(54) Title: BLUEPRINTING OF MULTIMEDIA ASSETS

(57) Abstract: Content management systems that utilize blueprinting and external content libraries are described herein. Methods (600) for managing a web-based marketing campaign using a blueprint may include establishing (605) a blueprint for a web-based marketing campaign using a content management system, the blueprint having rules for managing assets utilized by at least a portion of a plurality of publications of a hierarchical model of the web-based marketing campaign, the plurality of publications having at least one parent publication and at least one child publication. In some instances, at least a portion of the assets utilized by the hierarchical model may be stored on an external content library. The methods may also include determining (610) a change in at least one asset for the at least one parent publication, and automatically inheriting (615) the change in the at least one asset for the at least one parent publication to the at least one child publication according to the blueprint.

FIG. 6
before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

Published:

— with international search report (Art. 21(3))
BLUEPRINTING OF MULTIMEDIA ASSETS

FIELD OF THE PRESENT TECHNOLOGY

[0001] The present technology relates generally to web content management and web content management systems, and more specifically, but not by way of limitation, to web content management systems and methods that employ blueprinting to manage multi-faceted and/or multi-channel online marketing campaigns.

BACKGROUND

[0002] Managing multi-channel and/or multi-dimensional online marketing campaigns can be an onerous task. For example, ensuring that changes in assets in one or more publications of a multi-faceted (e.g., online marketing campaign having a plurality of publications such as web pages, campaign mobile advertisements, social media communications, products, microsites, and so forth) online marketing campaign are appropriately shared and/or inherited through the online marketing campaign is an important, yet tedious endeavor. Inconsistent content delivery of media assets across the web marketing campaign may result in a sloppy product presentation and unpredictable brand communication to customers. Thus, it may be advantageous for each publication within the marketing campaign to be treated as either a unique site or as a parent/child structure that can hide, inherit, localize and publish data from other related sites/structures. What is needed is an architecture that enables business communication professionals to effortlessly use shared resources across multiple publications, while retaining control over content that makes each site unique.
SUMMARY OF THE PRESENT TECHNOLOGY

[0003] According to some embodiments, the present technology may be directed to methods for managing a web-based marketing campaign using a blueprint. These methods may comprise the steps of: (a) establishing a blueprint for a web-based marketing campaign using a content management system, the blueprint comprising rules for managing assets utilized by at least a portion of a plurality of publications of a hierarchical model of the web-based marketing campaign, the plurality of publications comprising at least one parent publication and at least one child publication, at least a portion of the assets utilized by the hierarchical model being stored on an external content library; (b) determining a change in at least one asset for the at least one parent publication; and (c) automatically inheriting the change in the at least one asset for the at least one parent publication to the at least one child publication.

[0004] According to additional embodiments, the present technology may be directed to methods for managing a web-based marketing campaign using a blueprint. These methods may comprise the steps of: (a) establishing a blueprint for a web-based marketing campaign using a content management system, the blueprint comprising rules for managing assets utilized by at least a portion of a plurality of publications of a semantic model of the web-based marketing campaign, the blueprint comprising rules for localizing assets for each of the plurality of publications, at least a portion of the assets being stored on an external content library; (b) determining a change in at least one asset for at least one of the plurality of publications; and (c) automatically inheriting the change in the at least one asset for the at least one of the plurality of publications to a dependent publication, according to the blueprint.

[0005] According to additional embodiments, the present technology may be directed to methods for managing a web-based marketing campaign using a blueprint. These systems may comprise: (a) a memory for storing executable instructions; and (b) a processor for executing the executable instructions, the executable instructions comprising: (i) a blueprinting module that establishes a blueprint for a web-based marketing campaign using a content management system, the blueprint comprising rules for managing assets utilized by at least a portion of a plurality of publications of a hierarchical model of the web-based marketing campaign, the plurality of publications comprising at least one parent publication and at least one child publication, at least a portion of the assets utilized by the hierarchical model being stored on an external content library; (ii) an asset manager module that receives a change in at least one asset
for the at least one parent publication; and (iii) wherein the blueprinting module automatically inheriting the change in the at least one asset for the at least one parent publication to the at least one child publication.

5

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] Certain embodiments of the present technology are illustrated by the accompanying figures. It will be understood that the figures are not necessarily to scale and that details not necessary for an understanding of the technology or that render other details difficult to perceive may be omitted. It will be understood that the technology is not necessarily limited to the particular embodiments illustrated herein.

[0007] FIG. 1 illustrates an exemplary architecture for practicing aspects of the present technology.

[0008] FIG. 2A is an exemplary graphical user interface in the form of an external content repository browser.

[0009] FIG. 2B is an exemplary graphical user interface in the form of a media manager provider interface.

[0010] FIG. 3A illustrates an exemplary hierarchical model of publications.

[0011] FIG. 3B illustrates an exemplary semantic model of publications.

[0012] FIG. 4 is an exemplary user interface in the form of a hierarchical model map.

