This invention relates to inside curtains and to improved means for supporting such curtains and retaining them in desired position. It is the usual custom to support draperies or sash curtains at the top only and to allow them to hang loose at the bottom. When a window is raised at the bottom, as is usual in sleeping rooms, a draft of air entering the window will blow the loose lower ends of the curtains about, interfering with privacy and also causing the curtains to become soiled or wrinkled.

It is the general object of my invention to provide a supplementary inside curtain and supporting structure therefor, so designed that the curtain may be moved to operative or inoperative position as desired and that it will not be displaced by air currents when in position for use.

A further object is to provide a curtain support which is easily installed and which may be quickly adjusted to different widths of windows.

My invention further relates to arrangements and combinations of parts which will be hereinafter described and more particularly pointed out in the appended claims.

A preferred form of the invention is shown in the drawing, in which

Fig. 1 is an inside view of a window having my invention applied thereto;

Fig. 2 is a sectional plan view taken along the line 2—2 in Fig. 1;

Fig. 3 is an enlarged detail plan view, partly in section, taken along the line 3—3 in Fig. 1;

Fig. 4 is a front elevation of the parts shown in Fig. 3 and looking in the direction of the arrow 4 in said figure;

Fig. 5 is an enlarged detail plan view, partly in section, taken along the line 5—5 in Fig. 1;

Fig. 6 is an end elevation, looking in the direction of the arrow 6 in Fig. 5; and

Fig. 7 is an enlarged front elevation, partly in section, of portions of the supporting rods.

Referring to the drawing, I have shown a window having an inside casing 10 and sash 11. The usual roller-shade and inside draperies or sash curtains will be secured at the top of the window in the usual way but are omitted from the drawing for the sake of clearness.

A supplementary inside curtain 15 may be made of any suitable light material, such as voile, and will be provided with hems and headings at the top and bottom to receive upper and lower supporting rods 16 and 17, each of which is preferably formed in telescoping parts so that the rods may be readily adjusted for width.

The outer or swinging end of the upper rod 16 also preferably telescopes in the corresponding end of the lower rod 17, as indicated in Fig. 7. A clamping screw 18 is provided for securing these telescoping parts in vertically adjusted position.

The inner or pivoted end 20 of the upper rod 16 is bent downward as shown in Fig. 1 and fits over the upturned end of a bent link 21, (Fig. 4) which in turn is pivoted on an upturned stud 22 fixed in a plate 23 secured to the edge of the casing 18.

With this construction, the parts may be swung freely to the full line operative position shown in Fig. 3 or to the inoperative position shown in dotted lines. In the latter position, the link 21 permits the rod 16 to swing back flat against the wall.

The lower rod 17 is similarly supported, except that the rod 17 may be bent upward as indicated at 24 before being bent or offset downward, as indicated at 25. This permits the lower rod to be positioned more closely adjacent the window-sill 26.

At the opposite side of the window a spring clamp 30 is mounted on a stud 31 and plate 32, and the plate 32 is secured to the edge of the casing in a position corresponding to the plate 23 previously described.

The clamp 30 is preferably made of resilient sheet metal and is approximately of closed U-shape in plan, as shown in Fig. 5, with the outer ends of the two arms of the clamp recessed as indicated at 33 to receive a portion of the rod 16, and with the extreme outer ends out-turned as indicated at 34 to facilitate insertion of the rod 16 therebetween.

With the supporting structure above described, a part-length curtain 15 may be supported in front of an open window in such manner that it cannot be easily displaced and it will also prevent the regular or full length curtains from being blown about or damaged. At the same time the ventilation from the open window is not impaired.

When the curtain is not desired for use, it may be freed from the spring latch 30 and may be swung about its pivoted ends to an inoperative position close against the wall, as indicated in Fig. 3.

The curtain may also be readily demounted by merely lifting the supporting structure from the
upturned studs, after which it may be placed in storage if not required for use.

Having thus described my invention and the advantages thereof, I do not wish to be limited to the details herein disclosed, otherwise than as set forth in the claims, but what I claim is:

1. In association with a window having an inside casing and an inside part-length fabric curtain, that improvement which comprises a substantially U-shaped rigid supporting frame structure to which both the top and bottom edges of said curtain may be secured, said U-shaped frame structure comprising upper and lower horizontal supporting rods having associated and cooperating vertically-disposed telescoping outer swinging end portions and having means to hold said telescoping end portions rigidly in vertically adjusted relation, the inner ends of said rods being bent to provide vertical bearing portions, a pair of vertically-spaced single one-piece links each pivotally supporting one of said bearing portions at one end of said link, spaced brackets mounted on one side of said casing and having vertical bearing portions on which the other ends of said links are pivotally mounted, and means to secure said supporting frame structure to the opposite side of said casing.

2. In association with a window having an inside casing and an inside part-length fabric curtain, that improvement which comprises a substantially U-shaped rigid supporting frame structure to which both the top and bottom edges of said curtain may be secured, said U-shaped frame structure comprising upper and lower horizontal supporting rods having associated and cooperating vertically-disposed telescoping outer swinging end portions and having means to hold said telescoping end portions rigidly in vertically adjusted relation, the inner ends of said rods being bent to provide vertical bearing portions, a pair of vertically-spaced single one-piece links each pivotally supporting one of said bearing portions at one end of said link, spaced brackets mounted on one side of said casing and having vertical bearing portions on which the other ends of said links are pivotally mounted, and means to secure said supporting frame structure to the opposite side of said casing.