(19) **日本国特許庁(JP)**

(51) Int. CL.

H01G

(12) 特 許 公 報(B2)

9/05

K

FL

HO1G

(11)特許番号

特許第4049964号 (P4049964)

(45) 発行日 平成20年2月20日(2008.2.20)

(2006, 01)

9/052

(24) 登録日 平成19年12月7日(2007.12.7)

B22F H01G 9/04 (2006.01) B22F 9/24 D 9/04 331 H01G 9/04 331 H01G 9/04 331 H01G 9/04 334 B22F 9/04 331 H01G 9/04 331 H01G 9/04 331 H01G 9/04 334 (21) 出願番号 (22) 出願日 平成12年2月8日 (2000.2.8) (65) 公開番号 特開2001-223141 (P2001-223141A) 平成13年8月17日 (2001.8.17) 平成17年4月20日 (2005.4.20) (73) 特許権者 000186887	B22F 1/00	(2006.01) B 2 2 F	1/00 R
## Part	B22F 9/24	(2006.01) B 2 2 F	9/24 D
では、	HO1G 9/042	(2006.01) HO1G	9/04 3 3 1
(21) 出願番号 特願2000-31029 (P2000-31029) で成12年2月8日 (2000.2.8) 特開2001-223141 (P2001-223141A) (P3001-223141A) 平成13年8月17日 (2001.8.17) 平成17年4月20日 (2005.4.20) 平成17年4月20日 (2005.4.20) (74) 代理人 100108578 弁理士 高橋 韶男 (74) 代理人 100101465 弁理士 渡邉 隆 (74) 代理人 100094400 弁理士 鈴木 三義 (74) 代理人 100107836 弁理士 西 和哉	HO1G 9/04	(2006.01) HO1G	9/04 3 3 4
(22) 出願日 平成12年2月8日 (2000.2.8) 特別2001-223141 (P2001-223141A) (特別2001-223141 (P2001-223141A) 東京都港区芝大門2丁目5番5号 (74)代理人 100064908 弁理士 志賀 正武 (74)代理人 100108578 弁理士 高橋 韶男 (74)代理人 100101465 弁理士 青山 正和 (74)代理人 100094400 弁理士 鈴木 三義 (74)代理人 100107836 弁理士 西 和哉			請求項の数 12 (全 10 頁)
(65) 公開番号 特開2001-223141 (P2001-223141A) 東京都港区芝大門2丁目5番5号 (43) 公開日 平成13年8月17日 (2001.8.17) 平成17年4月20日 (2005.4.20)	(21) 出願番号	特願2000-31029 (P2000-31029)	(73) 特許権者 000186887
(43) 公開日 平成13年8月17日 (2001.8.17) 審查請求日 平成17年4月20日 (2005.4.20)	(22) 出願日	平成12年2月8日 (2000.2.8)	キャボットスーパーメタル株式会社
審査請求日 平成17年4月20日(2005.4.20)	(65) 公開番号	特開2001-223141 (P2001-223141A)	東京都港区芝大門2丁目5番5号
(74) 代理人 100108578 2	(43) 公開日	平成13年8月17日 (2001.8.17)	(74) 代理人 100064908
早期審査対象出願 (74)代理人 100089037	審査請求日	平成17年4月20日 (2005.4.20)	弁理士 志賀 正武
(74) 代理人 100089037 弁理士 渡邊 隆 (74) 代理人 100101465 弁理士 青山 正和 (74) 代理人 100094400 弁理士 鈴木 三義 (74) 代理人 100107836 弁理士 西 和哉			(74) 代理人 100108578
弁理士 渡邊 隆 (74)代理人 100101465 弁理士 青山 正和 (74)代理人 100094400 弁理士 鈴木 三義 (74)代理人 100107836 弁理士 西 和哉	早期審査対象出願		弁理士 高橋 詔男
(74) 代理人 100101465 弁理士 青山 正和 (74) 代理人 100094400 弁理士 鈴木 三義 (74) 代理人 100107836 弁理士 西 和哉			(74) 代理人 100089037
弁理士 青山 正和 (74)代理人 100094400 弁理士 鈴木 三義 (74)代理人 100107836 弁理士 西 和哉			弁理士 渡邊 隆
(74) 代理人 100094400 弁理士 鈴木 三義 (74) 代理人 100107836 弁理士 西 和哉			(74) 代理人 100101465
弁理士 鈴木 三義 (74) 代理人 100107836 弁理士 西 和哉			弁理士 青山 正和
(74) 代理人 100107836 弁理士 西 和哉			(74) 代理人 100094400
弁理士 西 和哉			弁理士 鈴木 三義
弁理士 西 和哉			(74) 代理人 100107836

