Title: METHOD OF CONTROLLING ELECTRONIC CONTROLLED THERMOSTAT

A method of controlling an electronic controlled thermostat capable of accurately realizing a high follow-up capability to cooling water temperature at a low cost by eliminating a response delay by a time a time when a flow is controlled and an actual cooling water temperature becomes a set water temperature after a time when a requested cooling water temperature is set in the cooling water temperature control system of a car engine and the electronic controlled thermostat used for the cooling water temperature control of an internal combustion engine and having an actuator capable of arbitrarily changing a valve opening without relying upon only the actual cooling water temperature, the electronic controlled thermostat comprising a means for calculating an elapsed time calculated by a controller by a time when the cooling water temperature is changed after the actuator is energized when the cooling water temperature is controlled to an arbitrarily set water temperature by controlling the actuator by the controller and predicting the water temperature after the elapsed time is passed, characterized in that the actuator is controlled beforehand according to the predicted water temperature.
制御し、冷却水温を任意に設定した水温に制御する際、制御コントローラで演算したアクチュエータへの通電から水温変化するまでの経過時間を算出し、前記経過時間後の水温を予測する手段を有し、前記予測水温に合わせてアクチュエータを先行制御することを特徴とする。
電子制御サーモスタットの制御方法

5 技術分野
本発明は、自動車等に使用されるエンジン（以下、エンジンと称す）の負荷に応じて冷却水温度を可変設定するエンジンの冷却水温度制御系において、実際の温度だけに依存せずパルプ開度を任意に変化させることが可能な電子制御サーモスタットの制御方法に関する。たとえば感温部に発熱素子を設置したものの、パルプをモータで制御するものがある。

10 背景技術
自動車用エンジンにおいて、これを冷却するためには、一般にはラジエータを用いた水冷式の冷却装置が使用されている。そして、従来からこの種の冷却装置においては、自動車の燃費向上を目的として、エンジンに導入する冷却水の温度を制御できるように、ラジエータ側に循環させる冷却水量を調節する制御パルプ、たとえばサーモスタットが使用されている。このようなサーモスタットとしては、パルプを制御するアクチュエータとして熱膨張体を用いたもの、あるいは電磁制御によるもの等が知られている。

このようなサーモスタットは、そのパルプ部を冷却水通路の一部に介在し、冷却水温度が低い場合に、該パルプ部を閉じて、冷却水をラジエータに経由させずにバイパス通路を介して循環させ、また冷却水温度が高くなった場合は、該パルプ部を開けて冷却水がラジエータを通して循環させることにより、冷却水の温度を所要の状態に制御することができるものである。

ところで、自動車のエンジンが高負荷で運転されているときには、冷却水温度を低くし、低負荷であるときには冷却水温度を高くすることにより、自動車の燃費向上を図ることが一般的に知られている。

このような状況において、自動車の燃費向上のための最適水温を提供するために、最近では電子制御式のパルプ、すなわち電子制御サーモスタットが採用されることが多くなっている。このような電子制御サーモスタットは、そのパルプ部の開度を任意に制御すること、およびラジエータに付設した冷却ファンを制御することで、冷却水温度を制御しており、これにより冷却水温度の適切な制御を行うものである。これは、上述した電子制御サーモスタットを可変制御する制御装置（エンジンコントロールモジュール）を、エンジン制御ユニットでの種々のパラメータ、たとえば冷却水温度、外気温、車速、エンジン回転数、スロットル開度等の検出情報をも加味して制御できるためである。

このような冷却水温度の制御を所要の状態で行うことにより、燃費向上を図るものとして、従来から種々のものが多数提案されている。

たとえばサーモスタットの感温部に発熱素子を装着し、この発熱素子の発熱制御を併用することによって、エンジン始動時の冷却水の即時化およびエンジンの燃費向上を図ることができるようにした電子
制御サーモスタットが従来既に提案されている（たとえば、特許文献1参照）。

特許文献1

特開2001－317355号公報

ところで、上述したように電子制御サーモスタットにおいて、冷却水温を制御する際に問題とされることに、「アクチュエータの通電が設定されてから水温変化するまでの応答性」がある。

すなわち、従来の電子制御サーモスタットの制御方法では、アクチュエータの通電をしてからパルプが開き、実際の冷却水温が目標水温に変化するまでの間に、アンダーシュートやオーバーシュート、ハンティング、冷却水の熱交換の速度等といった種々の要因が影響し、かなりの時間がかかってしまうものであった。

また、前記アクチュエータに装着される発熱装置としてのPTCに通電するための電気回路が、従来は定電圧回路であったため、PTCの抵抗値が温度と共に変化することから、一定の発熱量を確保することが難しかった。たとえば、PTCの温度が0℃で、10Wの通電であったとすると、PTCの温度が100℃になると通電が5Wになるものであった。

また、自動車にあっては、運転者の乗り方あるいは車両毎の冷却水循環系統のレイアウト、サーモスタットの個体差などによって、設計段階でその車にベストな設定水温を決定することが困難であるという問題もあり、このような点にも配慮することが望まれている。

本発明はこのような事情に鑑みてなされたものであり、上述した従来から問題とされている不具合を一掃し、高精度、低コストで、高い冷却水温の追従性を実現することができる電子制御サーモスタットの制御方法を得ることを目的とする。

さらに、本発明は、エンジン負荷判断手段や学習機能を持たせることによって、低コストでありながら、常にその車が適した設定水温を供給することができ、最適燃費化、最適通電化を実現することができ、電子制御サーモスタットの制御方法を得ることを目的としている。

発明の前記

このような目的に応えるために本発明（請求項1記載の発明）に係る電子制御サーモスタットの制御方法は、エンジンの冷却水温度制御に用いられ、実際の冷却水温度だけに依存せずにパルプ開度を任意に変化させることができるアクチュエータを備えた電子制御サーモスタットにおいて、制御コントローラは、前記アクチュエータを作動させるための通電を行うのと併せて、通電後から前記制御アクチュエータが作動して温度変化するまでの経過時間と単位時間あたりの水温変化量を算出することで、前記経過時間後の冷却水温度を予測し、前記予測水温に合わせて前記アクチュエータを制御することを特徴とする。

