
US 20030080990A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2003/0080990 A1

LyneSS (43) Pub. Date: May 1, 2003

(54) NAVIGATING HEIRARCHICALLY Related U.S. Application Data
ORGANIZED INFORMATION

(63) Continuation of application No. 09/322,720, filed on
(75) Inventor: Stanley W. Lyness, Sharon, MA (US) May 28, 1999, now Pat. No. 6,496,842.

Correspondence Address: Publication Classification
FISH & RICHARDSON PC
225 FRANKLIN ST (51) Int. Cl. ... G09G 5/00
BOSTON, MA 02110 (US) (52) U.S. Cl. .. 345/713

(73) Assignee: Survol Interactive Technologies, a
Delaware corporation (57) ABSTRACT

(21) Appl. No.: 10/263,218 Hierarchies are navigated easily through a user interface that
is continuous in its presentation of node information and

(22) Filed: Oct. 2, 2002 may be implemented using a Small display Space.

7
Computer Network 74

Hierarchy O O O O

O
72 Sever

CPCO
O

Rendered
Hierarchy

) Control Position
Update

. . . .

66

l'OH

OG SIÐAÐI

US 2003/0080990 A1 May 1, 2003 Sheet 1 of 16 Patent Application Publication

Patent Application Publication May 1, 2003 Sheet 2 of 16 US 2003/0080990 A1

31
Levels 30

24 28

FG. 2

32

Root Node to E
- E.

2O

24

28

Levels 30

FIG. 3

Patent Application Publication May 1, 2003 Sheet 3 of 16 US 2003/0080990 A1

Computer Network/4

Hierarchy O O O O
CDC 72

IT)
Update

N 50 \\ |

Suis 66

FG. 4

Patent Application Publication May 1, 2003 Sheet 4 of 16 US 2003/0080990 A1

100

Read Parameters from
Configuration Store

Initialize Variables

102

104

Launch Create and Draw
hierarchyload(rootNode) Emulated Joystick 108

Monitor User 120 Dewey
Update Emulated
Joystick Position

122

<C) 130
124

Yes a-Map systic)" f({dx,dY ({dx,dY))

126 146

-

Joystick
Position

Displacement
dX,dY) = 0,0 7

Update "Verticle'
1 48 Parameters

horiFract a HoriFract +
dF 15 O fact

Update "Horizontal
152 Parameters

Significant
Parameter
Change?

FIG.5
154

May 1, 2003 Sheet 5 of 16 US 2003/0080990 A1 Publication Patent Application

9 ° DIH zº: +)

Patent Application Publication May 1, 2003 Sheet 6 of 16 US 2003/0080990 A1

Update Verticle Parameters 148

418
Limit "Depth" by Minimum

and Maximum

Calculate Which Node Levels to Display Given Depth:
hiLevel = Depth, Round Down to interger

vertFract = Depth - hiLevel
loLevel = hiLevel + 1

belolevel = lolevel + 1

420

422
(ascent) - 1 +1 (descent) Change

in hiLevel? 426
424

horiFract * = number of children
dInd = integral part of horiFract
FocalNode = FocalNode child w/

index of dInd
horiFract - = dind

horiFract += FocalNode child index
FocalNode = Focal Node parent
horiFract /= number of children

428
Calculate Placement of Line Between Levels:

hiLevelBot = Virtual Display Area Height" (1-2.0^(vertFract-1))
lolevelBot = Virtual Display Area Height" (1-2.0^(vertFract-2))

FIG. 7

May 1, 2003 Sheet 7 of 16 US 2003/0080990 A1 Patent Application Publication

9 " O|-

Patent Application Publication May 1, 2003 Sheet 8 of 16 US 2003/0080990 A1

Update "Horizontal" Parameters
152

horiFract < 0.0?

Any
Node Left

of Focus Node?

556

Focus Node = node to left
horiFract = horiFract + 1.0 horiFract = 0.0

horiFract > 1.02

Any
Node Right

of Focus Node?

566

FocusNode = node to right
horiFract = horiFract - 1.0

horiFract = 1.0

Patent Application Publication May 1, 2003 Sheet 9 of 16 US 2003/0080990 A1

140

610
loNode = Focal Node

Draw - 612
Center foLeft, loRite F lodraw(loNode.display center, Fract)
Node

hiNode = centerNode = parent of loNode 614
hiLeft, hiRite a loeft, loRite

lonode = node to left of loNode

loLeft, loRite = lodraw(loNode, loLeft, 1.0) 618

62O

hiNode = loNode parent?
624

hinode is centerNode?
Draw Nodes hiLeft is loLeft
to Left of

Center centerLeft = hiLeft
62 6 center Rite - hirite

hiDraw(hinode)

hiNode = centerNode - parent of loNode
hiLeft, hiRite oLeft, loRite

oLeft
Outside Display

Area?

Yes

FG.10

Patent Application Publication May 1, 2003 Sheet 10 of 16 US 2003/0080990 A1

from
Figure
10

640

hinode = CenterNode

642
hiDraw(hinode)

hiNodes CenterNode
hiLeft, hiRite is loleft, loRite

646
toNode r focalNode

648
Yes

644

loLeft
Outside Display

Area?

Draw Nodes
to Right of loLeft, iorite = lodraw(loNode, loRite, 0.0)
Center

66O

hiNode r centerNode r parent of lonode
hiLeft, hiRite a loLeft, loRite

| FG 11 662

Patent Application Publication May 1, 2003 Sheet 11 of 16 US 2003/0080990 A1

oDraw(node, horizloc, Fraction left) 7OO

Add A Dummy Child if No Children 708

, child Index = 0
Wide = target render width childCountvertFract 710.

childWide = Wide / childCount

left = horizoc - fraction Left Wide
rite e left + Wide 712

Outline node from hiLevelBot to lolevelBot, left to rite 714.

716
No Wide >

node min render
width

Draw node-specific Rendering Centered in Outline

outline child node from lolevel Botto display area bottom,
left + childlindex' childWide to left + (childindex+1)* childWide

childWide >
child node min render

Width

Draw Child Node's Specific rendering Centered in Outline

childlindex = child index + 1
child index < child Count?

730 FIG. 12

Patent Application Publication May 1, 2003 Sheet 12 of 16 US 2003/0080990 A1

8OO
drawhi(node)

Outline Node from Top od Display Area
to hiLevelBot, hiLeft to hiRite

Draw Node Specific Rendering Centered in Outline

FG.13

804

Return
806

830
hierarchyload(node)

lastNode node's level = node
open unread input Source
unread input source = none

836
Read Node Definition from Input

839
838

NO Was There Any? Close input

Yes

842 Create the node
record level = f(indentation) 840

844 Read Associated text and Graphics,
Calculate Required Rendering Dimensions,

Pre-render into Bitmapped image

846 Record any Unread input Source,
any Key-Value Pairs, any Node-Specific Action

848 Make node a child of lastNode level-1
lastNode(level) = node

FIG.14

May 1, 2003 Sheet 13 of 16 US 2003/0080990A1 Patent Application Publication

Sl'Old .|- 218 Hºs No.g
096

Patent Application Publication

Editors'
Recommendations

Build Your Visual Studio 6.0 Library

May 1, 2003 Sheet 14 of 16

aaZO.CO

Computers
& Internet

Computers
8 ?ternet

Programmers'
favorites

Editors'
Reconnendations

Justify there
997

Visual Basic 6
for Programmers

Build Your Visual
Studio 6.0 Library

Reference
Guides Bestseers

Computers
8 internet

Programmers'
favorites

Computers
8 Internet

Editors'
Recommendations

Build Your Visual
Studio 6.0 Library

Visual C++ 6

JustFly There

F

to: Programmers Visual C++ with
Ivor Horton

G.16

US 2003/0080990 A1

Cooking,
Food & Wife

Cooking,
Food & Wine

Award
Winners

New in
Paperback

Reference
Guides

Programmers'
Favorites

Editors'
Recommendations

Visual
Power

Patent Application Publication May 1, 2003 Sheet 15 of 16 US 2003/0080990 A1

O72 O73 974

975 976 977

LOTER LOTER
- LOOUAC - LOCQUAC LOTER

- LOGUAC

FG.17

US 2003/0080990 A1 May 1, 2003. Sheet 16 of 16 Patent Application Publication

81° O|-

NO!). WONE W WOD38

n!! ;-

786
HD HW3S X008 UUOD'UOZPUU (2

086

US 2003/0080990 A1

NAVIGATING HEIRARCHICALLY ORGANIZED
INFORMATION

BACKGROUND

0001. This invention relates to a user interface for navi
gating a set of information arranged hierarchically, even a
very large Set.

