

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
16 February 2012 (16.02.2012)

(10) International Publication Number
WO 2012/021830 A1

(51) International Patent Classification:
C07D 403/04 (2006.01) *A61K 31/517* (2006.01)
C07D 403/14 (2006.01) *A61K 31/55* (2006.01)
C07D 413/14 (2006.01) *A61P 9/00* (2006.01)
C07D 417/14 (2006.01) *A61P 3/10* (2006.01)
C07D 405/14 (2006.01)

(21) International Application Number:
PCT/US2011/047626

(22) International Filing Date:
12 August 2011 (12.08.2011)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
61/373,664 13 August 2010 (13.08.2010) US

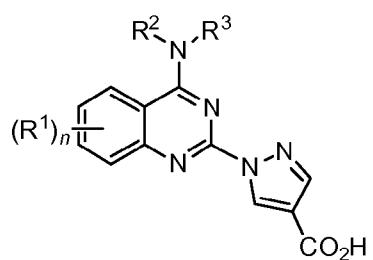
(71) Applicant (for all designated States except US):
JANSSEN PHARMACEUTICA NV [BE/BE]; Turnhoutseweg 30, B-2340 Beerse (BE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): RABINOWITZ, Michael, H. [US/US]; 8525 Celtic Court, San Diego, CA 92129 (US). ROSEN, Mark, D. [US/US]; 5052 Via Cinta, San Diego, CA 92122 (US). TARANTINO, Kyle, T. [US/US]; 4067 Kendall Street, San Diego, CA 92109 (US). VENKATESAN, Hariharan [US/US]; 17065 Bernardo Oaks Drive, San Diego, CA 92128 (US).

(74) Agents: JOHNSON, Philip, S. et al.; Johnson & Johnson, One Johnson & Johnson Plaza, New Brunswick, NJ 08933 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.


(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to the identity of the inventor (Rule 4.17(i))
- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))

[Continued on next page]

(54) Title: 4 - AMINOQUINAZOLIN- 2 - YL - 1 - PYRRAZOLE - 4 - CARBOXYLIC ACID COMPOUNDS AS PROLYL HYDROXYLASE INHIBITORS

(I)

(57) Abstract: Aminoquinazolinyl compounds of formula (I) are described, which are useful as prolyl hydroxylase inhibitors. Such compounds may be used in pharmaceutical compositions and methods for the treatment of disease states, disorders, and conditions mediated by prolyl hydroxylase activity. Thus, the compounds may be administered to treat, e.g., anemia, vascular disorders, metabolic disorders, and wound healing.

WO 2012/021830 A1

— as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:

— with international search report (Art. 21(3))

5
4 - AMINOQUINAZOLIN - 2 - YL - 1 - PYRRAZOLE - 4 - CARBOXYLIC ACID COMPOUNDS AS PROYL
HYDROXYLASE INHIBITORSCross Reference to Related Application

This application claims the benefit of US provisional patent application serial
10 number 61/373,664, filed August 13, 2010.

Field of the Invention

The present invention relates to certain aminoquinazolinyl compounds, pharmaceutical compositions containing them, and methods of using them for the treatment of disease states, disorders, and conditions mediated by prolyl
15 hydroxylase activity.

Background of the Invention

Cells respond to hypoxia by activating the transcription of genes involved in cell survival, oxygen delivery and utilization, angiogenesis, cellular metabolism, regulation of blood pressure, hematopoiesis, and tissue preservation. Hypoxia-inducible factors (HIFs) are key transcriptional regulators of these genes (Semenza et al., 1992, *Mol Cell Biol.*, 12(12):5447-54; Wang et al., 1993, *J Biol Chem.*, 268(29):21513-18; Wang et al., 1993, *Proc Natl Acad Sci.*, 90:4304-08; Wang et al., 1995, *J Biol Chem.*, 270(3):1230-37). Three forms of HIF- α have been described: HIF-1 α , HIF-2 α and HIF-3 α (Scheuermann et al., 2007, *Methods Enzymol.*, 435:3-24). Pairing of a HIF α sub-unit with HIF-1 β forms a functional heterodimeric protein that subsequently recruits other transcriptional factors such as p300 and CBP (Semenza, 2001, *Trends Mol Med.*, 7(8):345-50).

A family of highly conserved oxygen, iron, and 2-oxoglutarate-dependent prolyl hydroxylase (PHD) enzymes mediate the cells response to hypoxia via post-translational modification of HIF (Ivan et al., 2001, *Science*, 292:464-68; Jaakkola et al., 2001, *Science*, 292:468-72). Under normoxic conditions, PHD catalyzes the hydroxylation of two conserved proline residues within HIF. Von Hippel Lindau (VHL) protein binds selectively to hydroxylated HIF. The binding of VHL renders HIF a target for polyubiquitination by the E3 ubiquitin ligase complex and its subsequent degradation by the 26S proteasome (Ke et al., 2006, *Mol Pharmacol.* 70(5):1469-80; Semenza, *Sci STKE.*, 2007, 407(cm8):1-3). As the affinity of PHD for oxygen is

5 within the physiological range of oxygen and oxygen is a necessary co-factor for the reaction, PHD is inactivated when oxygen tension is reduced. In this way, HIF is rapidly degraded under normoxic conditions but accumulates in cells under hypoxic conditions or when PHD is inhibited.

Four isotypes of PHD have been described: PHD1, PHD2, PHD3, and PHD4
10 (Epstein et al., 2001, *Cell*, 107:43-54; Kaelin, 2005, *Annu Rev Biochem.*, 74:115-28; Schmid et al., 2004, *J Cell Mol Med.*, 8:423-31). The different isotypes are ubiquitously expressed but are differentially regulated and have distinct physiological roles in the cellular response to hypoxia. There is evidence that the various isotypes have different selectivity for the three different HIF α sub-types (Epstein et al., *supra*).
15 In terms of cellular localization, PHD1 is primarily nuclear, PHD2 is primarily cytoplasmic, and PHD3 appears to be both cytoplasmic and nuclear (Metzen E, et al. 2003, *J Cell Sci.*, 116(7):1319-26). PHD2 appears to be the predominant HIF α prolyl hydroxylase under normoxic conditions (Ivan et al., 2002. *Proc Natl Acad Sci. USA*, 99(21):13459-64; Berra et al., 2003, *EMBO J.*, 22:4082-90). The three
20 isotypes have a high degree of amino-acid homology and the active site of the enzyme is highly conserved.

The HIF target gene products are involved in a number of physiological and pathophysiological processes including but not limited to: erythropoiesis, angiogenesis, regulation of energy metabolism, vasomotor function, and cell
25 apoptosis/proliferation. The first gene described as a HIF target was that encoding erythropoietin (EPO) (Wang et al., 1993, *supra*). It was recognized that a reduction in the oxygen carrying capacity of the blood is sensed in the kidney and that the kidney and liver respond by releasing more EPO, the hormone that stimulates red blood cell proliferation and maturation. EPO has a number of other important effects
30 on non-hematopoietic cell types and has emerged as a key tissue-protective cytokine (Arcasoy, 2008, *Br J Haematol.*, 141:14-31). Thus EPO is now implicated in wound healing and angiogenesis as well as the response of tissues to ischemic insult. Most of the enzymes involved in anaerobic glycolysis are encoded by HIF target genes and as a result glycolysis is increased in hypoxic tissues (Shaw, 2006,
35 *Curr Opin Cell Biol.*, 18(6):598-608). The known HIF target gene products in this pathway include but are not limited to: glucose transporters such as GLUT-1 (Ebert

5 et al., 1995, *J Biol Chem.*, 270(49):29083-89), enzymes involved in the breakdown of glucose to pyruvate such as hexokinase and phosphoglycerate kinase 1 (Firth et al., 1994, *Proc Natl Acad Sci. USA*, 91:6496-6500) as well as lactate dehydrogenase (Firth et al., *supra*). HIF target gene products are also involved in the regulation of cellular metabolism. For example, pyruvate dehydrogenase kinase-1 is a target HIF 10 gene product and regulates the entry of pyruvate into the Kreb's cycle by reducing the activity of pyruvate dehydrogenase by phosphorylation (Kim et al., 2006, *Cell Metab.*, 3:177-85; Papandreou et al., 2006, *Cell Metab.*, 3:187-197). HIF target gene products are also involved in angiogenesis. For example, vascular endothelial 15 growth factor (VEGF) (Liu et al., 1995, *Circ Res.*, 77(3):638-43) is a known regulator of angiogenesis and vasculogenesis. HIF target gene products also function in the regulation of vascular tone and include heme oxygenase-1 (Lee et al., 1997, *J Biol Chem.*, 272(9):5375-81). A number of HIF regulated gene products such as platelet-derived growth factor (PDGF) (Yoshida et al., 2006, *J Neurooncol.*, 76(1):13-21), vascular endothelial growth factor (Breen, 2007, *J Cell Biochem.*, 102(6):1358-67) 20 and EPO (Arcasoy, *supra*) also function in the coordinated response to wound healing.

Targeted disruption of the prolyl hydroxylase (PHD) enzyme activity by small molecules has potential utility in the treatment of disorders of oxygen sensing and distribution. Examples include but are not limited to: anemia; sickle cell anemia; 25 peripheral vascular disease; coronary artery disease; heart failure; protection of tissue from ischemia in conditions such as myocardial ischemia, myocardial infarction and stroke; preservation of organs for transplant; treatment of tissue ischemia by regulating and/or restoring blood flow, oxygen delivery and/or energy utilization; acceleration of wound healing particularly in diabetic and aged patients; 30 treatment of burns; treatment of infection; bone healing, and bone growth. In addition, targeted disruption of PHD is expected to have utility in treating metabolic disorders such as diabetes, obesity, ulcerative colitis, inflammatory bowel disease and related disorders such as Crohn's disease. (*Recent Patents on Inflammation & Allergy Drug Discovery*, 2009, 3, 1-16).

35 HIF has been shown to be the primary transcriptional factor that leads to increased erythropoietin production under conditions of hypoxia (Wang et al., 1993,

5 *supra*). While treatment with recombinant human erythropoietin has been demonstrated to be an effective method of treating anemia, small molecule mediated PHD inhibition can be expected to offer advantages over treatment with erythropoietin. Specifically, the function of other HIF gene products are necessary for hematopoiesis and regulation of these factors increases the efficiency of
10 hematopoiesis. Examples of HIF target gene products that are critical for hematopoiesis include: transferrin (Rolfs et al., 1997, *J Biol Chem.*, 272(32):20055-62), transferrin receptor (Lok et al., 1999, *J Biol Chem.*, 274(34):24147-52; Tacchini et al., 1999, *J Biol Chem.*, 274(34):24142-46) and ceruloplasmin (Mukhopadhyay et al., 2000, *J Biol Chem.*, 275(28):21048-54). Hepcidin expression is also suppressed
15 by HIF (Peysonnaux et al., 2007, *J Clin Invest.*, 117(7):1926-32) and small molecule inhibitors of PHD have been shown to reduce hepcidin production (Braliou et al., 2008, *J Hepatol.*, 48:801-10). Hepcidin is a negative regulator of the availability of the iron that is necessary for hematopoiesis, so a reduction in hepcidin production is expected to be beneficial to the treatment of anemia. PHD inhibition
20 may also be useful when used in conjunction with other treatments for anemia including iron supplementation and/or exogenous erythropoietin. Studies of mutations in the PHD2 gene occurring naturally in the human population provide further evidence for the use of PHD inhibitors to treat anemia. Two recent reports have shown that patients with dysfunctional mutations in the PHD2 gene display
25 increased erythrocytosis and elevated blood hemoglobin (Percy et al., 2007, *PNAS*, 103(3):654-59; Al-Sheikh et al., 2008, *Blood Cells Mol Dis.*, 40:160-65). In addition, a small molecule PHD inhibitor has been evaluated in healthy volunteers and patients with chronic kidney disease (U.S. pat. appl. US2006/0276477, December 7, 2006). Plasma erythropoietin was increased in a dose-dependent fashion and blood
30 hemoglobin concentrations were increased in the chronic kidney disease patients.

Metabolic adaptation and preservation of tissues are jeopardized by ischemia. PHD inhibitors increase the expression of genes that lead to changes in metabolism that are beneficial under ischemic conditions (Semenza, 2007, *Biochem J.*, 405:1-9). Many of the genes encoding enzymes involved in anaerobic glycolysis are regulated
35 by HIF and glycolysis is increased by inhibiting PHD (Shaw, *supra*). Known HIF target genes in this pathway include but are not limited to: GLUT-1 (Ebert et al.,

5 supra), hexokinase, phosphoglycerate kinase 1, lactate dehydrogenase (Firth et al.,
supra), pyruvate dehydrogenase kinase-1 (Kim et al., *supra*; Papandreou et al.,
supra). Pyruvate dehydrogenase kinase-1 suppresses the entry of pyruvate into the
Kreb's cycle. HIF mediates a switch in the expression of the cytochromes involved
in electron transport in the mitochondria (Fukuda et al., 2007, *Cell*, 129(1):111-22).

10 This change in the cytochrome composition optimizes the efficiency in ATP
production under hypoxic conditions and reduces the production of injurious
oxidative phosphorylation by-products such as hydrogen peroxide and superoxide.
With prolonged exposure to hypoxia, HIF drives autophagy of the mitochondria
resulting in a reduction in their number (Zhang H et al., 2008, *J Biol Chem*. 283:
15 10892-10903). This adaptation to chronic hypoxia reduces the production of
hydrogen peroxide and superoxide while the cell relies on glycolysis to produce
energy. A further adaptive response produced by HIF elevation is up-regulation of
cell survival factors. These factors include: Insulin-like growth factor (IGF) 2, IGF-
binding protein 2 and 3 (Feldser et al., 1999, *Cancer Res*. 59:3915–18). Overall
20 accumulation of HIF under hypoxic conditions governs an adaptive up-regulation of
glycolysis, a reduction in oxidative phosphorylation resulting in a reduction in the
production of hydrogen peroxide and superoxide, optimization of oxidative
phosphorylation protecting cells against ischemic damage. Thus, PHD inhibitors are
expected to be useful in organ and tissue transplant preservation (Bernhardt et al.,
25 2007, *Methods Enzymol.*, 435:221-45). While benefit may be achieved by
administering PHD inhibitors before harvesting organs for transplant, administration
of an inhibitor to the organ/tissue after harvest, either in storage (e.g., cardioplegia
solution) or post-transplant, may also be of therapeutic benefit.

PHD inhibitors are expected to be effective in preserving tissue from regional
30 ischemia and/or hypoxia. This includes ischemia/hypoxia associated with *inter alia*:
angina, myocardial ischemia, stroke, ischemia of skeletal muscle. There are a
number of lines of experimental evidence that support the concept that PHD
inhibition and subsequent elevation of HIF as a useful method for preserving
ischemic tissue. Recently, ischemic pre-conditioning has been demonstrated to be a
35 HIF-dependent phenomenon (Cai et al., 2008, *Cardiovasc Res*., 77(3):463-70).
Ischemic pre-conditioning is a well known phenomenon whereby short periods of

5 hypoxia and/or ischemia protect tissue from subsequent longer periods of ischemia (Murry et al., 1986, *Circulation*, 74(5):1124-36; Das et al., 2008, *IUBMB Life*, 60(4):199-203). Ischemic pre-conditioning is known to occur in humans as well as experimental animals (Darling et al., 2007, *Basic Res Cardiol.*, 102(3):274-8; Kojima I et al., 2007, *J Am Soc Nephrol.*, 18:1218-26). While the concept of pre-
10 conditioning is best known for its protective effects in the heart, it also applies to other tissues including but not limited to: liver, skeletal muscle, liver, lung, kidney, intestine and brain (Pasupathy et al., 2005, *Eur J Vasc Endovasc Surg.*, 29:106-15; Mallick et al., 2004, *Dig Dis Sci.*, 49(9):1359-77). Experimental evidence for the tissue protective effects of PHD inhibition and elevation of HIF have been obtained in
15 a number of animal models including: germ-line knock out of PHD1 which conferred protection of the skeletal muscle from ischemic insult (Aragonés et al., 2008, *Nat Genet.*, 40(2):170-80), silencing of PHD2 through the use of siRNA which protected the heart from ischemic insult (Natarajan et al., 2006, *Circ Res.*, 98(1):133-40), inhibition of PHD by administering carbon monoxide which protected the
20 myocardium from ischemic injury (Chin et al., 2007, *Proc Natl Acad Sci. U.S.A.*, 104(12):5109-14), hypoxia in the brain which increased the tolerance to ischemia (Bernaudin et al., 2002, *J Cereb Blood Flow Metab.*, 22(4):393-403). In addition, small molecule inhibitors of PHD protect the brain in experimental stroke models (Siddiq et al., 2005, *J Biol Chem.*, 280(50):41732-43). Moreover, HIF up-regulation
25 has also been shown to protect the heart of diabetic mice, where outcomes are generally worse (Natarajan et al., 2008, *J Cardiovasc Pharmacol.*, 51(2):178-187). The tissue protective effects may also be observed in Buerger's disease, Raynaud's disease, and acrocyanosis.

The reduced reliance on aerobic metabolism via the Kreb's cycle in the
30 mitochondria and an increased reliance on anaerobic glycolysis produced by PHD inhibition may have beneficial effects in normoxic tissues. It is important to note that PHD inhibition has also been shown to elevate HIF under normoxic conditions. Thus, PHD inhibition produces a pseudohypoxia associated with the hypoxic response being initiated through HIF but with tissue oxygenation remaining normal.
35 The alteration of metabolism produced by PHD inhibition can also be expected to

5 provide a treatment paradigm for diabetes, obesity and related disorders, including co-morbidities.

Globally, the collection of gene expression changes produced by PHD inhibition reduce the amount of energy generated per unit of glucose and will stimulate the body to burn more fat to maintain energy balance. The mechanisms 10 for the increase in glycolysis are discussed above. Other observations link the hypoxic response to effects that are expected to be beneficial for the treatment of diabetes and obesity. Thus, high altitude training is well known to reduce body fat (Armellini et al., 1997, *Horm Metab Res.*, 29(9):458-61). Hypoxia and hypoxia mimetics such as desferrioxamine have been shown to prevent adipocyte 15 differentiation (Lin et al., 2006, *J Biol Chem.*, 281(41):30678-83; Carrière et al., 2004, *J Biol Chem.*, 279(39):40462-69). The effect is reversible upon returning to normoxic conditions. Inhibition of PHD activity during the initial stages of adipogenesis inhibits the formation of new adipocytes (Floyd et al., 2007, *J Cell Biochem.*, 101:1545-57). Hypoxia, cobalt chloride and desferrioxamine elevated HIF and inhibited PPAR 20 gamma 2 nuclear hormone receptor transcription (Yun et al., 2002, *Dev Cell.*, 2:331-41). As PPAR gamma 2 is an important signal for adipocyte differentiation, PHD inhibition can be expected to inhibit adipocyte differentiation. These effects were shown to be mediated by the HIF-regulated gene DEC1/Stra13 (Yun et al., *supra*).

Small molecular inhibitors of PHD have been demonstrated to have beneficial 25 effects in animal models of diabetes and obesity (Intl. Pat. Appl. Publ. WO2004/052284, June 24, 2004; WO2004/052285, June 24, 2004). Among the effects demonstrated for PHD inhibitors in mouse diet-induced obesity, db/db mouse and Zucker fa/fa rat models were lowering of: blood glucose concentration, fat mass in both abdominal and visceral fat pads, hemoglobin A1c, plasma triglycerides, body 30 weight as well as changes in established disease bio-markers such as increases in the levels of adrenomedullin and leptin. Leptin is a known HIF target gene product (Grosfeld et al., 2002, *J Biol Chem.*, 277(45):42953-57). Gene products involved in the metabolism in fat cells were demonstrated to be regulated by PHD inhibition in a HIF-dependent fashion (Intl. Pat. Appl. Publ. WO2004/052285, *supra*). These 35 include apolipoprotein A-IV, acyl CoA thioesterase, carnitine acetyl transferase, and insulin-like growth factor binding protein (IGFBP)-1.

5 PHD inhibitors are expected to be therapeutically useful as stimulants of vasculogenesis, angiogenesis, and arteriogenesis. These processes establish or restore blood flow and oxygenation to the tissues under ischemia and/or hypoxia conditions (Semenza et al., 2007, *J Cell Biochem.*, 102:840-47; Semenza, 2007, *Exp Physiol.*, 92(6):988-91). It has been shown that physical exercise increases HIF-1
10 and vascular endothelial growth factor in experimental animal models and in humans (Gustafsson et al. 2001, *Front Biosci.*, 6:D75-89) and consequently the number of blood vessels in skeletal muscle. VEGF is a well-known HIF target gene product that is a key driver of angiogenesis (Liu et al., *supra*). While administration of various forms of VEGF receptor activators are potent stimuli for angiogenesis, the
15 blood vessel resulting from this potential form of therapy are leaky. This is considered to limit the potentially utility of VEGF for the treatment of disorders of oxygen delivery. The increased expression of a single angiogenic factor may not be sufficient for functional vascularization (Semenza, 2007, *supra*). PHD inhibition offers a potential advantage over other such angiogenic therapies in that it stimulates
20 a controlled expression of multiple angiogenic growth factors in a HIF-dependent fashion including but not limited to: placental growth factor (PLGF), angiopoietin-1 (ANGPT1), angiopoietin-2 (ANGPT2), platelet-derived growth factor beta (PDGFB) (Carmeliet, 2004, *J Intern Med.*, 255:538-61; Kelly et al., 2003, *Circ Res.*, 93:1074-81) and stromal cell derived factor 1 (SDF-1) (Ceradini et al., 2004, *Nat Med.*,
25 10(8):858-64). Expression of angiopoietin-1 during angiogenesis produces leakage-resistant blood vessels, in contrast to the vessels produced by administration of VEGF alone (Thurston et al., 1999, *Science*, 286:2511-14; Thurston et al., 2000, *Nat Med.*, 6(4):460-3; Elson et al., 2001, *Genes Dev.*, 15(19):2520-32). Stromal cell derived factor 1 (SDF-1) has been shown to be critical to the process of recruiting
30 endothelial progenitor cells to the sites of tissue injury. SDF-1 expression increased the adhesion, migration and homing of circulating CXCR4-positive progenitor cells to ischemic tissue. Furthermore inhibition of SDF-1 in ischemic tissue or blockade of CXCR4 on circulating cells prevents progenitor cell recruitment to sites of injury (Ceradini et al., 2004, *supra*; Ceradini et al., 2005, *Trends Cardiovasc Med.*,
35 15(2):57-63). Importantly, the recruitment of endothelial progenitor cells to sites of injury is reduced in aged mice and this is corrected by interventions that increase

5 HIF at the wound site (Chang et al., 2007, *Circulation*, 116(24):2818-29). PHD inhibition offers the advantage not only of increasing the expression of a number of angiogenic factors but also a co-ordination in their expression throughout the angiogenesis process and recruitment of endothelial progenitor cells to ischemic tissue.

10 Evidence for the utility of PHD inhibitors as pro-angiogenic therapies is provided by the following observations. Adenovirus-mediated over-expression of HIF has been demonstrated to induce angiogenesis in non-ischemic tissue of an adult animal (Kelly et al., 2003, *Circ Res.*, 93(11):1074-81) providing evidence that therapies that elevate HIF, such as PHD inhibition, will induce angiogenesis.

15 Placental growth factor (PLGF), also a HIF target gene, has been shown to play a critical role in angiogenesis in ischemic tissue (Carmeliet, 2004, *J Intern Med.*, 255(5):538-61; Luttun et al., 2002, *Ann N Y Acad Sci.*, 979:80-93). The potent pro-angiogenic effects of therapies that elevate HIF have been demonstrated, via HIF over-expression, in skeletal muscle (Pajusola et al., 2005, *FASEB J.*, 19(10):1365-7;

20 Vincent et al., 2000, *Circulation*, 102:2255-61) and in the myocardium (Shyu et al., 2002, *Cardiovasc Res.*, 54:576-83). The recruitment of endothelial progenitor cells to the ischemic myocardium by the HIF target gene SDF-1 has also been demonstrated (Abbott et al., 2004, *Circulation*, 110(21):3300-05). These findings support the general concept that PHD inhibitors will be effective in stimulating

25 angiogenesis in the setting of tissue ischemia, particularly muscle ischemia. It is expected that therapeutic angiogenesis produced by PHD inhibitors will be useful in restoring blood flow to tissues and therefore the treatment of disease including but not restricted to angina pectoris, myocardial ischemia and infarction, peripheral ischemic disease, claudication, gastric and duodenal ulcers, ulcerative colitis, and

30 inflammatory bowel disease.

PHD and HIF play a central role in tissue repair and regeneration including healing of wounds and ulcers. Recent studies have demonstrated that an increased expression of all three PHDs at wound sites in aged mice with a resulting reduction in HIF accumulation (Chang et al., *supra*). Thus, elevation of HIF in aged mice by 35 administering desferrioxamine increased the degree of wound healing back to levels observed in young mice. Similarly, in a diabetic mouse model, HIF elevation was

5 suppressed compared to non-diabetic litter mates (Mace et al., 2007, *Wound Repair Regen.*, 15(5):636-45). Topical administration of cobalt chloride, a hypoxia mimetic, or over-expression of a murine HIF that lacks the oxygen-dependent degradation domain and thus provides for a constitutively active form of HIF, resulted in increased HIF at the wound site, increased expression of HIF target genes such as
10 VEGF, Nos2, and Hmox1 and accelerated wound healing. The beneficial effect of PHD inhibition is not restricted to the skin and small molecule inhibitors of PHD have recently been demonstrated to provide benefit in a mouse model of colitis (Robinson et al., 2008, *Gastroenterology*, 134(1):145-55).

PHD inhibition resulting in accumulation of HIF is expected to act by at least
15 four mechanisms to contribute to accelerated and more complete healing of wounds: 1) protection of tissue jeopardized by hypoxia and/or ischemia, 2) stimulation of angiogenesis to establish or restore appropriate blood flow to the site, 3) recruitment of endothelial progenitor cells to wound sites, 4) stimulation of the release of growth factors that specifically stimulate healing and regeneration.

20 Recombinant human platelet-derived growth factor (PDGF) is marketed as becaplermin (Regranex™) and has been approved by the Food and Drug Administration of the United States of America for "Treatment of lower extremity diabetic neuropathic ulcers that extend into the subcutaneous tissue or beyond, and have adequate blood supply". Bevacizumab has been shown to be effective in
25 accelerating wound healing in diabetic patients (Steed, 2006, *Plast Reconstr Surg.*, 117(7 Suppl):143S-149S; Nagai et al., 2002, *Expert Opin Biol Ther.*, 2(2):211-8). As PDGF is a HIF gene target (Schultz et al., 2006, *Am J Physiol Heart Circ Physiol.*, 290(6):H2528-34; Yoshida et al., 2006, *J Neurooncol.*, 76(1):13-21), PHD inhibition is expected to increase the expression of endogenous PDGF and produce a similar
30 or more beneficial effect to those produced with bevacizumab alone. Studies in animals have shown that topical application of PDGF results in increased wound DNA, protein, and hydroxyproline amounts; formation of thicker granulation and epidermal tissue; and increased cellular repopulation of wound sites. PDGF exerts a local effect on enhancing the formation of new connective tissue. The effectiveness
35 of PHD inhibition is expected to be greater than that produced by bevacizumab due to the additional tissue protective and pro-angiogenic effects mediated by HIF.

5 The beneficial effects of inhibition of PHD are expected to extend not only to accelerated wound healing in the skin and colon but also to the healing of other tissue damage including but not limited to gastrointestinal ulcers, skin graft replacements, burns, chronic wounds and frost bite.

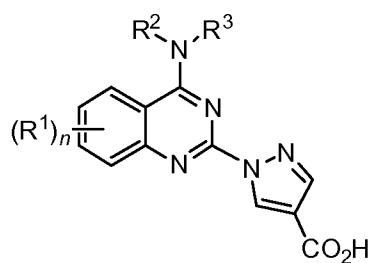
10 Stem cells and progenitor cells are found in hypoxic niches within the body and hypoxia regulates their differentiation and cell fate (Simon et al., 2008, *Nat Rev Mol Cell Biol.*, 9:285-96). Thus PHD inhibitors may be useful to maintain stem cells and progenitor cells in a pluripotent state and to drive differentiation to desired cell types. Stem cells may be useful in culturing and expanding stem cell populations and may hold cells in a pluripotent state while hormones and other factors are 15 administered to the cells to influence the differentiation and cell fate.

15 A further use of PHD inhibitors in the area of stem cell and progenitor cell therapeutics relates to the use of PHD inhibitors to condition these cells to withstand the process of implantation into the body and to generate an appropriate response to the body to make the stem cell and progenitor cell implantation viable (Hu et al., 20 2008, *J Thorac Cardiovasc Surg.*, 135(4):799-808). More specifically PHD inhibitors may facilitate the integration of stem cells and draw in an appropriate blood supply to sustain the stem cells once they are integrated. This blood vessel formation will also function to carry hormones and other factors released from these cells to the rest of the body.

20 PHD inhibitors may also be useful in the treatment of infection (Peyssonnaux et al., 2005, *J Invest Dermatol.*, 115(7):1806-15; Peyssonnaux et al., 2008 *J Invest Dermatol.*, 2008 Aug;128(8):1964-8). HIF elevation has been demonstrated to increase the innate immune response to infection in phagocytes and in 25 keratinocytes. Phagocytes in which HIF is elevated show increased bactericidal activity, increased nitric oxide production and increased expressed of the anti-bacterial peptide cathelicidin. These effects may also be useful in treating infection from burns.

30 HIF has also been shown to be involved in bone growth and healing (Pfander D et al., 2003 *J Cell Sci.*, 116(Pt 9):1819-26., Wang et al., 2007 *J Clin Invest.*, 35 17(6):1616-26.) and may therefore be used to heal or prevent fractures. HIF stimulates of glycolysis to provide energy to allow the synthesis of extracellular

5 matrix of the epiphyseal chondrocytes under a hypoxic environment. HIF also plays a role in driving the release of VEGF and angiogenesis in bone healing process. The growth of blood vessels into growing or healing bone can be the rate limiting step in the process.


10 Certain small molecules with prolyl hydroxylase inhibitory activities have been described in the literature. These include, but are not limited to, certain imidazo[1,2-a]pyridine derivatives (Warshakoon et al., 2006, *Bioorg Med Chem Lett.*, 16(21):5598-601), substituted pyridine derivatives (Warshakoon et al., 2006, *Bioorg Med Chem Lett.*, 16(21):5616-20), certain pyrazolopyridines (Warshakoon et al., 2006, *Bioorg Med Chem Lett.*, 16(21):5687-90), certain bicyclic heteroaromatic N-15 substituted glycine derivatives (Intl. Pat. Appl. Publ. WO2007/103905, September 13, 2007), quinoline based compounds (Intl. Pat. Appl. Publ. WO2007/070359, June 21, 2007), certain pyrimidinetrione N-substituted glycine derivatives (Intl. Pat. Appl. Publ. WO2007/150011, December 27, 2007), substituted aryl or heteroaryl amide compounds (U.S. Pat. Appl. Publ. No.: US 2007/0299086, December 27, 2007) and 20 substituted 4-hydroxypyrimidine-5-carboxamides (Intl. Pat. Appl. Publ. WO2009/117269, September 24, 2009).

25 However, there remains a need for potent prolyl hydroxylase modulators with desirable pharmaceutical properties. Certain aminoquinazolinyl derivatives have been found in the context of this invention to have prolyl hydroxylase modulating activity.

Summary of the Invention

30 The present invention is directed to compounds which are useful inhibitors of PHD. The compounds of the present invention are of general Formula (I),

Formula (I)

5 wherein:

n is 0-3

R^1 is a member independently selected from the group consisting of halo, $-O-R^c$, $-C_{1-4}$ alkyl, cyclohexyl, phenyl optionally substituted with $-C_{1-4}$ alkyl, benzyl optionally substituted with $-C_{1-4}$ alkyl, and $-NR^aR^b$;

10 R^a is H and R^b is benzyl optionally substituted with $-C_{1-4}$ alkyl, or R^a and R^b are taken together with the nitrogen to which they are attached to form a piperidine ring;
 R^c is cyclohexyl, phenyl optionally substituted with one or more R^d members;
 R^d is a member independently selected from the group consisting of -H, halo, and $-C_{1-4}$ alkyl;

15 R^2 is a member independently selected from the group consisting of -H, and $-C_{1-4}$ alkyl,

R^3 is a member independently selected from the group consisting of -H, $-C_{1-4}$ alkyl optionally substituted with $-OCH_3$ or $-N(C_{1-4}alkyl)_2$, cyano, $-SO_2CH_3$, tetrahydropyran, $-(CH_2)_mC_{3-8}$ cycloalkyl, $-(CH_2)_m$ phenyl optionally substituted with one or more halo, or $-C_{1-4}$ alkyl;

20 m is 0-1;

R^2 and R^3 can be taken together with the nitrogen to which they are attached to form a 4 to 7 membered heterocycloalkyl ring optionally containing O, N, S optionally substituted with -OH, cyano, halo, $-N-C(O)C_{1-4}alkyl$, and $-C_{1-4}$ alkyl;

25 and enantiomers, diastereomers, racemates, and pharmaceutically acceptable salts thereof.

Isomeric forms of the compounds of formula (I), and of their pharmaceutically acceptable salts, are encompassed within the present invention, and reference herein to one of such isomeric forms is meant to refer to at least one of such 30 isomeric forms. One of ordinary skill in the art will recognize that compounds

5 according to this invention may exist, for example, in a single isomeric form whereas other compounds may exist in the form of a regioisomeric mixture.

The invention also relates to pharmaceutically acceptable salts, pharmaceutically acceptable prodrugs, and pharmaceutically active metabolites of compounds of Formula (I). In certain preferred embodiments, the compound of

10 Formula (I) is a compound selected from those species described or exemplified in the detailed description below.

In a further general aspect, the invention relates to pharmaceutical compositions each comprising: (a) an effective amount of a compound of Formula (I), or a pharmaceutically acceptable salt, pharmaceutically acceptable prodrug, or 15 pharmaceutically active metabolite thereof; and (b) a pharmaceutically acceptable excipient.

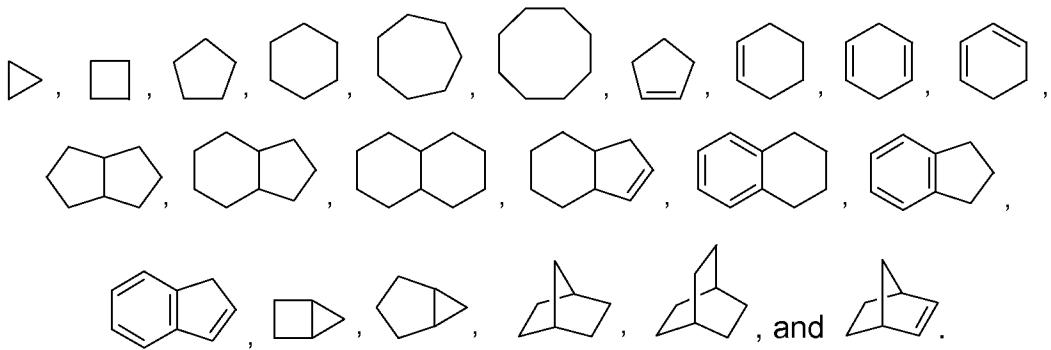
In another general aspect, the invention is directed to a method of treating a subject suffering from or diagnosed with a disease, disorder, or medical condition mediated by a prolyl hydroxylase enzyme activity, comprising administering to the 20 subject in need of such treatment an effective amount of a compound of Formula (I), or a pharmaceutically acceptable salt, pharmaceutically acceptable prodrug, or pharmaceutically active metabolite thereof.

In certain preferred embodiments of the inventive method, the disease, disorder, or medical condition is selected from: anemia, vascular disorders, 25 metabolic disorders, and wound healing.

Additional embodiments, features, and advantages of the invention will be apparent from the following detailed description and through practice of the invention.

30 Detailed Description

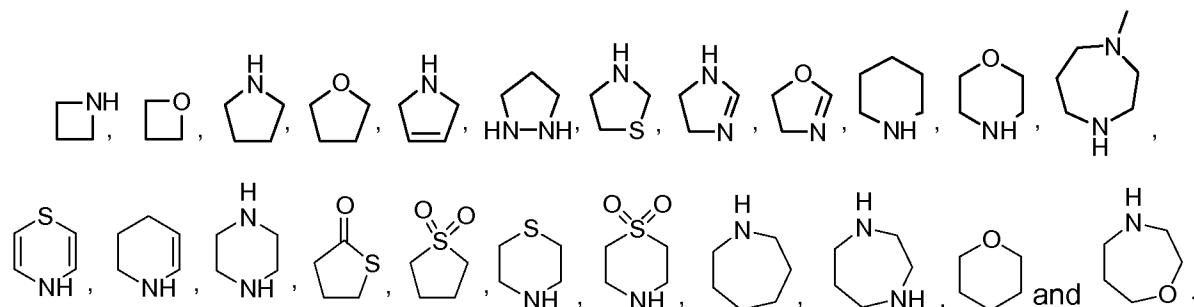
The invention may be more fully appreciated by reference to the following description, including the following glossary of terms and the concluding examples. For the sake of brevity, the disclosures of the publications, including patents, cited in this specification are herein incorporated by reference.


35 As used herein, the terms "including", "containing" and "comprising" are used herein in their open, non-limiting sense.

5 The term “alkyl” refers to a straight- or branched-chain alkyl group having from 1 to 12 carbon atoms in the chain. Examples of alkyl groups include methyl (Me, which also may be structurally depicted by the symbol, “/”), ethyl (Et), n-propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl (tBu), pentyl, isopentyl, tert-pentyl, hexyl, isohexyl, and groups that in light of the ordinary skill in the art and the 10 teachings provided herein would be considered equivalent to any one of the foregoing examples.

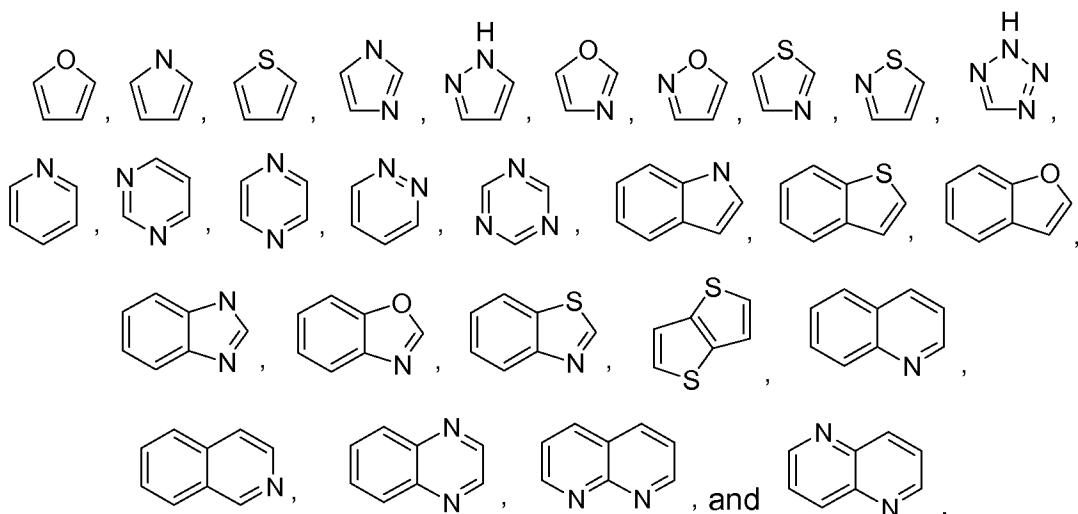
15 The term “alkenyl” refers to a straight- or branched-chain alkenyl group having from 2 to 12 carbon atoms in the chain. (The double bond of the alkenyl group is formed by two sp^2 hybridized carbon atoms.) Illustrative alkenyl groups include prop-2-enyl, but-2-enyl, but-3-enyl, 2-methylprop-2-enyl, hex-2-enyl, and the like.

20 The term “alkynyl” refers to a straight- or branched-chain alkynyl group having from 2 to 12 carbon atoms in the chain. (The triple bond of the alkynyl group is formed by two sp hybridized carbon atoms.) Illustrative alkynyl groups include prop-2-ynyl, but-2-ynyl, but-3-ynyl, 2-methylbut-2-ynyl, hex-2-ynyl, and the like.


25 The term “cycloalkyl” refers to a saturated or partially saturated, monocyclic, fused polycyclic, or spiro polycyclic carbocycle having from 3 to 12 ring atoms per carbocycle. Illustrative examples of cycloalkyl groups include the following entities, in the form of properly bonded moieties:

25

30 A “heterocycloalkyl” refers to a monocyclic ring structure that is saturated or partially saturated, monocyclic, fused polycyclic, and has from 3 to 8 ring atoms per ring structure selected from carbon atoms and up to two heteroatoms selected from nitrogen, oxygen, and sulfur. The ring structure may optionally contain up to two oxo groups on sulfur ring members. Illustrative entities, in the form of properly bonded moieties, include:


5

The term "heteroaryl" refers to a monocyclic, fused bicyclic, or fused polycyclic aromatic heterocycle (ring structure having ring atoms selected from carbon atoms and up to four heteroatoms selected from nitrogen, oxygen, and sulfur)

10 having from 3 to 12 ring atoms per heterocycle. Illustrative examples of heteroaryl groups include the following entities, in the form of properly bonded moieties:

15

Those skilled in the art will recognize that the species of cycloalkyl, heterocycloalkyl, and heteroaryl groups listed or illustrated above are not exhaustive, and that additional species within the scope of these defined terms may also be selected.

20

The term "halogen" represents chlorine, fluorine, bromine or iodine. The term "halo" represents chloro, fluoro, bromo or iodo.

25

The term "substituted" means that the specified group or moiety bears one or more substituents. The term "unsubstituted" means that the specified group bears no substituents. The term "optionally substituted" means that the specified group is unsubstituted or substituted by one or more substituents. Where the term "substituted" is used to describe a structural system, the substitution is meant to

5 occur at any valency-allowed position on the system. In cases where a specified moiety or group is not expressly noted as being optionally substituted or substituted with any specified substituent, it is understood that such a moiety or group is intended to be unsubstituted.

10 Any formula given herein is intended to represent compounds having structures depicted by the structural formula as well as certain variations or forms. In particular, compounds of any formula given herein may have asymmetric centers and therefore exist in different enantiomeric forms. All optical isomers and stereoisomers of the compounds of the general formula, and mixtures thereof, are considered within the scope of the formula. Thus, any formula given herein is 15 intended to represent a racemate, one or more enantiomeric forms, one or more diastereomeric forms, one or more atropisomeric forms, and mixtures thereof. Furthermore, certain structures may exist as geometric isomers (i.e., *cis* and *trans* isomers), as tautomers, or as atropisomers. Additionally, any formula given herein is intended to embrace hydrates, solvates, and polymorphs of such compounds, and 20 mixtures thereof.

25 Additionally, any formula given herein is intended to refer also to hydrates, solvates, and polymorphs of such compounds, and mixtures thereof, even if such forms are not listed explicitly. Certain compounds of Formula (I) or pharmaceutically acceptable salts of compounds of Formula (I) may be obtained as solvates. Solvates include those formed from the interaction or complexation of compounds of the invention with one or more solvents, either in solution or as a solid or crystalline form. In some embodiments, the solvent is water and then the solvates are 30 hydrates. In addition, certain crystalline forms of compounds of Formula (I) or pharmaceutically acceptable salts of compounds of Formula (I) may be obtained as co-crystals. In certain embodiments of the invention, compounds of Formula (I) were obtained in a crystalline form. In other embodiments, crystalline forms of compounds of Formula (I) were cubic in nature. In other embodiments, pharmaceutically acceptable salts of compounds of Formula (I) were obtained in a crystalline form. In still other embodiments, compounds of Formula (I) were obtained in one of several 35 polymorphic forms, as a mixture of crystalline forms, as a polymorphic form, or as an

5 amorphous form. In other embodiments, compounds of Formula (I) convert in solution between one or more crystalline forms and/or polymorphic forms.

To provide a more concise description, some of the quantitative expressions given herein are not qualified with the term "about". It is understood that, whether the term "about" is used explicitly or not, every quantity given herein is meant to refer 10 to the actual given value, and it is also meant to refer to the approximation to such given value that would reasonably be inferred based on the ordinary skill in the art, including equivalents and approximations due to the experimental and/or measurement conditions for such given value. Whenever a yield is given as a percentage, such yield refers to a mass of the entity for which the yield is given with 15 respect to the maximum amount of the same entity that could be obtained under the particular stoichiometric conditions. Concentrations that are given as percentages refer to mass ratios, unless indicated differently.

Reference to a chemical entity herein stands for a reference to any one of:

(a) the actually recited form of such chemical entity, and (b) any of the forms of such 20 chemical entity in the medium in which the compound is being considered when named. For example, reference herein to a compound such as R-COOH, encompasses reference to any one of, for example, R-COOH_(s), R-COOH_(sol), and R-COO⁻_(sol). In this example, R-COOH_(s) refers to the solid compound, as it could be for example in a tablet or some other solid pharmaceutical composition or preparation; 25 R-COOH_(sol) refers to the undissociated form of the compound in a solvent; and R-COO⁻_(sol) refers to the dissociated form of the compound in a solvent, such as the dissociated form of the compound in an aqueous environment, whether such dissociated form derives from R-COOH, from a salt thereof, or from any other entity that yields R-COO⁻ upon dissociation in the medium being considered. In another 30 example, an expression such as "exposing an entity to compound of formula R-COOH" refers to the exposure of such entity to the form, or forms, of the compound R-COOH that exists, or exist, in the medium in which such exposure takes place. In still another example, an expression such as "reacting an entity with a compound of formula R-COOH" refers to the reacting of (a) such entity in the chemically relevant 35 form, or forms, of such entity that exists, or exist, in the medium in which such reacting takes place, with (b) the chemically relevant form, or forms, of the

5 compound R-COOH that exists, or exist, in the medium in which such reacting takes place. In this regard, if such entity is for example in an aqueous environment, it is understood that the compound R-COOH is in such same medium, and therefore the entity is being exposed to species such as R-COOH_(aq) and/or R-COO⁻_(aq), where the subscript “(aq)” stands for “aqueous” according to its conventional meaning in
10 chemistry and biochemistry. A carboxylic acid functional group has been chosen in these nomenclature examples; this choice is not intended, however, as a limitation but it is merely an illustration. It is understood that analogous examples can be provided in terms of other functional groups, including but not limited to hydroxyl, basic nitrogen members, such as those in amines, and any other group that interacts
15 or transforms according to known manners in the medium that contains the compound. Such interactions and transformations include, but are not limited to, dissociation, association, tautomerism, solvolysis, including hydrolysis, solvation, including hydration, protonation, and deprotonation.

In another example, a zwitterionic compound is encompassed herein by
20 referring to a compound that is known to form a zwitterion, even if it is not explicitly named in its zwitterionic form. Terms such as zwitterion, zwitterions, and their synonyms zwitterionic compound(s) are standard IUPAC-endorsed names that are well known and part of standard sets of defined scientific names. In this regard, the name zwitterion is assigned the name identification CHEBI:27369 by the Chemical
25 Entities of Biological Interest (ChEBI) dictionary of molecular entities. As generally well known, a zwitterion or zwitterionic compound is a neutral compound that has formal unit charges of opposite sign. Sometimes these compounds are referred to by the term “inner salts”. Other sources refer to these compounds as “dipolar ions”, although the latter term is regarded by still other sources as a misnomer. As a
30 specific example, aminoethanoic acid (the amino acid glycine) has the formula H₂NCH₂COOH, and it exists in some media (in this case in neutral media) in the form of the zwitterion ⁺H₃NCH₂COO⁻. Zwitterions, zwitterionic compounds, inner salts and dipolar ions in the known and well established meanings of these terms are within the scope of this invention, as would in any case be so appreciated by those of
35 ordinary skill in the art. Because there is no need to name each and every embodiment that would be recognized by those of ordinary skill in the art, no

5 structures of the zwitterionic compounds that are associated with the compounds of this invention are given explicitly herein. They are, however, part of the embodiments of this invention. No further examples in this regard are provided herein because the interactions and transformations in a given medium that lead to the various forms of a given compound are known by any one of ordinary skill in the 10 art.