また、この他電子制御サーモスタット制御において、用いられるさまざまなアクチュエータに共通して対応できる制御方法を得ることを特徴とする。

ここで、アクチュエータを先行制御することは、設定温度が算出され制御水温に達するまでの時間を算
出し、このタイムラグ経過後の水温を予測し、その予測した水温に合わせてアクチュエータへ先行して通電制御することによりバルブを作動させ、アクチュエータへの通電を決定してから実際の水温になるまでの応答遅れを解消する制御である。

また、アクチュエータとは、バルブを開閉駆動する電動モータ、ソレノイドまたは感温部に設置された発熱装置である。

このようにすれば、冷却水が要求された温度になるようにバルブを、より一層現実に即した所望の状態でリニアにコントロールさせることによって、従来から問題であった応答遅れを解消することが可能で、高精度、低コストで、高い冷却水温の追従性を実現することができる。これにより、自動車の運転状態においてエンジンの負荷に応じて冷却水温度を適切かつ効率よく行うことができ、応答性や冷却水温度の安定性の面でも優れ、またオーバーシュートやアンダーシュート、ハンティング等を生じるおそれもなく、冷却水温度を高水温制御、あるいは低温制御することが適切に行え、さらに燃費向上をより一層確実に、しかも運転状態のほぼ全域で達成することができる。

本発明（請求項2記載の発明）に係る電子制御サーモスタットの制御方法は、請求項1において、前記制御コントローラ、前記アクチュエータが多くの通電を必要とする時には、前記エンジンに付随している補器類の制御に前記アクチュエータの制御を連動させた制御を備えていることを特徴とする。

このようにすれば、自動車全体から見た燃費軽減を適切に行える。ここで、アクチュエータへの通電を補器類に連動させた制御とは、PTCや電動モータ等といったアクチュエータの消費電力が大きく、補器類も同時に作動させるようなとき、かなりの電力を消費するために燃料消費率、エンジン通電が悪くなるので、一時的に補器類への電力供給を中止、抑制する制御である。

本発明（請求項3記載の発明）に係る電子制御サーモスタットの制御方法は、請求項1ないし請求項2のいずれか1項において、前記制御コントローラ、異なる前記エンジンまたは冷却水循環装置のレタイアウトに応じて前記電子制御サーモスタットの制御を使用するPI制御定数を自動的に決定する制御を備えていることを特徴とする。

このようにすれば、サーモスタットの制御をより実際に即して行える。すなわち、本発明に係るサーモスタットを搭載する車両に冷却装置のレイアウトやサーモスタットのばらつきがあり、前記電子制御サーモスタットの制御で使用するPI（またはPID）制御定数が個々に変わってくる。そのために個体差に応じたマッキングが必要となり、個々に設定しなければならない。そこで、サーモスタットのばらつき等を考慮して、個々に合わせた前記制御定数を自動的に算出する制御を行うとよいのである。

本発明（請求項4記載の発明）に係る電子制御サーモスタットの制御方法は、請求項1ないし請求項3のいずれか1項において、前記制御コントローラは、任意に設定した冷却水温度と制御を加えた後の冷却水温度の温度差が所定値以内になった場合には、アクチュエータへの通電をカットする制御を備えたことを特徴とする。

このようにすれば、サーモスタットの制御において、消費電力を抑さえることが可能である。

本発明（請求項5記載の発明）に係る電子制御サーモスタットの制御方法は、請求項1ないし請求項
4のいずれか1項において、前記制御コントローラは、運転者が前記エンジンの高負荷を多用する人であるか、それとも低負荷運転を多用する人かを判断し、設定水温を変化させる制御を備えたことを特徴とする。

このようにすれば、サーモスタットの制御をより実際に即して適切に行える。ここで、運転者によって設定水温を変化する制御とは、一定時間、運転者によるエンジン負荷の変化をモニタリングし、負荷の平均を算出することで行うことである。すなわち、その負荷平均値が一定値以上であれば、高負荷多用運転者と判断し、設定水温を下げる。一方、負荷平均値が一定値以下であれば、低負荷多用運転者と判断し、設定水温を上げる。

本発明（請求項6記載の発明）に係る電子制御サーモスタットの制御方法は、請求項1ないし請求項5のいずれか1項において、前記アクチュエータは、発熱装置を取付けたWAX式サーモエレメントであって、前記制御コントローラは、冷却水の実際の流量と目標流量との差を検出または算出し、サーモエレメントの放熱量と前記バルブの駆動する部位におけるヒステリシスを補正することを特徴とする。

このような本発明によれば、冷却水が要求された温度になるようにバルブを、より一層現実に即した所要の状態でリニアにコントロールさせることによって、従来から問題であった水温制御性の悪さを解消することが可能で、高精度、低コストで、高い冷却水温度の追従性を実現することができる。これにより、自動車の運転状態においてエンジンの負荷に応じて冷却水温度を適切かつ効率よく行うことができ、応答性や冷却水温度の安定性の面でも優れ、またオーバーシュートやアンダーシュート、ファンタジー等を生じるおそれもなく、冷却水温度を高水温制御、あるいは低水温制御することが適切に行え、さらに燃費向上をより一層確実に、しかも運転状態のほぼ全域で達成することができる。

ここで、エレメントの放熱量補正とは、サーモエレメントから冷却水への放熱量を予測して、放熱で逃げた分の熱を確実に膨張体（WAX）に吸収させるために、この放熱量に相当する熱を発熱素子により補えるように通電を増減させ、放熱による影響をなくす補正である。このような補正を行うと、ハンティングや水温制御幅などの水温制御性を向上させることができる。

また、機械的駆動部位におけるヒステリシスの補正は、次のような場合に行われる。たとえばバルブ開閉時に構造上での機械的な駆動部位に生じるヒステリシスにより、開弁から閉弁、閉弁から開弁への切換時、あるいは通電を徐々に上げたり下げたりしても開弁量が変わらない領域がある。これは、上記したようにバルブの機械的な駆動部位が、固定側との関係において動き出すまでの間に時間がかかるからである。そのため、このような領域の影響を受けないようにバルブが、「開弁から閉弁へ」、「閉弁から開弁へ」の切換時にPTCの通電を余分に加減したりして補正するのである。

