
(19) United States
US 2008O165193A1

(12) Patent Application Publication (10) Pub. No.: US 2008/0165193 A1
Stamm et al. (43) Pub. Date: Jul. 10, 2008

(54) ITERATIVELY SOLVING CONSTRAINTS INA
FONT HINTING LANGUAGE

(75) Inventors: Beat Stamm, Redmond, WA (US);
Gregory C. Hitchcock,
Woodinville, WA (US); Michael J.
Duggan, Kirkland, WA (US)

Correspondence Address:
WORKMAN NYDEGGER/MCROSOFT
1000 EAGLE GATE TOWER, 60 EAST SOUTH
TEMPLE
SALT LAKE CITY, UT 84111

(73) Assignee: MICROSOFT CORPORATION,
Redmond, WA (US)

(21) Appl. No.: 111558,720

(22) Filed: Nov. 10, 2006

Related U.S. Application Data

(63) Continuation of application No. 10/764.961, filed on
Jan. 26, 2004, now Pat. No. 7,187,382.

101 Edge

102

f08
f17

Design
Control
Points.
122

152
Distance 14

Distance 144

104

106 s Object
131

Publication Classification

(51) Int. Cl.
G06T II/00 (2006.01)

(52) U.S. Cl. .. 345/469

(57) ABSTRACT

The principles of the present invention relate to iteratively
Solving constraints in a font-hinting language. A computing
system accesses a more complex constraint that can not be
natively expressed based on the vocabulary of the font-hint
ing language, the more complex constraint constraining at
least a portion of the outline. The computing system decom
poses the more complex constraint into a plurality of simpler
constraints that can be natively expressed based on the
Vocabulary of the font-hinting language. The computer sys
tem represents each of the simpler constraints in correspond
ing font-hinting language instructions that can be iteratively
processed to at least approximate a solution to the more
complex constraint. The font-hinting language instructions
are iteratively processed at the computing system or another
computing system to cause a graphical object to comply,
within a specific tolerance, with the more complex constraint.

Computing System 118

Hinting Module 119

Constraint Hint
Identification Application

Module Module
121 129

Computing System 123
Pixelated

SS Representation
127

Scaling Scan
Module Conversion
124 Module 126

Hint
Processor

134

US 2008/O1651.93 A1 Jul. 10, 2008 Sheet 1 of 3 Patent Application Publication

F5I JOSS000J:

| 61-I
„4,

US 2008/O165193A1 Jul. 10, 2008 Sheet 2 of 3 Patent Application Publication

(~~~,

wz 614 (~~~~,
ZOZ | 03

US 2008/O165193A1 Jul. 10, 2008 Sheet 3 of 3

£ 614

Patent Application Publication

888 eleg ulejõOld
87€ 12 depy

?ušš?jold | H=============|

US 2008/O1651.93 A1

TERATIVELY SOLVING CONSTRAINTS INA
FONT HINTING LANGUAGE

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of U.S. applica
tion Ser. No. 10/764,961 filed Jan. 26, 2004, and entitled
ITERATIVELY SOLVING CONSTARINTS IN A FONT
HINTING LANGUAGE”. The foregoing application is
incorporated herein by reference.

BACKGROUND AND RELEVANT ART

0002 Computing technology has transformed the way we
work and play. Computing systems now take a wide variety of
forms including desktop computers, laptop computers, tablet
PCs, Personal Digital Assistants (PDAs), and the like. Even
household devices (such as refrigerators, ovens, sewing
machines, security systems, and the like) have varying levels
of processing capability and thus may be considered comput
ing systems. As time moves forward, processing capability
may be incorporated into a number of devices that tradition
ally did not have processing capability. Accordingly, the
diversity of computing systems may likely increase.
0003 Almost all computing systems that interface with
human beings use a display to convey information. In many
cases, the appeal of the display is considered an important
attribute of the computing system. Historically, textual infor
mation (e.g., Latin-based characters) was displayed in cells of
a Cathode Ray Tube (“CRT) display device. Each cell was
divided into a grid of equally sized grid positions wherein
each grid position could be turned on or off For example, each
cellofa CRT could be an 8x8 grid resulting in 64 possible grid
positions per cell.
0004 Each character of a character set was stored as a
memory image (a bit-map) in the hardware of the CRT dis
play device (e.g., in the video adapter). A memory image
included a number of binary values (e.g., 64binary values for
displaying a character on an 8x8 grid), where each binary
value corresponded to a specified grid position. One value
(e.g., binary '1') represented that a corresponding grid posi
tion was to be “on” when the character was displayed and
another value (e.g., a binary “O'”) represented that a corre
sponding grid position was to be “off” when the character was
displayed. Upon receiving binary data (e.g., a bit-map) rep
resenting a character, the CRT would “turn on grid positions
corresponding to a binary 1 and would “turn off grid posi
tions corresponding to a binary 0 to display the character.
0005 More recently, some computing systems have used
proportional bit-maps (e.g., Stored on disk) that vary in cell
size depending on the character that is to be displayed. For
example, in a proportional bit-map character set, the cell for
the letter 'i' could be more narrow (e.g., width of 3 grid
positions) than the cell for the letter “h” (e.g., width of 6 grid
positions).
0006. However, storing characters as bit-maps (either
fixed or proportional) can consume significant computing
system resources. Since a computing system may need to
display and print characters of a font (typically 256 or more
different characters) at a variety of different sizes, storage of
a significant number of different sized bit-maps may be
required. For example, it may desirable to have a word pro
cessor display and print characters of a font in sizes ranging
from 4pt to 72 pt. Thus, a computing system running the word