0002. In a typical hierarchy or “tree” of nodes, each
"node' is connected to Zero or more “child' nodes and to
one “parent” node, except for one “root” node which has no
parent.

0.003 Hierarchies are common in data processing. Often
a hierarchy provides a clear way to organize a large amount
of information So that a user can find a particular piece of
information. Generally, a user “navigates a tree by itera
tively viewing descriptions of a Selected node's neighboring
nodes and Selecting one of the neighbors until the Sought
information is found.

0004. A user navigates the Windows file system hierar
chy, for example, by iteratively viewing a directory-the file
names and Subdirectory names are these neighbors
"descriptions'-then Selecting a neighboring directory to
view, until the sought file is found. Windows offers multiple
user interfaces for the viewing/Selection process: a file
Selection dialog in applications, Successive directory views
starting with “My Computer'; a “tree view” in Windows
Explorer; and even a command line shell which permits
displaying and changing the "current directory.

0005. Other, richer user interfaces for presenting and
navigating hierarchies have been proposed. Some, Such as
“cone trees”, attempt to represent much of a hierarchy using
3D effects to convey relationships on a crowded display.
Several use “focus+context techniques, that is, the portion
of the hierarchy upon which the user is currently focused,
Such as a current directory, is presented in full, and portions
further from this focus are presented with progressively leSS
detail. This can be achieved by wrapping a 2D representa
tion of the tree about a curved Surface and Shading parts of
the view away from the focus (these two techniques create
a “fish-eye lens' effect), by fractal techniques, or by nesting
boxes So that rectangles representing child nodes fill the
rectangle representing the parent ("tree-maps”). Some tech
niques depict the nodes as objects in a 3D landscape, with
more distant nodes appearing Smaller.

0006 AS for navigation, a theme which is common from
“tree View' to “tree-maps” is to detect user input Selecting
a node (as by a mouse click “on” the node) and redraw the
view of the hierarchy with the selected node as the new
"focus'. A few user interfaces portray the change in Views
with an animated Sequence of intermediate ViewS to Suggest
an object-like persistence. Some user interfaces, e.g. the 3D
landscapes, allow a mode of navigation where the hierarchy
View changes continuously, Suggesting flight over the land
Scape.

0007 Hierarchically organized information is ubiquitous.
Computer file Systems, dictionaries, indexes, tables of con
tents, and XML documents are hierarchical. The functions
available in Some applications are organized hierarchically
in menus. On the web, many portals and retail Sites are
organized hierarchically. Web Sites are not constrained to be

May 1, 2003

hierarchical, but, again, hierarchy is a clear way to organize
large amounts of information.

SUMMARY

0008. In general, in one aspect, the invention features
identifying a hierarchy position in a Space defined by a
hierarchy of nodes. The Space has at least two dimensions.
Each node is uniquely identifiable within the Space by values
in the respective dimensions, including a node level identi
fying the node's hierarchy level and a node-in-level identi
fying the node uniquely among nodes in that level. The
hierarchy position is identified by position values in the
Same dimensions. Position values need not correspond to
actual node level or node-in-level values.

0009 Implementations of the invention may include one
or more of the following features.

0010. The position values may include depth value and
position-within-level values both in the form of non-integral
numbers. The position-within-level value may include a
node-in-value value identifying one node plus a floating
point number representing an offset of the position from that
node. The hierarchy position may be used to identify a focus
of a user's view of the hierarchy.

0011. In general, in another aspect, the invention features
displaying representations of nodes of a hierarchy in a Space
on a display, each node representation fully occupying a
Subspace within the Space, and allocating the Space entirely
to the Subspaces.

0012 Implementations of the invention may include one
or more of the following features. The nodes are organized
in levels in the hierarchy and the Space is allocated among
the levels So that one level is fully represented in a dimen
Sion of the display that corresponds to changing levels. The
levels of the hierarchy above and below the one level are at
least partially represented. Each of the levels is represented
as a band in the Space. Nodes represented in one band have
a parent-child relationship with nodes represented in an
adjacent band. Within a band, Space is allocated So that the
Subspace of a parent has the same dimension along the band
as the Sum of the dimensions of its children along the
adjacent band.

0013 In general, in another aspect, the invention features
rendering a container associated with the node and a repre
Sentation of information associated with the node. The
container has dimensions that change with an amount of
Space dynamically allocated to the node based on a changing
focus in the hierarchy. The representation has unchanging
dimensions. The container and the representation are drawn
on a display. When the focus changes, the container is
re-rendered with updated dimensions and drawn on the
display. Without re-rendering, the rendered representation is
recopied to a new location.

0014. In implementations of the invention, the drawn
container indicates the node's position in the hierarchy and
its relationship to nearby nodes, and the representation
includes graphics or text or both.

0015. In general, in another aspect, information is
received indicating a displacement of a user input device
within a two-dimensional frame of reference. Displacement

US 2003/0080990 A1

in at least one of the dimensions is translated to a rate of
change of a hierarchy position used to identify a focus of a
user's view of the hierarchy.
0016. In general, in another aspect, the invention features
displaying a representation of a portion of a hierarchy of
nodes to a user. Each node may have associated an action to
be performed by an application, the action being other than
navigation of the hierarchy. A user navigates in the displayed
representation of the portion of the hierarchy by using a first
type of action. The user triggers the action associated with
a displayed node of the hierarchy by invoking the node using
a Second type of action.
0.017. In implementations of the invention, the first type
of action may be dragging and the Second type of action may
be clicking.
0.018. In general, in another aspect of the invention an
emulation of a return-to-center input device enables a user to
navigate the hierarchy. The user manipulates a non-return
to-center input device to indicate an intended manipulation
of the emulation for purposes of navigating the hierarchy.
The user's manipulation is treated as a manipulation of the
return-to-center input device.
0.019 Implementations of the invention may include one
or more of the following features. The non-return-to-center
input device is a computer mouse, trackball, or pad. The
return-to-center input device is a joystick. The emulation
includes rendering the device on a display. The response to
the user manipulation is to change a focus position in the
hierarchy. The focus position is changed by periodically
adding a focus increment vector to a focus position, the
focus increment vector being a function of the vector by
which the emulated controller is displaced from its center or
rest position. The user manipulates the non-return-to-center
controller in a single dragging action to view an arbitrarily
large hierarchy of nodes. The function is nonlinear to permit
the user to vary navigation Velocity over a wide two
dimensional range.
0020. In another aspect, the invention features displaying
information at a client about a portion of a hierarchy of
nodes including a node at the top of a Sub-hierarchy of the
hierarchy. As a user's navigation causes Sub-hierarchies to
approach view in the displayed information, information
about the Sub-hierarchy that is approaching view is fetched
from a Server.

0021. In another aspect, a request is received at a server
from a client for a hierarchy definition. In response, the
client is provided a portion but not all of the hierarchy
definition, the portion referencing other portions of the
hierarchy.
0022. In implementations of the invention, the size of the
portion to be provided to the client may be determined
adaptively based on parameters for optimizing communica
tion between the server and the client. The server may
automatically build a hierarchy definition portion that is as
near as possible in size to a given minimum portion size. The
Server may generate references to Sub-hierarchies and
include them with definitions of nodes of the portion pro
vided.