(54) 【発明の名称】窒素含有金属粉末およびその製造方法ならびにそれを用いた多孔質焼結体および固体電解コンデンサー

(57)【特許請求の範囲】

【請求項1】

ニオブ化合物またはタンタル化合物を、還元剤を用いて溶融塩中で還元しながら、反応 融液中に窒素含有ガスを<u>バブリングにより</u>導入して、ニオブまたはタンタルを生成させる と同時に、ニオブまたはタンタルに窒素を含有させることを特徴とする窒素含有金属粉末 の製造方法。

【請求項2】

ニオブ化合物またはタンタル化合物が、フッ化カリウム塩またはハロゲン化物であることを特徴とする請求項1に記載の窒素含有金属粉末の製造方法。

【請求項3】

ニオブ化合物が、フッ化ニオブ酸カリウムであることを特徴とする<u>請求項1</u>に記載の窒素含有金属粉末の製造方法。

【請求項4】

還元剤が、ナトリウム、マグネシウム、カルシウム、水素化マグネシウム、水素化カルシウムから選ばれる 1 種以上か、水素含有ガスのいずれかであることを特徴とする<u>請求項</u> 1 ないし 3 のいずれかに記載の窒素含有金属粉末の製造方法。

【請求項5】

ニオブまたはタンタルのフッ化カリウム塩を、ナトリウム、マグネシウム、カルシウム から選ばれる1種以上を還元剤として用いて溶融塩中で還元しながら、反応融液中に窒素 含有ガスをバブリングにより導入して、ニオブまたはタンタルを生成させると同時に、ニ

オブまたはタンタルに窒素を含有させることを特徴とする窒素含有金属粉末の製造方法。

【請求項6】

フッ化ニオブ酸カリウムを、マグネシウムを還元剤として用いて溶融塩中で還元しながら、反応融液中に<u>バブリングにより</u>窒素含有ガスを導入して、ニオブを生成させると同時に、ニオブに窒素を含有させることを特徴とする窒素含有金属粉末の製造方法。

【請求項7】

窒素含有金属粉末中に、50~2000ppmの窒素が固溶していることを特徴する 請求項1ないし6のいずれかに記載の窒素含有金属粉末の製造方法。

【請求項8】

窒素含有ガス中には、純窒素ガスおよび / または加熱により窒素ガスを発生する窒素発生ガスが含まれていることを特徴とする<u>請求項1ないし7</u>のいずれかに記載の窒素含有金属粉末の製造方法。

【請求項9】

還元後に熱凝集させることを特徴とする請求項1ないし8のいずれかに記載の製造方法

【請求項10】

請求項1ないし9のいずれかに記載の製造方法で製造されたことを特徴とする窒素含有金属粉末。

【請求項11】

請求項9に記載の製造方法で製造された窒素含有金属粉末の成形体を焼結させたことを特徴とする多孔質焼結体。

【請求項12】

請求項11に記載の多孔質焼結体からなるアノード電極を備えていることを特徴とする 固体電解コンデンサー。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、固体電解コンデンサーのアノード電極として好適な、窒素含有金属粉末および その製造方法ならびにそれを用いた多孔質焼結体および固体電解コンデンサーに関する。

[0002]

【従来の技術】

近年、電子集積回路は、より低電圧での駆動、高周波化、低ノイズ化が求められていて、 固体電解コンデンサーについても、低ESR化、低ESL化の要求が高まってきている。 固体電解コンデンサーのアノード電極に好適に用いられる金属粉末としては、例えば、ニ オブ、タンタル、チタン、タングステン、モリブデン等が挙げられる。

タンタルコンデンサーは、小型、低ESR、高容量の代表的なコンデンサーとして、携帯電話やパソコン等の部品として急速に普及してきたが、特にマイクロプロセッサーの専用電源の平滑回路では、一層の高容量化(高CV値化)と低ESR化が求められている。コンデンサーの高容量化には、使用する金属粉末を微細化し表面積を大きくすることが有効であり、微細なタンタル粉末が開発されてきた。現在では、フッ化タンタルカリウムをナトリウムで熱還元して得たプライマリーパウダーを、熱凝集した後脱酸素する方法で、BET比表面積が1m²/g(比表面積換算一次粒子平均径dg。=400mm)程度で、比容量が5万CVのタンタル粉末が量産されている。