本発明（請求項7記載の発明）に係る電子制御サーモスタットの制御方法は、請求項6において、前記制御コントローラは、ラジエータ流量以外のエレメントフラクト、発熱素子の温度、感温体の温度等のパラメータを検出することによりラジエータ流量を予測する手段を有することを特徴とする。

ここで、ラジエータ流量を予測する手段としては、アクチュエータに通電を決定させる際に、エレメントフラクトをフィードバックさせ、目標流量に代えて目標リフト量を算出することである。あるいは、発熱装置の
発熱体の温度または感温体の温度をフィードバックさせ、目標流量に代えて目標温度を算出することである。

このようにすることにより、ラジエータ流量をセンシングしなくとも高い精度をもって冷却水温の制御が可能となるのである。

本発明（請求項8記載の発明）に係る電子制御サーモスタットの制御方法は、請求項6ないし請求項7のいずれか1項において、前記制御コントローラは、エレメントリフト量の劣化量を予測することで前記エレメントリフトを補正する制御を備えることを特徴とする。

このようにすることにより、応答遅れをより一層適切に解消し、長い間、高い精度をもっての冷却水温の制御を行うことができる。ここで、エレメントリフト量の劣化を予測する補正とは、エレメントの経年劣化により、水温ハングが生じたり、水温制御幅が大きくなる等というように水温制御性が初期に比べて悪くなるので、エレメントのリフト劣化量をオーバーシュート増大量や初期の水温勾配との差から予測し、劣化量の影響を受けないように適電を増減する補正である。

本発明（請求項9記載の発明）に係る電子制御サーモスタットの制御方法は、請求項6ないし請求項8のいずれか1項において、前記制御コントローラは、前記エンジンの始動時には、前記発熱装置の抵抗値を測定することで、前記抵抗値と前もって格納していた基準抵抗値との差が所定値以上になった場合に前記電子制御サーモスタットが故障したと判断することを特徴とする。

このようにすれば、電子制御サーモスタットを適切かつ確実に制御することができる。

以上のような本発明に係る制御方法を適用する電子制御サーモスタットを含めた自動車用エンジンの冷却水温度制御系は、任意に水温制御を行える構造をもつ電子制御サーモスタットと、冷却水系における実際の水温（実水温）を感知する水温センサと、冷却水を設定水温に制御するための補正演算等を含めて行う制御コントローラを備えた構成をもち、これに冷却水系における流量を検出するセンサ、サーモエレメントのリフトを検出するセンサ、膨張体としてのWAXあるいは発熱素子を検出する温度センサ等を適宜用いるように構成されているものである。

図面の簡単な説明
第1図は、本発明に係る電子制御サーモスタット制御方法の一つの実施形態を示し、Rd流量センサを設けたシステムでの制御ブロック図である。
第2図は、本発明に係る電子制御サーモスタット制御方法を適用するエンジンの冷却水温度制御系を説明するための概略図である。
第3図は、第1図の変形例を示す制御ブロック図である。
第4図は、第1図、第3図の変形例を示す制御ブロック図である。
第5図は、PTCの発熱回路を説明するための図である。
第6図は、第6図のエレメント放熱量補正制御を説明するための図である。
第7図は、応答遅れの補正制御を説明するためのグラフである。
第8図は、タイムラグ経過後予測水温のフィードバック制御を説明するための図である。
第9図は、第8図の別の例を説明するための図である。
第10図は、機械的駆動部位におけるヒステリシスの補正制御を説明するためのグラフである。
第11図は、消費電力の低減制御を説明するためのグラフである。
第12図は、最適水温設定制御を説明するためのグラフである。
第13図は、(a), (b), (c)は設定水温を変えたことでの水温制御イメージを示すグラフである。
第14図は、エレメント経年劣化の補正制御を説明するための図である。
第15図は、エレメント経年劣化の補正制御を説明するためのグラフである。
第16図は、エレメントリフト劣化検出を説明するためのグラフである。
第17図は、PI値の學習制御を説明するためのグラフである。
第18図は、本発明に係る電子制御サーモスタット制御方法の他の実施形態を示し、電動モータ駆動式バフライ弁等の流量制御弁を用いたシステムでの制御ブロック図である。

符号の説明

1…エンジンとしての自動車用エンジン、2…熱交換器としてのラジエータ(Rd)、3…流出側冷却水路、4…流入側冷却水路、5…バイパス水路、10…水分配バルブとして機能する電子制御サーモスタットとしてのバルブユニット、11、12…水温センサ、20…制御装置(ECU：エンジンコントロールユニット)であるコントローラ、21…ラジエータ流量センサ(Rd流量センサ)、22…リフトセンサ、23…PTC温度センサ、24…WAX温度センサ。

発明を実施するための具体的な形態

第1図および第2図は本発明に係る電子制御サーモスタットの制御方法の一つの実施の形態を示す。
これらの図において、まず、電子制御サーモスタットを含む自動車用エンジンの冷却水温度制御系の全体の概要を示す第2図に基づき、以下に説明する。

第2図において、1はエンジンとしての自動車用エンジンであり、このエンジン1内には、図示しないが周知の通りの冷却水通路が形成されている。
2は熱交換器、すなわちラジエータ(Rd)であり、このラジエータ2の内部にも周知の通り冷却水通路が形成されており、またラジエータ2の冷却水入口部2aおよび冷却水出口部2bは、前記エンジン1との間で冷却水を循環させる冷却水路3、4に接続されている。
この冷却水路は、エンジン1の上部に設けられた冷却水の出口部1bからラジエータ2の上部に設けられた冷却水の入口部2aまで連通する流出側冷却水路3と、ラジエータ2の下部に設けられた冷却水の出口部2bからエンジン1の下部に設けられた冷却水の入口部1aまで連通する流入側冷却水路4と
から構成されている。さらに、これら冷却水路3、4間を短絡して接続するバイパス水路5が設けられ、このバイパス水路5の前記冷却水路4への合流部に、水分配バルブとして機能する電子制御サーモスタットとしてのバルブユニット10が設けられている。