0023. In another aspect, a web page includes an area that
provides a navigational interface to permit continuous navi
gation of a hierarchy of nodes of, e.g., links to other web
pageS.

May 1, 2003

0024. In another aspect, a user interface includes a device
that permits continuous navigation for Selecting from a
hierarchy.
0025. In implementations, the hierarchy may include a
function menu, a file System, an XML document, an index
constructed from a document, list, or table, an encoded
hierarchy, the Dewey Decimal System, categorized prod
ucts, postal addresses or other location by geographic
region, a character Set to be Selected for text entry, or a
corpus which is not hierarchical in its native form and upon
which hierarchy has been imposed using a similarity-seek
ing technology.
0026. Among the advantages of the invention may be one
or more of the following.
0027. An indefinitely large hierarchy may be navigated.
The interface permits fast navigation of the hierarchy.
0028. The interface reduces the cognitive load to the user
in at least the following ways.
0029. The user is offered a simple metaphor of the
hierarchy as a continuous plane, the view of which can only
change Smoothly as the user navigates. The user is spared
abrupt, jarring (to novices, frightening) changes in View by
allowing direct control over rate of change of focus, So that
the View of the hierarchy changes Smoothly over time. Any
effects of Such discontinuities in the view as are necessary
are minimized by being split into Smaller discontinuities
distributed over time. The nodes in a level do not appear full
blown all at once, but appear first as Small outlines, with
detail arriving at different times for different nodes.
0030 The user is not burdened with separate controls for
Scrolling, for rotation, or for Zooming-all navigation is
done with one intuitive control with a simple physical
metaphor. The Single control functionally replaces, for
instance, the four Scroll buttons, two sliders, and numerous
buttons labeled “+’ or “- in Windows “TreeView'. The
interface in this way reduces repetitive hand and eye move
ments as well as cognitive demands.
0031. The relationship between parent and child nodes is
made apparent to first-time users by depicting parent nodes
as containing the children instead of by drawing ambiguous
connecting lines.
0032. The interface is frugal with respect to available
computer display "real estate'. Space is allocated extremely
efficiently, freeing most of a typical computer display for
other taskS.

0033. The interface requires only a small implementation
size. The algorithms for hierarchy rendering can be realized
in compact code for low memory use and fast delivery over
a network.

0034. The interface is frugal with respect to hierarchy
loading bandwidth. Hierarchy information-which can be of
indefinite size-is transferred in Small portions on demand
as the user "approaches them. A user can navigate all levels
of a huge hierarchy, acquiring a Sense of its size, having
caused only a Small fraction of the hierarchy information to
be loaded.

0035) The interface is especially useful in “World-Wide
Web” applications. Novice users distracted by advertise
ments have a lower capacity for new metaphors and Sur

US 2003/0080990 A1

prising changes of view. The interface accommodates the
user's expectation that web navigation is to be effected with
a small “navigation frame” on the left. The code implement
ing the user-interface for the web is compact enough to be
downloaded with a page (as an applet) which accommodates
the user's resistance to installing “plug-ins. The Web Surfer
need not wait for the information describing a huge hierar
chy to be loaded over a slow network.
0036) Each node can have a distinct text and/or graphical
representation. ASSociated with each node can be an appar
ent way to execute a distinct action apart from navigation
when the node is Selected.

0037. The hierarchical structure, text and/or graphical
representation of each node, and action associated with each
node, are defined in human readable formats. This hierarchy
definition may be requested and delivered incrementally and
on demand. The delivery is a special case of “streaming”
data in which the data are dispersed in two dimensions and
the order in which the data are required cannot be predicted
with confidence.

0.038. Other advantages and features will become appar
ent from the following description and from the claims.

DESCRIPTION

0.039 FIG. 1 illustrates relationships in a simple hierar
chy.

0040 FIG. 2 illustrates an allocation of display area to a
portion of the Sample hierarchy, arranged in the horizontal
direction.

0041 FIG. 3 illustrates an allocation of display area to a
portion of the Sample hierarchy, arranged in the Vertical
direction.

0.042 FIG. 4 shows a hierarchy view-and-control loop
including the user and the invention in a computer network
COnteXt.

0043)
0044 FIG. 6 illustrates concepts involved in allocating
one dimension of the display area to hierarchy levels.

FIG. 5 is an overall flow diagram.

004.5 FIG. 7 shows logic involved in reallocating that
dimension.

0.046 FIG. 8 illustrates concepts involved in allocating a
level's display allocation to nodes within that level.
0047 FIG. 9 shows logic involved in that allocation.
0048 FIG. 10 and FIG. 11 illustrate a process of ren
dering a portion of the hierarchy.

0049 FIG. 12 illustrates a subroutine used to draw a
node at one level and its children.

0050 FIG. 13 illustrates a subroutine used to draw a
node at another level.

0051 FIG. 14 illustrates logic used to load hierarchy
information from a Server.

0.052 FIG. 15 illustrates how a “control stick” can be
emulated and shows alternate appearances of emulated
controllers.

May 1, 2003

0053 FIG. 16 shows a sample sequence of views pre
Sented to a user navigating a hierarchy by nudging the
control stick at the bottom of the view, where the imple
mentation is configured horizontally with the top of the
hierarchy at the top of the view.

0054 FIG. 17 shows a sample sequence of two views
presented to a user navigating a dictionary, where the
implementation is configured vertically with the top of the
hierarchy at the left side of the view.
0055 FIG. 18 shows a hypothetical deployment at a
Single web site to allow rapid SeamleSS navigation of that
Site.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

0056 FIG. 1 illustrates relationships that can exist
among nodes comprising a hierarchy 18 and introduces
Some naming conventions. Each node has Zero or more
“child' nodes, and each node has exactly one “parent node
except for the “root” node 20 which has no parent node. For
instance, node 26 is the child of node 24, which is the parent
of two nodes 26, 27. It will be useful later to number children
from left to right; node 26 thus has a “child index” of 0 and
node 27 has a child index of 1. A node with no child nodes,
like node 22, is called a "leaf node.

0057 Nodes can grouped by their hierarchy “level”,
which we define as the number of steps of descent by which
they can be reached starting from the root node. There are
four levels 30 in the hierarchy of FIG. 1.

0058 Implementations of the invention present in a lim
ited display area a view of the hierarchy that can be changed
under user control. At any one time the view is “focused” or
centered either at one node or between nodes, and contains
all nodes surrounding this center of view or “Focus'. A user
may see one of these Surrounding nodes and manipulate the
Focus toward that node So that all nodes Surrounding that
node are now in View. By continued navigation of this Sort,
and exploiting the fact that any node in the hierarchy can be
reached from any other node by a Series of Steps through
intermediate nodes, the user may view any point in the entire
hierarchy. Methods discussed below make this navigation
experience “Smooth'-the Focus changes gradually, and the
resulting changes in the View are “animated” or rendered in
many Small StepS.

0059 FIGS. 2 and 3 show two examples of limited
display areas. FIG. 2 shows a horizontally aligned display
area 31, which is efficiently apportioned to nodes about a
Focus near Node 24. The Focus is an imaginary point in the
hierarchy that corresponds to the point at the exact center of
the display area. In this “horizontal' layout, the nodes of
each of the levels 30 are arrayed horizontally. Because of the
Small size of this Sample hierarchy, Some of the display area
(33, shaded) is unallocated for this particular Focus.
0060 FIG. 3 shows a vertically aligned limited display
area as might be particularly useful in web applications.
Here nodes in each of the levels are arranged vertically, with
the top of the hierarchy to the left of the display area.