Jul. 10, 2008

processor would potentially have to store 68 (72 minus 4)
different sizes of bit-maps for displaying the font at different
sizes.
0007 Further, since printers typically have different (and
for the most part higher) resolution than displays, the com
puting system would potentially also have to store a corre
sponding 68 (72 minus 4) different sizes of bit-maps for
printing the font at different sizes. For example, a bitmap of an
8x5 grid (requiring 40 bits of storage) may be used to display
a character at a specified size, while a bit-map of a 50x30 grid
(requiring 1500 bits of storage) is used to print the character
at the specified size.
0008. The storage requirement problems associated with
bit-map fonts is further compounded when a computing
device is to display and print characters from different fonts.
That is, the computing device may need to store bit-maps for
representing a variety of different fonts at a variety of differ
ent sizes. Thus, in the above example, configuring the word
processor to use 50 different fonts could result in well over
5,000 different sets of bit-maps (e.g., (68+68)*50). Since
many character sets include 256 or more characters, this
could easily result over 1 million individual bit-maps (e.g.,
5,000256). Storing bit-maps for underlined, bold, and/or
italicized versions of each font can further increase the stor
age requirements. Further, producing a large number of bit
maps by hand is extremely time consuming.
0009. Accordingly, even more recently, graphics primi
tives have been used to describe characters of a font. For
example, a set of control points and instructions for connect
ing the points (e.g., connect with a straight line, an arc, a
Bezier, etc.) can be used to define the outline of a character in
an arbitrary grid space (e.g., an arbitrary grid space greater
than the highest resolution of a pixelated device. Often, char
acters will be described at larger size and then mathematically
scaled down (or otherwise manipulated) when the characters
are to be rendered at smaller sizes (or as bold, italic, etc.).
Thus, a reduced number of descriptions, and potentially only
one description, for a character (per font) need be stored.
0010. To scale a character down the location of control
points can be divided by a scaling factor. For example, to scale
a character down by a scaling factor of 10, the coordinates of
each control point defining the character (at the higher reso
lution) can be divided by 10. It may be that control points
defining a character for display on a 100x100 grid are to be
scaled down for display on a 10x10 grid. Thus, a control point
at grid position (50, 30) can be scaled down to a control point
at grid position (5.3), a control point at grid position (70, 70)
can be scaled down to a control point at grid position (7.7).
etc. Accordingly, a smaller outline representing the character
may be calculated and there is a reduced need for storing a
number of different sizes of bit-maps for the character.
0011. The smaller outline can then be analyzed to identify
grid locations that are to be turned on and to identify grid
locations that are to be turned off (a process often referred to
as 'scan conversion'). One Scan conversion algorithm deter
mines if the center of a grid position is inside or outside the
smaller outline. When the center of a grid position is inside
the smaller outline the grid position is turned on. On the other
hand, when the center of a grid position is outside the Smaller
outline the grid position is turned off
0012. Also, when rendering a character, portions of the
character may be required to conform to one or more con
straints. A constraint can be expressed as algorithm defining
one or more dependent parameters in terms of one or more

US 2008/O1651.93 A1

independent parameters. Constraints for one control point
can be expressed in terms of the location of other control
points or locations on a grid (e.g., a capitalization line). For
example, the position of a control point “P” can be expressed
in terms of the position of a control point “Q' such that the P
is a fixed distance “c” from Q. That is, P-Q+c. Thus, when Q
is moved, a corresponding move of P may be required so that
P conforms to the fixed distance c.

0013 Due in part to the wide variety of different artistic
and technical features in different fonts, constraints can be
tailored to an individual font. Often, constraints are expressed
in terms of a font-hinting language (e.g., the TrueType(R)
language) having a limited and highly specific Vocabulary.
The limited and highly specific vocabulary simplifies the
translation of the mathematical concepts into the font-hinting
language. For example, it would typically be straight forward
to translate the above mentioned constraint (P=Q+c), since
font-hinting languages typically include an assignment
operator (e.g., “=) and an addition operator (e.g., '+')
0014. However, the limited and highly specific vocabulary
can also limit the types of the constraints that can be
expressed. For example, it can be difficult to express a con
straint based on a more complex mathematical function, Such
as, for example, a transcendental function, because these
more complex mathematical functions are not included in
font-hinting language Vocabularies and can be difficult to add.
Lack of more complex mathematical functions (e.g., a square
root function) can in turn make it difficult to determine appro
priate control point locations for complying with constraints.
Therefore, what would be advantageous are mechanisms for
using the existing vocabulary of font-hinting languages to
Solve constraints even when the font-hinting languages lack
more complex Vocabulary.

BRIEF SUMMARY

0015 The foregoing problems with the prior state of the
art are overcome by the principles of the present invention,
which are directed towards iteratively solving constraints in a
font-hinting language. A computing system accesses a more
complex constraint that can not be natively expressed based
on the Vocabulary of the font-hinting language, the more
complex constraint constraining at least a portion of the out
line. The computing system decomposes the more complex
constraint into a plurality of simpler constraints that can be
natively expressed based on the vocabulary of the font-hint
ing language. The computer system represents each of the
simpler constraints in corresponding font-hinting language
instructions that can be iteratively processed to at least
approximate a solution to the more complex constraint. The
font-hinting language instructions are iteratively processed at
the computing system or another computing system to cause
a graphical object to comply, within a specific tolerance, with
the more complex constraint.
0016. Additional features and advantages of the invention
will be set forth in the description that follows, and in part will
be obvious from the description, or may be learned by the
practice of the invention. The features and advantages of the
invention may be realized and obtained by means of the
instruments and combinations particularly pointed out in the
appended claims. These and other features of the present
invention will become more fully apparent from the following
description and appended claims, or may be learned by the
practice of the invention as set forth hereinafter.

Jul. 10, 2008

BRIEF DESCRIPTION OF THE DRAWINGS

0017. In order to describe the manner in which the above
recited and other advantages and features of the invention can
be obtained, a more particular description of the invention
briefly described above will be rendered by reference to spe
cific embodiments thereof which are illustrated in the
appended drawings. Understanding that these drawings
depict only typical embodiments of the invention and are not
therefore to be considered to be limiting of its scope, the
invention will be described and explained with additional
specificity and detail through the use of the accompanying
drawings in which:
0018 FIG. 1 illustrates an example computer architecture
for iteratively solving constraints in a font-hinting language.
0019 FIG. 2A illustrates a flowchart of an example
method for using a font-hinting language to represent an
iterative solution to a constraint.

