PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6

A63B 9/22, GO6F 11/00 Al

(11) International Publication Number:

(43) International Publication Date:

WO 98/29162

9 July 1998 (09.07.98)

(21) International Application Number: PCT/US97/23940

(22) International Filing Date: 24 December 1997 (24.12.97)

(30) Priority Data:

08/774,826 uUs

27 December 1996 (27.12.96)

(71) Applicant (for all designated States except US): SILICON
GAMING, INC. [US/US]; 2800 West Bayshore Highway,
Palo Alto, CA 94303 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): PASCAL, Andrew
[US/US]; 700 Kings Mountain Road, Woodside, CA
94062-4214 (US). BARNETT, Michael [US/US]; 3109
Ryan Avenue, Santa Clara, CA 95051 (US). WISHOFF,
Clayton [US/US]; 367 Menahden Court, Foster City, CA
94404 (US).

(74) Agents: HAMRICK, Claude, A., S. et al.; Oppenheimer Poms
Smith, Suite 600, Ten Almaden Boulevard, San Jose, CA
95113 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ,
LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,
MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
TI, T™M, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO
patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,
CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published
With international search report.

(54) Title: METHOD AND APPARATUS FOR MANAGING FAULTS AND EXCEPTIONS

(57) Abstract

An operating system (94) hav-
ing a multitude of subsystems (fig.
1) is provided where each subsys-
tem performs a distinct function and
may register with other subsystems
to receive notification or callbacks
upon the ocurrence of certain events

Gploon the skogeege
sund the ackon umdartecen

B0

(figs. 3-4, 6). The subsystems are
programmed such that in the event
of a fault or exception (fig. 4)
they can be instructed to cease call-
ing of other subsystems, thereby al-

<

Eatocsonwand o the (e

~ 0T

lowing each of the subsystems to
complete its distinctive task without
commencing further additional activ-
ities. When all of the activities have
ceased, the state of the system as in- L

dicated by the parameters at the vari-
ous registers and addresses are saved.
The system initiates a service call
for an attendant through one of the
provided mechanisms or routine calls
(fig. 4). The system initiates an in-
termission or play stoppage routine
with full audio and visual capabili-
ties (fig. 7) to explain to the player
in a user—friendly manner the prob-
lems encountered and to play a video -
clip or the like to entertain and oc-
cupy the player.

e

N@Ob

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
CU
CZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Tvoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Tsrael

Tceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Lieghtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
D
TG
TJ
™
TR
TT
UA
uG
Us
UZ
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

WO 98/29162 :) PCT/US97/23940
SPECIFICATION

METHOD AND APPARATUS FOR MANAGING FAULTS AND EXCEPTIONS

BACKGROUND OF THE INVENTION

Field of the Invention

This invention is generally related to fault tolerant recovery systems, and in particular, a

fault-tolerant software system which maintains audio and visual capability in the event of a fault.

Description of the Prior Art

Game machines displayed in public entertainment localities are made available for public
usage in exchange for payment. This is particularly the case for casinos and game parlors where
there are a large number of machines. However, these machines occasionally malfunction and
enter into a lock up state, ceasing all functions and leaving the player stranded. The player at the
malfunctioned machine would either abandon the machine after a few attempts at "fixing" the
machine, or wait for an attendant's assistance. In waiting for an attendant's assistance, it would
be desirable to maintain the player's interest and keep the player occupied. One way of
accomplishing this goal is to show a computer driven video clip using the existing hardware and
software already provided by the machine. The content of the video clip can be determined by
the management and can be periodically updated. In essence, the video clip can be thought of as
a commercial or infomercial of some type.

In order to have the game machine play such a video clip with full audio and visual
effects, the operating s&stem software for the machine must be set up in a manner such that in
the event of a fault, the integrity of the operating system, including the audio and video modules,
are maintained.

Systems designed from presently available technologies handle faults in a very simplistic
manner. Generally speaking, these systems would simply freeze up or display a simple message
across the screen. In view of the presently available technology and the desire to play video

clips in the event of a fault, a new system design is needed.

10

15

20

25

30

WO 98/29162 :] PCT/US97/23940
SUMMARY OF THE INVENTION

It is therefore an object of the present invention to provide an operating system structure
which maintains full system integrity and functionality including audio and visual capabilities
for the playing of a video clip in the event of a system fault.

It is another object of the present invention to provide an operating system that
systematic and orderly manages a fault in the system.

It is yet another object of the present invention to provide an operating system having the
ability to initiate and maintain another process or subprocess in the event of a fault in the system.

It is a further object of the present invention to provide an operating system which retains
system state information at the time of a fault and returns the system back to the state at the time
of the fault with the fault cleared.