0061 For convenience, the rest of this description refers
only to the horizontal layout depicted in FIG. 2.

US 2003/0080990 A1

0.062 Referring to FIG. 4, in some implementations
based on software resident on a computer 59, a software
routine 50 updates both an on-screen representation 52 of an
emulated return-to-center controller Such as a “joystick” and
data representing the emulated controller's displacement
from its center or rest position. This update is in response to
a physical computer pointing device 66 Such as a mouse. A
focus update routine 54 causes continual updates of internal
data representing the user's focus in the hierarchy. When the
focus is updated, a hierarchy draw routine 56 is invoked to
render on-screen a representation 58 of a portion of the
hierarchy surrounding the focus. (More detailed views of the
emulated control and the rendered hierarchy are shown and
discussed below.) Through the user's eye 60 the user's brain
62 continuously monitors the evolving hierarchy represen
tation 58 as well as the current “joystick' position 52 over
which the user has the feeling of direct control, the brain
directing the hand 64 to move the physical pointing device
66 with its button depressed to effect further change in the
focus and therefore in the portion of the hierarchy visible to
the user. In this manner:

0063. The user quickly learns through continuous
feedback how to manipulate the rendered hierarchy
to view beyond any node currently shown, and by
iteration and the fact that all nodes are connected, to
view the entire hierarchy.

0064. No abrupt changes in rendering can occur and
no abrupt changes in user hand or eye position are
neceSSary.

0065. In a network environment, a Software component
70 of the invention is able to load hierarchy information
from a remote hierarchy server 72 by way of a network of
computers 74 onto the computer 59, which may represent a
client of the hierarchy server. Typically a server will serve
many clients concurrently. Hierarchy information loading 70
is described in more detail below with respect to FIG. 14.
0.066 Referring to FIG. 5, starting at step 100, a software
implementation initially performs Some gathering 102 of
configurable parameters which may include the display area
dimensions and a network Source for the hierarchy infor
mation. This is followed by initialization 104 of other
variables. In step 104, a dummy root node is created and the
hierarchy information source is associated with it. Step 104
also initializes the user “Focus'-the center of that portion
of the hierarchy drawn on the Screen-to a point near this
dummy root node, which is all that exists of the local
hierarchy data at this time. Next, the hierarchy loader 70 is
launched to asynchronously load hierarchy information
using Standard network protocols from the configured
Source. The flow of hierarchy loading is described in more
detail below with respect to FIG. 14. For now we note that:
the Source may exist on a remote Server 72, the information
may arrive following user-perceptible delay; and as infor
mation about a node arrives, it is added to the local hierarchy
data.

0067. The software next initializes 108 the emulated
joystick and its on-screen representation. Next routines
120-126 are launched to asynchronously monitor the physi
cal pointing device, while on a a parallel path the main loop
is launched. This loop begins with drawing 140 the hierar
chy on the Screen.
0068 Step 120 monitors the user input device to detect a

66 change in the physical user-input device’s “State'-position

May 1, 2003

and button State. A change may require an update 122 of the
emulated joystick position 130. If a change in the emulated
joystick position is detected at 124, the emulated joystick is
redrawn at 126. This is illustrated below with respect to
FIG. 15.

0069. Returning to the main loop (the right side of the
drawing), the emulated joystick is monitored at 142 for any
displacement from its center position. When the displace
ment is non-Zero in any dimension, the displacement is
mapped by 144 to an incremental change in hierarchy
“Focus”. “Focus' means where in the hierarchy the user's
current view of the hierarchy is centered. Focus is defined as
a two-element vector, Depth.Position-in-Level. Hierarchy
“Depth” is like hierarchy level, but is permitted to take
floating-point values between the integers to which “level.”
is confined. "Position-in-Level” is a position among the
nodes in a level, the leftmost having Position-in-Level 0.0,
like an index, but permitted to take floating-point values
between integral indices. For instance, a Focus of {1.1.1.5}
in the sample hierarchy of FIG. 1 means that the user view
is centered between levels 1 and 2 but closer to level 1, and
horizontally midway between nodes 24 and 28.
0070. As will be seen in FIG. 8, an alternate method of
Specifying position within a level has two parts:

0.071) “FocalNode", a reference to that node in level
<integral component of Depth> with an index of
<integral part of Position-In-Leveld, and

0072 “horiFract', the fraction of that node appear
ing to the left of the center of user view.

0073 “FocalNode” therefore corresponds to the integral
component of Position-in-Level and “horiFract' is the frac
tional component. It is this method of Specifying position
within a level which we will use in descriptions which
follow.

0074 The exact mapping 144 of emulated joystick dis
placement to a change in Focus {dDepth,dFract depends
upon the configuration of the embodiment, but for a con
figuration in which hierarchy levels are arranged horizon
tally and hierarchy descent/ascent are shown vertically, the
mapping may be as Simple as

0075 dDepth=k1 * vertical displacement of emu
lated joystick

0076 dFract (change in horiFract)=k2*horizontal
displacement of emulated joystick

0077 where k1 and k2 are numbers fixed during navi
gation. For a configuration in which hierarchy levels are
arranged vertically, dDepth would follow the horizontal
joystick displacement and dFract would follow the vertical
displacement. Additional mapping tweaks found to be useful
include:

0078 greater-than-linear mapping to allow both fine
control and high-speed navigation from an emulated
return-to-center controller with limited travel. One
implementation uses a dDepth proportional to the
Square of emulated controller displacement in one
direction, for instance. This allows for a navigation
Speed “dynamic range'-ratio of fastest to slowest
non-0 speed-of 12x12 in the case where emulated
controller displacement in one dimension varies
from -12 to 12 pixels.

US 2003/0080990 A1

0079 attenuating diagonal navigation, particularly
in the direction of hierarchy ascent. During hierarchy
ascent the user typically does not intend any lateral
navigation at the same time. During hierarchy
descent diagonal navigation is often desired but can
be attenuated to minimize risk that a user might
Sense losing control.

0080 limiting emulated controller movement to one
dimension at a time. This Suggests an alternative
rendering of the controller. FIG. 15 shows the “joy
Stick' look and Some alternatives. One implementa
tion allows the user to Select among alternative
controller “look and feel” designs to find one most
Suitable to the user.

0081 a mapping of displacement to dEract which is
a function not only of displacement but which is
Sensitive to the fractional component of Depth in a
way which eliminates 2"-order discontinuities in the
rendered location of nodes, given constant emulated
controller displacement. (Implementations we are
describing prohibit by design 1'-order discontinui
ties in node location or size regardless of controller
state; this enhancement further eliminates a 2"-
order discontinuity.)

0082. After adding the incremental change dDepth to
Depth in 146, step 148 updates the “vertical” parameters
using the logic shown in FIG. 7, discussed below. “Vertical”
here means “in the direction of hierarchy descent or ascent',
which may be visually either horizontal or vertical depend
ing upon the configuration.
0.083. After adding the incremental change dFract to
horiFract in 150, “horizontal” (“in the direction from a node
to its sibling”) parameters are updated in Step 152 using the
logic shown in FIG. 9, discussed below.
0084) Step 154 tests if either Depth or horiFract has
changed by more than a predefined threshhold since its last
use in drawing the hierarchy. If So, the hierarchy is redrawn
in step 140 using the logic shown in FIGS. 10 and 11. The
purpose of the threshholds is to reduce demands on com
puter power by not launching expensive redrawing opera
tions for visual differences Small enough to approach imper
ceptibility.

0085. In either case, the main operation loop continues
with the monitoring 142 of the emulated controller's posi
tion. This loop is performed at nearly constant time intervals.
AS the logic of 144 maps a given two-dimensional emulated
controller displacement to a two-dimensional Focus change
per loop iteration, periodic iteration further maps it to a
two-dimensional Focus Velocity.
0.086 FIG. 6 shows how the display area 402 is to be
allocated among Some number of hierarchy levels by the
logic in FIG. 7. 406 shows one possible allocation to three
adjacent levels we call “hiLevel”, “loLevel”, and
“beloLevel”, where the parent of a loLevel node is in
hiLevel and its children if any are in beloLevel. The allo
cated bands may lie partially outside (as with hiLevel) or
completely outside (as with hiLevel-1) the actual display
area 402. The thickness of allocated bands decreases geo
metrically with increasing level. For instance, if the ratio of
thicknesses R of adjoining bands is 2.0, as in the example
shown, each level is allocated half the Space allocated to its

May 1, 2003

parent level. Note that as the user descends the hierarchy, a
level of nodes is very Small at its first appearance and gains
Visual weight as it approaches the focus; this seemingly
gradual appearance of each node permits a visually Smooth
navigation experience.

