
(12) STANDARD PATENT (11) Application No. AU 2012322844 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Device linking

(51) International Patent Classification(s)
HO4L 12/12 (2006.01) HO4L 12/16 (2006.01)

(21) Application No: 2012322844 (22) Date of Filing: 2012.10.10

(87) WIPO No: W013/055835

(30) Priority Data

(31) Number (32) Date (33) Country
61/545,947 2011.10.11 US
13/291,354 2011.11.08 US

(43) Publication Date: 2013.04.18
(44) Accepted Journal Date: 2017.02.23

(71) Applicant(s)
Microsoft Technology Licensing, LLC

(72) Inventor(s)
Liu, Min;Discolo, Anthony V.;Lui, Edmund Hon-Sum;Lim, Kean Ee;Elgram, Ryan
B.;Box, Donald F.;Gudgin, Martin J.;Xu, Zhangwei;Manion, Todd R.;Gardner,
Grant;Dewey, Jeremy L.;Cupala, Shiraz J.;Steeb, Curt A.

(74) Agent / Attorney
Davies Collison Cave Pty Ltd, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000, AU

(56) Related Art
US 2005/0159221 Al
US 2007/0067431 Al
WO 2009/135312 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date W O 2013/055835 A3
18 April 2013 (18.04.2013) W I PO I P CT

(51) International Patent Classification: tion, LCA - International Patents, One Microsoft Way,
H04L 12/16 (2006.01) H04L 12/12 (2006.01) Redmond, Washington 98052-6399 (US). LIM, Kean, Ee;

c/o Microsoft Corporation, LCA - International Patents,
(21) International Application Number: One Microsoft Way, Redmond, Washington 98052-6399

PCT/US2012/059621 (US). ELGRAM, Ryan, B.; c/o Microsoft Corporation,
(22) International Filing Date: LCA - International Patents, One Microsoft Way, Red

10 October 2012 (10.10.2012) mond, Washington 98052-6399 (US). BOX, Donald, F.;
c/o Microsoft Corporation, LCA - International Patents,

(25) Filing Language: English One Microsoft Way, Redmond, Washington 98052-6399

(26) Publication Language: English (US). GUDGIN, Martin, J.; c/o Microsoft Corporation,
LCA - International Patents, One Microsoft Way, Red

(30) Priority Data: mond, Washington 98052-6399 (US). XU, Zhangwei; c/o
61/545,947 11 October 2011 (11.10.2011) US Microsoft Corporation, LCA - International Patents, One
13/291,354 8 November 2011 (08.11.2011) US Microsoft Way, Redmond, Washington 98052-6399 (US).

(71) Applicant (for all designated States except US): MI- MANION, Todd, R.; c/o Microsoft Corporation, LCA

CROSOFT CORPORATION [US/US]; One Microsoft International Patents, One Microsoft Way, Redmond,

Way, Redmond, Washington 98052-6399 (US). Washington 98052-6399 (US). GARDNER, Grant; c/o
Microsoft Corporation, LCA - International Patents, One

(72) Inventors: LIU, Min; c/o Microsoft Corporation, LCA - Microsoft Way, Redmond, Washington 98052-6399 (US).
International Patents, One Microsoft Way, Redmond, DEWEY, Jeremy, L.; c/o Microsoft Corporation, LCA
Washington 98052-6399 (US). DISCOLO, Anthony, V.; International Patents, One Microsoft Way, Redmond,
c/o Microsoft Corporation, LCA - International Patents, Washington 98052-6399 (US). CUPALA, Shiraz, J.; c/o
One Microsoft Way, Redmond, Washington 98052-6399 Microsoft Corporation, LCA - International Patents, One
(US). LUI, Edmund, Hon-Sum; c/o Microsoft Corpora- Microsoft Way, Redmond, Washington 98052-6399 (US).

[Continued on next page]

(54) Title: DEVICE LINKING

- 0 (57) Abstract: Device linking is described. In one or more implementations,
data is maintained at a network service that describes characteristics of a
plurality of devices that are associated with a user account of the network
service. A communication is formed to be received by one of the plurality of
devices that includes a portion of the data that pertains to another one of the
plurality of devices and that is suitable by the receiving device to discover
the other one of the plurality of devices to initiate a local network connection
between the devices.