Briefly, the present invention provides an operating system having a multitude of
subsystems where each subsystem performs a distinct function and may register with other
subsystems to receive notification (or callbacks) upon the ocurrence of certain events.
Moreover, the subsystems are programmed in such a manner where in the event of a fault (or
exception) they can be instructed to cease the calling of other subsystems, thereby allowing each
of the subsystems to complete its distinctive task without commencing further additional
activities. When all of the activities have ceased, the state of the system as indicated by the
parameters at the various registers and addresses are saved. At this time, the system can initiate
a service call for an attendant through one of the provided mechanisms or routine calls.
Moreover, the system can initiate an intermission (play stoppage) routine using full audio and
video capabilities to explain to the player in a user-friendly manner the problems encountered
and play a video clip or the like in entertaining and occupying the player.

In order to achieve the above described desired functionalities, the architecture of the
machine must be programmed in such a manner to facilitate the desired functionalities. More
specifically, the modules of the operating system is processed by an event manager. Upon the
detection of a fault, a series of steps are performed to "strangle" the system in order to gracefully
stop the execution of the currently executing modules. Then, the state of the system is saved and
a play stoppage application is started to entertain the player. The description herein uses a

gaming machine for illustration purposes but is not limited to this type of machine.

10

15

20

25

30

WO 98/29162 :) PCT/US97/23940
The present invention is of special importance-in the area of gaming machines where the
user may have remaining credits on the machine at the time of the fault and the current state of

the machine may affect the outcome of the game payout.

IN THE DRAWINGS

Fig. 1 illustrates a general block diagram of a gaming machine;
" Fig. 2 shows the processing steps in powering up an embodiment of the present

invention;

Fig. 3a shows the type of data in the ROM;

Fig. 3b shows the components in the anchor application;

Figs 3¢ - 3e shows the type of applications that can be started by the anchor application;

Fig. 4 illustrates the processing steps performed by the event manager;

Fig. 5 illustrates the general steps in interrupting a running application;

Fig. 6a shows the processing substeps for the enter sequence step;

Fig. 6b shows the substeps in the run sequence step;

Fig. 6¢ illustrates the substeps in the exit sequence step;

Fig. 7 illustrates a simple flow diagram for the play stoppage application.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Fig. 1 illustrates in block diagram form the components of a general gaming system that
may embody the present invention. A CPU 10 interfaces with a bus controller 12 to access
information available from the various components and information from the RAM 14. The bus
controller 12 sends and receives information via bus 16 to the various components. The bus is
not limited to a particular type and can be an ISA bus, EISA bus, PCI bus or others. Moreover,
it can be linked to an external bus connector to further extend the system. Upon powering-up of
the system, information from the ROM 18 is read and is used to configure the initial operational
parameters of the system. Further information can also be obtained from the hard disk 20 via the
disk controller 22. The disk controller can be connected to an external disk drive port 24 for
connection to external disk drives. In the operation of the system, information to be displayed is

written to a frame buffer 26 and sent to a display monitor 28. There is also a sound input/out

10

15

20

25

30

WO 98/29162 :) PCT/US97/23940
component 30 and a speaker 32 for the broadcast of sound information. The system can also be
connected to a network via the network interface 34 such that a number of game machines can
be connected for multi-player action. One or more parallel ports 36 and serial ports 38 provide
connections to peripheral devices. A timer 40 provides clock pulses for synchronizing the
components and the operation of the system. In this depictment of a gaming system, the
components of the system dedicated to the operation of the game is illustrated in block 42 which
can be a separate subsystem with its own system bus and the like. In the alternative, all of the
components of the system can be integrated as a single system.

Here, in this illustration, there is an expansion bus 44 for connecting to the system a
custom gaming network 46. There are mechanical buttons 48 providing for user selection and
input. In response to a particular condition or system state, there are lights 50 that can be
programmed to flash in certain colors or patterns. There is a hopper 52 which is a mechanism
for tracking and dispensing coin drops and winnings. There is a hard meter for tracking in
absolute terms the number of coins and bills accepted and the number of coins dispensed. An
internal credit display 56 can be installed inside of the cabinet of the machine to display the
available credits.

In this system, the bill acceptor 58 is connected via a serial port 60 and there is an
external screen 62 connected to the serial port to display low level messages. There is also a
diagnostic display 64 and a coin diverter 66, where both are connected to a watchdog timer 68.
There is a coin comparator 70 that ascertains the type of coin received. There is also a switch
interface 72 that receives signals from a number of switches, including a CPU box switch 74,
one or more door switches 76, and a bill stacker switch 78.

