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METHOD AND APPARATUS FORTRACKING 
WITH IDENTIFICATION 

0001. This application claims the benefit of U.S. Provi 
sional Application No. 60/284.863, entitled “Method and 
Apparatus for Tracking People', filed Apr. 19, 2001, wherein 
Such document is incorporated herein by reference. 

BACKGROUND 

0002 The invention relates to tracking objects and people 
and particularly tracking with identification. 
0003. Other applications relating to similar technology 
include U.S. patent application Ser. No. 10/034,696, filed 
Dec. 27, 2001, and entitled, "Surveillance System and Meth 
ods Regarding Same', which is incorporated herein by refer 
ence: U.S. patent application Ser. No. 10/034,780, filed Dec. 
27, 2001 and entitled “Method for Monitoring a Moving 
Object and System Regarding Same', which is incorporated 
herein by reference; and U.S. patent application Ser. No. 
10/034,761, filed Dec. 27, 2001 and entitled “Moving Object 
Assessment System and Method’, which is incorporated 
herein by reference. 

SUMMARY 

0004. The invention involves the tracking of people or 
objects with image processing and the identification of the 
people or objects being tracked. Also, conditions of an area or 
a facility can be detected and tracked. 

BRIEF DESCRIPTION OF THE DRAWING 

0005 FIG. 1 is a diagram of a people and object tracker 
system; 
0006 FIGS. 2a, 2b and 2c reveal infrared detection of ice 
on an object; 
0007 FIG. 3 shows various sensors and their connection 
to the identifier; 
0008 FIG. 4 illustrates a user interface component with a 
monitor, keyboard, mouse and electronics module; 
0009 FIG. 5 shows an illustrative example display of 
tracking and identification in a work facility; 
0010 FIG. 6 is similar to FIG. 5 but having a focus on one 
of the workers with more detailed information; 
0011 FIG. 7 shows worker locations relative to a process 
diagram of a work facility; 
0012 FIG.8 reveals a correlation between a plan view and 
process diagram of the work facility, with alarm status infor 
mation; 
0013 FIG. 9 is a diagram of the architecture of a multiple 
hypotheses tracking algorithm; 
0014 FIG. 10 is a hypothesis matrix: 
0015 FIG. 11 a hypothesis tree diagram; 
0016 FIG. 12 shows the fields of view of two cameras 
having a common area; 
0017 FIG. 13 is a mapping result of one grid of an image 
onto a grid of a warped image; and 
0018 FIG. 14 is a close up view of a portion of the map 
ping revealed in FIG. 13. 