0020 FIG. 2B illustrates a flowchart of an example
method for iteratively solving constraints such that a graphi
cal object can be appropriately rendered.
0021 FIG. 3 illustrates a suitable operating environment
for implementing the principles of the present invention.

DETAILED DESCRIPTION

0022. The principles of the present invention relate to sys
tems, methods, and computer program products for itera
tively solving constraints in a font-hinting language. A com
puting system receives a set of design control points
describing the outline of a graphical object (e.g., a character
of text) at a larger size (e.g., 72 point). The set of design
control points can be unhinted or, alternately, may include
basic hints for displaying the graphical object at the Smaller
size. The set of design control points can be associated with
more complex constraints that can not be natively expressed
based on the Vocabulary of the font-hinting language. For
example, the set of design control points can be associated
with a circularly dependent constraint, Such as, for example,
a constraint that indicates the edges of the diagonal stroke of
a “Z” are to be parallel. So for example, first and second
constraints result in a circular dependency where first control
points compliance with diagonal distance is dependent on
second control point 103 and the second control point's com
pliance with diagonal distance is dependent on the first con
trol point 107.
0023. A computing system accesses a more complex con
straint that can not be natively expressed based on the Vocabu
lary of the font-hinting language, the more complex con
straint constraining at least a portion of the outline. The
computing system decomposes the more complex constraint
into a plurality of simpler constraints that can be natively
expressed based on the Vocabulary of the font-hinting lan
guage. The computer system represents each of the simpler
constraints in corresponding font-hinting language instruc
tions that can be iteratively processed to at least approximate
a solution to the more complex constraint. The font-hinting
language instructions are iteratively processed at the comput
ing system or another computing system to cause a graphical
object to comply, within a specific tolerance, with the more
complex constraint

US 2008/O1651.93 A1

0024. Embodiments within the scope of the present inven
tion include computer-readable media for carrying or having
computer-executable instructions or data structures stored
thereon. Such computer-readable media may be any available
media, which is accessible by a general-purpose or special
purpose computing system. By way of example, and not
limitation, Such computer-readable media can comprise
physical storage media such as RAM, ROM, EPROM, CD
ROM or other optical disk storage, magnetic disk storage or
other magnetic storage devices, or any other media which can
be used to carry or store desired program code means in the
form of computer-executable instructions, computer-read
able instructions, or data structures and which may be
accessed by a general-purpose or special-purpose computing
system.
0025. In this description and in the following claims, a
“network” is defined as one or more data links that enable the
transport of electronic data between computing systems and/
or modules. When information is transferred or provided over
a network or another communications connection (either
hardwired, wireless, or a combination of hardwired and wire
less) to a computing system, the connection is properly
viewed as a computer-readable medium. Thus, any Such con
nection is properly termed a computer-readable medium.
Combinations of the above should also be included within the
Scope of computer-readable media. Computer-executable
instructions comprise, for example, instructions and data
which cause a general-purpose computing system or special
purpose computing system to perform a certain function or
group of functions. The computer executable instructions
may be, for example, binaries, intermediate format instruc
tions such as assembly language, or even source code.
0026. In this description and in the following claims, a
“computing system” is defined as one or more Software mod
ules, one or more hardware modules, or combinations
thereof, that work together to perform operations on elec
tronic data. For example, the definition of computing system
includes the hardware components of a personal computer, as
well as Software modules, such as the operating system of the
personal computer. The physical layout of the modules is not
important. A computing system may include one or more
computers coupled via a network. Likewise, a computing
system may include a single physical device (such as a mobile
phone or Personal Digital Assistant "PDA") where internal
modules (such as a memory and processor) work together to
perform operations on electronic data.
0027. As used herein, the term “module' or “component'
can refer to software objects or routines that execute on the
computing system. The different components, modules,
engines, and services described herein may be implemented
as objects or processes that execute on the computing system
(e.g., as separate threads). While the system and methods
described herein are preferably implemented in software,
implementations in Software and hardware or hardware are
also possible and contemplated.
0028. Those skilled in the art will appreciate that the
invention may be practiced in network computing environ
ments with many types of computing system configurations,
including, personal computers, laptop computers, hand-held
devices, multi-processor systems, microprocessor-based or
programmable consumer electronics, network PCs, mini
computers, mainframe computers, mobile telephones, PDAs,
pagers, and the like. The invention may also be practiced in
distributed system environments where local and remote