In starting up the system, referring to Fig. 2, the system boot process starts from a reset
condition that is either a cold start process or a warm start process 80. A cold start process is
started from a power off condition and power is supplied to the system to start the boot process.
A warm start process is any reset that occurs after power is supplied to the system, and can be
generated from pressing the reset button of the system, from the expiration of the watchdog
timer, from a software generated reset, or from certain system faults.

When the system starts from either a warm boot or a cold boot, it reads and executes
codes located in the ROM BIOS portion 82 of the Read Only Memory (ROM). The BIOS code
is responsible for initializing all of the devices located on the motherboard. Once the

motherboard is initialized, the system executes the ROM Boot Loader codes 84.

10

15

20

25

30

WO 98/29162 ') PCT/US97/23940

The ROM Boot Loader starts the operation system 86 and initializes the drivers that are
linked with the operating system 86, including drivers for the hard disk-controller, the serial
port, the ethernet port, the interrupt service routines, etc. Once the operating system is running,
the ROM Boot Loader reads the machine configuration data from an EEPROM 86 where the
configuration data will indicate the location of the anchor application, which is the main
program for the system. The anchor application is then loaded into memory (from either the
network or the disk) and the system executes the loaded anchor application 87.

The anchor application contains the bulk of the system and application codes, including
additional drivers and API's, which include memory manager, shell, frame buffer event manager,
the hopper, buttons, meters, coin diverter, bill acceptor, threaded file I/O, FIP daemon, cashier,
display manager, hotspot manager, sound manager, deferred execution managers, etc.

Before the anchor application is loaded, the system is in a minimal state with virtually no
I/0 interaction except for the diagnostic display (a LED display). The reason for this rather
crippled state is because nearly all of the device drivers and API's are located in the anchor

application.

Event Manager

As part of the anchor application, the event manager is started next 88. The event
manager is responsible for collecting non-fatal exceptions and starting an application based on
the type of exceptions received. Events are delivered to the event manager via a queue and are
posted by various driver routines when they detect an event that the event manager needs to
process. The event manager is implemented as a very high priority task that polls the queue for
events. When an event is accepted by the event manager 89, it is evaluated along with all other
outstanding events to determine the corresponding action to undertake. Some events cause play
stoppage to begin while other events cause play stoppage to be cleared.

Fig. 4 illustrates an event processing scheme of the preferred embodiment of the present
invention. There is an event input queue 120 that receives event notifications from a variety of
sources. These sources can include a notice from the hopper processing module 122, the game
module 124, the door sensor processing module 126 or other modules. The notification of the
events in the event input queue 120 are processed by the event manager 128. The event manager

evaluates the outstanding events 130 and performs handling of these events by calling a

10

15

20

25

30

WO 98/29162 :] PCT/US97/23940
corresponding action which can be the calling of a play stoppage application, the starting of a

machine management system 136, or the activation of a service signal 138.

Boot Failures

If an error or failure occurred in the boot sequence, the failure must be reported to a
technician so the problem can be corrected. The system can report failures in two different
ways. If a failure is critical and occurs before the boot sequence is completed, the minimal
reporting mechanism, the diagnostic display (LEDs), is used. If a failure is non-critical and the
anchor application initialization process successfully completes, the error is reported using the
high level error reporting mechanism, which is play stoppage.

With respect to the minimal reporting mechanism as the system initializes, it will, at each
step of the boot process, write a diagnostic code to the diagnostic display. When a critical
failure occurs, the diagnostic code will tell the technician where in the sequence the problem has
occurred. For example, just before the SCSI driver is initialized, a code of "104" is displayed.
When the SCSI initialization completes, the code is updated to "105". If a problem occurred in
the SCSI initialization, the system halts and would not update the code to 105. When the
technician checks the error code, he or she will see code 104 which indicates that the SCSI
subsystem is the source of the problem.

If additional information is needed about a low level failure, a serial port can be
connected to an external subsystem to display expanded information of the boot process.

For errors that occur after the system has completed the initialization process or for non-
critical errors found during the initialization process, they can be reported using the graphical
interface. If a non-critical error occurs during the anchor application initialization sequence, the
startup message sent to the event manager would indicate to the event manager that the trouble
shooting Machine Management System (MMS) and/or a stoppage application should be
executed rather than a game application. The MMS would cause the stoppage application to put
up an out of service message and wait for a technician to turn the MMS key switch to enter the
MMS diagnostics mode.

For a minor error where a player could still use the machine (e.g. network link down), the
event manager can be programmed to allow game play and run a game application. A light
strobe or signal would be lit to indicate that the machine is having some problems but otherwise

the machine operateys normally.

10

15

20

25

30

WO 98/29162 :) PCT/US97/23940
Exception Handling -

Exceptions are errors or events that can interrupt the system at any time. Exceptions are
classified in one of two ways, fatal and non-fatal.