Any formula given herein is also intended to represent unlabeled forms as well as isotopically labeled forms of the compounds. Isotopically labeled compounds have structures depicted by the formulas given herein except that one or more atoms are replaced by an atom having a selected atomic mass or mass number. Examples 15 of isotopes that can be incorporated into compounds of the invention include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine, and chlorine, such as ^2H , ^3H , ^{11}C , ^{13}C , ^{14}C , ^{15}N , ^{18}O , ^{17}O , ^{31}P , ^{32}P , ^{35}S , ^{18}F , ^{36}Cl , ^{125}I , respectively. Such isotopically labeled compounds are useful in metabolic studies (preferably with ^{14}C), reaction kinetic studies (with, for example ^2H or ^3H), detection or imaging 20 techniques [such as positron emission tomography (PET) or single-photon emission computed tomography (SPECT)] including drug or substrate tissue distribution assays, or in radioactive treatment of patients. In particular, an ^{18}F or ^{11}C labeled compound may be particularly preferred for PET or SPECT studies. Further, substitution with heavier isotopes such as deuterium (i.e., ^2H) may afford certain 25 therapeutic advantages resulting from greater metabolic stability, for example increased *in vivo* half-life or reduced dosage requirements. Isotopically labeled compounds of this invention and prodrugs thereof can generally be prepared by carrying out the procedures disclosed in the schemes or in the examples and preparations described below by substituting a readily available isotopically labeled 30 reagent for a non-isotopically labeled reagent.

By way of a first example on substituent terminology, if substituent S^1_{example} is one of S_1 and S_2 , and substituent S^2_{example} is one of S_3 and S_4 , then these assignments refer to embodiments of this invention given according to the choices 35 S^1_{example} is S_1 and S^2_{example} is S_3 ; S^1_{example} is S_1 and S^2_{example} is S_4 ; S^1_{example} is S_2 and S^2_{example} is S_3 ; S^1_{example} is S_2 and S^2_{example} is S_4 ; and equivalents of each one of such choices. The shorter terminology " S^1_{example} is one of S_1 and S_2 , and S^2_{example} is one

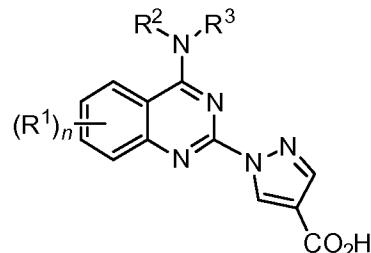
5 of S_3 and S_4 " is accordingly used herein for the sake of brevity, but not by way of limitation. The foregoing first example on substituent terminology, which is stated in generic terms, is meant to illustrate the various substituent assignments described herein. The foregoing convention given herein for substituents extends, when applicable, to members such as R^1 , R^2 , R^3 , A , X^4 , X^5 , X^6 , X^7 , R^a , R^b , R^c , and R^d and 10 any other generic substituent symbol used herein.

Furthermore, when more than one assignment is given for any member or substituent, embodiments of this invention comprise the various groupings that can be made from the listed assignments, taken independently, and equivalents thereof. By way of a second example on substituent terminology, if it is herein described that 15 substituent $S_{example}$ is one of S_1 , S_2 , and S_3 , this listing refers to embodiments of this invention for which $S_{example}$ is S_1 ; $S_{example}$ is S_2 ; $S_{example}$ is S_3 ; $S_{example}$ is one of S_1 and S_2 ; $S_{example}$ is one of S_1 and S_3 ; $S_{example}$ is one of S_2 and S_3 ; $S_{example}$ is one of S_1 , S_2 and 20 S_3 ; and $S_{example}$ is any equivalent of each one of these choices. The shorter terminology " $S_{example}$ is one of S_1 , S_2 , and S_3 " is accordingly used herein for the sake of brevity, but not by way of limitation. The foregoing second example on substituent terminology, which is stated in generic terms, is meant to illustrate the various substituent assignments described herein. The foregoing convention given herein for substituents extends, when applicable, to members such as R^1 , R^2 , R^3 , A , X^4 , X^5 , X^6 , X^7 , R^a , R^b , R^c and R^d and any other generic substituent symbol used herein.

25 The nomenclature " C_{i-j} " with $J > i$, when applied herein to a class of substituents, is meant to refer to embodiments of this invention for which each and every one of the number of carbon members, from i to J including i and j , is independently realized. By way of example, the term C_{1-3} refers independently to 30 embodiments that have one carbon member (C_1), embodiments that have two carbon members (C_2), and embodiments that have three carbon members (C_3).

The term C_{n-m} alkyl refers to an aliphatic chain, whether straight or branched, with a total number N of carbon members in the chain that satisfies $n \leq N \leq m$, with $m > n$.

Any disubstituent referred to herein is meant to encompass the various 35 attachment possibilities when more than one of such possibilities are allowed. For example, reference to disubstituent $-A-B-$, where $A \neq B$, refers herein to such


5 disubstituent with A attached to a first substituted member and B attached to a second substituted member, and it also refers to such disubstituent with A attached to the second substituted member and B attached to the first substituted member.

According to the foregoing interpretive considerations on assignments and nomenclature, it is understood that explicit reference herein to a set implies, where 10 chemically meaningful and unless indicated otherwise, independent reference to embodiments of such set, and reference to each and every one of the possible embodiments of subsets of the set referred to explicitly.

Chemical depictions are intended to portray the compound portions containing the orientations as written.

15 The present invention includes the use of compounds of Formula (I),

Formula (I)

the use of compounds of Formula (I) and pharmaceutical compositions containing such compounds thereof to treat patients (humans or other mammals) with disorders related to the modulation of the prolyl hydroxylase enzyme. The instant invention also includes methods of making such a compound, pharmaceutical 20 composition, pharmaceutically acceptable salt, pharmaceutically acceptable prodrug, and pharmaceutically active metabolites thereof.

In the present invention described by of Formula (I), where n is 0-3, and R¹ is independently bromo, chloro, fluoro, methyl, isopropyl, cyclohexyl, cyclohexyloxy, phenyl, 2-methylphenyl, benzyl, phenoxy, 4-chlorophenoxy, 2,6-dimethyl-phenoxy, piperidinyl, and (2,6-dimethylbenzyl)amino.

In further preferred embodiments, n is 1.

In further preferred embodiments, n is 2.

In further preferred embodiments, n is 3.

In further preferred embodiments, R^a is -H and R^b is 2,6-dimethylbenzyl.

In further preferred embodiments, R^a and R^b can be taken together with the nitrogen to which they are attached to form a piperidine ring.

In further preferred embodiments, R^c can be phenyl, cyclohexyl, 4-chlorophenyl, or 2,6-dimethyl-phenyl.

In further preferred embodiments, R^d can independently be -H, chloro, and -CH₃.

In further preferred embodiments, R² is -H and R³ can independently be -H, cyano, methyl, ethyl, propyl, tertbutyl, cyclopropyl, cyclopropylmethyl, tetrahydropyranyl, cyclohexylmethyl, phenyl, 2-chlorophenyl, 2,6-dimethylbenzyl, and -SO₂CH₃.

In further preferred embodiments, R² can be methyl, ethyl, propyl, or butyl.

In further preferred embodiments, R³ can be methyl, ethyl, propyl, butyl, tertbutyl, 2-methoxyethyl, 2-methoxy-1-methyl-ethyl or diethylamino-ethyl.

In further preferred embodiments, R² and R³ can be taken together with the nitrogen to which they are attached to form pyrrolidine, piperidine, 4-methyl-1,4-diazepane, thiomorpholine, 4-hydroxypiperidine, morpholine, 4-acetamidopiperidine, 4-cyanopiperidine, 4-fluoropiperidine, azepane, or 4-isopropylpiperidine.

5 In certain preferred embodiments, the compound of Formula (I) is selected from the group consisting of:

Ex.	Chemical Name
1	1-[4-Amino-6-(2,6-dimethyl-phenoxy)-7-fluoro-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;
2	1-[6-(2,6-Dimethyl-phenoxy)-7-fluoro-4-methylamino-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;
3	1-[4-Dimethylamino-6-(2,6-dimethyl-phenoxy)-7-fluoro-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;
4	1-[6-(2,6-Dimethyl-phenoxy)-7-fluoro-4-piperidin-1-yl-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;
5	1-[6-(2,6-Dimethyl-phenoxy)-7-fluoro-4-pyrrolidin-1-yl-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;

Ex.	Chemical Name
6	1-[6-(2,6-Dimethyl-phenoxy)-7-fluoro-4-phenylamino-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;
7	1-[4-(2-Chloro-phenylamino)-6-(2,6-dimethyl-phenoxy)-7-fluoro-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;
8	1-[6-(2,6-Dimethyl-phenoxy)-7-fluoro-4-propylamino-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;
9	<i>(rac)</i> -1-[6-(2,6-Dimethyl-phenoxy)-7-fluoro-4-(2-methoxy-1-methyl-ethylamino)-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;
10	1-[4-(2-Diethylamino-ethylamino)-6-(2,6-dimethyl-phenoxy)-7-fluoro-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;
11	1-[6-(2,6-Dimethyl-phenoxy)-4-dibutylamino-7-fluoro-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;
12	1-[6-(2,6-Dimethyl-phenoxy)-4-dipropylamino-7-fluoro-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;
13	1-(4-((Cyclohexylmethyl)amino)-6-(2,6-dimethylphenoxy)-7-fluoroquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
14	1-((4-Cyclopropylamino)-6-(2,6-dimethylphenoxy)-7-fluoroquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
15	1-((4-Cyclopropanemethylamino)-6-(2,6-dimethylphenoxy)-7-fluoroquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
16	1-(6-(2,6-Dimethylphenoxy)-7-fluoro-4-((tetrahydro-2H-pyran-4-yl)amino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
17	1-(6-(2,6-Dimethylphenoxy)-7-fluoro-4-(4-methyl-1,4-diazepan-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
18	1-(6-(2,6-Dimethylphenoxy)-7-fluoro-4-thiomorpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
19	1-(6-(2,6-dimethylphenoxy)-7-fluoro-4-(4-hydroxypiperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
20	1-(6-(2,6-Dimethylphenoxy)-7-fluoro-4-morpholinoquinazolin-2-yl)-1H-

Ex.	Chemical Name
	pyrazole-4-carboxylic acid;
21	1-(4-(4-Acetamidopiperidin-1-yl)-6-(2,6-dimethylphenoxy)-7-fluoroquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
22	1-(6-Cyclohexyl-4-methylamino-quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
23	1-[6-Cyclohexyl-4-(2,6-dimethyl-benzylamino)-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;
24	1-(4-Amino-6-cyclohexylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
25	1-(6-Cyclohexyl-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
26	1-(6-Cyclohexyl-4-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
27	1-(6-Cyclohexyl-4-(diethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
28	1-(6-Cyclohexyl-4-(phenylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
29	1-(4-((2-Chlorophenyl)amino)-6-cyclohexylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
30	1-(4-(4-Cyanopiperidin-1-yl)-6-cyclohexylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
31	1-(6-Cyclohexyl-4-(4-fluoropiperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
32	1-(6-Cyclohexyl-4-(cyclopropylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
33	1-(6-Cyclohexyl-4-morpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
34	1-(6-Cyclohexyl-4-thiomorpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
35	1-(4-Cyanamido-6-cyclohexylquinazolin-2-yl)-1H-pyrazole-4-carboxylic

Ex.	Chemical Name
	acid;
36	1-(4-(<i>tert</i> -Butylamino)-6-cyclohexylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
37	1-(4-(Azepan-1-yl)-6-cyclohexylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
38	1-(6-Cyclohexyl-4-(dimethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
39	1-(6-Cyclohexyl-4-((cyclohexylmethyl)amino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
40	1-(6-Cyclohexyl-4-(methylsulfonamido)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
41	1-(4-(Dimethylamino)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
42	1-(4-(Ethyl(methyl)amino)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
43	1-(6-Phenyl-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
44	1-(6-Phenyl-4-(phenylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid
45	1-(6-Phenyl-4-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
46	1-(4-(Diethylamino)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
47	1-(4-((2-Chlorophenyl)amino)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
48	1-(4-(Azepan-1-yl)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
49	1-(4-((Cyclohexylmethyl)amino)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
50	1-(4-Cyanamido-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
51	1-(4-(Cyclopropylamino)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

Ex.	Chemical Name
52	1-(4-(<i>tert</i> -Butylamino)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
53	1-(4-Amino-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
54	1-(6-Phenyl-4-thiomorpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
55	1-(4-(4-Acetamidopiperidin-1-yl)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
56	1-(6-Phenyl-4-((tetrahydro-2H-pyran-4-yl)amino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
57	1-(4-(4-Methyl-1,4-diazepan-1-yl)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
58	1-(4-Morpholino-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
59	1-(4-(4-Cyanopiperidin-1-yl)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
60	1-(6-(4-Chlorophenoxy)-4-(diethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
61	1-(6-(4-Chlorophenoxy)-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
62	1-(6-(4-Chlorophenoxy)-4-(cyclopropylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
63	1-(6-(4-Chlorophenoxy)-4-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
64	1-(6-(4-Chlorophenoxy)-4-((cyclohexylmethyl)amino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
65	1-(6-(4-chlorophenoxy)-4-(4-cyanopiperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
66	1-(4-(Azepan-1-yl)-6-(4-chlorophenoxy)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
67	1-(6-(4-Chlorophenoxy)-4-thiomorpholinoquinazolin-2-yl)-1H-pyrazole-4-

Ex.	Chemical Name
	carboxylic acid;
68	1-(6-(4-Chlorophenoxy)-4-((tetrahydro-2H-pyran-4-yl)amino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
69	1-(6-(4-Chlorophenoxy)-4-(phenylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
70	1-(4-(4-Acetamidopiperidin-1-yl)-6-(4-chlorophenoxy)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
71	1-(6-(4-Chlorophenoxy)-4-(4-methyl-1,4-diazepan-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
72	1-(4-(<i>tert</i> -Butylamino)-6-phenoxyquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
73	1-(6-Phenoxy-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
74	1-(4-(Diethylamino)-6-phenoxyquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
75	1-(4-(Cyclopropylamino)-6-phenoxyquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
76	1-(6-Phenoxy-4-((tetrahydro-2H-pyran-4-yl)amino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
77	1-(4-(Dimethylamino)-7-phenoxyquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
78	1-(7-Phenoxy-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
79	1-(7-Phenoxy-4-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
80	1-(4-(Dimethylamino)-7-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
81	1-(7-Phenyl-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

Ex.	Chemical Name
82	1-(7-Phenyl-4-(piperidin-1-yl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
83	1-(4-(Diethylamino)-7-phenoxyquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
84	1-(4-((Cyclohexylmethyl)amino)-7-phenoxyquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
85	1-(4-(4-Isopropylpiperidin-1-yl)-7-phenoxyquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
86	1-(4-(Cyclopropylamino)-7-phenoxyquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
87	1-(4-(Azepan-1-yl)-7-phenoxyquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
88	1-(4-(Diethylamino)-6-(piperidin-1-yl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
89	1-(4-Morpholino-7-phenoxyquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
90	1-(7-Phenoxy-4-thiomorpholinoquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
91	1-(4-(4-Fluoropiperidin-1-yl)-7-phenoxyquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
92	1-(4-(Dibutylamino)-7-phenoxyquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
93	1-(4-(Dipropylamino)-7-phenoxyquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
94	1-(4-(Ethyl(methyl)amino)-7-phenoxyquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
95	1-(4-((2-Methoxyethyl)(methyl)amino)-7-phenoxyquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
96	1-(7-Bromo-4-(diethylamino)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
97	1-(4-(Cyclohexylamino)-7-phenoxyquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;

Ex.	Chemical Name
98	1-(4-((Cyclopropylmethyl)amino)-7-phenoxyquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
99	1-(4-(<i>tert</i> -Butylamino)-7-phenoxyquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid.

5

Ex.	Chemical Name
100	1-(6-(Cyclohexyloxy)-7-fluoro-4-morpholinoquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
101	1-(6-(Cyclohexyloxy)-4-(dimethylamino)-7-fluoroquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
102	1-(6-(Cyclohexyloxy)-4-(diethylamino)-7-fluoroquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
103	1-(6-(Cyclohexyloxy)-7-fluoro-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
104	1-(6-(Cyclohexyloxy)-4-(ethyl(methyl)amino)-7-fluoroquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
105	1-(6-(Cyclohexyloxy)-4-(cyclopropylamino)-7-fluoroquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
106	1-(6-Benzyl-7-fluoro-4-morpholinoquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
107	1-(6-Benzyl-4-(dimethylamino)-7-fluoroquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
108	1-(6-Benzyl-4-(diethylamino)-7-fluoroquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
109	1-(6-Benzyl-7-fluoro-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
110	1-(6-Benzyl-4-(ethyl(methyl)amino)-7-fluoroquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-

Ex.	Chemical Name
	carboxylic acid;
111	1-(6-Benzyl-4-(cyclopropylamino)-7-fluoroquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
112	1-((2,6-Dimethylbenzyl)amino)-7-fluoro-4-morpholinoquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
113	1-(4-(Dimethylamino)-6-((2,6-dimethylbenzyl)amino)-7-fluoroquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
114	1-(4-(Diethylamino)-6-((2,6-dimethylbenzyl)amino)-7-fluoroquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;;
115	1-(6-((2,6-Dimethylbenzyl)amino)-7-fluoro-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
116	1-((2,6-Dimethylbenzyl)amino)-4-(ethyl(methyl)amino)-7-fluoroquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
117	1-(4-(Cyclopropylamino)-6-((2,6-dimethylbenzyl)amino)-7-fluoroquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
118	1-(7-Fluoro-4-morpholino-6-(<i>o</i> -tolyl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
119	1-(4-(Dimethylamino)-7-fluoro-6-(<i>o</i> -tolyl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
120	1-(4-(Diethylamino)-7-fluoro-6-(<i>o</i> -tolyl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid
121	1-(7-Fluoro-4-(pyrrolidin-1-yl)-6-(<i>o</i> -tolyl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
122	1-(4-(Ethyl(methyl)amino)-7-fluoro-6-(<i>o</i> -tolyl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
123	1-(4-(Cyclopropylamino)-7-fluoro-6-(<i>o</i> -tolyl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
124	1-(7-Fluoro-6-isopropyl-4-morpholinoquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;

Ex.	Chemical Name
125	1-(4-(Dimethylamino)-7-fluoro-6-isopropylquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
126	1-(4-(Diethylamino)-7-fluoro-6-isopropylquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
127	1-(7-Fluoro-6-isopropyl-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
128	1-(4-(Ethyl(methyl)amino)-7-fluoro-6-isopropylquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
129	1-(4-(Cyclopropylamino)-7-fluoro-6-isopropylquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
130	1-(7-Fluoro-4-morpholino-6-(piperidin-1-yl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
131	1-(4-(Dimethylamino)-7-fluoro-6-(piperidin-1-yl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
132	1-(4-(Diethylamino)-7-fluoro-6-(piperidin-1-yl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
133	1-(7-Fluoro-6-(piperidin-1-yl)-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
134	1-(4-(Ethyl(methyl)amino)-7-fluoro-6-(piperidin-1-yl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
135	1-(4-(Cyclopropylamino)-7-fluoro-6-(piperidin-1-yl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
136	1-(6-(Cyclohexyloxy)-7-chloro-4-morpholinoquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
137	1-(6-(Cyclohexyloxy)-4-(dimethylamino)-7-chloroquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
138	1-(6-(Cyclohexyloxy)-4-(diethylamino)-7-chloroquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
139	1-(6-(Cyclohexyloxy)-7-chloro-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1 <i>H</i> -

Ex.	Chemical Name
	pyrazole-4-carboxylic acid;
140	1-(6-(Cyclohexyloxy)-4-(ethyl(methyl)amino)-7-chloroquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
141	1-(6-(Cyclohexyloxy)-4-(cyclopropylamino)-7-chloroquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
142	1-(6-Benzyl-7-chloro-4-morpholinoquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
143	1-(6-Benzyl-4-(dimethylamino)-7-chloroquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
144	1-(6-Benzyl-4-(diethylamino)-7-chloroquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
145	1-(6-Benzyl-7-chloro-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
146	1-(6-Benzyl-4-(ethyl(methyl)amino)-7-chloroquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
147	1-(6-Benzyl-4-(cyclopropylamino)-7-chloroquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
148	1-(6-((2,6-Dimethylbenzyl)amino)-7-chloro-4-morpholinoquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
149	1-(4-(Dimethylamino)-6-((2,6-dimethylbenzyl)amino)-7-chloroquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;;
150	1-(4-(Diethylamino)-6-((2,6-dimethylbenzyl)amino)-7-chloroquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
151	1-(6-((2,6-Dimethylbenzyl)amino)-7-chloro-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
152	1-(6-((2,6-Dimethylbenzyl)amino)-4-(ethyl(methyl)amino)-7-chloroquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
153	1-(4-(Cyclopropylamino)-6-((2,6-dimethylbenzyl)amino)-7-chloroquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;

Ex.	Chemical Name
154	1-(7-Chloro-4-morpholino-6-(o-tolyl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
155	1-(4-(Dimethylamino)-7-chloro-6-(o-tolyl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
156	1-(4-(Diethylamino)-7-chloro-6-(o-tolyl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
157	1-(7-Chloro-4-(pyrrolidin-1-yl)-6-(o-tolyl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
158	1-(4-(Ethyl(methyl)amino)-7-chloro-6-(o-tolyl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
159	1-(4-(Cyclopropylamino)-7-chloro-6-(o-tolyl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
160	1-(7-Chloro-6-isopropyl-4-morpholinoquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
161	1-(4-(Dimethylamino)-7-chloro-6-isopropylquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
162	1-(4-(Diethylamino)-7-chloro-6-isopropylquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
163	1-(7-Chloro-6-isopropyl-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
164	1-(4-(Ethyl(methyl)amino)-7-chloro-6-isopropylquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
165	1-(4-(Cyclopropylamino)-7-chloro-6-isopropylquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
166	1-(7-Chloro-4-morpholino-6-(piperidin-1-yl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
167	1-(4-(Dimethylamino)-7-chloro-6-(piperidin-1-yl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
168	1-(4-(Diethylamino)-7-chloro-6-(piperidin-1-yl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-

Ex.	Chemical Name
	4-carboxylic acid;
169	1-(7-Chloro-6-(piperidin-1-yl)-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
170	1-(4-(Ethyl(methyl)amino)-7-chloro-6-(piperidin-1-yl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
171	1-(4-(Cyclopropylamino)-7-chloro-6-(piperidin-1-yl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
172	1-(6-(Cyclohexyloxy)-4-morpholinoquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
173	1-(6-(Cyclohexyloxy)-4-(dimethylamino)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
174	1-(6-(Cyclohexyloxy)-4-(diethylamino)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
175	1-(6-(Cyclohexyloxy)-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
176	1-(6-(Cyclohexyloxy)-4-(cyclopropylamino)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
177	1-(6-(Cyclohexyloxy)-4-(ethyl(methyl)amino)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
178	1-(6-Benzyl-4-morpholinoquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
179	1-(6-Benzyl-4-(dimethylamino)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
180	1-(6-Benzyl-4-(diethylamino)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
181	1-(6-Benzyl-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
182	1-(6-Benzyl-4-(cyclopropylamino)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;
183	1-(6-Benzyl-4-(ethyl(methyl)amino)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;

Ex.	Chemical Name
184	1-(6-Isopropyl-4-morpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
185	1-(6-Isopropyl-4-(dimethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
186	1-(6-Isopropyl-4-(diethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
187	1-(6-Isopropyl-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
188	1-(6-Isopropyl-4-(cyclopropylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
189	1-(6-Isopropyl-4-(ethyl(methyl)amino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
190	1-(6-((2,6-Dimethylbenzyl)amino)-4-morpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
191	1-(6-((2,6-Dimethylbenzyl)amino)-4-(dimethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
192	1-(6-((2,6-Dimethylbenzyl)amino)-4-(diethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
193	1-(6-((2,6-Dimethylbenzyl)amino)-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
194	1-(6-((2,6-Dimethylbenzyl)amino)-4-(cyclopropylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
195	1-(6-((2,6-Dimethylbenzyl)amino)-4-(ethyl(methyl)amino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
196	1-(4-Morpholino-6-(o-tolyl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
197	1-(4-(Dimethylamino)-6-(o-tolyl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
198	1-(4-(Diethylamino)-6-(o-tolyl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
199	1-(4-(Pyrrolidin-1-yl)-6-(o-tolyl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

Ex.	Chemical Name
	acid;
200	1-(4-(Cyclopropylamino)-6-(o-tolyl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
201	1-(4-(ethyl(methyl)amino)-6-(o-tolyl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
202	1-(4-Morpholino-6-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
203	1-(4-(Dimethylamino)-6-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
204	1-(4-(Diethylamino)-6-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
205	1-(6-(Piperidin-1-yl)-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
206	1-(4-(Cyclopropylamino)-6-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
207	1-(4-(Ethyl(methyl)amino)-6-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
208	1-(6-(2,6-Dimethylphenoxy)-7-methyl-4-morpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
209	1-(6-(2,6-Dimethylphenoxy)-7-methyl-4-dimethylaminoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
210	1-(6-(2,6-Dimethylphenoxy)-7-methyl-4-diethylaminoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
211	1-(6-(2,6-Dimethylphenoxy)-7-methyl-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
212	1-(6-(2,6-Dimethylphenoxy)-7-methyl-4-cyclopropylaminoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
213	1-(6-(2,6-Dimethylphenoxy)-4-(ethyl(methyl)amino)-7-methylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

5 and pharmaceutically acceptable salts thereof.

The invention includes also pharmaceutically acceptable salts of the compounds of Formula (I), preferably of those described above and of the specific compounds exemplified herein, and methods of treatment using such salts.

10

A "pharmaceutically acceptable salt" is intended to mean a salt of a free acid or base of a compound represented by Formula (I) that is non-toxic, biologically tolerable, or otherwise biologically suitable for administration to the subject. See, generally, G.S. Paulekuhn, et al., "Trends in Active Pharmaceutical Ingredient Salt

15 Selection based on Analysis of the Orange Book Database", *J. Med. Chem.*, 2007, 50:6665–72, S.M. Berge, et al., "Pharmaceutical Salts", *J Pharm Sci.*, 1977, 66:1-19, and *Handbook of Pharmaceutical Salts, Properties, Selection, and Use*, Stahl and Wermuth, Eds., Wiley-VCH and VHCA, Zurich, 2002. Examples of pharmaceutically acceptable salts are those that are pharmacologically effective and suitable for 20 contact with the tissues of patients without undue toxicity, irritation, or allergic response. A compound of Formula (I) may possess a sufficiently acidic group, a sufficiently basic group, or both types of functional groups, and accordingly react with a number of inorganic or organic bases, and inorganic and organic acids, to form a pharmaceutically acceptable salt.

25 Examples of pharmaceutically acceptable salts include sulfates, pyrosulfates, bisulfates, sulfites, bisulfites, phosphates, monohydrogen-phosphates, dihydrogenphosphates, metaphosphates, pyrophosphates, chlorides, bromides, iodides, acetates, propionates, decanoates, caprylates, acrylates, formates, isobutyrates, caproates, heptanoates, propiolates, oxalates, malonates, succinates, 30 suberates, sebacates, fumarates, maleates, butyne-1,4-dioates, hexyne-1,6-dioates, benzoates, chlorobenzoates, methylbenzoates, dinitrobenzoates, hydroxybenzoates, methoxybenzoates, phthalates, sulfonates, xylenesulfonates, phenylacetates, phenylpropionates, phenylbutyrates, citrates, lactates, γ -hydroxybutyrates, glycolates, tartrates, methane-sulfonates, propanesulfonates, naphthalene-1- 35 sulfonates, naphthalene-2-sulfonates, and mandelates.

5 When the compound of Formula (I) contains a basic nitrogen, the desired pharmaceutically acceptable salt may be prepared by any suitable method available in the art, for example, treatment of the free base with an inorganic acid, such as hydrochloric acid, hydrobromic acid, sulfuric acid, sulfamic acid, nitric acid, boric acid, phosphoric acid, and the like, or with an organic acid, such as acetic acid, 10 phenylacetic acid, propionic acid, stearic acid, lactic acid, ascorbic acid, maleic acid, hydroxymaleic acid, isethionic acid, succinic acid, valeric acid, fumaric acid, malonic acid, pyruvic acid, oxalic acid, glycolic acid, salicylic acid, oleic acid, palmitic acid, lauric acid, a pyranosidyl acid, such as glucuronic acid or galacturonic acid, an alpha-hydroxy acid, such as mandelic acid, citric acid, or tartaric acid, an amino acid, 15 such as aspartic acid, glutaric acid or glutamic acid, an aromatic acid, such as benzoic acid, 2-acetoxybenzoic acid, naphthoic acid, or cinnamic acid, a sulfonic acid, such as laurylsulfonic acid, p-toluenesulfonic acid, methanesulfonic acid, ethanesulfonic acid, any compatible mixture of acids such as those given as examples herein, and any other acid and mixture thereof that are regarded as 20 equivalents or acceptable substitutes in light of the ordinary level of skill in this technology.

When the compound of Formula (I) is an acid, such as a carboxylic acid or sulfonic acid, the desired pharmaceutically acceptable salt may be prepared by any suitable method, for example, treatment of the free acid with an inorganic or organic 25 base, such as an amine (primary, secondary or tertiary), an alkali metal hydroxide, alkaline earth metal hydroxide, any compatible mixture of bases such as those given as examples herein, and any other base and mixture thereof that are regarded as equivalents or acceptable substitutes in light of the ordinary level of skill in this 30 technology. Illustrative examples of suitable salts include organic salts derived from amino acids, such as N-methyl-D-glucamine, lysine, choline, glycine and arginine, ammonia, carbonates, bicarbonates, primary, secondary, and tertiary amines, and cyclic amines, such as tromethamine, benzylamines, pyrrolidines, piperidine, morpholine, and piperazine, and inorganic salts derived from sodium, calcium, potassium, magnesium, manganese, iron, copper, zinc, aluminum, and lithium.

35 Exemplary prodrugs include compounds having an amino acid residue, or a polypeptide chain of two or more (e.g., two, three or four) amino acid residues,

5 covalently joined through an amide or ester bond to a free amino, hydroxy, or carboxylic acid group of a compound of Formula (I). Examples of amino acid residues include the twenty naturally occurring amino acids, commonly designated by three letter symbols, as well as 4-hydroxyproline, hydroxylysine, demosine, isodemosine, 3-methylhistidine, norvalin, beta-alanine, gamma-aminobutyric acid, 10 citrulline homocysteine, homoserine, ornithine and methionine sulfone.

Additional types of prodrugs may be produced, for instance, by derivatizing free carboxyl groups of structures of Formula (I) as amides or alkyl esters.

Examples of amides include those derived from ammonia, primary C₁₋₆alkyl amines and secondary di(C₁₋₆alkyl) amines. Secondary amines include 5- or 6-membered

15 heterocycloalkyl or heteroaryl ring moieties. Examples of amides include those that are derived from ammonia, C₁₋₃alkyl primary amines, and di(C₁₋₂alkyl)amines.

Examples of esters of the invention include C₁₋₇alkyl, C₅₋₇cycloalkyl, phenyl, and phenyl(C₁₋₆alkyl) esters. Preferred esters include methyl esters. Prodrugs may also be prepared by derivatizing free hydroxy groups using groups including

20 hemisuccinates, phosphate esters, dimethylaminoacetates, and phosphoryloxymethyloxycarbonyls, following procedures such as those outlined in Fleisher et al., *Adv. Drug Delivery Rev.* **1996**, 19, 115-130. Carbamate derivatives of hydroxy and amino groups may also yield prodrugs. Carbonate derivatives, sulfonate esters, and sulfate esters of hydroxy groups may also provide prodrugs.

25 Derivatization of hydroxy groups as (acyloxy)methyl and (acyloxy)ethyl ethers, wherein the acyl group may be an alkyl ester, optionally substituted with one or more ether, amine, or carboxylic acid functionalities, or where the acyl group is an amino acid ester as described above, is also useful to yield prodrugs. Prodrugs of this type may be prepared as described in Robinson et al., *J Med Chem.* **1996**, 39 (1), 10-18.

30 Free amines can also be derivatized as amides, sulfonamides or phosphonamides. All of these prodrug moieties may incorporate groups including ether, amine, and carboxylic acid functionalities.

35 The present invention also relates to pharmaceutically active metabolites of the compounds of Formula (I), which may also be used in the methods of the invention. A "pharmaceutically active metabolite" means a pharmacologically active product of metabolism in the body of a compound of Formula (I) or salt thereof.

5 Prodrugs and active metabolites of a compound may be determined using routine techniques known or available in the art. See, e.g., Bertolini, et al., *J Med Chem.* 1997, 40, 2011-2016; Shan, et al., *J Pharm Sci.* 1997, 86 (7), 765-767; Bagshawe, *Drug Dev Res.* 1995, 34, 220-230; Bodor, *Adv Drug Res.* 1984, 13, 224-331; Bundgaard, *Design of Prodrugs* (Elsevier Press, 1985); and Larsen, *Design and*

10 *Application of Prodrugs, Drug Design and Development* (Krogsgaard-Larsen, et al., eds., Harwood Academic Publishers, 1991).

The compounds of Formula (I) and their pharmaceutically acceptable salts, pharmaceutically acceptable prodrugs, and pharmaceutically active metabolites of the present invention are useful as modulators of PHD in the methods of the invention. "Modulators" include both inhibitors and activators, where "inhibitors" refer to compounds that decrease, prevent, inactivate, desensitize or down-regulate PHD expression or activity, and "activators" are compounds that increase, activate, facilitate, sensitize, or up-regulate PHD expression or activity.

The term "treat" or "treating" as used herein is intended to refer to administration of an active agent or composition of the invention to a subject for the purpose of effecting a therapeutic or prophylactic benefit through modulation of prolyl hydroxylase activity. Treating includes reversing, ameliorating, alleviating, inhibiting the progress of, lessening the severity of, or preventing a disease, disorder, or condition, or one or more symptoms of such disease, disorder or condition mediated through modulation of PHD activity. The term "subject" refers to a mammalian patient in need of such treatment, such as a human.

Accordingly, the invention relates to methods of using the compounds described herein to treat subjects diagnosed with or suffering from a disease, disorder, or condition mediated by Prolyl Hydroxylase, such as: Anemia, vascular disorders, metabolic disorders, and wound healing. Symptoms or disease states are intended to be included within the scope of "medical conditions, disorders, or diseases."

As used herein the term "hypoxia" or "hypoxic disorder" refers to a condition where there is an insufficient level of oxygen provided in the blood or to tissues and organs. Hypoxic disorders can occur through a variety of mechanisms including where there is an insufficient capacity of the blood to carry oxygen (i.e. anemia),

5 where there is an inadequate flow of blood to the tissue and/or organ caused by either heart failure or blockage of blood vessels and/or arteries (i.e. ischemia), where there is reduced barometric pressure (i.e. elevation sickness at high altitudes), or where dysfunctional cells are unable to properly make use of oxygen (i.e. hystotoxic conditions). Accordingly, one of skill in the art would readily appreciate the present
10 invention to be useful in the treatment of a variety of hypoxic conditions including anemia, heart failure, coronary artery disease, thromboembolism, stroke, angina and the like.

In a preferred embodiment, molecules of the present invention are useful in the treatment or prevention of anemia comprising treatment of anemic conditions

15 associated with chronic kidney disease, polycystic kidney disease, aplastic anemia, autoimmune hemolytic anemia, bone marrow transplantation anemia, Churg-Strauss syndrome, Diamond Blackfan anemia, Fanconi's anemia, Felty syndrome, graft versus host disease, hematopoietic stem cell transplantation, hemolytic uremic syndrome, myelodysplastic syndrome, nocturnal paroxysmal hemoglobinuria,
20 osteomyelofibrosis, pancytopenia, pure red-cell aplasia, purpura Schoenlein-Henoch, refractory anemia with excess of blasts, rheumatoid arthritis, Shwachman syndrome, sickle cell disease, thalassemia major, thalassemia minor, thrombocytopenic purpura, anemic or non-anemic patients undergoing surgery, anemia associated with or secondary to trauma, sideroblastic anemia, anemic
25 secondary to other treatment including: reverse transcriptase inhibitors to treat HIV, corticosteroid hormones, cyclic cisplatin or non-cisplatin-containing chemotherapeutics, vinca alkaloids, mitotic inhibitors, topoisomerase II inhibitors, anthracyclines, alkylating agents, particularly anemia secondary to inflammatory, aging and/or chronic diseases. PHD inhibition may also be used to treat symptoms
30 of anemia including chronic fatigue, pallor and dizziness.

In another preferred embodiment, molecules of the present invention are useful for the treatment or prevention of diseases of metabolic disorders, including but not limited to diabetes and obesity. In another preferred embodiment, molecules of the present invention are useful for the treatment or prevention of vascular disorders. These include but are not limited to hypoxic or wound healing related

5 diseases requiring pro-angiogenic mediators for vasculogenesis, angiogenesis, and arteriogenesis

In treatment methods according to the invention, an effective amount of a pharmaceutical agent according to the invention is administered to a subject suffering from or diagnosed as having such a disease, disorder, or condition. An

10 "effective amount" means an amount or dose sufficient to generally bring about the desired therapeutic or prophylactic benefit in patients in need of such treatment for the designated disease, disorder, or condition. Effective amounts or doses of the compounds of the present invention may be ascertained by routine methods such as modeling, dose escalation studies or clinical trials, and by taking into consideration

15 routine factors, e.g., the mode or route of administration or drug delivery, the pharmacokinetics of the compound, the severity and course of the disease, disorder, or condition, the subject's previous or ongoing therapy, the subject's health status and response to drugs, and the judgment of the treating physician. An example of a dose is in the range of from about 0.001 to about 200 mg of compound per kg of

20 subject's body weight per day, preferably about 0.05 to 100 mg/kg/day, or about 1 to 35 mg/kg/day, in single or divided dosage units (e.g., BID, TID, QID). For a 70-kg human, an illustrative range for a suitable dosage amount is from about 0.05 to about 7 g/day, or about 0.2 to about 2.5 g/day.

Once improvement of the patient's disease, disorder, or condition has

25 occurred, the dose may be adjusted for preventative or maintenance treatment. For example, the dosage or the frequency of administration, or both, may be reduced as a function of the symptoms, to a level at which the desired therapeutic or prophylactic effect is maintained. Of course, if symptoms have been alleviated to an appropriate level, treatment may cease. Patients may, however, require intermittent

30 treatment on a long-term basis upon any recurrence of symptoms.

In addition, the agents of the invention may be used in combination with additional active ingredients in the treatment of the above conditions. The additional compounds may be co-administered separately with an agent of Formula (I) or included with such an agent as an additional active ingredient in a pharmaceutical

35 composition according to the invention. In an exemplary embodiment, additional active ingredients are those that are known or discovered to be effective in the

5 treatment of conditions, disorders, or diseases mediated by PHD enzyme or that are active against another targets associated with the particular condition, disorder, or disease, such as an alternate PHD modulator. The combination may serve to increase efficacy (e.g., by including in the combination a compound potentiating the potency or effectiveness of a compound according to the invention), decrease one or

10 more side effects, or decrease the required dose of the compound according to the invention.

The compounds of the invention are used, alone or in combination with one or more other active ingredients, to formulate pharmaceutical compositions of the invention. A pharmaceutical composition of the invention comprises: (a) an effective

15 amount of a compound of Formula (I), or a pharmaceutically acceptable salt, pharmaceutically acceptable prodrug, or pharmaceutically active metabolite thereof; and (b) a pharmaceutically acceptable excipient.

A "pharmaceutically acceptable excipient" refers to a substance that is non-toxic, biologically tolerable, and otherwise biologically suitable for administration to a

20 subject, such as an inert substance, added to a pharmacological composition or otherwise used as a vehicle, carrier, or diluent to facilitate administration of a compound of the invention and that is compatible therewith. Examples of excipients include calcium carbonate, calcium phosphate, various sugars and types of starch, cellulose derivatives, gelatin, vegetable oils, and polyethylene glycols.

25 Delivery forms of the pharmaceutical compositions containing one or more dosage units of the compounds of the invention may be prepared using suitable pharmaceutical excipients and compounding techniques now or later known or available to those skilled in the art. The compositions may be administered in the inventive methods by oral, parenteral, rectal, topical, or ocular routes, or by

30 inhalation.

The preparation may be in the form of tablets, capsules, sachets, dragees, powders, granules, lozenges, powders for reconstitution, liquid preparations, or suppositories. Preferably, the compositions are formulated for intravenous infusion, topical administration, or oral administration. A preferred mode of use of the invention is

35 local administration of PHD inhibitors particularly to sites where tissue has become

5 or has been made ischemic. This may be achieved via a specialized catheter, angioplasty balloon or stent placement balloon.

For oral administration, the compounds of the invention can be provided in the form of tablets or capsules, or as a solution, emulsion, or suspension. To prepare the oral compositions, the compounds may be formulated to yield a dosage of, e.g.,
10 from about 0.05 to about 100 mg/kg daily, or from about 0.05 to about 35 mg/kg daily, or from about 0.1 to about 10 mg/kg daily.

Oral tablets may include a compound according to the invention mixed with pharmaceutically acceptable excipients such as inert diluents, disintegrating agents, binding agents, lubricating agents, sweetening agents, flavoring agents, coloring
15 agents and preservative agents. Suitable inert fillers include sodium and calcium carbonate, sodium and calcium phosphate, lactose, starch, sugar, glucose, methyl cellulose, magnesium stearate, mannitol, sorbitol, and the like. Exemplary liquid oral excipients include ethanol, glycerol, water, and the like. Starch, polyvinyl-pyrrolidone (PVP), sodium starch glycolate, microcrystalline cellulose, and alginic acid are
20 suitable disintegrating agents. Binding agents may include starch and gelatin. The lubricating agent, if present, may be magnesium stearate, stearic acid or talc. If desired, the tablets may be coated with a material such as glyceryl monostearate or glyceryl distearate to delay absorption in the gastrointestinal tract, or may be coated with an enteric coating.

25 Capsules for oral administration include hard and soft gelatin capsules. To prepare hard gelatin capsules, compounds of the invention may be mixed with a solid, semi-solid, or liquid diluent. Soft gelatin capsules may be prepared by mixing the compound of the invention with water, an oil such as peanut oil or olive oil, liquid paraffin, a mixture of mono and di-glycerides of short chain fatty acids, polyethylene
30 glycol 400, or propylene glycol.

Liquids for oral administration may be in the form of suspensions, solutions, emulsions or syrups or may be presented as a dry product for reconstitution with water or other suitable vehicle before use. Such liquid compositions may optionally contain: pharmaceutically-acceptable excipients such as suspending agents (for
35 example, sorbitol, methyl cellulose, sodium alginate, gelatin, hydroxyethylcellulose, carboxymethylcellulose, aluminum stearate gel and the like); non-aqueous vehicles,

5 e.g., oil (for example, almond oil or fractionated coconut oil), propylene glycol, ethyl alcohol, or water; preservatives (for example, methyl or propyl p-hydroxybenzoate or sorbic acid); wetting agents such as lecithin; and, if desired, flavoring or coloring agents.

10 The active agents of this invention may also be administered by non-oral routes. For example, the compositions may be formulated for rectal administration as a suppository. For parenteral use, including intravenous, intramuscular, intraperitoneal, or subcutaneous routes, the compounds of the invention may be provided in sterile aqueous solutions or suspensions, buffered to an appropriate pH and isotonicity or in parenterally acceptable oil. Suitable aqueous vehicles include

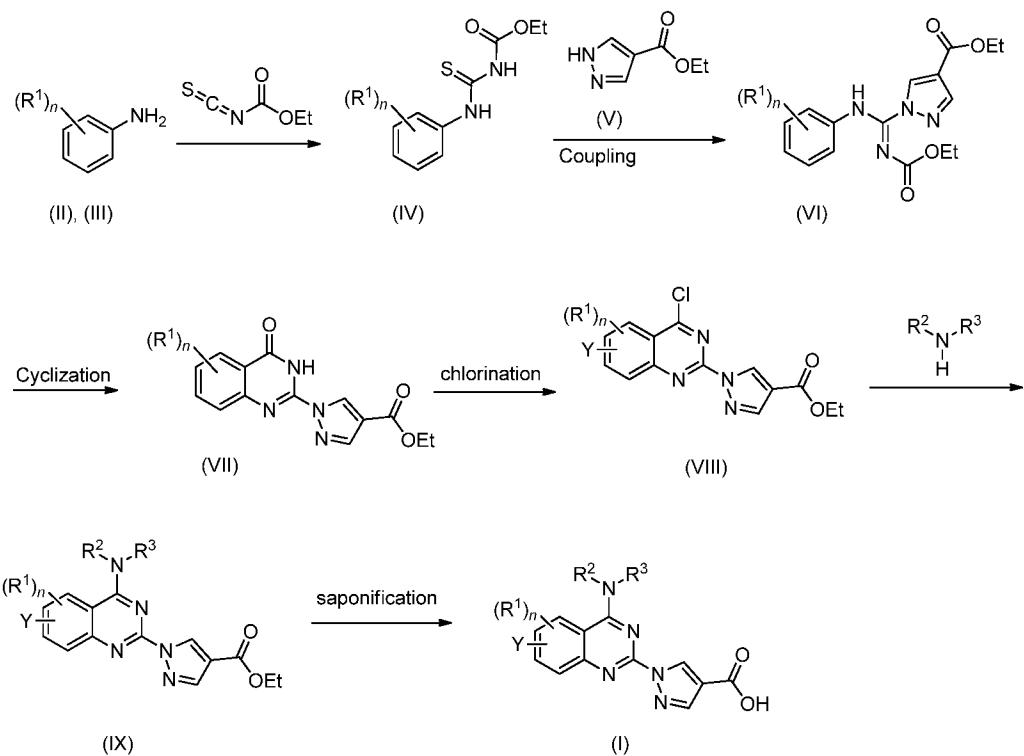
15 Ringer's solution and isotonic sodium chloride. Such forms will be presented in unit-dose form such as ampules or disposable injection devices, in multi-dose forms such as vials from which the appropriate dose may be withdrawn, or in a solid form or pre-concentrate that can be used to prepare an injectable formulation. Illustrative infusion doses may range from about 1 to 1000 μ g/kg/minute of compound, admixed

20 with a pharmaceutical carrier over a period ranging from several minutes to several days.

For topical administration, the compounds may be mixed with a pharmaceutical carrier at a concentration of about 0.1% to about 10% of drug to vehicle. Examples include lotions, creams, ointments and the like and can be

25 formulated by known methods. Another mode of administering the compounds of the invention may utilize a patch formulation to affect transdermal delivery.