DESCRIPTION 

0019. The present invention combines technologies and 
methods into a single integrated approach to track people or 
objects. It is particularly useful for tracking employees in 
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relatively large settings, for examples, refineries and facto 
ries. The primary technology for tracking is cameras, imaging 
devices or visual sensors and image processing. The partner 
ing technology involves identifying mechanisms such as spe 
cialty readers and/or sensors used for positive identification 
of people and objects. Positive identification of people would 
be made at choke points of paths of movement of the people, 
or at appropriate check points. Fusion of the primary and 
partnering technologies results in a powerful technology for 
tracking objects or people. Such as workers in a plant or 
another area. This fusion or combination of the mentioned 
technologies is one aspect of an application of the invention. 
0020. Further application of the invention can be obtained 
by imbedding fused camera and positive technology into a 
mapping system. This system provides for easy access or 
visualization of information, as well as transformation of the 
information into a context of spatial coordinates or other 
forms. One instance is imbedding the fused camera and posi 
tive identification information into a global information sys 
tem (GIS) mapping system to show the location of a tracked 
person in relation to certain equipment in a database of a 
factory or refinery, or in relation to a process location on a 
process diagram of the factory or refinery. Because a process 
diagram may not correspond directly to geographic or physi 
cal space in the field, the geographic or physical location of a 
tracked person may have to be translated or mapped to the 
corresponding space in the process diagram. This feature can 
be added to the base technology, which is the combined/fused 
image processing and specific identification technologies, or 
any variation of the base technology along with other tech 
nologies or features as desired. 
0021 Intracking an employee, additional information can 
be developed about the condition of an employee or the plant 
that the employee is at. Such information may improve the 
capability of the present system to track employees effec 
tively and to most efficiently direct employee efforts in the 
plant for a known set of conditions in the plant. For example, 
specialized detection capabilities in the viewing camera and 
the video processing system may detect whether the 
employee has stopped moving, thus implying possible inca 
pacitation of, or injury to the employee. This information 
would allow the system to conclude that there may be a 
problem with the employee and thus alert an operator to 
investigate the situation of the employee. Special video detec 
tion capabilities can be utilized to monitor the condition of the 
plant or installation in a manner that provides for a more 
thorough diagnosis of the plant's condition. 
0022 FIG. 1 is a diagram of an embodiment of a people or 
object tracker 100. The tracking of, for example, people is 
used here for illustrating the invention. An area or facility may 
be observed with multiple cameras or imaging devices 101 
situated throughout, for instance, the facility. The images 
from the cameras or imaging devices 101 are fed electroni 
cally in digital or analog format into an image processing 
component 102 that includes tracking capability of people or 
objects detected by the cameras 101. The path or track of an 
object or person being tracked is noted. The image processing 
of component 102 is to maintain continuity of the tracking 
even if no cameras 101 have field-of-view overlaps with one 
another. Tracking may also include observation of immobile 
objects. One example would be the observation of a valve or 
pipeline by a specially designed IR camera 215 that could 
provide an image indicating frost or ice on the valve or pipe 
line thereby indicating a possible problem. 
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0023 The particular properties of water have been estab 
lished in the upper near-infrared spectrum (i.e., 0.4 um to 2.4 
um). Water and objects bearing water have very low reflec 
tivity and thus essentially are black bodies in this spectrum. 
This blackbody characteristic is noticeable in an image when 
the water is above a virtual mass. A light cover of rainwater 
will not reveal this characteristic. However, a cover of ice 
(i.e., concentrated water) or a human body (i.e., thick water 
based mass) will have such blackbody characteristic. FIG.2a 
shows a metal cylinder 301 having an iced lower portion 302 
which appears as a black body. FIG. 2b shows the cylinder 
midway in de-icing. Black area 302 has started shrinking. The 
lower portion 302 of cylinder 301 is completely de-iced and 
appears the same as upper part 303 in FIG. 2c. A pseudo 
coloring algorithm can be used to present in different colors 
the different states of ice coverage. Using the different colors, 
an operator is given an idea how thick the ice is and he or she 
is dynamically updated as to the progress of the de-icing 
operation. Also, the algorithm will determine if the level of 
illumination is sufficient for such ice detection. 
0024 For positively identifying the objects or people 
being tracked, one or more of a group 105 of sensors may be 
utilized. This group of sensors includes active RF badge 
readers 203, active IR badge readers 204, passive RF badge 
readers 205, passive RF badge readers 206, long or short 
range bar code readers 207, GPS badge readers 208, identi 
fying clothing marker readers 209 Such as colors, shapes and 
numbers on the clothing, biometric readers 210 (e.g., finger 
print or retina), specialized IR cameras 211 and other sensors 
215. The sensors 105 connection to identifier 212 is shown in 
FIG. 3. These are just examples of identification sensors 
which may be used. Such sensors would be placed in area on 
a grid-like layout or at choke points, gates, security check 
points, entry points, narrow lanes of travel, and so on. Outputs 
of these sensors 105 go to an input of a positive identifying 
component 212. 
0025. The output from positive identifying component 
212, which is a synthesis of the inputs from the various 
sensors or sensor indicating a positive identification of the 
object or person being tracked, goes to fusion component 213. 
Other inputs to component 213 come from vision processor 
component 102 and a database component 214. Database 
component 214 is a source of information for fusion compo 
nent 213. Fusion component may send out signals to compo 
nent 213 requesting certain information about certain objects 
or persons being tracked. For instance, work order systems 
may be a source of valuable information useful in the tracking 
of a worker in a factory or refinery. Database component 214 
is a source of many types of information in numerous data 
bases. 
0026. The output of the fusion component 213 goes to a 
user interface component 216. Component 216 typically 
would have interface electronics 234, and a screen 218 with a 
display 225 in FIG. 5 showing the object or person being 
tracked and, whenever possible, a positive identification of 
the tracked person or object. 
0027. An example of an application of the fused camera 
tracking and positive identification of system 100 is illus 
trated in FIG. 5. One component of user interfaces 216 is a 
monitor 217 having a display screen 218, a keyboard 219 and 
a mouse 220, as shown in FIG. 4. FIG. 5 is displayed on an 
operator screen 218. FIG. 5 is a display 225. A plan view 221 
of an industrial installation is shown. Employees John 222 
and Mary 223 are shown on the plan view. Photo 224 shows 
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the area where employees 222 and 223 are known to be 
located. On the right of display 225 of screen 218 is an 
information section 227 about the plant area being viewed, 
the employees shown, and a camera 226 of imaging device(s) 
101 used. Sector 1A of the plant is being viewed by camera A 
(i.e., camera 226). John 222 is moving West with an open 
W.O. (i.e., work order). Mary 223 is stationary with no W.O. 
open. There are no alarms on. Camera 226 and image pro 
cessing 103 are tracker 104 enable visual tracking of employ 
ees 222 and 223. The other components used are a sensor 
from sensor group 105 and identifier 212. These components 
provide positive identification of employees 222 and 223. For 
instance, radio frequency (RF) identification (ID) tags are 
worn by employees 222 and 223. These employees are posi 
tively identified by an RF tag or badge reader 203 or 205 at a 
selected choke point (e.g., entrance 228) in the plant or other 
convenient location. Besides RFID tags, other items may be 
used for positive identification of an employee tracked by 
system 100. Such items could include IR tags, badge Swiping, 
and fingerprint, palm, retinal or face scanning. Also included 
could be visual detection of badges or clothing with unique 
colors or shapes, bar code scanning (e.g., with a bar code 
located on the person's badge or clothing), or any other 
method or technology available for identification. 
0028 Plan view 221 of the area monitored by camera A 
226, shows employees 222 and 223 to be present in the area 
and at their respective locations. John 222 and Mary 223 were 
positively identified by a reader when walking through a 
choke point or entrance 228 when entering the area, and were 
tracked to their current locations by vision processor 102. An 
RF reader 203 sent additional information about employees 
222 and 223 to identifier 212. Identifier 212 processed and 
forwarded this information to vision processor 102, when 
employees 222 and 223 were detected by reader 203 at choke 
point 228. If communication is desired with John or Mary, an 
intercom “Talk' button 229 proximate to John or Mary's 
name on screen 225 may be activated with a touch of the 
respective button. 
0029. Additional video technologies may be used to 
improve tracking and identification of a person or object. One 
Such technology is cooperative camera networks (CCN). 
CCN can detect change in a scene viewed by a camera. Such 
change is detected with the use of frame differencing and 
adaptive thresholding. Frames of a video are compared to 
detect differences between a current frame and a reference 
frame. The parts of the current frame that differ from the 
reference frame are extracted and a histogram is done of the 
pixels of those extracted parts. A threshold level is assigned to 
the histogram that provides for a division between what is 
actually change and what is noise. CCN can be used, for 
example, to evaluate the composite color of a person's clothes 
So as to help identify and track Such person. 
0030 FIG. 6 shows additional information being inte 
grated with the video tracking and positive identification 
information. Additional information inputs may include, for 
example, in a factory or refinery setting, information about a 
particular machine's performance, information about work 
orders that are open and held by a worker shown on display 
225, information about potential or evolving abnormal situ 
ations in the industrial processes, information about a repair 
process that is about to be undertaken by a worker, or other 
types of information. An example of such information shown 
in information section 227 of display 225 of FIG. 6, which is 
on screen 218 of monitor 217. Work order information, work 
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detail, special instructions and other information are accessed 
by tracking system 100 from database(s) 214. Additional 
capabilities added to display 225 increase the overall power 
and effectiveness of system 100. The lower part of display 
225 shows the relevant portion of plan view 227. 
0031. The above-mentioned GIS can also improve the 
ability of tracking system 100. GIS can locate and translate 
spatial information by implementing a fine measuring grid. 
The area around each intersection on the grid may be desig 
nated area of influence for that intersection. The area of influ 
ence may be correlated to the portions of a map that are not 
directly spatially related to the plant, factory or refinery, such 
as a process diagram 230 as shown in FIG. 7. Diagram 230 is 
an example of mapping where GIS is used to correlate spatial 
information to non-spatial formats. Process diagram 230 
shows John 222 and Mary 223 being located near the process 
or process equipment that they are standing near in the plant. 
Field-of-view lines of camera A 226 are bent because the 
camera field of view is distorted as it is translated from plan 
view 221 of FIG. 5 into process diagram 230 of FIG. 7. 
0032 Special video detection features add to the diagnos 