Fatal exceptions are serious enough to cause the system to shut down. When a fatal
exception occurs, the system writes a diagnostic code to the diagnostic display and locks up.
The technician then troubleshoots the problem using the diagnostic code. These errors are
considered serious enough that the continuation of code execution could jeopardize the integrity
of the system or cripple the system to a point that the MMS could not be ran. Some examples of
fatal exceptions include: hard disk failure, certain RAM errors that are not recoverable,
corrupted program code, processor faults, OS internal errors, etc.

The fatal error handler turns on the signal strobe and hangs or ceases system operation
until the system resets. In order to 'hang' the system, the handler continuously resets the
watchdog timer so that the watchdog timer does not expire and reset the system. For fatal errors
where an automatic restart of the system would clear the problem, the handler resets the system
via a software reset.

Non-fatal exceptions are handled using play stoppage. When a non-fatal exception is
detected, the event manager is notified of the event. The event manager evaluates the event and
determines the stoppage application to execute. Examples of non-fatal exceptions include:
hopper jams, coin jam, door open, bill acceptor failure, hand-pay jackpots, network out of

service, etc.

System Software Components

Fig. 3a illustrates the types of data in the ROM, which includes codes for the ROM Boot
Loader, the operating system, the operating system based devices, the secured functions, and the
BIOS.

Fig. 3b illustrates the major components of the anchor application which includes device
initiation codes 98, the event manager 100, system drivers 102, graphics application interface
104, secured loader 106 and a random number generator 108. Figs. 3c to 3e each is a loadable
application to be handled by the anchor application. More specifically, Fig. 3c is a game
application, Fig. 3d is a play stoppage application, and Fig. 3e is the Machine Management

System.

10

15

20

25

30

WO 98/29162 :) PCT/US97/23940
Application Launching -

There are two ways to launch an application using the Event Manager, a "normal" way
and an "interrupting" way. ’

When the system starts, the navigator, which is an application providing a number of
game selections, is launched by the event manager. If the navigator is asked by the user to
launch a game, it sends a corresponding launch message to the event manager. This type of
launch is "normal” in that it does not interrupt other applications. If multiple applications are
launched using the normal scheme, they would run in parallel.

Applications that are "interrupting" type of applications, such as play stoppage, use a
"push/pop" style of launching. When a stoppage application is executed, any currently
executing application is first paused, and then the stoppage application is ran. When the
stoppage application completes execution, the application that was interrupted is resumed from
the point it was interrupted.

When an interrupting application is to be ran, the state of the machine is remembered.
The state includes both the hardware and the software states. Interrupting applications are
serviced in a Last In First Out (LIFO) fashion. If an interrupting application is itself interrupted,
the current state of the machine is saved again and the second interrupting application would run.
When the second application finishes, the machine state is rolled back to the point where the first
interrupting application was executing when it was interrupted. This method of operation can be
thought like that of a stack operation. When a play stoppage application is about to be executed,

the system state is "pushed". When the play stoppage application completes, the state is

Hpoppedﬂ.

Callback Structure

The subsystems of the preferred embodiment of the present invention are programmed in
a callback scheme where each subsystem may register with another subsystem to receive
information and notification in the event of an occurrence of certain events. Once a subsystem
(client) is registered with another subsystem (host) and upon the occurrence of a predefined
event at the host system, the host subsystem sends the client subsystem a notification (or
callback request) of the event. Upon receiving the callback, the client subsystem handles the
callback accordingly. For example, a game subsystem (client) registers with the button

subsystem (host) for a callback so that when a particular button is pressed, the button subsystem

10

15

20

25

30

WO 98/29162 :) PCT/US97/23940
would inform the game subsystem of the particular button pressed. When a button is actually
pressed, the button subsystem processes its callback list. In the process, the game subsystem
being on the callback list is informed of the particular button pressed and the corresponding code

in the game subsystem is executed. Under this structure, each subsystem has a callback list.

Pushed State

When a subsystem is asked to push its state, the subsystem will save away enough
information so that the state of the controlling software and hardware can be restored at a later
time. In addition, it will save data structures representing the current state of the subsystem.
Once the state information is saved, the data structures, software parameters, and hardware are
set to a "clean" state, which means setting the hardware to the normal idle state and
disconnecting any clients that may be receiving information about this subsystem.

A push of the subsystem can be thought of in terms of levels. For example, the normal
idle state has a level of 1. When the subsystem is pushed, the level is incremented to 2. If
pushed again, the level would go to 3. When a pop occurs, the level is decreased back down to
2. When an event occurs in a subsystem, only those clients that are registered with the
subsystem at the current level are called. So, if the level were 3, only level 3 clients would get a
callback.