このバルブユニット10は、たとえば前述した特許文書1等に開示されているような構造をもつものであって、バルブは、冷却水の温度を感温して内装するワックスの膨張によりピストンを伸張させる機構のサーモエレメントと、ピストンの先端部に接続部材を介し接続されるメインシャフトと、このメインシャフトに支承されるメイン弁体とバイパス弁体とから構成されている。

さらに、サーモエレメントの頭部にあって冷却水と接触しない箇所には発熱素子があり、いづれの場合も発熱素子は伸縮するという構造である。発熱素子の温度をセンサとして、温度信号を送信するようになっている。この温度信号は、エンジンの運転状況に応じて制御コントローラからの出力信号により、例えばエンジン負荷が大きくなった時に冷却水温度が高くなる場合に早く開弁、又は通常よりもリフト量を大きくしエンジンを冷やす等のエンジン自体の制御も可能となり、実際に温度だけに依存せずバルブの開度を任意に変化させることが可能なものである。

なお、発熱素子としてはニクロムヒータ、PTC素子、ベルチェ素子等のものが使用され、用途により選択することができる。

そして、このようなエンジン1、ラジエータ2、冷却水路3、4等によってエンジン冷却水の循環路が形成されている。

前記エンジン1における冷却水の流出部1b近くの流出側冷却水路3（ここでは同等の箇所であるバイパス通路5の一部）には、例えばサーモスタット等の水温センサ11が配置されている。この水温センサ11による検出値、すなわちエンジン出口側の水温に関する情報は、制御装置（ECU：エンジンコントロールユニット）であるコントローラ20に送られ、エンジン1の運転状態等に応じて冷却水の流れを適宜制御できるように構成されている。

前記流入側の冷却水路4において、バルブユニット10の上流側には、ラジエータ2の出口側の水温を検出する水温センサ12が設けられている。この水温センサ12の検出値もコントローラ20に送られている。

なお、このコントローラ20は、前記ラジエータ2に付設され冷却水を強制的に空冷するための冷却ファンのファンモータも制御するようになっている。

また、詳細な図示は省略したが、コントローラ20には、エンジン1やラジエータ2等を始めとする部品の動作状態を示す情報、たとえばNe（エンジン回転数）、θth（スロットル開度）等も送られている。

以上の構成において、電子制御サーモスタットによるバルブユニット10は、自動車の運転状態においてエンジン1の負荷に応じて冷却水温度を適宜制御している。

本発明によれば、上述した冷却水温度制御系において、ラジエータ2からエンジン1への流入側冷却水路4に、ラジエータ流量センサ（以下、Ra流量センサという）21を設けることにより、冷却水の水温制御を、第1図に示すようにして行っている。

すなわち、従来構造では、冷却水の水温制御を行うにあたって、冷却水路3、4での温度差を基にPI
D（またはPI）制御を行った結果で、発熱素子（たとえばPTC）の通電を単純に制御している。したがって、発熱素子通電の変化とラジエータ側のRd流量とが比例しないため、ハンティングを生じたり水温制御帯が大きくなったりし、水温制御性能が悪いという問題があったため、これを解消するために、温度差を基にしたPID（またはPI）制御量で目標ラジエータ流量（目標Rd流量）を算出し、この目標Rd流量に安定するように種々の補正を加え、第1図、第3図、第4図に示すように、フィードバック制御を行うようにしている。

第1図はアクチュエータに従来のサーモスタットに発熱装置とRd流量センサ21を設けたシステムでの制御ブロック図であり、発熱装置に発熱素子を用いた。すなわち、サーモスタット内部に設けた発熱素子に通電して発熱させる過程で、冷却水の実際の水温（実水温）と設定水温との差ΔTを検出し、PID制御で目標流量を算出した後、実流量と目標流量との差ΔQを検出してからさらにPID制御を行い、エレメントの放熱量補正、機械的駆動部分におけるヒステリシス補正、消費電力を抑える補正等を加えて、発熱素子に通電する通電を決定することにより、発熱素子への通電を決定してから実際の水温になるまでの応答遅れ（タイムラグ）および水温ハンティング等を解消する制御を行うように構成されている。その途中で、目標Rd流量を算出し、これを実際のRd流量と比較して調整し、フィードバック制御を行っているのである。

なお、Rd流量センサの代わりに、Rd流量を予測しやすいエレメントリフト、発熱装置であるPTCおよびWAXの温度を用い、これをもう一つのフィードバック情報としてもよい。

すなわち、Rd流量センサ21を取付けてできない等の場合には、第2図において想像線で示すように、電子制御サーモスタットを構成するバルブユニット10にエレメントリフト量を検出するリフトセンサ22とPTCあるいはWAXの温度を検出するPTC温度センサ23、あるいはWAX温度センサ24を設け、これらの検出値によって第3図または第4図に示す制御を行う。

第3図は、上述した目標Rd流量に代えて、目標リフト量を算出する際に、上述したリフトセンサ22を用い、これによって求めたエレメントリフト量をフィードバックさせる場合を示している。

第4図は、上述した目標Rd流量に代えて、目標温度を算出する際に、PTC温度センサ23またはWAX温度センサ24を用い、これによって求めたPTCまたはWAXの温度をフィードバックさせる場合を示している。

このようにすることにより、ラジエータ流量をセンシングしなくても、つまりラジエータ流量センサを無くすことが可能である。

なお、前述した第1図、第3図、第4図において、各補正制御では、PIDの計算結果を加減乗除していが、この代わりにPID制御の定数を変更してもよい。

上述したようなステップで冷却水の温度制御を行うにあたって、発熱素子としてPTCを使用する場合、PTCに通電する発熱回路として、定電流回路を用いるよい。すなわち、電子制御サーモスタット（バルブユニット10）におけるアクチュエータの発熱装置に、PTCとWAXエレメント（バイメタルや形状記憶合金SMAでもよい）を組み合わせた場合において、WAXエレメントをPTCで加熱し、バルブを開弁さ
せる構造では、パルプ開弁量を保持するにはPTCで発する熱量を一定に維持できるのが理想である。しかし、従来はこのPTC通電回路に定電圧回路を用いているため、同じ電圧を加えたとしてもPTC自体の温度上昇で抵抗変化するために通電も変化してしまう、パルプ開弁量が変動し、水温ハンチング、水温制御幅が大きくなり水温制御性が悪くなる。