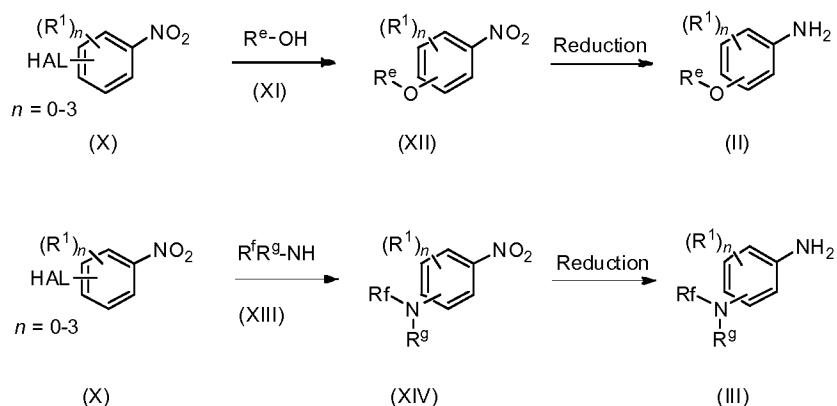
Compounds of the invention may alternatively be administered in methods of this invention by inhalation, via the nasal or oral routes, e.g., in a spray formulation also containing a suitable carrier.


30 Abbreviations and acronyms used herein including the following:

Term	Acronym
Diisopropylethylamine	DIEA
Tetrahydrofuran	THF
Dichloromethane	DCM
Dimethyl Sulfoxide	DMSO
Dimethylacetamide	DMA

N,N-Dimethylformamide	DMF
Ethanol	EtOH
Acetonitrile	ACN
Ethyl Acetate	EtOAc
<i>N</i> -(3-Dimethylaminopropyl)- <i>N</i> -ethylcarbodiimide	EDCI
<i>N,N</i> '-Diisopropylcarbodiimide	DIC
Dichloroethane	DCE

Exemplary compounds useful in methods of the invention will now be described by reference to the illustrative synthetic schemes for their general preparation below and the specific examples that follow. Artisans will recognize that, to obtain the various compounds herein, starting materials may be suitably selected so that the ultimately desired substituents will be carried through the reaction scheme with or without protection as appropriate to yield the desired product. Alternatively, it may be necessary or desirable to employ, in the place of the ultimately desired substituent, a suitable group that may be carried through the reaction scheme and replaced as appropriate with the desired substituent. Unless otherwise specified, the variables are as defined above in reference to Formula (I). Reactions may be performed between the melting point and the reflux temperature of the solvent, and preferably between 0 °C and the reflux temperature of the solvent. Reactions may also be conducted in sealed pressure vessels above the normal reflux temperature of the solvent.


Scheme A

Compounds of Formula (I) are prepared according to Scheme A from appropriately substituted commercially available or synthetically accessible anilines of formula (II) or (III), prepared using known methods, methods described in Scheme B, or methods as described in the *Journal of Organic Chemistry*, 2008, 73 (6), 2473-75. Referring to Scheme A, functionalized anilines of formula (II) or (III) are condensed with isothiocyanates such as ethyl isothiocyanatoformate in a solvent such as dichloromethane (DCM) at temperatures between room temperature and the reflux temperature of the solvent, to provide compounds of formula (IV). Subsequent coupling with commercially available substituted pyrazole-4-carboxylates of formula (V), in the presence of a coupling reagent such as EDCI, DIC and the like, with or without an amine base such as triethylamine provides compounds of formula (VI). Cyclization of compounds of formula (VI) with an appropriate Lewis acid such as chlorotrimethylsilane, titanium (IV) chloride, and the like, in a solvent such as DCE or DMF, toluene and the like, at temperatures between room temperature and the reflux temperature of the solvent, provides compounds of formula (VII). Treatment of

compounds of the formula (VII) with an appropriate chlorinating agent such as POCl_3 in the presence of a base such as DIEA in an appropriate solvent such as acetonitrile at temperatures between rt and reflux provide compounds of the formula (VIII). In certain cases it may be advantageous to add chloride ion from an appropriate source such as LiCl . Compounds of the formula (VIII) are treated with amines to afford compounds of the formula (IX). Saponification with a suitable base such as aq. NaOH , aq. LiOH or aq. KOH or a mixture thereof in a solvent such as THF at temperatures between rt and reflux provides compounds of Formula (I). There are an abundance of known and commercially available anilines that may be employed in the schemes herein. The schemes illustrated herein also provide guidance for synthesizing a variety of intermediates that are not readily available and are useful for making compounds of the present invention

Scheme B

Ether intermediates of formula (II) are prepared according to Scheme B, where HAL is F, Cl. Commercially available appropriately substituted halo-nitro-benzenes of formula (X) are allowed to react with substituted phenols (XI) in the presence of a base such as potassium carbonate, in a solvent such as DMSO, DMF, DMA, and the like, at temperatures between room temperature and the reflux temperature of the solvent, providing nitro intermediates of formula (XII). Reduction of the nitro group, employing methods known to one skilled in the art, for example zinc powder in the presence of a saturated aqueous solution of NH_4Cl in a solvent such as acetone, and the like, affords aniline intermediates of formula (II).

Amino intermediates of formula (III) may be prepared similarly to the methods utilized for the ether intermediates as described above, by replacing phenols with substituted alkyl amines, heterocycloalkyl amines and aryl amines of formula (XIII).

EXAMPLES

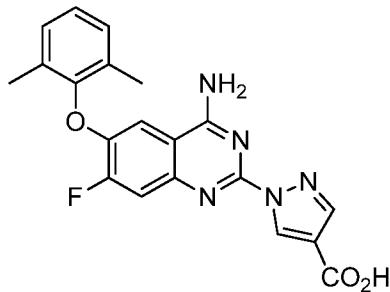
5 *Chemistry:*

In obtaining the compounds described in the examples below and the corresponding analytical data, the following experimental and analytical protocols were followed unless otherwise indicated.

Unless otherwise stated, reaction mixtures were magnetically stirred at room 10 temperature (rt). Where solutions were “dried,” they were generally dried over a drying agent such as Na₂SO₄ or MgSO₄. Where mixtures, solutions, and extracts were “concentrated”, they were typically concentrated on a rotary evaporator under reduced pressure.

Thin-layer chromatography (TLC) was performed using Merck silica gel 60 15 F₂₅₄ 2.5 cm x 7.5 cm 250 µm or 5.0 cm x 10.0 cm 250 µm pre-coated silica gel plates. Preparative thin-layer chromatography was performed using EM Science silica gel 60 F₂₅₄ 20 cm x 20 cm 0.5 mm pre-coated plates with a 20 cm x 4 cm concentrating zone.

Normal-phase flash column chromatography (FCC) was performed on silica 20 gel (SiO₂) eluting with hexanes/ethyl acetate, unless otherwise noted.


Reversed-phase HPLC was performed on a Hewlett Packard HPLC Series 1100, with a Phenomenex Luna C₁₈ (5 µm, 4.6x150 mm) column. Detection was done at λ = 230, 254 and 280 nm. The gradient was 10 to 99% acetonitrile/water (0.05% trifluoroacetic acid) over 5.0 min with a flow rate of 1 mL/min. Alternately, 25 preparative HPLC purification was performed on a Gilson automated HPLC system running Gilson Unipoint LC software with uv peak detection done at λ = 220 nm and fitted with a reverse phase YMC-Pack ODS-A (5 µm, 30 x 250 mm) column; mobile gradient of 10-99% of acetonitrile/water (0.05% trifluoroacetic acid) over 15-20 min and flow rates of 10-20 mL/min.

5 Mass spectra (MS) were obtained on an Agilent series 1100 MSD equipped with a ESI/APCI positive and negative multimode source unless otherwise indicated.

10 Nuclear magnetic resonance (NMR) spectra were obtained on Bruker model DRX spectrometers. The format of the ^1H NMR data below is: chemical shift in ppm downfield of the tetramethylsilane reference (apparent multiplicity, coupling constant J in Hz, integration).

Chemical names were generated using ChemDraw Version 6.0.2 (CambridgeSoft, Cambridge, MA) or ACD/Name Version 9 (Advanced Chemistry Development, Toronto, Ontario, Canada).

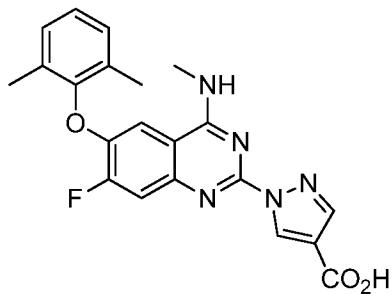
Example 1: 1-[4-Amino-6-(2,6-dimethyl-phenoxy)-7-fluoro-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid.

Step A: Preparation of 3-fluoro-4-(2,6-dimethyl-phenoxy)aniline. Solid 2,6-dimethylphenol (42.4 g, 346 mmol) was added in portions to a stirred mixture of 3,4-difluoronitrobenzene (50.0 g, 314 mmol), K_2CO_3 (65.0 g, 138 mmol), and DMSO (500 mL). After the addition was complete, the mixture was heated to 80 °C for 8 h and then allowed to cool to rt. The mixture was poured into ice water, and the resulting precipitate was collected and dried. This material was dissolved in acetone (1 L), then 150 mL of saturated aqueous NH_4Cl was added and the mixture was immersed in an ice bath with mechanical stirring. Solid Zn powder (204 g, 65.4 mmol) was added in portions at such a rate that the internal temperature of the reaction mixture did not rise above 20 °C. Following completion of the addition, the mixture was allowed to warm to rt and stirring was maintained for 6 h. EtOAc (ethyl acetate) (1.5 L) and anhydrous sodium sulfate (500 g) were added, and stirring was continued for 30 min. The mixture was then filtered through a pad of Celite®, rinsing well with EtOAc, and the filtrate was concentrated. The residue was triturated with

hexanes to afford a solid (64.5 g, 90%). ^1H NMR (400 MHz, CDCl_3): 7.10 – 6.99 (m, 3H), 6.55 (ddd, J = 12.5, 2.1, 0.8 Hz, 1H), 6.25 – 6.19 (m, 2H), 3.50 (s, 2H), 2.15 (s, 6H).

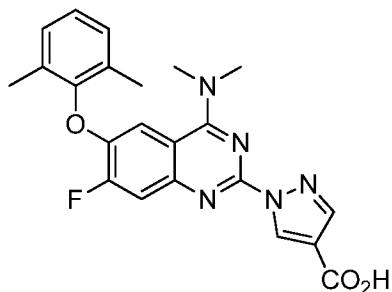
Step B: Preparation of 1-(4-(2,6-dimethylphenoxy)-3-fluorophenyl)-3-ethoxycarbonylthiourea. A mixture of 3-fluoro-4-(2,6-dimethyl-phenoxy)aniline (15.4 g, 66.6 mmol) and DCM (250 mL) was cooled in an ice bath, then neat ethyl isocyanatoformate (9.61 g, 73.2 mmol) was added over 10 min. The resulting solution was allowed to warm to rt and was maintained for 2 h. The solution was concentrated, and the residue was triturated with 50:50 hexanes/ether, affording the titled compound as a solid (21.8 g, 90%). MS (ESI): mass calcd. for $\text{C}_{18}\text{H}_{19}\text{FN}_2\text{O}_3\text{S}$, 362.1; m/z found, 363.1 $[\text{M}+\text{H}]^+$.

Step C: Preparation of 1-(6-(2,6-dimethylphenoxy)-7-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid, ethyl ester. Neat diisopropylcarbodiimide (45.4 g, 290 mmol) was added to a solution of 1-(4-(2,6-dimethylphenoxy)-3-fluorophenyl)-3-ethoxycarbonylthiourea (100 g, 276 mmol), ethyl pyrazole-4-carboxylate (45.4 g, 290 mmol), and DCM (1 L). The solution was maintained at rt for 24 h, then concentrated. The residue was stirred with ether (500 mL) for 3 h in an ice bath, then filtered. The filtrate was concentrated to a thick orange oil (180 g, ca. 70% purity, 97%). A portion of this material (20 g, ca. 30 mmol) was dissolved in DCE (150 mL), then neat TiCl_4 was added. The mixture was then heated to reflux for 6 h, then cooled in an ice bath. EtOH (750 mL) was added, and the mixture was stirred for 3 h. The resulting precipitate was collected by filtration, washed with cold EtOH, and dried to provide the titled compound (3.9 g, 31%). ^1H NMR (500 MHz, DMSO): 13.03 (s, 1H), 8.95 (d, J = 0.6 Hz, 1H), 8.29 (s, 1H), 7.75 (d, J = 11.5 Hz, 1H), 7.31 – 7.24 (m, 2H), 7.22 (dd, J = 8.5, 6.4 Hz, 1H), 6.96 (d, J = 9.1 Hz, 1H), 4.29 (q, J = 7.1 Hz, 2H), 2.11 (s, 6H), 1.32 (t, J = 7.1 Hz, 3H).

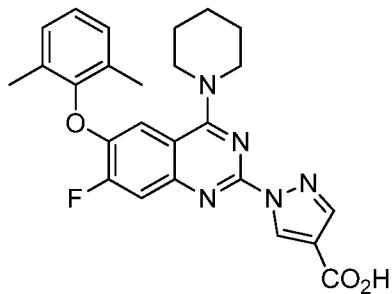

Step D: Preparation of 1-[4-chloro-6-(2,6-dimethyl-phenoxy)-7-fluoro-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid, ethyl ester. A mixture of the above 1-[6-(2,6-dimethyl-phenoxy)-7-fluoro-4-oxo-3,4-dihydro-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid ethyl ester (5.0 g, 12 mmol), LiCl (2.5 g, 59 mmol), POCl_3 (5.5 mL, 59 mmol), DIEA (10 mL, 59 mmol), and acetonitrile (ACN) (50 mL) was heated to reflux

for 6 h. The mixture was allowed to cool to rt and then concentrated. The residue was taken up in a minimal amount of DCM and passed through a pad of silica gel, eluting with 50:50 hexanes/EtOAc. The resulting solution was concentrated to provide the titled compound. (5.2 g, >99%). ^1H NMR (500 MHz, DMSO-d₆): 9.13 (d, *J* = 0.6 Hz, 1H), 8.23 (d, *J* = 0.6 Hz, 1H), 7.92 (d, *J* = 10.7 Hz, 1H), 7.23 - 7.19 (m, 3H), 7.07 (d, *J* = 8.6 Hz, 1H), 4.36 (q, *J* = 7.1 Hz, 2H), 2.19 (s, 6H), 1.40 (t, *J* = 7.1 Hz, 3H).

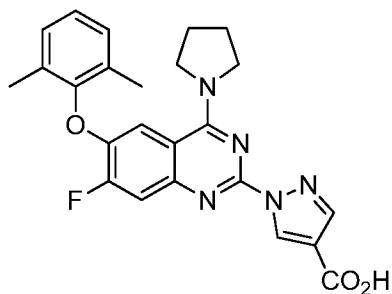
Step E: Preparation of 1-[4-amino-6-(2,6-dimethyl-phenoxy)-7-fluoro-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid, ethyl ester. A methanol solution of ammonia (7M, 0.39 mL, 2.7 mmol) was added to a solution of the above 1-[4-chloro-6-(2,6-dimethyl-phenoxy)-7-fluoro-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid, ethyl ester (120 mg, 0.27 mmol) and THF (2 mL). The mixture was stirred 6 h, then concentrated. The residue was triturated with Et₂O, providing the titled compound (72 mg, 64%). ^1H NMR (500 MHz, DMSO-d₆): 8.96 (d, *J* = 0.8 Hz, 1H), 8.44 - 8.02 (m, 3H), 7.71 (d, *J* = 11.9 Hz, 1H), 7.37 (d, *J* = 9.0 Hz, 1H), 7.24 - 7.20 (m, 2H), 7.17 (dd, *J* = 8.6, 6.2 Hz, 1H), 4.27 (q, *J* = 7.1 Hz, 2H), 2.12 (s, 6H), 1.31 (t, *J* = 7.1 Hz, 3H).


Step F: Preparation of 1-[4-amino-6-(2,6-dimethyl-phenoxy)-7-fluoro-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid. A mixture of 1-[4-amino-6-(2,6-dimethyl-phenoxy)-7-fluoro-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid, ethyl ester (65 mg, 0.15 mmol), 1M aqueous LiOH (1.5 mL, 1.5 mmol), and THF (3 mL) was heated to 40 °C for 16 h with rapid stirring. The mixture was then cooled in an ice bath, and 1M HCl (1.5 mL, 1.5 mmol) was added. The resulting precipitate was collected by filtration, washed with water, and dried to furnish the titled compound (45 mg, 74%). MS (ESI): mass calcd. for C₂₀H₁₆FN₅O₃, 393.1; m/z found, 394.1 [M+H]⁺. ^1H NMR (500 MHz, DMSO-d₆): 12.72 (s, 1H), 8.91 (d, *J* = 0.7 Hz, 1H), 8.42 - 7.98 (m, 3H), 7.70 (d, *J* = 11.9 Hz, 1H), 7.37 (d, *J* = 9.0 Hz, 1H), 7.25 - 7.20 (m, 2H), 7.17 (dd, *J* = 8.6, 6.2 Hz, 1H), 2.12 (s, 6H).

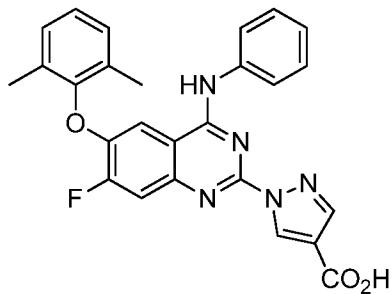
Example 2: 1-[6-(2,6-Dimethyl-phenoxy)-7-fluoro-4-methylamino-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid.


The titled compound was prepared in a manner analogous to EXAMPLE 1, using methylamine in step E. MS (ESI): mass calcd. for $C_{21}H_{18}FN_5O_3$, 407.1; m/z found, 408.1 $[M+H]^+$. 1H NMR (500 MHz, DMSO-d₆): 12.76 (s, 1H), 8.99 (d, J = 0.7 Hz, 1H), 8.60 (d, J = 4.5 Hz, 1H), 8.08 (d, J = 0.7 Hz, 1H), 7.71 (d, J = 11.9 Hz, 1H), 7.34 (d, J = 8.9 Hz, 1H), 7.27 - 7.22 (m, 2H), 7.19 (dd, J = 8.6, 6.2 Hz, 1H), 3.00 (d, J = 4.5 Hz, 3H), 2.12 (s, 6H).

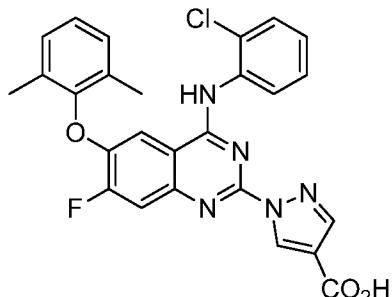
Example 3: 1-[4-Dimethylamino-6-(2,6-dimethyl-phenoxy)-7-fluoro-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid.


The titled compound was prepared in a manner analogous to EXAMPLE 1, using dimethylamine in step E. MS (ESI): mass calcd. for $C_{22}H_{20}FN_5O_3$, 421.2; m/z found, 422.1 $[M+H]^+$. 1H NMR (500 MHz, DMSO-d₆): 12.77 (s, 1H), 8.97 (d, J = 0.7 Hz, 1H), 8.09 (d, J = 0.7 Hz, 1H), 7.79 (d, J = 11.9 Hz, 1H), 7.32 - 7.16 (m, 3H), 6.99 (d, J = 9.1 Hz, 1H), 3.12 (s, 6H), 2.13 (s, 6H).

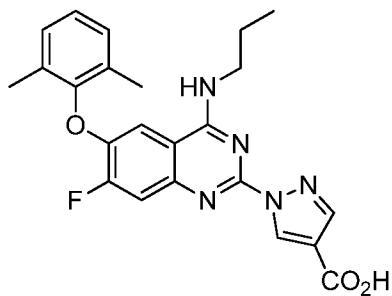
Example 4: 1-[6-(2,6-Dimethyl-phenoxy)-7-fluoro-4-piperidin-1-yl-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid.


The titled compound was prepared in a manner analogous to EXAMPLE 1, using piperidine in step E. MS (ESI): mass calcd. for $C_{25}H_{24}FN_5O_3$, 461.2; m/z found, 462.1 $[M+H]^+$. 1H NMR (500 MHz, DMSO-d₆): 12.77 (s, 1H), 8.96 (d, J = 0.7 Hz, 1H), 8.09 (d, J = 0.7 Hz, 1H), 7.83 (d, J = 11.8 Hz, 1H), 7.31 – 7.19 (m, 3H), 6.70 (d, J = 9.1 Hz, 1H), 3.58 – 3.48 (m, 4H), 2.13 (s, 6H), 1.66 – 1.53 (m, 2H), 1.47 – 1.35 (m, 4H).

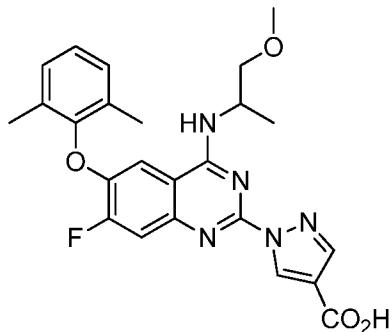
Example 5: 1-[6-(2,6-Dimethyl-phenoxy)-7-fluoro-4-pyrrolidin-1-yl-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid.


The titled compound was prepared in a manner analogous to EXAMPLE 1, using pyrrolidine in step E. MS (ESI): mass calcd. for $C_{24}H_{22}FN_5O_3$, 447.2; m/z found, 448.2 $[M+H]^+$. 1H NMR (500 MHz, DMSO-d₆): 12.74 (s, 1H), 8.95 (s, 1H), 8.08 (s, 1H), 7.75 (d, J = 12.0 Hz, 1H), 7.30 - 7.12 (m, 4H), 3.66 - 3.48 (m, 4H), 2.14 (s, 6H), 1.91 - 1.80 (m, 4H).

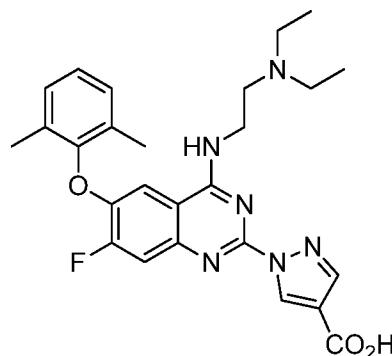
Example 6: 1-[6-(2,6-Dimethyl-phenoxy)-7-fluoro-4-phenylamino-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid.


The titled compound was prepared in a manner analogous to EXAMPLE 1, using aniline in step E with heating to 80 °C for 16 h. MS (ESI): mass calcd. for $C_{26}H_{20}FN_5O_3$, 469.2; m/z found, 470.1 $[M+H]^+$. 1H NMR (500 MHz, DMSO-d₆): 12.76 (s, 1H), 10.14 (s, 1H), 8.69 (d, J = 0.7 Hz, 1H), 8.07 (d, J = 0.7 Hz, 1H), 7.82 (d, J = 11.8 Hz, 1H), 7.71 - 7.59 (m, 3H), 7.47 - 7.39 (m, 2H), 7.28 - 7.15 (m, 4H), 2.16 (s, 6H).

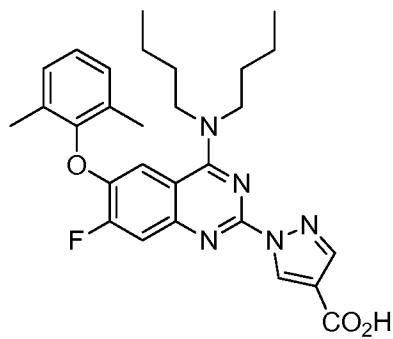
Example 7: 1-[4-(2-Chloro-phenylamino)-6-(2,6-dimethyl-phenoxy)-7-fluoro-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid.


The titled compound was prepared in a manner analogous to EXAMPLE 1, using 2-chloroaniline in step E and heating to 80 °C for 16 h. MS (ESI): mass calcd. for $C_{26}H_{19}ClFN_5O_3$, 503.1; m/z found, 504.0 $[M+H]^+$. 1H NMR (500 MHz, DMSO-d₆): 12.72 (s, 1H), 10.30 (s, 1H), 8.42 (d, J = 0.7 Hz, 1H), 8.03 (d, J = 0.7 Hz, 1H), 7.85 (d, J = 11.8 Hz, 1H), 7.66 - 7.59 (m, 2H), 7.54 (dd, J = 7.8, 1.7 Hz, 1H), 7.48 - 7.38 (m, 2H), 7.28 - 7.23 (m, 2H), 7.19 (dd, J = 8.3, 6.6 Hz, 1H), 2.17 (s, 6H).

Example 8: 1-[6-(2,6-Dimethyl-phenoxy)-7-fluoro-4-propylamino-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid.

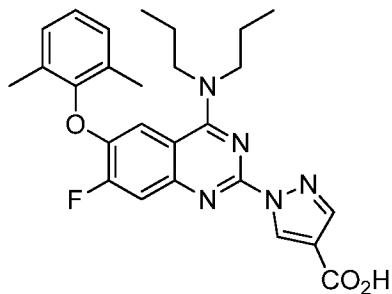

The titled compound was prepared in a manner analogous to EXAMPLE 1, using propylamine in step E. MS (ESI): mass calcd. for $C_{23}H_{22}FN_5O_3$, 435.2; m/z found, 436.1 $[M+H]^+$. 1H NMR (500 MHz, DMSO- d_6): 12.76 (s, 1H), 8.94 (d, J = 0.7 Hz, 1H), 8.67 (t, J = 5.6 Hz, 1H), 8.09 (d, J = 0.7 Hz, 1H), 7.70 (d, J = 11.9 Hz, 1H), 7.39 (d, J = 8.9 Hz, 1H), 7.27 – 7.14 (m, 3H), 3.49 (dd, J = 14.0, 6.1 Hz, 2H), 2.12 (s, 6H), 1.71 – 1.57 (m, 2H), 0.90 (t, J = 7.4 Hz, 3H).

Example 9: (*rac*)-1-[6-(2,6-Dimethyl-phenoxy)-7-fluoro-4-(2-methoxy-1-methyl-ethylamino)-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid.

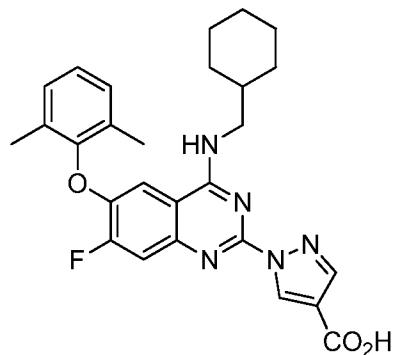

The titled compound was prepared in a manner analogous to EXAMPLE 1, using racemic 2-methoxy-1-methylethylamine in step E. MS (ESI): mass calcd. for $C_{24}H_{24}FN_5O_4$, 465.2; m/z found, 467.1 $[M+H]^+$. 1H NMR (500 MHz, DMSO- d_6): 12.82 (s, 1H), 8.96 (d, J = 0.7 Hz, 1H), 8.37 (d, J = 7.9 Hz, 1H), 8.09 (d, J = 0.7 Hz, 1H), 7.67 (d, J = 11.8 Hz, 1H), 7.54 (d, J = 8.9 Hz, 1H), 7.20 – 7.08 (m, 3H), 4.80 – 4.67 (m, 1H), 3.51 (dd, J = 9.7, 6.5 Hz, 1H), 3.44 – 3.35 (m, 1H, partially obstructed by water), 3.24 (d, J = 3.3 Hz, 3H), 2.11 (s, 6H), 1.21 (d, J = 6.8 Hz, 3H).

Example 10: 1-[4-(2-Diethylamino-ethylamino)-6-(2,6-dimethyl-phenoxy)-7-fluoro-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1, using 2-dimethylaminoethylamine in step E. MS (ESI): mass calcd. for $C_{26}H_{29}FN_6O_3$, 492.2; m/z found, 493.5 $[M+H]^+$. 1H NMR (500 MHz, DMSO-d₆): 9.00 (s, 1H), 8.83 (s, 1H), 8.15 (s, 1H), 7.76 (d, J = 11.8 Hz, 1H), 7.34 (d, J = 8.8 Hz, 1H), 7.27 – 7.14 (m, 3H), 3.71 (d, J = 5.3 Hz, 2H), 3.08 – 2.84 (m, 6H), 2.12 (s, 6H), 1.07 (t, J = 7.0 Hz, 6H).

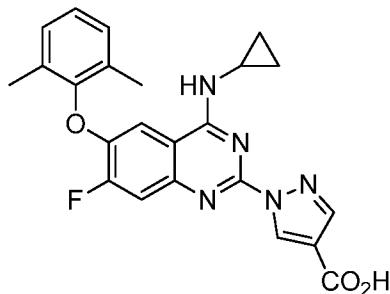

Example 11: 1-[6-(2,6-Dimethyl-phenoxy)-4-dibutylamino-7-fluoro-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1, using dibutylamine in step E. MS (ESI): mass calcd. for $C_{28}H_{32}FN_5O_3$, 505.2; m/z found, 506.3 $[M+H]^+$. 1H NMR (500 MHz, DMSO-d₆): 12.76 (s, 1H), 8.87 (d, J = 0.7 Hz, 1H), 8.09 (d, J = 0.7 Hz, 1H), 7.79 (d, J = 11.8 Hz, 1H), 7.30 – 7.17 (m, 3H), 6.90 (d,

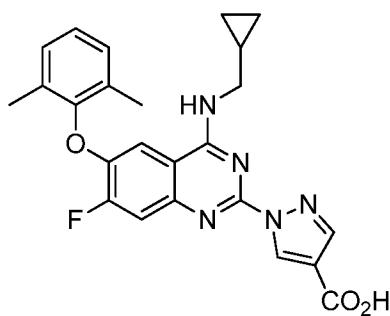

J = 9.0 Hz, 1H), 3.47 – 3.40 (m, 4H), 2.13 (s, 6H), 1.52 – 1.37 (m, 4H), 1.15 – 1.03 (m, 4H), 0.85 (t, *J* = 7.3 Hz, 6H).

Example 12: 1-[6-(2,6-Dimethyl-phenoxy)-4-dipropylamino-7-fluoro-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1, using dipropylamine in step E. MS (ESI): mass calcd. for $C_{26}H_{28}FN_5O_3$, 477.2; m/z found, 478.4 [M+H]⁺. ¹H NMR (500 MHz, DMSO-d₆): 12.77 (s, 1H), 8.87 (d, *J* = 0.6 Hz, 1H), 8.10 (d, *J* = 0.6 Hz, 1H), 7.79 (d, *J* = 11.8 Hz, 1H), 7.30 – 7.24 (m, 2H), 7.20 (dd, *J* = 8.4, 6.6 Hz, 1H), 6.88 (d, *J* = 9.0 Hz, 1H), 3.43 – 3.37 (m, 4H), 2.13 (s, 6H), 1.55 – 1.41 (m, 4H), 0.70 (t, *J* = 7.4 Hz, 6H).

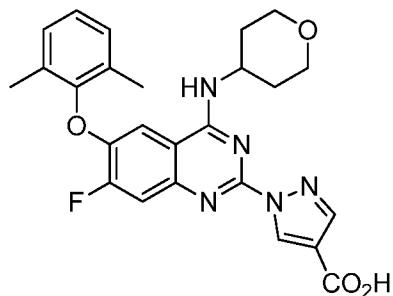

Example 13: 1-(4-((Cyclohexylmethyl)amino)-6-(2,6-dimethylphenoxy)-7-fluoroquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1, using cyclohexanemethylamine in step E. MS (ESI): mass calcd. for $C_{27}H_{28}FN_5O_3$, 490.1; m/z found, 489.2 [M+H]⁺. ¹H NMR (500 MHz, DMSO-d₆): 8.90 (d, *J* = 0.6 Hz, 1H), 8.65 (t, *J* = 5.7 Hz, 1H), 8.08 (d, *J* = 0.6 Hz, 1H), 7.68 (d, *J* = 11.9 Hz, 1H), 7.43 (d, *J*

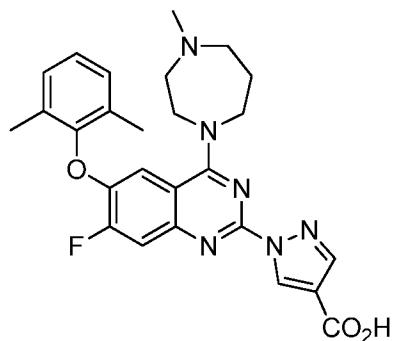

= 8.9 Hz, 1H), 7.25 – 7.14 (m, J = 8.5, 6.8 Hz, 3H), 3.39 (t, J = 6.0 Hz, 2H), 2.12 (s, 6H), 1.73 – 1.53 (m, 6H), 1.14 (t, J = 9.4 Hz, 3H), 0.97 (t, J = 11.6 Hz, 2H).

Example 14: 1-((4-Cyclopropylamino)-6-(2,6-dimethylphenoxy)-7-fluoroquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1, using cyclopropylamine in step E. MS (ESI): mass calcd. for $C_{23}H_{20}FN_5O_3$, 433.2; m/z found, 434.0 $[M+H]^+$. 1H NMR (500 MHz, DMSO- d_6): 12.77 (s, 1H), 9.00 (d, J = 0.7 Hz, 1H), 8.72 (d, J = 2.7 Hz, 1H), 8.10 (d, J = 0.7 Hz, 1H), 7.72 (d, J = 11.8 Hz, 1H), 7.41 (d, J = 8.9 Hz, 1H), 7.23 - 7.13 (m, 3H), 3.04 - 2.93 (m, 1H), 2.11 (s, 6H), 0.88 - 0.76 (m, 2H), 0.68 - 0.57 (m, 2H).

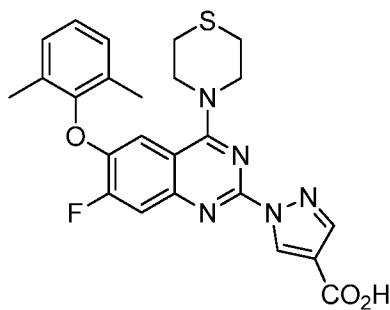

Example 15: 1-((4-Cyclopropanemethylamino)-6-(2,6-dimethylphenoxy)-7-fluoroquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1, using cyclopropanemethylamine in step E. MS (ESI): mass calcd. for $C_{24}H_{22}FN_5O_3$, 447.2; m/z found, 448.0 $[M+H]^+$. 1H NMR (500 MHz, DMSO- d_6): 12.75 (s, 1H), 8.95 (d, J = 0.7 Hz, 1H), 8.76 (t, J = 5.7 Hz, 1H), 8.09 (d, J = 0.7 Hz, 1H), 7.71 (d, J = 11.8

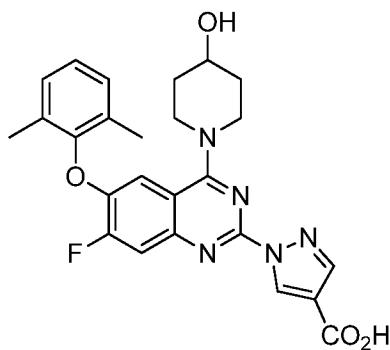

Hz, 1H), 7.39 (d, J = 8.9 Hz, 1H), 7.28 - 7.14 (m, J = 8.5, 6.9 Hz, 3H), 3.43 - 3.38 (m, 2H), 2.13 (s, 6H), 1.29 - 1.14 (m, 1H), 0.48 - 0.40 (m, 2H), 0.35 - 0.27 (m, 2H).

Example 16: 1-(6-(2,6-Dimethylphenoxy)-7-fluoro-4-((tetrahydro-2H-pyran-4-yl)amino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1, using 4-aminotetrahydro-2H-pyran in step E. MS (ESI): mass calcd. for $C_{25}H_{24}FN_5O_4$, 477.2; m/z found, 478.0 $[M+H]^+$. 1H NMR (500 MHz, DMSO-d₆): 12.77 (s, 1H), 8.95 (d, J = 0.5 Hz, 1H), 8.29 (d, J = 7.5 Hz, 1H), 8.10 (d, J = 0.5 Hz, 1H), 7.70 (d, J = 11.8 Hz, 1H), 7.49 (d, J = 8.9 Hz, 1H), 7.24 – 7.12 (m, 3H), 4.55 – 4.39 (m, 1H), 3.91 (dd, J = 11.0, 4.0 Hz, 2H), 3.65 – 3.56 (m, 2H), 3.45 (t, J = 11.1 Hz, 2H), 2.12 (s, 6H), 1.87 (dd, J = 12.4, 2.6 Hz, 2H), 1.78 – 1.73 (m, 2H), 1.72 – 1.59 (m, 2H).

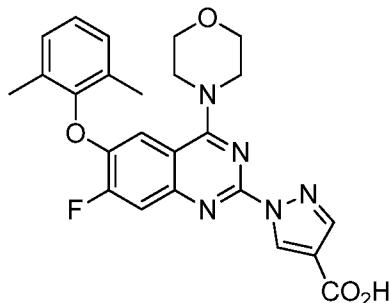

Example 17: 1-(6-(2,6-Dimethylphenoxy)-7-fluoro-4-(4-methyl-1,4-diazepan-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1, using 4-methyl-1,4-diazepane) in step E. MS (ESI): mass calcd. for $C_{26}H_{27}FN_6O_3$, 490.2; m/z found, 491.3 $[M+H]^+$. 1H NMR (400 MHz, DMSO-d₆): 8.94 (s, 1H), 8.09

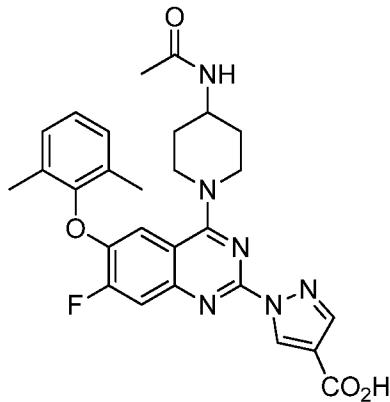

(d, $J = 0.4$ Hz, 1H), 7.81 (d, $J = 11.9$ Hz, 1H), 7.32 - 7.18 (m, 3H), 6.89 (d, $J = 9.1$ Hz, 1H), 3.84 - 3.73 (m, 2H), 3.66 (t, $J = 5.9$ Hz, 2H), 2.73 - 2.54 (m, 4H), 2.31 (s, 3H), 2.13 (s, 6H), 1.87 - 1.75 (m, 2H).

Example 18: 1-(6-(2,6-Dimethylphenoxy)-7-fluoro-4-thiomorpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1, using thiomorpholine in step E. MS (ESI): mass calcd. for $C_{24}H_{22}FN_5O_3S$, 479.1; m/z found, 480.0 $[M+H]^+$. 1H NMR (500 MHz, DMSO- d_6): 12.79 (s, 1H), 8.98 (d, $J = 0.7$ Hz, 1H), 8.11 (d, $J = 0.7$ Hz, 1H), 7.88 (d, $J = 11.8$ Hz, 1H), 7.33 - 7.21 (m, 3H), 6.65 (d, $J = 9.1$ Hz, 1H), 3.86 - 3.75 (m, 4H), 2.56 - 2.51 (m, 4H), 2.14 (s, 6H).


Example 19: 1-(6-(2,6-Dimethylphenoxy)-7-fluoro-4-(4-hydroxypiperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1, using 4-hydroxypiperidine in step E. MS (ESI): mass calcd. for $C_{25}H_{24}FN_5O_3$, 477.2; m/z found, 478.1 $[M+H]^+$. 1H NMR (500 MHz, DMSO- d_6): 12.78 (s, 1H), 8.96 (d, $J = 0.7$ Hz, 1H), 8.10 (d, $J = 0.7$ Hz, 1H), 7.84 (d, $J = 11.8$ Hz, 1H), 7.32 - 7.19 (m, 3H),

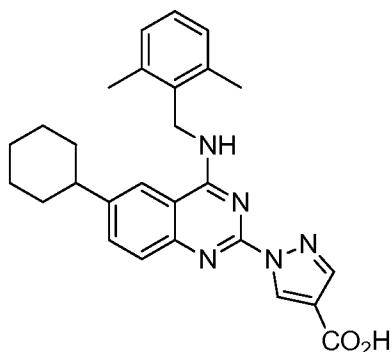

6.71 (d, J = 9.1 Hz, 1H), 4.81 (d, J = 4.0 Hz, 1H), 3.87 - 3.66 (m, 3H), 3.32 - 3.24 (m, 2H), 1.73 - 1.61 (m, 2H), 1.35 - 1.13 (m, 2H).

Example 20: 1-(6-(2,6-Dimethylphenoxy)-7-fluoro-4-morpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1, using morpholine in step E. MS (ESI): mass calcd. for $C_{24}H_{22}FN_5O_4$, 436.2; m/z found, 464.2 $[M+H]^+$. 1H NMR (500 MHz, DMSO- d_6): 12.79 (s, 1H), 9.00 (d, J = 0.7 Hz, 1H), 8.11 (d, J = 0.7 Hz, 1H), 7.89 (d, J = 11.8 Hz, 1H), 7.31 - 7.21 (m, 3H), 6.68 (d, J = 9.1 Hz, 1H), 3.56 (s, 8H), 2.12 (s, 6H).

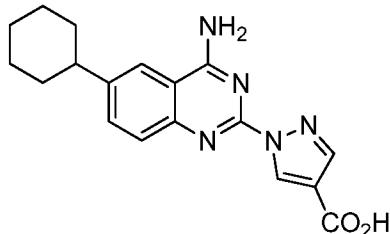
Example 21: 1-(4-(4-Acetamidopiperidin-1-yl)-6-(2,6-dimethylphenoxy)-7-fluoroquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1, using 4-acetamidopiperidine in step E. MS (ESI): mass calcd. for $C_{27}H_{27}FN_6O_4$, 518.2; m/z found, 519.1 $[M+H]^+$. 1H NMR (500 MHz, DMSO- d_6): 12.80 (s, 1H), 8.97 (d, J = 0.7 Hz, 1H), 8.11 (d, J = 0.7 Hz, 1H), 7.91 - 7.80 (m, 2H), 7.32 - 7.19 (m, 3H),

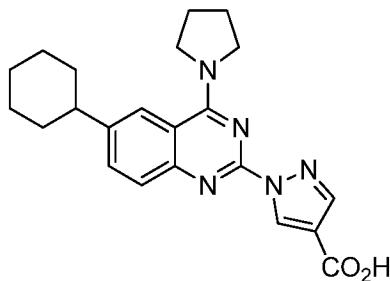

6.70 (d, J = 9.0 Hz, 1H), 3.96 (d, J = 13.5 Hz, 2H), 3.88 - 3.76 (m, 1H), 3.20 (t, J = 11.1 Hz, 2H), 2.14 (s, 6H), 1.80 (s, 3H), 1.75 - 1.66 (m, 2H), 1.34 - 1.20 (m, 2H).

Example 22: 1-(6-Cyclohexyl-4-methylamino-quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

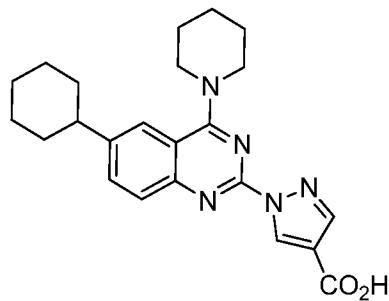
The titled compound was prepared in a manner analogous to EXAMPLE 1, Steps B - F using 4-cyclohexylaniline in step B and methylamine in step E. MS (ESI): mass calcd. for $C_{19}H_{21}N_5O_2$, 351.2; m/z found, 352.2 [M+H]⁺. ¹H NMR (500 MHz, DMSO- d_6): 12.74 (s, 1H), 9.04 (s, 1H), 8.78 (s, 1H), 8.10 (s, 2H), 7.70 (d, J = 8.6 Hz, 1H), 7.66 (d, J = 8.4 Hz, 1H), 3.17 - 3.07 (m, 3H), 2.65 (t, J = 11.5 Hz, 1H), 1.95 - 1.80 (m, 4H), 1.75 (d, J = 12.5 Hz, 1H), 1.60 - 1.35 (m, 4H), 1.30 - 1.20 (m, 1H).


Example 23: 1-[6-Cyclohexyl-4-(2,6-dimethyl-benzylamino)-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid.

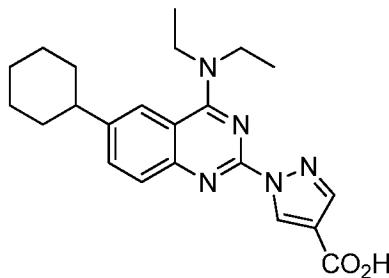
The titled compound was prepared in a manner analogous to EXAMPLE 1, Steps B - F using 4-cyclohexylaniline in step B and 2,6-dimethylbenzylamine in step E. MS (ESI): mass calcd. for $C_{27}H_{29}N_5O_2$, 455.2; m/z found, 456.2 [M+H]⁺. ¹H NMR (500 MHz, DMSO- d_6): 12.72 (s, 1H), 9.09 (s, 1H), 8.56 (s, 1H), 8.26 (s, 1H), 8.11 (s, 1H), 7.75 - 7.63 (m, 2H), 7.20 - 7.13 (m, 1H), 7.13 - 7.06 (m, 2H), 4.87 (d, J = 4.3 Hz, 2H),


2.68 - 2.56 (m, 1H), 2.38 (s, 6H), 1.82 (t, J = 12.0 Hz, 4H), 1.71 (d, J = 12.9 Hz, 1H), 1.55 - 1.43 (m, 2H), 1.43 - 1.30 (m, 2H), 1.30 - 1.18 (m, 1H).

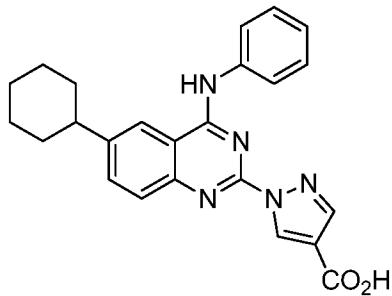
Example 24: 1-(4-Amino-6-cyclohexylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-cyclohexylaniline in step B and ammonia in dioxane in step E. MS (ESI): mass calcd. for $C_{18}H_{19}N_5O_2$, 337.2; m/z found, 338.2 [M+H]⁺. ¹H NMR (400 MHz, DMSO-*d*₆) 13.57 – 11.64 (m, 1H), 8.93 (s, 1H), 8.59 (s, 2H), 8.17 (d, J = 9.6 Hz, 2H), 7.75 (q, J = 8.7 Hz, 2H), 2.66 (t, J = 11.7 Hz, 1H), 1.86 (t, J = 12.7 Hz, 4H), 1.75 (d, J = 12.2 Hz, 1H), 1.59 – 1.34 (m, 4H), 1.34 – 1.21 (m, 1H).

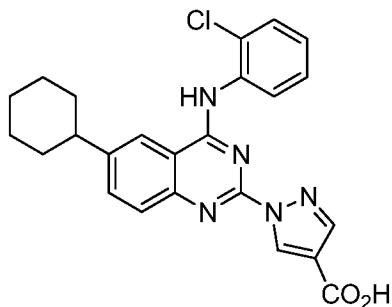
Example 25: 1-(6-Cyclohexyl-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-cyclohexylaniline in step B and pyrrolidine in step E. MS (ESI): mass calcd. for $C_{22}H_{25}N_5O_2$, 391.2; m/z found, 392.1 [M+H]⁺. ¹H NMR (500 MHz, DMSO-*d*₆): 12.80 (s, 1H), 9.04 (s, 1H), 8.17 (s, 1H), 8.12 (s, 1H), 7.77 (s, 2H), 4.05 (s, 4H), 2.81 – 2.66 (m, 1H), 2.03 (s, 4H), 1.92 – 1.79 (m, 4H), 1.73 (d, J = 12.8 Hz, 1H), 1.58 – 1.35 (m, 4H), 1.31 – 1.16 (m, 1H).