Jul. 10, 2008

computing systems, which are linked (either by hardwired
data links, wireless data links, or by a combination of hard
wired and wireless data links) through a network, both per
form tasks. In a distributed system environment, program
modules may be located in both local and remote memory
storage devices.
0029 FIG. 1 illustrates an example of computer architec
ture 100 for iteratively solving constraints in a font-hinting
language. Within computer architecture 100, computing sys
tem 118 includes hinting module 119. Generally, hinting
module 119 receives a set of control points (e.g., design
control points 122) representing a graphical object (graphical
object 131). When appropriate, hinting module 119 assigns
computer-executable instructions (hereinafter referred to as
"hints') of a font-hinting language (e.g., TrueType(R) to con
trol points (e.g., control points 101-108) included in the set of
control points. Hints can be Subsequently processed to cause
a more appropriate rendering of the graphical object (e.g., at
Smaller sizes).
0030 Hinting module 119 can include a number of mod
ules that automatically identify features, such as, strokes,
serifs, etc., represented by a set of control points and that
automatically identify constraints on control points within the
set control points. Some constraints, such as, for example,
constraining a first control point to a horizontal distance from
a second control point, can be more easily implemented using
the existing Vocabulary of font-hinting languages. However,
other constraints, such as those requiring more complex
mathematical functions, cannot be easily implemented (if
they can be implemented at all) using the existing vocabulary
of font-hinting languages. For example, when the existing
Vocabulary of a font-hinting hinting language lacks a square
root function, it may be difficult (or even impossible) to
directly calculate distance constraints with respect to diago
nal edges.
0031 Constraint identification module 121 can identify
constraints, including otherwise difficult to solve constraints,
based on the position of control points or basic hints included
in design control points 122. A basic hint can be a hint for
rendering a graphical object at a large size (e.g., 72 point at a
target device) but that is not generally applicable when ren
dering the graphical object at other sizes (e.g., 12 point at the
target device). For example, a basic hint can constrain the
width of the vertical stroke of a “T” to six pixels when ren
dered at 72 point at a particular target device. However,
implementing the same six pixel constraint at Smaller sizes
has reduced meaning, since when rendered at Smaller sizes at
the particular target device the graphical object may not even
be six pixels in width. Accordingly, hinting module 119 can
generate constraint equations that base constraints on the size
and resolution at which a graphical object is to be displayed.
For example, hinting module 119 can configure the constraint
on the vertical stroke of the “T” to be one-twelfth of the point
size at which the 'T' will be rendered.
0032. The number of pixels corresponding to one-twelfth
of the point size can vary depending on the resolution of the
target device. On a higher resolution device, such as, for
example, a 300 dots per inch (“dpi) printer, one-twelfth of
the point size can correspond to a greater number of pixels.
On the other hand, on a lower resolution device, such as, for
example, a 96 dpi monitor, one-twelfth of the point size can
correspond to a fewer number of pixels.
0033 Hint application module 129 can add hints (e.g.,
TrueType R instructions) to design control points 122 to

US 2008/O1651.93 A1

implement Such a constraint when the graphical object is
Subsequently rendered. For example, a divide operator can be
used to implement the width constraint on the vertical stroke
of the “T” (stroke width point size/12). Hint application
module 129 can include hints for iteratively solving other
more complex constraints, such as those requiring more com
plex mathematical functions. When Subsequently rendering
the graphical object, a computing system can process the
hints to solve constraints iteratively based on, for example,
the size at which the graphical object is to be displayed.
0034 Computing system 123 includes scaling module
124, hint processor 134, and scan conversion module 126.
Scaling module 124 can receive a set of hinted control points
(e.g., control points 132) representing the outline of a graphi
cal object at a larger size. Hinted control points can be
received via a network connection or can be loaded from
computer-readable media, such as, for example, a magnetic
or optical disk. Scaling module 124 can scale the positions of
the control points such that the graphical object can be ren
dered at a Smaller or larger size.
0035 Hint processor 134 can process hints associated
with the set of hinted control points (potentially further alter
ing positions of the scaled down control points) so that the
graphical object is more appropriately rendered at the Smaller
size. For example, hint processor 134 can process computer
executable instructions of a font-hinting language to itera
tively solve more complex constraints. Scan conversion mod
ule 126 turns pixels (or Sub-pixels) of a corresponding pixel
grid on or off to generate a pixelated representation of a
graphical object.
0036. Thus, hints for implementing more complex con
straints can be associated with a set of control points without
having to alter the font-hinting language or corresponding
hint processor to include more complex mathematical func
tions. Accordingly, a computing system can utilize existing
components to render a graphical object in a manner that
complies with the more complex constraints. This is advan
tageous since altering the Vocabulary of a font-hinting lan
guage and/or the functionality of a hint processor may be
significantly more difficult and time consuming than hinting
a graphical object using existing font-hinting language
Vocabulary.
0037 FIG. 2A illustrates a flowchart of an example
method 200 for iteratively solving constraints in a font-hint
ing language. The method 200 will be described with respect
to the computing systems, modules, and control points in
computerarchitecture 100. The method 200 includes an act of
accessing a more complex constraint that can not be natively
expressed based on the Vocabulary of the font-hinting lan
guage (act 201). For example, hinting module 119 can (iden
tify and) access a more complex constraint represented in
design control points 122. Afont-hinting language utilized by
hinting module 119 and/or hint processor 134 may not have
Vocabulary for expressing more complex constraints
accessed from control points 122.
0038 A more complex constraint can be, for example, a
constraint represented by a power or exponential function
(X), a plurality of circularly dependent constraints, or a
constraint that requires simultaneous movement of a plurality
of control points. However, this list of more complex con
straints is not intended to be comprehensive. It would be
apparent to one skilled in the art, after having reviewed this
description, that other more complex constraints, in addition
to those expressly described, can be accessed.