SrieProvider

LikngModule

Neiwo0

1118

Computing Device 10

Inu/utu odl 106

110

Coriutng Devce

Mod u~

Fig.1 L1kn

WO 2013/055835 A3 ||IllllI||IllV||1l1ll1ll1llI1lI|||III|||||||||||1|1|I||1|1||I||1|11|||1|1|||I|I|I|||||||||||||

STEEB, Curt, A.; c/o Microsoft Corporation, LCA - In- UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
ternational Patents, One Microsoft Way, Redmond, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
Washington 98052-6399 (US). EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
(81) Designated States (unless otherwise indicated, for every SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,

kind of national protection available): AE, AG, AL, AM, GW, ML, MR, NE, SN, TD, TG).
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, Declarations under Rule 4.17:
DO, DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM as to applicant's entitlement to apply for and be granted
GT, HN, HR, HU, ID, EL, IN, IS, JP, KE, KG, KM, KN, aptn Rl .7i)
KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA,
MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, - as to the applicant's entitlement to claim the priority of
NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, the earlier application (Rule 4.17(iii))
RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, Published:
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, ZM, ZW. - with international search report (Art. 21(3))

(84) Designated States (unless otherwise indicated, for every (88) Date of publication of the international search report:
kind of regional protection available): ARIPO (BW, GH, 1 August 2013

GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

WO 2013/055835 PCT/US2012/059621

DEVICE LINKING

BACKGROUND

[0001] Users may interact with a variety of different devices in a given day. For

example, a user may interact with a desktop PC, a laptop computer, a mobile

communication device (e.g., a mobile phone), a game console, and so on.

Traditional interaction with the devices, however, was often disjointed such that

15 interaction with one device was divorced from interaction with another device.

Further, even though techniques were subsequently developed in an attempt to

rectify this problem, these techniques were often complicated and inefficient and

therefore users typically chose to forgo this functionality.

SUMMARY

[0002] Device linking is described. In one or more implementations, data is

20 maintained at a network service that describes characteristics of a plurality of

devices that are associated with a user account of the network service. A

communication is formed to be received by one of the plurality of devices that

includes a portion of the data that pertains to another one of the plurality of devices

and that is suitable by the receiving device to discover the other one of the plurality

25 of devices to initiate a local network connection between the devices.

[0003] In one or more implementations, data is received at a computing device,

which is associated with a user account, from a network service that identifies

30 another computing device associated with the user account. Responsive to a

determination by the computing device that the other computing device is available

via a local network connection, the local network connection is formed by the

computing device with the other computing device. Responsive to a determination

by the computing device that the other computing device is not available via a local

35 network connection, a non-local network connection is formed by the computing

device with the other computing device.

[00041 In one or more implementations, availability is discovered, through

communication with a network service, of a device to support a companion

experience, the availability determined through association of the device with a

1

user account. Data received from the network service is used to initiate a local

network connection between the computing device and the device as a result of

the discovering that is usable to communicate data involved in the companion

experience.

[0004A] In one aspect there is provided a method implemented by one or

more network service provider computing devices of a service provider that

provide a network service, the method comprising:

associating, by the one or more network service provider computing

devices, a plurality of user devices with a user account of the network service;

maintaining data, at the one or more network service provider computing

devices, that describes characteristics of the plurality of user devices that are

associated with the user account of the network service;

forming, at the one or more network service provider computer devices,

a communication to be received by one of the plurality of user devices that

includes a portion of the data maintained at the network service that pertains to

another one of the plurality of user devices, the portion of the data enabling the

receiving user device to discover the other one of the plurality of user devices

to initiate a local network connection between the user devices that facilitates a

companion experience between the user devices; in which one of the receiving

user device or the other one of the plurality of user devices is used to control

content output at a different one of the receiving user device or the other one of

the plurality of user devices; and

communicating the formed communication to the receiving user device.