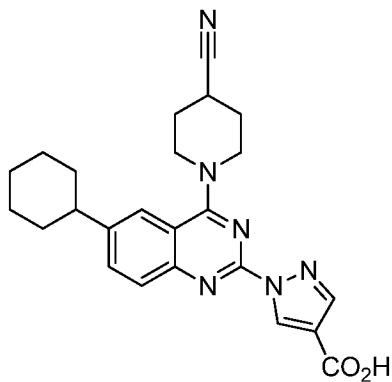
Example 26: 1-(6-Cyclohexyl-4-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-cyclohexylaniline in step B and piperidine in step E. MS (ESI): mass calcd. for $C_{23}H_{27}N_5O_2$, 405.2; m/z found, 406.1 $[M+H]^+$. 1H NMR (400 MHz, DMSO- d_6) 12.78 - 11.82 (m, 1H), 8.99 (s, 1H), 8.10 (s, 1H), 7.75 (s, 2H), 7.73 (s, 1H), 3.85 (s, 4H), 2.69 (s, 1H), 1.94 - 1.89 (m, 2H), 1.83 - 1.75 (m, 2H), 1.75 (s, 6H), 1.55 - 1.39 (m, 4H), 1.34 - 1.28 (m, 2H).

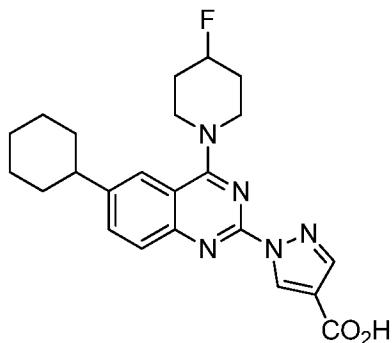
Example 27: 1-(6-Cyclohexyl-4-(diethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-cyclohexylaniline in step B and diethylamine in step E. MS (ESI): mass calcd. for $C_{22}H_{27}N_5O_2$, 393.2; m/z found, 394.1 $[M+H]^+$. 1H NMR (400 MHz, DMSO- d_6): 12.76 (s, 1H), 8.94 (s, 1H), 8.10 (s, 1H), 7.80 (s, 1H), 7.73 (s, 1H), 7.72 (s, 1H), 3.82 (q, $J = 6.9$ Hz, 4H), 2.67 (s, 1H), 1.91 (s, 2H), 1.84 (s, 2H), 1.74 (d, $J = 12.1$ Hz, 1H), 1.51 - 1.35 (m, 11H).

Example 28: 1-(6-Cyclohexyl-4-(phenylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

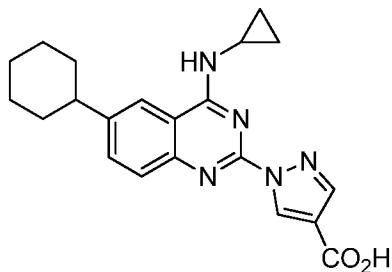

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-cyclohexylaniline in step B and aniline in step E. MS (ESI): mass calcd. for $C_{24}H_{23}N_5O_2$, 413.2; m/z found, 414.3 $[M+H]^+$. 1H NMR (400 MHz, DMSO- d_6): 12.79 (s, 1H), 10.22 (s, 1H), 8.82 (s, 1H), 8.45 (s, 1H), 8.13 (s, 1H), 7.91 (d, J = 7.6 Hz, 2H), 7.81 (d, J = 8.6 Hz, 1H), 7.76 (d, J = 8.5 Hz, 1H), 7.52 - 7.45 (m, 2H), 7.23 (t, J = 7.4 Hz, 1H), 3.65 - 3.56 (m, 1H), 2.72 (t, J = 11.8 Hz, 1H), 1.96 - 1.83 (m, 4H), 1.82 - 1.72 (m, 2H), 1.66 - 1.52 (m, 2H), 1.44 - 1.32 (m, 2H), 1.30 - 1.23 (m, 1H).

Example 29: 1-(4-((2-Chlorophenyl)amino)-6-cyclohexylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

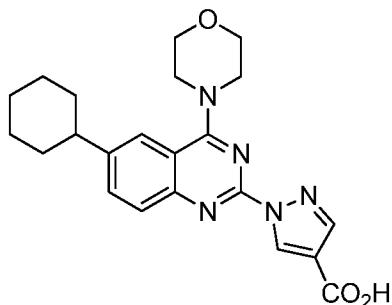

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-cyclohexylaniline in step B and 2-chloroaniline in step E. MS (ESI): mass calcd. for $C_{24}H_{22}ClN_5O_2$, 447.2; m/z found, 448.3 $[M+H]^+$. 1H NMR (400 MHz, DMSO- d_6): 10.35 (s, 1H), 8.50 (s, 1H), 8.42 (s, 1H), 8.04 (s, 1H), 7.83 (dd, J = 8.7, 1.7 Hz, 1H), 7.76 (d, J = 8.6 Hz, 1H), 7.69 (dd, J = 4.0, 1.6 Hz, 1H), 7.67 (dd, J = 3.9, 1.6 Hz, 1H), 7.51 (td, J = 7.6, 1.5 Hz, 1H), 7.43 (td, J = 7.7, 1.7 Hz, 1H), 2.83 - 2.64 (m, 1H), 1.94 (d, J = 11.8 Hz, 2H), 1.87 (d, J = 12.7 Hz, 2H), 1.79 - 1.73 (m, 1H), 1.68 - 1.51 (m, 2H), 1.51 - 1.36 (m, 2H), 1.36 - 1.22 (m, 1H).

Example 30: 1-(4-(4-Cyanopiperidin-1-yl)-6-cyclohexylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-cyclohexylaniline in step B and 4-cyanopiperidine in step E. MS (ESI): mass calcd. for $C_{24}H_{26}N_6O_2$, 430.2; m/z found, 431.1 $[M+H]^+$. 1H NMR (500 MHz, $DMSO-d_6$): 12.78 (s, 1H), 9.02 (s, 1H), 8.11 (s, 1H), 7.78 (s, 2H), 7.75 (s, 1H), 4.16 - 4.09 (m, 2H), 3.75 - 3.64 (m, 2H), 3.30 - 3.20 (m, 1H), 2.89 - 2.73 (m, 1H), 2.27 - 2.14 (m, 2H), 2.01 - 1.91 (m, 2H), 1.88 (d, $J = 12.3$ Hz, 2H), 1.84 (d, $J = 12.4$ Hz, 2H), 1.74 (d, $J = 12.6$ Hz, 1H), 1.57 - 1.36 (m, 5H), 1.35 - 1.23 (m, 1H).

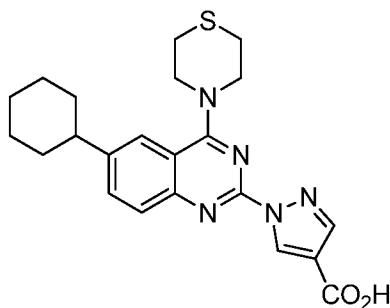

Example 31: 1-(6-Cyclohexyl-4-(4-fluoropiperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-cyclohexylaniline in step B and 4-fluoropiperidine in step E. MS (ESI): mass calcd. for $C_{23}H_{26}FN_5O_2$, 423.2; m/z found, 424.1 $[M+H]^+$. 1H NMR (500 MHz, $DMSO-d_6$): 12.78 (s, 1H), 9.01 (s, 1H), 8.11 (s, 1H), 7.78 (s, 3H), 5.19 - 4.93 (m, 1H), 3.92 - 3.79 (m, 4H), 2.72 - 2.64 (m, 1H), 2.23 - 2.08 (m, 2H), 2.03 - 1.92 (m,

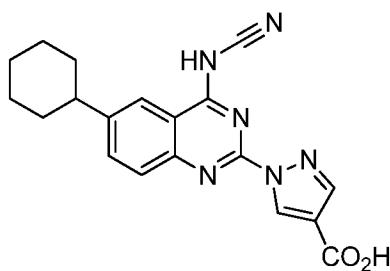

2H), 1.89 (d, J = 12.7 Hz, 2H), 1.83 (d, J = 12.5 Hz, 2H), 1.74 (d, J = 12.7 Hz, 1H), 1.52 - 1.39 (m, 4H), 1.33 - 1.22 (m, 1H).

Example 32: 1-(6-Cyclohexyl-4-(cyclopropylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-cyclohexylaniline in step B and cyclopropylamine in step E. MS (ESI): mass calcd. for $C_{21}H_{23}N_5O_2$, 377.1; m/z found, 378.1 [M+H]⁺. ¹H NMR (400 MHz, DMSO-*d*₆): 9.33 (s, 1H), 9.14 (s, 1H), 8.26 (s, 1H), 8.25 (s, 1H), 7.83 - 7.73 (m, 2H), 2.81 - 2.65 (m, 1H), 1.84 (d, J = 8.0 Hz, 4H), 1.74 - 1.62 (m, 1H), 1.52 - 1.48 (m, 2H), 1.46 - 1.33 (m, 2H), 1.26 - 1.14 (m, 1H), 0.98 - 0.88 (m, 2H), 0.88 - 0.80 (m, 2H).

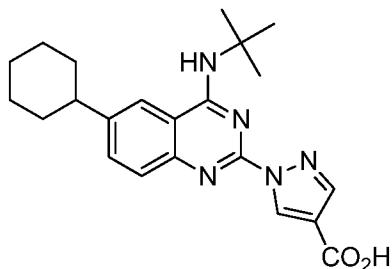

Example 33: 1-(6-Cyclohexyl-4-morpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-cyclohexylaniline in step B and morpholine in step E. MS (ESI): mass calcd. for $C_{22}H_{25}N_5O_3$, 407.2; m/z found, 408.1 [M+H]⁺. ¹H NMR (400 MHz, DMSO-*d*₆): 12.79 (s, 1H), 9.03 (s, 1H), 8.12 (s, 1H), 7.79 (s, 1H), 7.78 (s, 2H), 4.02 -

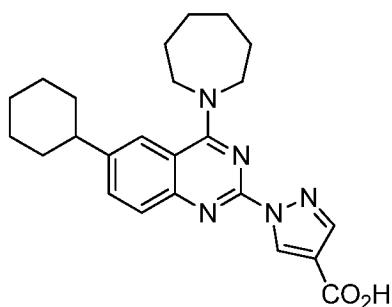

3.92 (m, 4H), 3.82 (d, J = 4.3 Hz, 4H), 2.73 - 2.64 (m, 1H), 1.92 - 1.85 (m, 4H), 1.73 - 1.68 (m, 1H), 1.53 - 1.38 (m, 4H), 1.34 - 1.21 (m, 1H).

Example 34: 1-(6-Cyclohexyl-4-thiomorpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-cyclohexylaniline in step B and thiomorpholine in step E. MS (ESI): mass calcd. for $C_{22}H_{25}N_5O_2S$, 423.1; m/z found, 424.1 [M+H]⁺. ¹H NMR (500 MHz, DMSO-*d*₆): 12.80 (s, 1H), 9.01 (s, 1H), 8.11 (s, 1H), 7.78 (s, 2H), 7.73 (s, 1H), 4.19 - 4.12 (m, 4H), 2.98 - 2.87 (m, 4H), 2.72 - 2.64 (m, 1H), 2.06 - 1.89 (m, 2H), 1.88 - 1.82 (m, 2H), 1.76 - 1.70 (m, 1H), 1.52 - 1.39 (m, 4H), 1.29 - 1.14 (m, 1H).

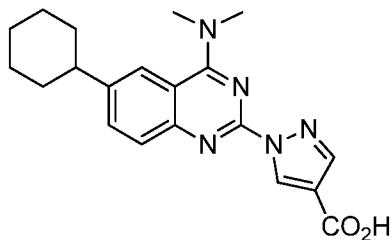

Example 35: 1-(4-Cyanamido-6-cyclohexylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-cyclohexylaniline in step B and sodium cyanamide in step E. MS (ESI): mass calcd. for $C_{19}H_{18}N_6O_2$, 362.1; m/z found, 363.1 [M+H]⁺. ¹H NMR (400 MHz, DMSO-*d*₆): 13.19 (s, 1H), 8.89 (s, 1H), 8.43 (s, 1H), 7.97 (s, 1H), 7.87 (d, J =

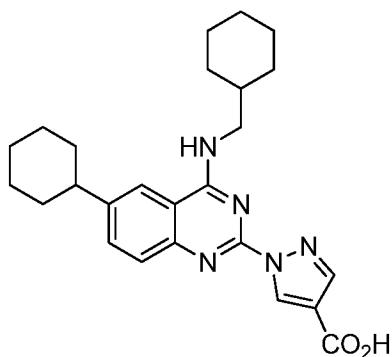

8.6 Hz, 1H), 7.79 (d, J = 8.6 Hz, 1H), 2.66 (s, 1H), 1.82 (s, 4H), 1.72 - 1.68 (m, 1H), 1.42 - 1.30 (m, 4H), 1.26 - 1.19 (m, 1H).

Example 36: 1-(4-(*tert*-Butylamino)-6-cyclohexylquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-cyclohexylaniline in step B and *tert*-butylamine in step E. MS (ESI): mass calcd. for $C_{22}H_{27}N_5O_2$, 393.2; m/z found, 394.2 [M+H]⁺. ¹H NMR (400 MHz, DMSO-*d*₆): 13.27 - 12.44 (m, 1H), 8.89 (s, 1H), 8.29 (s, 1H), 8.18 (s, 1H), 7.94 (s, 1H), 7.76 - 7.71 (m, 1H), 7.69 (d, J = 8.6 Hz, 1H), 2.67 (t, J = 11.8 Hz, 1H), 1.85 (d, J = 10.5 Hz, 4H), 1.75 (d, J = 12.4 Hz, 1H), 1.63 (s, 9H), 1.59 - 1.50 (m, 2H), 1.48 - 1.38 (m, 2H), 1.35 - 1.24 (m, 1H).

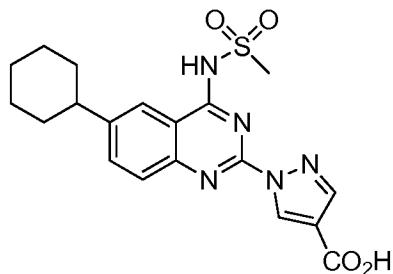

Example 37: 1-(4-(Azepan-1-yl)-6-cyclohexylquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-cyclohexylaniline in step B and homopiperidine in step E. MS (ESI): mass calcd. for $C_{24}H_{29}N_5O_2$, 419.2; m/z found, 420.1 [M+H]⁺. ¹H NMR (400 MHz, DMSO-*d*₆): 12.76 (s, 1H), 8.95 (s, 1H), 8.09 (s, 1H), 7.92 (s, 1H), 7.74 - 7.69

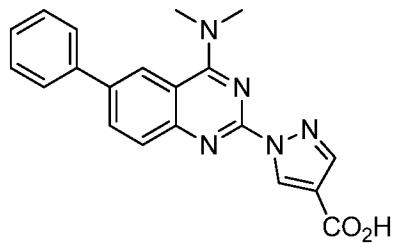

(m, 2H), 4.08 - 3.96 (m, 4H), 2.68 (s, 1H), 1.98 (s, 4H), 1.89 (d, J = 10.5 Hz, 2H), 1.83 (d, J = 12.0 Hz, 2H), 1.73 (d, J = 11.9 Hz, 1H), 1.61 (s, 4H), 1.57 - 1.44 (m, 4H), 1.27 (d, J = 12.2 Hz, 1H).

Example 38: 1-(6-Cyclohexyl-4-(dimethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-cyclohexylaniline in step B and dimethylamine in step E. MS (ESI): mass calcd. for $C_{20}H_{23}N_5O_2$, 365.2; m/z found, 366.2 [M+H]⁺. ¹H NMR (400 MHz, DMSO-*d*₆): 13.57 – 11.86 (m, 1H), 9.11 (s, 1H), 8.24 (s, 1H), 8.05 (s, 1H), 7.82 (q, J = 8.8 Hz, 2H), 3.54 (s, 6H), 2.73 (t, J = 11.5 Hz, 1H), 1.85 (t, J = 12.7 Hz, 4H), 1.73 (d, J = 11.6 Hz, 1H), 1.57 - 1.44 (m, 4H), 1.34 – 1.20 (m, 1H).

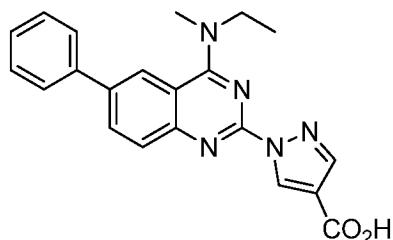

Example 39: 1-(6-Cyclohexyl-4-((cyclohexylmethyl)amino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-cyclohexylaniline in step B and cyclohexylmethylamine in step E. MS (ESI): mass calcd. for $C_{25}H_{31}N_5O_2$, 433.2; m/z found, 434.2 [M+H]⁺. ¹H NMR (400 MHz, DMSO-*d*₆): 12.76 (s, 1H), 8.95 (s, 1H), 8.09 (s, 1H), 7.92 (s, 1H), 7.74 -

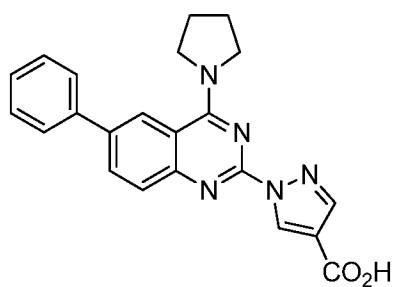

7.69 (m, 2H), 4.08 - 3.96 (m, 4H), 2.68 (s, 1H), 1.98 (s, 4H), 1.89 (d, J = 10.5 Hz, 2H), 1.83 (d, J = 12.0 Hz, 2H), 1.73 (d, J = 11.9 Hz, 1H), 1.61 (s, 4H), 1.44 - 1.31 (m, 4H), 1.27 (d, J = 12.2 Hz, 1H).

Example 40: 1-(6-Cyclohexyl-4-(methylsulfonamido)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-cyclohexylaniline in step B and methanesulfonamide in step E. MS (ESI): mass calcd. for $C_{19}H_{21}N_5O_4S$, 415.1; m/z found, 416.2 [M+H]⁺. ¹H NMR (400 MHz, DMSO-*d*₆): 12.88 (s, 1H), 8.93 (s, 1H), 8.32 (s, 1H), 8.26 (s, 1H), 7.91 - 7.81 (m, 2H), 3.65 (s, 3H), 2.70 (t, J = 11.6 Hz, 1H), 1.87 (t, J = 14.8 Hz, 4H), 1.79 - 1.70 (m, 1H), 1.59 - 1.34 (m, 5H), 1.28 - 1.12 (m, 1H).

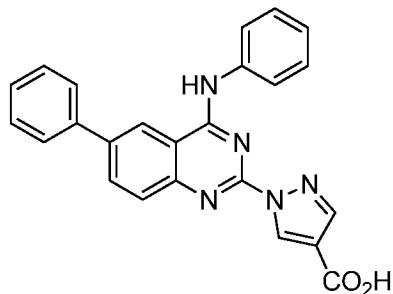

Example 41: 1-(4-(Dimethylamino)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-phenylaniline in step B and dimethylamine in step E. MS (ESI): mass calcd. for $C_{20}H_{17}N_5O_2$, 359.1; m/z found, 360.1 [M+H]⁺. ¹H NMR (400 MHz, DMSO-*d*₆): 9.11 (s, 1H), 8.45 (s, 1H), 8.21 (s, 1H), 8.18 (d, J = 8.7, 1H), 7.94 (d, J =

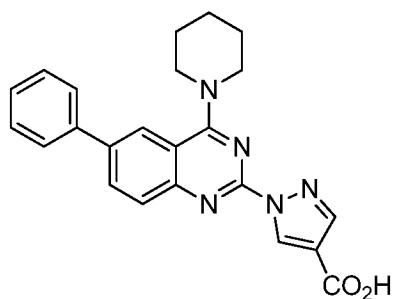

8.7 Hz, 1H), 7.81 (d, J = 7.7 Hz, 2H), 7.53 (t, J = 7.7 Hz, 2H), 7.43 (t, J = 7.3 Hz, 1H), 3.59 (s, 6H).

Example 42: 1-(4-(Ethyl(methyl)amino)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

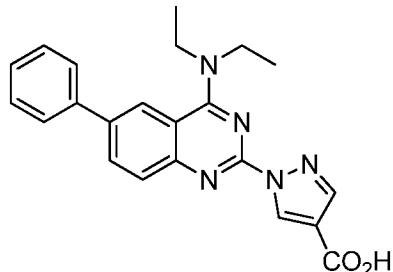
The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-phenylaniline in step B and *N*-methylethylamine in step E. MS (ESI): mass calcd. for $C_{21}H_{19}N_5O_2$, 373.1; m/z found, 374.1 [M+H]⁺. ¹H NMR (400 MHz, DMSO-*d*₆): 13.24 – 12.33 (m, 1H), 9.05 (s, 1H), 8.37 (s, 1H), 8.19 (s, 1H), 8.17 (dd, J = 8.8, 2.0 Hz, 1H), 7.92 (d, J = 8.7 Hz, 1H), 7.83 – 7.78 (m, 2H), 7.53 (t, J = 7.6 Hz, 2H), 7.43 (t, J = 7.4 Hz, 1H), 3.96 (q, J = 7.0 Hz, 2H), 3.57 (s, 3H), 1.41 (t, J = 7.0 Hz, 3H).


Example 43: 1-(6-Phenyl-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

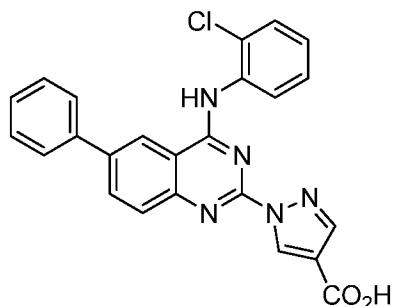
The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-phenylaniline in step B and pyrrolidine in step E. MS (ESI): mass calcd. for $C_{22}H_{19}N_5O_2$, 385.1; m/z found, 386.1 [M+H]⁺. ¹H NMR (400 MHz, DMSO-*d*₆): 9.09 (s, 1H), 8.51 (s, 1H), 8.24 (s, 1H), 8.20 (dd, J = 8.7, 1.6 Hz, 1H), 7.96 (d, J =


8.7 Hz, 1H), 7.85 - 7.79 (m, 2H), 7.53 (t, J = 7.6 Hz, 2H), 7.44 (t, J = 7.4 Hz, 1H), 4.16 (s, 4H), 2.05 (s, 4H).

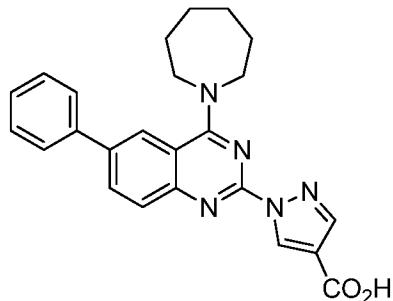
Example 44: 1-(6-Phenyl-4-(phenylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-phenylaniline in step B and aniline in step E. MS (ESI): mass calcd. for $\text{C}_{24}\text{H}_{17}\text{N}_5\text{O}_2$, 407.1; m/z found, 408.0 [M+H]⁺. ¹H NMR (400 MHz, DMSO-*d*₆): 12.81 (s, 1H), 10.39 (s, 1H), 8.94 (s, 1H), 8.86 (s, 1H), 8.25 (dd, J = 8.7, 1.9 Hz, 1H), 8.14 (d, J = 0.6 Hz, 1H), 7.93 – 7.81 (m, 5H), 7.58 (t, J = 7.7 Hz, 2H), 7.49 (dd, J = 15.4, 7.2 Hz, 3H), 7.25 (t, J = 7.4 Hz, 1H).

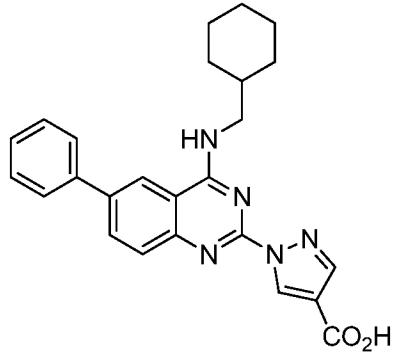
Example 45: 1-(6-Phenyl-4-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-phenylaniline in step B and piperidine in step E. MS (ESI): mass calcd. for $\text{C}_{23}\text{H}_{21}\text{N}_5\text{O}_2$, 399.1; m/z found, 400.1 [M+H]⁺. ¹H NMR (400 MHz, DMSO-*d*₆): 12.80 (s, 1H), 9.03 (s, 1H), 8.19 - 8.12 (m, 3H), 7.92 - 7.87 (m, 1H), 7.83 - 7.77 (m, 2H), 7.54 (t, J = 7.6 Hz, 2H), 7.43 (t, J = 7.4 Hz, 1H), 3.94 (s, 4H), 1.77 (s, 6H).

Example 46: 1-(4-(Diethylamino)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

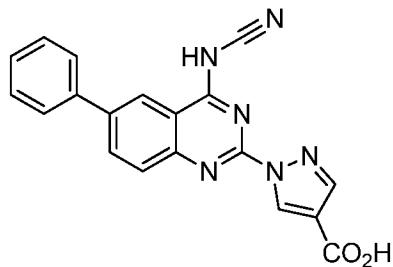

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-phenylaniline in step B and diethylamine in step E. MS (ESI): mass calcd. for $C_{22}H_{21}N_5O_2$, 387.1; m/z found, 388.1 $[M+H]^+$. 1H NMR (400 MHz, $DMSO-d_6$): 8.97 (s, 1H), 8.22 (d, J = 1.8 Hz, 1H), 8.14 (dd, J = 8.9, 2.1 Hz, 1H), 8.13 (s, 1H), 7.87 (d, J = 8.7 Hz, 1H), 7.81 - 7.75 (m, 2H), 7.54 (t, J = 7.7 Hz, 2H), 7.43 (t, J = 7.4 Hz, 1H), 3.89 (q, J = 6.9 Hz, 4H), 1.45 (t, J = 7.0 Hz, 6H).

Example 47: 1-(4-((2-Chlorophenyl)amino)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

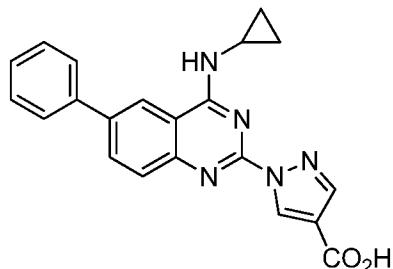

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-phenylaniline in step B and 2-chloroaniline in step E. MS (ESI): mass calcd. for $C_{24}H_{16}ClN_5O_2$, 441.1; m/z found, 442.1 $[M+H]^+$. 1H NMR (400 MHz, $DMSO-d_6$): 10.56 (s, 1H), 8.94 (s, 1H), 8.54 (s, 1H), 8.29 (dd, J = 8.7, 1.9 Hz, 1H), 8.07 (s, 1H), 7.93 (d, J = 8.7 Hz, 3H), 7.75 - 7.68 (m, 2H), 7.58 (t, J = 7.7 Hz, 2H), 7.62 - 7.53 (m, 1H), 7.49 - 7.42 (m, 2H).

Example 48: 1-(4-(Azepan-1-yl)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-phenylaniline in step B and homopiperidine in step E. MS (ESI): mass calcd. for $C_{24}H_{23}N_5O_2$, 413.1; m/z found, 414.1 $[M+H]^+$. 1H NMR (400 MHz, DMSO- d_6): 12.81 (s, 1H), 9.00 (s, 1H), 8.34 (s, 1H), 8.14 (dd, J = 8.3, 1.2 Hz, 2H), 7.88 (d, J = 8.7 Hz, 1H), 7.81 - 7.75 (m, 2H), 7.53 (t, J = 7.7 Hz, 2H), 7.45 - 7.40 (m, 1H), 4.15 - 4.02 (m, 4H), 2.01 (s, 4H), 1.62 (s, 4H).

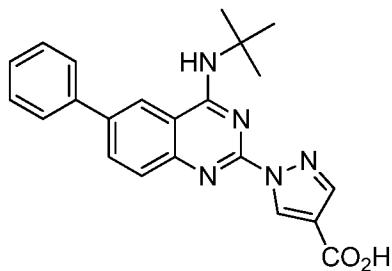

Example 49: 1-(4-((Cyclohexylmethyl)amino)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-phenylaniline in step B and *N*-methylcyclohexylamine in step E. MS (ESI): mass calcd. for $C_{25}H_{25}N_5O_2$, 427.2; m/z found, 428.1 $[M+H]^+$. 1H NMR (400 MHz, DMSO- d_6): 12.80 (s, 1H), 9.02 (s, 1H), 8.97 (s, 1H), 8.70 (s, 1H), 8.19 - 8.12 (m, 2H), 7.89 - 7.84 (m, 2H), 7.82 (d, J = 8.7 Hz, 1H), 7.55 (t, J = 7.7 Hz, 2H),

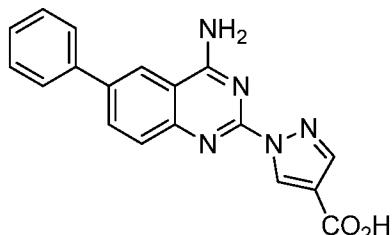

7.44 (t, J = 7.3 Hz, 1H), 3.56 (s, 3H), 1.92 - 1.83 (m, 3H), 1.81 – 1.72 (m, 2H), 1.64 (s, 1H), 1.31 - 1.13 (m, 3H), 1.13 - 1.08 (m, 2H).

Example 50: 1-(4-Cyanamido-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

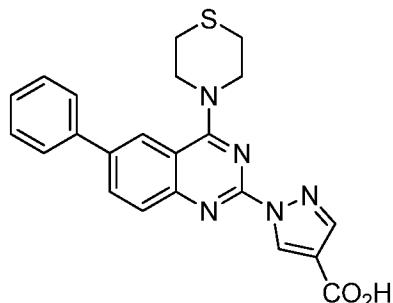
The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-phenylaniline in step B and sodium cyanamide in step E. MS (ESI): mass calcd. for $C_{19}H_{12}N_6O_2$, 356.1; m/z found, 357.1 [M+H]⁺. ¹H NMR (500 MHz, DMSO-*d*₆): 13.15 (s, 1H), 8.91 (s, 1H), 8.40 (s, 1H), 8.35 (s, 1H), 8.19 (dd, J = 8.7, 2.0 Hz, 1H), 7.97 (d, J = 8.6 Hz, 1H), 7.76 (d, J = 7.4 Hz, 2H), 7.52 (t, J = 7.6 Hz, 2H), 7.43 (t, J = 7.4 Hz, 1H).


Example 51: 1-(4-(Cyclopropylamino)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

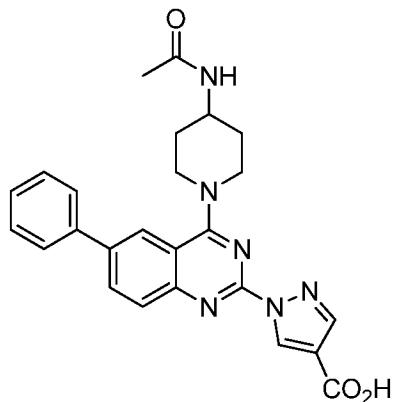
The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-phenylaniline in step B and cyclopropylamine in step E. MS (ESI): mass calcd. for $C_{21}H_{17}N_5O_2$, 371.1; m/z found, 372.1 [M+H]⁺. ¹H NMR (400 MHz, DMSO-*d*₆): 9.36 (s, 1H), 9.14 (s, 1H), 8.75 (s, 1H), 8.24 - 8.22 (m, 1H), 8.21 (dd, J = 8.7, 1.9 Hz, 1H), 7.90 (d, J = 8.7 Hz, 1H), 7.88 - 7.85 (m, 2H), 7.55 (dd, J = 10.5, 4.8


Hz, 2H), 7.48 - 7.40 (m, 1H), 3.44 – 3.38 (m, 1H), 1.00 - 0.90 (m, 2H), 0.89 - 0.80 (m, 2H).

Example 52: 1-(4-(*tert*-Butylamino)-6-phenylquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

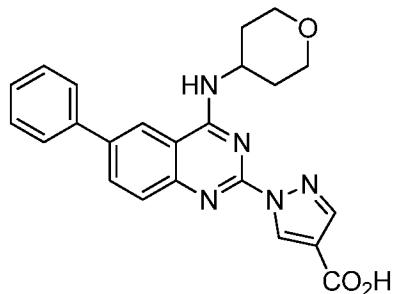

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-phenylaniline in step B and *tert*-butylamine in step E. MS (ESI): mass calcd. for C₂₂H₂₁N₅O₂, 387.1; m/z found, 388.1 [M+H]⁺. ¹H NMR (400 MHz, DMSO-*d*₆): 8.93 (s, 1H), 8.77 (s, 1H), 8.23 (s, 1H), 8.21 (s, 1H), 8.16 (dd, *J* = 8.7, 1.9 Hz, 1H), 7.87 (dd, *J* = 12.5, 5.0 Hz, 3H), 7.55 (t, *J* = 7.6 Hz, 2H), 7.44 (t, *J* = 8.4 Hz, 1H), 1.66 (s, 9H).

Example 53: 1-(4-Amino-6-phenylquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

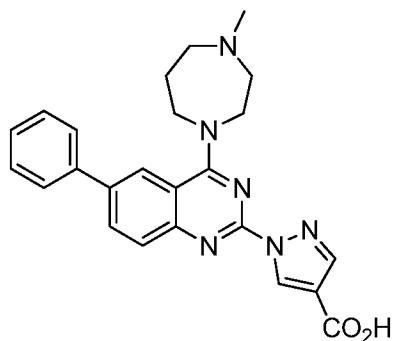

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-phenylaniline in step B and ammonia in dioxane in step E. MS (ESI): mass calcd. for C₁₈H₁₃N₅O₂, 331.1; m/z found, 332.1 [M+H]⁺. ¹H NMR (400 MHz, DMSO-*d*₆): 13.34 - 12.10 (m, 1H), 8.98 (s, 1H), 8.73 (s, 1H), 8.68 (d, *J* = 1.9 Hz, 1H), 8.55 (s, 1H), 8.21 (dd, *J* = 8.7, 1.9 Hz, 1H), 8.15 (s, 1H), 7.89 - 7.83 (m, 3H), 7.55 (t, *J* = 7.7 Hz, 2H), 7.43 (t, *J* = 7.4 Hz, 1H).

Example 54: 1-(6-Phenyl-4-thiomorpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-phenylaniline in step B and thiomorpholine in step E. MS (ESI): mass calcd. for $C_{22}H_{19}N_5O_2S$, 417.1; m/z found, 418.1 [M+H]⁺. ¹H NMR (500 MHz, DMSO-*d*₆): 12.79 (s, 1H), 9.04 (s, 1H), 8.18 (dd, *J* = 8.7, 2.0 Hz, 1H), 8.15 (d, *J* = 1.9 Hz, 1H), 8.14 (d, *J* = 0.7 Hz, 1H), 7.92 (d, *J* = 8.7 Hz, 1H), 7.85 - 7.80 (m, 2H), 7.57 - 7.52 (m, 2H), 7.46 - 7.41 (m, 1H), 4.26 - 4.16 (m, 4H), 2.94 - 2.79 (m, 4H).

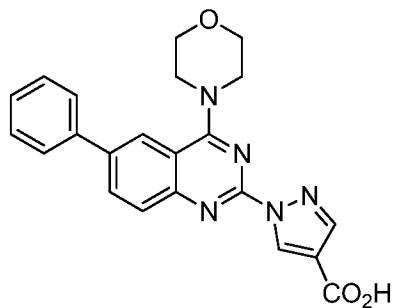

Example 55: 1-(4-(4-Acetamidopiperidin-1-yl)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-phenylaniline in step B and *N*-(piperidin-4-yl)acetamide in step E. MS (ESI): mass calcd. for $C_{25}H_{24}N_6O_3$, 456.1; m/z found, 457.1 [M+H]⁺. ¹H NMR (500 MHz, DMSO-*d*₆): 12.81 (s, 1H), 9.05 (s, 1H), 8.17 (d, *J* = 8.7 Hz, 1H), 8.14 (s, 2H), 7.92 (d, *J* = 8.7 Hz, 2H), 7.80 (dd, *J* = 8.3, 1.1 Hz, 2H), 7.54 (dd, *J* = 10.5, 4.9


Hz, 2H), 7.44 – 7.38 (m, 1H), 4.48 – 4.36 (m, 2H), 4.05 - 3.91 (m, 1H), 3.52 (t, J = 11.5 Hz, 2H), 2.00 (d, J = 9.5 Hz, 2H), 1.84 (s, 3H), 1.62 – 1.51 (m, 2H).

Example 56: 1-(6-Phenyl-4-((tetrahydro-2H-pyran-4-yl)amino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

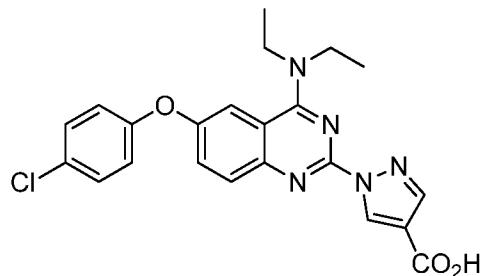
The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-phenylaniline in step B and 4-aminotetrahydropyran in step E. MS (ESI): mass calcd. for $C_{23}H_{21}N_5O_3$, 415.1; m/z found, 416.1 [M+H]⁺. ¹H NMR (400 MHz, DMSO-*d*₆): 9.12 (s, 1H), 9.05 (s, 1H), 8.79 (s, 1H), 8.22 (s, 1H), 8.20 (dd, J = 8.8, 1.9 Hz, 1H), 7.89 (dd, J = 8.2, 6.7 Hz, 3H), 7.56 (t, J = 7.6 Hz, 2H), 7.45 (t, J = 7.4 Hz, 1H), 4.76 - 4.60 (m, 1H), 3.98 (dd, J = 11.2, 3.2 Hz, 2H), 3.56 (dd, J = 11.8, 10.1 Hz, 2H), 1.99 (dd, J = 12.5, 2.4 Hz, 2H), 1.80 – 1.72 (m, 2H).


Example 57: 1-(4-(4-Methyl-1,4-diazepan-1-yl)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

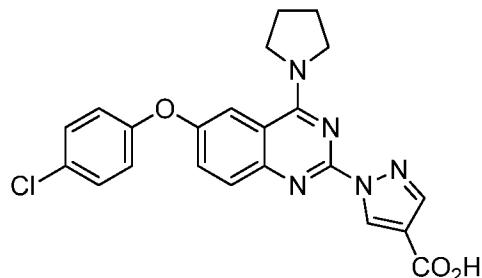
The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-phenylaniline in step B and *N*-methylhomopiperazine in step E. MS (ESI): mass calcd. for $C_{24}H_{24}N_6O_2$, 428.2; m/z found, 429.1 [M+H]⁺. ¹H NMR

(400 MHz, DMSO-*d*₆): 12.10 - 11.18 (m, 1H), 9.05 (s, 1H), 8.32 (s, 1H), 8.16 (dd, *J* = 8.7, 1.8 Hz, 1H), 8.14 (s, 1H), 7.89 (d, *J* = 8.7 Hz, 1H), 7.83 - 7.79 (m, 2H), 7.53 (t, *J* = 7.6 Hz, 2H), 7.43 (t, *J* = 7.3 Hz, 1H), 4.28 (d, *J* = 16.6 Hz, 2H), 4.24 (s, 2H), 3.51 (s, 2H), 3.18 (s, 2H), 2.69 (s, 3H), 2.35 (s, 2H).

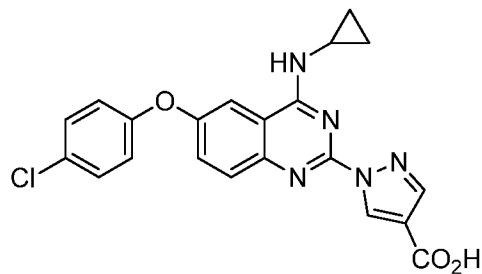
Example 58: 1-(4-Morpholino-6-phenylquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-phenylaniline in step B and morpholine in step E. MS (ESI): mass calcd. for C₂₂H₁₉N₅O₃, 401.1; m/z found, 402.1 [M+H]⁺. ¹H NMR (500 MHz, DMSO-*d*₆): 13.09 - 12.49 (m, 1H), 9.09 (s, 1H), 8.21 (s, 1H), 8.18 (dd, *J* = 8.7, 2.0 Hz, 1H), 8.16 (s, 1H), 7.94 (d, *J* = 8.7 Hz, 1H), 7.82 (dd, *J* = 8.3, 1.1 Hz, 2H), 7.54 (dd, *J* = 10.5, 4.9 Hz, 2H), 7.46 - 7.41 (m, 1H), 4.12 - 4.01 (m, 4H), 3.88 - 3.77 (m, 4H).

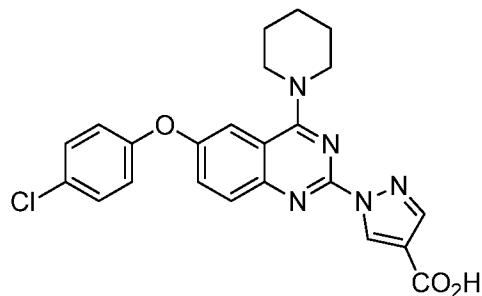
Example 59: 1-(4-(4-Cyanopiperidin-1-yl)-6-phenylquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-phenylaniline in step B and 4-cyanopiperidine in step E. MS (ESI): mass calcd. for $C_{24}H_{20}N_6O_2$, 424.1; m/z found, 425.1 [M+H]⁺. ¹H NMR (500 MHz, DMSO-*d*₆): 13.35 - 12.09 (m, 1H), 9.09 (s, 1H), 8.19 (dd, *J* = 8.7, 1.9 Hz, 1H), 8.17 (d, *J* = 4.6 Hz, 2H), 7.94 (d, *J* = 8.6 Hz, 1H), 7.86 - 7.80 (m, 2H), 7.55 (dd, *J* = 10.5, 4.9 Hz, 2H), 7.47 - 7.41 (m, 1H), 4.29 - 4.16 (m, 2H), 3.87 - 3.76 (m, 2H), 3.30 – 3.24 (m, 1H), 2.21 - 2.11 (m, 2H), 2.08 - 1.97 (m, 2H).

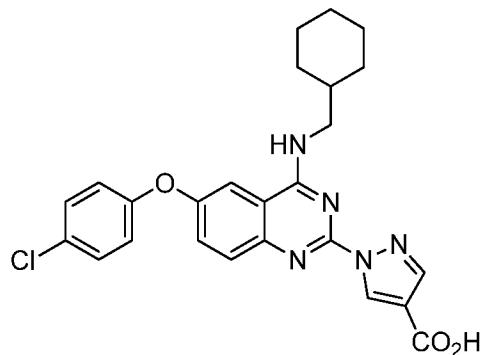
Example 60: 1-(6-(4-Chlorophenoxy)-4-(diethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-(4-chlorophenoxy)aniline in step B and diethylamine in step E. MS (ESI): mass calcd. for $C_{22}H_{20}ClN_5O_3$, 437.1; m/z found, 438.1 [M+H]⁺. ¹H NMR (400 MHz, DMSO-*d*₆): 12.77 (s, 1H), 8.93 (s, 1H), 8.11 (s, 1H), 7.84 (d, *J* = 9.1 Hz, 1H), 7.66 (dd, *J* = 9.1, 2.6 Hz, 1H), 7.56 - 7.50 (m, 2H), 7.31 (d, *J* = 2.6 Hz, 1H), 7.27 - 7.17 (m, 2H), 3.68 (q, *J* = 6.9 Hz, 4H), 1.20 (t, *J* = 7.0 Hz, 6H).

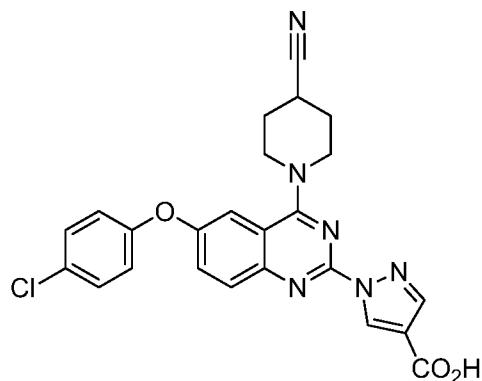
Example 61: 1-(6-(4-Chlorophenoxy)-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-(4-chlorophenoxy)aniline in step B and pyrrolidine in step E. MS (ESI): mass calcd. for $C_{22}H_{18}ClN_5O_3$, 435.1; m/z found, 436.1 [M+H]⁺. ¹H NMR (500 MHz, DMSO-*d*₆): 12.74 (s, 1H), 8.98 (s, 1H), 8.09 (s, 1H), 7.87 (d, *J* = 2.1 Hz, 1H), 7.80 (d, *J* = 9.0 Hz, 1H), 7.57 (dd, *J* = 9.0, 2.5 Hz, 1H), 7.49 - 7.44 (m, 2H), 7.15 - 7.08 (m, 2H), 3.89 (s, 4H), 1.97 (t, *J* = 6.3 Hz, 4H).

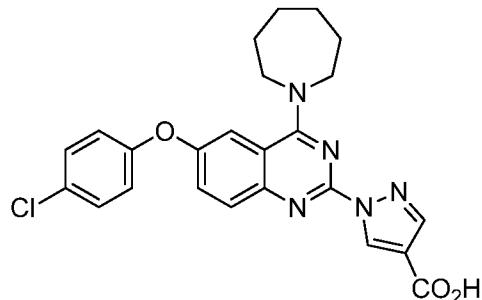
Example 62: 1-(6-(4-Chlorophenoxy)-4-(cyclopropylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-(4-chlorophenoxy)aniline in step B and cyclopropylamine in step E. MS (ESI): mass calcd. for $C_{21}H_{16}ClN_5O_3$, 421.0; m/z found, 422.0 [M+H]⁺. ¹H NMR (500 MHz, DMSO-*d*₆): 12.78 (s, 1H), 9.06 (s, 1H), 8.66 (d, *J* = 3.6 Hz, 1H), 8.12 (s, 1H), 8.04 (d, *J* = 2.1 Hz, 1H), 7.82 (d, *J* = 9.0 Hz, 1H), 7.58 (dd, *J* = 9.0, 2.5 Hz, 1H), 7.50 - 7.43 (m, 2H), 7.14 - 7.06 (m, 2H), 3.26 - 3.15 (m, 1H), 0.91 - 0.83 (m, 2H), 0.73 - 0.67 (m, 2H).

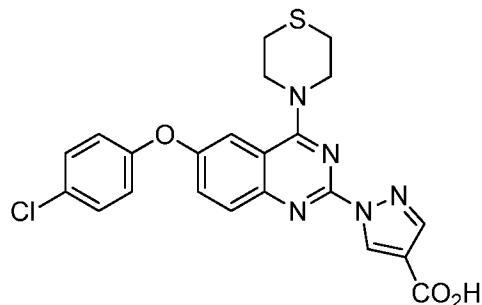
Example 63: 1-(6-(4-Chlorophenoxy)-4-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-(4-chlorophenoxy)aniline in step B and piperidine in step E. MS (ESI): mass calcd. for $C_{23}H_{20}ClN_5O_3$, 449.1; m/z found, 450.1 $[M+H]^+$. 1H NMR (500 MHz, DMSO- d_6): 12.78 (s, 1H), 8.99 (s, 1H), 8.11 (s, 1H), 7.88 (d, J = 9.1 Hz, 1H), 7.64 (dd, J = 9.1, 2.6 Hz, 1H), 7.54 - 7.48 (m, 2H), 7.34 (d, J = 2.5 Hz, 1H), 7.24 - 7.18 (m, 2H), 3.75 (d, J = 5.3 Hz, 4H), 1.68 (s, 2H), 1.63 (d, J = 3.7 Hz, 4H).