tic capabilities of system 100, thereby increasing its power 
and effectiveness. FIG. 8 illustrates some detection features 
that may be particularly useful for oil refineries. For instance, 
ice may coat some pipes and valves in an oil refinery which 
can prevent valves 233 from operating properly. Improper 
operation of these valves 233 can lead to serious functional 
problems in the refinery. Ice detection capabilities can be 
added as a feature (i.e., ice detection based on near infrared 
phenomenology) as illustrated in FIGS. 2a, 2b and 2c. Other 
features can include capabilities used for flare (flame) detec 
tion, including detecting changes in the color and/or shape of 
the flare. An ultra violet light detector may be used to monitor 
a flame. Information section 227 provides examples of alert 
notices of ice formation and location and of flare change 
which may indicate the change of quality and quantity of the 
flames constituting the flare. 
0033 GIS can be a resource in database component 214. 
GIS may be used to assist in objectively describing the actual 
location of a person based on maps processed by image pro 
cessing component 102. Further information from Such a 
system could provide the location of a person or object 
tracked relative to a process flow layout, such as one of a 
refinery. 
0034. Image processing component 102 consists of pro 
cessing for multicamera Surveillance and object or person 
tracking. Component 102 has a moving object segmentor, a 
tracker and a multi-camera fusion module. One object detec 
tion method is based on a mixture of Normal representation at 
the pixel level. Each normal reflects the expectation that 
samples of the same scene point are likely to display Gaussian 
noise distributions. The mixture of Normals reflects the 
expectation that more than one process may be observed over 
time. The method used here is similar in that a multi-Normal 
representation is used at the pixel level. But that is the extent 
of the similarity. The present method uses an Expectation 
Maximization (EM) algorithm to initialize models in the 
present invention. The EM algorithm provides strong initial 
statistical Support that facilitates fast convergence and stable 
performance of the segmentation operation. The Jeffreys (J) 
divergence measure is used as the measuring criterion 
between Normals of incoming pixels and existing model 
Normals. When a match is found, the model update is per 
formed using a method of moments. When a match is not 
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found, the update is performed in a way that guarantees the 
inclusion of the incoming distribution in the foreground set. 
0035. The method just described permits the identifying 
foreground pixels in each new frame while updating the 
description of each pixel’s mixture model. The identified and 
labeled foreground pixels can then be assembled into objects 
using a connected components algorithm. Establishing a cor 
respondence of objects between frames (i.e., tracking) is 
accomplished by using a linearly predictive multiple hypoth 
eses tracking algorithm which incorporates both position and 
size. The object tracking method is described below. 
0036 Although overlapping or fusion of fields of view 
(FOV) are not required for the image processing with tracking 
component 102, fusion of FOV's is discussed here. Fusion is 
useful since no single camera can cover large open spaces in 
their entirety. FOV's of various cameras may be fused into a 
coherent Super picture to maintain global awareness. Multiple 
cameras are fused (calibrated) by computing the respective 
nomography matrices. The computation is based on the iden 
tification of several landmark points in the common FOV 
between camera pairs. The landmark points are physically 
marked on the scene and sampled through the user interface. 
The achieved calibration is very accurate. 
0037. The present FOV fusion system has a warping algo 
rithm to accurately depict transformed views. This algorithm 
computes a near optimal camera configuration scheme since 
the cameras are often far apart and have optical axes that form 
angles which vary quite much. Resulting homographies pro 
duce substantially skewed frames where standard warping 
fails but the present warping Succeeds. 
0038 Object or person tracking by image processing com 
ponent can Substantively begin with an initialization phase. 
The goal of this phase is to provide statistically valid values 
for the pixels corresponding to the scene. These values are 
then used as starting points for the dynamic process of fore 
ground and background awareness. Initialization needs to 
occur only once. There are no stringent real-time processing 
requirements for this phase. A certain number of frames N 
(N=70) are accumulated and then processed off-line. 
0039 Each pixel X of an image (of the scene) is considered 
as a mixture of five time-varying trivariate Normal distribu 
tions: 