[0003]

一方、ニオブコンデンサーは、酸化ニオブの誘電率が大きく、かつ、タンタルよりも安価であることから、固体電解コンデンサーとして長年研究されてきた。しかし、化成酸化膜の信頼性が低いことから実用化には至っていない。すなわち、ニオブは高電圧で化成酸化すると、アモルファスの酸化膜が結晶化し漏れ電流が増加するとともに、コンデンサーの故障頻度の増加をもたらすという問題があった。

ところが、最近では、電子回路の駆動電圧が低下する傾向にあるため、化成電圧を低くで

10

20

30

40

きるようになってきている。ニオブは、化成電圧が低い場合には信頼性を維持できるため、ニオブコンデンサーの実用化に有利な環境が整ってきつつある。特に、アルミニウム電解コンデンサーの代替品として、高容量で、かつ、アルミニウム電解コンデンサーよりもESRやESLの小さいニオブコンデンサーが開発のターゲットになっている。

[0004]

高容量のニオブコンデンサーを製造するためには、タンタルの場合と同様に、BET比表面積換算一次粒子平均径 d 50 が少なくとも、500mm以下、好ましくは400mm以下であることが求められる。現在までのところ、微細なニオブ粉末の製造方法としては、フッ化ニオブ酸カリウムのナトリウム還元(米国特許第4684399号)、五塩化ニオブの気相水素還元(特開平6-25701号公報)、粉砕法で高比表面積のニオブ粉末を得る方法(WO98/19811公報)等が知られている。

これらの方法のうち、従来の気相法では、単分散性の超微粒子が得られるため、多孔質焼結体を形成して化成酸化する工程で、ネック部分の絶縁化、すなわちネック切れが起こり、アノード電極に適した粉末が得られなかった。また、粉砕法は、簡便で生産効率が良いが、粒子の形状が不規則でブロードな粒度分布となるため、アノード電極とした場合に種々の問題があった。

よって、アノード電極に適した連鎖状粒子であり、かつ、その一次粒子の粒度分布がシャープなピークを示すニオブ粉末を製造するためには、フッ化カリウム塩をナトリウム等で溶融塩還元する方法、ニオブ塩化物を溶融金属で還元する方法等の液相法が好ましいと考えられる。

[00005]

一方、このような微細なニオブ粉末やタンタル粉末を使用して、高容量のアノード電極とする場合には、これらの粉末の高表面積化にともなって、粉体中の酸素含有量が増加するため、熱処理工程や化成酸化工程で結晶性酸化物を形成しやすくなり、漏れ電流が増加するという問題があった。また、コンデンサーの定格電圧の低下にともなって、誘電体酸化膜を形成する化成電圧も低下している。よって、形成される誘電体酸化膜の膜厚が薄くなる傾向にあり、容量は高くなるものの長期の信頼性に劣るという問題もあった。

そこで、酸素の影響を抑え、薄い膜の信頼性を向上させる方法として、焼結体や誘電酸化膜を製造した後、これらに窒素をドープする方法が知られている。

[0006]

例えば、米国特許 A 5 4 4 8 4 4 7 号には、漏れ電流の低下、高温での化成酸化膜の安定性および信頼性の向上を目的として、窒素がドープされている。また、W O 9 8 / 3 7 2 4 9 公報には、高容量のタンタル粉末への窒素の均一なドーピング方法として、還元パウダーに塩化アンモニウムを添加し、加熱凝集と同時に窒素を導入する方法が開示されている。

さらに、ニオブのスパッタリング N b - O 膜への窒素ドープによる漏れ電流の低減 (K.Sa sakiら、Thin Solid Films、74(1980)83-88)、窒化ニオブの焼結体アノードによる漏れ電流等の改良 (W O 9 8 / 3 8 6 0 0 公報)等がある。

また、特開平8-239207号公報には、還元して得られたタンタルまたはニオブ粉末 を加熱凝集する工程、または、脱酸素の工程で窒素含有ガス雰囲気下で加熱する加熱窒化 法が開示されている。

[0007]

【発明が解決しようとする課題】

しかしながら、従来知られている方法では、粉末の表面または膜の表面から窒化が進行するため、窒化反応が窒素の拡散律速になり、窒化が不均一になりやすいという問題があった。