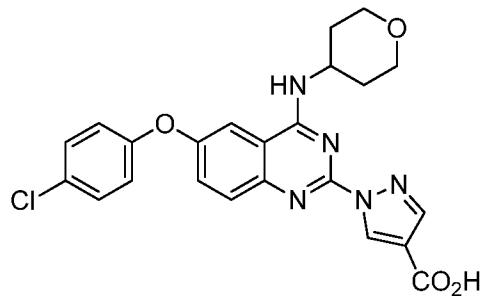
Example 64: 1-(6-(4-Chlorophenoxy)-4-((cyclohexylmethyl)amino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-(4-chlorophenoxy)aniline in step B and cyclohexylmethanamine in step E. MS (ESI): mass calcd. for $C_{25}H_{24}ClN_5O_3$, 477.2; m/z found, 478.2 $[M+H]^+$. 1H NMR (400 MHz, DMSO- d_6): 12.78 (s, 1H), 8.98 (s, 1H), 8.67 (s, 1H), 8.12 (s, 1H), 8.10 (d, J = 2.6 Hz, 1H), 7.80 (d, J = 9.0 Hz, 1H), 7.57 (dd, J = 9.0, 2.6 Hz, 1H), 7.49 - 7.44 (m, 2H), 7.14 - 7.09 (m, 2H), 3.48 (t, J = 5.9 Hz, 2H), 1.77 (d, J = 11.7 Hz, 3H), 1.67 (t, J = 16.5 Hz, 3H), 1.19 (t, J = 11.0 Hz, 3H), 1.03 (t, J = 11.3 Hz, 2H).

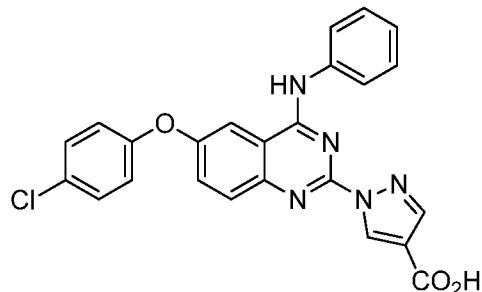
Example 65: 1-(6-(4-Chlorophenoxy)-4-(4-cyanopiperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-(4-chlorophenoxy)aniline in step B and 4-cyanopiperidine in step E. MS (ESI): mass calcd. for $C_{24}H_{19}ClN_6O_3$, 474.1; m/z found, 475.1 $[M+H]^+$. 1H NMR (400 MHz, DMSO- d_6): 12.80 (s, 1H), 9.03 (s, 1H), 8.12 (s, 1H), 7.91 (d, J = 9.1 Hz, 1H), 7.65 (dd, J = 9.1, 2.6 Hz, 1H), 7.53 - 7.49 (m, 2H), 7.42 (d, J = 2.6 Hz, 1H), 7.22 - 7.17 (m, 2H), 4.08 - 3.92 (m, 2H), 3.70 - 3.55 (m, 2H), 3.27 - 3.18 (m, 1H), 2.03 (d, J = 5.9 Hz, 2H), 1.88 - 1.72 (m, 2H).

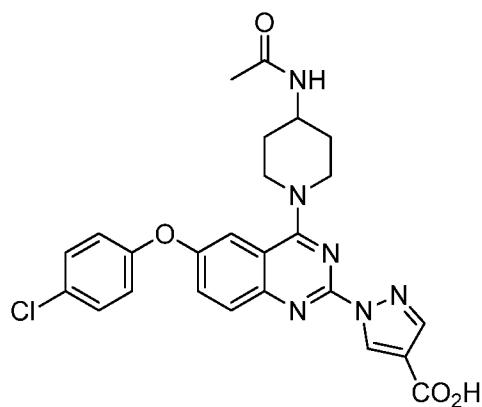
Example 66: 1-(4-(Azepan-1-yl)-6-(4-chlorophenoxy)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-(4-chlorophenoxy)aniline in step B and homopiperidine in step E. MS (ESI): mass calcd. for $C_{24}H_{22}ClN_5O_3$, 474.1; m/z found, 475.1 $[M+H]^+$. 1H NMR (400 MHz, DMSO- d_6): 12.80 (s, 1H), 9.03 (s, 1H), 8.12 (s, 1H), 7.91 (d, J = 9.1 Hz, 1H), 7.65 (dd, J = 9.1, 2.6 Hz, 1H), 7.53 - 7.49 (m, 2H), 7.42 (s, 1H), 7.22 - 7.17 (m, 2H), 4.08 - 3.92 (m, 2H), 3.70 - 3.55 (m, 2H), 3.27 - 3.18 (m, 1H), 2.03 (d, J = 5.9 Hz, 2H), 1.88 - 1.72 (m, 2H).

Example 67: 1-(6-(4-Chlorophenoxy)-4-thiomorpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

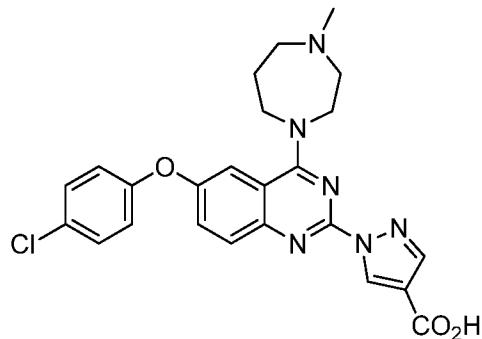

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-(4-chloro)phenoxyaniline in step B and thiomorpholine in step E. MS (ESI): mass calcd. for $C_{22}H_{18}ClN_5O_3S$, 467.1; m/z found, 468.1 $[M+H]^+$. 1H NMR (400 MHz, DMSO- d_6): 8.81 (s, 1H), 7.94 (s, 1H), 7.89 (d, J = 9.1 Hz, 1H), 7.64 (dd, J = 9.1, 2.7 Hz, 1H), 7.55 - 7.47 (m, 2H), 7.34 (d, J = 2.7 Hz, 1H), 7.24 - 7.17 (m, 2H), 4.04 - 3.95 (m, 4H), 2.82 - 2.73 (m, 4H).

Example 68: 1-(6-(4-Chlorophenoxy)-4-((tetrahydro-2H-pyran-4-yl)amino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

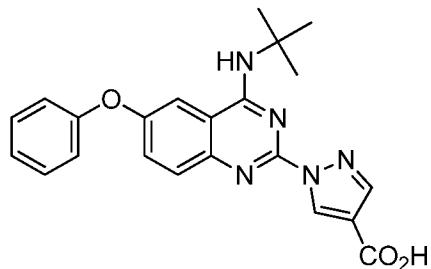

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-(4-chloro)phenoxyaniline in step B and 4-aminotetrahydropyran in step E. MS (ESI): mass calcd. for $C_{23}H_{20}ClN_5O_4$, 465.1; m/z found, 466.2 $[M+H]^+$. 1H NMR (400 MHz, DMSO- d_6): 12.81 (s, 1H), 9.02 (s, 1H), 8.41 (d, J = 7.3 Hz, 1H), 8.21 (s, 1H), 8.13 (s, 1H), 7.81 (d, J = 9.1 Hz, 1H), 7.59 (dd, J = 8.9, 2.3 Hz, 1H), 7.50 - 7.43 (m, 2H), 7.15 - 7.04 (m, 2H), 4.62 - 4.43 (m, 1H), 3.94 (d, J = 8.6 Hz, 2H), 3.49 - 3.44 (m, 2H), 1.95 - 1.82 (m, 2H), 1.68 - 1.52 (m, 2H).

Example 69: 1-(6-(4-Chlorophenoxy)-4-(phenylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-(4-chlorophenoxy)aniline in step B and aniline in step E. MS (ESI): mass calcd. for $C_{24}H_{16}ClN_5O_3$, 457.1; m/z found, 458.1 $[M+H]^+$. 1H NMR (400 MHz, DMSO- d_6): 12.78 (s, 1H), 10.16 (s, 1H), 8.83 (s, 1H), 8.39 (d, J = 2.5 Hz, 1H), 8.13 (s, 1H), 7.92 - 7.85 (m, 3H), 7.67 (dd, J = 9.0, 2.6 Hz, 1H), 7.53 - 7.43 (m, 4H), 7.22 (t, J = 7.4 Hz, 1H), 7.19 - 7.12 (m, 2H).

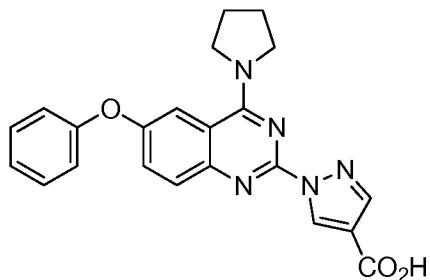

Example 70: 1-(4-(4-Acetamidopiperidin-1-yl)-6-(4-chlorophenoxy)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-(4-chlorophenoxy)aniline in step B and *N*-(piperidin-4-yl)acetamide in step E. MS (ESI): mass calcd. for $C_{25}H_{23}ClN_6O_4$, 506.2; m/z found, 507.2 $[M+H]^+$. 1H NMR (400 MHz, DMSO- d_6): 12.83 (s, 1H), 9.01 (s, 1H), 8.13 (s, 1H), 7.89 (dd, J = 8.4, 4.7 Hz, 2H), 7.65 (dd, J = 9.1, 2.6 Hz, 1H), 7.55 - 7.45 (m, 2H), 7.38 (d, J = 2.5

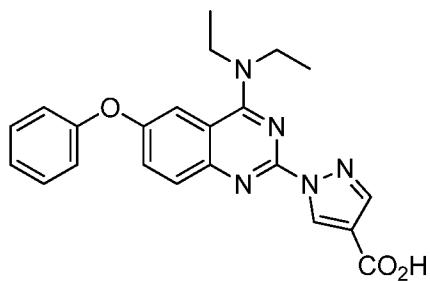

Hz, 1H), 7.26 - 7.15 (m, 2H), 4.26 (d, J = 13.4 Hz, 2H), 3.99 - 3.78 (m, 1H), 3.36 (d, J = 11.4 Hz, 2H), 1.88 (d, J = 9.9 Hz, 2H), 1.80 (s, 3H), 1.48 (dd, J = 20.8, 10.3 Hz, 2H).

Example 71: 1-(6-(4-Chlorophenoxy)-4-(4-methyl-1,4-diazepan-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-(4-chlorophenoxy)aniline in step B and *N*-methylhomopiperazine in step E. MS (ESI): mass calcd. for $C_{24}H_{23}ClN_6O_3$, 484.2; m/z found, 479.2 [M+H]⁺. ¹H NMR (400 MHz, DMSO-*d*₆): 13.04 - 11.93 (m, 1H), 9.03 (s, 1H), 8.13 (s, 1H), 7.88 (d, J = 9.1 Hz, 1H), 7.68 (d, J = 2.4 Hz, 1H), 7.63 (dd, J = 9.1, 2.6 Hz, 1H), 7.54 - 7.43 (m, 2H), 7.18 - 7.10 (m, 2H), 4.05 (s, 3H), 3.47 - 3.32 (m, 3H), 3.29 - 3.14 (m, 2H), 2.74 (s, 3H), 2.28 (s, 2H).

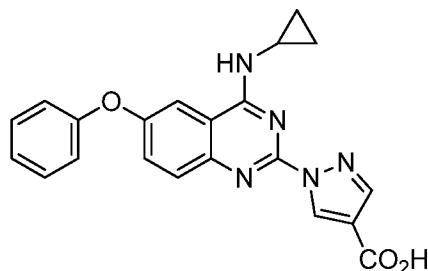

Example 72: 1-(4-(*tert*-Butylamino)-6-phenoxyquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-phenoxyaniline in step B and *tert*-butylamine in step E. MS (ESI):

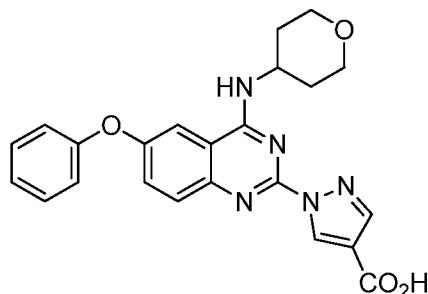

mass calcd. for $C_{22}H_{21}N_5O_3$, 403.2; m/z found, 404.2 $[M+H]^+$. 1H NMR (500 MHz, DMSO- d_6): 12.80 (s, 1H), 8.91 (s, 1H), 8.37 (d, J = 2.6 Hz, 1H), 8.13 (s, 1H), 7.77 (d, J = 9.1 Hz, 2H), 7.51 (dd, J = 9.0, 2.6 Hz, 1H), 7.43 – 7.37 (m, 2H), 7.17 – 7.11 (m, 1H), 7.06 – 6.97 (m, 2H), 1.60 (s, 9H).

Example 73: 1-(6-Phenoxy-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-phenoxyaniline in step B and pyrrolidine in step E. MS (ESI): mass calcd. for $C_{22}H_{19}N_5O_3$, 401.2; m/z found, 402.2 $[M+H]^+$. 1H NMR (500 MHz, DMSO- d_6): 12.74 (s, 1H), 8.99 (s, 1H), 8.09 (s, 1H), 7.83 (d, J = 2.6 Hz, 1H), 7.81 (d, J = 9.0 Hz, 1H), 7.56 (dd, J = 9.0, 2.6 Hz, 1H), 7.47 - 7.40 (m, 2H), 7.22 - 7.16 (m, 1H), 7.13 - 7.08 (m, 2H), 3.88 (s, 4H), 1.96 (t, J = 6.4 Hz, 4H).

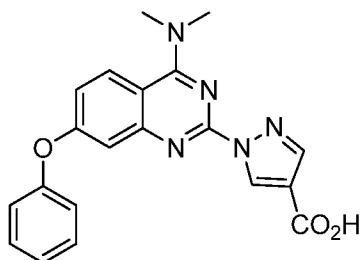

Example 74: 1-(4-(Diethylamino)-6-phenoxyquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-phenoxyaniline in step B and diethylamine in step E. MS (ESI): mass calcd. for $C_{22}H_{21}N_5O_3$, 403.2; m/z found, 404.2 $[M+H]^+$. 1H NMR (500 MHz,


DMSO-*d*₆): 12.75 (s, 1H), 8.92 (s, 1H), 8.10 (s, 1H), 7.84 (d, *J* = 9.1 Hz, 1H), 7.65 (dd, *J* = 9.1, 2.4 Hz, 1H), 7.50 (t, *J* = 7.9 Hz, 2H), 7.27 (dd, *J* = 8.9, 5.0 Hz, 2H), 7.21 (d, *J* = 7.8 Hz, 2H), 3.65 (q, *J* = 6.9 Hz, 4H), 1.15 (t, *J* = 6.9 Hz, 6H).

Example 75: 1-(4-(Cyclopropylamino)-6-phenoxyquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-phenoxyaniline in step B and cyclopropylamine in step E. MS (ESI): mass calcd. for C₂₁H₁₇N₅O₃, 387.1; m/z found, 388.2 [M+H]⁺. ¹H NMR (400 MHz, DMSO-*d*₆): 12.83 (s, 1H), 9.08 (s, 1H), 8.80 (d, *J* = 3.4 Hz, 1H), 8.15 (s, 1H), 8.11 (d, *J* = 2.6 Hz, 1H), 7.83 (d, *J* = 9.0 Hz, 1H), 7.55 (dd, *J* = 9.0, 2.6 Hz, 1H), 7.45 - 7.38 (m, 2H), 7.20 - 7.13 (m, 1H), 7.09 - 7.03 (m, 2H), 3.27 – 3.14 (m, 1H), 0.96 - 0.83 (m, 2H), 0.77 - 0.69 (m, 2H).


Example 76: 1-(6-Phenoxy-4-((tetrahydro-2*H*-pyran-4-yl)amino)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-phenoxyaniline in step B and 4-aminotetrahydropyran in step E. MS (ESI): mass calcd. for C₂₃H₂₁N₅O₄, 431.2; m/z found, 432.2 [M+H]⁺. ¹H NMR

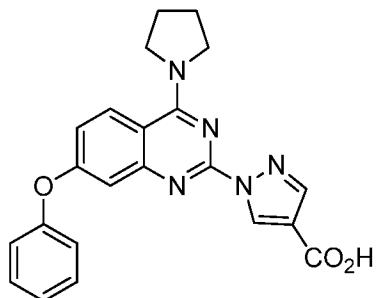
(400 MHz, DMSO-*d*₆): 12.78 (s, 1H), 9.01 (s, 1H), 8.41 (d, *J* = 7.4 Hz, 1H), 8.22 (d, *J* = 2.5 Hz, 1H), 8.12 (s, 1H), 7.80 (d, *J* = 9.0 Hz, 1H), 7.54 (dd, *J* = 9.0, 2.6 Hz, 1H), 7.45 - 7.37 (m, 2H), 7.16 (t, *J* = 7.4 Hz, 1H), 7.05 (dd, *J* = 8.7, 1.0 Hz, 2H), 4.53 (dd, *J* = 11.4, 4.1 Hz, 1H), 3.94 (d, *J* = 8.8 Hz, 2H), 3.53 - 3.47 (m, 2H), 2.00 - 1.90 (m, 2H), 1.72 - 1.63 (m, 2H).

Example 77: 1-(4-(Dimethylamino)-7-phenoxyquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

Step A: Preparation of Ethyl 1-(N-(ethoxycarbonyl)-N'-(3-phenoxyphenyl)carbamimidoyl)-1*H*-pyrazole-4-carboxylate. To a mixture of 3-phenoxyaniline (0.93 g, 5.0 mmol) and DCM (17 mL) neat ethyl isocyanatoformate (0.65 mL, 5.5 mmol) was added and the resulting solution was stirred for 15 min. Ethyl pyrazole-4-carboxylate (0.77 g, 5.5 mmol), and neat diisopropylcarbodiimide (0.78 mL, 5.0 mmol) were added sequentially to the reaction mixture. The solution was stirred at rt for 24 h, and then concentrated. The residue was stirred with ether (10 mL) for 3 h in an ice bath, and then filtered. The residue was purified by FCC (0 to 25% EtOAc/hexanes) to yield the title compound (1.6 g, 76%, ca 70% purity). MS (ESI/CI): mass calcd. for C₂₂H₂₂N₄O₅, 422.1; m/z found, 423.3 [M+H]⁺.

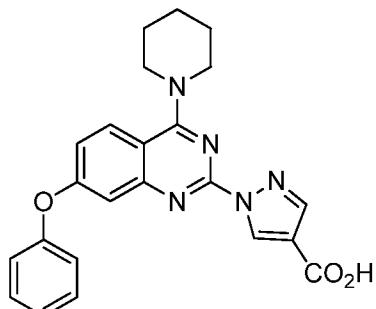
Step B: Preparation of ethyl 1-(4-oxo-7-phenoxy-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate. To a solution of ethyl 1-(N-(ethoxycarbonyl)-N'-(3-phenoxyphenyl)carbamimidoyl)-1*H*-pyrazole-4-carboxylate (1.51g, ca 2.51 mmol) in dichloroethane (DCE) (18 mL), neat TiCl₄ (1.18 mL, 10.7 mmol) was added over 2 min. The mixture was then heated to reflux for 2 h, and then cooled in an ice bath. EtOH (50 mL) was added, and the mixture was stirred for 3 h. The resulting precipitate was collected by filtration, washed with cold EtOH, and dried to provide the titled compound (0.77 g, 57%). MS (ESI/CI): mass calcd. for C₂₀H₁₆N₄O₄, 376.1;

m/z found, 377.3 [M+H]⁺. ¹H NMR (400 MHz, DMSO-*d*₆): 12.85 (s, 1H), 9.00 (d, *J* = 0.5 Hz, 1H), 8.31 (s, 1H), 8.13 (d, *J* = 8.8 Hz, 1H), 7.58–7.45 (m, 2H), 7.38–7.27 (m, 1H), 7.26–7.20 (m, 2H), 7.18 (dd, *J* = 8.8, 2.4 Hz, 1H), 6.98 (s, 1H), 4.39–4.13 (m, 2H), 1.42–1.21 (m, 3H).


Step C: Preparation of ethyl 1-(4-chloro-7-phenoxyquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate. A mixture of the above ethyl 1-(4-oxo-7-phenoxy-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate (0.31 g, 0.82 mmol), and POCl₃ (3.08 mL, 32.9 mmol), was heated to reflux for 3 h. The mixture was allowed to cool to rt and then concentrated. The residue was taken up in a minimal amount of DCM and purified by FCC (0 to 25% EtOAc/hexanes) to yield the title compound (250 mg, 77%). ¹H NMR (600 MHz, DMSO-*d*₆): 9.06 (d, *J* = 0.7 Hz, 1H), 8.35 (d, *J* = 9.2 Hz, 1H), 8.23 (dd, *J* = 10.6, 6.6 Hz, 1H), 7.63–7.59 (m, 1H), 7.60–7.54 (m, 2H), 7.41–7.36 (m, 1H), 7.31–7.29 (m, 2H), 7.18 (d, *J* = 2.4 Hz, 1H), 4.30 (q, *J* = 7.1 Hz, 2H), 1.35–1.24 (t, *J* = 7.2 Hz, 3H).

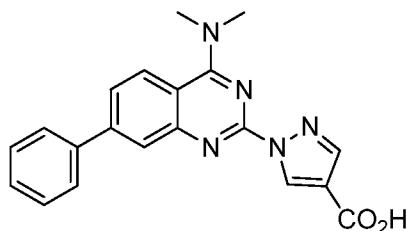
Step D: Preparation of ethyl 1-(4-(dimethylamino)-7-phenoxyquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate. A THF solution of dimethylamine (2M, 0.44 mL, 0.88 mmol) was added to a solution of the above ethyl 1-(4-chloro-7-phenoxyquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate (70 mg, 0.18 mmol) and THF (1.4 mL). The mixture was stirred 1 h, and then concentrated. The residue was triturated with ethanol, providing the titled compound (45 mg, 63%). MS (ESI/CI): mass calcd. for C₂₂H₂₁N₅O₃, 403.1; m/z found, 404.3 [M+H]⁺. ¹H NMR (400 MHz, DMSO-*d*₆): 9.02 (s, 1H), 8.31 (d, *J* = 9.3 Hz, 1H), 8.12 (s, 1H), 7.53 (dd, *J* = 11.1, 4.8 Hz, 2H), 7.32 (t, *J* = 7.4 Hz, 1H), 7.27–7.21 (m, 2H), 7.18 (dd, *J* = 9.3, 2.7 Hz, 1H), 6.96 (d, *J* = 2.7 Hz, 1H), 4.27 (q, *J* = 7.1 Hz, 2H), 3.46 (s, 6H), 1.30 (t, *J* = 7.1 Hz, 3H).

Step E: Preparation of 1-(4-(dimethylamino)-7-phenoxyquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid. A mixture of ethyl 1-(4-(dimethylamino)-7-phenoxyquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate (35 mg, 0.09 mmol), 1M aqueous KOH (0.43 mL, 0.43 mmol), and THF (1.3 mL) was heated to 40 °C for 48 h with rapid stirring. The mixture was then concentrated, cooled in an ice bath, and 1M aqueous HCl was added until the mixture was slightly acidic (pH ca 5-6). The resulting precipitate was collected by filtration, washed with water, and dried to furnish the titled compound (22 mg, 68%). MS (ESI): mass calcd. for C₂₀H₁₇N₅O₃,

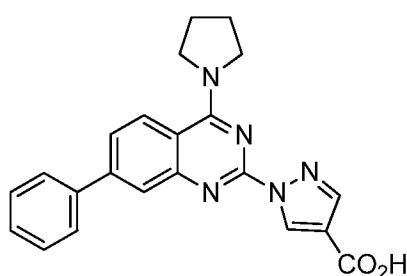

375.1; m/z found, 376.3 [M+H]⁺. ¹H NMR (500 MHz, DMSO-*d*₆): 12.73 (s, 1H), 8.98 (d, *J* = 0.6 Hz, 1H), 8.31 (d, *J* = 9.3 Hz, 1H), 8.07 (s, 1H), 7.52 (ddd, *J* = 7.6, 5.9, 2.2 Hz, 2H), 7.36–7.28 (m, 1H), 7.28–7.20 (m, 2H), 7.17 (dd, *J* = 9.3, 2.7 Hz, 1H), 6.97 (d, *J* = 2.7 Hz, 1H), 3.46 (s, 6H).

Example 78: 1-(7-Phenoxy-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

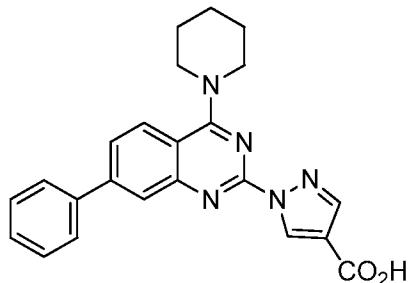
The titled compound was prepared in a manner analogous to EXAMPLE 77 using 3-phenoxyaniline in step A and pyrrolidine in step D. MS (ESI): mass calcd. for C₂₂H₁₉N₅O₃, 401.1; m/z found, 402.3 [M+H]⁺. ¹H NMR (500 MHz, DMSO-*d*₆): 12.72 (s, 1H), 8.97 (d, *J* = 0.6 Hz, 1H), 8.38 (d, *J* = 9.3 Hz, 1H), 8.06 (d, *J* = 0.6 Hz, 1H), 7.56–7.46 (m, 2H), 7.35–7.27 (m, 1H), 7.26–7.19 (m, 2H), 7.16 (dd, *J* = 9.3, 2.7 Hz, 1H), 6.97 (d, *J* = 2.7 Hz, 1H), 3.97 (s, 4H), 2.01 (s, 4H).


Example 79: 1-(7-Phenoxy-4-(piperidin-1-yl)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

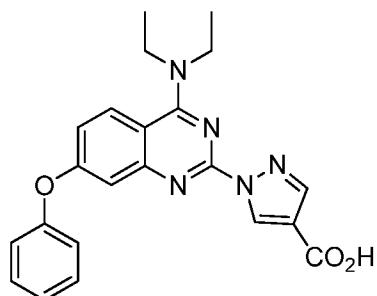
The titled compound was prepared in a manner analogous to EXAMPLE 77 using 3-phenoxyaniline in step A and piperidine in step D. MS (ESI): mass calcd. for


$C_{23}H_{21}N_5O_3$, 415.1; m/z found, 416.3 $[M+H]^+$. 1H NMR (500 MHz, DMSO- d_6): 12.74 (s, 1H), 8.97 (d, J = 0.7 Hz, 1H), 8.08 (d, J = 0.7 Hz, 1H), 8.04 (d, J = 9.2 Hz, 1H), 7.56–7.49 (m, 2H), 7.32 (t, J = 7.4 Hz, 1H), 7.25–7.21 (m, 3H), 6.99 (d, J = 2.6 Hz, 1H), 3.86 (s, 4H), 1.74 (s, 6H).

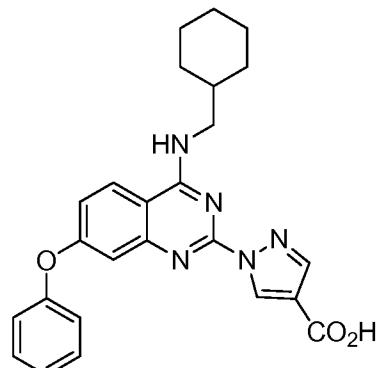
Example 80: 1-(4-(Dimethylamino)-7-phenylquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The titled compound was prepared in a manner analogous to EXAMPLE 77 using 3-phenylaniline in step A and dimethylamine in step D. MS (ESI): mass calcd. for $C_{20}H_{17}N_5O_2$, 359.1; m/z found, 360.3 $[M+H]^+$. 1H NMR (400 MHz, DMSO- d_6): 9.13 (d, J = 0.5 Hz, 1H), 8.40 (d, J = 8.8 Hz, 1H), 8.24 (s, 1H), 8.15 (d, J = 1.9 Hz, 1H), 7.89–7.81 (m, 3H), 7.59–7.48 (m, 2H), 7.53–7.44 (m, 1H), 3.59 (s, 6H).

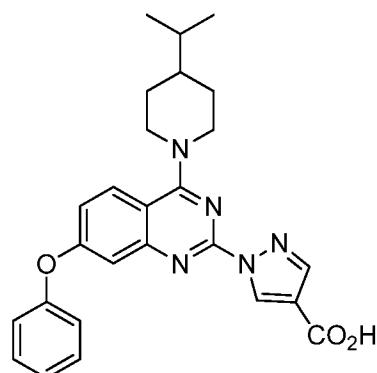
Example 81: 1-(7-Phenyl-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The titled compound was prepared in a manner analogous to EXAMPLE 77 using 3-phenylaniline in step A and pyrrolidine in step D. MS (ESI): mass calcd. for $C_{22}H_{19}N_5O_2$, 385.1; m/z found, 386.3 $[M+H]^+$. 1H NMR (400 MHz, DMSO- d_6): 9.08 (d, J = 0.5 Hz, 1H), 8.45 (d, J = 8.9 Hz, 1H), 8.21 (s, 1H), 8.12 (d, J = 1.8 Hz, 1H), 7.90–7.78 (m, 3H), 7.62–7.53 (m, 2H), 7.53–7.45 (m, 1H), 4.07 (s, 4H), 2.05 (s, 4H).

Example 82: 1-(7-Phenyl-4-(piperidin-1-yl)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

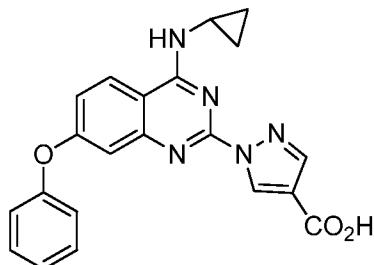

The titled compound was prepared in a manner analogous to EXAMPLE 77 using 3-phenylaniline in step A and piperidine in step D. MS (ESI): mass calcd. for C₂₃H₂₁N₅O₂, 399.1; m/z found, 400.3 [M+H]⁺. ¹H NMR (400 MHz, DMSO-d₆): 12.80 (s, 1H), 9.03 (d, *J* = 0.5 Hz, 1H), 8.13 (d, *J* = 0.5 Hz, 1H), 8.10 (d, *J* = 8.7 Hz, 1H), 8.06 (d, *J* = 1.9 Hz, 1H), 7.89–7.80 (m, 3H), 7.60–7.52 (m, 2H), 7.51–7.45 (m, 1H), 3.92 (s, 4H), 1.77 (s, 6H).

Example 83: 1-(4-(Diethylamino)-7-phenoxyquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

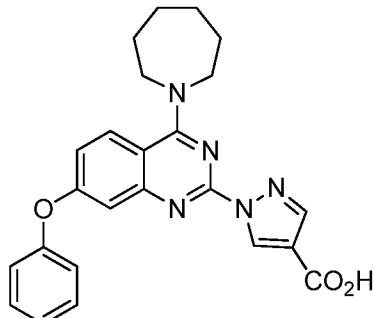

The titled compound was prepared in a manner analogous to EXAMPLE 77 using 3-phenoxyaniline in step A and diethylamine in step D. MS (ESI): mass calcd. for C₂₂H₂₁N₅O₃, 403.1; m/z found, 404.3 [M+H]⁺. ¹H NMR (600 MHz, DMSO-d₆): 8.91 (d, *J* = 0.7 Hz, 1H), 8.09–8.07 (m, 2H), 7.56–7.48 (m, 2H), 7.35–7.28 (m, 1H), 7.25–7.22 (m, 2H), 7.20 (dd, *J* = 9.3, 2.7 Hz, 1H), 6.99 (d, *J* = 2.7 Hz, 1H), 3.82 (q, *J* = 7.0 Hz, 4H), 1.38 (t, *J* = 7.0 Hz, 6H).

Example 84: 1-(4-((Cyclohexylmethyl)amino)-7-phenoxyquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 77 using 3-phenoxyaniline in step A and cyclohexylmethanamine in step D. MS (ESI): mass calcd. for $C_{25}H_{25}N_5O_3$, 443.2; m/z found, 444.4 $[M+H]^+$. 1H NMR (600 MHz, DMSO- d_6): 12.74 (s, 1H), 8.96 (s, 1H), 8.75 (s, 1H), 8.38 (d, J = 9.1 Hz, 1H), 8.09 (s, 1H), 7.56–7.46 (m, 2H), 7.30 (t, J = 7.4 Hz, 1H), 7.26 (dd, J = 9.0, 2.5 Hz, 1H), 7.21 (dd, J = 8.6, 1.0 Hz, 2H), 6.98 (d, J = 2.4 Hz, 1H), 3.51 (t, J = 6.0 Hz, 2H), 1.80–1.62 (m, 7H), 1.27–1.11 (m, 2H), 1.04 (m, 2H).

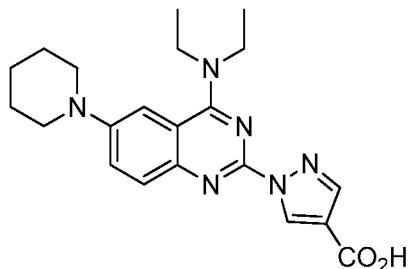

Example 85: 1-(4-(4-Isopropylpiperidin-1-yl)-7-phenoxyquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 77 using 3-phenoxyaniline in step A and 4-isopropylpiperidine in step D. MS (ESI): mass calcd. for $C_{26}H_{27}N_5O_3$, 457.2; m/z found, 458.4 $[M+H]^+$. 1H NMR (500 MHz, DMSO- d_6):

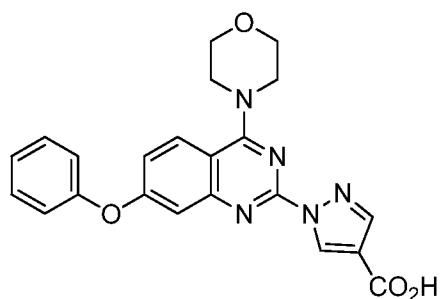

12.75 (s, 1H), 8.97 (d, J = 0.7 Hz, 1H), 8.08 (d, J = 0.7 Hz, 1H), 8.06 (d, J = 9.2 Hz, 1H), 7.57–7.48 (m, 2H), 7.34–7.31 (m, 1H), 7.24–7.23 (m, 3H), 6.99 (d, J = 2.6 Hz, 1H), 4.54 (d, J = 13.0 Hz, 2H), 3.22 (t, J = 12.0 Hz, 2H), 1.84 (d, J = 9.8 Hz, 2H), 1.56–1.33 (m, 4H), 0.91 (d, J = 6.6 Hz, 6H)

Example 86: 1-(4-(Cyclopropylamino)-7-phenoxyquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 77 using 3-phenoxyaniline in step A and cyclopropylamine in step D. MS (ESI): mass calcd. for $C_{21}H_{17}N_5O_3$, 387.1; m/z found, 388.3 [M+H]⁺. ¹H NMR (600 MHz, DMSO-*d*₆): 12.74 (s, 1H), 9.01 (s, 1H), 8.64 (d, J = 3.9 Hz, 1H), 8.31 (d, J = 9.1 Hz, 1H), 8.06 (s, 1H), 7.55–7.45 (m, 2H), 7.31–7.29 (m, 1H), 7.24 (dd, J = 9.0, 2.5 Hz, 1H), 7.22–7.19 (m, 2H), 6.95 (d, J = 2.5 Hz, 1H), 3.25–3.20 (m, 1H), 0.93–0.84 (m, 2H), 0.76–0.69 (m, 2H).

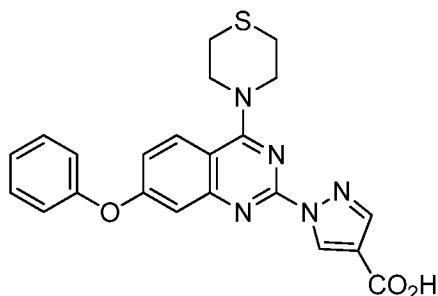

Example 87: 1-(4-(Azepan-1-yl)-7-phenoxyquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 77 using 3-phenoxyaniline in step A and homopiperidine in step D. MS (ESI): mass calcd. for

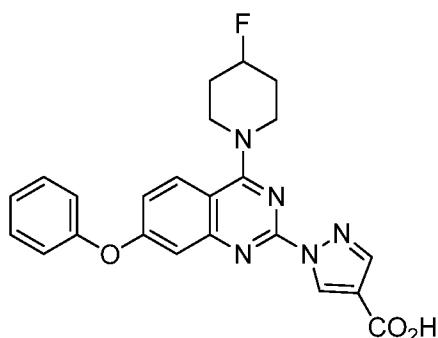

$C_{24}H_{23}N_5O_3$, 429.1; m/z found, 430.3 $[M+H]^+$. 1H NMR (600 MHz, DMSO- d_6): 12.72 (s, 1H), 8.92 (s, 1H), 8.21 (d, J = 9.3 Hz, 1H), 8.06 (s, 1H), 7.56–7.47 (m, 2H), 7.31 (t, J = 7.4 Hz, 1H), 7.23 (dd, J = 8.5, 0.9 Hz, 2H), 7.16 (dd, J = 9.3, 2.7 Hz, 1H), 6.97 (d, J = 2.7 Hz, 1H), 4.08–3.94 (m, 4H), 1.95 (s, 4H), 1.58 (s, 4H).

Example 88: 1-(4-(Diethylamino)-6-(piperidin-1-yl)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 77 using 4-piperidin-1-yl-aniline in step A and diethylamine in step D. MS (ESI): mass calcd. for $C_{21}H_{26}N_6O_2$, 394.2; m/z found, 395.3 $[M+H]^+$. 1H NMR (400 MHz, DMSO- d_6): 8.89 (s, 1H), 8.06 (s, 1H), 7.65 (br s, 2H), 7.18 (s, 1H), 3.78 (q, J = 7.0 Hz, 4H), 3.28–3.23 (m, 4H), 1.72–1.64 (m, 4H), 1.62–1.54 (m, 2H), 1.40 (t, J = 7.0 Hz, 6H).

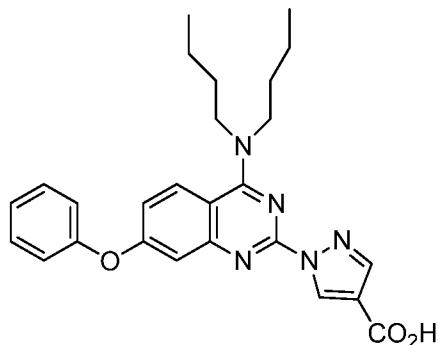

Example 89: 1-(4-Morpholino-7-phenoxyquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 77 using 3-phenoxy aniline in step A and morpholine in step D. MS (ESI): mass calcd. for $C_{22}H_{19}N_5O_4$, 417.1; m/z found, 418.1 $[M+H]^+$. 1H NMR (600 MHz, DMSO- d_6): 9.02 (s,

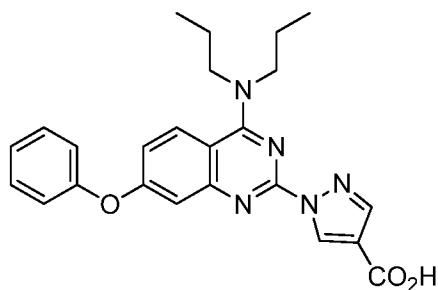

1H), 8.13–8.12 (m, 1H), 8.11 (s, 1H), 7.59–7.45 (m, 2H), 7.33 (t, J = 7.4 Hz, 1H), 7.28–7.18 (m, 3H), 7.04 (d, J = 2.5 Hz, 1H), 3.94–3.92 (m, 4H), 3.88–3.76 (m, 4H).

Example 90: 1-(7-Phenoxy-4-thiomorpholinoquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 77 using 3-phenoxy aniline in step A and thiomorpholine in step D. MS (ESI): mass calcd. for $\text{C}_{22}\text{H}_{19}\text{N}_5\text{O}_3\text{S}$, 433.1; m/z found, 434.1 [$\text{M}+\text{H}$]⁺. ¹H NMR (600 MHz, $\text{DMSO}-d_6$): 9.04–8.97 (m, 1H), 8.10 (s, 1H), 8.05 (d, J = 9.2 Hz, 1H), 7.58–7.48 (m, 2H), 7.36–7.29 (m, 1H), 7.28–7.20 (m, 3H), 7.05 (d, J = 2.5 Hz, 1H), 4.22–4.08 (m, 4H), 2.96–2.86 (m, 4H).

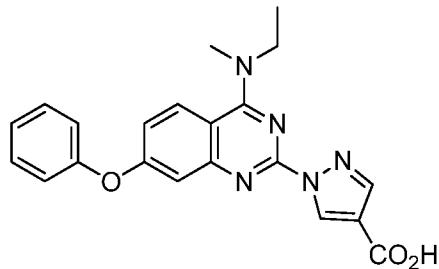

Example 91: 1-(4-(4-Fluoropiperidin-1-yl)-7-phenoxyquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 77 using 3-phenoxy aniline in step A and 4-fluoropiperidine in step D. MS (ESI): mass calcd. for $\text{C}_{23}\text{H}_{20}\text{FN}_5\text{O}_3$, 433.2; m/z found, 434.1 [$\text{M}+\text{H}$]⁺. ¹H NMR (600 MHz, $\text{DMSO}-d_6$): 9.02 (s, 1H), 8.14–8.09 (m, 2H), 7.58–7.48 (m, 2H), 7.37–7.30 (m, 1H), 7.27–7.20 (m,

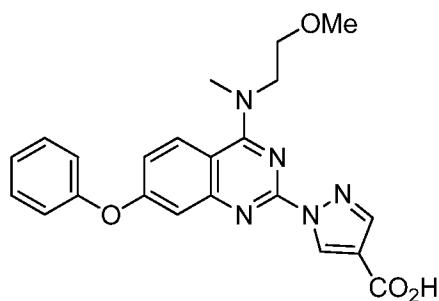

3H), 7.06 (d, J = 2.5 Hz, 1H), 5.14–4.92 (m, 1H), 4.06–3.65 (m, 4H), 2.23–2.03 (m, 2H), 1.97–1.92 (m, 2H).

Example 92: 1-(4-(Dibutylamino)-7-phenoxyquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 77 using 3-phenoxy aniline in step A and dibutylamine in step D. MS (ESI): mass calcd. for $C_{26}H_{29}N_5O_3$, 459.2; m/z found, 460.2 [M+H]⁺. ¹H NMR (600 MHz, DMSO-*d*₆): 8.91 (s, 1H), 8.10 (s, 1H), 8.04 (d, J = 9.3 Hz, 1H), 7.57–7.48 (m, 2H), 7.37–7.28 (m, 1H), 7.24–7.22 (m, 3H), 7.04 (d, J = 2.3 Hz, 1H), 3.80–3.77 (m, 4H), 1.79 (dt, J = 15.3, 7.7 Hz, 4H), 1.44–1.38 (m, 4H), 0.96 (t, J = 7.4 Hz, 6H).

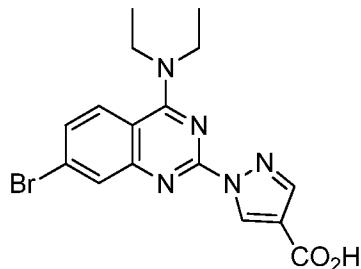

Example 93: 1-(4-(Dipropylamino)-7-phenoxyquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 77 using 3-phenoxy aniline in step A and dipropylamine in step D. MS (ESI): mass calcd. for $C_{24}H_{25}N_5O_3$, 431.2; m/z found, 432.2 [M+H]⁺. ¹H NMR (600 MHz, DMSO-*d*₆): 8.91 (s, 1H), 8.10 (s, 1H), 8.03 (d, J = 9.2 Hz, 1H), 7.56–7.47 (m, 2H), 7.32 (t, J = 7.4 Hz,

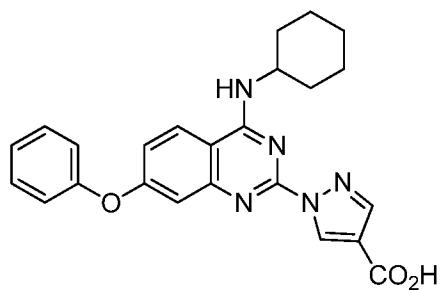

1H), 7.23 (dd, J = 8.6, 1.0 Hz, 3H), 7.04 (s, 1H), 3.77–3.74 (m, 4H), 1.93–1.70 (m, 4H), 0.98–0.96 (m, 6H).

Example 94: 1-(4-(Ethyl(methyl)amino)-7-phenoxyquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 77 using 3-phenoxy aniline in step A and N-methylethylamine in step D. MS (ESI): mass calcd. for $C_{21}H_{19}N_5O_3$, 389.2; m/z found, 390.1 $[M+H]^+$. 1H NMR (600 MHz, $DMSO-d_6$): 8.97 (s, 1H), 8.26 (d, J = 9.1 Hz, 1H), 8.11 (s, 1H), 7.59–7.43 (m, 2H), 7.37–7.29 (m, 1H), 7.24–7.22 (m, 2H), 7.20–7.18 (m, 1H), 7.05 (s, 1H), 3.90–3.87 (m, 2H), 3.47 (s, 3H), 1.35 (t, J = 7.1 Hz, 3H).

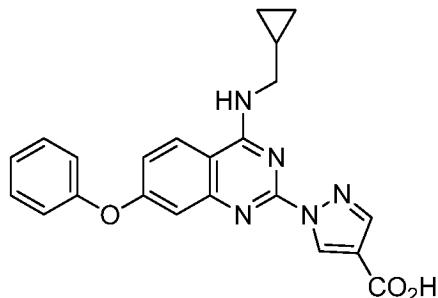

Example 95: 1-(4-((2-Methoxyethyl)(methyl)amino)-7-phenoxyquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 77 using 3-phenoxy aniline in step A and 2-methoxy-N-methyl ethylamine in step D. MS (ESI): mass calcd. for $C_{22}H_{21}N_5O_4$, 419.2; m/z found, 420.1 $[M+H]^+$. 1H NMR (600 MHz, $DMSO-d_6$): 8.98 (s, 1H), 8.36 (d, J = 9.2 Hz, 1H), 8.10 (s, 1H), 7.57–7.47 (m, 2H),

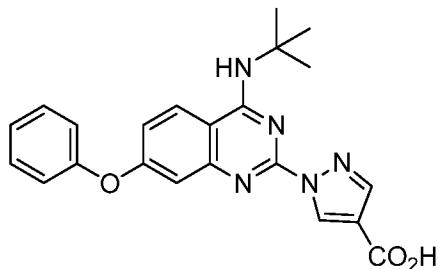

7.37–7.29 (m, 1H), 7.27–7.21 (m, 2H), 7.18 (dd, J = 9.3, 2.5 Hz, 1H), 7.04 (s, 1H), 4.07 (t, J = 5.5 Hz, 2H), 3.77–3.74 (m, 2H), 3.53 (s, 3H), 3.31 (s, 3H).

Example 96: 1-(7-Bromo-4-(diethylamino)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 77 using 3-bromoaniline in step A and diethylamine in step D. MS (ESI): mass calcd. for $C_{16}H_{16}BrN_5O_2$, 389.1; m/z found, 390.0 [M+H]⁺. ¹H NMR (600 MHz, DMSO-*d*₆): 12.75 (s, 1H), 8.94 (d, J = 0.7 Hz, 1H), 8.11 (d, J = 0.7 Hz, 1H), 7.97 (s, 1H), 7.96 (d, J = 2.0 Hz, 2H), 3.83 (q, J = 7.0 Hz, 4H), 1.44–1.33 (m, 6H).