[0004B] In a further aspect there is provided a method comprising:

receiving data at a computing device, which is associated with a user

account, from one or more network service provider computing devices that

identifies another computing device associated with the user account, the

computing device and the other computing device being associated with the

user account of the one or more network service provider computing devices

before the receiving;

2

responsive to a determination by the computing device that the other

computing device is available via a local network connection, using the data

received from the one or more network service provider computing devices to

form the local network connection by the computing device with the other

computing device to facilitate a companion experience between the computing

device and the other computing device;

responsive to a determination by the computing device that the other

computing device is not available via a local network connection, using the data

received from the one or more network service provider computing devices to

form a non-local network connection by the computing device with the other

computing device to facilitate the companion experience between the

computing device and the other computing device; and

responsive to forming the local or non-local network connection, using

the data from the one or more network service provider computing devices to

configure control communications that enable one of the computing device or

the other computing device to control operations of a different one of the

computing device or the other computing device.

[0004C] In a further aspect there is provided a method implemented by a

computing device, the method comprising:

discovering availability, through communication with a network service,

of a device to support a companion experience in which content is output by

one of the computing device or the device and supplemental content, which

supplements the content being output, is output by a different one of the

computing device or the device, the availability determined through association

of the device with a user account;

using data received from the network service to initiate a local network

connection between the computing device and the device as a result of the

discovering that is usable to communicate data involved in the companion

experience;

2A

sending control communications to the device that are effective to

control output of the content at the device when the computing device outputs

the supplemental content; and

receiving control communications from the device that are effective to

control output of the content at the computing device when the device outputs

the supplemental content.

[0005] This Summary is provided to introduce a selection of concepts in a

simplified form that are further described below in the Detailed Description.

This Summary is not intended to identify key features or essential features of

the claimed subject matter, nor is it intended to be used as an aid in determining

the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The detailed description is described with reference to the

accompanying figures. In the figures, the left-most digit(s) of a reference

number identifies the figure in which the reference number first appears. The

use of the same reference numbers in different instances in the description and

the figures may indicate similar or identical items. Entities represented in the

figures may be indicative of one or more entities and thus reference may be

made interchangeably to single or plural forms of the entities in the discussion.

[0007] FIG. 1 is an illustration of an environment in an example

implementation that is operable to perform device linking techniques described

herein.

[0008] FIG. 2 is an illustration of a system in an example implementation

showing the computing devices and service provider of FIG. 1 in greater detail.

[0009] FIG. 3 is a flow diagram that depicts a procedure in an example

implementation in which a network service is configured to broker connections

between devices.

[0010] FIG. 4 is a flow diagram that depicts a procedure in an example

implementation in which a computing device is configured to leverage local

and/or remote network connections to communicate with another computing

device.

2B

[0011] FIG. 5 is a flow diagram that depicts a procedure in an example

implementation in which a companion experience is supported through device

linking.

2C

WO 2013/055835 PCT/US2012/059621

[0012] FIG. 6 illustrates an example system that includes the computing device as

described with reference to FIG. 1.

[0013] FIG. 7 illustrates various components of an example device that can be

implemented as any type of computing device as described with reference to FIGS.

5 1-4 to implement embodiments of the techniques described herein.

DETAILED DESCRIPTION

Overview

[0014] Traditional techniques that were utilized to link devices together typically

involve a multitude of manual steps to be performed by the user. Further, these

10 steps were often complicated and therefore users traditionally did not avail

themselves of these techniques, even when available.

[0015] Device linking techniques are described. In one or more implementations,

techniques are described in which different types of devices may work in

conjunction, such as use of a mobile communications device to support interaction

is with a game console. A variety of techniques are discussed herein that may be

leveraged to link the devices together, such as to support this interaction. Examples

of this include leveraging use of the "cloud" and a local connection to perform the

setup, use of local and remote connections, support of fallback functionality, and so

on. Further discussion of this and other techniques may be found in relation to the

20 following sections.

[0016] In the following discussion, an example environment is first described that

may employ the techniques described herein. Example procedures are then

described which may be performed in the example environment as well as other

environments. Consequently, performance of the example procedures is not limited

25 to the example environment and the example environment is not limited to

performance of the example procedures.