このような点を解消するために、第5図に示すようにPTC通電回路に定電流回路を用い、PTC自体の温度変化による通電変化特性をキャンセルすることで、安定した通電を確保でき、PTC発熱量の制御を容易にすることが可能である。

また、前述した第1図あるいは第3図、第4図の制御ブロック図において、エレメントの放熱量補正とは、サーモエレメントから冷却水への放熱量を予測して、放熱で逃げた分の熱を確保に膨張体(WAX)に吸収させるために、この放熱量に相当する熱をPTCにより補えるように通電を増減させ、放熱による影響をなくす補正である。

すなわち、PTCで増加されるエレメントが冷却水の中に配置またはエレメントの一部が冷却水に接する位置に配置されている場合、発生した熱は常に周辺に流れる冷却水へ放熱される。この放熱量が多くなると、PTCへ同じ通電を加えても開弁量を維持できず、結果として水温制御性が悪くなる。これを解決するため、第6図に示すようにエレメントから冷却水への放熱量を予測する手段を設け、この放熱量に相当する熱をPTCで補足するように通電を増減させる。これにより、エレメントから冷却水への放熱される熱量が増減したとしても開弁量への影響をなくすことができるのである。

なお、このエレメント放熱量の補正制御にあたって、Neに対応するエレメント放熱補正量マップからそのときに必要とされる放熱量を取り出し、PTC通電に加える。エレメント放熱量の予測は、単純にNeから予測する方法のほかに、Neおよび制御水温、外気温、ラジエータ出口側水温、エンジン負荷などを用いて、より高精度な予測を行うようにもよい。

応答遅れのキャンセル制御にあたっては、次のように行う。すなわち、このような応答遅れによってオーバーシュート、アンダーシュート、ハンチングなどの不具合が発生すると、冷却水系やエンジン部品の耐久性、燃費が悪化する等の問題が発生する。このような問題を解消するために、タイムラグ経過後の水温を予測する手段を設け、第7図に示すようにタイムラグ経過後の予測した水温に合わせてパルプを先行制御することで、タイムラグを擬似的に解消するように構成するとよい。

ここで、タイムラグ経過後を予測した水温とは、制御に使用される水温であって、この水温で先行制御すれば、タイムラグ経過後に必要とされるPTC通電を事前に通電でき、タイムラグ経過後にその通電が反映されることになる。

そのステップとしては、まずに、センサから取り込んだ水温と単位時間あたりの水温変化量からタイムラグ経過後予測水温を算出する。

ここで、水温変化の変化を算出すれば、より精度を上げることも可能である。

次に、求めた予測水温を元の通電量を決めるPID制御等を行うとよい。これを第8図に示す。

なお、タイムラグ経過後の水温はタイムラグ時間Td(通電変更から水温フィードバックされるまでの時
間）から予測する方法に加えて、さらにラジエータ出口側水温変化、エンジン負荷などを加えて、より高精度に検知するようにしてもよい。たとえば冷却水の流速がNedに比例することからバルブ開弁から水温変化までの時間を変化にNedをパラメータとして算出に使用してもよい。さらに、通電変化から水温フィードバックまでの時間を毎回計測し、この値を基にタイムラグ時間Tdを決めるときエレメントなどの経年劣化などに対応することができる。また、ミキシングに水温センサを設け、通電からバルブ開くまでの時間を測定し、より高精度なタイムラグ検出手段を用いてもよい。

上述した方法では、制御の基準となる水温を、算出したタイムラグ経過後水温に差し替えることでタイムラグキャンセルを実現しているが、次のように目標水温を差し替えることもできる、

この目標水温Tsの差し替え手法を説明する。
すなわち、始めにセンサから取り込んだ水温変化からタイムラグ経過後水温を算出する。
そして、第9図に示すように、この求めた水温変化を設定水温から減算し、この設定水温に追従するようにPID制御を行うとよい。

ここで、オーバーシュートとアンダーシュートでは制御の流れが逆になることは理解されよう。

また、機械的駆動部位におけるヒステリシスの補正は、次のような場合に行われる。たとえばバルブ開閉時に構造での機械的な駆動部位に生じるヒステリシスにより、開弁から閉弁、閉弁から開弁への切換時には、あるいは通電を徐々に上げたり下げたりしても開弁量が変わらない領域（不感帯）がある。
これは、上述したようなバルブの機械的な駆動部位が、固定側との関係において動き出すまでの間に時間があるからである。そのため、このような領域の影響を受けないようにバルブが、「開弁から閉弁へ」、「閉弁から開弁へ」の切換時に、第10図に示したようにPTCへの出力（通電）を余分に加減（ベースアップおよびベースダウン）したりして補正するとよいのである。

ここで、電動モータ駆動式バタフライ弁等の流量制御弁を用いたシステムによる電子制御サーモスタットにおいては、エレメントリフト変化をバルブ変化、PTC出力変化をアクチュエータ出力変化に替えることで成り立つことは理解されよう。

さらに、消費電力を抑える補正とは、設定水温と制御水温との温度差が一定値以下になったときに、PTCへの通電（アクチュエータへの通電等）を止めることで行われる。

すなわち、サーモスタットの開弁温度と同程度に設定温度をもってきた場台、PTCは常に通電される状態におかれ、消費電力が多くなり、燃費増大、出力低下を招く。
したがって、第11図に示すように、設定水温と制御水温の温度差 ΔTがある値以下になったときはPTCへの通電を完全に止める。勿論、設定水温を上げて、結果通電量を減らす手法を用いてもよい。

また、上述したWAX式サーモスタットに発熱装置を設置し、発熱装置には通電すると抵抗値が変化するもの（たとえば、PTCまたはニクロム線等）を使用した冷却水温制御を行うにあたっては、安全性の観点から、エンジン始動時にPTCまたはニクロム線等の抵抗値を測定することにより、基準範囲内にあるか否かによって、サーモスタットの故障判断を行うとよい。
また、このような冷却水温制御を行うにあたって自動車全体のシステム面から見ると、エンジンに付随した補器類に連動した制御を行うことが望ましい。すなわち、PTCで多くの通電を必要とする場合に、連動してエアコンなどの補器類の作動をカットまたはオルタネータ等の通電を押さえる制御を加えることにより、補器類に連動させた制御を行うとよい。このようにすると、PTCへの消費電力が大きく、補器類も同時に作動させるようなとき等のようにかなりの電力を消費する場合において、燃料消費率、エンジン出力を確保することができる。