0087. The geometric relationship among band thick
neSSes is accomplished by arranging the lines delimiting the
bands “exponentially'. More rigorously, define a “Virtual
Display Area'404 of which the actual display area 402 is but
a fraction HA/HA between 0.5 and 1.0. Then the
distance to the line at the top of level N from the bottom of
the Virtual Display Area is:

Virtual Display Area height*RPPN)

0088 (remembering “Depth” is one component of
Focus), or for our example,

Virtual Display Area height*2.0(Peph-N)

0089. These level-delimiting lines will fall outside
(above) the display area for N much less than Depth, and for
increasing N, the lines approach the bottom of the Virtual
Display Area, falling below the actual display area. The
implementation illustrated chooses HADA/HvDA=%. So that
exactly two complete levels are shown. If Depth were a
multiple of 1.0, hiLevel and loevel would then be assigned
the top /2 and next 4 of the Virtual Display Area, totalling
all of the actual display area. In the case illustrated, all of
loLevel and parts of hiLevel and belo level fall in the actual
display area. For any choice of HADA/HvDAz=%, only the
two lines 408 and 410 delimiting loLevel need be calculated
for the purpose of drawing, as all otherS fall outside the
actual display area. Drawing is sped up by the fact that at
most 3 levels of nodes are involved. For implementations
having access to greater resources, HADA/HvDA may be
chosen closer to 1.0, so that more of the delimiting lines 412
fall within the actual display area, and more levels and many
more nodes need to be represented.

0090 Turning to FIG. 7, we see the logic 148 which
accomplishes the vertical allocation illustrated in FIG. 6 in
the case R=2.0, HADA/HvDAz=%. This logic is invoked
from the main operation flow of FIG. 5 when Depth has
changed by a Small fraction of 1 or -1, and Serves to
precalculate Some drawing parameters. At Step 418, Focus
Depth is first forced to be greater than some minimum which
is configurable but is typically near 1.0 and to be less than
a maximum which is tied to the greatest level of any node
loaded. Step 420 then determines which levels will be
represented in the display area, or in other words what
integers correspond to “hilevel”, “loLevel”, and
“beloLevel”. The remainder from this rounding operation
“vertFract” will be saved to determine the placement of the
delimiting lines in Step 428 and for later drawing calcula
tions. A check 422 is made to see whether hiLevel has
changed; that is if Depth has crossed an integer boundary. In
most cases it has not. If hiLevel has decreased, horizontal
parameters are changed in Step 424: FocalNode's parent
node becomes FocalNode, and horiFract is loaded with what
fraction the former FocalNode's child index, augmented by
the former horiFract, is of the parent's children. If hiLevel
has increased, horizontal parameters are changed in Step
426: the FocalNode child with a child index of horifract
times the number of children, rounded, becomes FocalNode,
and the remainder from the rounding becomes horiFract.

US 2003/0080990 A1

0.091 Step 428 now calculates the placement of the
delimiting lines. This was stated above to be

Virtual Display Area height*2.0(Peph-N)
0092 from the bottom of the Virtual Display Area. The
formulae in 428 calculate the more useful distances from the
top of the display area, hence the “1-'. These distances
“hiLevelEot and “lolevelEot are shown as 408 and 410
on FIG. 6. For HA/HA=% this need only be calculated
for the two integral levels N for which Depth-N is between
O and B2.

0093 FIG. 8 illustrates what “horizontal” allocation
must do. The display area 520 having been “vertically'
allocated into bands for the hierarchy levels hiLevel 522,
loLevel 524, and beloLevel 526, each band must be further
allocated to Specific nodes. "Focus' can be thought of as an
imaginary point in the hierarchy that corresponds to the
center of the display area 532. “FocalNode' is that node
which will be drawn to include this center; the shaded box
534 is its allocation. “horiFract' is the ratio of FocalNode
appearing to the left of the center, 0.0<=horiFract <=1.0.
That is, horiFract is the ratio of the Solid black line 536 to
the width of FocalNode's rectangular allocation 534.
0094) “Horizontal' allocation occurs mostly during
drawing using the logic illustrated in FIGS. 10 through 13.
FIG. 9 shows some precalculation which is performed after
an incremental change to horiFract: If at 552 horiFract has
spilled over and is no longers=0, step 556 replaces Focal
Node with the node to its “left” in the hierarchy and 1.0 is
added to horiFract, unless there is no left node in which case
step 558 clips horiFract to 0.0. If at 562 horiFract has spilled
over and is no longer-1, step 566 replaces FocalNode with
the node to its “right” in the hierarchy and 1.0 is subtracted
from horiFract, unless there is no right node in which case
step 568 clips horiFract to 1.0.
0.095 Horizontal allocation is driven by determining the
widths of nodes in level loLevel as they are drawn, first for
FocalNode, then iterating through nodes to its left until the
display area is used, then iterating through nodes to its right.
The display area width required for a node depends on the
width required to render it and the Sum of rendering widths
of its children. The geometric weight given to each of these
two factors varies with the fractional component of Depth.
AS illustrated, a loLevel node is narrower than another
having more children (in beloLevel) but its children are
wider than those of the other node. From loLevel width
allocations:

0096 child node width allocations are simply pro
rated. For implementations which can show more
than three levels of nodes at a time (HAA/
HvA>%), proration continues beyond beloLevel.
For instance, if a loLevel node has width W and 3
children each with 3 children, each child has width
W/3 and each grandchild has width W/9 allocated.

0097 parent node (in hiLevel) width allocations are
Summed from their children's widths. In FIG. 8, four
loLevel nodes have one parent 540 and the last has
another 542.

0098. Before turning to the drawing logic in FIGS. 10
and 11 which accomplishes this, note the horizontal-param
eter terminology that will be used: “left” and “rite” are the

May 1, 2003

left and right boundaries of a node's display allocation,
marked by 544 and 546 for FocalNode on FIG. 8.
0099] The drawing logic of FIGS. 10 and 11 can be
roughly divided into areas drawing FocalNode, drawing
nodes to its left, then drawing nodes to its right. The
Software routine “lodraw(node, horizontal position, frac
tion to left)” which will be described in reference to FIG. 12
is invoked for each loLevel node (steps 612, 618, 652) not
only to draw it but to calculate and return its “left” and “rite”
boundary locations, and to draw its children. After each
loLevel node is drawn, its width is added to that of an
accumulating parent node "hiNode', either a new one (steps
614, 630, 660) or an existing one (steps 622,656). A new
“hiNode” is needed when the loLevel node just drawn has a
parent which is not hiNode, as checked at 620 and 654. At
this time, and at the end of the routine, the existing hiNode
is drawn using the software routine “hildraw(node)" (steps
626, 642, 658, 662).
0100 FIG. 12 illustrates the logic of software routine
“loDraw(node, horizontal position, fraction to left)”. Step
714 outlines the node and step 718 draws the node-specific
representation concentric with the outline. For each child,
step 720 outlines the node and step 724 renders it in the case
where the outlined area is large enough to hold the render
ing. How many outlined nodes are fully rendered for any
given Focus depends upon the Space demands of rendering
each, upon the display area dimensions, and upon how
quickly the hierarchy fans out. However, for typical appli
cations, nodes on three levels are always outlined and are
fully rendered about half the time, and nodes on only two
levels are fully rendered the other time.
0101 Prior to the outlining and drawing, lodrawo must

first (step 710) calculate the node's allocated display width
“Wide” given the fractional component of Depth “vert
Fract', the number of child nodes, and a target rendering
width using the formula

target render width childCount'''
0102) It must then (step 712) convert “Wide” and the
incoming parameters “horizLoc' and “fractionLeft' to “left”
and “rite”, its left and right edges. “horizLoc' is a horizontal
location; it specifies the left edge if “fractionLeft” is 0, right
edge if “fractionLeft” is 1, and some point in between for
0<fractionLeftC1.