The net effect of a push is to make the system available for starting up a new virtual
machine for an interrupting application such as the play stoppage application. The currently
executing virtual machine will be "frozen" and restored when the play stoppage application
completes.

Referring to Fig. 5, the processing steps for pushing, popping and launching generally
can be categorized in blocked steps including an enter sequence step 140, a run sequence step

142, and an exit sequence step 144.

Enter Sequence

When a play stoppage application (an interrupting application) needs to be loaded and
executed, a series of steps need to be taken in order to perform the high level push operation.
This sequence of operations is called the “enter sequence”. An enter sequence performed by the

event manager is illustrated in Fig. 6a.

10

15

20

25

30

WO 98/29162 :) PCT/US97/23940

Referring to Fig. 6a, the enter sequence starts by calling a strangle routine as indicated at
150. The strangle routine asks each and every subsystem to "strangle" or to stop any initiation
of new callbacks by one subsystem to another subsystem. The stop of any callbacks is not an
immediate stop. If a subsystem is in the middle of processing its callback list, the subsystem is
allowed to finish the callbacks on the list in order to allow the subsystem to come to a good
stopping point. Once all the callbacks for a subsystem are completed, the subsystem informs the
event manager that it has completed its strangle routine.

When all the subsystems are successfully strangled, the pause routine for the current
application is called 152 to pause it. When an application is started, it registers with the event
manager a callback routine for pause and resume. For certain game applications this routine
performs no particular function because these applications are run entirely within the callback
context. Since all callbacks to the game have been disabled via the strangle function, no
additional processing steps are needed to pause these applications.

The callback lock 154 is used to ensure that no additional callbacks occur. This is a
special lock in that only during the enter sequence does using the lock have the potential to cause
the game to depend on the lock. If the enter or exit sequence is not being executed, the lock will
always be granted to the game.

Now that the subsystems have been strangled and the game callback lock has been
acquired, the subsystems now can be pushed to make a new virtual environment 156. Here, each
subsystem's push routine is called by the event manager, where each push operation saves the
respective subsystem's list of registered callback clients and the subsystem's predetermined
software and hardware information.

Once all subsystem information have been pushed, the callback lock is released to allow
the execution of other applications 158. The system is still strangled at this point, so no
callbacks will occur yet. The list and the subsystem parameters are then cleared for a new
virtual environment 160.

The last step of the enter sequence is the calling of the unstrangle routine 162 where all
subsystems are allowed to execute callbacks again.

Run Sequence

After the enter sequence is performed, a new virtual machine is ready for use by a

stoppage application (or any other interrupting application). Referring to Fig 6b, a stoppage

application is loaded 170 and executed by the event manager 172. The stoppage application and

10

10

15

20

25

30

WO 98/29162 : . PCT/US97/23940

its respective subsystems would register with the various subsystems for callbacks just like a
game application. The stoppage application also registers with the event manager its exit
callback routine. The event manager will call this routine when an event that would clear the
currently executing stoppage application is received. For each event that is received by the event
manager, the event manager checks to see if the stoppage application should be cleared. If the
event clears the stoppage, the exit callback routine for the stoppage application would be
executed. After the stoppage application completes its cleanup, it sends an
END OF STOPPAGE event to the event manager. The end-event signals the event manager to
unload the stoppage application and begin the exit procedure 174.

An alternative to having the event manager clearing the stoppage application is to put all
of the clear stoppage code within the stoppage application itself. For example, the door open
stoppage would wait for a door close event and then exit. One problem with having the
stoppage application determine events is that the clear event may occur while the stoppage
application is being interrupted. If, for example, the door open stoppage application was
interrupted by the MMS and then the door was closed while the MMS was running, the open
stoppage application would not see the door close event when it resumed execution. Thus, the

alternative method is not generally used.

Exit Sequence

The exit sequence is performed after the event causing the stoppage has been cleared.
The exit sequence steps are illustrated in Fig. 6c.

Once the play stoppage application has been completed and cleared, the virtual machine
that was created during the enter sequence needs to be unloaded in order to restore the previous
virtual machine. The first operation is to strangle all subsystems to stop all callbacks 180.
When the strangling completes, the subsystems that registered callbacks with other subsystems
remove their callback registrations (de-init) 184.

After the callback lock is acquired 186, the event manager calls the pop routine for each
of the subsystems 188. A pop operation will restore the subsystem's hardware and data
structures to their previously pushed state. This means that the callback lists for the subsystems
will be restored to the previous state. The game is then allowed to resume 190, the system is

unstrangled 192, and the callback lock released 194.