また、上述した冷却水温制御を行うにあたっては、自動車を運転する運転者がエンジンの高負荷域を多用する人であるか、それとも低負荷域を多用する人かを判断し、設定水温を変化させることも、燃費低下、通電低下を防止するうえでは必要なことである。

すなわち、従来の制御では、低負荷走行が多い運転者に設定水温を合わせると、設定水温が高くなるから、高負荷走行を多用する運転者にとっては燃費、エンジン出力とも悪化する。これは逆も同じである。

このような不具合を解消するには、第12図、第13図に示すように、運転者によって設定水温を変化する制御を行うとよい。すなわち、一定時間、運転者の負荷の変化をモニタリングし、負荷の平均を算出することで行う。すなわち、その負荷平均値が一定値以上であれば、高負荷多用運転者と判断し、設定水温を下げる。一方、負荷平均値が一定値以下であれば、低負荷多用運転者と判断し、設定水温を上げる。

なお、上げ幅、下げ幅とも負荷平均値と比例させてもよい。また、設定水温とともに、高負荷判定基準を変更させ、低水温への移行を早めてもよい。さらに、アクセルの踏み方で判別してもよい。この設定水温をメモリしておく、次回のエンジン始動時にも同じ設定水温からスタートするような学習機能を持たせることも考えられる。

また、上述した冷却水温制御を行うにあたっては、エレメントリフトの経年劣化の補正を行うことも望まれる。これは、エレメントの経年劣化により、水温制御性が初期に比べて低下することは避けられないからである。

このために、リフト劣化量を予測する手段を設け、その劣化量を補正するようにPTCへの通電を増大させるように制御し、これによりリフト劣化によるリフトダウン防止を実現するとよい。この状態を第14図、第15図、第16図に示す。

ここで、PTC通電量とリフト量の相関テーブルを用いて制御する場合は、これを考慮して補正量の算出を行おうとよい。

また、エレメントリフト劣化検出にあたっては、始めにある運転条件下で、水温のオーバーシュート量の違い若しくは水温が上昇してから下降に転じた温度を初期状態と比較して、開弁温度のずれを検出し、リフト劣化量を導く。次に、ある運転条件下で、水温変溫時に、水温の傾斜を変化する温度を初期状態と比較して、開弁温度のずれを検出し、リフト劣化量を求めるとよい。

また、上述した冷却水温制御を行うシステムでは、搭載する車両毎にサーモスタットのばらつき等に
より、PID（またはP）制御定数をマッチングさせる必要がある。一般的には設計時に行うとよいが、エンジン冷却水系のばらつき、バルブのばらつき等を考慮して適切に制御するには煩雑さは避けられない。このため、エンジン組付け後に搭載される車両に応じてPI制御定数を自動的に決定し、自動チューニングを行うようにすることが望ましい。

これは、第17図に示すように、一定時間の間、温度差の平均を算出し、これが小さくなるように比例定数、積分定数を増減させる。出荷時には適当な比例、積分定数を設定しておく。そして、ある時間の平均温度差△Tを測定しておく、このときの比例、積分定数に対してそれぞれ定数を好ましく1.5倍に増加させ、再度平均温度差を測定する。その際に、平均温度差が小さくなれば、その比例、積分定数をベースとして、さらに定数を好ましく1.5倍にしてゆく。しかし、平均温度差が大きくなるようであれば、比例の値を好ましく0.65倍して平均温度差を測定し、温度差を小さくする。このとき、温度差が小さくならない場合は、元の値がベストの比例、積分定数と考えられるのである。

なお、サーモスタットの個体差や経年変化により適切な比例、積分定数は変化する場合もあると考えられるから、常に最適値を模索することにより、この種の確認手段は動作していることが望ましい。

なお、本発明は上述した実施の形態で説明した構造または数値には限定されず、各部の形状、構造等を適宜変形、変更し得ることはいうまでもない。

すなわち、本発明を適用する電子制御サーモスタットとしては、冷却水温を任意に温度制御できるものであればどのような構造のもでもよし、たとえばWAX＋PTC式サーモスタット等は勿論、電動モータ駆動式バタフライ弁等の流量制御弁を用いたシステムによる電子制御サーモスタットであってもよい。また、発熱装置としても発熱素子に限られるものではなく、誘電加熱や誘導加熱やマイクロ波加熱を利用したもの及びニクロム線等の発熱体であればどのようなものでもよく、また発熱素子もPTCに限らずペルチェ素子等でもよい。さらに、WAXではなく、パイメタルや形状記憶合金（SMA）でもよい。

ここで、第18図は上述した電動モータ駆動式バタフライ弁等を用いた場合の制御ブロック図である。この図では、冷却水の実際の水温と目標水温との差△Tを検出し、PID制御で目標流量を算出し後、実際の流量と目標流量との差△Qを検出してからPID制御を行い、アクチュエータとして流量制御弁（たとえばバタフライ弁等）を開閉駆動する電動モータへの通電を決定することにより、任意の冷却水の水温を設定してから実際の水温になるまでの応答遅れを解消する制御を行うように構成されている。なお、それ以外の部分は、前述した第1図、第3図、第4図などと同等であるから、ここで具体的な説明は省略する。

ここで、上述した応答遅れをキャンセルした制御、エンジン補償器類に連動させた制御、自動学習機能を持たせた制御、エンジン負荷によって設定水温を変化させる制御、消費電力を抑えた補正及び機械的駆動部位におけるヒステリシスの補正が有効になることは理解されよう。

また、その他の構成部品や冷却水循環路の構造、さらには各部で説明した数値などは図示や説明で特定されるものに限定されるものではなく、種々の形態のものを採用することは自由である。さらに、上述したそれぞれの制御での説明も、一例を例示したに過ぎず、本発明の精神を逸脱しない範囲において
て、種々の形態を採ることができる。