10

20

30

40

という問題があった。

また、焼結体や誘電酸化膜を製造した後、これらに窒素をドープする方法では、窒素化工程が余分に必要となるため、生産性が低下するという問題もあった。

すなわち、従来、微細なニオブまたはタンタルに必要十分な量の窒素が均一にドープされていて、かつ、窒素が結晶性の化合物を形成しておらず、金属結晶格子内に固溶状態で含有されている窒素金属化合物は見出されていなかった。

[00008]

本発明は上記事情に鑑みてなされたもので、金属結晶内に窒素が均一に固溶している窒素 含有金属粉末を生産性良く得て、高比容量で漏れ電流が少なく長期の信頼性に優れた固体 電解質コンデンサーを提供することを課題とする。

[0009]

【課題を解決するための手段】

本発明の窒素含有金属粉末は、50~2000ppmの窒素を固溶している窒素含有 金属粉末であり、金属がタンタルであり、且つ粉末X線解析による結晶性の窒素化合物の ピークが実質的に検出されないことを特徴とする。上記窒素含有金属粉末のBET比表面 積基準の平均粒子径は、80~360nmであると好ましい。また、上記窒素含有金属粉 末は、窒素が粒子表面から内部まで均一に固溶していると好ましい。本発明の窒素含有金 属粉末の製造方法は、ニオブ化合物またはタンタル化合物を、還元剤を用いて溶融塩中で 還元しながら、反応融液中に窒素含有ガスをバブリングにより導入して、ニオブまたはタ ンタルを生成させると同時に、ニオブまたはタンタルに窒素を含有させることを特徴とす る。上記ニオブ化合物またはタンタル化合物は、フッ化カリウム塩またはハロゲン化物で あることが好ましい。または、上記ニオブ化合物は、フッ化ニオブ酸カリウムであること が好ましい。上記還元剤は、ナトリウム、マグネシウム、カルシウム、水素化マグネシウ ム、水素化カルシウムから選ばれる1種以上か、水素含有ガスのいずれかであることが好 ましい。上記製造方法においては、窒素含有金属粉末中、50~20000ppmの窒素 が固溶していることが好ましい。また、上記窒素含有ガス中には、純窒素ガスおよび/ま たは加熱により窒素ガスを発生する窒素発生ガスが含まれていることが好ましい。また、 上記製造方法においては、還元後に熱凝集させることができる。本発明の窒素含有金属粉 末は、多孔質焼結体としてアノード電極に使用することに適している。

[0010]

【発明の実施の形態】

以下、本発明を詳細に説明する。本発明の窒素含有金属粉末は、タンタルに、50~20000ppmの窒素が均一に固溶しており、粉末 X 線解析による結晶性の窒素化合物のピークが実質的に検出されない粉末である。金属へ窒素が固溶すると、金属結晶の格子定数が変化するため、金属への窒素の固溶は、 X 線回折ピークの位置のシフトによって確認することができる。 タンタルは、固体電解コンデンサーの電極として使用した場合に高容量であることから、好ましく用いられる。例えば、タンタルに4000ppmの窒素が固溶すると、金属タンタルの(110)面の面間隔 d = 2 . 3 3 7 5 が、 d = 2 . 3 4 0 0 へと、約0.1%増加する。また、本発明の窒素含有金属粉末は、BET比表面積基準の平均粒子径が80~500nm、好ましくは80~360nmである。このような平均粒子径を有する微細な窒素含有金属粒子は、多孔質焼結体を形成して固体電解コンデンサーのアノード電極として使用すると、高容量が達成できるため好ましい。

[0011]

このような固溶状態の窒素を含有する窒素含有金属粉末は、ニオブ化合物またはタンタル化合物を、還元剤を用いて溶融塩中で還元しながら、反応融液中に窒素含有ガスを<u>バブリングにより</u>導入して、ニオブまたはタンタルを生成させると同時に、ニオブまたはタンタルに窒素を含有させることによって得られる。この場合、還元反応と窒素の導入を同時に行うことができ<u>る。</u>ニオブ化合物またはタンタル化合物としては、特に制限はなくこれらの金属の化合物を使用できるが、フッ化カリウム塩、ハロゲン化物等が好ましい。フッ化カリウム塩としては、K₂ TaF₇、K₂ NbF₆等が挙げられ、ハロ

10

20

30

40

ゲン化物としては、五塩化ニオブ、低級塩化ニオブ、五塩化タンタル、低級塩化タンタル 等の塩化物や、ヨウ化物、臭化物等が挙げられる。また、特にニオブ化合物としては、フ ッ化ニオブ酸カリウム等のフッ化ニオブ酸塩や、五酸化ニオブ等の酸化物も挙げられる。