[0013] FIG. 5 illustrates inheritance and localization of assets between parent and child publications within a hierarchical model of publications, using a blueprint.

[0014] FIG. 6 is a flowchart of an exemplary method for managing a web-based marketing campaign using a blueprint.

[0015] FIG. 7 is a block diagram of an exemplary computing system for implementing embodiments of the present technology.
DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

[0016] While this technology is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail several specific embodiments with the understanding that the present disclosure is to be considered as an exemplification of the principles of the technology and is not intended to limit the technology to the embodiments illustrated.

[0017] It will be understood that like or analogous elements and/or components, referred to herein, may be identified throughout the drawings with like reference characters. It will be further understood that several of the figures are merely schematic representations of the present technology. As such, some of the components may have been distorted from their actual scale for pictorial clarity.

[0018] Generally speaking, the present technology may be directed, in some embodiments, to web content management methods and systems that employ blueprinting to manage multi-faceted and/or multi-channel online marketing campaigns. The capabilities of the present technology provide a unique solution for multi-site management, especially when compounded with multi-faceted deployment requirements that may include localization, taxonomy, workflows, and geographic locales. Additionally, the present technology maintains relationships across multiple sites of an online marketing campaign, allowing for one-click updating, with site owners notified of asset changes while the content update (e.g., asset changes) is automatically inherited. The term inherited, as used throughout, may refer also to the "sharing" of content between publications, as well. That is, while the term inheriting connotes a parent-child relationship, the term sharing may be construed as being agnostic to vertical or horizontal relationships between publications. Nevertheless, inheriting may be understood to include both inheritance and sharing of assets between publications.

[0019] It will be understood that each publication (the highest-level directory structure) within a web marketing campaign can be configured as its own unique site or as a parent/child structure that can hide, inherit, localize and publish data. This architecture enables business communication professionals to effortlessly use shared
resources across multiple websites, while retaining control over content that makes each site unique.

[0020] In operation, the present technology may be utilized to leverage and empower brand, management, multi-channel microsites, information architecture (IA) designs, taxonomy, search engine optimization (SEO)/search, campaigns, editorial workflows, and other web marketing activities that would be known to one of ordinary skill in the art. Additionally, the present technology addresses the multiplicity of web content management needs of current organizations that use a variety of platforms to publish content for the web, mobile, social media, and tablets - just to name a few.

[0021] The blueprints provided herein are flexible and can be adjusted over time to meet new business requirements using features such as personalization tags, permissions, roles, and architecture-based functions. These features enable organizations to take ownership of their blueprint by making changes and adjustments to their online marketing campaigns without having to redevelop the entire site strategy or templates and, in the end, cuts down significantly on development effort and timelines.

[0022] Additionally, these web content management systems may utilize external content libraries that reside on external content repositories. That is, the present technology may be utilized to virtually mount an external content library to a content management system that utilizes blueprints of the present technology.

[0023] These and other advantages of the present technology will be described in greater detail below with reference to the collective drawings (e.g., FIGS 1-7).

[0024] FIG. 1 illustrates an exemplary architecture 100 for practicing aspects of the present technology. According to some embodiments, the exemplary architecture 100, hereinafter "architecture 100," may generally include a content management system, hereinafter "CMS 105." According to some embodiments, the CMS 105 may be configured to virtually mount an external content library such that assets stored in the external content library are accessible through the content management system similarly to local assets of a local content repository associated with the content management system.
[0025] Additionally, the CMS 105 may be configured to allow content authors to manage a web-based marketing campaign using a blueprint. In some embodiments, managing of a web-based marketing campaign may comprise the step of establishing a blueprint for a web-based marketing campaign using a content management system. It will be understood that the blueprint may comprise rules for managing assets utilized by at least a portion of a plurality of publications of a hierarchical model of the web-based marketing campaign. In some instances, the plurality of publications may comprise at least one parent publication and at least one child publication. Additionally, at least a portion of the assets utilized by the hierarchical model may be stored on an external content library.

[0026] According to some embodiments, the methods of the present technology may comprise a step of determining a change in at least one asset for the at least one parent publication, as well as a step of automatically sharing and/or inheriting the change in the at least one asset for the at least one parent publication to the at least one child publication, according to the blueprint.

[0027] It is noteworthy to mention that rather than a hierarchical model of publications, the blueprint may likewise be utilized with a semantic model of publications, which will be described in greater detail below.

[0028] According to various embodiments, the CMS 105 may be configured to use an external content library by registering an external content library with the CMS 105 using an external content provider module. Additionally, the CMS 105 may then map assets of the external content library for use within the CMS 105.