産業上の利用の可能性

以上説明したように本発明に係る電子制御サーモスタットの制御方法によれば、従来の制御での問題点を解消し、高精度で、低コスト、さらに高い冷却水温の追従性を実現することができる。

また、本発明によれば、PTC通電回路を定電流回路したことにより、発熱素子（たとえばPTC）の温度に左右されない発熱量を得ることができる。

さらに、本発明によれば、エンジン負荷判断手段、あるいは学習機能を持たせることにより、低コストでありながら、常にその自動車に適した設定水温を供給でき、最適燃焼化、最適通電化を実現することができる。
請求の範囲

1. エンジンの冷却水温度制御に用いられ、実際の冷却水温度だけに依存せずにバルブ開度を任意に変化させることが可能なアクチュエータを備えた電子制御サーモスタットにおいて、
制御コントローラは、前記アクチュエータを作動させるための通電を行うのと併せて、
通電後から前記制御アクチュエータが作動して温度変化するまでの経過時間と単位時間あたりの
水温変化量を算出することで、前記経過時間後の冷却水温度を予測し、
前記予測水温に合わせて前記アクチュエータを制御することを特徴とする電子制御サーモスタット
の制御方法。

2. 請求項1に記載の電子制御サーモスタットの制御方法において、
前記制御コントローラは、前記アクチュエータが多くの通電を必要とする時には、前記エンジンに
付随している補助類の制御に前記アクチュエータの制御を連動させた制御を備えていることを特徴とする電子制御サーモスタットの制御方法。

3. 請求項1ないし請求項2のいずれか1項に記載の電子制御サーモスタットの制御方法において、
前記制御コントローラは、異なる前記エンジンまたは冷却水循環装置のレイアウトに応じて前記
電子制御サーモスタットの制御で使用するPID（またはPI）制御定数を自動的に決定する制御を備
えていることを特徴とする電子制御サーモスタットの制御方法。

4. 請求項1ないし請求項3のいずれか1項に記載の電子制御サーモスタットの制御方法において、
前記制御コントローラは、任意に設定した冷却水温度と制御を加えた後の冷却水温度の温度差
が所定値以内になった場合には、
アクチュエータへの通電をカットする制御を備えたことを特徴とする電子制御サーモスタットの制御
方法。

5. 請求項1ないし請求項4のいずれか1項に記載の電子制御サーモスタットの制御方法において、
前記制御コントローラは、運転者が前記エンジンの高負荷を多用する人であるか、それとも低負
荷運転を多用する人かを判断し、設定水温を変化させる制御を備えたことを特徴とする電子制御
サーモスタットの制御方法。

6. 請求項1ないし請求項5のいずれか1項に記載の電子制御サーモスタットの制御方法において、
前記アクチュエータは、発熱装置を取付けたWAX式サーモエレメントであって、
前記制御コントローラは、冷却水の実際の流量と目標流量との差を検出または算出し、
サーモエレメントの放熱量と前記バルブの駆動する部位におけるヒステリシスを補正することを特徴とする電子制御サーモスタットの制御方法。

7. 請求項6記載の電子制御サーモスタットの制御方法において、
前記制御コントローラは、ラジエータ流量以外のエレメントリフト量、発熱体の温度、感温体の温度等のパラメータを検出することによりラジエータ流量を予測する手段を有することを特徴とする電子制御サーモスタットの制御方法。

8. 請求項6ないし請求項7のいずれか1項に記載の電子制御サーモスタットの制御方法において、
前記制御コントローラは、エレメントリフト量の劣化量を予測することで前記エレメントリフトを補正する制御を備えることを特徴とする電子制御サーモスタットの制御方法。

9. 請求項6ないし請求項8のいずれか1項に記載の電子制御サーモスタットの制御方法において、
前記制御コントローラは、前記エンジンの始動時には、前記発熱装置の抵抗値を測定することで、前記抵抗値と前もって格納していた基準抵抗値との差が所定値以上になった場合に前記電子制御サーモスタットが故障したと判断することを特徴とする電子制御サーモスタットの制御方法。
【第5図】

PI制御など → PTC出力信号 → 定電流回路 → PTC

【第6図】

PI制御など → 制御信号A → エレメント放熱量補正制御（出力＝A＋α） → 制御信号A＋α → PTC
【第7図】

タイムラグ経過後を予測した水温
実際の水温
予測する水温

Td（タイムラグ時間）
エンジン運転変状に応じて変化
予測時 タイムラグ経過後

【第8図】

Ts（設定水温） 温度差

PID制御

各種補正制御等

Tw2（タイムラグ経過後予測水温）

応答遅れ
キャンセル制御（手法1）

Tw（制御水温）
【第9図】

Ts（設定値）

応答遅れ
キャンセル制御（手法2）

タイムラグ
キャンセル補正
設定値

温度差
PID制御

各種補正
制御等

Tw（制御水温）

Tw（制御水温）
【第10図】

PTC出力変化

時間

ヒステリシス分だけ出力を一度に下げる

補正制御あり

補正制御なし
【第11図】

水温（℃）

通電カット水温

ΔT

設定水温

PTC出力
【第13図】

(a)

設定水温

時間

通常運転者

(b)

設定水温
設定水温を上げる。

時間

低負荷多用運転者

(c)

設定水温
設定水温を下げる。

時間

高負荷多用運転者
【第14図】

PI制御など → 制御信号A → エレメントリフト
経年劣化補正制御（出力=A+α） → 制御信号
PTC

【第15図】

初期
劣化後

① エレメント経年劣化によるリフトダウン

PTC出力

② リフト劣化分だけベースに加えるPTCを増やす。

【第16図】

① オーバーシュート増大量（開弁温度のずれ）から
リフト劣化量を予測し、その量がゼロになるように
PTC出力を増減させる。

② 水温勾配が変化した温度のずれ（開弁温度のずれ）から
リフト劣化量を予測し、その温度差がゼロになるように
PTC出力を増減させる。

時間
【第18図】
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl F01P7/16, F02D45/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl F01P7/16, F02D45/00, F16K17/38, F16K31/68

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y A</td>
<td>JP 11-287123 A (Nippon Thermostat Co., Ltd.), 19 October, 1999 (19.10.99), Column 6, line 24 to column 7, line 33; column 9, lines 15 to 29; Figs. 1 to 2 (Family: none)</td>
<td>1-5 6-9</td>
</tr>
<tr>
<td>Y A</td>
<td>JP 11-22465 A (Nippon Thermostat Co., Ltd.), 26 January, 1999 (26.01.99), Page 6, lines 8 to 23 (Family: none)</td>
<td>1-5 6-9</td>
</tr>
<tr>
<td>Y A</td>
<td>JP 2001-32714 A (Honda Motor Co., Ltd.), 06 February, 2001 (06.02.01), Column 2, line 31 to column 3, line 2 (Family: none)</td>
<td>2-5 6-9</td>
</tr>
</tbody>
</table>

[X] Further documents are listed in the continuation of Box C.