[0012]

還元剤としては、ナトリウム、マグネシウム、カルシウム等のアルカリ金属およびアルカリ土類金属およびその水素化物、すなわち水素化マグネシウム、水素化カルシウムや、水素含有ガス等の還元性の気体が挙げられる。窒素含有ガスとしては、純窒素ガスを含有するガス、加熱により窒素ガスを発生する窒素発生ガスを含有するガス等が挙げられ、窒素発生ガスとしては、アンモニア、尿素等が挙げられるが、効率的に窒素を金属中に固溶させるためには、純窒素ガスを使用することが好ましい。これらの窒素含有ガスを反応系内に導入する方法としては、反応系が液相である場合には、液相中にバブリングする方法が好ましく、反応系が気相である場合には、原料ガスや、還元剤として使用するガスにあらかじめ混合する方法や、気相中に単独で混合する方法が挙げられる。尚、本発明では液相中にバブリングする方法を選択する。

[0013]

液相系で窒素含有金属粉末を製造する具体的な方法としては、溶融塩中で還元反応を行う方法が挙げられる。ここでは、金属としてタンタルを例に挙げて説明する。

まず、反応容器に希釈塩として、KC1-KF、KC1-NaC1等の共晶塩を投入し、800~900 に加熱して融液とする。そして、この融液中にノズルを浸漬し、このノズルから窒素含有ガスをバブリングさせて導入する。そして、窒素含有ガスをバブリングしながら、タンタルのフッ化カリウム塩の一部を投入し、ついで、ナトリウム、マグネシウム、カルシウム等の還元剤を、先に投入したフッ化カリウムの還元に必要な量論量程度投入して、下記式(1)で表される反応を行う。

K₂TaF₇+5Na 2KF+5NaF+Ta...(1)

[0014]

投入したフッ化カリウム塩と還元剤の反応がほぼ終了した時点で、窒素ガスのバブリングを続けながら、さらにタンタルのフッ化カリウム塩の一部と還元剤の一部を投入する。このように、原料のタンタル化合物と還元剤とを、少量ずつ小分けにして反応させることを繰り返し、タンタル化合物の還元反応を終了させる。

[0015]

ここで、窒素ガスの導入量は、目標とするタンタル中の窒素含有量に対して、窒素ガスの全導入量が3~20倍の範囲となるように設定する。ここで、窒素ガスの導入量が20倍を超えると、タンタルと窒素が反応して結晶性のタンタル窒化物が生成し、得られたタンタル粉末を用いたアノード電極の漏れ電流が大きくなったり、容量が低下したりする場合がある。一方、窒素ガスの導入量が3倍未満では、窒素の固溶量が少なく、得られたタンタル粉末を用いたアノード電極の信頼性を十分に向上させることができない場合がある。希釈塩の量は、タンタルのフッ化カリウム塩と還元剤の合計重量に対して、2~10倍程度の重量となるように設定することが好ましい。希釈塩の量が2倍未満では、原料のタンタルのフッ化カリウム塩の濃度が高いために反応速度が速く、生成するタンタル粒子の粒径が大きくなりすぎる場合がある。一方、希釈塩の量が10倍を超えると反応速度が低下し、生産性が低下する。また、反応は、不活性ガス中、真空中等で行うことができる。

[0 0 1 6]

このように、金属のフッ化カリウム塩を還元しながら、融液中に窒素ガスをバブリングさせて導入することによって、還元反応で生成した直後の金属の一次粒子の表面に窒素ガスが速やかに拡散し、粒子の成長と、成長面への窒素導入が同時に進行する。

その結果、得られた金属粉末は、その粒子表面から内部まで均一に窒素が固溶した状態となり、結晶性の窒素化合物をほとんど含有しないものとなる。

また、反応を大量の希釈塩中で行って、反応系内のフッ化カリウム塩濃度を低下させることによって、析出する金属粒子を微細化することができる。

[0017]

10

20

30

このように溶融した希釈塩中で窒素含有金属粉末を生成させる他の方法としては、例えば、ニオブまたはタンタルのハロゲン化物と、ナトリウム、マグネシウム、カルシウム等の還元剤を、上記の方法と同様にして希釈塩中で反応させ、その間、窒素含有ガスを融液中にバブリングする方法が挙げられる。この場合、ハロゲン化物の状態は気体でも液体でもよく、希釈塩中で、溶融している還元剤と接触できればよいが、特にハロゲン化物は希釈塩への溶解性が良い低級ハロゲン化物が好ましい。低級ハロゲン化物は例えば五塩化ニオブの気体を500 以上の高温でニオブ金属と接触還元して得られる。また、この場合、溶融塩の温度は700~1000 、窒素ガス量は、反応中の全導入量が目標とする金属中の窒素含有量の3~20倍の範囲になるように設定し、希釈塩の量は、ニオブまたはタンタルの塩化物の重量に対して2~10倍程度の重量になるように設定することが好ましい。