Jul. 10, 2008

0039. With respect to circularly dependent constraints,
compliance with a first constraint can depend on the position
of a first control point. For example, constraint identification
module 121 can identify that control point 107 is constrained
to diagonal distance 114 from edge 117. Compliance with
diagonal distance 114 depends on the position of control
point 103 since altering the position of control point 103 with
respect to control point 102 will change the direction of
diagonal distance 114.
0040 Compliance with a second constraint can depend on
the position of the second control point. For example, con
straint identification module 121 can identify control point
103 is constrained to diagonal distance 144 from edge 116.
Compliance with diagonal distance 144 depends on the posi
tion of control point 107 since altering the position of control
point 107 with respect to control point 106 will change the
direction of the diagonal distance 144.
0041. Thus, the first and second constraints result in a
circular dependency where control point 107's compliance
with diagonal distance 114 is dependent on control point 103
and control point 103's compliance with diagonal distance
144 is dependent on control point 107. Constraint identifica
tion module 121 can identify the circular dependency.
0042. The method 200 includes an act of decomposing the
more complex constraint into a plurality of simpler con
straints that can be natively expressed based on the Vocabu
lary of the font-hinting language (act 202). For example,
hinting module 119 can decompose more complex con
straints accessed from design control points 122 into a plu
rality of simpler constraints that can be expressed in a font
hinting language utilized by hinting module 119 and/or hint
processor 134.
0043 Decomposing a more complex constraint can
include any of a number of mechanisms for reducing the
complexity of the more complex constraint. For example, a
circularly dependent constraint can be decomposed into a
plurality of non-circularly dependent constraints. A con
straint based on exponential or power functions can be
decomposed into a power series. A constraint requiring
simultaneous movement of a plurality of control points can be
decomposed in to a plurality of constraints that each corre
sponds to a single control point. Other more complex con
straints can also be decomposed into a plurality of corre
sponding simpler constraints.
0044) The method 200 includes an act of representing each
of the simpler constraints in corresponding font-hinting lan
guage instructions that can be iteratively processed to at least
approximate a solution to the more complex constraint (act
203). For example, hinting module 119 can represent simpler
constraints in font-hinting language instructions, such as, for
example, TrueType(R) instructions, that can be iteratively pro
cessed at hint processor 134.
0045. With respect to circularly dependent constraints,
representing simpler constraints can include formulating
font-hinting language instructions for applying a first con
straint, based on the current position of a first control point, to
calculate a target position for a second control point. For
example, hint processor 134 can formulate instructions for
calculating diagonal distance 114 based on current position of
control point 103 (after Scaling down) to calculate a target
position for control point 107. Likewise, representing simpler
constraints can include formulating font-hinting language
instructions for applying a second constraint, based on the
current position of the second control point, to calculate a

US 2008/O1651.93 A1

target position for the first control point. For example, hint
processor 134 can formulate instructions for calculating
diagonal distance 144 based on current position of control
point 107 (after scaling down) to calculate a target position for
control point 103.
0046. Application of formulated instructions representing
the first and second constraint can be alternated. For example,
the first constraint can be applied, the second constraint can
be applied, the first constraint can be applied again, the sec
ond constraint can be applied, etc. Alternate application of
first and second constraints can continue until control point
locations are appropriate.
0047 Accordingly, representing simpler constraints in
font-hinting language instructions can also include formulat
ing font-hinting language instructions for determining that
the target position for the second control point is within a
specified tolerance of the current position for the second
control point. For example, hinting module 134 formulate
font-hinting language instructions for determining that the
target position for control point 107 is within a specified
tolerance of the current position of control point 107. A speci
fied tolerance can be a distance in pixels or fractions of pixels
(e.g., /64" of a pixel). Likewise, representing simpler con
straints in font-hinting language instructions can include for
mulating font-hinting language instructions for determining
that the target position for the first control point is within the
specified tolerance of the current position for the first control
point. For example, hinting module 134 can formulate font
hinting language instructions for determining that the target
position for control point 103 is within a specified tolerance of
the current position of control point 103.
0048. With respect to more complex constraints based on
powerfunctions, representing simpler constraints can include
formulating font-hinting language instructions for solving a
power series. With respect to constraints requiring simulta
neous movement of a plurality of control points, representing
simpler constraints can include formulating font-hinting lan
guage instructions for moving control points individually.
Representing simpler constraints corresponding to other
types of more complex constraints can also include formulat
ing appropriate font-hinting language instructions.
0049. In some embodiments, font-hinting language
instructions representing a plurality of simpler constraints are
processed at the computing system that formulated the font
hinting language instructions. For example, hinting module
119 can process font-hinting language instructions (e.g.,
associated with control points 132) previously formulated at
hinting module 119. In other embodiments, font-hinting lan
guage instructions representing a plurality of simpler con
straints are transferred to another computing system for pro
cessing. For example, computing system 118 can transfer
font-hinting language instructions (e.g., associated with con
trol points 132) to computing system 123 for processing.
0050 FIG. 2B illustrates a flowchart of an example
method 250 for iteratively solving constraints in a font-hint
ing language. The method 250 will be described with respect
to the computing systems, modules, and control points in
computerarchitecture 100. The method 250 can be performed
at a computing system that formulates font-hinting instruc
tions (e.g., computing system 118) representing a plurality
simpler constraints or at a computing system that receives
formulated font-hinting instructions (e.g., computing system
123) representing a plurality of simpler constraints.

Jul. 10, 2008

0051. The method 250 includes an act of accessing font
hinting language instructions representing a plurality of sim
pler constraints, the plurality of simpler constraints corre
sponding to a more complex constraint that can not natively
expressed based on the Vocabulary of the font-hinting lan
guage (act 251). For example, hinting module 119 can access
font-hinting language instructions (e.g., TrueType(R) instruc
tions) representing a plurality of simpler constraints that cor
respond to a more complex constraint associated with control
points 132. Similarly, hint processor 134 can access font
hinting language instructions (e.g., TrueType R instructions)
representing a plurality of simpler constraints that correspond
to a more complex constraint associated with control points
132.

0052. The method 250 includes an act of iteratively pro
cessing the font-hinting language instructions a finite number
of times to at least approximate a solution to the more com
plex constraint Such that the graphical object can be altered to
comply with the more complex constraint (act 252). For
example, when appropriate, either hinting module 119 or hint
processor 132 can iteratively process font-hinting language
instructions to at least approximate a solution to the more
complex constraint to at least approximate a solution to the
more complex constraint.
0053 With respect to more complex constraints that
require simultaneous movement of a plurality of control
points, hinting module 119 or hint processor 132 processes a
plurality of font-hinting language instructions for moving
individual control points (movement of an individual control
point being viewed as an iteration) until all control points are
moved. With respect to constraints including exponential or
power functions, hinting module 119 or hint processor 132
processes a plurality of font-hinting language instructions
representing portions of a power series (processing of each
portion being viewed as an iteration) until each portion is
processed. Based in part on the type of more complex con
straint and how the complex constraint is decomposed, the
processing specified portions of font-hinting language
instructions representing a simpler constraint can be viewed
as an iteration.
0054 With respect to circularly dependent constraints
iterations can continue until control pointlocations are within
a threshold tolerance of complying with a constraint or a
specified number of iterations is performed. For example,
when the target positions for control points 103 and 107 are
within the specified tolerance of corresponding current posi
tions for control points 103 and 107 respectively, the current
positions of control points 103 and 107 are viewed as suffi
ciently accurate. On the other hand, when either of the target
positions for control points 103 and 107 is not within the
specified tolerance of the corresponding current positions of
control points 103 and 107 respectively, the current positions
of control points 103 and 107 are viewed as not being suffi
ciently accurate.
0055 When current positions are not sufficiently accurate,
the current positions for control points 103 and 107 are set
equal to the calculated target positions for the control points
103 and 107 respectively. The first and second constraints are
applied again (using the calculated target positions as current
positions) to calculate second target positions for the control
points 103 and 107. That is, the calculated target positions are
used to iterate second target positions. Iteratively using cal
culated target positions from prior calculations as current
positions for new calculations can continue (e.g., using sec

