发明名称

一种乙叉降冰片烯的生产方法

摘要

一种乙叉降冰片烯的生产方法，该方法采用釜式反应器，使双环戊二烯（DCPD）裂解成环戊二烯（CPD），环戊二烯（CPD）与1，2-丁二烯（BD）发生Diels-Alder反应转化成乙叉降冰片烯（ENB），反应产物经精馏分离得到含量在99.5%以上的乙叉降冰片烯产品。反应采用丙酮作为溶剂，BD与DCPD的摩尔比为0.2～1.5:1，溶剂-丙酮与DCPD的重量比为0.5～2.0:1，阻聚剂对叔丁基邻苯二酚（TBC）加入量为DCPD质量的0.003%，反应温度为170～190℃，系统压力为7～11Mpa，反应时间为2～8小时。与现有技术相比较，反应工艺简单，反应的转化率及乙叉降冰片烯的选择性明显提高。
1. 一种乙叉降冰片烯的生产方法，其特征在于，该方法采用釜式反应器，使双环戊二烯DCPD裂解成环戊二烯CPD，环戊二烯CPD与1,2-丁二烯BD发生Diels-Alder反应转化成乙叉降冰片烯ENB；反应采用丙酮作为溶剂，1,2-丁二烯BD与双环戊二烯DCPD的摩尔比为0.2～1.5:1，溶剂丙酮与双环戊二烯DCPD的重量比为0.5～2.0:1，阻聚剂对叔丁基邻苯二酚TBC加入量为双环戊二烯DCPD质量的0.003%，反应温度为170～190℃，系统压力为7～11MPa，反应时间为2～8小时；反应结束后，反应液送入精制系统，进行丙酮的回收及产品的精制，丙酮循环使用，精制的乙叉降冰片烯ENB含量在99.9质量%以上，适用于用作聚合物的单体；反应以1,2-丁二烯BD计的转化率在80%以上，乙叉降冰片烯ENB选择性在70%以上。

2. 根据权利要求1所述的一种乙烯基降冰片烯的生产方法，其特征在于，所述的原料双环戊二烯DCPD的纯度为85质量%以上。

3. 根据权利要求1所述的一种乙叉降冰片烯的生产方法，其特征在于，所述的1,2-丁二烯BD与双环戊二烯DCPD的摩尔比为0.6～1.0:1。

4. 根据权利要求1所述的一种乙叉降冰片烯的生产方法，其特征在于，所述的丙酮与双环戊二烯DCPD的重量比为0.8～1.2:1。

5. 根据权利要求1所述的一种乙叉降冰片烯的生产方法，其特征在于，所述的反应温度为175～185℃。

6. 根据权利要求1所述的一种乙叉降冰片烯的生产方法，其特征在于，所述的系统压力为8～10MPa。

7. 根据权利要求1所述的一种乙叉降冰片烯的生产方法，其特征在于，所述的反应时间为4～6小时。
一种乙叉降冰片烯的生产方法

技术领域
[0001] 本发明涉及一种以双环戊二烯(DCPD)和1,2-丁二烯(BD)为原料制备乙叉降冰片烯(ENB)的方法。特别涉及以丙酮为溶剂，在釜式反应器内，使双环戊二烯解(DCPD)解聚成环戊二烯(CPD)，环戊二烯(CPD)与1,2-丁二烯(BD)发生Diels-Alder反应转化成乙叉降冰片烯(ENB)的方法。