10

その他、ニオブ化合物としてフッ化ニオブ酸カリウムを使用する方法や、溶融状態にあるマグネシクムやカルシウムで五酸化ニオブ等の金属酸化物を還元する方法も例示できる。還元反応終了後、融液を冷却し、得られた集塊を水、弱酸性水溶液等で繰り返し洗浄して、希釈塩を除去し、窒素含有金属粉末を得る。この場合、必要に応じて、遠心分離、濾過等の分離操作を組み合わせても、フッ酸と過酸化水素が溶解している溶液等で粒子を洗浄し、精製してもよい。

[0018]

気相系で窒素含有金属粉末を製造する具体的な方法としては、例えば、ニオブまたはタンタル等の金属の揮発性ハロゲン化物を水素含有ガスで還元する際に、気相中に窒含有素ガスを混合し、還元反応を窒素ガス共存下で行う方法が挙げられる。窒素含有ガスは、揮発性ハロゲン化物および/または水素含有ガス中にあらかじめ混合しておいても、気相中に単独で混合してもよい。この場合、窒素ガス量は、還元反応で生成する金属に対する窒素含有量の目標値の 2 倍以上になるように設定するとよい。

[0019]

以上のようにして得られたニオブまたはタンタル等の窒素含有金属粉末に対して、熱凝集、脱酸素、徐酸化安定化処理等の前処理を行った後、この粉末を成形、焼結して多孔質焼 結体を製造する。

熱凝集は、窒素含有金属粉末を真空中で加熱して凝集させて、粉末中に存在する極微細な粒子を比較的粒径の大きな 2 次粒子とするために行う。比較的大きな 2 次粒子を成形、焼結して得られた多孔質焼結体は、極微細な粒子から得られた多孔質焼結体よりも大きな空孔を有するため、アノード電極として使用する場合に、電解質溶液が多孔質焼結体の内部まで浸透し、高容量化をはかることができる。また、真空中で加熱することによって、窒素含有粒子中に含まれる、希釈塩由来のナトリウム、マグネシウム等の不純物を除去することができる。

熱凝集は、通常、窒素含有金属粉末を真空中で800~1400 で、0.5~2時間加熱して行う。熱凝集の前には、窒素含有金属粉末に振動を与えながら、粉体全体が均一に濡れる量の水を添加する予備凝集を行うことが好ましい。この予備凝集を行うことによって、より強固な凝集体を得ることができる。また予備凝集で添加する水に、金属に対して10~300ppm程度のリン、ホウ素等をあらかじめ添加しておくことによって、一次粒子の融合成長を抑え、高表面積を維持しながら熱凝集させることができる。なお、ここで加えるリンの形態としては、リン酸、六フッ化リンアンモニウム等が挙げられる。

[0020]

グネシウム等の還元剤を加え、粒子中の酸素と還元剤を反応させ、脱酸素を行う。 脱酸素はアルゴン等の不活性ガス雰囲気中で、還元剤の融点以上、沸点以下の温度で、1 ~3時間行う。そして、その後の冷却中にアルゴンガスに空気を導入して窒素含有金属粉末の徐酸化安定化処理を行った後、粉末中に残留しているマグネシウム、酸化マグネシウム等の還元剤由来の物質を酸洗浄して除去する。

ついで、熱凝集で得られたケーキ状の粉体を、大気中または不活性ガス中で解砕した後マ

[0021]

20

30

このようにして熱凝集、脱酸素、徐酸化安定化処理を行った窒素含有金属粉末に、バインダーとして 3 ~ 5 重量%程度のショウノウ($C_{10}H_{16}O$)等を加えてプレス成形し、ついで、 1 0 0 0 ~ 1 4 0 0 で 0 . 3 ~ 1 時間程度加熱して焼結し、多孔質焼結体を製造する。なお、焼結温度は、金属の種類や粉末の表面積に応じて適宜設定できる。