US 2008/O1651.93 A1

ond target positions as current positions for iterating third
target positions, etc.) until calculated target positions for an
iteration are within the specified tolerance of current posi
tions. Alternately, iterative calculations can continue until a
threshold number of iterations have occurred. For example, a
looping instruction can indicate that iteration is to stop after
the tenth iteration.
0056. The following pseudo-code represents an example
of an algorithm that can be formulated and/or executed to
facilitate iteratively solving constraints. In the pseudo-code
example, P, can refer to the position of control point 107 and
P. can refer to position of control point 106, after control
points 132 have been scaled down and hinted. Similarly in the
pseudo-code example, Q1 can refer to the position of control
point 102 and Q can refer to the position of control point 103.
after control points 132 have been scaled down and hinted.
The pseudo-code algorithm can be formulate in a variety of
font-hinting languages and processed by a corresponding hint
processor (e.g., hint processor 134). Within the pseudo-code
example, text following a semi-colon (":") represents com
ments that describe the functionality implemented by the
pseudo-code.

Line 1: n = number of iterations :Initialize counter

Line7: n = 0?
Yes, go to line 10
No, proceed
|P - P| < 1/64?
No, go to line 2
Yes, proceed
|Q2 - Q2"| </64?
No, go to line 2
Yes, proceed

Line10: End

Line8:

Line9:

0057 Within the pseudo-code example, line 4 is executed
to apply a first constraint, such as, for example, diagonal
distance 114 and line 5 is executed to apply a second con
straint, Such as, for example, diagonal distance 144. In some
embodiments, the functionality represented and lines 4 and 5
is further refined.

0058 For example, in Line 4, P, is constrained by a dis
tance c, measured perpendicularly from edge Q. Q. In these
refined embodiments, this constraint is split into two parts. In
a distance part, P is moved to comply with the distance c.
Subsequently, in a separate angle part, Q is moved by an
amount that is sufficient to re-establish the angle between
edges PP and Q. Q. That is, if these edges were designed to
be parallel, they will be parallel again after executing the
angle part. Movement of Q to comply with the angle part
may result in additional non-compliance with the distance
part. However, as more iterations are performed, the amount
of additional non-compliance to the distance part introduced
resulting of movement of Q for compliance with the angle
part becomes less and less significant (and after Some number
of iterations can become essentially irrelevant).

Line 2: P = P, :Remember current position of P
Line 3: Q-2' = Q- ;Remember current position of Q
Line 4: P - QQ2 + c :Execute constraint as if Q2 were at its target
position

Line 5: Q - PP + c :Execute constraint as if P were at its target
position
Line 6: n < n - 1 ;Decrement counter

Jul. 10, 2008

0059. In Line 5, an analogous “re-parallelization' can be
performed. First, Q is moved to comply with the distance
part of the constraint, then P is moved to comply with the
angle part of the constraint. These refined embodiments
facilitate the constraining of available control points in Such a
way as to mimic constraining strokes, which can include
constraining the angle between the edges of the strokes.
Accordingly, these refined embodiments are advantageous
for constraining strokes when available control data includes
control points, along with instructions how to connect these
control points (lines, Bezier curves, etc.), but does not
expressly represent the strokes.
0060 Line 7 performs a check to determine if a specified
threshold number of iterations have occurred. When the
specified threshold number of iterations has occurred, the
algorithm terminates (even if Sufficiently accurate solutions
to the constraints have not been calculated). On the other
hand, when the specified threshold number of iterations has
not occurred, the algorithm continues to line 8.
0061 Line8 performs a check to determine if P (the target
position for the first control point) is within a specified toler
ance (%4" of a pixel) of P,' (the current position of the first

:Have threshold number of iterations occurred?

:Distance between P and P' within tolerance?

;Distance between Q2 and Q-2' within tolerance?

control point). When the distance between P and P' is not
within the specified tolerance, the algorithm continues at line
2 (and anotheriteration begins). On the other hand, when the
distance between P and P' is within the specified tolerance
the algorithm continues at line 9.
0062 Line 9 performs a check to determine if Q (the
target position for the second control point) is within a speci
fied tolerance (%4" of a pixel) of Q. (the current position of
the second control point). When the distance between Q and
Q is not within the specified tolerance, the algorithm con
tinues at line 2 (and another iteration beings). On the other
hand, when the distance between Q and Q is within the
specified tolerance, the algorithm terminates. When both the
distance between P and P' is within tolerance and the dis
tance between Q, and Q, is within the specified tolerance, P.
and Q are viewed as being sufficiently accurate for rendering
a corresponding graphical object.
0063. In some embodiments, iteratively solving con
straints is used to compensate for inappropriate rendering that
can occur as a result of complying with a plurality of depen
dent constraints. For example, when control points will have
a plurality of constraints associated with them, and some of