[0029] The CMS 105 is shown as comprising a content manager 110 that communicatively couples with one or more external content provider modules, such as external content provider module 115. The CMS 105 may also comprise a framework module 120 that governs the interactions between the content manager 110 and an external content library 125, via the external content provider module 115. Generally speaking, the CMS 105 may be configured to utilize one or more external content repositories, such as the external content library 125, as well as a local content repository 105A. The external content provider module 115 and the framework module 120 cooperate to provide end users with access to assets that reside on the external content library 125, as if the assets were stored locally on the local content repository 105A, as will be described in greater detail infra.
The external content library 125 may be stored in an external content repository 125A that resides on an external system 125B such as a web server or computing device that is positioned remotely from the CMS 105. It will be understood that the external content library 125 and the CMS 105 may preferably be owned by different entities. Additionally, individual assets on the external content library 125 may be associated or owned by different owners such that the external content library 125 includes assets for a plurality of owners. The external content library 125 and the CMS 105 may be communicatively coupled via a network 135. It is noteworthy to mention that the network 135 include any one (or combination) of private or public communications networks such as the Internet. In some instances, an external content provider module 115 may communicatively couple with the external content repository 125A via an application programming interface (API). The API used by the external content provider module 115 may include a secure or insecure API.

In some instances, the CMS 105 may be implemented within a cloud-based computing environment. In general, a cloud-based computing environment is a resource that typically combines the computational power of a large model of processors and/or that combines the storage capacity of a large model of computer memories or storage devices. For example, systems that provide a cloud resource may be utilized exclusively by their owners, such as Google™ or Yahoo!™; or such systems may be accessible to outside users who deploy applications within the computing infrastructure to obtain the benefit of large computational or storage resources.

The cloud may be formed, for example, by a network of web servers, with each web server (or at least a plurality thereof) providing processor and/or storage resources. These servers may manage workloads provided by multiple users (e.g., cloud resource consumers or other users). Typically, each user places workload demands upon the cloud that vary in real-time, sometimes dramatically. The nature and extent of these variations typically depend on the type of business associated with the user.

The content manager 110 of the CMS 105 may be utilized by content authors to design, create, and manage web contents such as web pages using various web development tools that would be known to one of ordinary skill in the art. Content authors may create web contents from scratch, or in some instance, utilize templates.
In general, content authors may create web content using graphical user interfaces generated by a user interface module 140 of the content manager 110. An exemplary graphical user interface in the form of an external content repository browser window (e.g., Media Manager UI), generated by the user interface module 140 is illustrated in FIG. 2A. An exemplary graphical user interface in the form of a media manager provider interface, generated by the user interface module 140 is illustrated in FIG. 2B. Each of these graphical user interfaces will be described in greater detail infra.

As mentioned before, the CMS 105 may include one or more external content provider modules, such as the external content provider module 115 that each registers with an individual external content library. In some instances, a single external content provider module may register with more than one external content library, and further, the single external content provider module may register with multiple external content libraries of differing domains (e.g., classes).

The external content provider module 115 may register the external content library 125 using an API. The API may utilize either secure or insecure data transmission methods for exchanging data between the external content provider module 115 and the content manager 110. In some instances, content authors or system administrators may configure settings that are utilized by the external content provider module 115 for exchanging data between the external content provider module 115 and the content manager 110. For example, a system administrator may establish end point configuration settings for exchanging data between the external content library and the external content provider.

In various embodiments, registering the external content library 125 with the external content repository module 115 may comprise establishing a transport level security configuration between the external content library 125 and the external content provider 115. According to some embodiments, configuration settings may comprise the establishment of a trust relationship for end-user asset provisioning. For example, content authors may be required to present and/or verify their identity before accessing assets that reside on an external content repository.

Once the external content library 125 has been registered with the CMS 105 via the external content provider 115, the framework module 120 may be executed to
map at least a portion of the content (e.g., assets) that resides on the external content repository.

[0039] Generally speaking, the framework module 120 may comprise an asset mapper module 145, an asset tracker module 150, an asset manager module 155, and a query module 160. It is noteworthy that the framework module 120 may include additional or fewer modules, engines, or components, and still fall within the scope of the present technology. As used herein, the term "module" may also refer to any of an application-specific integrated circuit ("ASIC"), an electronic circuit, a processor (shared, dedicated, or group) that executes one or more software or firmware programs, a combinational logic circuit, and/or other suitable components that provide the described functionality. In other embodiments, individual modules of the framework module 120 may include separately configured web servers.

[0040] The asset mapper module 145 may be configured to map the assets that reside on the external content library 125 to the content manager 110 such that the contents of the external content library 125 are made available to the content manager 110 similarly to content or assets stored locally on a local content repository of the CMS 105.

[0041] Mapping of the assets may include identifying assets included in one or more external content libraries that reside within filesystems or file structures (e.g., folders, sub-folders, drives, etc.) of the external content repository 125A. Once the assets have been identified, the asset mapper module 145 to determine particular types of information regarding each type of asset. For example, the asset mapper module 145 may be configured to determine a file name, file type, file size, file version, and/or any other types of file information that would be known to one of ordinary skill in the art. Various combinations of these types of information may also be gathered. Additionally, the asset mapper module 145 may obtain or generate a thumbnail image of each asset that is mapped, if available.