5 

x-X i.e. 2. 
i=l 

where: 

t; > 0, i = 1, K, 5 

and 

are the mixing proportions (weights) and N (L, X) denotes a 
trivariate Normal distribution with vector mean LL and vari 
ance-covariance matrix X. The distributions are trivariate to 
account for the three component colors (i.e., red, green and 
blue) of each pixel in the general case of a color camera. 
0040. Initialization of the pixel values here involves par 

tially committing each data point to all of the existing distri 
butions. The level of commitment is described by appropriate 
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weighting factors. This is accomplished by the EM method 
noted above. The EM algorithm is used to estimate the param 
eters of the initial distribution L. L and X, i=1,..., 5 for 
every pixel X in the scene. Since the EM algorithm is applied 
off-line over N frames, there are N data points in time avail 
able for each pixel. The data points xj=1,..., N are triplets: 

where x^, x,, and xf stand for the measurement received 
from the red, green and blue channels of the camera for the 
specific pixel at time j. This data X1,X2,..., Xy are assumed 
to be sampled from a mixture of 5 trivariate Normals: 

5 put 

Xi & TN, pi, O I, 
i=1 u 

where the variance-covariance matrix is assumed to be diago 
nal with x., x, and x?having identical variance within each 
Normal component, but not across all components (i.e., 
Ozo, for kz1 components). 
0041 Originally, the algorithm is provided with some 
crude estimates of the parameters of interest: L', u', and 
(o,'). These estimates are obtained with a K-means method 
which commits each incoming data point to a particular dis 
tribution in the mixture model. Then, the following loop is 
applied. 
0042. For k=0, 1, ... calculate: 

a'el)'s ity-pre-p} (k) 2(or ) 
t! (5) 

-32 1 p X. it' (cf. ) e- 2(or ) (x- p'') (x- a") 

1 W 
(k+1) (k) li : - y Wi. 

(k+1) ! - Nrt' - 

for i=1,..., andj=1,..., N. Then, set k-k--1 and repeat the 
loop. 
0043 The condition for terminating the loop is: 

where e is a small positive number (10°) z. are the pos 
terior probabilities that x, belongs to the i-th distribution and 
they form a 5xN matrix at the k-th step of the computation. 
The EM process is applied for every pixel in the focal plane 
array (FPA) of the camera. The result is a mixture model of 
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five Normal distributions per pixel. These Normal distribu 
tions represent five potentially different states for each pixel. 
Some of these states could be background States and some 
could be transient foreground states. The EM algorithm is 
computationally intensive, but since the initialization phase 
takes part offline, this is a non-issue. 
0044) There is a segmentation of moving objects. The 
initial mixture model is updated dynamically thereafter. The 
update mechanism is based on the incoming evidence (i.e., 
new camera frames). Several items could change during an 
update cycle: 

0045 1. The form of some of the distributions could 
change (weight T, mean LL, and variance O.). 

0046 2. Some of the foreground states could revert to 
background and vice versa. 

0047 3. One of the existing distributions could be 
dropped and replaced with a new distribution. 

At every point in time, the distribution with the strongest 
evidence is considered to represent the pixel’s most probable 
background state. 
0048. The update cycle for each pixel proceeds as follows: 

0049. 1. First, the existing distributions are ordered in 
descending order based on their weight values. 

0050 2. Second, the algorithm selects the first B distri 
butions that account for a predefined fraction of the 
evidence T. 

E. 

B = argmi X. v)}. 
E. i=l 

0051 where w, i=1,..., b are the respective distri 
bution weights. These B distributions are considered 
as background distributions while the remaining 5-B 
distributions are considered foreground distributions. 

0.052 3. Third, the algorithm checks if the incoming 
pixel value can be ascribed to any of the existing Normal 
distributions. The matching criterion is the Jeffreys (J) 
divergence measure. 

0.053 4. Fourth, the algorithm updates the mixture of 
distributions and their parameters. The nature of the 
update depends on the outcome of the matching opera 
tion. If a match is found, the update is performed using 
the method of moments. If a match is not found, then the 
weakest distribution is replaced with a new distribution. 
The update performed in this case guarantees the inclu 
sion of the new distribution in the foreground set. 

0054 There is a matching operation. The Kullback 
Leibler (KL) number between two distributions f and g is 
defined as: 

A formal interpretation of the use of the KL information 
number is of whether the likelihood ration can discriminate 
between f and g when f is the true distribution. 
0055 For the purpose of the algorithm, one needs to define 
Some divergence measure between two distributions, so that 
if the divergence measure between the new distribution and 
one of the existing distributions is “too small then these two 
distributions will be pooled together (i.e., the new data point 
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will be attached to one of the existing distributions). For a 
divergence measure d(fg), it is necessary to satisfy (at least) 
the following three axioms: 

d(ff)=0 (a) 

d(fg)20 (b) 

d(fg)=d(gi). (c) 

0056. The KL information number between two distribu 
tions f and g does not satisfy (c), since: 

K(f,g)= Eliott) i. E. log:) = K(g, f) 

i.e., the KL information number is not symmetric around its 
arguments and thus it can not be considered as a divergence 
CaSU. 

0057 The Jeffreys divergence measure between two dis 
tributions f and g is the following: 

This divergence measure is closely related to the KL infor 
mation number, as the following Lemma indicates: 

Lemma 1: 

0059 Proof: 

f(x) J?, g) = f(x)-gcolof, as 
f(x) frcolo tax+ 
g(x) ?ecolog; as 

= K(f,g) + K(g, f). 

0060. The J(fg) is now symmetric around its arguments 
since: 

J(fg)=F(fg)+K(gf)=K(gf)+K(fg)=F(gf) 

and satisfies also axioms (a) and (b). Thus J(fg) is a diver 
gence measure between f and g. 
0061 J(fg) is used to determine whether the new distri 
bution matches or not to one of the existing five distributions. 
The five existing Normal distributions are: 
f-Ns (u, O, I), i=1,..., 5. The incoming distribution is 
g-Na (L. OI). We assume that: 

where X, is the incoming data point. The five divergence 
measures between g and f, i=1,..., 5 will be given by the 
following formula: 
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f = (, Aft: -- l, p (fi, g) = 3 or, or 2 o o (itg - iti) (pig - Ali). 