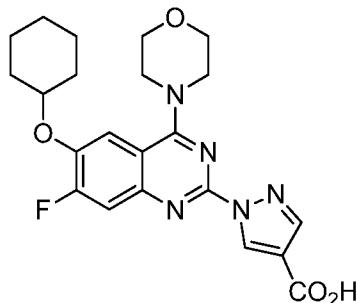

Example 97: 1-(4-(Cyclohexylamino)-7-phenoxyquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 77 using 3-phenoxyaniline in step A and cyclohexylamine in step D. MS (ESI): mass calcd. for $C_{24}H_{23}N_5O_3$, 429.2; m/z found, 430.1 [M+H]⁺. ¹H NMR (600 MHz, DMSO-*d*₆): 8.97 (s, 1H), 8.49–8.45 (m, 2H), 8.11 (s, 1H), 7.51 (t, J = 7.9 Hz, 2H), 7.30 (t, J = 7.4 Hz, 1H), 7.26 (d, J = 9.1 Hz, 1H), 7.20 (d, J = 7.7 Hz, 2H), 7.01 (s, 1H), 4.30 (s, 1H), 2.05–


2.00 (m, 2H), 1.82–1.80 (m, 2H), 1.70–1.68 (m, 1H), 1.52–1.36 (m, 4H), 1.29–1.13 (m, 1H).

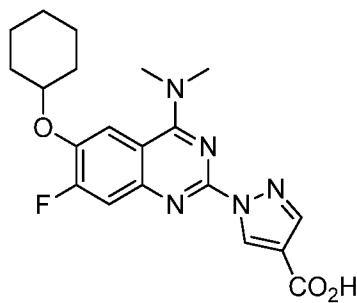
Example 98: 1-(4-((Cyclopropylmethyl)amino)-7-phenoxyquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 77 using 3-phenoxyaniline in step A and cyclopropylmethylamine in step D. MS (ESI): mass calcd. for $C_{22}H_{19}N_5O_3$, 401.2; m/z found, 402.1 [M+H]⁺. ¹H NMR (600 MHz, DMSO-*d*₆): 8.99 (s, 1H), 8.92 (s, 1H), 8.38 (d, *J* = 8.5 Hz, 1H), 8.10 (s, 1H), 7.56–7.45 (m, 2H), 7.33–7.29 (m, 1H), 7.27 (d, *J* = 9.0 Hz, 1H), 7.21 (dd, *J* = 8.5, 1.0 Hz, 2H), 7.00 (s, 1H), 3.72–3.28 (m, 2H), 1.33–1.14 (m, 1H), 0.58–0.46 (m, 2H), 0.43–0.32 (m, 2H).


Example 99: 1-(4-(*tert*-Butylamino)-7-phenoxyquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 77 using 3-phenoxyaniline in step A and 2-methylpropan-2-amine in step D. MS (ESI): mass calcd. for $C_{22}H_{21}N_5O_3$, 403.2; m/z found, 404.2 [M+H]⁺. ¹H NMR (600 MHz, DMSO-*d*₆): 8.87 (d, *J* = 0.7 Hz, 1H), 8.51 (d, *J* = 9.1 Hz, 1H), 8.11 (d, *J* = 0.6 Hz, 1H), 7.83

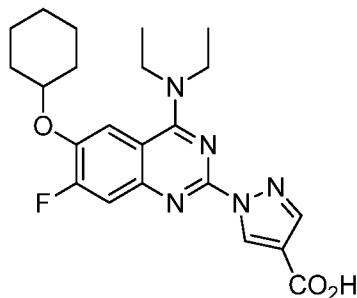
(s, 1H), 7.56–7.44 (m, 2H), 7.32–7.28 (m, 1H), 7.24 (dd, J = 9.1, 2.6 Hz, 1H), 7.22–7.18 (m, 2H), 6.97 (d, J = 2.5 Hz, 1H), 1.61 (s, 9H).


5 Example 100: 1-(7-Fluoro-6-(cyclohexyloxy)-4-morpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 3-fluoro-4-cyclohexyloxyaniline in step B and morpholine in step E.

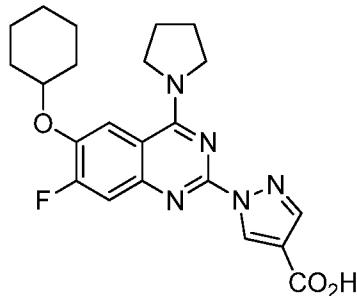
10 MS (ESI): mass calcd. for $C_{22}H_{24}FN_5O_4$, 441.5; m/z found, 442.3 [M+H]⁺. 1H NMR (400 MHz, DMSO-*d*₆): 12.68 (s, 1H), 9.00 (s, 1H), 8.10 (s, 1H), 7.68 (d, J = 12.0 Hz, 1H), 7.49 (d, J = 9.1 Hz, 1H), 4.58 (s, 1H), 3.87 (s, 4H), 3.82 (s, 4H), 1.97 (s, 2H), 1.74 (s, 2H), 1.65–1.29 (m, 6H).

15 Example 101: 1-(7-fluoro-6-(cyclohexyloxy)-4-(dimethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.



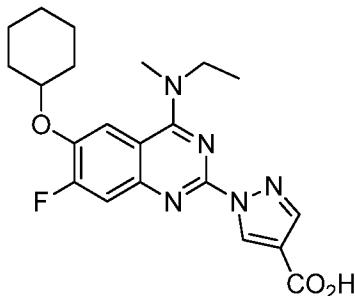
The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 3-fluoro-4-cyclohexyloxyaniline in step B and dimethylamine in step E. MS (ESI): mass calcd. for $C_{20}H_{22}FN_5O_3$, 399.4; m/z found, 400.1 [M+H]⁺.

20 1H NMR (400 MHz, DMSO-*d*₆): 12.77 (s, 1H), 8.97 (s, 1H), 8.08 (s, 1H), 7.74 (d, J = 8.7


5 Hz, 1H), 7.59 (d, J = 11.7 Hz, 1H), 4.56 (s, 1H), 3.43 (s, 6H), 1.98 (s, 2H), 1.74 (s, 2H), 1.64-1.25 (m, 6H).

Example 102: 1-(7-fluoro-6-(cyclohexyloxy)-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 3-fluoro-4-cyclohexyloxyaniline in step B and diethylamine in step E. MS (ESI): mass calcd. for $C_{22}H_{26}FN_5O_3$, 427.5; m/z found, 428.2 [M+H]⁺. 1H NMR (400 MHz, DMSO-d₆): 12.78 (s, 1H), 8.92 (s, 1H), 8.10 (s, 1H), 7.62 (d, J = 12.1 Hz, 1H), 7.48 (d, J = 8.8 Hz, 1H), 4.49 (s, 1H), 3.79 (q, J = 6.4 Hz, 4H), 2.03 (s, 2H), 1.76 (s, 2H), 1.64-1.26 (m, 12H).

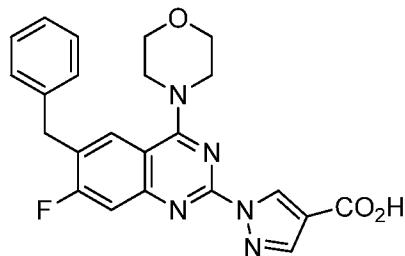

10 Example 103: 1-(7-fluoro-6-(cyclohexyloxy)-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 3-fluoro-4-cyclohexyloxyaniline in step B and pyrrolidine in step E.

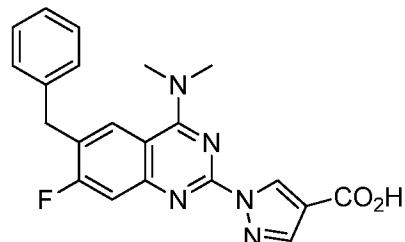

15 MS (ESI): mass calcd. for $C_{22}H_{24}FN_5O_3$, 425.5; m/z found, 426.1 [M+H]⁺. 1H NMR (400 MHz, DMSO-d₆): 12.73 (s, 1H), 8.96 (s, 1H), 8.07 (s, 1H), 7.84 (d, J = 9.1 Hz, 1H), 7.56 (d, J = 12.1 Hz, 1H), 4.53 (s, 1H), 3.98 (s, 4H), 2.01 (s, 6H), 1.74 (s, 2H), 1.63-1.27 (m, 6H).

5 Example 104: 1-(7-fluoro-6-(cyclohexyloxy)-4-(ethyl(methyl)amino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

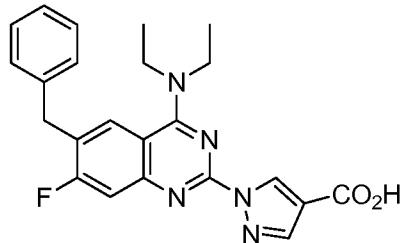
The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 3-fluoro-4-cyclohexyloxyaniline in step B and *N*-ethyl-*N*-methylamine 10 in step E. MS (ESI): mass calcd. for $C_{21}H_{24}FN_5O_3$, 413.5; m/z found, 414.1 [M+H]⁺. ¹H NMR (400 MHz, DMSO-d₆): 12.81 (s, 1H), 8.94 (s, 1H), 8.08 (s, 1H), 7.64-7.58 (m, 2H), 4.53 (s, 1H), 3.80 (q, *J* = 6.5 Hz, 2H), 3.39 (s, 3H), 2.00 (s, 2H), 1.74 (s, 2H), 1.64-1.26 (m, 9H).


15 Example 105: 1-(7-fluoro-6-(cyclohexyloxy)-4-(cyclopropylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

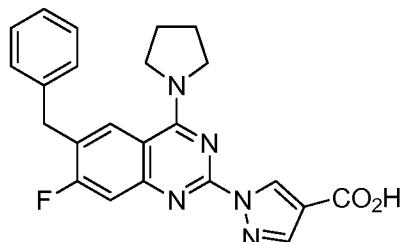
The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 3-fluoro-4-cyclohexyloxyaniline in step B and cyclopropylamine in step E. MS (ESI): mass calcd. for $C_{21}H_{22}FN_5O_3$, 411.4; m/z found, 412.2 [M+H]⁺. ¹H NMR (400 MHz, DMSO-d₆): 8.96 (s, 1H), 8.61 (s, 1H), 8.03 (s, 1H), 7.94 (d, *J* = 8.9 Hz, 1H), 7.55 (d, *J* = 12.1 Hz, 1H), 4.55 (s, 1H), 3.19-3.07 (m, 1H), 1.95 (s, 2H), 1.74 (s, 2H), 1.64-1.26 (m, 6H), 0.97-0.85 (m, 2H), 0.77-0.67 (m, 2H).


Examples 106-135 are prophetic Examples which may be synthesized using the general schemes provided above.

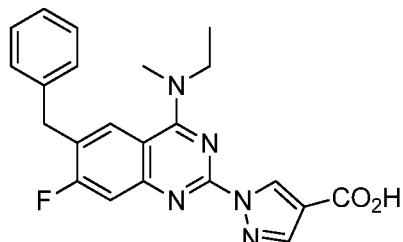
Example 106: 1-(6-Benzyl-7-fluoro-4-morpholinoquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(6-benzyl-7-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and morpholine in step E. MS (ESI): predicted mass calcd. for C₂₃H₂₀FN₅O₃, 433.2

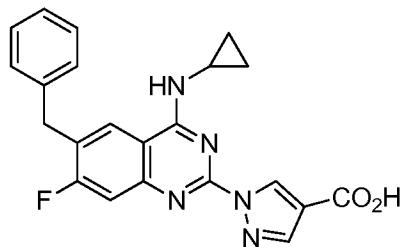
Example 107: 1-(6-Benzyl-4-(dimethylamino)-7-fluoroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(6-benzyl-7-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and dimethylamine in step E. MS (ESI): predicted mass calcd. for C₂₁H₁₈FN₅O₂, 391.1

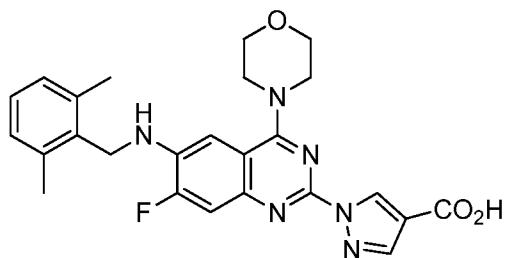
Example 108: 1-(6-Benzyl-4-(diethylamino)-7-fluoroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(6-benzyl-7-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and diethylamine in step E. MS (ESI): predicted mass calcd. for C₂₃H₂₂FN₅O₂, 419.2

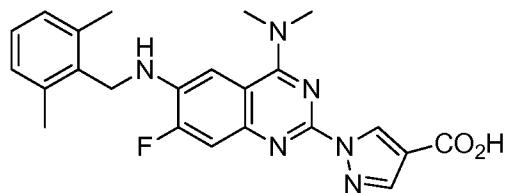
Example 109: 1-(6-Benzyl-7-fluoro-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(6-benzyl-7-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and pyrrolidine in step E. MS (ESI): predicted mass calcd. for C₂₃H₂₀FN₅O₂, 417.2

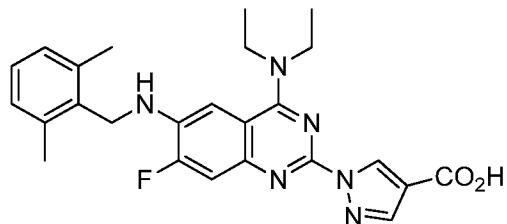
Example 110: 1-(6-Benzyl-4-(ethyl(methyl)amino)-7-fluoroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(6-benzyl-7-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and *N*-methylethanamine in step E. MS (ESI): predicted mass calcd. for C₂₂H₂₀FN₅O₂, 405.2

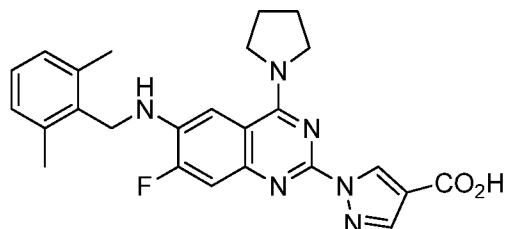
Example 111: 1-(6-Benzyl-4-(cyclopropylamino)-7-fluoroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(6-benzyl-7-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and cyclopropyl amine in step E. MS (ESI): predicted mass calcd. for C₂₂H₁₈FN₅O₂, 403.1

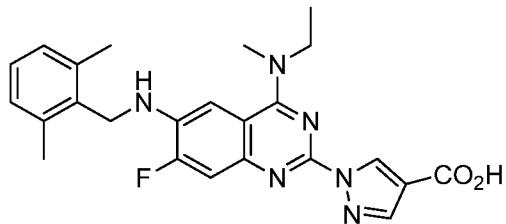
Example 112: 1-(6-((2,6-Dimethylbenzyl)amino)-7-fluoro-4-morpholinoquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(6-((2,6-dimethylbenzyl)amino)-7-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and morpholine in step E. MS (ESI): predicted mass calcd. for C₂₅H₂₅FN₆O₃, 476.2

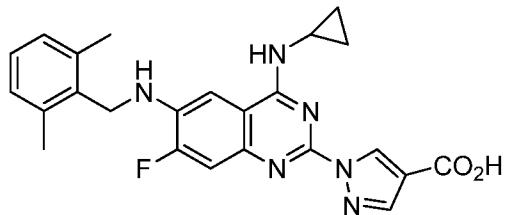
Example 113: 1-(4-(Dimethylamino)-6-((2,6-dimethylbenzyl)amino)-7-fluoroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-((6-(2,6-dimethylbenzyl)amino)-7-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and dimethylamine in step E. MS (ESI): predicted mass calcd. for $C_{23}H_{23}FN_6O_2$, 434.2

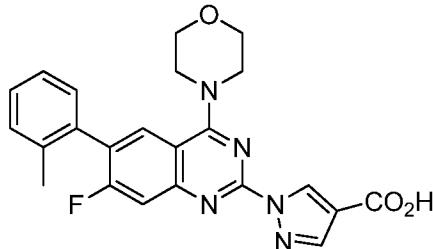
Example 114: 1-(4-(Diethylamino)-6-((2,6-dimethylbenzyl)amino)-7-fluoroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-((2,6-dimethylbenzyl)amino)-7-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and diethylamine in step E. MS (ESI): predicted mass calcd. for $C_{25}H_{27}FN_6O_2$, 462.2

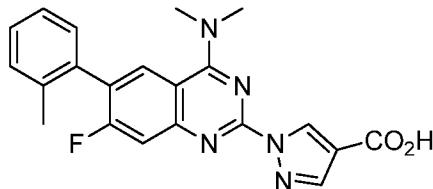
Example 115: 1 1-(6-((2,6-Dimethylbenzyl)amino)-7-fluoro-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-((2,6-dimethylbenzyl)amino)-7-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and pyrrolidine in step E. MS (ESI): predicted mass calcd. for C₂₅H₂₅FN₆O₂, 460.2

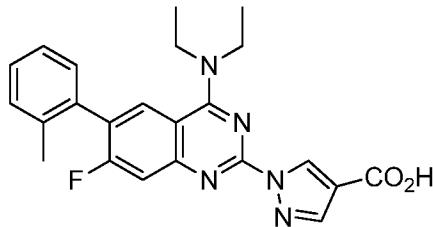
Example 116: 1-((2,6-Dimethylbenzyl)amino)-4-(ethyl(methyl)amino)-7-fluoroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-((2,6-dimethylbenzyl)amino)-7-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and N-methylethanamine in step E. MS (ESI): predicted mass calcd. for C₂₄H₂₅FN₆O₂, 448.2

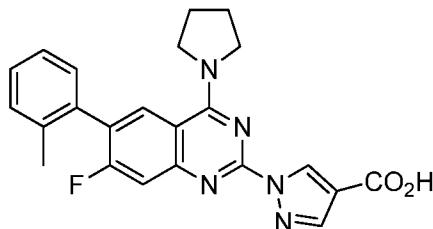
Example 117: 1-(4-(Cyclopropylamino)-6-((2,6-dimethylbenzyl)amino)-7-fluoroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-((2,6-dimethylbenzyl)amino)-7-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and cyclopropyl amine in step E. MS (ESI): predicted mass calcd. for C₂₄H₂₃FN₆O₂, 446.2

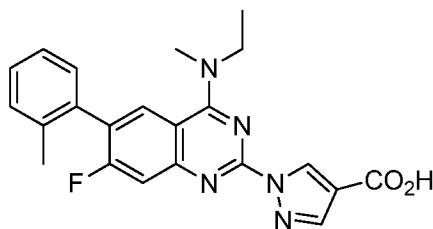
Example 118: 1-(7-Fluoro-4-morpholino-6-(o-tolyl)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(7-fluoro-4-oxo-6-(o-tolyl)-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and morpholine in step E. MS (ESI): predicted mass calcd. for C₂₃H₂₀FN₅O₃, 433.2

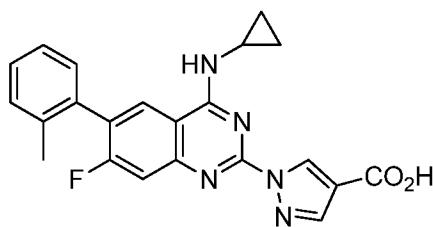
Example 119: 1-(4-(Dimethylamino)-7-fluoro-6-(o-tolyl)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(7-fluoro-4-oxo-6-(o-tolyl)-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and dimethylamine in step E. MS (ESI): predicted mass calcd. for C₂₁H₁₈FN₅O₂, 391.1

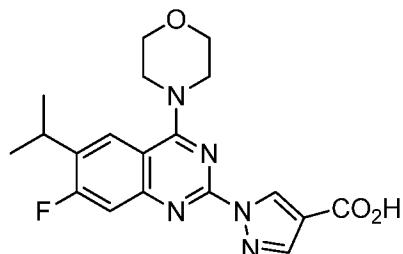
Example 120: 1-(4-(Diethylamino)-7-fluoro-6-(o-tolyl)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(7-fluoro-4-oxo-6-(o-tolyl)-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and diethylamine in step E. MS (ESI): predicted mass calcd. for C₂₃H₂₂FN₅O₂, 419.2

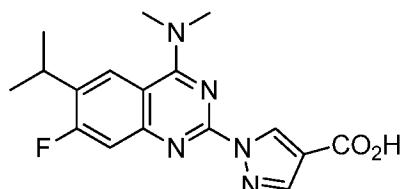
Example 121: 1-(7-Fluoro-4-(pyrrolidin-1-yl)-6-(*o*-tolyl)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(7-fluoro-4-oxo-6-(*o*-tolyl)-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and pyrrolidine in step E. MS (ESI): predicted mass calcd. for C₂₃H₂₀FN₅O₂, 417.2

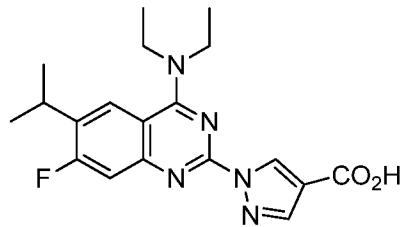
Example 122: 1-(4-(Ethyl(methyl)amino)-7-fluoro-6-(*o*-tolyl)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(7-fluoro-4-oxo-6-(*o*-tolyl)-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and *N*-methylethanamine in step E. MS (ESI): predicted mass calcd. for C₂₂H₂₀FN₅O₂, 405.2

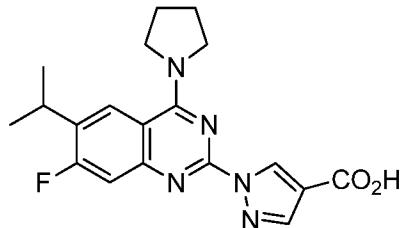
Example 123: 1-(4-(Cyclopropylamino)-7-fluoro-6-(*o*-tolyl)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(7-fluoro-4-oxo-6-(*o*-tolyl)-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and cyclopropyl amine in step E. MS (ESI): predicted mass calcd. for C₂₂H₁₈FN₅O₂, 403.1

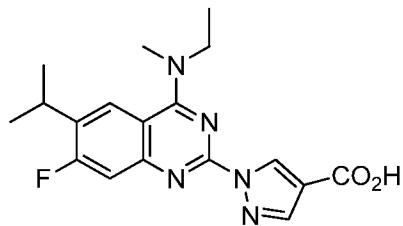
Example 124: 1-(7-Fluoro-6-isopropyl-4-morpholinoquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(7-fluoro-6-isopropyl-4-oxo-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and morpholine in step E. MS (ESI): predicted mass calcd. for C₁₉H₂₀FN₅O₃, 385.2

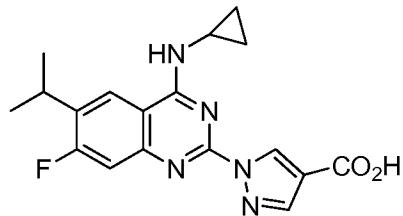
Example 125: 1-(4-(Dimethylamino)-7-fluoro-6-isopropylquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(7-fluoro-6-isopropyl-4-oxo-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and dimethylamine in step E. MS (ESI): predicted mass calcd. for C₁₇H₁₈FN₅O₂, 343.1

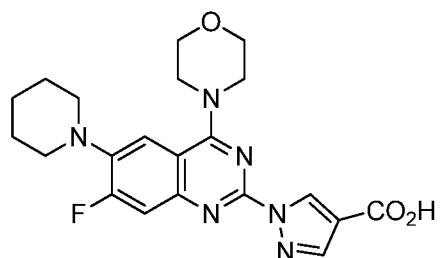
Example 126: 1-(4-(Diethylamino)-7-fluoro-6-isopropylquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(7-fluoro-6-isopropyl-4-oxo-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and diethylamine in step E. MS (ESI): predicted mass calcd. for $C_{19}H_{22}FN_5O_2$, 371.2

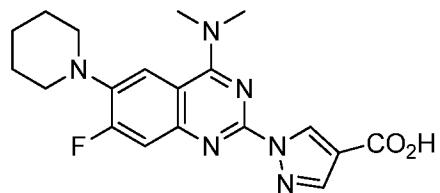
Example 127: 1-(7-Fluoro-6-isopropyl-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(7-fluoro-6-isopropyl-4-oxo-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and pyrrolidine in step E. MS (ESI): predicted mass calcd. for $C_{19}H_{20}FN_5O_2$, 369.2

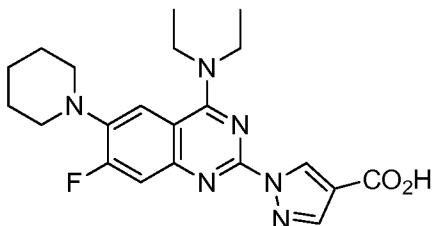
Example 128: 1-(4-(Ethyl(methyl)amino)-7-fluoro-6-isopropylquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(7-fluoro-6-isopropyl-4-oxo-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and *N*-methylethanamine in step E. MS (ESI): predicted mass calcd. for $C_{18}H_{20}FN_5O_2$, 357.2

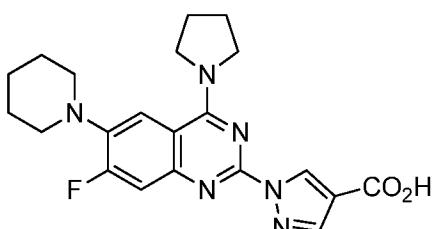
Example 129: 1-(4-(Cyclopropylamino)-7-fluoro-6-isopropylquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(7-fluoro-6-isopropyl-4-oxo-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and cyclopropyl amine in step E. MS (ESI): predicted mass calcd. for C₁₈H₁₈FN₅O₂, 355.1

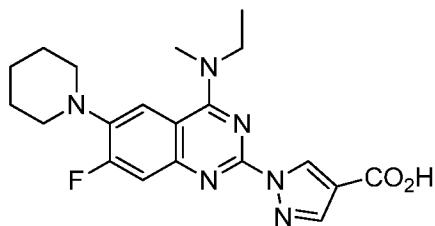
Example 130: 1-(7-Fluoro-4-morpholino-6-(piperidin-1-yl)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(7-fluoro-4-oxo-6-(piperidin-1-yl)-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and morpholine in step E. MS (ESI): predicted mass calcd. for C₂₁H₂₃FN₆O₃, 426.2

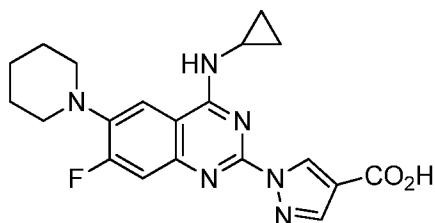
Example 131: 1-(4-(Dimethylamino)-7-fluoro-6-(piperidin-1-yl)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(7-fluoro-4-oxo-6-(piperidin-1-yl)-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and dimethylamine in step E. MS (ESI): predicted mass calcd. for C₁₉H₂₁FN₆O₂, 384.2

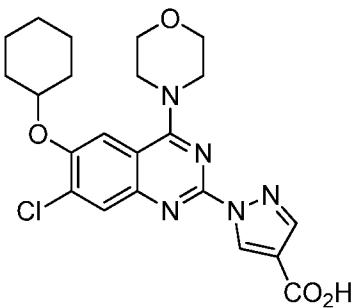
Example 132: 1-(4-(Diethylamino)-7-fluoro-6-(piperidin-1-yl)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(7-fluoro-4-oxo-6-(piperidin-1-yl)-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and diethylamine in step E. MS (ESI): predicted mass calcd. for C₂₁H₂₅FN₆O₂, 412.2

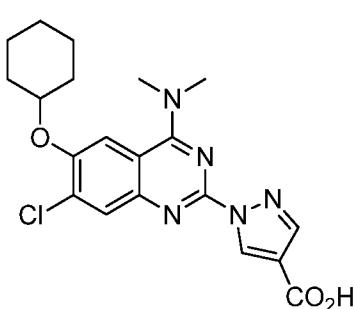
Example 133: 1-(7-Fluoro-6-(piperidin-1-yl)-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(7-fluoro-4-oxo-6-(piperidin-1-yl)-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and pyrrolidine in step E. MS (ESI): predicted mass calcd. for C₂₁H₂₃FN₆O₂, 410.2

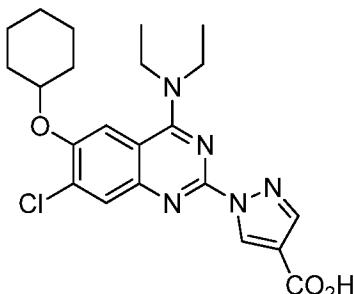
Example 134: 1-(4-(Ethyl(methyl)amino)-7-fluoro-6-(piperidin-1-yl)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(7-fluoro-4-oxo-6-(piperidin-1-yl)-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and *N*-methylethanamine in step E. MS (ESI): predicted mass calcd. for C₂₀H₂₃FN₆O₂, 398.2

Example 135: 1-(4-(Cyclopropylamino)-7-fluoro-6-(piperidin-1-yl)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

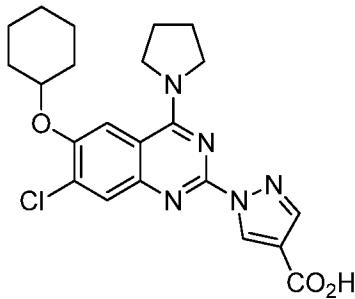

The above compound may be made analogous to Example 1 using ethyl 1-(7-fluoro-4-oxo-6-(piperidin-1-yl)-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and cyclopropylamine in step E. MS (ESI): predicted mass calcd. for C₂₀H₂₁FN₆O₂, 396.2

5 Example 136: 1-(7-chloro-6-(cyclohexyloxy)-4-morpholinoquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

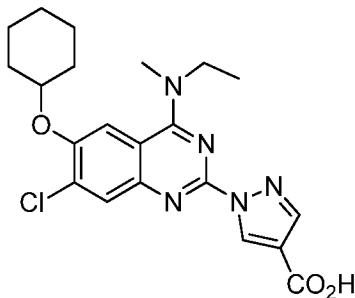

5 The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 3-chloro-4-cyclohexyloxyaniline in step B and morpholine in step E. MS (ESI): mass calcd. for $C_{22}H_{24}ClN_5O_4$, 457.9; m/z found, 458.1 [M+H]⁺. ¹H NMR (400 MHz, DMSO-d₆): 8.88 (s, 1H), 8.01 (s, 1H), 7.94 (s, 1H), 7.43 (s, 1H), 4.65 (s, 1H), 3.87 (s, 4H), 3.83 (s, 4H), 1.94 (s, 2H), 1.75 (s, 2H), 1.70-1.33 (m, 6H).

10 Example 137: 1-(7-chloro-6-(cyclohexyloxy)-4-(dimethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 3-chloro-4-cyclohexyloxyaniline in step B and dimethylamine in step E. MS (ESI): mass calcd. for $C_{20}H_{22}ClN_5O_3$, 415.9; m/z found, 416.1 [M+H]⁺. ¹H NMR (400 MHz, DMSO-d₆): 12.77 (s, 1H), 8.98 (s, 1H), 8.08 (s, 1H), 7.88 (s, 1H), 7.69 (s, 1H), 4.64 (s, 1H), 3.44 (s, 6H), 1.95 (s, 2H), 1.83-1.35 (m, 8H).

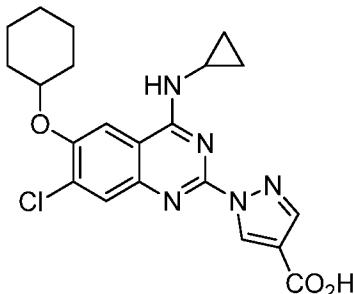

Example 138: 1-(7-chloro-6-(cyclohexyloxy)-4-(diethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

20 The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 3-chloro-4-cyclohexyloxyaniline in step B and diethylamine in step E.


5 MS (ESI): mass calcd. for $C_{22}H_{26}ClN_5O_3$, 443.9; m/z found, 444.2 [M+H]+. 1H NMR (400 MHz, DMSO-d₆): 12.77 (s, 1H), 8.91 (s, 1H), 8.09 (s, 1H), 7.89 (s, 1H), 7.43 (s, 1H), 4.54 (s, 1H), 3.80 (q, J = 6.6 Hz, 4H), 1.99 (s, 2H), 1.77 (s, 2H), 1.68-1.50 (m, 3H), 1.48-1.33 (m, 9H).

10 Example 139: 1-(7-chloro-6-(cyclohexyloxy)-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 3-chloro-4-cyclohexyloxyaniline in step B and pyrrolidine in step E. MS (ESI): mass calcd. for $C_{22}H_{24}ClN_5O_3$, 441.9; m/z found, 442.2 [M+H]+. 1H NMR (400 MHz, DMSO-d₆): 8.96 (s, 1H), 8.07 (s, 1H), 7.84 (s, 1H), 7.78 (s, 1H), 4.61 (s, 1H), 3.99 (s, 4H), 2.10-1.88 (m, 6H), 1.83-1.32 (m, 8H).


Example 140: 1-(7-chloro-6-(cyclohexyloxy)-4-(ethyl(methyl)amino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

20 The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 3-chloro-4-cyclohexyloxyaniline in step B and *N*-ethyl-*N*-methylamine in step E. MS (ESI): mass calcd. for $C_{21}H_{24}ClN_5O_3$, 429.9; m/z found,

5 430.1 [M+H]⁺. ¹H NMR (400 MHz, DMSO-d₆): 8.94 (s, 1H), 8.08 (s, 1H), 7.86 (s, 1H), 7.56 (s, 1H), 4.65-4.54 (m, 1H), 3.81 (q, *J* = 7.5 Hz, 2H), 3.40 (s, 3H), 1.96 (s, 2H), 1.75 (s, 2H), 1.68-1.36 (m, 9H).

Example 141: 1-(7-chloro-6-(cyclohexyloxy)-4-(cyclopropylamino)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

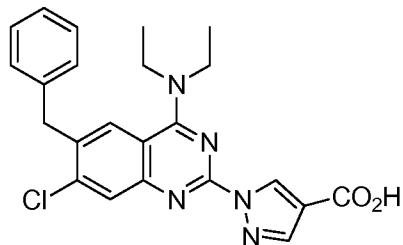
10

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 3-chloro-4-cyclohexyloxyaniline in step B and cyclopropylamine in step E. MS (ESI): mass calcd. for C₂₁H₂₂ClN₅O₃, 428.1; m/z found, 442.2 [M+H]⁺.

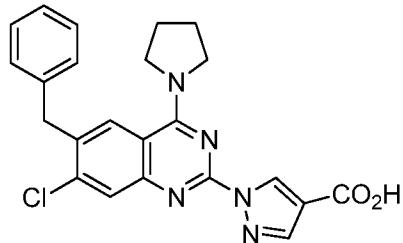
15 ¹H NMR (400 MHz, DMSO-d₆): 12.75 (s, 1H), 9.01 (s, 1H), 8.68 (s, 1H), 8.09 (s, 1H), 7.88 (s, 1H), 7.84 (s, 1H), 4.65 (s, 1H), 3.17 (s, 1H), 1.91 (s, 2H), 1.76 (s, 2H), 1.69-1.37 (m, 6H), 0.95-0.89 (m, 2H), 0.73 (s, 2H).

Examples 142-159 are prophetic Examples which may be synthesized using the general schemes provided above.

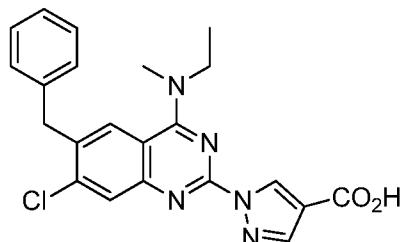
Example 142: 1-(6-Benzyl-7-chloro-4-morpholinoquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(6-benzyl-7-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and morpholine in step E. MS (ESI): predicted mass calcd. for C₂₃H₂₀CIN₅O₃, 449.9

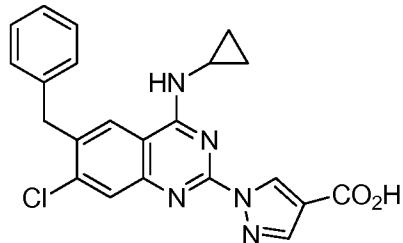
Example 143: 1-(6-Benzyl-4-(dimethylamino)-7-chloroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(6-benzyl-7-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and dimethylamine in step E. MS (ESI): predicted mass calcd. for C₂₁H₁₈CIN₅O₂, 407.9

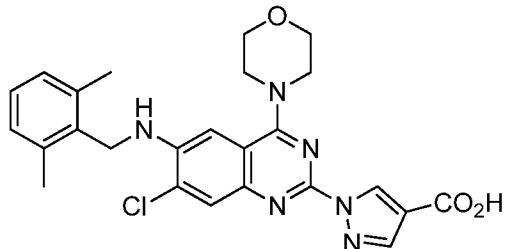
Example 144: 1-(6-Benzyl-4-(diethylamino)-7-chloroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(6-benzyl-7-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and diethylamine in step E. MS (ESI): predicted mass calcd. for C₂₃H₂₂CIN₅O₂, 435.9

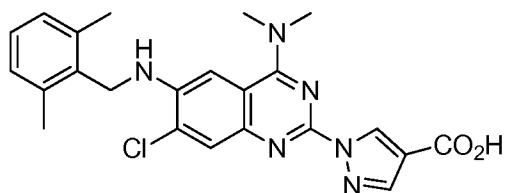
Example 145: 1-(6-Benzyl-7-chloro-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(6-benzyl-7-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and pyrrolidine in step E. MS (ESI): predicted mass calcd. for C₂₃H₂₀CIN₅O₂, 433.9

Example 146: 1-(6-Benzyl-4-(ethyl(methyl)amino)-7-chloroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(6-benzyl-7-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and N-methylethanamine in step E. MS (ESI): predicted mass calcd. for C₂₂H₂₀CIN₅O₂, 421.9

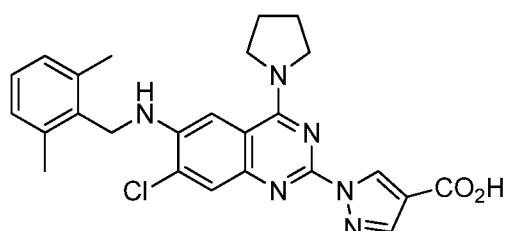
Example 147: 1-(6-Benzyl-4-(cyclopropylamino)-7-chloroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(6-benzyl-7-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and cyclopropyl amine in step E. MS (ESI): predicted mass calcd. for C₂₂H₁₈CIN₅O₂, 419.9

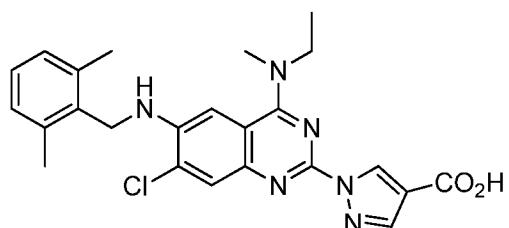
Example 148: 1-(6-((2,6-Dimethylbenzyl)amino)-7-chloro-4-morpholinoquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

The above compound may be made analogous to Example 1 using ethyl 1-((2,6-dimethylbenzyl)amino)-7-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and morpholine in step E. MS (ESI): predicted mass calcd. for C₂₅H₂₅CIN₆O₃, 492.9

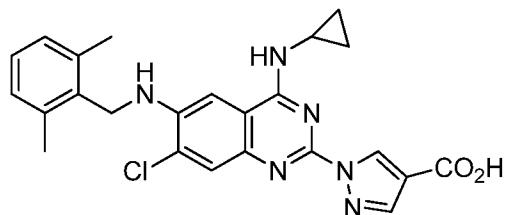
Example 149: 1-(4-(Dimethylamino)-6-((2,6-dimethylbenzyl)amino)-7-chloroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-((2,6-dimethylbenzyl)amino)-7-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and dimethylamine in step E. MS (ESI): predicted mass calcd. for C₂₃H₂₃CIN₆O₂, 450.9

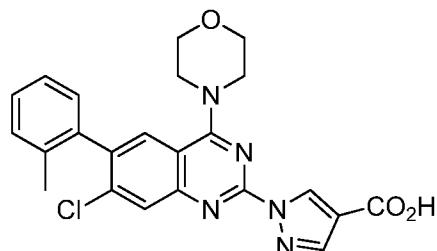
Example 150: 1-(4-(Diethylamino)-6-((2,6-dimethylbenzyl)amino)-7-chloroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-((2,6-dimethylbenzyl)amino)-7-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and diethylamine in step E. MS (ESI): predicted mass calcd. for C₂₅H₂₇CIN₆O₂, 479.0

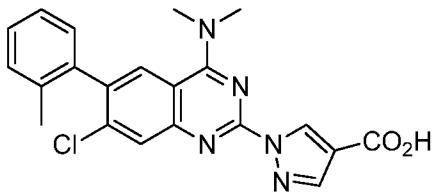
Example 151: 1-(6-((2,6-Dimethylbenzyl)amino)-7-chloro-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-((2,6-dimethylbenzyl)amino)-7-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and pyrrolidine in step E. MS (ESI): predicted mass calcd. for C₂₅H₂₅CIN₆O₂, 479.0

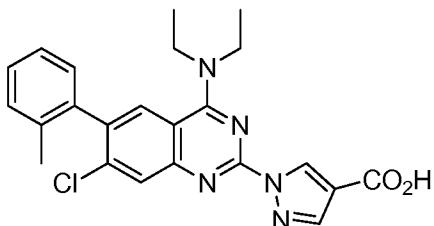
Example 152: 1-(6-((2,6-Dimethylbenzyl)amino)-4-(ethyl(methyl)amino)-7-chloroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-((2,6-dimethylbenzyl)amino)-7-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and *N*-methylethanamine in step E. MS (ESI): predicted mass calcd. for C₂₄H₂₅CIN₆O₂, 464.9

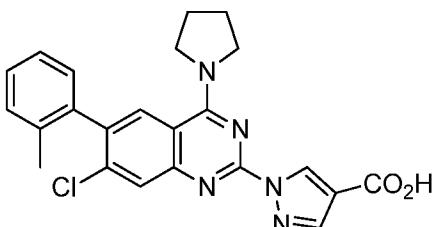
Example 153: 1-(4-(Cyclopropylamino)-6-((2,6-dimethylbenzyl)amino)-7-chloroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-((2,6-dimethylbenzyl)amino)-7-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and cyclopropyl amine in step E. MS (ESI): predicted mass calcd. for C₂₄H₂₃CIN₆O₂, 462.9

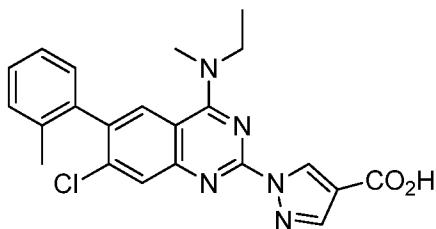
Example 154: 1-(7-Chloro-4-morpholino-6-(*o*-tolyl)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(7-chloro-4-oxo-6-(*o*-tolyl)-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and morpholine in step E. MS (ESI): predicted mass calcd. for C₂₃H₂₀CIN₅O₃, 449.9

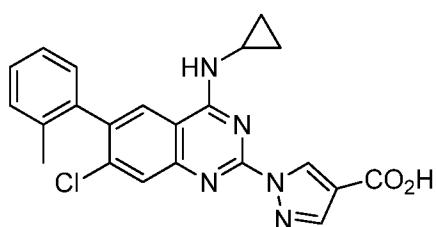
Example 155: 1-(4-(Dimethylamino)-7-chloro-6-(*o*-tolyl)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(7-chloro-4-oxo-6-(o-tolyl)-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and dimethylamine in step E. MS (ESI): predicted mass calcd. for C₂₁H₁₈ClN₅O₂, 407.9

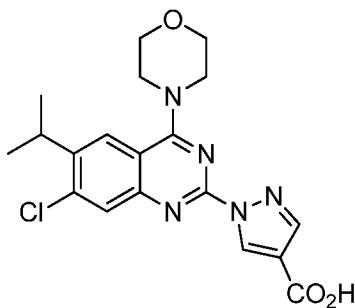
Example 156: 1-(4-(Diethylamino)-7-chloro-6-(o-tolyl)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(7-chloro-4-oxo-6-(o-tolyl)-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and diethylamine in step E. MS (ESI): predicted mass calcd. for C₂₃H₂₂ClN₅O₂, 435.9

Example 157: 1-(7-Chloro-4-(pyrrolidin-1-yl)-6-(o-tolyl)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

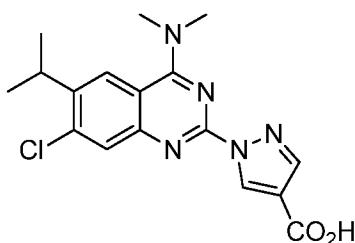

The above compound may be made analogous to Example 1 using ethyl 1-(7-chloro-4-oxo-6-(o-tolyl)-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and pyrrolidine in step E. MS (ESI): predicted mass calcd. for C₂₃H₂₀ClN₅O₂, 433.9

Example 158: 1-(4-(Ethyl(methyl)amino)-7-chloro-6-(o-tolyl)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

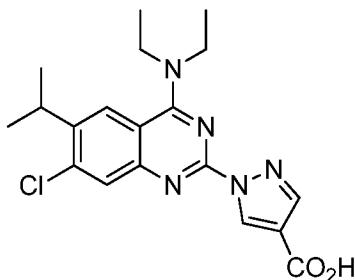

The above compound may be made analogous to Example 1 using ethyl 1-(7-chloro-4-oxo-6-(o-tolyl)-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and *N*-methylethanamine in step E. MS (ESI): predicted mass calcd. for C₂₂H₂₀ClN₅O₂, 421.9

Example 159: 1-(4-(Cyclopropylamino)-7-chloro-6-(o-tolyl)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

The above compound may be made analogous to Example 1 using ethyl 1-(7-chloro-4-oxo-6-(o-tolyl)-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and cyclopropyl amine in step E. MS (ESI): predicted mass calcd. for C₂₂H₁₈ClN₅O₂, 419.9


5 Example 160: 1-(7-chloro-6-isopropyl-4-morpholinoquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

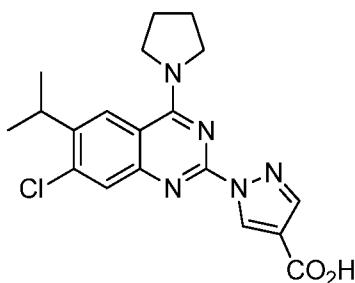
5


The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 3-chloro-4-isopropylaniline in step B and morpholine in step E. MS (ESI): mass calcd. for $C_{19}H_{20}ClN_5O_3$, 401.9; m/z found, 402.1 [M+H]⁺. 1H NMR (400 MHz, DMSO-d₆): 12.77 (s, 1H), 9.02 (s, 1H), 8.11 (s, 1H), 7.88 (s, 2H), 3.97 (s, 4H), 10 3.81 (s, 4H), 3.33 (s, 1H), 1.31 (d, *J* = 6.8 Hz, 6H).

Example 161: 1-(7-chloro-4-(dimethylamino)-6-isopropylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 3-chloro-4-isopropylaniline in step B and dimethylamine in step E. MS (ESI): mass calcd. for $C_{17}H_{18}ClN_5O_2$, 359.8; m/z found, 360.0 [M+H]⁺. 1H NMR (400 MHz, DMSO-d₆): 9.01 (s, 1H), 8.12 (s, 1H), 8.11 (s, 1H), 7.82 (s, 1H), 3.49 (s, 6H), 3.39 (dt, *J* = 14.1, 7.2 Hz, 1H), 1.32 (d, *J* = 6.8 Hz, 6H).