[0042] Once the assets of the external content library 125 have been mapped by the asset mapper module 145, the assets are made available to the content manager 110 as if the assets were stored locally on the local content repository 105A. For example, when a content author is creating web content and the content author queries the content manager 110 for available assets, mapped assets that are stored on the external content library 125 are returned in the search results, along with any local assets that reside on the local content repository 105A.
For example, a content author may query the content manager 110 for image file assets that are associated with a particular keyword or keywords. The content manager 110 may utilize mapped asset indices created from asset mappings determined by the asset mapper module 145. These asset mappings may be of assets located on an external content library 125 or assets that are stored locally on the local content repository 105A. The content manager 110 may return a query response that includes representations of assets that match the query, which reside on either the external or local content libraries. It will be understood that the asset mapper module 145 may map the assets of the external content library 125 onto the content manager 110 using other features than indices, such as tables, graphs, lists, and so forth.

Additionally, the mapped assets of the external content library 125 may be viewed by a content author via the content manager 110 by way of a graphical user interface generated by the user interface module 140. FIG. 2A illustrates an exemplary user interface in the form of an external content repository browser window 200. This browser window 200 may resemble an explorer window that would be generated by an operating system, a browser window generated by a web browser application, or any other suitable interface that would allow the end user to browse the contents of a file structure, such as a folder. The browser window 200 may comprise a web content ribbon 205 that allows a content author to manage web content using a plurality of features. Again, these features may comprise blueprinting features, publishing features, web content editing features, as well as other features that would be known to one of ordinary skill in the art.

The browser window 200 may also comprise a content management pane 210 that provides views of various publications (e.g., web content) and their constituent assets in a hierarchical format. The browser window 200 may also comprise an asset pane that includes a plurality of assets. These assets have been mapped to the content manager 110 such that the assets may be displayed to the content author. In this example, thumbnail images of assets of an external content library are displayed to the content author. A Media Manager UI 215 may be utilized to define a playlist scheme that defines the use of an exemplary asset such as an image file. The content author may specify the media type and resource type for the image asset from dropdown lists. The UI 215 may also comprise a graphical representation of a hierarchy of assets of a playlist for use within a publication (e.g., pre-roll, content, post-roll). In some embodiments, right clicking or hovering over an asset in the browser window 200 may
cause the user interface module 140 to display information regarding the asset such as a file name, file size, and so forth. Again, these file attributes were determined during mapping of the assets by the asset mapper module 145.

FIG. 2B is an exemplary graphical user interface in the form of a media manager provider interface 225. The interface 225 may comprise a folder tree that includes assets mapped to local and/or external content. In this example, a marketing videos folder 230 has been selected. A media pane 235 is then populated with assets 240 included in the videos folder 230. An component content window 245 comprises a visual representation of an asset "My nice Video" as well as Tabs 250 that include a General Tab with basic descriptive information for an asset 255, an Info tab that includes further information for the asset, and a Workflow tab that includes implementational details for using the asset in a publication.

After browsing for assets on the external content repository, the content author may select an asset from the external content library for use in the creation of web content, such as a web page. The selection and inclusion of the asset causes the asset mapper module 145 to perform a second type of mapping. More specifically, the second type of mapping executed by the asset mapper module 145 may link a selected asset to web content being created by the content author. That is, the framework module 120 of the content manager 110 may utilize the asset mapper module 145 to manage links between, for example, a web page created by the content author, and an asset located on an external content repository that has been selected for inclusion into the web page. Thus, when the web page is published, the linked asset may be obtained from the external content repository when the web page is requested.

The asset mapper module 145 may also advantageously track the mapping between the asset on the external content library 125 and the content manager 110 such that changes to the asset are identified and updated in the content manager 110 to reduce the likelihood that changes in the asset will result in errors in retrieving the content at a later date. Therefore, the asset mapper module 145 may continuously or periodically evaluate the assets of the external content library 125 to identify changes in assets.

For example, if the owner of the asset on the external content library 125 changes the location of asset from one file folder to another file folder, the asset mapper module 145 may recognize this change and update the mapping between the asset and the web content to reflect this change. In sum, the mapping of assets by the asset
mapper module 145 may not be only a static or singular event that occurs when the external content library 125 is initially registered, but may occur at regular or sporadic intervals to ensure that assets are available and properly linked to web content, as required.

[0050] As mentioned briefly above, the asset mapper module 145 may utilize a built-in Security Token Services (STS) to establish a secure trusted connection between CMS 105 and one or more external content repositories. In other instances, the asset mapper module 145 may utilize an external STS such as Active Directory Federation Services™, Windows Azure Active Directory™/Access Control Service (WAAD/ACS), Tivoli Access Manager™, Ping Identity™, or other external STS that would be known to one of ordinary skill in the art.

[0051] As assets residing on mapped external content libraries are utilized, the asset tracker module 150 may be executed to track the usage of such assets. For example, the asset tracker module 150 may identify when an asset has been included in a publication. The asset tracker module 150 may also identify when the asset has been requested by a publishing server, such as the web server that is utilized to publish the web content that includes the selected assets. Other similar metrics regarding the incorporation of assets within web content and/or actual usage (e.g., requests) of assets relative to their provisioning via delivery of the web content.

