(54) 发明名称
一种无卤阻燃型 ABS 复合材料及其制备方法

(57) 摘要
本发明公开了一种无卤阻燃型 ABS 复合材料及其制备方法，其中无卤阻燃型 ABS 复合材料由以下质量百分比的组分组成：ABS 树脂 40% ～70%，复合阻燃剂 20～40%，增效聚合物 10～20%，抗氧剂 0.5% ～1%，润滑剂 1～3%。按上述配方混匀成混合物，然后将混合物加入双螺杆挤出机，将双螺杆挤出机的料筒温度控制在 185～270℃，挤出并切粒得到所述无卤阻燃 ABS 专用料。本发明所提供无卤阻燃 ABS 复合材料，具有阻燃性能好、力学性能优、无毒无污染等优点。
1. 一种无卤阻燃型ABS复合材料，其特征在于所述无卤阻燃型ABS复合材料由如下质量百分比的组分组成：ABS树脂40%-70%，复配阻燃剂20-40%，增效聚合物10-20%，抗氧剂0.5%-1%，润滑剂1%-3%；所述复配阻燃剂由质量比为2:1:1:1的层板剥离水滑石、有机硅改性水滑石、硼酸根插层水滑石和聚磷酸铵复配组成；所述增效聚合物为PVC、PC或PA。

2. 根据权利要求1所述的无卤阻燃型ABS复合材料，其特征在于，所述ABS树脂中A:B:S为20:30:50。

3. 根据权利要求1所述的无卤阻燃型ABS复合材料，其特征在于，添加了质量百分比为1-3%的PTFE微粉作为润滑剂。

4. 根据权利要求3所述的无卤阻燃型ABS复合材料，其特征在于，所添加的PTFE微粉的平均粒径为1-5 μm。

5. 上述任意权利要求所述的无卤阻燃型ABS复合材料的制备方法，其特征在于，由以下步骤进行制备：
 (1) 按照重量百分比称取各个组分；
 (2) 将各个组分在高速混合机中进行充分混合20分钟；
 (3) 然后将混合好的物料加入双螺杆挤出机，调节双螺杆挤出机温度为185-270℃，所述混合物在双螺杆挤出机内混合挤出得到所述无卤阻燃型ABS复合材料。
一种无卤阻燃型ABS复合材料及其制备方法

技术领域
[0001] 本发明涉及一种阻燃聚合物材料，属于高分子材料改性技术领域，具体的说是一种无卤阻燃型ABS复合材料及其制备方法。

背景技术
[0002] ABS树脂(丙烯腈-苯乙烯-丁二烯共聚物)是一种强度高、韧性好、易于加工成型的热塑性高分子材料，广泛用于电子电器、汽车等领域。但ABS树脂氧指数在18左右，容易引起燃烧而导致火灾。随着其应用范围的日益扩大，对ABS的阻燃性能提出了更高要求。目前，生产阻燃ABS所用阻燃剂多采用多溴二苯醚和三氧化锑的复配物。但是溴系阻燃剂在燃烧过程中会产生大量有毒、有害气体等致癌物污染环境和危害人体安全。因此，欧盟颁布了《RoHS指令》，规定了阻燃塑料中多溴联苯和多溴联苯醚的含量不超过1000PPM。

发明内容
[0003] 本发明目的是提供一种无卤阻燃型ABS复合材料，所用阻燃剂无毒无污染。可以同时满足材料使用过程中对阻燃性能与力学性能的要求。提出通过采用复配阻燃剂，熔融共混制备分散性好的无卤阻燃ABS复合物的方法。
[0004] 为解决上述技术问题，本发明所采取的技术方案是，提供一种无卤阻燃ABS复合材料，由如下质量百分比的组分组成：ABS树脂40％-70％、复配阻燃剂20-40％、增效聚合物10-20％、抗氧化剂0.5％-1％，润滑剂1-3％。
[0005] 本发明所述复配阻燃剂由质量比为2:1:1:1的层板剥离水滑石、有机硅改性水滑石、硼酸根插层水滑石和聚磷酸铵复配组成。
[0006] 本发明所述增效聚合物为PVC、PCE或PA。
[0007] 本发明所述ABS树脂中A:B:S为20:30:50。
[0008] 本发明所述ABS树脂中润滑剂为1-3％的PTFE微粉。
[0009] 所述的无卤阻燃ABS复合材料的制备方法由以下步骤完成：
(1) 按照重量百分比称取各个组分；
(2) 将各个组分在高速混合机中进行充分混合20分钟；
(3) 然后将混合好的物料加入双螺杆挤出机，调节双螺杆挤出机温度为185-270℃，所述混合物在双螺杆挤出机内混合挤出得到所述无卤阻燃型ABS复合材料。
[0010] 本发明的无卤阻燃型ABS复合材料具有如下优点：
(1) 本发明的无卤阻燃型ABS复合材料使用复配型阻燃剂，极大提高了ABS的阻燃性能；
(2) 本发明的无卤阻燃型ABS复合材料不含卤系阻燃剂和有毒的金属氧化物，具有无毒环保特性。