US 2008/O1651.93 A1

these constraints depend on other constraints, which in turn
depend on other constraints, etc. it may be more difficult to
appropriately render a corresponding graphical object. For
example, with respect to graphical object 131, one set of
constraints C may bring edge 151 to the nearest full pixel
(e.g., to a “capitalization line'). Another set of constraints C.
may keep edge 152 at a specified distance from edge 151.
Similar sets of constraints C," and C" may be associated with
control points 106, 105, 103, and 104. Yet another set of
constraints C may keep edge 116 at a specified distance from
edge 117. Complying with constraints of C and C may have
an effect on constraints of C and C', respectively, which in
turn have an effect on constraints of C. Thus, compliance
with constraints of C, C, C and C may cause control
points 103 and/or 107 to no longer comply with constraints of
C (e.g., the diagonal distances 114 and 144). However,
embodiments of the invention can be used to iteratively solve
constraints of C. Such that graphical object still complies with
constraints of C, C', C and C.
0064. After control point positions are altered according to
received hints, scan conversion module 126 can turn on
appropriate pixels (or Sub-pixels) on a pixel grid Such that
graphical object 131 can be rendered at the smaller size. Scan
conversion module 126 can generate pixelated representation
127 that is then provided to display device 128. Display
device 128 can be a color or monochrome monitor. When
appropriate, for example, when display device 128 is a color
monitor, Scan conversion module turns on only portions of
some pixels (e.g., a red, green, or blue sub-component of a
pixel) to better render graphical object 131.
0065 FIG.3 and the following discussion are intended to
provide a brief, general description of a suitable computing
environment in which the invention may be implemented.
Although not required, the invention will be described in the
general context of computer-executable instructions, such as
program modules, being executed by computer systems.
Generally, program modules include routines, programs,
objects, components, data structures, and the like, which per
form particular tasks or implement particular abstract data
types. Computer-executable instructions, associated data
structures, and program modules represent examples of the
program code means for executing acts of the methods dis
closed herein.

0066. With reference to FIG. 3, an example system for
implementing the invention includes a general-purpose com
puting device in the form of computer system 320, including
a processing unit 321, a system memory 322, and a system
bus 323 that couples various system components including
the system memory 322 to the processing unit 321. Process
ing unit 321 can execute computer-executable instructions
designed to implement features of computer system 320,
including features of the present invention. The system bus
323 may be any of several types of bus structures including a
memory bus or memory controller, a peripheral bus, and a
local bus using any of a variety of bus architectures. The
system memory includes read only memory (“ROM) 324
and random access memory (“RAM) 325. A basic input/
output system (“BIOS) 326, containing the basic routines
that help transfer information between elements within com
puter system 320. Such as during start-up, may be stored in
ROM 324.

0067. The computer system 320 may also include mag
netic hard disk drive 327 for reading from and writing to
magnetic hard disk 339, magnetic disk drive 328 for reading

Jul. 10, 2008

from or writing to removable magnetic disk 329, and optical
disk drive 330 for reading from or writing to removable
optical disk 331, such as, or example, a CD-ROM or other
optical media. The magnetic hard disk drive 327, magnetic
disk drive 328, and optical disk drive 330 are connected to the
system bus 323 by hard disk drive interface 332, magnetic
disk drive-interface 333, and optical drive interface 334,
respectively. The drives and their associated computer-read
able media provide nonvolatile storage of computer-execut
able instructions, data structures, program modules, and other
data for the computer system 320. Although the example
environment described herein employs magnetic hard disk
339, removable magnetic disk329 and removable optical disk
331, other types of computer readable media for storing data
can be used, including magnetic cassettes, flash memory
cards, digital versatile disks, Bernoulli cartridges, RAMs.
ROMs, and the like.
0068 Program code means comprising one or more pro
gram modules may be stored on hard disk339, magnetic disk
329, optical disk 331, ROM 324 or RAM. 325, including an
operating system 335, one or more application programs 336,
other program modules 337, and program data 338. A user
may enter commands and information into computer system
320 through keyboard 340, pointing device 342, or other
input devices (not shown), such as, for example, a micro
phone, joy stick, game pad, Scanner, or the like. These and
other input devices can be connected to the processing unit
321 through input/output interface 346 coupled to system bus
323. Input/output interface 346 logically represents any of a
wide variety of different interfaces, such as, for example, a
serial port interface, a PS/2 interface, a parallel port interface,
a Universal Serial Bus (“USB) interface, or an Institute of
Electrical and Electronics Engineers (“IEEE) 1394 interface
(i.e., a FireWire interface), or may even logically represent a
combination of different interfaces.

0069. A monitor 347 or other display device is also con
nected to system bus 323 via video interface 348. Monitor 347
can display graphical objects, including text, generated by
computer system 320. Other peripheral devices (not shown),
Such as, for example, speakers, printers, and scanners, can
also be connected to computer system 320. Printers con
nected to computer system 347 can print graphical objects,
including text, generated by computer system 320.
0070 Computer system 320 is connectable to networks,
Such as, for example, an office-wide or enterprise-wide com
puter network, a home network, an intranet, and/or the Inter
net. Computer system 320 can exchange data with external
Sources, such as, for example, remote computer systems,
remote applications, and/or remote databases over Such net
works.

0071 Computer system 320 includes network interface
353, through which computer system 320 receives data from
external sources and/or transmits data to external sources. As
depicted in FIG. 3, network interface 353 facilitates the
exchange of data with remote computer system 383 via link
351. Network interface 353 can logically represent one or
more software and/or hardware modules, such as, for
example, a network interface card and corresponding Net
work Driver Interface Specification (“NDIS) stack. Link
351 represents a portion of a network (e.g., an Ethernet seg
ment), and remote computer system 383 represents a node of
the network. For example, link 351 can represent a network
connection between computing systems 118 and 123.