[0052] The asset tracker module 150 may provide usage information for an asset of the external content library utilized through the content management system to an owner of the asset. In some instances, the owner of the asset may be compensated for the inclusion of the asset within a web page or other web content. The tracking of asset usage by the asset tracker module 150 may provide a unique mechanism for compensating the owners of assets that reside on external content repositories. Advantageously, content authors may utilize assets that are external to the CMS 105 without being obligated to obtain the entire external content library. Additionally, the ability of the present technology to map and make available assets that are external to the CMS 105 allows for extending a corpus of assets that are available to the content library of the CMS 105 without obligating the system administrators of the CMS 105 to store assets locally, which increases the operating expenses for the CMS 105.

[0053] In sum, the ability of the present technology to register and map external content libraries to a local CMS 105 effectively creates a distributed and robust
collection of assets for the CMS 105 that reduces the administrative cost and burden of maintaining a comprehensive content library.

[0054] According to some embodiments, the content manager 110 may be configured to allow content authors to modify assets stored on external content repositories by execution of an asset manager module 155. In some instances, proper authorization may be required from the owner of the assets of an external content library before a modification to an asset may be allowed. For example, the asset owner may be required to select various permissions for an asset, such as read, write, delete, and so forth.

[0055] Generally, content authors may also be allowed to delete and/or upload assets to the external content library 125, with these changes being identified by the asset mapper module 145 to ensure that mappings remain valid.

[0056] In some embodiments, the asset manager module 155 may be utilized to evaluate versions of an asset of the external content library 125. The asset mapper module 145 may cooperate with the asset manager module 155 to track and map the usage of the various versions of an asset of the external content library 125.

[0057] One of the many advantages of the mapping of external assets for use in a local CMS 105 is that when a content author queries the content manager 110 of the CMS 105 for assets, the content manager 110 may provide results that include assets from local content repositories, as well as external content libraries. Thus, as the content author builds their web content and queries for content that the content author desires to utilize in their web content, the content author may view assets on external content libraries as if they resided locally on a local content repository.

[0058] Thus, the query module 160 may be executed to receiving a content query via the content manager 110. The query module 160 may search a local content repository associated with the content management system and the external content library using the content query, and return results in response to the content query. Again, the registering and mapping of assets on external content repositories to the CMS 105 results in the assets of the external content libraries being made available as if they were stored locally on a local content repository of the CMS 105.
[0059] In accordance with the present disclosure, if a content author desires to
effective manage a plurality of publications of a web marketing campaign, the content
author may establish a blueprint for the web marketing campaign. Thus, the
blueprinting module 165 of the content manager 110 may be executed to establish a
blueprint for the web marketing campaign.

[0060] In general, publications for a web marketing campaign may be arranged into
either a hierarchical model of publications or a semantic model of publications. The
content manager 110 may execute the user interface module 140 to generate various
user interfaces that allow the content author to create a blueprint. For example, the
content author may establish relationships between publications, such as parent/child.
Additionally, the content author may establish rules for inheriting changed in assets
based upon these established relationships. For example, the content author may
establish a rule that requires all logo images to be inherited from the parent in an
unmodified format to ensure that the logo/branding associated with the publication is
consistent. A rule may be established that all tradename, trademark, servicemark, logo,
brand, or other source identifiers be consistently used (e.g., inherited in an unmodified
manner). The content author may also establish an exemplary rule such as localization
requirements for a child publication. For example, the content author may establish
rules for a child publication that is to be published to French readers that requires all
text assets to be translated into French.

[0061] According to some embodiments, external content stored on the external
content library 125 may be appended with metadata by the content manager 110.
Metadata for the assets of a publication may be inherited according to the blueprint
associated with the publication. In some instances the metadata may be localized to
reflect the specific attributes of assets associated with a child publication. For example,
if an asset such as a video file or an image file includes an alternative text asset, this
alternative text may be shown on a website (e.g., child publication). It will be
understood that the text for the asset may be localized to a language of that specific
regional website. Thus, the alternative text for the asset may vary upon the localization
rules included in the blueprint. If the blueprint includes three localized child
publications for three countries such as the U.K., Mexico, and France, the alternative
text for the same asset in each of these child publications may specify English text for
the U.K. child publication, Spanish text for the Mexico child publication, and French
text for the French child publication.
FIG. 3A illustrates an exemplary hierarchical model 300 of publications. The hierarchical model 300 is shown as comprising global content (e.g., assets) 305, a plurality of products 310A-D, which may inherit assets from the global content 305, and a plurality of microsites 315A-C, which may inherit assets from one or more of the plurality of products 310A-D. The global content 305 may include assets of external content libraries that reside on external content repositories. The hierarchical model 300 is shown as also comprising a " .com" website 320, which may inherit assets from any of the microsites 315A-C.