0062 Once the five divergence measures have been cal 
culated, the distribution f(1sjs5) is found for which: 

and there is a match between f, and gifandonly if J(fg)sK*, 
where K* is a prespecified cutoff value. In the case where 
J(fg)-K* then the new distribution g cannot be matched to 
any of the existing distributions. 
0063. There is a model update when a match is found. If 
the incoming distribution matches to one of the existing dis 
tributions, these two are pooled together to a new Normal 
distribution. This new Normal distribution is considered to 
represent the current state of the pixel. The state is labeled 
eitherbackground or foreground depending on the position of 
the matched distribution in the ordered list of distributions. 

0064. The parameters of the mixture are updated with the 
method of moments. First introduced is some learning param 
eter a which weighs on the weights of the existing distribu 
tions. A 100C.% weight is subtracted from each of the five 
existing weights and it is assigned to the incoming distribu 
tion's weight. In other words, the incoming distribution has 
weight C. since: 

and the five existing distributions have weights: It,(1-C), i=1, 
5. 

0065. Obviously, for C. 0<C.<1 is needed. The choice of a 
depends mainly on the choice of K*. The two quantities are 
inversely related. The smaller the value of K*, the higher the 
value of C. and vice versa. The values of K* and C. are also 
affected by how much noise there is in the monitoring area. So 
if, for example, an outside region was being monitored and 
had much noise due to environmental conditions (i.e., rain, 
snow, etc.), thena “high value of K* and thus a “small value 
of a would be needed since a non-match to one of the distri 
butions is very likely to be caused by background noise. 
0066. On the other hand, if the recording was being done 
indoors where the noise is almost non-existent, thena'small 
value of K* and thus a higher value of C. would be preferred, 
because any time there is not a match to one of the existing 
five distributions, it is very likely to occur due to some fore 
ground movement (since the background has almost no noise 
at all). 
0067 Assuming that there is a match between the new 
distribution g and on of the existing distributions f, where 
1ss5, then the weights of the mixture model are updated as 
follows: 

J., (1-C)7, 1 i=1,..., 5 and izi 
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0068. The mean vectors and variances are also updated. If 
w is (1-C) , , i.e., w is the weight of the j-th component 
(which is the winner in the match) before pooling it with the 
new distribution g, and if w C., i.e., the weights of the new 
observation then define: 

w C 
O = - - - -- C 

w1 + w? (1 O)7tit-1 

Using the method of moments leads to: 
-(1-m), 1+pg 

while the other 4 (unmatched) distributions keep the same 
mean and variance that they had at time t-1. 
0069. There is a model update when a match is not found. 
In the case where a match is not found (i.e., mini--SK 
(fg)-K*), then the current pixel state is committed to be 
foreground and the last distribution in the ordered list is 
replaced with a new one. The parameters of the new distribu 
tion are computed as follows: 

0070) 1. The mean vector Os’ is replaced with the 
incoming pixel value. 

(0071) 2. The variance O’ is replaced with the minimum 
variance from the list of distributions. 

0072. 3. The weight of the new distribution is computed 
as follows: 

0073 where T is the background threshold index. 
0074 This formula guarantees the classification of the 
current pixel State as foreground. The weights of the remain 
ing four distributions are updated according to the following 
formula: 

ws - (1 -T)/2 
— —. with F wit -- 

0075 Multiple hypotheses are developed for predictive 
tracking. In the above, there was described a statistical pro 
cedure to perform on-line segmentation of foreground pixels 
corresponding to moving objects of interest, i.e., people and 
vehicles. Here, how to form trajectories traced by the various 
moving objects is described. The basic requirement for form 
ing object trajectories is the calculation of blob centroids 
(corresponding to moving objects). Blobs are formed after a 
standard 8-connected component analysis algorithm is 
applied to the foreground pixels. The connected component 
algorithm filters out blobs with an area less than A=3x9–27 
pixels as noise. This is the minimal pixel footprint of the 
Smallest object of interest (e.g., a human) in the camera's 
FOV. 
0076. A multiple hypotheses tracking (MHT) is then 
employed that groups the blob centroids of foreground 
objects into distinct trajectories. MHT is considered to be the 
best approach to multi-target tracking applications. It is a 
recursive Bayesian probabilistic procedure the maximizes the 
probability of correctly associating input data with tracks. Its 
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Superiority against other tracking algorithms stems from the 
fact that it does not commit early to a trajectory. Early com 
mitment usually leads to mistakes. MHT groups the input 
data into trajectories only after enough information has been 
collected and processed. In this context, it forms a number of 
candidate hypotheses regarding the association of input data 
with existing trajectories. MHT has shown to be the method 
of choice for applications with heavy clutter and dense traffic. 
In difficult multi-target tracking problems with crossed tra 
jectories, MHT performs very well. 
(0077 FIG. 9 depicts the architecture of the multiple 
hypotheses tracking (MHT) algorithm involving a blob cen 
troid 235. The modules of this algorithm are prediction 236, 
validation 237, hypothesis generation 238 and hypothesis 
evaluation 239. An integral part of any tracking system is 
prediction module 236. Prediction provides estimates of 
moving objects states and in the present system is imple 
mented as a Kalman filter. Kalman filterpredictions are made 
based on prior models for target dynamics and measurement 
O1SC. 

0078. The state vector describing the motion of a fore 
ground object (blob) consists of the position and velocity of 
its centroid expressed in pixel coordinates, i.e., 

x-cy &y...". 
0079 
given by: 

The state space model is a constant Velocity model 

X-1-Fi-sittle, 

with transition matrix F: 

dt 

dt I 
1 O 

0080. The process noise is white noise with a Zero mean 
and covariance matrix: 

df df 
O O 

df 
T dt O. O 

Qk = Euk u = O O dr df i 
3 2 

it? 
O O dt 

where q is the process variance. The measurement model 
describes how measurements are made and it is defined by: 
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and a constant 2x2 covariance matrix of measurement noise 
given by: 

R-Ev.v.). 

