODUCE

RESIDUAL BLOCK

COMBINE PREDICTED BLOCK
380

AND RESIDUAL BLOCK

FIG. 10

WO 2020/186042 PCT/US2020/022363

12/12

1102

OBTAIN CURRENT TRANSFORM BLOCK
OF CURRENT VIDEO BLOCK

1104

DETERMINE THAT CURRENT VIDEO
BLOCK IS PARTITIONED USING ISP

1106

DETERMINE SIZE OF CURRENT

TRANSFORM BLOCK

1108

Yes SIZE > LOWER BOUND && No
SIZE < UPPER BOUND?

1110 1112

SELECT DST-7 SELECT DCT-2

1114

TRANSFORM CURRENT TRANSFORM
BLOCK USING SELECTED TRANSFORM
TYPE TO OBTAIN RECONSTRUCTED

RESIDUAL DATA

1116

RECONSTRUCT CURRENT VIDEO
BLOCK BASED ON RECONSTRUCTED

VIDEO DATA

FIG. 11

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