Linkages or relationships between publications (e.g., microsites, products, websites, etc.) may be included in the blueprint. The blueprint comprises rules for managing assets utilized by each of the publications in the hierarchical model 300. These linkages are shown as arrows extending between publications. For example, product 310A and product 310B may be linked to microsite 315A such that changes in assets to either product 310A and/or product 310B may inherit down to microsite 315A.

It is noteworthy to mention that in a hierarchical model, changes in assets for a child publication (e.g., a publication that is vertically disposed below another publication in the hierarchy), such as with the localization of an asset, may not result in automatic inheritance of those changes vertically to a parent publication. For example, changes in an asset of the microsite 315A may not cause a corresponding change in the same asset on the product 310A or product 310B. Additionally, this change at the child level may break the linkage between the child publication and the parent publication, at least with respect to the asset.

FIG. 3B illustrates an exemplary semantic model 325 of publications. The semantic model 325 may include global content 330, which includes assets that are to be utilized in the web marketing campaign. In contrast with the global content of the hierarchical model of FIG. 3A, the global content 330 is conceptually the locus/corpus of assets for a plurality of publications. Rather than having to inherit assets from a parent publication, each publication may receive assets directly from the global content 330. Again, the global content 330 may include assets of external content libraries that reside on external content repositories. Thus, the semantic model allows for multiple inheritance features for child publications.
Thus, various product publications, microsites, and websites may be interrelated with one another using a semantic model such that the global content 330 is central to the model.

Additionally, a publication in the semantic model 320 can have parent/child relationships with other publications within the system. Advantageously, a publication in a semantic model can be both a parent and a child, which allows sharing of assets both from and to other publications. A child publication can have multiple parents, and when this occurs a prioritization (e.g., priority rules) can be established that determine which parent has first priority for sharing assets with the dependent publication. Changes made in the parent publication may affect all, or a portion, of the child publications. However, changes made at the child level may or may not affect the parent publication(s).

FIG. 4 is an exemplary user interface in the form of a hierarchical model map 400. The map 400 represents an exemplary use case where a hierarchical model has been utilized to establish relationships between various publications. In this example, marketing content has been localized in .COM at Level 3. Because marketing content was created at Level 2 in the global content publication, it has also been shared with the microsite publication however it is not localized but directly inherited with the microsite. This map 400 also demonstrates how content can be inherited, localized and shared within a hierarchical model. This map 400 may be made available for content authors who have permission to view the marketing content, allowing for a quick view of where assets are coming from, where the assets have been inherited and localized, and the identity of the content author who created the asset.

According to some embodiments, a blueprint model may be combined with taxonomies for assets, allowing content authors to publish "smart" content for their customers. Categories and keywords within the taxonomy model follow the blueprint model rules, giving business organizations flexibility when defining asset related tagging guidelines based on the needs of their clients - whether the need be cultural, language, and/or product availability.

FIG. 5 illustrates inheritance and localization of assets between parent and child publications within a hierarchical model of publications, using a blueprint. A parent publication 505, shown here as a web page that includes a text asset 510 and a media asset 515. Based upon rules contained in the blueprint, a child publication 520 is
shown as inheriting the same image asset 515, while the text asset has been localized by translating the text asset from English into French to produce a localized text asset 525.

[0071] Rather than translating the child publication 520 manually, the blueprint may instruct the content manager 110 to automatically localize the text asset. Thus, when the text asset 510 of the parent publication 505 is modified, the content manager 110 may utilize the blueprint to determine that an automatic translation of the updated text asset is required for localization.

[0072] According to some embodiments, the image asset 515 may be an asset that is stored in an external content library 125. Thus, the blueprint that governs the parent and child publications 505 and 520, may also include mappings of the image asset that is stored in the external content library to both the parent publication 505 and the child publication 520. As mentioned above, the mapping of assets for a publication (e.g., web content) may be determined by the asset mapper module 145 (see FIG. 1).

[0073] It will be understood that the rules for managing the relationship between the parent publication 505 and the child publication 520 may require that text content be localized by translation into French, while image assets are inherited. While this example is rudimentary, it is descriptive of the effects of a blueprint relative to how assets are shared between publications in a hierarchical or semantic model. In other examples, the rules for the blueprint may require translation any time a publication is intended to be provisioned to an audience that speaks a different language from the language used to create the parent publication. Other rules may comprise changing the color, layout, or other aesthetic portions of a child publication. Again, the rules included in the blueprint may be used to ensure that child publications are culturally, linguistically, contextually, or otherwise relevant to their intended audience.

[0074] Once a blueprint has been established for a web marketing campaign, changes in an asset in a publication may be automatically shared and/or inherited to dependent (e.g. child or laterally related) publications according to the blueprint by executing the blueprinting module 165. The automatic inheritance of asset changes using the blueprint via the blueprinting module 165 may enhance the effectiveness of the web marketing campaign by ensuring that branding, assets, and other content included in publications are consistently maintained across the publications of a web marketing campaign without requiring manual updating of each publication.
FIG. 6 is a flowchart of an exemplary method 600 for managing a web-based marketing campaign using a blueprint. The method 600 may comprise a step 605 of establishing a blueprint for a web-based marketing campaign using a content management system. According to some embodiments, the blueprint may comprise rules for managing assets utilized by at least a portion of a plurality of publications of a hierarchical model of the web-based marketing campaign. It will be understood that the plurality of publications may comprise at least one parent publication and at least one child publication. Additionally, at least a portion of the assets utilized by the hierarchical model may be stored on an external content library.