11

10

15

20

25

30

WO 98/29162 .) PCT/US97/23940
Play Stoppage Application -

The Play Stoppage application is an application that runs any time there is an interruption
to the gaming experience. This application is comprised of a number of short linear segments
that keep the player entertained until the machine can be returned to play. Events that can
trigger the play stoppage application include a hopper fill event, a jackpot event, a coin jam
event, a hopper jam event, and a service call. It is preferable that when play stoppage occurs, a
dramatic audio visual experience occurs within the provided environment, indicating that
something has happened.

In a narrative fashion, referring to Fig. 7, the player is provided with an explanation of
the problem as well as the action undertaken to solve the problem 200. Since the necessary
action required for solving the problem may require certain amount of time, entertainment of
some type is provided to the player 202. If the event causing the play stoppage has been cleared,
the play stoppage application is unloaded 206. Otherwise, the play stoppage application

continues with the playing of the entertainment.

MMS Interactions

The MMS is launched by the event manager when a MMS key turn is detected. When
the MMS is running, no event will cause a stoppage application to execute (the MMS is not
interruptible).

Some stoppage applications will want to change the behavior of the MMS key. For
example, the hand-pay stoppage application uses an MMS key turn as an indication that the
hand-pay information window should be displayed. In this case, the MMS will not be launched
when the key is turned. The event manager needs to be informed by the stoppage application
that it wishes to disable MMS launches via the key switch. These stoppage applications should
provide a way for the technician to launch the MMS from the application itself. For example, in
the hand-pay stoppage application, the MMS key will bring up a dialog that contains
information needed to complete the stoppage transaction. There is a button in the dialog that
when pressed runs the MMS. By tuming the key, the technician has indicated that the
transaction is being serviced.

Although the present invention has been described above in terms of a specific
embodiment, it is anticipated that alterations and modifications thereof will no doubt become
apparent to those skilled in the art. It‘ is therefore intended that the following claims be

12

WO 98/29162 :) PCT/US97/23940
interpreted as covering all such alterations and modifications as fall within the true spirit and
scope of the invention.

What I claim is:

13

10

15

wn

WO 98/29162 :) PCT/US97/23940

CLAIMS

1. In a gaming system having electrical and mechanical subsystems for facilitating the play
of a game, a method for maintaining and providing audio and visual functionalities in said
system in the event of a fault in one of the subsystems during game play, each of the subsystems
having a number of functional parameters defining the state of the subsystem and a callback list
listing the subsystems to be notified upon the occurrence of a particular pre-defined event,
comprising the steps of:

a) detecting the occurrence of a fault generated in one of said subsystems;

b) generating a strangle request and communicating such request to each of said
subsystems to cause each subsystem to complete any already-started processing of its callback
list in response to an occurred event and to inhibite each subsystem from initiating new
processing of its callback list in response to the occurrence of a new event;

¢) storing the functional parameters and callback list of each subsystem;

d) re-initiating each of said subsystems; and

e) loading and activating an intermission routine utilizing audio and visual subsystems to

occupy the attention of the system user until the fault is cleared.

2. A method as recited in claim 1 further including the steps of:
f) correcting said fault in said system;
g) terminating and unloading said intermission routine;

h) restoring the stored functional parameters and callback list to each of the subsystems;

and

i) restarting said system and said subsystems using the stored functional parameters and
callback lists.
3. A method as recited in claim 1 where there is an event manager in said system having an

event queue for storing incoming events, said event manager processing said incoming events in
the order stored in said event queue and causing a corresponding routine to be executed in

response to the particular incoming event.

14

WO 98/29162 :) PCT/US97/23940
4. A method as recited in claim 2 where there is an event manager in said system having an
event queue for storing incoming events, said event manager processing said incoming events in
the order stored in said event queue and causing a corresponding routine to be executed in

response to the particular incoming event.

5. A method as recited in claim 3 where upon receiving a clearing event, said event

manager causing said intermission routine to terminate and unload.

6. A method as recited in claim 3 wherein the corresponding routines include an

intermission routine, a machine management system routine, and a service light routine.

7. A method as recited in claim 3 wherein the incoming events include a hopper error event,

a door-open event, and a subsystem exception event

8. A method as recited in claim 1 wherein said intermission routine plays an audio-visual
video clip.
9. A method as recited in claim 1 wherein said intermission routine comprises the steps of:

1) processing an audio-visual video clip;

2) checking for an event-cleared flag;

3) if said event-cleared flag is set, termniating and unloading said intermission routine;
and

4) if said event-cleared flag is not set, repeating from step 1.