具体实施方式
[0011] 实施例1
本实施例的一种无卤阻燃型ABS复合材料，由如下质量百分比的组分组成：ABS树脂65%，复配阻燃剂20%，增效聚合物13%，抗氧剂1%，润滑剂1%。

【0012】上述复合材料由以下步骤制备而成：
（1）按照质量百分比称取各个组分；
（2）将各个组分在高速混合机中进行充分混合；
（3）将混合好的物料于双螺杆挤出机进行挤出，温度为230℃，转速控制在90转/min。

【0013】实施例2
本实施例的一种无卤阻燃型ABS复合材料，由如下质量百分比的组分组成：ABS树脂68%，复配阻燃剂20%，增效聚合物10%，抗氧剂1%，润滑剂1%。

【0014】上述复合材料由以下步骤制备而成：
（1）按照质量百分比称取各个组分；
（2）将各个组分在高速混合机中进行充分混合；
（3）将混合好的物料于双螺杆挤出机进行挤出，温度为185℃，转速控制在90转/min。

【0015】实施例3
本实施例的一种无卤阻燃型ABS复合材料，由如下质量百分比的组分组成：ABS树脂60%，复配阻燃剂25%，增效聚合物12%，抗氧剂1%，润滑剂2%。

【0016】上述复合材料由以下步骤制备而成：
（1）按照质量百分比称取各个组分；
（2）将各个组分在高速混合机中进行充分混合；
（3）将混合好的物料于双螺杆挤出机进行挤出，温度为230℃，转速控制在120转/min。

【0017】实施例4
本实施例的一种无卤阻燃型ABS复合材料，由如下质量百分比的组分组成：ABS树脂50%，复配阻燃剂29%，增效聚合物18%，抗氧剂1%，润滑剂2%。

【0018】上述复合材料由以下步骤制备而成：
（1）按照质量百分比称取各个组分；
（2）将各个组分在高速混合机中进行充分混合；
（3）将混合好的物料于双螺杆挤出机进行挤出，温度为230℃，转速控制在120转/min。

【0019】实施例5
本实施例的一种无卤阻燃型ABS复合材料，由如下质量百分比的组分组成：ABS树脂45%，复配阻燃剂32%，增效聚合物20%，抗氧剂0.5%，润滑剂2.5%。

【0020】上述复合材料由以下步骤制备而成：
（1）按照质量百分比称取各个组分；
（2）将各个组分在高速混合机中进行充分混合；
（3）将混合好的物料于双螺杆挤出机进行挤出，温度为250℃，转速控制在120转/min。

【0021】对以上实施例所制得的阻燃材料进行性能测试，具体结果见表1。

【0022】表1 实施例所得无卤阻燃型ABS复合材料性能测试

<table>
<thead>
<tr>
<th>检测试项目</th>
<th>实施例1</th>
<th>实施例2</th>
<th>实施例3</th>
<th>实施例4</th>
<th>实施例5</th>
</tr>
</thead>
<tbody>
<tr>
<td>拉伸强度(Mpa)</td>
<td>37</td>
<td>38</td>
<td>35</td>
<td>32</td>
<td>30</td>
</tr>
<tr>
<td>悬臂梁缺口冲击强度(kJ/m²)</td>
<td>11.6</td>
<td>11.3</td>
<td>10.9</td>
<td>10.3</td>
<td>10.1</td>
</tr>
<tr>
<td>燃烧性能</td>
<td>FV-0</td>
<td>FV-0</td>
<td>FV-0</td>
<td>FV-0</td>
<td>FV-0</td>
</tr>
<tr>
<td>----------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>热分解温度(℃)</td>
<td>268</td>
<td>270</td>
<td>279</td>
<td>287</td>
<td>298</td>
</tr>
</tbody>
</table>

通过以上实验可以看到，本发明所制得的无卤阻燃ABS复合材料具有很好的阻燃性能，且保持良好的力学性能。