In some embodiments, the method 600 may comprise a step 610 of determining a change in at least one asset for the at least one parent publication. Once a change in at least one asset has been determined, the method may then comprise a step 615 of automatically sharing and/or inheriting the change in the at least one asset for the at least one parent publication to the at least one child publication according to the blueprint.

FIG. 7 illustrates an exemplary computing system 700 that may be used to implement an embodiment of the present technology. The computing system 700 of FIG. 7 may be implemented in the contexts of the likes of computing systems, networks, exchanges, servers, or combinations thereof disclosed herein. The computing system 700 of FIG. 7 includes one or more processors 710 and main memory 720. Main memory 720 stores, in part, instructions and data for execution by processor 710. Main memory 720 may store the executable code when in operation. The system 700 of FIG. 7 further includes a mass storage device 730, portable storage medium drive(s) 740, output devices 750, user input devices 760, a graphics display 770, and peripheral devices 780.

The components shown in FIG. 7 are depicted as being connected via a single bus 790. The components may be connected through one or more data transport means. Processor unit 710 and main memory 720 may be connected via a local microprocessor bus, and the mass storage device 730, peripheral device(s) 780, portable storage device 740, and graphics display 770 may be connected via one or more input/output (I/O) buses.

Mass storage device 730, which may be implemented with a magnetic disk drive or an optical disk drive, is a non-volatile storage device for storing data and
instructions for use by processor unit 710. Mass storage device 730 may store the system software for implementing embodiments of the present technology for purposes of loading that software into main memory 720.

[0080] Portable storage device 740 operates in conjunction with a portable non-volatile storage medium, such as a floppy disk, compact disk, digital video disc, or USB storage device, to input and output data and code to and from the computing system 700 of FIG. 7. The system software for implementing embodiments of the present technology may be stored on such a portable medium and input to the computing system 700 via the portable storage device 740.

[0081] Input devices 760 provide a portion of a user interface. Input devices 760 may include an alphanumeric keypad, such as a keyboard, for inputting alpha-numeric and other information, or a pointing device, such as a mouse, a trackball, stylus, or cursor direction keys. Additionally, the system 700 as shown in FIG. 7 includes output devices 750. Suitable output devices include speakers, printers, network interfaces, and monitors.

[0082] Graphics display 770 may include a liquid crystal display (LCD) or other suitable display device. Graphics display 770 receives textual and graphical information, and processes the information for output to the display device.

[0083] Peripherals devices 780 may include any type of computer support device to add additional functionality to the computing system. Peripheral device(s) 780 may include a modem or a router.

[0084] The components provided in the computing system 700 of FIG. 7 are those typically found in computing systems that may be suitable for use with embodiments of the present technology and are intended to represent a broad category of such computer components that are well known in the art. Thus, the computing system 700 of FIG. 7 may be a personal computer, hand held computing system, telephone, mobile computing system, workstation, server, minicomputer, mainframe computer, or any other computing system. The computer may also include different bus configurations, networked platforms, multi-processor platforms, etc. Various operating systems may be used including Unix, Linux, Windows, Macintosh OS, Palm OS, Android, iPhone OS and other suitable operating systems.
It is noteworthy that any hardware platform suitable for performing the processing described herein is suitable for use with the technology. Computer-readable storage media refer to any medium or media that participate in providing instructions to a central processing unit (CPU), a processor, a microcontroller, or the like. Such media may take forms including, but not limited to, non-volatile and volatile media such as optical or magnetic disks and dynamic memory, respectively. Common forms of computer-readable storage media include a floppy disk, a flexible disk, a hard disk, magnetic tape, any other magnetic storage medium, a CD-ROM disk, digital video disk (DVD), any other optical storage medium, RAM, PROM, EPROM, a FLASHEPROM, any other memory chip or cartridge.

While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. The descriptions are not intended to limit the scope of the technology to the particular forms set forth herein. Thus, the breadth and scope of a preferred embodiment should not be limited by any of the above-described exemplary embodiments. It should be understood that the above description is illustrative and not restrictive. To the contrary, the present descriptions are intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the technology as defined by the appended claims and otherwise appreciated by one of ordinary skill in the art. The scope of the technology should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the appended claims along with their full scope of equivalents.
1. A method managing a web-based marketing campaign using a blueprint, the method comprising:
 establishing a blueprint for a web-based marketing campaign using a content management system, the blueprint comprising rules for managing assets utilized by at least a portion of a plurality of publications of a hierarchical model of the web-based marketing campaign, the plurality of publications comprising at least one parent publication and at least one child publication, at least a portion of the assets utilized by the hierarchical model being stored on an external content library;
 determining a change in at least one asset for the at least one parent publication;
 and
 automatically inheriting the change in the at least one asset for the at least one parent publication to the at least one child publication according to the blueprint.