Example 162: 1-(7-chloro-4-diethylamino-6-isopropylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

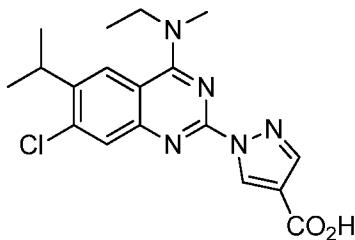


5

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 3-chloro-4-isopropylaniline in step B and diethylamine in step E. MS (ESI): mass calcd. for $C_{19}H_{22}ClN_5O_2$, 387.9; m/z found, 388.1 [M+H]⁺. 1H NMR (400 MHz, DMSO-d₆): 8.94 (s, 1H), 8.13 (s, 1H), 7.91 (s, 1H), 7.83 (s, 1H), 3.84 (q, J = 6.7 Hz, 4H), 3.49-3.31 (m, 1H), 1.43 (t, J = 6.7 Hz, 6H), 1.31 (d, J = 6.7 Hz, 6H).

10

Example 163: 1-(7-chloro-4-(pyrrolidin-1-yl)-6-isopropylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

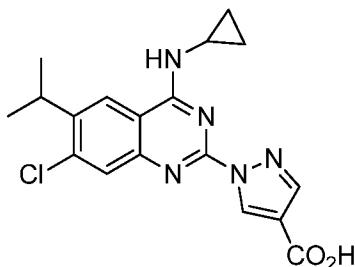


The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 3-chloro-4-isopropylaniline in step B and pyrrolidine in step E. MS (ESI): mass calcd. for $C_{19}H_{20}ClN_5O_2$, 385.9; m/z found, 386.1 [M+H]⁺. 1H NMR (400 MHz, DMSO-d₆): 8.98 (s, 1H), 8.19 (s, 1H), 8.08 (s, 1H), 7.78 (s, 1H), 4.01 (s, 4H), 3.45-3.33 (m, 1H), 2.03 (s, 4H), 1.32 (d, J = 6.8 Hz, 6H).

15

Example 164: 1-(7-chloro-4-(ethyl(methyl)amino)-6-isopropylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

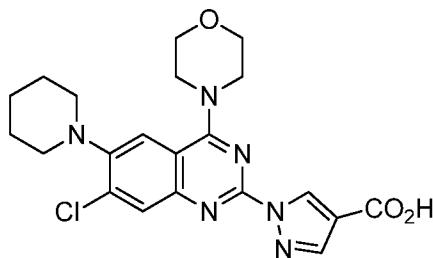
20



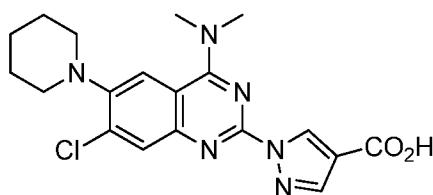
5

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 3-chloro-4-isopropylaniline in step B and *N*-ethyl-*N*-methylamine in step E. MS (ESI): mass calcd. for $C_{18}H_{20}ClN_5O_2$, 373.9; m/z found, 374.1 [M+H]⁺.

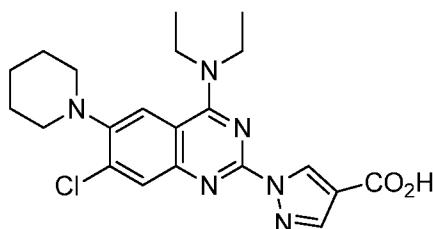
1H NMR (400 MHz, DMSO-d₆): 8.99 (s, 1H), 8.14 (s, 1H), 8.05 (s, 1H), 7.84 (s, 1H), 3.88 (q, *J* = 7.1 Hz, 2H), 3.48 (s, 3H), 3.40 (dt, *J* = 13.3, 6.8 Hz, 1H), 1.41 (t, *J* = 6.9 Hz, 3H), 1.32 (d, *J* = 6.8 Hz, 6H).


Example 165: 1-(7-chloro-4-(cyclopropylamino)-6-isopropylquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

15 The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 3-chloro-4-isopropylaniline in step B and cyclopropylamine in step E. MS (ESI): mass calcd. for $C_{18}H_{18}ClN_5O_2$, 371.8; m/z found, 372.1 [M+H]⁺. 1H NMR (400 MHz, DMSO-d₆): 12.75 (s, 1H), 9.04 (s, 1H), 8.87 (s, 1H), 8.27 (s, 1H), 8.11 (s, 1H), 7.78 (s, 1H), 3.42-3.33 (m, 1H), 3.21 (s, 1H), 1.32 (d, *J* = 6.6 Hz, 6H), 0.93-0.90 (m, 2H), 0.76 (br s, 2H).

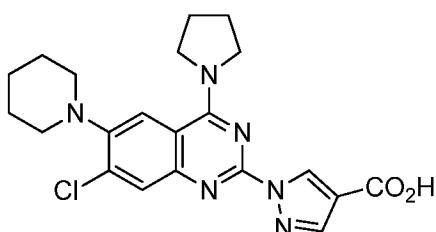

Examples 166-171 are prophetic Examples which may be synthesized using the general schemes provided above.

Example 166: 1-(7-Chloro-4-morpholino-6-(piperidin-1-yl)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

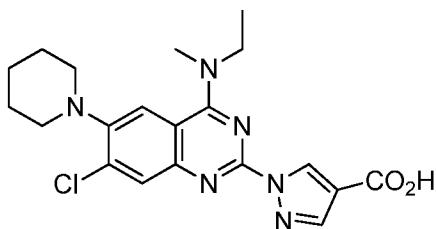

The above compound may be made analogous to Example 1 using ethyl 1-(7-chloro-4-oxo-6-(piperidin-1-yl)-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and morpholine in step E. MS (ESI): predicted mass calcd. for C₂₁H₂₃ClN₆O₃, 442.9

Example 167: 1-(4-(Dimethylamino)-7-chloro-6-(piperidin-1-yl)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

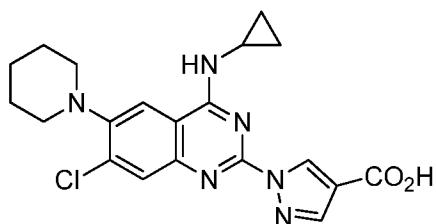
The above compound may be made analogous to Example 1 using ethyl 1-(7-chloro-4-oxo-6-(piperidin-1-yl)-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and dimethylamine in step E. MS (ESI): predicted mass calcd. for C₁₉H₂₁ClN₆O₂, 400.9


Example 168: 1-(4-(Diethylamino)-7-chloro-6-(piperidin-1-yl)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

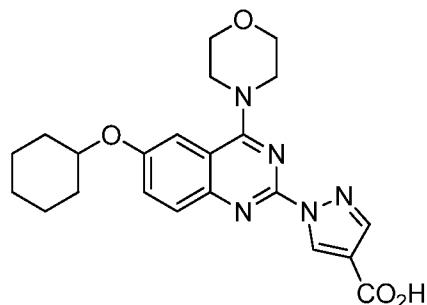
The above compound may be made analogous to Example 1 using ethyl 1-(7-chloro-4-oxo-6-(piperidin-1-yl)-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step


D and diethylamine in step E. MS (ESI): predicted mass calcd. for $C_{21}H_{25}ClN_6O_2$, 428.9

Example 169: 1-(7-Chloro-6-(piperidin-1-yl)-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

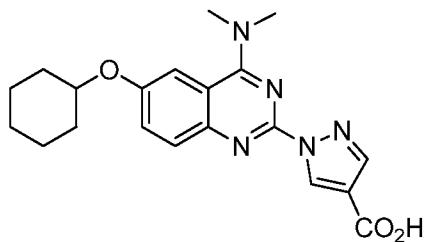

The above compound may be made analogous to Example 1 using ethyl 1-(7-chloro-4-oxo-6-(piperidin-1-yl)-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and pyrrolidine in step E. MS (ESI): predicted mass calcd. for $C_{21}H_{23}ClN_6O_2$, 410.2

Example 170: 1-(4-(Ethyl(methyl)amino)-7-chloro-6-(piperidin-1-yl)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

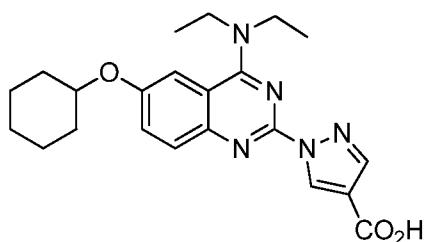

The above compound may be made analogous to Example 1 using ethyl 1-(7-chloro-4-oxo-6-(piperidin-1-yl)-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and *N*-methylethanamine in step E. MS (ESI): predicted mass calcd. for $C_{20}H_{23}ClN_6O_2$, 414.9

Example 171: 1-(4-(Cyclopropylamino)-7-chloro-6-(piperidin-1-yl)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

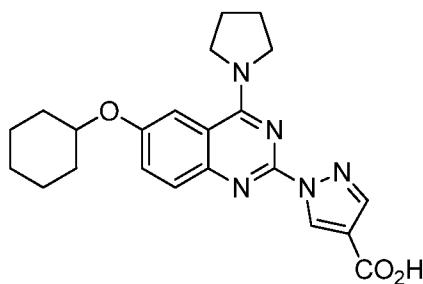
The above compound may be made analogous to Example 1 using ethyl 1-(7-chloro-4-oxo-6-(piperidin-1-yl)-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and cyclopropylamine in step E. MS (ESI): predicted mass calcd. for C₂₀H₂₁ClN₆O₂, 412.9


5 Example 172: 1-(6-(cyclohexyloxy)-4-morpholinoquinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.

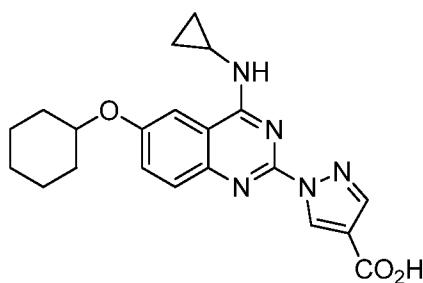
The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-cyclohexyloxyaniline in step B and morpholine in step E. MS (ESI):


10 mass calcd. for C₂₂H₂₅N₅O₄, 423.5; m/z found, 424.2 [M+H]⁺. 1H NMR (400 MHz, DMSO-d₆): 12.75 (s, 1H), 9.01 (s, 1H), 8.10 (s, 1H), 7.81 (d, *J* = 9.2 Hz, 1H), 7.56 (dd, *J* = 9.1, 2.3 Hz, 1H), 7.30 (s, 1H), 4.52 (s, 1H), 3.84 (s, 8H), 1.97 (s, 2H), 1.75 (s, 2H), 1.62-1.22 (m, 6H).

15 Example 173: 1-(6-(cyclohexyloxy)-4-(dimethylamino)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-cyclohexyloxyaniline in step B and dimethylamine in step E. MS (ESI): mass calcd. for $C_{20}H_{23}N_5O_3$, 381.4; m/z found, 382.2 [M+H]⁺. 1H NMR (400 MHz, DMSO-d₆): 12.80 (s, 1H), 8.93 (s, 1H), 8.04 (s, 1H), 7.72 (d, *J* = 9.0 Hz, 1H), 7.58-7.45 (m, 2H), 4.50 (s, 1H), 3.42 (s, 6H), 1.97 (s, 2H), 1.74 (s, 2H), 1.63-1.22 (m, 6H).

Example 174: 1-(6-(cyclohexyloxy)-4-(diethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


15 The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-cyclohexyloxyaniline in step B and diethylamine in step E. MS (ESI): mass calcd. for $C_{22}H_{27}N_5O_3$, 409.5; m/z found, 410.2 [M+H]⁺. 1H NMR (400 MHz, DMSO-d₆): 12.69 (s, 1H), 8.89 (s, 1H), 8.07 (s, 1H), 7.72 (d, *J* = 9.1 Hz, 1H), 7.48 (d, *J* = 9.1 Hz, 1H), 7.32 (s, 1H), 4.44 (s, 1H), 3.79 (q, *J* = 6.6 Hz, 4H), 2.01 (s, 2H), 1.76 (s, 2H), 1.64-1.22 (m, 12H).

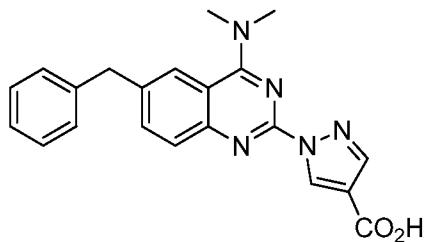
Example 175: 1-(6-(cyclohexyloxy)-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-cyclohexyloxyaniline in step B and pyrrolidine in step E. MS (ESI): mass calcd. for $C_{22}H_{25}N_5O_3$, 407.5; m/z found, 408.2 [M+H]⁺. ¹H NMR (400 MHz, DMSO-d₆): 12.71 (s, 1H), 8.96 (s, 1H), 8.07 (s, 1H), 7.71-7.66 (m, 2H), 7.50 (dd, *J* = 9.1, 2.4 Hz, 1H), 4.57-4.41 (m, 1H), 3.98 (s, 4H), 2.01 (s, 6H), 1.74 (s, 2H), 1.62-1.21 (m, 6H).

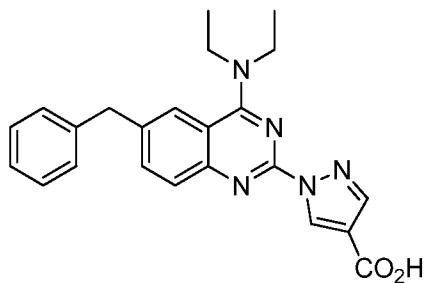
Example 176: 1-(6-(cyclohexyloxy)-4-(cyclopropylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


15 The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-cyclohexyloxyaniline in step B and cyclopropylamine in step E. MS (ESI): mass calcd. for $C_{21}H_{23}N_5O_3$, 393.5; m/z found, 394.2 [M+H]⁺. ¹H NMR (400 MHz, DMSO-d₆): 9.07 (s, 1H), 8.85 (s, 1H), 8.17 (s, 1H), 7.86-7.70 (m, 2H), 7.51 (d, *J* = 9.2 Hz, 1H), 4.54 (s, 1H), 3.29 (s, 1H), 1.95 (s, 2H), 1.76 (s, 2H), 1.63-1.20 (m, 6H), 0.95-0.89 (m, 2H), 0.78 (s, 2H).

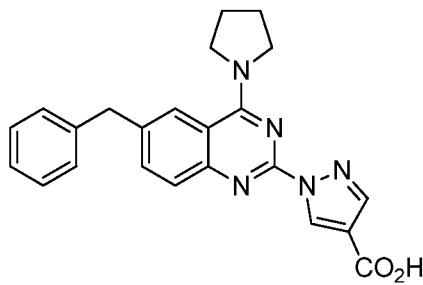
Example 177: 1-(6-(cyclohexyloxy)-4-(ethyl(methyl)amino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-cyclohexyloxyaniline in step B and *N*-ethyl-*N*-methylamine in step E. MS (ESI): mass calcd. for $C_{21}H_{25}N_5O_3$, 395.5; m/z found, 396.2 [M+H]⁺. 1H NMR (400 MHz, DMSO-d₆): 12.75 (s, 1H), 8.91 (s, 1H), 8.04 (s, 1H), 7.72 (d, *J* = 9.1 Hz, 1H), 7.49 (d, *J* = 9.3 Hz, 1H), 7.45 (s, 1H), 4.48 (s, 1H), 3.80 (q, *J* = 7.3 Hz, 2H), 3.38 (s, 3H), 1.99 (s, 2H), 1.75 (s, 2H), 1.62-1.25 (m, 9H).

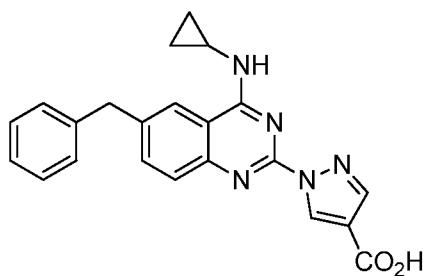
Example 178: 1-(6-benzyl-4-morpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


15 The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-benzylaniline in step B and morpholine in step E. MS (ESI): mass calcd. for $C_{23}H_{21}N_5O_3$, 415.2; m/z found, 416.2 [M+H]⁺. 1H NMR (400 MHz, DMSO-d₆): 12.75 (s, 1H), 9.00 (s, 1H), 8.09 (s, 1H), 7.80-7.68 (m, 3H), 7.36-7.17 (m, 5H), 4.15 (s, 2H), 3.85-3.83 (m, 4H), 3.78-3.77 (m, 4H).

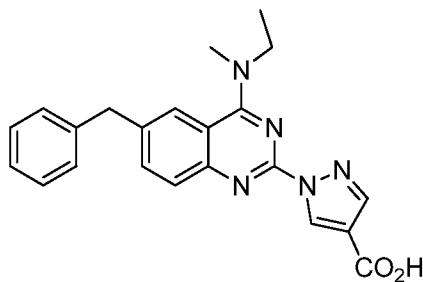
20 Example 179: 1-(6-benzyl-4-(dimethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-benzyylaniline in step B and dimethylamine in step E. MS (ESI): mass calcd. for $C_{21}H_{19}N_5O_2$, 373.4; m/z found, 374.2 [M+H]⁺. 1H NMR (400 MHz, DMSO-d₆): 12.71 (s, 1H), 8.97 (s, 1H), 8.07 (s, 1H), 8.04 (s, 1H), 7.70-7.63 (m, 2H), 7.31-7.28 (m, 4H), 7.24-7.18 (m, 1H), 4.13 (s, 2H), 3.41 (s, 6H).

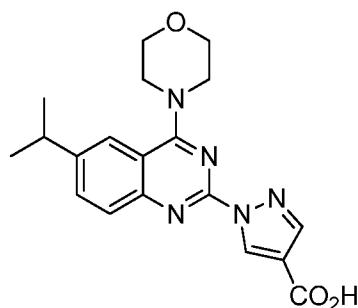
Example 180: 1-(6-benzyl-4-(diethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-benzyylaniline in step B and diethylamine in step E. MS (ESI): mass calcd. for $C_{23}H_{23}N_5O_2$, 401.5; m/z found, 402.2 [M+H]⁺. 1H NMR (400 MHz, DMSO-d₆): 12.76 (s, 1H), 8.89 (s, 1H), 8.07 (s, 1H), 7.70 (s, 2H), 7.62 (s, 1H), 7.36-7.21 (m, 5H), 4.14 (s, 2H), 3.70 (q, $J = 6.8$ Hz, 4H), 1.24 (t, $J = 6.9$ Hz, 6H).

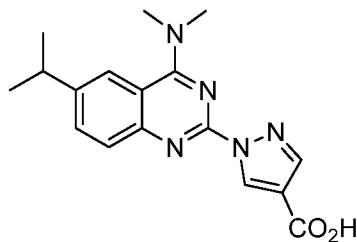
Example 181: 1-(6-benzyl-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-benzylaniline in step B and pyrrolidine in step E. MS (ESI): mass calcd. for $C_{23}H_{21}N_5O_2$, 399.5; m/z found, 400.3 [M+H]⁺. 1H NMR (400 MHz, DMSO-d₆): 8.88 (s, 1H), 8.14 (s, 1H), 7.99 (s, 1H), 7.64 (s, 2H), 7.31-2.29 (m, 4H), 7.23-7.16 (m, 1H), 4.12 (s, 2H), 3.93 (s, 4H), 2.00 (s, 4H).

Example 182: 1-(6-benzyl-4-(cyclopropylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-benzylaniline in step B and cyclopropyl amine in step E. MS (ESI): mass calcd. for $C_{22}H_{19}N_5O_2$, 385.4; m/z found, 386.1 [M+H]⁺. 1H NMR (400 MHz, DMSO-d₆): 8.96 (s, 1H), 8.76 (d, $J = 3.6$ Hz, 1H), 8.31 (s, 1H), 8.01 (s, 1H), 7.66-7.60 (m, 2H), 7.32-7.23 (m, 4H), 7.22-7.13 (m, 1H), 4.05 (s, 2H), 3.24-3.18 (m, 1H), 0.92-0.82 (m, 2H), 0.81-0.71 (m, 2H).

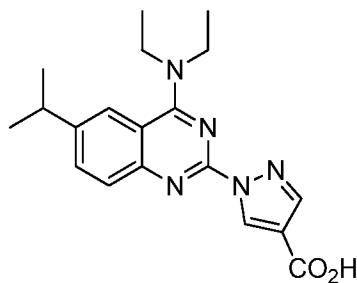
20 Example 183: 1-(6-benzyl-4-(ethyl(methyl)amino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-benzylaniline in step B and *N*-ethyl-*N*-methylamine in step E. MS (ESI): mass calcd. for $C_{22}H_{21}N_5O_2$, 387.4; m/z found, 388.1 [M+H]⁺. 1H NMR (400 MHz, DMSO-d₆): 8.94 (s, 1H), 8.07 (s, 1H), 7.88 (s, 1H), 7.68 (s, 2H), 7.34-7.28 (m, 4H), 7.21 (brs, 1H), 4.13 (s, 2H), 3.75 (q, $J = 6.8$ Hz, 2H), 3.36 (s, 3H), 1.26 (t, $J = 6.9$ Hz, 3H).

Example 184: 1-(4-(morpholino)-6-isopropylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

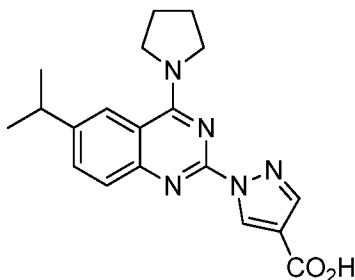
15 The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-isopropylaniline in step B and morpholine in step E. MS (ESI): mass calcd. for $C_{19}H_{21}N_5O_3$, 367.4; m/z found, 368.1 [M+H]⁺. 1H NMR (400 MHz, DMSO-d₆): 12.77 (s, 1H), 9.03 (s, 1H), 8.11 (s, 1H), 7.80 (s, 3H), 3.92 (s, 4H), 3.82 (s, 4H), 3.11 (dt, $J = 13.5, 6.7$ Hz, 1H), 1.29 (d, $J = 6.8$ Hz, 6H).

20 Example 185: 1-(4-(dimethylamino)-6-isopropylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.



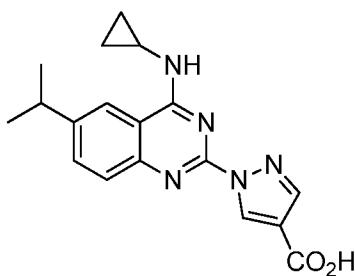
5

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-isopropylaniline in step B and dimethylamine in step E. MS (ESI): mass calcd. for $C_{17}H_{19}N_5O_2$, 325.4; m/z found, 326.2 [M+H]⁺. 1H NMR (400 MHz, DMSO-d₆): 12.66 (s, 1H), 9.00 (s, 1H), 8.08 (s, 1H), 8.02 (s, 1H), 7.82-7.69 (m, 2H), 3.45 (s, 6H), 3.10 (dt, J = 13.6, 6.6 Hz, 1H), 1.29 (d, J = 6.8 Hz, 6H).

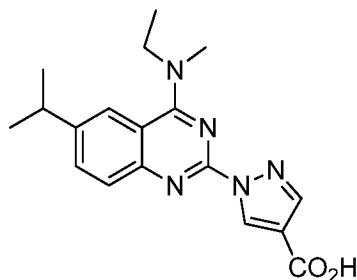

10

Example 186: 1-(4-(diethylamino)-6-isopropylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-isopropylaniline in step B and diethylamine in step E. MS (ESI): mass calcd. for $C_{19}H_{23}N_5O_2$, 353.4; m/z found, 354.2 [M+H]⁺. 1H NMR (400 MHz, DMSO-d₆): 12.77 (s, 1H), 8.96 (s, 1H), 8.13 (s, 1H), 7.78 (t, J = 13.6 Hz, 3H), 3.84 (q, J = 6.7 Hz, 4H), 3.09 (dt, J = 14.0, 7.0 Hz, 1H), 1.42 (t, J = 6.9 Hz, 6H), 1.30 (d, J = 6.9 Hz, 6H).


20 Example 187: 1-(6-isopropyl-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

5

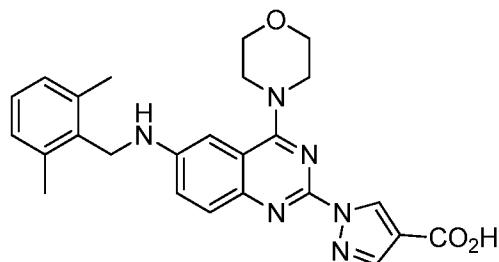

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-isopropylaniline in step B and pyrrolidine in step E. MS (ESI): mass calcd. for $C_{19}H_{21}N_5O_2$, 351.4; m/z found, 352.1 [M+H]⁺. 1H NMR (400 MHz, DMSO-d₆): 8.96 (s, 1H), 8.08 (d, J = 11.4 Hz, 2H), 7.78-7.63 (m, 2H), 3.98 (s, 4H), 10 3.13-3.05 (m, 1H), 2.02 (s, 4H), 1.29 (d, J = 6.3 Hz, 6H).

Example 188: 1-(4-(cyclopropylamino)-6-isopropylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-isopropylaniline in step B and cyclopropylamine in step E. MS (ESI): mass calcd. for $C_{18}H_{19}N_5O_2$, 337.4; m/z found, 338.1 [M+H]⁺. 1H NMR (400 MHz, DMSO-d₆): 9.08 (s, 1H), 9.00 (s, 1H), 8.25 (s, 1H), 8.16 (s, 1H), 7.80-7.69 (m, 2H), 3.32 (s, 1H), 3.04 (dt, J = 13.4, 6.7 Hz, 1H), 1.30 (d, J = 6.9 Hz, 6H), 1.02-0.76 (m, 4H).

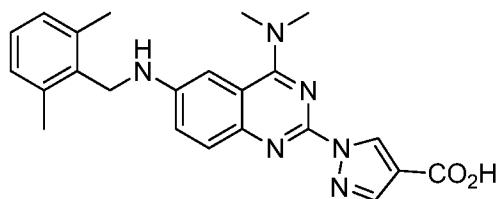
20 Example 189: 1-(6-isopropyl-4-(ethyl(methyl)amino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

5

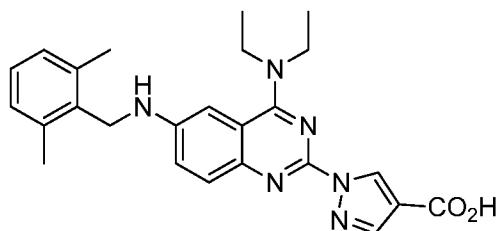

The titled compound was prepared in a manner analogous to EXAMPLE 1 steps B through F using 4-isopropylaniline in step B and *N*-ethyl-*N*-methylamine in step E.

MS (ESI): mass calcd. for C₁₈H₂₁N₅O₂, 339.4; m/z found, 340.1 [M+H]⁺. 1H NMR (400 MHz, DMSO-d₆): 9.10 (s, 1H), 8.26 (s, 1H), 8.02 (s, 1H), 7.93-7.83 (m, 2H),

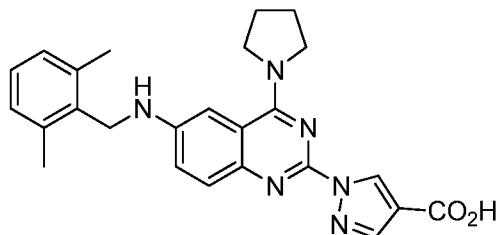
10 3.97 (q, *J* = 6.9 Hz, 2H), 3.56 (s, 3H), 3.12 (dt, *J* = 13.7, 6.9 Hz, 1H), 1.40 (t, *J* = 7.0 Hz, 3H), 1.29 (d, *J* = 6.9 Hz, 6H).


Examples 190-213 are prophetic Examples which may be synthesized using the general schemes provided above.

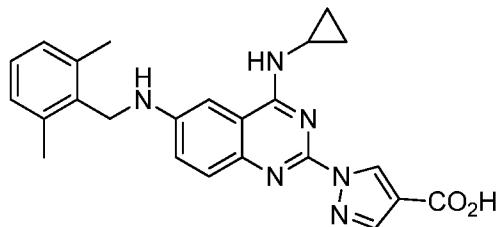
Example 190: 1-(6-((2,6-Dimethylbenzyl)amino)-4-morpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(6-((2,6-dimethylbenzyl)amino)-4-oxo-3,4-dihydroquinazolin-2-yl)-1H-pyrazole-4-carboxylate in step D and morpholine in step E. MS (ESI/CI): predicted mass C₂₅H₂₆N₆O₃, 458.2.

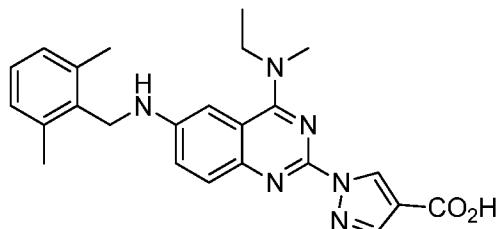
Example 191: 1-(6-((2,6-Dimethylbenzyl)amino)-4-(dimethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-((2,6-dimethylbenzyl)amino)-4-oxo-3,4-dihydroquinazolin-2-yl)-1H-pyrazole-4-carboxylate in step D and dimethylamine in step E. MS (ESI/CI): predicted mass C₂₃H₂₄N₆O₂, 416.20.

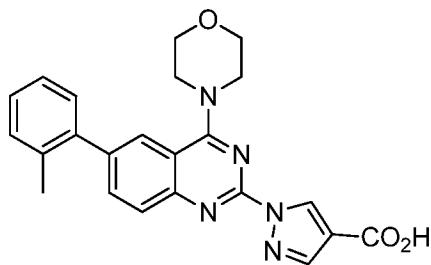
Example 192: 1-(6-((2,6-Dimethylbenzyl)amino)-4-(diethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-((2,6-dimethylbenzyl)amino)-4-oxo-3,4-dihydroquinazolin-2-yl)-1H-pyrazole-4-carboxylate in step D and diethylamine in step E. MS (ESI/CI): predicted mass C₂₅H₂₈N₆O₂, 444.2.

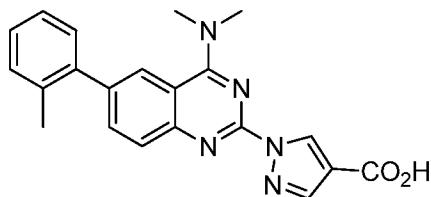
Example 193: 1-(6-((2,6-Dimethylbenzyl)amino)-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-((2,6-dimethylbenzyl)amino)-4-oxo-3,4-dihydroquinazolin-2-yl)-1H-pyrazole-4-carboxylate in step D and pyrrolidine in step E. MS (ESI/CI): predicted mass C₂₅H₂₆N₆O₂, 442.2.

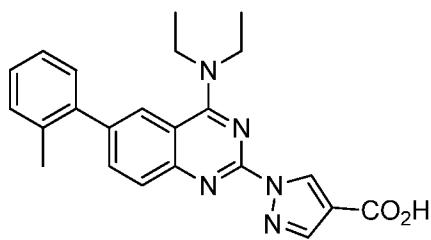
Example 194: 1-(6-((2,6-Dimethylbenzyl)amino)-4-(cyclopropylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(6-((2,6-dimethylbenzyl)amino)-4-oxo-3,4-dihydroquinazolin-2-yl)-1H-pyrazole-4-carboxylate in step D and cyclopropylamine in step E. MS (ESI/CI): predicted mass C₂₄H₂₄N₆O₂, 428.2.

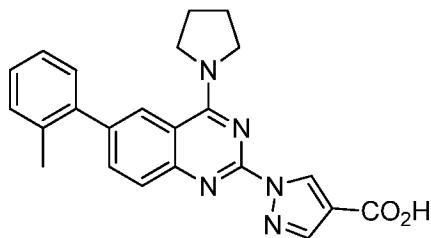
Example 195: 1-(6-((2,6-Dimethylbenzyl)amino)-4-(ethyl(methyl)amino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(6-((2,6-dimethylbenzyl)amino)-4-oxo-3,4-dihydroquinazolin-2-yl)-1H-pyrazole-4-carboxylate in step D and *N*-ethyl-*N*-methylamine in step E. MS (ESI/CI): predicted mass C₂₄H₂₆N₆O₂, 430.2.

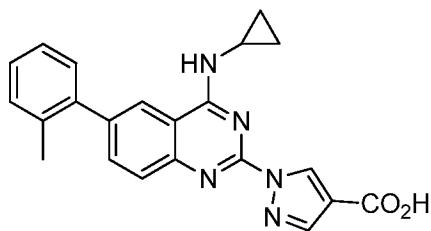
Example 196: 1-(4-Morpholino-6-(o-tolyl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(6-(o-tolyl)-4-oxo-3,4-dihydroquinazolin-2-yl)-1H-pyrazole-4-carboxylate in step D and morpholine in step E. MS (ESI/CI): predicted mass $C_{23}H_{21}N_5O_3$, 415.2.

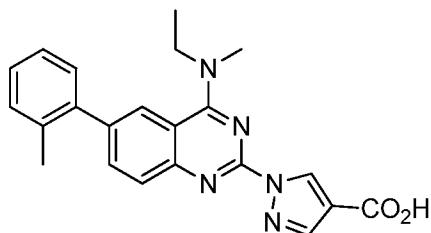
Example 197: 1-(4-(Dimethylamino)-6-(o-tolyl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(6-(o-tolyl)-4-oxo-3,4-dihydroquinazolin-2-yl)-1H-pyrazole-4-carboxylate in step D and dimethylamine in step E. MS (ESI/CI): predicted mass $C_{21}H_{19}N_5O_2$, 373.2.

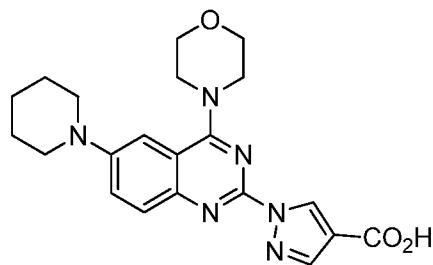
Example 198: 1-(4-(Diethylamino)-6-(o-tolyl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(6-(o-tolyl)-4-oxo-3,4-dihydroquinazolin-2-yl)-1H-pyrazole-4-carboxylate in step D and diethylamine in step E. MS (ESI/CI): predicted mass $C_{23}H_{23}N_5O_2$, 401.2.

Example 199: 1-(4-(Pyrrolidin-1-yl)-6-(o-tolyl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(6-(o-tolyl)-4-oxo-3,4-dihydroquinazolin-2-yl)-1H-pyrazole-4-carboxylate in step D and pyrrolidine in step E. MS (ESI/CI): predicted mass C₂₃H₂₁N₅O₂, 399.2.

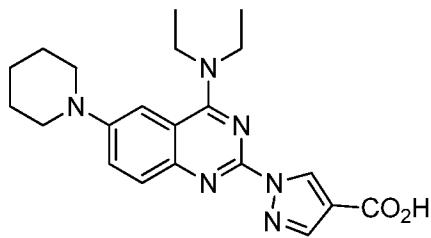
Example 200: 1-(4-(Cyclopropylamino)-6-(o-tolyl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(6-(o-tolyl)-4-oxo-3,4-dihydroquinazolin-2-yl)-1H-pyrazole-4-carboxylate in step D and cyclopropylamine in step E. MS (ESI/CI): predicted mass C₂₂H₁₉N₅O₂, 385.2.

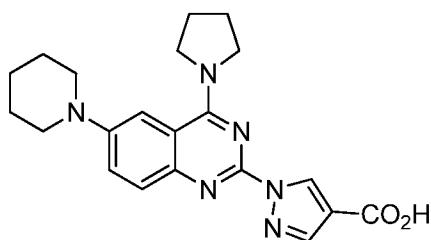
Example 201: 1-(4-(Ethyl(methyl)amino)-6-(o-tolyl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The above compound may be made analogous to Example 1 using ethyl 1-(6-(*o*-tolyl)-4-oxo-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and *N*-ethyl-*N*-methylamine in step E. MS (ESI/CI): predicted mass C₂₂H₂₁N₅O₂, 387.2.

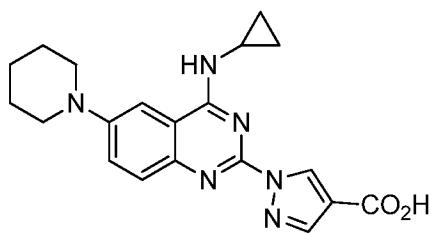
Example 202: 1-(4-Morpholino-6-(piperidin-1-yl)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(6-(piperidin-1-yl)-4-oxo-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and morpholine in step E. MS (ESI/CI): predicted mass C₂₁H₂₄N₆O₃, 408.2.

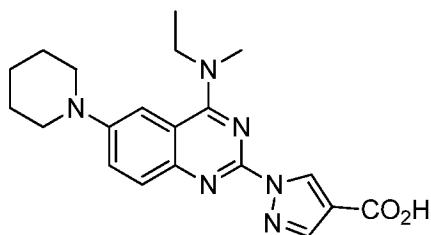
Example 203: 1-(4-(Dimethylamino)-6-(piperidin-1-yl)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(6-(piperidin-1-yl)-4-oxo-3,4-dihydroquinazolin-2-yl)-1*H*-pyrazole-4-carboxylate in step D and dimethylamine in step E. MS (ESI/CI): predicted mass C₁₉H₂₂N₆O₂, 366.2.

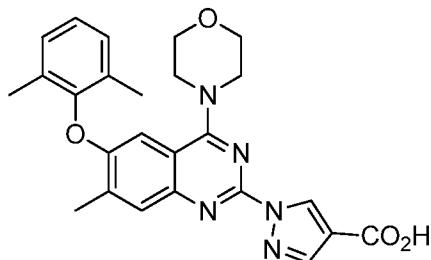
Example 204: 1-(4-(Diethylamino)-6-(piperidin-1-yl)quinazolin-2-yl)-1*H*-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(6-(piperidin-1-yl)-4-oxo-3,4-dihydroquinazolin-2-yl)-1H-pyrazole-4-carboxylate in step D and diethylamine in step E. MS (ESI/CI): predicted mass $C_{21}H_{26}N_6O_2$, 394.2.

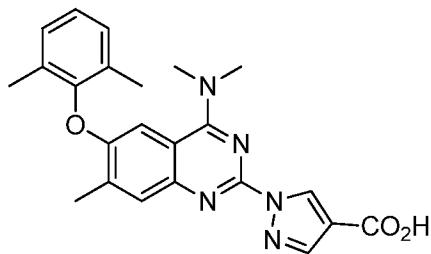
Example 205: 1-(6-(Piperidin-1-yl)-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(6-(piperidin-1-yl)-4-oxo-3,4-dihydroquinazolin-2-yl)-1H-pyrazole-4-carboxylate in step D and pyrrolidine in step E. MS (ESI/CI): predicted mass $C_{21}H_{24}N_6O_2$, 392.2.

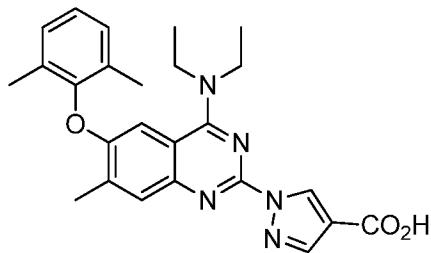
Example 206: 1-(4-(Cyclopropylamino)-6-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(6-(piperidin-1-yl)-4-oxo-3,4-dihydroquinazolin-2-yl)-1H-pyrazole-4-carboxylate in step D and cyclopropylamine in step E. MS (ESI/CI): predicted mass $C_{20}H_{22}N_6O_2$, 378.2.

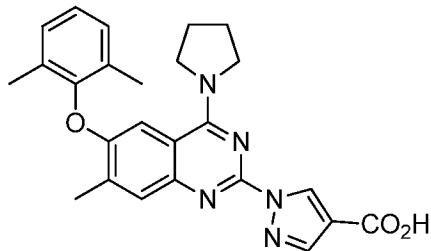
Example 207: 1-(4-(Ethyl(methyl)amino)-6-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(6-(piperidin-1-yl)-4-oxo-3,4-dihydroquinazolin-2-yl)-1H-pyrazole-4-carboxylate in step D and *N*-ethyl-*N*-methylamine in step E. MS (ESI/CI): predicted mass C₂₀H₂₄N₆O₂, 380.2.

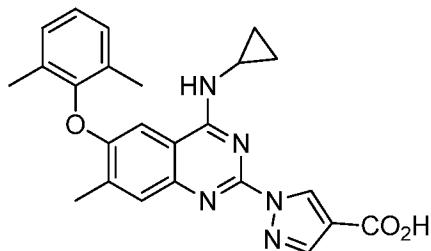
Example 208: 1-(6-(2,6-Dimethylphenoxy)-7-methyl-4-morpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(6-(2,6-dimethylphenoxy)-7-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)-1H-pyrazole-4-carboxylate in step D and morpholine in step E. MS (ESI/CI): predicted mass C₂₅H₂₅N₅O₄, 459.2.

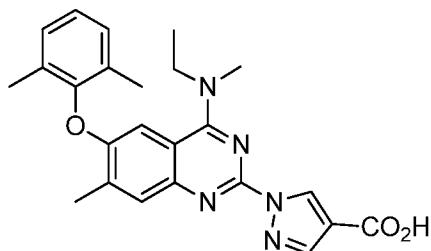
Example 209: 1-(6-(2,6-Dimethylphenoxy)-7-methyl-4-dimethylaminoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(6-(2,6-dimethylphenoxy)-7-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)-1H-pyrazole-4-carboxylate in step D and dimethylamine in step E. MS (ESI/CI): predicted mass C₂₃H₂₃N₅O₃, 417.2.

Example 210: 1-(6-(2,6-Dimethylphenoxy)-7-methyl-4-diethylaminoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(6-(2,6-dimethylphenoxy)-7-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)-1H-pyrazole-4-carboxylate in step D and diethylamine in step E. MS (ESI/CI): predicted mass C₂₅H₂₇N₅O₃, 445.2.

Example 211: 1-(6-(2,6-Dimethylphenoxy)-7-methyl-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.


The above compound may be made analogous to Example 1 using ethyl 1-(6-(2,6-dimethylphenoxy)-7-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)-1H-pyrazole-4-carboxylate in step D and pyrrolidine in step E. MS (ESI/CI): predicted mass C₂₅H₂₅N₅O₃, 443.2.

Example 212: 1-(6-(2,6-Dimethylphenoxy)-7-methyl-4-cyclopropylaminoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The above compound may be made analogous to Example 1 using ethyl 1-(6-(2,6-dimethylphenoxy)-7-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)-1H-pyrazole-4-carboxylate in step D and cyclopropylamine in step E. MS (ESI/CI): predicted mass C₂₄H₂₃N₅O₃, 429.2.

Example 213: 1-(6-(2,6-Dimethylphenoxy)-4-(ethyl(methyl)amino)-7-methylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.

The above compound may be made analogous to Example 1 using ethyl 1-(6-(2,6-dimethylphenoxy)-7-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)-1H-pyrazole-4-carboxylate in step D and N-ethyl-N-methylamine in step E. MS (ESI/CI): predicted mass C₂₅H₂₄N₅O₃, 431.2.

5 Biological Protocols:

Expression and purification of PHD2₁₈₁₋₄₁₇

The human PHD2 expression construct containing amino acids 181-417 of GenBank Accession ID NM_022051 was cloned into a pBAD vector (Invitrogen), 10 incorporating both an N-terminal histidine tag and a Smt3-tag, both of which are cleaved by Ulp1. Protein production was achieved by expression in BL21 cells grown in Terrific Broth containing 100 µg/ml ampicillin. Cell cultures were inoculated at 37° C and grown to an OD₆₀₀ of 0.8. Cultures were induced with 0.1% arabinose and grown overnight at 20° C with continuous shaking at 225 rpm. Cells were then 15 harvested by centrifugation and stored at -80° C. Cell pellets were suspended in Buffer A (50 mM Tris-HCl pH 7.2, 100 mM NaCl, 100 mM L-arginine, 1 mM TCEP, 0.05% (w/v) NP-40, 50 mM imidazole) followed by the addition of lysozyme and benzonase. Cells were lysed by sonication and the lysate was cleared by centrifugation (15,000 rpm, 90 min, 4° C). The protein was purified by nickel affinity 20 chromatography using a HisTrap Crude FF column (GE Healthcare). Samples were eluted in Buffer A with a 50-200mM imidazole gradient. Cleavage of the Smt tag with Ulp1 protease was achieved via overnight incubation with dialyzing against Buffer A. The PHD2₁₈₁₋₄₁₇ sample was then passed over a second HisTrap Crude FF column (GE Healthcare) to remove uncleaved protein. The flow-through was then dialyzed 25 into 50 mM MES pH 6.0, 1 mM TCEP, 5 mM NaCl for ion exchange chromatography on a HiTrap SP Cation Exchange column (GE Healthcare). The PHD2₁₈₁₋₄₁₇ protein was eluted with a 0-0.2 M NaCl gradient. Fractions were pooled for further purification by size exclusion chromatography over a Superdex 75 Size Exclusion Column (GE Healthcare). Final protein was concentrated to 4 mg/ml and dialyzed in 30 10 mM PIPES pH 7.0, 100 mM NaCl, 0.5 mM TCEP. The protein was determined to have a purity of >95% by gel electrophoresis.

Enzyme Activity Assay

The PHD enzymatic assay was performed in 0.5 ml of reaction mixture 35 containing the following: purified PHD2₁₈₁₋₄₁₇ polypeptide (3 µg), synthetic HIF-1α peptide comprising residues [KNPFSTGDTLDLEMLAPYIPMDDDFQLRSFDQLS]

5 (10 μ M, California Peptide Research Inc., Napa, CA), and [5- 14 C]-2-oxoglutaric acid (50 mCi/mmol, Moravek Chemicals, Brea, CA) in reaction buffer (40 mM Tris-HCl, pH 7.5, 0.4 mg/ml catalase, 0.5 mM DTT, 1 mM ascorbate) for 10 minutes. Compounds were pre-incubated for 30 min before starting the reaction (all test compounds were dissolved at 10 mM in 100% DMSO (w/v) and were tested with

10 final compound concentrations at 100 μ M in 1% DMSO (w/v)). The reaction was stopped by addition of 50 μ l of 70 mM H₃PO₄ and 50 μ l of 500 mM NaH₂PO₄, pH 3.2. Detection of [14 C]-succinic acid was achieved by separating from [5- 14 C]-2-oxoglutaric acid by incubating the reaction mixture with 100 μ l of 0.16 M DNP prepared in 30% perchloric acid. Next, 50 μ l of unlabeled 20 mM 2-oxoglutaric

15 acid/20 mM succinic acid, serving as carrier for the radioactivity, was added to the mixture, and was allowed to proceed for 30 minutes at room temperature. The reaction was then incubated with 50 μ l of 1 M 2-oxoglutaric acid for 30 additional minutes at room temperature to precipitate the excess DNP. The reaction was then centrifuged at 2800 $\times g$ for 10 minutes at room temperature to separate [14 C]-succinic

20 acid in the supernatant from the precipitated [14 C]-dinitrophenylhydrazone. Fractions of the supernatant (400 μ l) were counted using a beta counter (Beckman Coulter, Fullerton, CA). Inhibition of PHD2₁₈₁₋₄₁₇ activity was measured as a decrease in [14 C]-succinic acid production. The IC₅₀ values were estimated by fitting the data to a three-parameter logistic function using GraphPad Prism, version 4.02 (Graph Pad

25 Software, San Diego, CA).

Cellular Assay

30 Hep-3B cells (ATCC, Manassas, VA) were plated in 96-well plates at 20,000 cells per well in 100 μ l of DMEM containing 10% fetal bovine serum, 1% non-essential amino acids, 50 IU/mL of penicillin and 50 μ g/mL of streptomycin (all cell culture reagents from Invitrogen, Carlsbad, CA). Twenty-four hours after plating, compounds were added and incubated for an additional 24 hours. All compounds were tested with final compound concentrations at 100 μ M. Fifty microliters of the

35 supernatant was then transferred to a human Hypoxia assay kit (Meso-Scale Discovery, Gaithersburg, MD). Erythropoietin in the supernatant was detected

5 according to the manufacturer's instructions as follows. EPO detection plates were blocked with 3% BSA in PBS overnight and 50 μ l of the supernatant was incubated at room temperature in an orbital shaker for 2 h. Twenty-five microliters of 0.5 μ g/ml anti-EPO detection antibody was added for 2 hours at room temperature in an orbital shaker. After 3 washes in PBS, 150 μ l of 1X read buffer is added and the plate is
10 then read on the MSD SECTOR instrument. Data was analyzed by determining the percent of EPO secretion in the presence of 100 μ M compound relative to an assay control compound, 7-[(4-Chloro-phenyl)-(5-methyl-isoxazol-3-ylamino)-methyl]-quinolin-8-ol.