0081 Based on the above assumptions, the Kalman filter 
provides minimum mean squared estimates x of the state 
vector according to the following equations: 

K=P. HIHP, H+R.' 

P-II-KHIP 

PFkPF-HQ. 

si xiii. 1+KIZ-Hill 

5-1 Fisk. 

0082 Validation 237 is a process which precedes the gen 
eration of hypotheses 238 regarding associations between 
input data (blob centroids 235) and the current set of trajec 
tories (tracks). Its function is to exclude, early-on, associa 
tions that are unlikely to happen thus limiting the number of 
possible hypotheses to be generated. The vector difference 
between measured and predicted States V is a random vari 
able characterized by the covariance matrix S: 

0083. For every track from the list of current tracks there 
exists an associated gate. A gate can be visualized as an area 
Surrounding a track's predicted location (next move). In the 
present case, a gate is an elliptical shape defined by the 
squared Mahalanobis distance: 

0084 An incoming measurement (blob centroid 235) is 
associated with a track only when it falls within the gate of the 
respective track. Mathematically this is expressed by: 

2<e d’s Direshola. 

The result of validating a new set of blob centroids takes the 
form of an ambiguity matrix. An example of an ambiguity 
matrix corresponding to a hypothetical situation of an exist 
ing set of two tracks (T and T) and a current set of three 
measurements (Z(k), Z(k) and Z(k) is given in Equation (1). 

T. T. T. Tw Equation (1) 

O = 0 1 0 O 31(k) 
0 0 1 0 32(k) 
O O O 1 33 (k) 

The columns of the ambiguity matrix denote the current set of 
tracks with the first and last columns being reserved for false 
alarms (T,) and new tracks (T), respectively. The rows cor 
respond to the particular measurements of blob centroids 
made on the current frame. Non Zero elements of the ambi 
guity matrix signal that the respective measurements are con 
tained in are in the validation region of the associated track. 
The assignments are further constrained in the ambiguity 
matrix by allowing each measurement in the current scan to 
be associated with only one track. Further, it is assumed that 
a track is paired with at most one measurement periteration. 
Therefore, the number of non Zero elements in any row or 
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column (barring the first and last columns) is limited to one. 
Thus, the ambiguity matrix is made a cost matrix as it is 
defined in linear assignment problems. This formulation 
makes the ambiguity matrix a representation of a new set 
hypotheses about blob centroid-track pairings. 
I0085 Central to the implementation of the MHT algo 
rithm is the generation 238 and representation of track 
hypotheses. Tracks are generated based on the assumption 
that a new measurement may: 
I0086 1. belong to an existing track; 
0087 2. be the start of a new track: 
0088. 3. be a false alarm. 
I0089 Assumptions are validated through the validation 
process 237 before they are incorporated into the hypothesis 
structure. The complete set of track hypotheses can be repre 
sented by a hypothesis matrix 240 as shown in FIG. 10. The 
hypothetical situation in Table I corresponds to a set of two 
scans of 2 and 1 measurements made respectively on frame 
k=1 and k+1=2. Some notation clarification is in order. A 
measurement Z,(k) is the i" observation (blob centroid 235) 
made on framek. In addition, a false alarm is denoted by 0 
while the formation of a new track (T) generated from an 
old track (Tim) is shown as Terr(T) 
(0090. The first column 241 in this table is the Hypothesis 
index. In the example case, there are a total of 4 hypotheses 
generated during scan 1 shown in column portion 242, and 8 
more are generated during scan 2 shown in column portion 
243. The last column 244 lists the tracks that the particular 
hypothesis contains (e.g., hypothesis Hs) contains tracks no 1 
and no. 4). The row cells in the hypothesis table denote the 
tracks to which the particular measurement Z(k) belongs 
(e.g., under hypothesis Ho the measurement Z (2) belongs to 
track no. 5). A hypothesis matrix is represented computation 
ally by a tree structure 245 as it is schematically shown in 
FIG. 11. The branches of the tree are in essence the hypoth 
eses about measurements-track associations. 
0091. As it is evident from the above example, hypothesis 
tree 245 can grow exponentially with the number of measure 
ments. Two measures are applied to reduce the number of 
hypotheses. The first measure is to cluster the hypotheses into 
disjoint sets. In this sense, tracks which do not compete for the 
same measurements compose disjoint sets which in turn are 
associated with disjoint hypothesis trees. The second measure 
is to assign probabilities on every branch of hypothesis trees. 
The set of branches with the N, highest probabilities are 
only considered. A recursive Bayesian methodology is fol 
lowed for calculating hypothesis probabilities from frame to 
frame. 
0092 Multi-camera fusion is helpful in tracking objects 
and people. Monitoring of large sites can be best accom 
plished only through the coordinated use of multiple cameras. 
A seamless tracking of humans and vehicles is preferred 
across the whole geographical area covered by all cameras. A 
panoramic view is produced by fusing the individual camera 
FOV's. Then object motion is registered against a global 
coordinate system. Multi-camera registration (fusion) is 
achieved by computing the Homography transformation 
between pairs of cameras. The homography computation pro 
cedure takes advantage of the overlapping that exists between 
pairs of camera FOV's. Pixel coordinates of more than 4 
points are used to calculate the homography transformation 
matrix. These points are projections of physical ground plane 
points that fall in the overlapping area between the two cam 
era FOV's. These points are selected and marked on the 
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ground with paint during the installation phase. Then the 
corresponding projected image points are sampled through 
the Graphical User Interface (GUI). This is a process that 
happens only in the beginning and once the camera cross 
registration is complete it is not repeated. In order to achieve 
optimal coverage with the minimum number of sensors, the 
cameras are placed far apart from each other and at varying 
angles. A Sophisticated warping algorithm may be used to 
accommodate the large distortions produced by the highly 
non-linear homography transformations. 
0093. An algorithm is used to compute the homography 
matrices. The algorithm is based on a statistical optimization 
theory for geometric computer vision and cures the deficien 
cies exhibited by the least squares method. The basic premise 
is that the epipolar constraint may be violated by various 
noise sources due to the statistical nature of the imaging 
problem. In FIG. 12, the statistical nature of the imaging 
problem affects the epipolar constraint. O, and O. are the 
optical centers of the corresponding cameras. POX,Y,Z) is a 
point in the scene that falls in the common area between the 