背景技术
[0002] 乙叉降冰片烯(ENB)常温下为无色透明液体，有强烈的类樟脑气味，在空气中较大的挥发性，空气中浓度为0.014ppm时即可嗅到气味。目前，ENB主要应用于三元乙丙橡胶(EPDM)，其聚合反应活性高，使橡胶分子交联，生成凝胶的二次反应机会少，产品硫化速度快，是EPDM的首选第三单体。近年来ENB的应用进一步向下游弹性体材料及相近的具有广阔市场前景的、多品种降冰片烯类化合物领域拓展。因此，ENB是极具广泛用途的石油产品。
[0003] 从现有技术可知，目前合成ENB的工艺基本为先由1,3-丁二烯作为亲双烯体与环戊二烯(CPD)经Diels-Alder反应生成乙烯基降冰片烯(VNB)，再由VNB催化异构得到ENB，VNB合成工艺的主要副产物有乙烯基环己烯、环己二烯、四氢茚、一些低聚物和丁二烯多聚物等。如在中国专利CN1580015、CN104744201、CN103980084、CN104058912、CN104692994、美国专利US4777309和日本住友化学公司(Sumitomo Chemical, 1990(2):4～11)均有报导。
[0004] 综上所述，目前生产ENB工艺较为复杂，需经过双烯合成和异构化反应制得，且产品收率较低，生产成本极高。

发明内容
[0005] 本发明的目的就是克服上述现有技术存在的缺陷而提供一种乙叉降冰片烯的生产方法。
[0006] 本发明的目的可以通过以下技术方案来实现：
[0007] 一种乙叉降冰片烯的生产方法，该方法采用釜式反应器，使双环戊二烯(DCPD)裂解成环戊二烯(CPD)，环戊二烯(CPD)与1,2-丁二烯(BD)发生Diels-Alder反应转化成乙叉降冰片烯(ENB)；反应采用丙酮作为溶剂，1,2-丁二烯(BD)与双环戊二烯(DCPD)的摩尔比为0.2～1.5:1，溶剂丙酮与双环戊二烯(DCPD)的重量比为0.5～2.0:1，阻聚剂对叔丁基苯化二酚(TBC)加入量为双环戊二烯(DCPD)质量的0.003％，反应温度为170～190℃，系统压力为7～11MPa，反应时间为2～8小时；反应结束后，反应液送入精制系统，进行丙酮的回收及产品的精制，丙酮循环使用，精制的乙叉降冰片烯(ENB)含量在99.9质量％以上，适用于作聚合物的单体；反应以1,2-丁二烯(BD)计的转化率在80％以上，乙叉降冰片烯(ENB)选择性在70％以上。
[0008] 本发明中所述的原料双环戊二烯(DCPD)的纯度优选为85质量％以上。
[0009] 本发明中所述的1,2-丁二烯(BD)与双环戊二烯(DCPD)的摩尔比优选为0.6～1.0:1。
[0010] 本发明中所述的溶剂丙酮与双环戊二烯(DCPD)的重量比优选为0.8～1.2:1。
[0011] 本发明中所述的反应温度优选为175～185℃。
[0012] 本发明中所述的系统压力优选为8～10MPa。
[0013] 本发明中所述的反应时间优选为4～6小时。
[0014] 本发明的关键是用1,2-丁二烯取代1,3-丁二烯,与环戊二烯(CPD)发生双烯合成反应一步转化为(ENB)产品,使得反应的转化率及(ENB)的选择性明显提高。
[0015] 对于1,2-丁二烯和环戊二烯(CPD)双烯合成而言,选择丙酮作为溶剂的理由是基于发明人在实验中发现,在将烃类溶剂如甲苯、正戊烷、正己烷、正庚烷、环己烷等,用丙酮取代后,可使反应的温度和系统压力都可以显著下降,不但消除了反应过程爆炸的可能性,并且可以使CPD多聚物及聚合物的生成明显减少。从理论上进行推测,丙酮是一种不溶于水的酮类溶剂,其含有的碳基使分子具有Lewis酸特征,而这种Lewis酸性可以催化BD和CPD双烯合成反应,使反应温度和压力下降,同时丙酮又是一种对BD良好的溶剂,有利于提高液相反应液中BD,加速双烯合成反应速率。
[0016] 在釜式反应器中,吸热的DCPD解聚和放热的CPD与1,2-丁二烯BD双烯合成反应同时进行,此时,原料中的绝大部分DCPD解聚及双烯合成在此区域进行,通过采用相对较低的温度、延长反应时间的方式,既可将CPD浓度保持在较低的水平,提高反应的选择性,同时可最大程度地阻止CPD多聚物及聚合物的生成,避免了因CPD聚合放热所带来的爆炸危险性,同时较低的反应温度也有利于在液相中浓度,对提高双烯合成的反应速率有利。
[0017] 在双烯反应过程中,采用由氮气压缩机持续通入氮气的方式维持反应器的压力,较高的压力使得气相中1,2-丁二烯的浓度始终保持在较低的水平,有利于提高反应的选择性。
[0018] 反应用液可以采用精馏的方式进行ENB的精制及回收溶剂丙酮。一般在采用理论塔板数为30～50块的精馏塔进行ENB精制时,ENB的含量在99.9质量%以上,回收丙酮可以循环使用。
[0019] 本发明提供了一种乙叉降冰片烯的生产方法,采用釜式反应器,使用丙酮作为溶剂,在相对较低的温度和压力下,使DCPD解聚成CPD,CPD与1,2-丁二烯发生双烯合成反应转化成ENB。与现有技术相比较,反应工艺简单,反应的转化率及ENB的选择性明显提高。