0103) To “draw node-specific rendering” may mean
invoking primitive code to render text and/or graphics.
However for performance reasons in Some implementations
this means copying a prerendered image to the outline
center, So that the time spent in rendering each node need
only be incurred once.
0104 FIG. 13 illustrates the much simpler logic of
drawing a hiLevel node: Outline the node, then draw its
node-specific rendering.
0105. If calculations of level-delimiting lines and node
widths would place Some of a node outside the actual display
area, node outlines are made to respect the boundaries of the
actual display area. Centering node-specific rendering in this
reduced area minimizes the number of cases in which
node-specific rendering overflows the actual display area.
Such cases can be completely eliminated or can be permitted
by choices in defining “target render width” and “min render
width” used in steps 710 and 716.

US 2003/0080990 A1

0106. It is not a part of drawing, but associated with
outlining any node in step 802 on FIG. 13 and steps 714 and
720 on FIG. 12, the node is checked for an unread input
Source. If it has one, software routine “hierarchyLoad” is
launched to asynchronously populate the hierarchy beneath
this node from hierarchy information read from the Source.
The hierarchy information loaded by the first invocation of
hierarchyLoad, which populated the hierarchy under the
dummy root node, may not be the complete hierarchy for
this application. The hierarchy Server may deliver only a
portion of the hierarchy information, with references to
additional portions. This can allow a user to widely navigate
an immense hierarchy while triggering the transfer of only
a small fraction of the hierarchy information from the
hierarchy Server to the client. The portions are loaded on
demand but before they are actually needed for rendering by
calling for them when their parent nodes are first outlined.
0107 Division of the total hierarchy into smaller portions
can be accomplished by human or automated extraction of
the information into Separate files resident on the hierarchy
Server. Alternatively, the hierarchy Server can automatically
divide the hierarchy into portions, each with a magnitude
appropriate to the network bandwidth, and automatically
generate references to information "files' describing Sub
hierarchies of the total hierarchy. That is, the “files' sent
over the network may never exist in the file format.
0108 We call the delivery of a hierarchy in portions and
on demand “hierarchy Streaming, whether division into
portions is prior to or a part of Server operation. “Hierarchy
Streaming” is comparable to “streaming” as the term is
generally applied to the transmission of data incrementally
over a network concurrent with use of the (already-received)
data by the client, as for instance when Sound information is
played by a client computer as additional Sound information
is still being transmitted. However, hierarchy Streaming
differs in that the information delivered is of more than one
“dimension” and there is a strong likelihood that not all of
the information will be needed at the client. Therefore
two-way communications are useful in hierarchy Streaming.
Not only must the server deliver information, but the client
must request different portions of the hierarchy as they are
needed. A hierarchy-Streaming performance enhancement is
to maintain exactly two connections (one for each direction)
between the client and the Server, rather than opening and
closing a connection for each portion.
0109 The minimize size of streamed portions may be a
fixed server parameter. For a performance enhancement, the
hierarchy Server may adjust the minimum portion size in
response to network characteristics as they vary between
clients and over time. For instance, a Server receiving
rapid-fire requests for portions from one client might infer a
high-bandwidth connection and deliver larger portions to
that client, and it might infer a high error rate from repeated
requests for the same portion from another client and deliver
Smaller portions to that client.
0110 Here is how a hierarchy server might serve a
request for hierarchy information while respecting a mini
mum portion size:

0111. From the request, identify the parent node of
the hierarchy or Subhierarchy for which information
is requested.

0112 Copy that node's information from the overall
hierarchy data-which may be in a database, one or

May 1, 2003

more files, or an in-memory data Structure-to a new
hierarchy data Structure, as the root node informa
tion.

0113 Among information copied for each node can
be a reference to the portion of the hierarchy for
which that node is the root. A “reference” to a portion
is information from which a request for the portion
to the Server can be constructed. For this first copy,
the reference simply reflects the original hierarchy
information request.

0114. Among references that have been added to the
new hierarchy data structure and Still remain, take
that added earliest, remove it from the data structure,
and copy information for all child nodes (of the node
containing the reference) from the overall hierarchy
data to the new hierarchy data Structure. Again, the
copied information may contain references.

0115 Repeat the previous step while references
remain and while the new hierarchy data structure is
Smaller than the minimum portion size.

0116 FIG. 14 shows the hierarchy-loading process from
the client point of view. Software routine “hierarchyLoad” is
passed a node that has an associated “unread input Source'.
This is a string that names a path, such as a “URL for
internet acceSS or a filename, to a hierarchy definition file.
The hierarchy Source could also be a database, a data
Structure, or another program, but here we will describe
transfer of a file over the internet. Step 832"opens” the
Source or makes it available for reading. In a client-server
context, this “open' constitutes a request to the Server to
provide the hierarchy information. In a loop, step 836 is used
to read each line, until failure to read detected at 838
terminates the routine at 840. Each line describes one node,
Specifically:

0117 The node level relative to the top node level of
the file. This is a relative specification so that hier
archy definition files can be combined by simply
referring to a hierarchy definition file from a node
Specification in a "parent hierarchy file. The top
level of the “child' hierarchy definition file is then
one more than the referring node's level. In this way
hierarchy modules can be readily Split and recom
bined by humans using editors. In Some implemen
tations, hierarchy definition files are human-readable
and editable; the format facilitates this by using line
indentation to specify relative level. Indentation
increased from the previous line indicates a level one
greater; indentation decreased to a previously used
indentation indicates the level previously indicated
by the indentation. For instance a file like this

0118 Node 1
0119) Node 2
0120 Node 3

0121 Node 4
0.122 would cause node 1 and 4 to be placed at level N,
node 2 at level N+1, and node 3 at N+2, where N is one
greater than the level of the node referring to the file.

0123 (optional) text used as a node “label” for
rendering the node

US 2003/0080990 A1

0124 (optional) a path to a graphic “image” for
rendering the node. If both a label and a graphic are
Specified, the label is rendered on top of the graphic.
A current implementation uses the format "-image=
URL>' for this information.

0125 (optional) a specification of an “action” to
take if the user Selects the node, as by "clicking” it
with a pointing device. Each “action' is interpreted
by Software communicating in an application-depen
dent way. The format “-action=URL>" can be used
for this information. Some implementations render
those nodes which have associated actions with a
push-button-like appearance to Suggest to the user
that clicking the Screen appearance will have an
effect.

0126 (optional) a “hier” reference specifying the
Source for a hierarchy to be loaded beneath this node.
A current implementation uses the format “-hier=
URL>' for this information.

0127 (optional) any number of "<key=values”
Specifications assigning a short String to represent a
long String So that “action”, “image', and other
Specifications can use a Sort of Shorthand. Such
assignments are valid for Such specifications for all
of the node's descendants.

0128 Step 842 represents the parsing of node level.
Parsing of the other specifications is shown in steps 844 and
846.

0129. At step 848, the new node is placed in the hierarchy
data structure as a child of the node added most recently (by
this execution instance of hierarchyLoad) at the previous
level, and this node is recorded to be the most recently added
at this level. This can trigger a redrawing of the hierarchy in
cases where the affected parent node is currently being
displayed.