-s -es 

two camera FOV's. Ideally, the vectors Op. Oq and O, O, 
are co-planar. Due to the noisy imaging process, however, the 

-s -es - as 

actual vectors Op. Oq and OO may not be co-planar. 
0094. In particular, for every camera pair, a 3x3 nomog 
raphy matrix H is computed such that a number of world 
points P (X,Y,Z), C-1,2,..., Nand N24, projected into 
the image points p, and q, the following equations holds: 

PxHa-O, C-1,2,..., N. Equation (2) 

Notice that the symbol (x) denotes the exterior product and 
also that the above equation does not hold for the actual image 
points p, and q, but for the corresponding ideal image points 
p, and q for which the epipolar constraint is satisfied (see 
FIG. 12). Equivalently, the above equation (2) can be written 
aS 

(x;H)=0, k=1,2,3, Equation (3) 

with: 

x'=expid, ', C =1,2,..., N, Equation (4) 

where for any two matrices A and B (A;B)=tra'B) and e' = 
(1,0,0), e=(0, 1, 0), e' =(0, 0, 1). In a statistical frame 
work, homography estimation is equivalent to minimizing the 
Sum of the following squared Mahalanobis distances: 

1 W 
- (k) (k) Y (1) (1) 

under the constraints described by the above equation (3). 
Note that the covariant tensor of the matrices AX, and 
AX) is denoted by: 

V(X(k), X.) =E(Axe)AX. 

where AX=X-x. The symbol (€D) denotes tensor 
product. If one uses Lagrange multipliers, estimation of the 
homography matrix H reduces to the optimization of the 
following functional J.H 
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1 Equation (5) 
JIH =XX (W'(H)(x'; H (X". H). 

The (3x3) weight matrix W(H) is expressed as: 

The symbol (), symbolizes the generalized inverse of a 
matrix (NXN) computed by replacing the smallest (N-r) 
eigenvalues by Zeros. The computation process for the opti 
mization of the functional in Equation (5) proceeds as fol 
lows: 

0.095 1. Initialization begins by setting the parameter 
c=0 and the weights WI for C-1,... N. 

0.096 2. Proceed by computing the following matrices: 

Equation (6) 

1 W 3 

M = X y Wix ax" 

(0097 3. Next calculate the smallest eigenvalue , of 
M=M-cN and the associated eigenvector H. 

I0098. 4. If ->0 then the estimated homography 
matrix H-H is returned and the program exits. 

0099. Otherwise, the weights Ware updated according to 
Equation (6) and the value of C is updated according to: 

Amin 
cod = cold + . . . 9 " " (Hin; NHin) 