この多孔質焼結体をアノード電極として使用する場合には、窒素含有金属粉末をプレス成形する前に、この粉末中にリード線を埋め込んでプレス成形し、焼結して、リード線を一体化させる。そして、これを例えば温度30~90 、濃度0.1重量%程度のリン酸、硝酸等の電解溶液中で、40~80mA/gの電流密度で20~60Vまで昇圧して1~3時間処理し、化成酸化を行って、固体電解コンデンサー用のアノード電極に使用する。具体的には、さらに、公知の方法で二酸化マンガン、酸化鉛や導電性高分子等の固体電解質層、グラファイト層、銀ペースト層を多孔質焼結体上に順次形成し、ついでその上に陰極端子をハンダ付けなどで接続した後、樹脂外被を形成して、固体電解コンデンサー用のアノード電極として使用する。

[0022]

このような窒素含有金属粉末にあっては、50~20000ppmの窒素を均一に固溶していて、結晶性窒化物をほとんど含有していないので、この窒素含有金属粉末を使用すると、高比容量で、漏れ電流が少なく、長期の信頼性に優れたアノード電極を得ることができる。

このような窒素含有金属粉末の製造方法は、金属化合物を還元剤で還元しながら、反応系内に窒素含有ガスを導入して、金属を生成させると同時に、金属に窒素を含有させる方法であるので、還元反応で生成した直後の金属の一次粒子の表面に窒素ガスが速やかに拡散し、粒子の成長と、成長面への窒素導入が同時に進行する。よって、粒子表面から内部まで均一に窒素が固溶した状態となり、結晶性の窒素化合物をほとんど含有しないものとなる。

したがって、窒素が粒子内を拡散する過程が律速となる、凝集粉末を窒素含有雰囲気中で加熱処理する従来の方法で得られた金属粉末を使用する場合に比べて、より信頼性の高いアノード電極を製造することができる。

また、このような方法によれば、窒素をドープするための工程を別途必要としないため、 生産性に優れている。

[0023]

【実施例】

以下、本発明を実施例を挙げて具体的に説明する。

「実施例1]

50Lの反応容器に、希釈塩のフッ化カリウムと塩化カリウムを各15kg入れ、850まで昇温して融液とした。ついで、この融液にノズルを挿入し、窒素ガスを750m1/分の流量でバブリングして、融液中に導入した。

この融液内へ、1回あたりフッ化タンタルカリウム200gを添加し、1分後、溶解したナトリウムを58g添加し、2分間反応させた。この操作を30回繰り返した。なお、この間、窒素ガスのバブリングを継続して行った。

還元反応終了後冷却し、得られた集塊を砕き、弱酸性水溶液で洗浄し、タンタル粒子を得た。さらに、フッ酸と過酸化水素を含む洗浄液で精製処理した。タンタルの還元粒子の収量は1.6kgであった。

このようにして得られたタンタル粒子は下記の特性を有した。

BET比表面積 1.8 m²/g

一次粒子の平均粒子径 200nm

窒素の含有量 5800ppm

X 線回折データ

窒素の形態…結晶相が認められない固溶状態

Ta(110)面の面間隔...2.3400

[0024]

20

10

30

40

次に、タンタルの還元粒子(乾燥品)100gに振動を与えながら全体が均一に濡れるまで水を添加して団塊とし、予備凝集を行った。この際、タンタルに対して約200ppmになるようにリン酸をあらかじめ添加しておいた。この場合、団塊になる水量はおおよそ25m1であった。ついで、この団塊を真空加熱炉で1200 で1時間加熱し、熱凝集させた。

そして、熱凝集させた団塊を、まず、セラミック製のロールクラッシャーで粗砕し、さらに、アルゴン雰囲気中でピンミルで粒径250μm以下に粉砕した。粉砕物100gに6gのマグネシウムチップを混合し、アルゴン雰囲気の加熱炉中で800 で2時間保持し、タンタル中の酸素とマグネシウムを反応させ、脱酸素を行った。そして、その後の冷却過程でアルゴンガス中に空気を導入しタンタル粉末の徐酸化安定処理を行い、炉から取り出した。取り出した粉末を硝酸水で洗浄し、マグネシウムと酸化マグネシウムを洗浄し、除去した。

得られた粉末の物性を分析したところ、以下のとおりであった。

BET比表面積 1.45 m² / g

一次粒子の平均粒子径 2 4 9 n m

酸素の含有量4800ppm窒素の含有量5900ppm

X 線回折データ

窒素の形態…固溶(トレース量のTaN $_{0..04}$ とTaN $_{0..1}$ が検出された)

Ta(110)面の面間隔...2.3400

[0025]