US 2008/O1651.93 A1

0072. Likewise, computer system 320 includes input/out
put interface 346, through which computer system 320
receives data from external sources and/or transmits data to
external sources. Input/output interface 346 is coupled to
modem 354 (e.g., a standard modem, a cable modem, or
digital subscriber line (“DSL) modem), through which com
puter system 320 receives data from and/or transmits data to
external sources. As depicted in FIG.3, input/output interface
346 and modem 354 facilitate the exchange of data with
remote computer system 393 via link 352. Link 352 repre
sents a portion of a network and remote computer system 393
represents a node of the network.
0073. While FIG.3 represents a suitable operating envi
ronment for the present invention, the principles of the
present invention may be employed in any system that is
capable of, with Suitable modification if necessary, imple
menting the principles of the present invention. The environ
ment illustrated in FIG. 3 is illustrative only and by no means
represents even a small portion of the wide variety of envi
ronments in which the principles of the present invention may
be implemented.
0074. In accordance with the present invention modules,
Such as, for example, hinting module 119 and hint processor
134, as well as associated program data, such as, for example,
design control points 122, control points 132, and pixelated
representation 127, can be stored and accessed from any of
the computer-readable media associated with computer sys
tem320. For example, portions of such modules and portions
of associated program data may be included in operating
system 335, application programs 336, program modules 337
and/or program data 338, for storage in System memory 322.
0075 When a mass storage device, such as, for example,
magnetic hard disk 339, is coupled to computer system 320,
Such modules and associated program data may also be stored
in the mass storage device. In a networked environment,
program modules depicted relative to computer system 320,
or portions thereof, can be stored in remote memory storage
devices, such as, system memory and/or mass storage devices
associated with remote computer system 383 and/or remote
computer system 393. Execution of such modules may be
performed in a distributed environment.
0076. The present invention may be embodied in other
specific forms without departing from its spirit or essential
characteristics. The described embodiments are to be consid
ered in all respects only as illustrative and not restrictive. The
scope of the invention is, therefore, indicated by the appended
claims rather than by the foregoing description. All changes,
which come within the meaning and range of equivalency of
the claims, are to be embraced within their scope.

What is claimed and desired secured by United States
Letters Patent is:

1. In a computing system that has access to a set of control
points, the set of control points for generating an outline of a
graphical object, the outline being utilized to determine how
the graphical object is rendered, the position of some portions
of the outline potentially being constrained to pre-determined
locations, a method for using a font-hinting language to rep
resent an iterative solution to a constraint, the method com
prising:

identifying features of the graphical object by identifying a
set of control points and identifying a more complex
constraint that cannot be natively expressed based on the
Vocabulary of the font hinting language;

Jul. 10, 2008

accessing the more complex constraint that cannot be
natively expressed based on the vocabulary of the font
hinting language, the more complex constraint con
straining at least a portion of the outline;

decomposing, without rendering, the more complex con
straint into a plurality of simpler constraints that can be
natively expressed based on the vocabulary of the font
hinting language; and

representing each of the simpler constraints in correspond
ing font-hinting language instructions that are iteratively
processed to at least approximate a solution to the more
complex constraint, Such that the simpler constraints are
Subsequently used to print or display the graphical
object.

2. The method as recited in claim 1, wherein accessing a
more complex constraint that can not be natively expressed
based on the Vocabulary of the font-hinting language com
prises accessing a constraint that is based on a power or
exponential function.

3. The method as recited in claim 1, wherein accessing a
more complex constraint that can not be natively expressed
based on the Vocabulary of the font-hinting language com
prises accessing a constraint that requires a plurality of con
trol points to be moved simultaneously.

4. The method as recited in claim 1, wherein accessing a
more complex constraint that can not be natively expressed
based on the Vocabulary of the font-hinting language com
prises accessing circularly dependent constraints.

5. The method as recited in claim 1, further comprising
identifying features of the graphical object represented by a
set of control points expressly representing serifs to identify a
more complex constraint that cannot be natively expressed
based on the Vocabulary of the font hinting language.

6. The method as recited in claim 1, wherein decomposing
the more complex constraint into a plurality of simpler con
straints comprises decomposing a constraint based on a
power or exponential function into a plurality of portions of a
power series.

7. The method as recited in claim 1, wherein decomposing
the more complex constraint into a plurality of simpler con
straints comprises decomposing a constraint that requires a
plurality of control points to be moved simultaneously into a
plurality of constraints, each constraint for moving an indi
vidual control point.

8. The method as recited in claim 1, wherein representing
each of the simpler constraints in corresponding font-hinting
language instructions that can be iteratively processed to at
least approximate a solution to the more complex constraint
comprises representing each of the simpler constraints in
TrueType R instructions.

9. The method as recited in claim 1, further comprising:
iteratively processing the font-hinting language instruc

tions a finite number of times to at least approximate a
Solution to the more complex constraint Such that the at
least a portion of the outline can be altered to comply
with more complex constraint;

generating an outline of the graphical object that conforms,
at least within a specified tolerance, with the more com
plex constraint; and

generating a pixelated representation of the graphical
object based on the outline, the pixelated representation
for rendering at an output device.

10. A computer program product for use in a computing
system that has access to a set of control points, the set of

US 2008/O1651.93 A1

control points for generating an outline of a graphical object,
the outline being utilized to determine how the graphical
object is rendered, the position of someportions of the outline
potentially being constrained to pre-determined locations, the
computer program product for implementing a method for
using a font-hinting language to represent an iterative Solu
tion to a constraint, the computer program product compris
ing computer-executable instructions on a physical computer
readable storage medium that, when executed by a processor,
cause the computing system to perform the following:

identify features of the graphical object by identifying a set
of control points and identifying a more complex con
straint that cannot be natively expressed based on the
Vocabulary of the font hinting language;

Jul. 10, 2008

access the more complex constraint that cannot be natively
expressed based on the vocabulary of the font-hinting
language, the more complex constraint constraining at
least a portion of the outline:

decompose, without rendering, the more complex con
straint into a plurality of simpler constraints that can be
natively expressed based on the vocabulary of the font
hinting language; and

represent each of the simpler constraints in corresponding
font-hinting language instructions that are iteratively
processed to at least approximate a solution to the more
complex constraint.

c c c c c