0100. In this latter case, the computation continues by 
looping back though step 2. 
0101 Due to the specific arrangement of the cameras 
(large in-between distances and varying pointing angles), the 
homographies introduce large distortions for those pixels 
away from the overlapping area. An interpolation scheme is 
used to compensate for the excessively non-linear homogra 
phy transformation. 
0102 The scheme is a warping algorithm which interpo 
lates simultaneously across both dimensions. Specifically, the 
warping computation proceeds as follows: 
Step 1. Map the pixel grid of the original image to a warped 
grid as it is prescribed by the homography transformation. 
This in general results into mapping the regular rectangular 
grid of the original image to an irregular quadrilateral grid 
246 in the warped space (see FIG. 13). 
Step 2. The warped pixel coordinates in general may take any 
positive or negative values. Scale these coordinates to a nor 
malized positive range. 
Step 3. Employ an interpolation scheme to fill out the pixel 
values in the warped space. One can visualize why such an 
interpolation is necessary if one overlays the warped pixel 
grid on the regular pixel grid as shown in FIG. 13. The shaded 
rectangles 247 represent the intermediate regular pixel loca 
tions that mediate between the warped grid nodes 248. The 
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warping algorithm should assign intensity values to these 
intermediate regular pixel locations in order to form properly 
the warped image. A blown-out view 250 of the region con 
taining rectangles 1 (251) and 2 (249) in FIG. 13 is shown in 
FIG. 14. The shaded rectangular area 29 is the gap between 
the warped nodes (i, j) and (i+mj+n). This area may 
contain full regular pixel locations in the middle and partial 
regular pixel locations in the border (left, right, top, and 
bottom). Assign intensity values to these partial or full pixel 
locations by weighing the intensity at the warped node (i,j) 
with their area A (0<As 1). 
Step 4. Apply the above two-dimensional interpolarization 
scheme from left to right and top to bottom until the nodes in 
the warped pixel grid are exhausted. 
0103 Step 5. Finally, map the normalized warped coordi 
nates back to the unnormalized warped coordinates for proper 
positioning of the image in the universal image plane of the 
observed area. 
0104 Image processing component 102 can provide threat 
assessments of an object or person tracked. Component 102 
can alert Security or appropriate personnel to just those 
objects or persons requiring their scrutiny, while ignoring 
innocuous things. This is achieved by processing image data 
in image processing component 102 through a threat assess 
ment analysis which is done after converting the pixel coor 
dinates of the object tracks into a world coordinate system set 
by image processing component 102. Known space features, 
fixed objects or landmarks are used in coordinate reference 
and transformation. The assembly of features uses the trajec 
tory information provided by image processing module 102 
to compute relevant higher level features on a per vehicle/ 
pedestrian basis. The features are designed to capture “com 
mon sense' beliefs about innocuous, law abiding trajectories 
and the known or Supposed patterns of intruders. The features 
calculated include: 
0105 number of sample points starting position (x,y) 
0106 ending position (x,y) path length distance covered 
(straight line) 
0107 distance ratio (path length/distance covered) 
0108 start time (local wall clock) end time (local wall 
clock) duration 
0109 average speed maximum speed 
0110 speed ratio (average/maximum) 
0111 total turn angles (radians) 
0112 average turn angles 
0113 number of “M” crossings 
0114 Most of these are self explanatory, but a few are not 
so obvious. The wall clock is relevant since activities on some 
paths are automatically Suspect at certain times of day—late 
night and early morning particularly. 
0115 The turn angles and distance ratio features capture 
aspects of how circuitous was the path followed. The legiti 
mate users of the facility tend to follow the most direct paths 
permitted by the lanes. Browsers may take a more serpen 
tine course. 
0116. The M crossings feature attempts to monitor a 
well-known tendency of car thieves to systematically check 
multiple parking stalls along a lane, looping repeatedly back 
to the car doors for a good look or lock check (two loops 
yielding a letter M profile). This can be monitored by keep 
ing reference lines for parking stalls and counting the number 
of traversals into stalls. 
0117 The output of the feature assembly for trajectories is 
recorded from a site observed of some period of time and is 
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stored. That storage is used to produce threat models based on 
a database of features. During trial periods of time, several 
suspicious events can be staged (like “M” type strolls or 
certain inactivities) to enrich the data collection for threat 
assessments. Individual object or person trajectories or tracks 
may be manually labeled as innocuous (OK) or Suspicious 
(not OK or a threat). A clustering algorithm assists in the 
parsimonious descriptions of object or person behavior. The 
behavior database consists of the labeled trajectories or tracks 
and the corresponding vectors. They are processed by a clas 
sification tree induction algorithm. Then the resultant classi 
fier classifies incoming line data as OK or not OK. 
0118 Image processing component 102 detects and tracks 
moving objects or people. In the event that several people are 
moving alongside each other, they may be tracked as a single 
object, but may split into two or more objects and be detected 
as several tracks. Tracking can be lost because the people are 
obscured by equipment or natural obstructions. However, 
tracking will be correctly resumed once the people reappear. 
Additional cameras may be used if split tracks become a 
security loophole. Image processing 104 can recognize 
objects or people that disappear and appear within an FOV 
within short time intervals. This recognition function may be 
achieved by higher resolution cameras to capture detailed 
features of cars and especially humans. The cameras may 
have automated Zoom mechanisms for being able to Zoom in 
momentarily on every detected object or person and capture a 
detailed object signature. Tracking can be done underlight or 
in the dark. 
0119. In Summary, the tracking approach is based on a 
multi-Normal mixture representation of the pixel processes 
and on the Jeffrey divergence measure for matching to fore 
ground or background states. This matching criterion results 
into dynamic segmentation performance. The tracking 
(MHT) algorithm and external multi-camera calibration are 
achieved through the computation of homographies. A warp 
ing algorithm which interpolates simultaneously across two 
dimensions addresses excessive deformations introduced by 
the nomography. A threat assessment analysis based on a tree 
induction algorithm reports Suspicious patterns detected in 
the annotated trajectory data. The threat assessment analysis 
includes a clustering algorithm. The algorithm helps in the 
automation of assessment and classification of objects and 
people. 
What is claimed is: 
1. A tracking system comprising: 
an imaging device; 
a vision processor connected to said imaging device; and 
an identifier connected to said vision processor. 
2. The tracking system of claim 1 wherein said vision 

processor comprises: 
an image processor, and 
a tracker. 
3. The tracking system of claim 2, further comprising a 

fusion processor connected to said vision processor and said 
identifier. 

4. The tracking system of claim3, further comprising a user 
interface component. 

5. The tracking system of claim 4, further comprising a 
connection to at least one database. 

6. The tracking system of claim 5, further comprising a 
sensor connected to said identifier. 

7. The tracking system of claim 6, wherein said user inter 
face component comprises an operator monitor. 
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8. The tracking system of claim 7, wherein said imaging 
device comprises a plurality of cameras. 

9. The tracking system of claim 8, wherein said sensor 
comprises a detector of people and objects. 

10. The tracking system of claim 9, wherein said identifier 
can positively identify people and objects detected by said 
detector. 

11. A tracking system comprising: 
means for imaging: 
means for processing images from said means for imaging; 
means for identifying: 
means for fusing together said means for identifying and 

said 
means for imaging; and 
means for tracking connected to said means for imaging. 
12. The tracking system of claim 11, wherein said means 

for tracking can track at least one person or object and identify 
that person or object. 

13. The tracking system of claim 12, further comprising 
means for interfacing a user with said means for tracking. 
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14. The tracking system of claim 13, wherein said means 
for interfacing a user comprises a means for monitoring said 
means for tracking. 

15. The tracking system of claim 14, further comprising a 
means for sensing connected to said means for identifying. 

16. The tracking system of claim 15, further comprising a 
means for interacting with a database. 

17. A method for tracking comprising: 
attaining images of an item to be tracked; 
processing the images: 
tracking the item; and 
identifying the item. 
18. The method for tracking of claim 17, further compris 

ing fusing the identifying the item with the tracking the item. 
19. The method for tracking of claim 18, further compris 

ing interfacing a user with the method for tracking. 
20. The method for tracking of claim 19, further compris 

ing interacting the method for tracking with a database. 
c c c c c 