2. The method according to claim 1, wherein the external content library is registered and mapped to the content management system.

3. The method according to claim 2, wherein the external content library is registered and mapped by:
 registering an external content library with a content management system using an external content provider module; and
 mapping assets of the external content library for use within the content management system.

4. The method according to any preceding claim, wherein localizing comprises any of translation, hiding, inheriting, pushing, or any combinations thereof, of assets for a publication.
5. The method according to any preceding claim, wherein a publication comprises any of assets, templates, functionalities, keywords, metadata, workflows, or any combinations thereof.

6. The method according to any preceding claim, wherein the blueprint comprises rules for localizing assets for the at least one child publication.

7. The method according to any preceding claim, further comprising, upon selection of an asset from the external content library via the content management system, mapping the selected asset from the external content library into web content being created on the content management system.

8. A method managing a web-based marketing campaign using a blueprint, the method comprising:

 establishing a blueprint for a web-based marketing campaign using a content management system, the blueprint comprising rules for managing assets utilized by at least a portion of a plurality of publications of a semantic model of the web-based marketing campaign, the blueprint comprising rules for localizing assets for each of the plurality of publications, at least a portion of the assets being stored on an external content library;

 determining a change in at least one asset for at least one of the plurality of publications; and

 automatically inheriting the change in the at least one asset for the at least one of the plurality of publications to a dependent publication, according to the blueprint.

9. The method according to claim 8, wherein the external content library is virtually mounted to the content management system such that assets located on the external content library are accessible through the content management system similarly to local assets of a local content repository associated with the content management system.

10. The method according to claim 8 or 9, wherein the semantic model comprises a plurality of parent publications and a plurality of dependent publications.

11. The method according to claim 10, wherein when a dependent publication has two or more parent publications, the rules for managing assets included in the blueprint comprise a priority for each parent publication that determines an order for asset
inheritance from between the two or more parent publications to the dependent publication.

12. A content management system for managing a web-based marketing campaign using a blueprint, the system comprising:
 a memory for storing executable instructions; and
 a processor for executing the executable instructions, the executable instructions comprising:
 a blueprinting module that establishes a blueprint for a web-based marketing campaign using a content management system, the blueprint comprising rules for managing assets utilized by at least a portion of a plurality of publications of a hierarchical model of the web-based marketing campaign, the plurality of publications comprising at least one parent publication and at least one child publication, at least a portion of the assets utilized by the hierarchical model being stored on an external content library:
 an asset manager module that receives a change in at least one asset for the at least one parent publication; and
 wherein the blueprinting module automatically inherits the change in the at least one asset for the at least one parent publication to the at least one child publication, according to the blueprint.

13. The system according to claim 12, wherein the external content library is registered and mapped to the content management system via an external content provider module.

14. The system according to claim 13, wherein the external content provider module registers an external content library with the content management system and an asset mapper module maps assets of the external content library for use within the content management system.

15. The system according to claim 14, wherein upon selection of an asset from the external content library via the content management system, the asset mapper module maps the selected asset from the external content library into web content being created on the content management system.
16. The system according to any of claims 12-15, wherein localizing comprises any of translation, hiding, inheriting, pushing, or any combinations thereof, of assets for a publication.

17. The system according to any of claims 12-16, wherein the blueprint comprises rules for localizing assets for the at least one child publication.

18. The system according to any of claims 12-17, wherein a publication comprises any of assets, templates, functionalities, keywords, metadata, workflows, or any combinations thereof.
FIG. 4
FIG. 5

Publication A (parent Publication)

Localized item

French President visits the Taj Mahal

Shared item

Publication B (child Publication)

Président français visite le Taj Mahal
Start

Establishing a blueprint for a web-based marketing campaign using a content management system

Determining a change in at least one asset for the at least one parent publication

Automatically inheriting the change in the at least one asset for the at least one parent publication to the at least one child publication according to the blueprint

End

FIG. 6
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. G06Q30/02 G06F17/30

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G06Q G06F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal , WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

* Further documents are listed in the continuation of Box C. X See patent family annex.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "B" early application or patent but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

*"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

*"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

*"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

*"A" document member of the same patent family

Date of the actual completion of the international search

12 December 2013

Date of mailing of the international search report

08/01/2014

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL-2280 HV Rijswijk
Tel. (+31-70) 340-3040,
Fax: (+31-70) 340-3016

Authorized officer

Moynihan, Maurice

Form PCT/ISA/210 (second sheet) (April 2006)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2012221407 Al</td>
<td>30-08-2012</td>
<td>EP 2678814 Al</td>
<td>01-01-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012221407 Al</td>
<td>30-08-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2012113791 Al</td>
<td>30-08-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002024678 A</td>
<td>25-01-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002073190 Al</td>
<td>13-06-2002</td>
</tr>
</tbody>
</table>