15 *Cellular Assay for HIF1- α*

HeLa cells (ATCC, Manassas, VA) were plated in 96-well plates at 20,000 cells per well in 100 μ l of DMEM containing 10% fetal bovine serum, 1% non-essential amino acids, 50 IU/mL of penicillin and 50 μ g/mL of streptomycin (all cell culture reagents from Invitrogen, Carlsbad, CA). 24 hours after plating, changed
20 media to 100ul of DMEM without 10% fetal bovine serum, 1.1 μ l of the stock solution for each compound was added and incubated for 6 hours. All compounds were tested with a final compound concentration of 100 μ M. The supernatant was removed and the cells were lysed in 55 μ l of MSD lysis buffer containing protease inhibitors. 50 μ l of the cell lysate was then transferred to a blocked MSD human HIF-
25 1 α detection plate (Meso-Scale Discovery, Gaithersburg, MD, as per manufacturers protocol), and incubated at room temperature on an orbital shaker for 2 hour. After 3 washes in PBS, 25 μ l of 20nM anti-HIF1 α detection antibody was added and incubated for 1 hour at room temperature on an orbital shaker. After 3 washes in PBS, 150 μ l of 1X read buffer was added and the plate was then read on a MSD
30 SECTOR instrument. Data was analyzed by determining the percent of HIF stimulation in the presence of 100 μ M compound relative to an assay control compound, 7-[(4-Chloro-phenyl)-(5-methyl-isoxazol-3-ylamino)-methyl]-quinolin-8-ol.

Results for the compounds tested in these assays are presented in Table 1 as
35 an average of results obtained (NT = not tested).

Table 1.

Ex	Chemical Name	Enzyme pIC ₅₀	Cellular % EPO Stimulation	% HIF Stimulation
1	1-[4-Amino-6-(2,6-dimethyl-phenoxy)-7-fluoro-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;	7.2	51	NT
2	1-[6-(2,6-Dimethyl-phenoxy)-7-fluoro-4-methylamino-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;	7.2	10	NT
3	1-[4-Dimethylamino-6-(2,6-dimethyl-phenoxy)-7-fluoro-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;	7.2	68	NT
4	1-[6-(2,6-Dimethyl-phenoxy)-7-fluoro-4-piperidin-1-yl-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;	6.9	17	NT
5	1-[6-(2,6-Dimethyl-phenoxy)-7-fluoro-4-pyrrolidin-1-yl-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;	7.4	25	NT
6	1-[6-(2,6-Dimethyl-phenoxy)-7-fluoro-4-phenylamino-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;	7.4	22	NT
7	1-[4-(2-Chloro-phenylamino)-6-(2,6-dimethyl-phenoxy)-7-fluoro-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;	7.2	13	NT
8	1-[6-(2,6-Dimethyl-phenoxy)-7-fluoro-4-propylamino-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;	7.2	59	NT
9	(<i>rac</i>)-1-[6-(2,6-Dimethyl-phenoxy)-7-fluoro-4-(2-methoxy-1-methyl-ethylamino)-quinazolin-2-yl]-1H-pyrazole-	7.1	86	NT

Ex	Chemical Name	Enzyme pIC ₅₀	Cellular % EPO Stimulation	% HIF Stimulation
	4-carboxylic acid;			
10	1-[4-(2-Diethylamino-ethylamino)-6-(2,6-dimethyl-phenoxy)-7-fluoro-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;	5.9	13	NT
11	1-[6-(2,6-Dimethyl-phenoxy)-4-dibutylamino-7-fluoro-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;	7.1	9	NT
12	1-[6-(2,6-Dimethyl-phenoxy)-4-dipropylamino-7-fluoro-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;	7.4	9	NT
13	1-(4-((Cyclohexylmethyl)amino)-6-(2,6-dimethylphenoxy)-7-fluoroquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	6.9	10	NT
14	1-((4-Cyclopropylamino)-6-(2,6-dimethylphenoxy)-7-fluoroquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	7.1	86	NT
15	1-((4-Cyclopropanemethylamino)-6-(2,6-dimethylphenoxy)-7-fluoroquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	7.2	64	NT
16	1-(6-(2,6-Dimethylphenoxy)-7-fluoro-4-((tetrahydro-2H-pyran-4-yl)amino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	7.1	71	NT
17	1-(6-(2,6-Dimethylphenoxy)-7-fluoro-4-(4-methyl-1,4-diazepan-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	6.7	NT	47
18	1-(6-(2,6-Dimethylphenoxy)-7-fluoro-4-thiomorpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	7.0	NT	15

Ex	Chemical Name	Enzyme pIC ₅₀	Cellular % EPO Stimulation	% HIF Stimulation
19	1-(6-(2,6-dimethylphenoxy)-7-fluoro-4-(4-hydroxypiperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	6.9	NT	140
20	1-(6-(2,6-Dimethylphenoxy)-7-fluoro-4-morpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	7.0	54	NT
21	1-(4-(4-Acetamidopiperidin-1-yl)-6-(2,6-dimethylphenoxy)-7-fluoroquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	6.9	NT	62
22	1-(6-Cyclohexyl-4-methylamino-quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	7.1	48	NT
23	1-[6-Cyclohexyl-4-(2,6-dimethyl-benzylamino)-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;	5.9	7	NT
24	1-(4-Amino-6-cyclohexylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	7.5	36	NT
25	1-(6-Cyclohexyl-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	6.4	39	NT
26	1-(6-Cyclohexyl-4-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	7.1	20	NT
27	1-(6-Cyclohexyl-4-(diethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	7.3	45	NT
28	1-(6-Cyclohexyl-4-(phenylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	7.3	31	NT

Ex	Chemical Name	Enzyme pIC ₅₀	Cellular % EPO Stimulation	% HIF Stimulation
29	1-(4-((2-Chlorophenyl)amino)-6-cyclohexylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	7.1	NT	7.8
30	1-(4-(4-Cyanopiperidin-1-yl)-6-cyclohexylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	6.9	NT	77
31	1-(6-Cyclohexyl-4-(4-fluoropiperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	7.1	NT	34
32	1-(6-Cyclohexyl-4-(cyclopropylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	6.7	49	NT
33	1-(6-Cyclohexyl-4-morpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	6.8	36	NT
34	1-(6-Cyclohexyl-4-thiomorpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	6.9	20	NT
35	1-(4-Cyanamido-6-cyclohexylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	7.2	67	NT
36	1-(4-(<i>tert</i> -Butylamino)-6-cyclohexylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	6.8	NT	23
37	1-(4-(Azepan-1-yl)-6-cyclohexylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	7.1	17	NT
38	1-(6-Cyclohexyl-4-(dimethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	7.2	61	NT
39	1-(6-Cyclohexyl-4-	6.9	NT	6.1

Ex	Chemical Name	Enzyme pIC ₅₀	Cellular % EPO Stimulation	% HIF Stimulation
	((cyclohexylmethyl)amino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;			
40	1-(6-Cyclohexyl-4-(methylsulfonamido)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	6.6	NT	6.7
41	1-(4-(Dimethylamino)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	7.2	43	NT
42	1-(4-(Ethyl(methyl)amino)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	7.3	56	NT
43	1-(6-Phenyl-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	7.3	NT	57
44	1-(6-Phenyl-4-(phenylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid	7.1	NT	22
45	1-(6-Phenyl-4-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	7.2	8	NT
46	1-(4-(Diethylamino)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	7.4	26	NT
47	1-(4-((2-Chlorophenyl)amino)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	6.6	NT	10
48	1-(4-(Azepan-1-yl)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	7.2	NT	23
49	1-(4-((Cyclohexylmethyl)amino)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	6.9	NT	3.8
50	1-(4-Cyanamido-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	7.1	NT	9.6
51	1-(4-(Cyclopropylamino)-6-	6.5	NT	40

Ex	Chemical Name	Enzyme pIC ₅₀	Cellular % EPO Stimulation	% HIF Stimulation
	phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;			
52	1-(4-(<i>tert</i> -Butylamino)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	6.5	NT	37
53	1-(4-Amino-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	7.0	NT	16
54	1-(6-Phenyl-4-thiomorpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	6.8	25	NT
55	1-(4-(4-Acetamidopiperidin-1-yl)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	6.7	NT	28
56	1-(6-Phenyl-4-((tetrahydro-2H-pyran-4-yl)amino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	6.2	NT	25
57	1-(4-(4-Methyl-1,4-diazepan-1-yl)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	6.4	NT	30
58	1-(4-Morpholino-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	6.5	NT	49
59	1-(4-(4-Cyanopiperidin-1-yl)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	6.4	NT	45
60	1-(6-(4-Chlorophenoxy)-4-(diethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	7.3	22	NT
61	1-(6-(4-Chlorophenoxy)-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	7.3	96	NT
62	1-(6-(4-Chlorophenoxy)-4-	7.0	32	NT

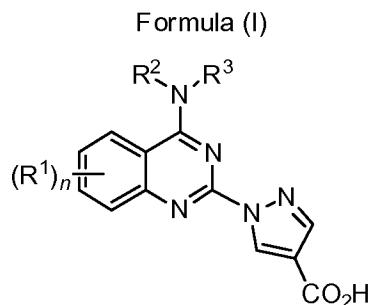
Ex	Chemical Name	Enzyme pIC ₅₀	Cellular % EPO Stimulation	% HIF Stimulation
	(cyclopropylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;			
63	1-(6-(4-Chlorophenoxy)-4-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	7.6	39	NT
64	1-(6-(4-Chlorophenoxy)-4-((cyclohexylmethyl)amino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	7.5	NT	1.5
65	1-(6-(4-chlorophenoxy)-4-(4-cyanopiperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	7.4	77	NT
66	1-(4-(Azepan-1-yl)-6-(4-chlorophenoxy)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	7.5	NT	14
67	1-(6-(4-Chlorophenoxy)-4-thiomorpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	7.3	NT	31
68	1-(6-(4-Chlorophenoxy)-4-((tetrahydro-2H-pyran-4-yl)amino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	6.9	40	NT
69	1-(6-(4-Chlorophenoxy)-4-(phenylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	7.7	23	NT
70	1-(4-(4-Acetamidopiperidin-1-yl)-6-(4-chlorophenoxy)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	7.1	16	NT
71	1-(6-(4-Chlorophenoxy)-4-(4-methyl-1,4-diazepan-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;	6.7	17	NT

Ex	Chemical Name	Enzyme pIC ₅₀	Cellular % EPO Stimulation	% HIF Stimulation
72	1-(4-(<i>tert</i> -Butylamino)-6-phenoxyquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;	6.7	NT	32
73	1-(6-Phenoxy-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;	7.2	36	NT
74	1-(4-(Diethylamino)-6-phenoxyquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;	7.3	NT	81
75	1-(4-(Cyclopropylamino)-6-phenoxyquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;	6.8	20	NT
76	1-(6-Phenoxy-4-((tetrahydro-2 <i>H</i> -pyran-4-yl)amino)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;	6.5	NT	19
77	1-(4-(Dimethylamino)-7-phenoxyquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;	7.4	75	NT
78	1-(7-Phenoxy-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;	7.3	38	64
79	1-(7-Phenoxy-4-(piperidin-1-yl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;	7.0	38	NT
80	1-(4-(Dimethylamino)-7-phenylquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;	6.0	NT	7.8
81	1-(7-Phenyl-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;	5.5	NT	10
82	1-(7-Phenyl-4-(piperidin-1-yl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;	6.1	NT	4.6
83	1-(4-(Diethylamino)-7-phenoxyquinazolin-	7.7	25	NT

Ex	Chemical Name	Enzyme pIC ₅₀	Cellular % EPO Stimulation	% HIF Stimulation
	2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;			
84	1-(4-((Cyclohexylmethyl)amino)-7-phenoxyquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;	6.8	NT	4.6
85	1-(4-(4-Isopropylpiperidin-1-yl)-7-phenoxyquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;	6.8	NT	1.7
86	1-(4-(Cyclopropylamino)-7-phenoxyquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;	6.3	NT	13
87	1-(4-(Azepan-1-yl)-7-phenoxyquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;	7.2	NT	20
88	1-(4-(Diethylamino)-6-(piperidin-1-yl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;	7.0	94	122
89	1-(4-Morpholino-7-phenoxyquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;	6.2	NT	17
90	1-(7-Phenoxy-4-thiomorpholinoquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;	6.3	NT	7.7
91	1-(4-(4-Fluoropiperidin-1-yl)-7-phenoxyquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;	6.3	NT	18
92	1-(4-(Dibutylamino)-7-phenoxyquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;	7.1	NT	4.1
93	1-(4-(Dipropylamino)-7-phenoxyquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;	7.2	NT	43
94	1-(4-(Ethyl(methyl)amino)-7-	7.2	NT	83

Ex	Chemical Name	Enzyme pIC ₅₀	Cellular % EPO Stimulation	% HIF Stimulation
	phenoxyquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;			
95	1-(4-((2-Methoxyethyl)(methyl)amino)-7-phenoxyquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;	6.8	NT	46
96	1-(7-Bromo-4-(diethylamino)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;	6.9	NT	72
97	1-(4-(Cyclohexylamino)-7-phenoxyquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;	7.0	NT	55
98	1-(4-((Cyclopropylmethyl)amino)-7-phenoxyquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid;	6.7	NT	46
99	1-(4-(<i>tert</i> -Butylamino)-7-phenoxyquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid.	6.3	NT	31
100	1-(7-Fluoro-6-(cyclohexyloxy)-4-morpholinoquinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid.	6.6	18	NT
101	1-(7-fluoro-6-(cyclohexyloxy)-4-(dimethylamino)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid	7.1	85	NT
102	1-(7-fluoro-6-(cyclohexyloxy)-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid.	7.5	37	NT
103	1-(7-fluoro-6-(cyclohexyloxy)-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1 <i>H</i> -pyrazole-4-carboxylic acid.	7.3	31	NT
104	1-(7-fluoro-6-(cyclohexyloxy)-4-	7.1	49	NT

Ex	Chemical Name	Enzyme pIC ₅₀	Cellular % EPO Stimulation	% HIF Stimulation
	(ethyl(methyl)amino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.			
105	1-(7-fluoro-6-(cyclohexyloxy)-4-(cyclopropylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.	7.2	29	NT
136	1-(7-chloro-6-(cyclohexyloxy)-4-morpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.	6.7	33	NT
137	1-(7-chloro-6-(cyclohexyloxy)-4-(dimethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.	7.4	32	NT
138	1-(7-chloro-6-(cyclohexyloxy)-4-(diethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.	7.5	NT	NT
139	1-(7-chloro-6-(cyclohexyloxy)-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid	7.1	NT	NT
140	1-(7-chloro-6-(cyclohexyloxy)-4-(ethyl(methyl)amino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.	7.2	29	NT
141	1-(7-chloro-6-(cyclohexyloxy)-4-(cyclopropylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.	7.0	NT	NT
160	1-(7-chloro-6-isopropyl-4-morpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid	6.8	28	NT
161	1-(7-chloro-4-(dimethylamino)-6-isopropylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.	7.4	32	NT


Ex	Chemical Name	Enzyme pIC ₅₀	Cellular % EPO Stimulation	% HIF Stimulation
162	1-(7-chloro-4-diethylamino-6-isopropylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.	7.2	40	NT
163	1-(7-chloro-4-(pyrrolidin-1-yl)-6-isopropylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.	7.3	26	NT
164	1-(7-chloro-4-(ethyl(methyl)amino)-6-isopropylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.	7.4	57	NT
165	1-(7-chloro-4-(cyclopropylamino)-6-isopropylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid	7.0	24	NT
172	1-(6-(cyclohexyloxy)-4-morpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid	6.4	18	NT
173	1-(6-(cyclohexyloxy)-4-(dimethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.	7.4	62	NT
174	1-(6-(cyclohexyloxy)-4-(diethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.	7.2	35	NT
175	1-(6-(cyclohexyloxy)-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid	7.2	46	NT
176	1-(6-(cyclohexyloxy)-4-(cyclopropylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.	6.8	35	NT
177	1-(6-(cyclohexyloxy)-4-(ethyl(methyl)amino)quinazolin-2-yl)-1H-	7.3	56	NT

Ex	Chemical Name	Enzyme pIC ₅₀	Cellular % EPO Stimulation	% HIF Stimulation
	pyrazole-4-carboxylic acid.			
178	1-(6-benzyl-4-morpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid	6.5	NT	NT
179	1-(6-benzyl-4-(dimethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.	7.1	NT	NT
180	1-(6-benzyl-4-(diethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.	7.1	NT	NT
181	1-(6-benzyl-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.	7.1	NT	NT
182	1-(6-benzyl-4-(cyclopropylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.	7.1	NT	NT
183	1-(6-benzyl-4-(ethyl(methyl)amino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.	7.2	NT	NT
184	1-(4-(morpholino)-6-isopropylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.	5.7	24	NT
185	1-(4-(dimethylamino)-6-isopropylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.	7.0	62	NT
186	1-(4-(diethylamino)-6-isopropylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid	7.0	43	NT
187	1-(6-isopropyl-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.	6.8	28	NT
188	1-(4-(cyclopropylamino)-6-isopropylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid	6.0	35	NT
189	1-(6-isopropyl-4-	6.8	36	NT

Ex	Chemical Name	Enzyme pIC ₅₀	Cellular % EPO Stimulation	% HIF Stimulation
	(ethyl(methyl)amino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid.			

5 What is claimed is:

1. A compound of the formula (I):

wherein:

n is 0-3

10 R^1 is a member independently selected from the group consisting of halo, $-O-R^c$, $-C_{1-4}$ alkyl, cyclohexyl, phenyl optionally substituted with $-C_{1-4}$ alkyl, benzyl optionally substituted with $-C_{1-4}$ alkyl, and $-NR^aR^b$;

R^a is H and R^b is benzyl optionally substituted with $-C_{1-4}$ alkyl, or R^a and R^b are taken together with the nitrogen to which they are attached to form a piperidine ring;

15 R^c is cyclohexyl, phenyl optionally substituted with one or more R^d members;

R^d is a member independently selected from the group consisting of -H, halo, and $-C_{1-4}$ alkyl;

R^2 is a member independently selected from the group consisting of -H, and $-C_{1-4}$ alkyl,

20 R^3 is a member independently selected from the group consisting of -H, $-C_{1-4}$ alkyl optionally substituted with $-OCH_3$ or $-N(C_{1-4}alkyl)_2$, cyano, $-SO_2CH_3$, tetrahydropyran, $-(CH_2)_mC_{3-8}$ cycloalkyl, $-(CH_2)_m$ phenyl optionally substituted with one or more halo, or $-C_{1-4}$ alkyl;

m is 0-1;

25 R^2 and R^3 can be taken together with the nitrogen to which they are attached to form a 4 to 7 membered heterocycloalkyl ring optionally containing O, N, S optionally substituted with -OH, cyano, halo, $-N-C(O)C_{1-4}$ alkyl, and $-C_{1-4}$ alkyl; and enantiomers, diastereomers, racemates, and pharmaceutically acceptable salts thereof.

5 2. A compound as defined in claim 1, where R¹ is a member independently selected from the group consisting of bromo, chloro, fluoro, methyl, isopropyl, cyclohexyl, cyclohexyloxy, phenyl, 2-methylphenyl, benzyl, phenoxy, 4-chlorophenoxy, 2,6-dimethyl-phenoxy, piperidinyl, and (2,6-dimethylbenzyl)amino.

10 3. A compound of claim 1 where n is 1.

4. A compound of claim 1 where n is 2.

5. A compound of claim 1 where n is 3.

15 6. A compound as defined in claim 1, where R^a is H and R^b is 2,6-dimethylbenzyl.

7. A compound as defined in claim 1, where R^c is a member selected from the group consisting of phenyl, cyclohexyl, 4-chlorophenyl, and 2,6-dimethyl-phenyl.

20 8. A compound as defined in claim 1, where R^d is a member selected from the group consisting of -H, chloro, and -CH₃.

25 9. A compound as defined in claim 1, where R² is -H and R³ is a member selected from the group consisting of H, cyano, methyl, ethyl, propyl, tertbutyl, cyclopropyl, cyclopropylmethyl, tetrahydropyranyl, cyclohexylmethyl, phenyl, 2-chlorophenyl, 2,6-dimethylbenzyl, and -SO₂CH₃.

30 10. A compound as defined in claim 1, where R² is selected from the group consisting of methyl, ethyl, propyl, and butyl.

11. A compound as defined in claim 1, where R³ is selected from the group consisting of methyl, ethyl, propyl, butyl, tertbutyl, 2-methoxyethyl, 2-methoxy-1-methyl-ethyl and diethylamino-ethyl.

35

5 12. A compound as defined in claim 1, where R² and R³ are taken together with the nitrogen to which they are attached to form pyrrolidine, piperidine, 4-methyl-1,4-diazepane, thiomorpholine, 4-hydroxypiperidine, morpholine, 4-acetamidopiperidine, 4-cyanopiperidine, 4-fluoropiperidine, azepane, or 4-isopropylpiperidine.

10 13. A compound as defined in claim 1, where n is 2, R¹ is a member independently selected from the group consisting of halo, cyclohexyl, and 2,6-dimethyl-phenoxy, and R² and R³ are C₁₋₄alkyl, or R² and R³ are taken together with the nitrogen to which they are attached to form morpholine.

15 14. A compound selected from the group consisting of:
1-[4-Amino-6-(2,6-dimethyl-phenoxy)-7-fluoro-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;
1-[6-(2,6-Dimethyl-phenoxy)-7-fluoro-4-methylamino-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;

20 1-[4-Dimethylamino-6-(2,6-dimethyl-phenoxy)-7-fluoro-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;
1-[6-(2,6-Dimethyl-phenoxy)-7-fluoro-4-piperidin-1-yl-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;

25 1-[6-(2,6-Dimethyl-phenoxy)-7-fluoro-4-pyrrolidin-1-yl-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;
1-[6-(2,6-Dimethyl-phenoxy)-7-fluoro-4-phenylamino-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;

30 1-[4-(2-Chloro-phenylamino)-6-(2,6-dimethyl-phenoxy)-7-fluoro-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;
1-[6-(2,6-Dimethyl-phenoxy)-7-fluoro-4-propylamino-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;
(rac)-1-[6-(2,6-Dimethyl-phenoxy)-7-fluoro-4-(2-methoxy-1-methyl-ethylamino)-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;

35 1-[4-(2-Diethylamino-ethylamino)-6-(2,6-dimethyl-phenoxy)-7-fluoro-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;

5 1-[6-(2,6-Dimethyl-phenoxy)-4-dibutylamino-7-fluoro-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;
1-[6-(2,6-Dimethyl-phenoxy)-4-dipropylamino-7-fluoro-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;
1-(4-((Cyclohexylmethyl)amino)-6-(2,6-dimethylphenoxy)-7-fluoroquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
10 1-((4-Cyclopropylamino)-6-(2,6-dimethylphenoxy)-7-fluoroquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-((4-Cyclopropanemethylamino)-6-(2,6-dimethylphenoxy)-7-fluoroquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
15 1-(6-(2,6-Dimethylphenoxy)-7-fluoro-4-((tetrahydro-2H-pyran-4-yl)amino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-(2,6-Dimethylphenoxy)-7-fluoro-4-(4-methyl-1,4-diazepan-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
20 1-(6-(2,6-Dimethylphenoxy)-7-fluoro-4-thiomorpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-(2,6-dimethylphenoxy)-7-fluoro-4-(4-hydroxypiperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-(2,6-Dimethylphenoxy)-7-fluoro-4-morpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
25 1-(4-(4-Acetamidopiperidin-1-yl)-6-(2,6-dimethylphenoxy)-7-fluoroquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-Cyclohexyl-4-methylamino-quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-[6-Cyclohexyl-4-(2,6-dimethyl-benzylamino)-quinazolin-2-yl]-1H-pyrazole-4-carboxylic acid;
30 1-(4-Amino-6-cyclohexylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-Cyclohexyl-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-Cyclohexyl-4-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-Cyclohexyl-4-(diethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-Cyclohexyl-4-(phenylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
35 1-(4-((2-Chlorophenyl)amino)-6-cyclohexylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

5 1-(4-(4-Cyanopiperidin-1-yl)-6-cyclohexylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-Cyclohexyl-4-(4-fluoropiperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-Cyclohexyl-4-(cyclopropylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

10 1-(6-Cyclohexyl-4-morpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-Cyclohexyl-4-thiomorpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(4-Cyanamido-6-cyclohexylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(4-(tert-Butylamino)-6-cyclohexylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(4-(Azepan-1-yl)-6-cyclohexylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

15 1-(6-Cyclohexyl-4-(dimethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-Cyclohexyl-4-((cyclohexylmethyl)amino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-Cyclohexyl-4-(methylsulfonamido)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

20 1-(4-(Dimethylamino)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(4-(Ethyl(methyl)amino)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-Phenyl-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-Phenyl-4-(phenylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid
1-(6-Phenyl-4-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

25 1-(4-(Diethylamino)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(4-((2-Chlorophenyl)amino)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(4-(Azepan-1-yl)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(4-((Cyclohexylmethyl)amino)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

30 1-(4-Cyanamido-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(4-(Cyclopropylamino)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(4-(tert-Butylamino)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(4-Amino-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

35 1-(6-Phenyl-4-thiomorpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

5 1-(4-(4-Acetamidopiperidin-1-yl)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-Phenyl-4-((tetrahydro-2H-pyran-4-yl)amino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(4-(4-Methyl-1,4-diazepan-1-yl)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
10 1-(4-Morpholino-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(4-(4-Cyanopiperidin-1-yl)-6-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-(4-Chlorophenoxy)-4-(diethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
15 1-(6-(4-Chlorophenoxy)-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-(4-Chlorophenoxy)-4-(cyclopropylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-(4-Chlorophenoxy)-4-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
20 1-(6-(4-Chlorophenoxy)-4-((cyclohexylmethyl)amino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-(4-chlorophenoxy)-4-(4-cyanopiperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
25 1-(4-(Azepan-1-yl)-6-(4-chlorophenoxy)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-(4-Chlorophenoxy)-4-thiomorpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-(4-Chlorophenoxy)-4-((tetrahydro-2H-pyran-4-yl)amino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
30 1-(6-(4-Chlorophenoxy)-4-(phenylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(4-(4-Acetamidopiperidin-1-yl)-6-(4-chlorophenoxy)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
35 1-(6-(4-Chlorophenoxy)-4-(4-methyl-1,4-diazepan-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

5 1-(4-(tert-Butylamino)-6-phenoxyquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-Phenoxy-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(4-(Diethylamino)-6-phenoxyquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(4-(Cyclopropylamino)-6-phenoxyquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-Phenoxy-4-((tetrahydro-2H-pyran-4-yl)amino)quinazolin-2-yl)-1H-pyrazole-4-
10 carboxylic acid;
1-(4-(Dimethylamino)-7-phenoxyquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(7-Phenoxy-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(7-Phenoxy-4-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(4-(Dimethylamino)-7-phenylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
15 1-(7-Phenyl-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(7-Phenyl-4-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(4-(Diethylamino)-7-phenoxyquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(4-((Cyclohexylmethyl)amino)-7-phenoxyquinazolin-2-yl)-1H-pyrazole-4-carboxylic
acid;
20 1-(4-(4-Isopropylpiperidin-1-yl)-7-phenoxyquinazolin-2-yl)-1H-pyrazole-4-carboxylic
acid;
1-(4-(Cyclopropylamino)-7-phenoxyquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(4-(Azepan-1-yl)-7-phenoxyquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(4-(Diethylamino)-6-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
25 1-(4-Morpholino-7-phenoxyquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(7-Phenoxy-4-thiomorpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(4-(4-Fluoropiperidin-1-yl)-7-phenoxyquinazolin-2-yl)-1H-pyrazole-4-carboxylic
acid;
1-(4-(Dibutylamino)-7-phenoxyquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
30 1-(4-(Dipropylamino)-7-phenoxyquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(4-(Ethyl(methyl)amino)-7-phenoxyquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(4-((2-Methoxyethyl)(methyl)amino)-7-phenoxyquinazolin-2-yl)-1H-pyrazole-4-
carboxylic acid;
1-(7-Bromo-4-(diethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
35 1-(4-(Cyclohexylamino)-7-phenoxyquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

5 1-(4-((Cyclopropylmethyl)amino)-7-phenoxyquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(4-(tert-Butylamino)-7-phenoxyquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-(Cyclohexyloxy)-7-fluoro-4-morpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

10 1-(6-(Cyclohexyloxy)-4-(dimethylamino)-7-fluoroquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-(Cyclohexyloxy)-4-(diethylamino)-7-fluoroquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-(Cyclohexyloxy)-7-fluoro-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

15 1-(6-(Cyclohexyloxy)-4-(ethyl(methyl)amino)-7-fluoroquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-(Cyclohexyloxy)-4-(cyclopropylamino)-7-fluoroquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

20 1-(6-Benzyl-7-fluoro-4-morpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-Benzyl-4-(dimethylamino)-7-fluoroquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-Benzyl-4-(diethylamino)-7-fluoroquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-Benzyl-7-fluoro-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

25 1-(6-Benzyl-4-(ethyl(methyl)amino)-7-fluoroquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-Benzyl-4-(cyclopropylamino)-7-fluoroquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

30 1-(6-((2,6-Dimethylbenzyl)amino)-7-fluoro-4-morpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(4-(Dimethylamino)-6-((2,6-dimethylbenzyl)amino)-7-fluoroquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(4-(Diethylamino)-6-((2,6-dimethylbenzyl)amino)-7-fluoroquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;;

35 1 1-(6-((2,6-Dimethylbenzyl)amino)-7-fluoro-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

5 1-(6-((2,6-Dimethylbenzyl)amino)-4-(ethyl(methyl)amino)-7-fluoroquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(4-(Cyclopropylamino)-6-((2,6-dimethylbenzyl)amino)-7-fluoroquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(7-Fluoro-4-morpholino-6-(o-tolyl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

10 1-(4-(Dimethylamino)-7-fluoro-6-(o-tolyl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(4-(Diethylamino)-7-fluoro-6-(o-tolyl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid
1-(7-Fluoro-4-(pyrrolidin-1-yl)-6-(o-tolyl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

15 1-(4-(Ethyl(methyl)amino)-7-fluoro-6-(o-tolyl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(4-(Cyclopropylamino)-7-fluoro-6-(o-tolyl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(7-Fluoro-6-isopropyl-4-morpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

20 1-(4-(Dimethylamino)-7-fluoro-6-isopropylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(4-(Diethylamino)-7-fluoro-6-isopropylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(7-Fluoro-6-isopropyl-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

25 1-(4-(Ethyl(methyl)amino)-7-fluoro-6-isopropylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(4-(Cyclopropylamino)-7-fluoro-6-isopropylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(7-Fluoro-4-morpholino-6-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

30 1-(4-(Dimethylamino)-7-fluoro-6-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(4-(Diethylamino)-7-fluoro-6-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

35 1-(4-(Ethyl(methyl)amino)-7-fluoro-6-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

5 1-(7-Fluoro-6-(piperidin-1-yl)-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-
carboxylic acid;
1-(4-(Ethyl(methyl)amino)-7-fluoro-6-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-
carboxylic acid;
1-(4-(Cyclopropylamino)-7-fluoro-6-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-
10 carboxylic acid;
1-(6-(Cyclohexyloxy)-7-chloro-4-morpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic
acid;
1-(6-(Cyclohexyloxy)-4-(dimethylamino)-7-chloroquinazolin-2-yl)-1H-pyrazole-4-
carboxylic acid;
15 1-(6-(Cyclohexyloxy)-4-(diethylamino)-7-chloroquinazolin-2-yl)-1H-pyrazole-4-
carboxylic acid;
1-(6-(Cyclohexyloxy)-7-chloro-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-
carboxylic acid;
1-(6-(Cyclohexyloxy)-4-(ethyl(methyl)amino)-7-chloroquinazolin-2-yl)-1H-pyrazole-4-
20 carboxylic acid;
1-(6-(Cyclohexyloxy)-4-(cyclopropylamino)-7-chloroquinazolin-2-yl)-1H-pyrazole-4-
carboxylic acid;
1-(6-Benzyl-7-chloro-4-morpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-Benzyl-4-(dimethylamino)-7-chloroquinazolin-2-yl)-1H-pyrazole-4-carboxylic
25 acid;
1-(6-Benzyl-4-(diethylamino)-7-chloroquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-Benzyl-7-chloro-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-Benzyl-4-(ethyl(methyl)amino)-7-chloroquinazolin-2-yl)-1H-pyrazole-4-carboxylic
acid;
30 1-(6-Benzyl-4-(cyclopropylamino)-7-chloroquinazolin-2-yl)-1H-pyrazole-4-carboxylic
acid;
1-(6-((2,6-Dimethylbenzyl)amino)-7-chloro-4-morpholinoquinazolin-2-yl)-1H-
pyrazole-4-carboxylic acid;
1-(4-(Dimethylamino)-6-((2,6-dimethylbenzyl)amino)-7-chloroquinazolin-2-yl)-1H-
35 pyrazole-4-carboxylic acid;;

5 1-(4-(Diethylamino)-6-((2,6-dimethylbenzyl)amino)-7-chloroquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

1-(6-((2,6-Dimethylbenzyl)amino)-7-chloro-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

1-(6-((2,6-Dimethylbenzyl)amino)-4-(ethyl(methyl)amino)-7-chloroquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

10 1-(4-(Cyclopropylamino)-6-((2,6-dimethylbenzyl)amino)-7-chloroquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

1-(7-Chloro-4-morpholino-6-(o-tolyl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

1-(4-(Dimethylamino)-7-chloro-6-(o-tolyl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

15 1-(4-(Diethylamino)-7-chloro-6-(o-tolyl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

1-(7-Chloro-4-(pyrrolidin-1-yl)-6-(o-tolyl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

20 1-(4-(Ethyl(methyl)amino)-7-chloro-6-(o-tolyl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

1-(4-(Cyclopropylamino)-7-chloro-6-(o-tolyl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

1-(7-Chloro-6-isopropyl-4-morpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

25 1-(4-(Dimethylamino)-7-chloro-6-isopropylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

1-(4-(Diethylamino)-7-chloro-6-isopropylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

1-(7-Chloro-6-isopropyl-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

30 1-(4-(Ethyl(methyl)amino)-7-chloro-6-isopropylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

1-(4-(Cyclopropylamino)-7-chloro-6-isopropylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

35 1-(7-Chloro-4-morpholino-6-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

5 1-(4-(Dimethylamino)-7-chloro-6-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(4-(Diethylamino)-7-chloro-6-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(7-Chloro-6-(piperidin-1-yl)-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
10 1-(4-(Ethyl(methyl)amino)-7-chloro-6-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(4-(Cyclopropylamino)-7-chloro-6-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
15 1-(6-(Cyclohexyloxy)-4-morpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-(Cyclohexyloxy)-4-(dimethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-(Cyclohexyloxy)-4-(diethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
20 1-(6-(Cyclohexyloxy)-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-(Cyclohexyloxy)-4-(cyclopropylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-(Cyclohexyloxy)-4-(ethyl(methyl)amino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
25 1-(6-Benzyl-4-morpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-Benzyl-4-(dimethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-Benzyl-4-(diethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-Benzyl-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-Benzyl-4-(cyclopropylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
30 1-(6-Benzyl-4-(ethyl(methyl)amino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-Isopropyl-4-morpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-Isopropyl-4-(dimethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-Isopropyl-4-(diethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-Isopropyl-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
35 1-(6-Isopropyl-4-(cyclopropylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;
1-(6-Isopropyl-4-(ethyl(methyl)amino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

5 1-(6-((2,6-Dimethylbenzyl)amino)-4-morpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

1-(6-((2,6-Dimethylbenzyl)amino)-4-(dimethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

1-(6-((2,6-Dimethylbenzyl)amino)-4-(diethylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

10 1-(6-((2,6-Dimethylbenzyl)amino)-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

1-(6-((2,6-Dimethylbenzyl)amino)-4-(cyclopropylamino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

15 1-(6-((2,6-Dimethylbenzyl)amino)-4-(ethyl(methyl)amino)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

1-(4-Morpholino-6-(o-tolyl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

1-(4-(Dimethylamino)-6-(o-tolyl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

1-(4-(Diethylamino)-6-(o-tolyl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

20 1-(4-(Pyrrolidin-1-yl)-6-(o-tolyl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

1-(4-(Cyclopropylamino)-6-(o-tolyl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

1-(4-(ethyl(methyl)amino)-6-(o-tolyl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

1-(4-Morpholino-6-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

1-(4-(Dimethylamino)-6-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

25 1-(4-(Diethylamino)-6-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

1-(6-(Piperidin-1-yl)-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

1-(4-(Cyclopropylamino)-6-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

1-(4-(Ethyl(methyl)amino)-6-(piperidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

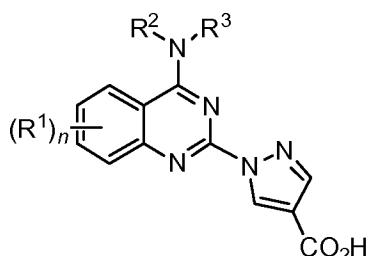
30 1-(6-(2,6-Dimethylphenoxy)-7-methyl-4-morpholinoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

1-(6-(2,6-Dimethylphenoxy)-7-methyl-4-dimethylaminoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

35 1-(6-(2,6-Dimethylphenoxy)-7-methyl-4-diethylaminoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

5 1-(6-(2,6-Dimethylphenoxy)-7-methyl-4-(pyrrolidin-1-yl)quinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;

1-(6-(2,6-Dimethylphenoxy)-7-methyl-4-cyclopropylaminoquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid;


1-(6-(2,6-Dimethylphenoxy)-4-(ethyl(methyl)amino)-7-methylquinazolin-2-yl)-1H-pyrazole-4-carboxylic acid; and pharmaceutically acceptable salts thereof.

10

15. A pharmaceutical composition comprising a pharmaceutically acceptable excipient

and an effective amount of compound having PHD inhibitor activity of formula (I):

Formula (I)

15

wherein:

n is 0-3

R^1 is a member independently selected from the group consisting of halo, $-O-R^c$, $-C_{1-4}$ alkyl, cyclohexyl, phenyl optionally substituted with $-C_{1-4}$ alkyl, benzyl optionally substituted with $-C_{1-4}$ alkyl, and $-NR^aR^b$;

20

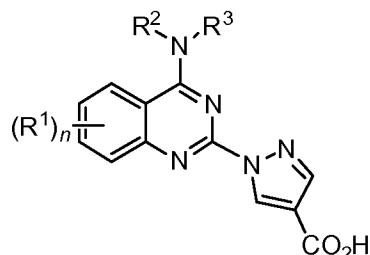
R^a is H and R^b is benzyl optionally substituted with $-C_{1-4}$ alkyl, or R^a and R^b are taken together with the nitrogen to which they are attached to form a piperidine ring;

R^c is cyclohexyl, phenyl optionally substituted with one or more R^d members;

R^d is a member independently selected from the group consisting of -H, halo, and $-C_{1-4}$ alkyl;

25

R^2 is a member independently selected from the group consisting of -H, and $-C_{1-4}$ alkyl,


R^3 is a member independently selected from the group consisting of -H, $-C_{1-4}$ alkyl optionally substituted with $-OCH_3$ or $-N(C_{1-4}alkyl)_2$, cyano, $-SO_2CH_3$, tetrahydropyran, $-(CH_2)_mC_{3-8}$ cycloalkyl, $-(CH_2)_m$ phenyl optionally substituted with one or more halo, or $-C_{1-4}$ alkyl;

5 *m* is 0-1;
 R² and R³ can be taken together with the nitrogen to which they are attached to form
 a 4 to 7 membered heterocycloalkyl ring optionally containing O, N, S optionally
 substituted with -OH, cyano, halo, -N-C(O)C₁₋₄alkyl, and -C₁₋₄alkyl;
 and enantiomers, diastereomers, racemates, and pharmaceutically acceptable salts
 10 thereof.

16. A pharmaceutical composition comprising an effective amount of at least one
 chemical entity of Claim 14.

15 17. A method for the treatment of anemia, hypoxia, ischemia, peripheral vascular
 disease, myocardial infarction, stroke, diabetes, obesity, inflammatory bowel
 disease,
 ulcerative colitis, Crohn's disease, wounds, infection, burns and bone fracture
 comprising the step of administering to a patient in need thereof a therapeutically
 20 effective amount of compound having PHD inhibitor activity of formula (I):

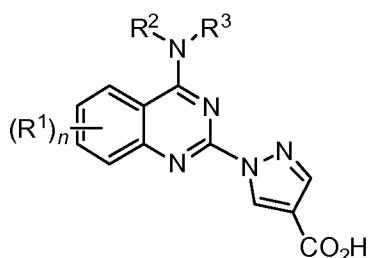
Formula (I)

wherein:

n is 0-3

25 R¹ is a member independently selected from the group consisting of halo, -O-R^c, -C₁₋₄alkyl, cyclohexyl, phenyl optionally substituted with -C₁₋₄alkyl, benzyl optionally
 substituted with -C₁₋₄alkyl, and -NR^aR^b;

R^a is H and R^b is benzyl optionally substituted with -C₁₋₄alkyl, or R^a and R^b are taken
 together with the nitrogen to which they are attached to form a piperidine ring;


R^c is cyclohexyl, phenyl optionally substituted with one or more R^d members;

30 R^d is a member independently selected from the group consisting of -H, halo,
 and -C₁₋₄alkyl;

5 R^2 is a member independently selected from the group consisting of -H, and -C₁₋₄alkyl,
 10 R^3 is a member independently selected from the group consisting of -H, -C₁₋₄alkyl
 optionally substituted with -OCH₃ or -N(C₁₋₄alkyl)₂, cyano, -SO₂CH₃,
 tetrahydropyran, -(CH₂)_mC₃₋₈cycloalkyl, -(CH₂)_mphenyl optionally substituted with
 one or more halo, or -C₁₋₄alkyl;
 15 m is 0-1;
 R^2 and R^3 can be taken together with the nitrogen to which they are attached to form
 a 4 to 7 membered heterocycloalkyl ring optionally containing O, N, S optionally
 substituted with -OH, cyano, halo, -N-C(O)C₁₋₄alkyl, and -C₁₋₄alkyl;
 20 and enantiomers, diastereomers, racemates, and pharmaceutically acceptable salts
 thereof.

18. A method for treating a hypoxic disorder comprising the step of administering to
 a
 20 patient in need thereof a therapeutically effective amount of compound having PHD
 inhibitor activity of formula (I):

Formula (I)

wherein:

n is 0-3

25 R^1 is a member independently selected from the group consisting of halo, -O-R^c, -C₁₋₄alkyl, cyclohexyl, phenyl optionally substituted with -C₁₋₄alkyl, benzyl optionally
 substituted with -C₁₋₄alkyl, and -NR^aR^b;
 R^a is H and R^b is benzyl optionally substituted with -C₁₋₄alkyl, or R^a and R^b are taken
 together with the nitrogen to which they are attached to form a piperidine ring;
 30 R^c is cyclohexyl, phenyl optionally substituted with one or more R^d members;
 R^d is a member independently selected from the group consisting of -H, halo,

5 and -C₁₋₄alkyl;
R² is a member independently selected from the group consisting of -H, and -C₁₋₄alkyl,
R³ is a member independently selected from the group consisting of -H, -C₁₋₄alkyl
optionally substituted with -OCH₃ or -N(C₁₋₄alkyl)₂, cyano, -SO₂CH₃,
10 tetrahydropyran, -(CH₂)_mC₃₋₈cycloalkyl, -(CH₂)_mphenyl optionally substituted with
one or more halo, or - C₁₋₄alkyl;
m is 0-1;
R² and R³ can be taken together with the nitrogen to which they are attached to form
a 4 to 7 membered heterocycloalkyl ring optionally containing O, N, S optionally
15 substituted with -OH, cyano, halo, -N-C(O)C₁₋₄alkyl, and -C₁₋₄alkyl;
and enantiomers, diastereomers, racemates, and pharmaceutically acceptable salts
thereof.

19. The method of claim 18, wherein said hypoxic disorder is selected from the
20 group consisting of anemia, ischemia, stroke, myocardial infarction, and coronary
artery disease.

25 20. A method for treating diabetes comprising administering a therapeutically
effective amount of a compound of claim 1 to a patient in need thereof.

21. A method for wound treatment comprising administering a therapeutically
effective amount of a compound of claim 1 to a patient in need thereof.

30 22. A method for treating a metabolic disorder comprising administering a
therapeutically effective amount of a compound of claim 1 to a patient in need
thereof.

23. The method of claim 22 wherein said metabolic disorder is obesity or diabetes.

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2011/047626

A. CLASSIFICATION OF SUBJECT MATTER

INV.	C07D403/04	C07D403/14	C07D413/14	C07D417/14	C07D405/14
	A61K31/517	A61K31/55	A61P9/00	A61P3/10	

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 2010/204226 A1 (BEMBENEK SCOTT D [US] ET AL) 12 August 2010 (2010-08-12) see strucuture and activity of the compounds of claim 1 ----- - / --	1-23

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
20 September 2011	28/09/2011
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Traegler-Goeldel, M

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2011/047626

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	<p>WARSHAKOON N C ET AL: "Design and synthesis of a series of novel pyrazolopyridines as HIF 1-alpha prolyl hydroxylase inhibitors", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, PERGAMON, ELSEVIER SCIENCE, GB, vol. 16, no. 21, 1 November 2006 (2006-11-01), pages 5687-5690, XP025106791, ISSN: 0960-894X, DOI: 10.1016/J.BMCL.2006.08.017 [retrieved on 2006-11-01] see compounds of table 1 and their pharmaceutical activity</p> <p>-----</p>	1-23
A	<p>WARHAKOON, N. C. ET AL.: BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 16, no. 21, 1 November 2006 (2006-11-01), pages 5616-5620, XP009152329, see the compounds of table 1 and their pharmaceutical activity</p> <p>-----</p>	1-23

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2011/047626

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 2010204226	A1 12-08-2010 WO	2010093727 A1	19-08-2010