10. A method for a fault tolerant computer operating system having a plurality of subsystems
each having a callback list of subsystems whereupon the occurrence of a particular event in the
respective subsystem the subsystems on its callback list are notified, comprising the steps of:

a) detecting the occurrence of a fault in said operating system;

b) calling and requesting each subsystem to perform a strangle routine causing the
completion of the processing of existing callbacks;

¢) acquiring a callback lock inhibiting the processing of new callbacks;

d) storing functional parameters and callback list of each subsystem;

15

10

WO 98/29162) PCT/US97/23940
e) releasing said callback lock to allow initiation of new callbacks; and

f) calling a unstrangle routine to permit the processing of callbacks.

11. A method as recited in claim 10 further including the steps of:
g) loading an intermission application and initializing a new callback list for each

subsystem; and

h) executing said intermission application.

12. A method as recited in claim 11 further including the step of:

i) upon the occurrence of a clearing event, unloading said intermission application.

13. A method as recited in claim 12 further including the steps of:

j) calling and requesting each subsystem to perform a strangle routine causing the
completion of the processing of existing callbacks;

k) acquiring said callback lock;

1) restoring said stored functional parameters and callback list for each subsystem,;

m) calling a unstrangle routine to permit the processing of callbacks by each subsystem;

n) release said callback lock; and

0) resuming operation of said operating system and subsystems using said restored

functional parameters and callback lists.

14. A method as recited in claim 10 where there is an event manager in said system having
an event queue for storing incoming events, said event manager processing said incoming events
in the order stored in said event queue and causing a corresponding routine to be executed in

response to the particular incoming event.

15. A method as recited in claim 13 where there is an event manager in said system having
an event queue for storing incoming events, said event manager processing said incoming events
in the order stored in said event queue and causing a corresponding routine to be executed in

response to the particular incoming event.

16

WO 98/29162 :] PCT/US97/23940

16. A method as recited in claim 14 where upon receiving a clearing event, said event

manager causing said intermission routine to terminate and unload.

17. A method as recited in claim 14 wherein the corresponding routines include an

intermission routine, a machine management system routine, and a service light routine.

18. A method as recited in claim 14 wherein the incoming events include a hopper error

event, a door-open event, and a subsystem exception event.

19. A method as recited in claim 10 wherein said intermission routine plays an audio-visual
video clip.
20. A method as recited in claim 10 wherein said intermission routine comprises the steps of:

1) processing an audio-visual video clip;
2) checking for an event-cleared flag;

3) if said event-cleared flag is set, termniating and unloading said intermission routine;

and

4) if said event-cleared flag is not set, repeating from step 1.

17

)
)

WO 98/29162 PCT/US97/23940

= e e e e e e e e e e b e e e e v e e e

Ve e et e

| s T ‘
2 b / ¢ e [.
PR R !
"&_u“'fr C‘fu Doore ii\ !
Mﬁpfo(> “ {
L | y |
A (e ok | He T |
Soxted ‘D‘?lg%&{(Com Cowm Suniteliad &
pox=< | CD\\LD\M(Oaarter Cmmgcve,ﬁ J i
: BRI
/\/Qé _,QO Y L_:l, e A
Medhenicd Y Hevd (vt 7,
Buttons l bt Hovver [Wetgg & Dy \
l 1 '
A :ed . ’?ZQ L,’ ~
Kletwork { <ocied -
\ivteviect %:(z Lonex
RO M
‘ goeT |
SANFE | (g i
5 ey 74
FRACE | EEFROM Do
Q@uFFER L1 Covtertler s
g
cPu
5
(0

179 -

WO 98/29162) PCT/US97/23940

Fowor u‘0 (e ov (o1 &b{ﬂ’u@

Leacl codes > RA0L

\nitialin wict@rboavd hsing
the Qb defa

-
Stect ROM Coot Loade }ng
héh)(ﬁ the bpev kg Q\(S‘&/\«v\

Mitelce €5 beced dvaveve | % 4
R&}d (Lc‘;h\, j(o &@lwdw (L(‘Lt{‘n

UJQ g;'a‘,x(,{,'LQr O QQ Wl TdA \—!

L

hord evnddnor agpl. it s R
e Ot
Stavt awnchor cw\z

|

6{'6 ('L C/UO-WL LMC/H(%"“‘T » .‘}

<,

ndicdree dovices sod wisteiousi Y

ctevf nitied ppplicton

PCT/US97/23940

WO 98/29162

3& @u SN
P CHESHEAY
T2 2T | Badhoss
B N
Q W , W.%‘ H \?\SA;\\v

\Q.‘.w:; JEVIR 1~
j K

5)9. 1 ,3,,2
MA QIR

AT
ﬁ? 02

LAY

2 ,.&quzw

J—

SIONIG
éwfw

\,@M@é@

JVIINF

7Pa)
Uy Tngg

AN W@

01

AR) <<5Q
ﬁosﬁxwww

ST
Pos=9 5q

= fexﬁni/w .