0130 FIG. 15 shows a preferred screen layout of an
emulated return-to-center controller (a pointing device like
a joystick which returns to a resting position when it is
released) and a few alternatives.
0131 Referring to the “control stick” view 920 we
describe how a return-to-center controller is emulated when
the user has available a non-return-to-center pointing device
with a button Such as a mouse. Navigation begins when the
user guides the mouse to "drag display object 922, here an
oval representing the top of a control Stick, in any direction
from its rest position 924 in the center of the region 926
(shown shaded) in which the object may travel.
0132) “Drag” means that the user clicks on the object and
moves the mouse with its button depressed. While the button
is depressed, the emulation moves display object 922 to
follow the pointer as limited by the travel region. Specifi
cally, if the “cursor'928-an on-screen representation of the
position of a user mouse or other pointing device provided
by an operating System—is at the position shown in View
920 when the button is depressed, and the user Subsequently
causes it to move to its position shown in view 930 with the
button still depressed:

0133) Step 120"Monitor User Input Device” of FIG.
5 detects these events.

0134) Step 122"Update Emulated Joystick Position”
then moves display object 922 by the same amount

May 1, 2003

in each dimension that the cursor has moved, and
will record this current displacement, the vector 932.

0.135 This displacement of the emulated controller
is then used by other parts of the invention as if it
were the displacement of a physical return-to-center
controller.

0.136 Step 120 also detects the release of the mouse
button, at which time step 122 moves the display object 922
back to its rest position centered at 924 and updates the
emulated controller displacement to {0,0}.
0.137 The further the object is dragged from the rest
position, the greater the emulated controller displacement,
and the more rapidly the Focus changes, by the mapping 144
of FIG 5.

0.138. By always rendering the “stick' part of the control
stick with one end at the bottom of the travel region and the
other end near the center of display object 922, the image
approximates the look of a control Stick Viewed from above
but not directly above, so that in view 930 the stick appears
foreshortened.

0.139. Each of the following alternative layouts also show
a round draggable object at its rest position in a shaded
region of allowed travel. Alternate layout 940 is for a
Vertically displayed hierarchy with the hierarchy root being
to the left. It shows a round object which can be dragged left
in the direction of hierarchy ascent or in any combination of
the opposite and perpendicular directions. Lateral navigation
in combination with hierarchy ascent is prohibited. Layout
950 shows a layout that completely restricts travel to one
dimension at a time. Layout 960 splits this into two separate
Scrollers, each of which is “return-to-center'.

0140 FIG. 16 shows a sample sequence of views pre
Sented to a user navigating a hierarchy by nudging control
stick 992 away from its rest position in the center of the
round area Surrounding it. The illustrated implementation is
configured horizontally with the top of the hierarchy at the
top of the view. The views shown here are only samples
from the animated sequence of views the user sees. While
viewing view 994, the user nudges control stick 992 down
ward to descend the hierarchy, then at about the time of view
995, the user moves control stick 992 to the left to swing left
as well as downward through the subnodes of the node
labeled “Computers and Internet”. At about the time of view
996, the user is cruising due left to center “Build Your Visual
Studio 6.0 Library”. Then as shown below view 997, control
stick 992 is again pushed slightly downward to bring the
child nodes into view 997. At this point the user releases
control stick 992 and it returns to its home position as
shown.

0141 FIG. 17 shows a sequence of six views 972
through 977 presented to a user navigating indexed data (in
this case, a dictionary), where the implementation is con
figured vertically with the hierarchy root at the left side of
the View. Again, the ViewS shown here are only a Sampling
of the animated Sequence of views the user SeeS. In this
Sequence, the user is drilling directly "down” in the hierar
chy by pushing the control Stick to the right. AS the non-leaf
nodes are of no interest to the user other than as an aid to
navigation, they are not “active'. Only the leaf nodes
appearing in View 977 are active and appear as buttons.

US 2003/0080990 A1

0142 FIG. 18 illustrates a hypothetical deployment at a
Single web site to allow rapid SeamleSS navigation of that Site
as it would appear in a browser window. Visually, a page at
the site is composed of a main frame 986 and a navigation
frame 984. A vertically-oriented view of a hierarchy 980 and
an emulated control Stick 992 appear in the navigation
frame. The hierarchy in this case is the hierarchical organi
Zation of a web site. Each node corresponds to a page in the
Site hierarchy which can be loaded into the main frame, and
a node's associated action is interpreted to cause a load of
the corresponding page into that frame. We See the site just
after the button labeled “Museum Review 1998 was
clicked, causing the corresponding content to be loaded into
the main frame.

0143. Other embodiments are within the scope of the
following claims.
0144. The invention is easily applicable to a wide range
of uses because:

0145 Hierarchies are ubiquitous.
0146 Hierarchy geometry is input as part of the
hierarchy information rather than hard-coded in an
implementation.

0147 Node-specific appearances are input as part of
the hierarchy information rather than hard-coded in
an implementation.

0.148 Node-specific actions are input as part of the
hierarchy information and are interpreted by a Sur
rounding application in an application-specific Way
rather than by the invention.

014.9 The invention can be applied to navigating a file
System. For Such purposes a node-specific action might be,
for files, to open a file in a file-type-specific way, and for
directories, no node-specific action is necessary as naviga
tion itself “opens” the directory. The invention can be
applied to file Systems in a network logically combined as if
they comprised one large file System.
0150. The invention can be applied to allow easy user
navigation of a hierarchically organized set of pages at a
large web site, as illustrated in FIG. 18. The small display
area demanded by the invention to navigate a hierarchy of
any size can be placed in a “navigation frame” of a browser
window, allowing the user to browse the site and from there
control the content of a larger “main frame” of the window.
More generally, the invention can be likewise be applied to
allow easy user navigation of any hierarchically organized
Set of web pages which may reside in a large number of
different Sites. For Such purposes, a node-specific action
places the web page advertised by the Selected node in the
main frame. The invention can be deployed for Such an
application by Several means, including as a "java applet”,
as a “plug-in', or as a part of the browser itself.
0151. The invention can be applied to navigating a docu
ment with an outline. A node-specific action in this case
places the user in the associated part of the document.
“Document with an outline' includes well-outlined books
Such as most textbooks, Bible versions which have been
divided into book, chapter and verse, and many reference
and how-to books.

0152 The invention can be applied to navigating a flat
list by “indexing the list or file. That is, a hierarchy can be

May 1, 2003

created in which the last level is comprised of leaf nodes
asSociated with the goal of navigation, the elements of the
list. (For a dictionary example, leaf nodes are associated
with words.) All other nodes are synthesized and labeled to
provide reliable Signposts for getting to the right leaf nodes.
(In the dictionary example, these would identify alphabetic
ranges like “Aar-Byz”.) The non-leaf nodes then would have
no node-Specific action. A leaf node's action for a dictionary
might be for the computer to print or to speak a definition or
a translation. The action for a contact list leaf node might be
to print an address, Start an email message, or dial the phone.
FIG. 17 illustrates such alphabetic navigation of a word list.
0153. The invention can be applied to navigation of an
XML file, either to edit the file or to create a flexible
application driven by the XML file.
0154) The invention can be applied to user navigation of
an encoded hierarchy Such as the Dewey Decimal System.
In this case a node-specific action might bring up informa
tion about the book.

O155 The invention can be applied to allow easy user
entry of postal addresses or other locations by browsing
hierarchically arranged geographic regions. For instance,
child nodes of a node labeled “New England” might be
labeled with State names.

0156 The invention can be applied to allow rapid user
entry of numeric data Such as a postal code, where the child
nodes of a node labeled “347 would be “3470”, “3471,
“3472”, “3473”, “3474”, “3475”, “3476”, “3477”, “3478,
and "3479, and a postal-code hierarchy could thus be
Synthesized.