得られた粉末にショウノウを 5 重量 %添加混合し、プレス成形後、 1 3 0 0 で 3 0 分間 焼結した。得られた焼結体中の窒素の形態を、上記と同様に X 線回折によって調べたところ、粉末と同様に窒素は実質的に固溶状態であり、ごくわずかの X T a X O 0 であり、大部分の窒素はタンタルに固溶していることが裏付けられた。

[0026]

「実施例21

五塩化タンタル吹き込み終了後、ただちに、マグネシウムの入ったるつぼとランスを溶融 塩中から引き上げ、自然冷却した。

自然冷却後、流水および酢酸水溶液で塩を洗浄し、さらに遠心分離して、水とタンタルとを分離し、タンタルを乾燥させた。

得られた粉末は、エネルギー分散 X 線分光(EDX)によって元素分析し、粉末 X 線回折装置による相同定、走査型電子顕微鏡(SEM)による形状分析を行った。

得られた粉末の物性は以下のとおりであった。

BET比表面積 0.80m²/g

一次粒子の平均粒子径 450nm

酸素の含有量 2800ppm

10

20

30

窒素の含有量 4 2 0 0 p p m

X 線回折データ

窒素の形態…結晶相が全く認められない固溶状態

Ta(110)面の面間隔...2.3399

T a (1 1 0) 面の面間隔は 2 . 3 4 0 0 であり、窒素はタンタルに固溶していることが裏付けられた。また、粒子の形状は直径が約 0 . 4 μ mのウィスカーのような柱状形状であった。

[0027]

「比較例1]

反応容器内に窒素ガスをバブリングしない以外は実施例1と同様にして、タンタルの還元 反応を行い、弱酸性水溶液で洗浄し、さらに、フッ酸と過酸化水素を含む洗浄液で精製処理し、タンタルの還元粒子1.6kgを得た。

このようにして得られたタンタル粒子は下記の特性を有した。

BET比表面積1.5 m²/g一次粒子の平均粒子径240 n m窒素の含有量20 p p m

ついで、実施例1と同様にして、予備凝集、熱凝集、脱酸素を行い、加熱炉<u>を</u>500 まで冷却し、この加熱炉に、10体積%の純窒素を含有するアルゴンガスを流しながら、500 で10時間保持した。その後は実施例1と同様にしてタンタル粉末の徐酸化安定処理を行い、炉から取り出した。取り出した粉末を硝酸水で洗浄し、マグネシウムと酸化マグネシウムを洗浄し、除去した。

得られた粉末の物性を分析したところ、以下のとおりであった。

BET比表面積 1.35 m²/g

一次粒子の平均粒子径 2 6 8 n m

酸素の含有量5 1 0 0 p p m窒素の含有量4 2 0 0 p p m

X 線回折データ

窒素の形態…窒化タンタル(TaN $_{0.04}$ 、TaN $_{0.1}$)の明瞭なピークが検出された。

Ta(110)面の面間隔...2.3375

面間隔のデータから、窒素はそのほとんどが結晶性の窒化物となっていることが裏づけられた。

また、実施例 1 と同様にして焼結体を作成し、 X 線回折によって調べたところ、粉末と同様の結果であった。

[0028]

【発明の効果】

以上説明したように本発明の窒素含有金属粉末は、高比容量で、漏れ電流が少なく、長期 の信頼性に優れたアノード電極の製造に適している。

また、本発明の窒素含有金属粉末の製造方法によれば、粒子表面から内部まで均一に窒素が固溶していて、結晶性の窒素化合物をほとんど含有しない窒素含有金属粉末を生産性良く製造することができる。

よって、本発明の窒素含有金属粉末が用いられた多孔質焼結体および固体電解コンデンサーは、漏れ電流が少なく長期の信頼性に優れたものとなる。

10

20

30

フロントページの続き

(74)代理人 100108453

弁理士 村山 靖彦

(72)発明者 小田 幸男

福島県河沼郡河東町大字東長原字長谷地111 昭和キャボットスーパーメタル株式会社内

(72)発明者 泉 知夫

福島県河沼郡河東町大字東長原字長谷地111 昭和キャボットスーパーメタル株式会社内

審査官 河口 展明

(56)参考文献 特開昭53-012758(JP,A)

特開平10-251922(JP,A)

特開昭54-159373 (JP,A)

国際公開第99/064638(WO,A1)

(58)調査した分野(Int.CI., DB名)

B22F 1/00-9/30

H01G 9/04-9/05,9/024