Example Environment

[0017] FIG. 1 is an illustration of an environment 100 in an example

implementation that is operable to employ techniques described herein. The

30 illustrated environment 100 includes examples of two computing devices 102, 104

that may be configured in a variety of ways. The computing devices 102, 104, for

3

WO 2013/055835 PCT/US2012/059621

instance, may be configured as a traditional computer (e.g., a desktop personal

computer, laptop computer, and so on), a mobile station, an entertainment

appliance, a game console communicatively coupled to a display device (e.g., a

television, a mobile communication device (e.g., a wireless phone, a tablet), a

5 netbook, and so forth as further described in relation to the example operating

environment and device. Thus, the computing devices 102, 104 may range from

full resource devices with substantial memory and processor resources (e.g.,

personal computers, game consoles) to low-resource devices with limited memory

and/or processing resources (e.g., traditional set-top boxes, hand-held game

10 consoles). In the illustrated implementation the computing device 102 is

configured as a game console and the other computing device 104 is configured as

a mobile communication device, although other implementations are also

contemplated as described above.

[0018] The computing devices 102, 104 are each illustrated as including an

15 input/output module 106, 108, respectively. The input/output modules 106, 108 are

representative of functionality relating to recognition of inputs and/or provision of

outputs by the respective computing device. For example, the input/output

modules 106, 108 may be configured to receive inputs from a keyboard, mouse, to

identify gestures and cause operations to be performed that correspond to the

20 gestures, and so on. The inputs may be detected by the input/output modules 106,

108 in a variety of different ways.

[0019] The input/output module 106 for instance, may be configured to receive

one or more inputs via touch interaction with a hardware device, such as a

controller 110 as illustrated. Touch interaction may involve pressing a button,

25 moving a joystick, movement across a track pad, use of a touch screen of the

display device (e.g., detection of a finger of a user's hand or a stylus by the

computing device 102), and so on.

[0020] Recognition of the inputs may be leveraged by the input/output modules

106, 108 to interact with a user interface output by the respective computing device

30 102, 104 such as to interact with a game, an application, browse the internet,

change one or more settings of the computing devices 102, 104, and so forth. A

4

WO 2013/055835 PCT/US2012/059621

variety of other hardware devices are also contemplated that involve touch

interaction with the device. Examples of such hardware devices include a cursor

control device (e.g., a mouse), a remote control (e.g. a television remote control), a

mobile communication device (e.g., a wireless phone configured to control one or

5 more operations of the computing device 102 as illustrated by computing device

104), and other devices that involve touch on the part of a user or object.

[0021] A natural user interface (NUI) may also be supported by the input/output

modules 106, 108, such as to recognize interactions that may not involve touch.

For example, the computing devices 102, 104 may leverage input devices to detect

10 inputs without having a user touch a particular device, such as to recognize audio

inputs through use of a microphone. For instance, the input/output modules 106,

108 may be configured to perform voice recognition to recognize particular

utterances (e.g., a spoken command) as well as to recognize a particular user that

provided the utterances.

15 [00221 In another example, the input/output modules 106, 108 that may be

configured to recognize gestures, presented objects, images, and so on through use

of a camera. The camera, for instance, may be configured to include multiple

lenses so that different perspectives may be captured and thus determine depth as

shown for computing device 102 in the game console configuration. The different

20 perspectives, for instance, may be used to determine a relative distance from the

input device and thus a change in the relative distance. The different perspectives

may be leveraged by the respective computing devices 102, 104 as depth

perception. Naturally, other images may also be leveraged without use to depth

sensing, such as a camera of the computing device 104 as configured as a mobile

25 communications device. The images may be leveraged to provide a variety of

functionality, such as techniques to identify particular users (e.g., through facial

recognition), objects, perform searches, and so on.

[0023] The input-output modules 106, 108 may leverage the inputs to perform

skeletal mapping along with feature extraction of particular points of a human body

30 (e.g., 48 skeletal points) to track one or more users (e.g., four users simultaneously)

to perform motion analysis. For instance, captured images may be analyzed by the

5

WO 2013/055835 PCT/US2012/059621

input/output modules 106, 108 to recognize one or more motions made by a user,

including what body part is used to make the motion as well as which user made

the motion. An example is illustrated through recognition of positioning and

movement of one or more fingers of a user's hand 112 and/or movement of the

5 user's hand 112 as a whole. The motions may be identified as gestures by the

input/output modules 106, 108 to initiate a corresponding operation.