具体实施方式

[0020] 在实施例中,1,2-丁二烯BD转化率的定义为:

\[
\text{BD转化率} = \frac{\text{原料中 BD 摩尔数} - \text{产物中 BD 摩尔数}}{\text{原料中 BD 摩尔数}} \times 100\%
\]

[0021] ENB 选择性 = \frac{\text{转化为 ENB 的 BD 摩尔数}}{\text{转化的 BD 摩尔数}} \times 100%

[0022] 【实施例1～6】

[0023] 反应在一个体积容量为2升的釜式反应器中进行,反应釜内装有搅拌装置、冷却盘管,外部设电加热系统,将配制的双环戊二烯(DCPD)、丙酮、1,2-丁二烯(BD)和对叔丁基
邻苯二酚(TBC)溶液用泵送入反应器，开动搅拌后，升温至所需温度，再用定压阀调节反应釜的压力至设定的压力，进行反应。反应结束后，经冷却后收集，采样分析，样品的分析采用GC方法。收集的反应物料移入一理论塔板数为45的精馏塔内进行精馏，所得到的乙叉降冰片烯(ENB)产品含量为99.9％，回收的丙酮循环使用。

<table>
<thead>
<tr>
<th>实施例</th>
<th>丙酮/DCPD重量比</th>
<th>BD/DCPD摩尔比</th>
<th>压力(MPa)</th>
<th>反应温度(℃)</th>
<th>停留时间(h)</th>
<th>BD转化率(%)</th>
<th>ENB选择性(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例1</td>
<td>0.5</td>
<td>0.2</td>
<td>7.0</td>
<td>170</td>
<td>8</td>
<td>80.0</td>
<td>75.6</td>
</tr>
<tr>
<td>实施例2</td>
<td>2.0</td>
<td>1.5</td>
<td>11.0</td>
<td>190</td>
<td>2</td>
<td>86.6</td>
<td>78.8</td>
</tr>
<tr>
<td>实施例3</td>
<td>0.8</td>
<td>0.6</td>
<td>8.0</td>
<td>185</td>
<td>4</td>
<td>89.8</td>
<td>80.9</td>
</tr>
<tr>
<td>实施例4</td>
<td>0.9</td>
<td>1.0</td>
<td>8.5</td>
<td>180</td>
<td>5</td>
<td>86.9</td>
<td>83.6</td>
</tr>
<tr>
<td>实施例5</td>
<td>1.0</td>
<td>0.8</td>
<td>9.5</td>
<td>178</td>
<td>6</td>
<td>82.5</td>
<td>85.5</td>
</tr>
<tr>
<td>实施例6</td>
<td>0.6</td>
<td>0.7</td>
<td>10.0</td>
<td>175</td>
<td>5</td>
<td>81.2</td>
<td>88.3</td>
</tr>
</tbody>
</table>