wé uﬁ\,dam Q

Xop< Sk
1999
N

3/9

WO 98/29162 . PCT/US97/23940

200
Z‘/(
/ Hepoer Evewt
P 2 puk
2 TN | Queud
: |28
Evevik
W\am%w
«Docr S(’,«A’:.or Qua{uw{ﬁ
126 Pcaca-sam& (rdehondbiog 120
E'Ja‘l'/d_‘;
B lotm
L (32
Héwi\mg,

4/9

WO 98/29162 :) PCT/US97/23940

Eeter Sopsmce j/” 10
S7A
RW\/I §€r‘ﬁwﬂ A /u{. ~

l

rE\a‘é Seguetce }0{44

Jir%\ g

5/9

WO 98/29162 PCT/US97/23940

|
I
|
|
|
|
|
|
|
{
)
|
(
|
-

(sl Zheogn Fatlives _

. g ‘ 5
el u}){(é& Al S&(au»ﬁ'\o,g A5
_tO (o V'\Q{ﬂ-

Y

i
}
i
(
l Execele Germe (oULL YWP//Q’L |
|
|
l
|

“-’“""-—-.—_——_—____’l

L
Acgune (slifoee Lo M«z

[Pecls Mot ks | (S6
. b}
j'/
; SO
(.QQ.- h/\(‘((_(‘,i@; L'“/;.L&;;.C_(Q }N/L
i

v

l
1
1
«
1
L CE }
|
t
\

—_— —— — . —_—

[-——- — ——— pa—

6/9

WO 98/29162 PCT/US97/23940

|

l o

l Foeak LY LERED A v (70 [r
| , }
| | | |
| Lz

7/9

WO 98/29162 PCT/US97/23940

| .
l & { \)C\:'L g—(}(S{m..\ c\(z. {- Cé‘v.apbf-%i j/u [XL l

|
| g .l
| o
\ , ‘1 Do - ludeloe WMewoge, J/v (3¢ :
) | |

)
l
(DC@LWQ (allbece Lo \/V(fé ;
|

\
| ,)
: | Pop o
| ! | |
) l RSy Vi i/' (40 }
' | ; 3. , ,

o

| | b }A 4 ‘

8/9

WO 98/29162] PCT/US97/23940

(;)qp(c\,m JCL\Q é&a@@&&z 2050
strd the actoon umdartarenm o

g—"(; batertonnged. oc the liee —}/\/7/07/

20t

Stoppss-

L Ao n
evad closed 2

{ Unload 100
DS ’\f d'\{(‘ 7
L‘J:c;iy‘&) o

F I

9/9

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US97/23940

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :A63B 9/22; GOGF 11/00
US CL :Please Sec Extra Sheet.
According to International Patent Classification (IPC) or to ‘both

national classification and IPC

B. FIELDS SEARCHED

uU.s. :

Minimum documentation searched (classification system followed by classification symbols)
4634/1, 24; 324/500, 511; 364/410, 737, Dig. 1; 371/22.1, 30, 37.7, 47.1, 48

None

Documentation scarched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

document defining the general state of the art which is not considered
to be of particular relovance

earlier document publin.heci on or after the international filing date

document which may throw doubts on priority claim(s) or which is
citsd to establish the publication date of another citation or other
special reason (as specified)

L PR

or other

document referring to an oral d e, use, oX

dooument published prior to the international filing date but later than
the priority date claimed

None
C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 4,948,138 A (PEASE et al) 14 August 1990, entire document. | 1-20
A US 4,782,468 A (JONES et al) 01 November 1988, entire document. | 1-20
D Rurther documents are listed in the continuation of Box C. D See patent family annex.
d Special categories of cited documents: T Inter d t published after the inter 1 filing date or priority

date and not in conflict with the application but cited to understand
the principle or theory underlying the invention
X" document of particular relevance; the clnmod invention cannot be
idered novel or t be idered to involve an inventive step
when the document is taken aione

Yy document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

A document member of the same patent family

Date of the actual completion of the international search

08 APRIL 1998

Date of mailing of the international search report

2 2 APR 1998

address of the ISA/US

Name and mailin,
%’a!cms and Trademarks

Commissioner of

-

Authorized officer

0/«17”)

Box PCT > . .
© Washington, D.C. 20231 I# Jessica Harrison P ;ma,m
Facsimile No. (703) 305-3230 Telephone No. (703) 308-0858 Group 3200

Form PCT/ISA/210 (second sheet)(July 1992)%

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US97/23940

A. CLASSIFICATION OF SUBJECT MATTER:
USCL :

4634/24; 324/500, 511; 364/737, Dig. 1; 371/22.1, 30, 37.7, 47.1, 48

Form PCT/ISA/210 (extra sheet)(July 1992)x

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