O157 The invention can be applied to allow easy user
Selection of categorized products. A recorded Song for
instance might be categorized at the top level as “music',
then "rock/pop”, then "hip-hop', then by recording artist,
then by recording, then by track title.
0158. The invention can be applied to entry of text from
any Set of characters. For a large character Set Such as
“hanzi used for the Chinese language, characters can be
categorized into a hierarchy using conventional indexing
methods (Chinese dictionaries are typically categorized by
number of Strokes), or in Some other way, Such as catego
rization by Visual Similarity. The invention is particularly
applicable when a keyboard is unavailable or impractical for
text entry.

0159. The invention can be applied to allow easy user
navigation of content which is not hierarchical in its native
mode (Such as a large unorganized site, a corpus of litera
ture, or the entire web) but upon which a hierarchy can be
imposed using "Self-organizing maps” or other similarity
Seeking technology.

What is claimed is:
1. A method comprising
identifying a hierarchy position in a Space defined by a

hierarchy of nodes, the Space having at least two
dimensions, each node being uniquely identifiable
within the Space by values in the respective dimen
Sions, including a node level identifying the node's
hierarchy level and a node-in-level identifying the node
uniquely among nodes in that level,

US 2003/0080990 A1

the hierarchy position being identified by position values
in the dimensions that are different from the node level
and the node-in-level.

2. The method of claim 1 in which one of the position
values comprises a depth value in the form of a non-integral
number.

3. The method of claim 1 in which one of the position
values comprises a position-in-level value in the form of a
non-integral number.

4. The method of claim 3 in which the position-within
level value comprises a node-in-value level identifying one
node plus a floating-point number representing an offset of
the position from that node.

5. The method of claim 1 further comprising
using the hierarchy position to identify a focus of a user's

view of the hierarchy.
6. A method comprising
displaying representations of nodes of a hierarchy in a

Space on a display, each node representation fully
occupying a Subspace within the Space, and

allocating the Space entirely to the Subspaces.
7. The method of claim 6 in which the nodes are organized

in levels in the hierarchy and the Space is allocated among
the levels So that one level is fully represented in a dimen
Sion of the display that corresponds to changing levels and
the levels of the hierarchy above and below the one level are
at least partially represented.

8. The method of claim 7 in which each of the levels is
represented as a band in the Space, nodes represented in one
band have a parent-child relationship with nodes represented
in an adjacent band, and within a band Space is allocated So
that the Subspace of a parent has the Same dimension along
the band as the Sum of the dimensions of its children along
the adjacent band.

9. A method comprising

for a node in a hierarchy of nodes,

rendering a container associated with the node and a
representation of information associated with the
node, the container having dimensions that change
with an amount of Space dynamically allocated to the
node based on a changing focus in the hierarchy, the
representation having unchanging dimensions,

drawing the container and the representation on a display,
and when the focus changes,

re-rendering the container with updated dimensions
and drawing the container on the display,

and, without re-rendering, copying the rendered repre
Sentation to a new location.

10. The method of claim 9 in which the drawn container
indicates the node's position in the hierarchy and its rela
tionship to nearby nodes.

11. The method of claim 10 in which the representation
includes graphics or text or both.

12. A method comprising

receiving information indicating a displacement of a user
input device within a two-dimensional frame of refer
CICC,

May 1, 2003

translating displacement in at least one of the dimensions
to a rate of change of a hierarchy position used to
identify a focus of a user's view of the hierarchy.

13. The method of claim 12 in which one dimension
represents a depth in the hierarchy and the other dimension
represents position-within-level.

14. The method of claim 12 in which one dimension
represents a level depth in the hierarchy and the other
dimension represents position-within-level.

15. A method comprising
displaying a representation of a portion of a hierarchy of

nodes to a user,

asSociating with each node an action to be performed by
an application, the action being other than navigation of
the hierarchy, and enabling a user to navigate in the
displayed representation of the portion of the hierarchy
by a first type of action, and

enabling a user to trigger the action associated with a
displayed node of the hierarchy by invoking the node
using a Second type of action.

16. The method of claim 15 in which the first type of
action comprises dragging.

17. The method of claim 15 in which the second type of
action comprises clicking.

18. A method comprising
displaying a representation of a portion of a hierarchy of

nodes,

providing an emulation of a return-to-center input device
for enabling a user to navigate the hierarchy,

in response to the user manipulating a non-return-to
center input device to indicate an intended manipula
tion of the emulation for navigating the hierarchy,
treating the user's manipulation as a manipulation of
the return-to-center input device.

19. The method of claim 18 in which the non-return-to
center input device comprises a computer mouse, trackball,
or pad.

20. The method of claim 18 in which the return-to-center
input device comprises a joystick.

21. The method of claim 18 in which the emulation
includes rendering the device on a display.

22. The method of claim 18 in which the response to the
user manipulation is to change a focus position in the
hierarchy.

23. The method of claim 22 in which the focus position is
changed by periodically adding a focus increment vector to
a focus position, the focus increment vector being a function
of the vector by which the emulated controller is displaced.

24. The method of claim 18 in which the user manipu
lating the non-return-to-center controller in a single drag
ging action enables the user to view an arbitrarily large
hierarchy of nodes.

25. The method of claim 23 in which the function is
nonlinear to permit the user to vary navigation Velocity over
a wide two-dimensional range.

26. A method comprising

at a client device, displaying information about a portion
of a hierarchy of nodes including a node at the top of
a Sub-hierarchy of the hierarchy,

US 2003/0080990 A1

as a user's navigation causes Sub-hierarchies to approach
View in the displayed information, fetching, from a
Server, information about the Sub-hierarchy that is
approaching view.

27. A method comprising
receiving at a Server a request from a client for a hierarchy

definition,
in response to the request, providing to the client a portion

but not all of the hierarchy definition, the portion
referencing other portions of the hierarchy.

28. The method of claim 27 in which each of the portions
comprises a Sub-hierarchy.

29. The method of claim 27 further comprising determin
ing the size of the portion to be provided to the client
adaptively based on parameters for optimizing communica
tion between the server and the client.

30. The method of claim 27 in which the server automati
cally builds a hierarchy definition portion that is as near as
possible in size to a given minimum portion size.

31. The method of claim 27 in which the server generates
references to Sub-hierarchies and includes them with defi
nitions of nodes of the portion provided.

32. A web page comprising
an area that provides a navigational interface that permits

continuous navigation of a hierarchy of nodes.
33. The web page of claim 32 in which the nodes

comprise links to other web pages.
34. A web browser component comprising
Software that provides a user interface window that per

mits continuous navigation of a hierarchy of nodes.
35. The component of claim 34 in which the nodes

comprise links to web pages.
36. The component of claim 35 in which the window

occupies less than 25% of the web page.
37. A user interface comprising
a device that permits continuous navigation of a hierarchy

for Selecting from a hierarchy.

May 1, 2003

38. The user interface of claim 37 in which the hierarchy
comprises a hierarchical function menu.

39. The user interface of claim 37 in which the hierarchy
comprises a hierarchical file System.

40. The user interface of claim 37 in which the hierarchy
comprises a document encoded in XML or an extension
thereof.

41. The user interface of claim 37 in which the hierarchy
comprises a hierarchical indeX constructed from a docu
ment, list, or table.

42. The user interface of claim 37 in which the hierarchy
comprises an encoded hierarchy.

43. The user interface of claim 37 in which the encoded
hierarchy comprises the Dewey Decimal System.

44. The user interface of claim 37 in which the hierarchy
comprises categorized products.

45. The user interface of claim 37 in which the hierarchy
comprises postal addresses or other location by geographic
region.

46. The user interface of claim 37 in which the hierarchy
comprises characters belonging to a character Set to be
Selected for text entry.

47. The user interface of claim 37 in which the hierarchy
comprises a corpus which is not hierarchical in its native
form and upon which hierarchy has been imposed using a
Similarity-seeking technology.

48. A method comprising

displaying a portion of a hierarchy at a browser,
enabling a user to navigate continuously through levels

and nodes of the hierarchy, and
during navigation delivering portions of the hierarchy

from a remote server to the browser in time to enable
the continuous navigation.