[] See patent family annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier document but published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed
 T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 X document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
document member of the same patent family

Date of the actual completion of the international search

04 November, 2003 (04.11.03)

Date of mailing of the international search report

18 November, 2003 (18.11.03)

Name and mailing address of the ISA/ Japanese Patent Office

Authorized officer

Telephone No.
INTERNATIONAL SEARCH REPORT

DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2001-242073 A (Shimadzu Corp.), 07 September, 2001 (07.09.01), Column 9, line 35 to column 10, line 7 (Family: none)</td>
<td>3-5 6-9</td>
</tr>
<tr>
<td>A</td>
<td>US 5404842 A (Nippon Soken, Inc.), 11 April, 1995 (11.04.95), Column 1, lines 15 to 20 & JP 07-83052 A</td>
<td>5 6-9</td>
</tr>
<tr>
<td>Y</td>
<td>JP 10-8960 A (Mitsubishi Motors Corp.), 13 January, 1998 (13.01.98), Full text (Family: none)</td>
<td>1-9</td>
</tr>
<tr>
<td>A</td>
<td>JP 10-317967 A (Nippon Thermostat Co., Ltd.), 02 December, 1998 (02.12.98), Column 6, line 48 to column 7, line 11 (Family: none)</td>
<td>6-9</td>
</tr>
<tr>
<td>A</td>
<td>JP 2000-45773 A (Denso Corp.), 15 February, 2000 (15.02.00), Column 4, line 48 to column 7, line 5 & DE 19933794 A</td>
<td>7-9</td>
</tr>
<tr>
<td>A</td>
<td>JP 2002-155737 A (Toyota Motor Corp.), 13 May, 2002 (13.05.02), Column 20, lines 1 to 11 (Family: none)</td>
<td>8-9</td>
</tr>
<tr>
<td>A</td>
<td>JP 2000-303842 A (Honda Motor Co., Ltd.), 31 October, 2000 (31.10.00), Column 7, lines 4 to 33 (Family: none)</td>
<td>9</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (continuation of second sheet) (July 1998)
A. 発明の属する分野の分類（国際特許分類（IPC））

Int. Cl' F01P 7/16, F02D45/00

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int. Cl' F01P 7/16, F02D45/00, F16K17/38, F16K31/68

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1922－1996年
日本国公開実用新案公報 1971－2003年
日本国登録実用新案公報 1994－2003年
日本国実用新案登録公報 1996－2003年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名及一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y A</td>
<td>JP 11－287123 A（日本サーモスタット株式会社）</td>
<td>1－5</td>
</tr>
<tr>
<td></td>
<td>1999.10.19, 第6欄第24行－第7欄第33行及び第9</td>
<td>6－9</td>
</tr>
<tr>
<td></td>
<td>欄第15行－第29行，図1－2（ファミリーなし）</td>
<td></td>
</tr>
<tr>
<td>Y A</td>
<td>JP 11－22465 A（日本サーモスタット株式会社）</td>
<td>1－5</td>
</tr>
<tr>
<td></td>
<td>1999.01.26, 第6頁第8行－第23行（ファミリーなし）</td>
<td>6－9</td>
</tr>
<tr>
<td>Y A</td>
<td>JP 2001－32714 A（本田技研工業株式会社）</td>
<td>2－5</td>
</tr>
<tr>
<td></td>
<td>2001.02.06, 第2欄第31行－第3欄第2行（ファミリー）</td>
<td>6－9</td>
</tr>
</tbody>
</table>

○ C欄の続きも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

＊ 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの
「E」国際出願前の出願または特許であるが、国際出願日以後に公表されたもの
「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
「O」口頭による開示、使用、展示等に要及する文献
「P」国際出願以前に、かつ優先権の主張の基礎となる出願の日後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって、出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日 04.11.03
国際調査報告の発送日 18.11.03

国際調査機関の名称及びあて先
日本国特許庁（ISA／JP）
郵便番号100－8915
東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）
刈間 宏信

電話番号 03－3581－1101 内線 3395

様式PCT／JSA／210（第2ページ）（1998年7月）
<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
</table>
| Y
A | JP 2001-242073 A (株式会社島津製作所)
2001.09.07, 第9欄第35行－第10欄第7行（ファミリーなし) | 3－5 |
| Y
A | US 5404842 A (Nippon Soken, Inc.)
1995.04.11, 第1欄第15行－第20行
& JP 07-83052 A | 5－9 |
| Y
A | JP 10-8960 A (三菱自動車工業株式会社)
1998.01.13, 全文（ファミリーなし） | 1－9 |
| A
A | JP 10-317967 A (日本サーモスタット株式会社)
1998.12.02, 第6欄第48行－第7欄第11行（ファミリーなし） | 6－9 |
| A
A | JP 2000-45773 A (株式会社デンソー)
2000.02.15, 第4欄第48行－第7欄第5行
& DE 19933794 A | 7－9 |
| A
A | JP 2002-155737 A (トヨタ自動車株式会社)
2002.05.13, 第20欄第1行－第11行（ファミリーなし） | 8－9 |
| A
A | JP 2000-308342 A (本田技研工業株式会社)
2000.10.31, 第7欄第4行－第33行（ファミリーなし） | 9 |

様式PCT/ISA/210（第2ページの続き）（1998年7月）