[0024] The computing devices 102, 104 are further illustrated as including

respective linking modules 114, 116. The linking modules 114, 116 are

representative of functionality of the respective devices to initiate and manage one

10 or more network connections between the devices. The connections may be used to

support a variety of different functionality, such as a companion experience. For

example, the computing device 104 configured as a mobile communications device

may interact with the computing device 102 configured as a game console to

supplement the user experience. This may include use of the computing device 104

15 as a game controller, output of an electronic program guide to control an output of

broadcast content by the computing device 102, and so on. Thus, interaction with

the computing device 104 may be used to control one or more operations

performed by the computing device 102 and vice versa. The computing device

102, for instance, may provide supplemental content for output by the computing

20 device 104.

[0025] The linking modules 114, 116 may include a variety of different

functionality to initiate and manage the network connections. For example, the

linking modules 114, 116 may include functionality to form a local network

connection 118 between the devices (e.g., a local Wi-Fi connection) and/or a

25 remote connection involving a network 120, e.g., "over the cloud" by leveraging a

service provider 122 that is accessible via the Internet. Accordingly, in this second

example the service provider 122 is also illustrated as including a linking module

124 which is representative of functionality of the service provider 122 to also

support device linking functionality.

30

6

WO 2013/055835 PCT/US2012/059621

[0026] The linking modules 114, 116, for instance, may leverage the remote

connection of the network 120 to contact the service provider 120 to perform

device discovery, e.g., "locate" a device with which to communicate. This data

may then be used to set-up a local network connection 118 between the devices to

5 support the companion experience as described earlier. In another example, this

connection may be maintained in whole or in part over a remote connection

involving the network 120, e.g., the Internet or other wide area network. Thus, the

linking modules 114, 116 may leverage a variety of different types of connections

and techniques to form the connections, further discussion of which may be found

10 in relation to the following figure.

[0027] Generally, any of the functions described herein can be implemented using

software, firmware, hardware (e.g., fixed logic circuitry), or a combination of these

implementations. The terms "module," "functionality," and "logic" as used herein

generally represent software, firmware, hardware, or a combination thereof. In the

15 case of a software implementation, the module, functionality, or logic represents

program code that performs specified tasks when executed on a processor (e.g.,

CPU or CPUs). The program code can be stored in one or more computer readable

memory devices. The features of the techniques described below are platform

independent, meaning that the techniques may be implemented on a variety of

20 commercial computing platforms having a variety of processors.

[0028] For example, the computing devices 102, 104 may also include an entity

(e.g., software) that causes hardware of the computing devices 102, 104 to perform

operations, e.g., processors, functional blocks, and so on. For example, the

computing devices 102, 104 may include a computer-readable medium that may be

25 configured to maintain instructions that cause the computing device, and more

particularly hardware of the computing devices 102, 104 to perform operations.

Thus, the instructions function to configure the hardware to perform the operations

and in this way result in transformation of the hardware to perform functions. The

instructions may be provided by the computer-readable medium to the computing

30 device 102 through a variety of different configurations.

7

WO 2013/055835 PCT/US2012/059621

[0029] One such configuration of a computer-readable medium is signal bearing

medium and thus is configured to transmit the instructions (e.g., as a carrier wave)

to the hardware of the computing device, such as via a network. The computer

readable medium may also be configured as a computer-readable storage medium

5 and thus is not a signal bearing medium. Examples of a computer-readable storage

medium include a random-access memory (RAM), read-only memory (ROM), an

optical disc, flash memory, hard disk memory, and other memory devices that may

use magnetic, optical, and other techniques to store instructions and other data.

[0030] FIG. 2 illustrates a system 200 showing the computing devices 102, 104

10 and service provider 122 in greater detail. Connections to support a companion

experience between the computing devices 102, 104 may be initiated and

maintained in a variety of ways. For example, each of the computing devices 102,

104 may be associated with a user account of a network service of the service

provider 122. Therefore, users may simply login to the user account of the service

is provider 122 by providing credentials via the network 120 without involving extra

login information, key codes, and so forth. These credentials may then be

processed by an account manager module 202 of the service provider 122 to

authenticate the user. Further, this authentication may be used to access a variety

of different services of the service provider 122 (and other service providers)

20 through a "one-time" login, such as a music service, messaging service, calendaring

service, contact service, and so forth.

[0031] Once authenticated, functionality of the linking module 124 may be

exposed, such as to form a connection between the devices. The linking module

124, for instance, may be configured to maintain data that describes network

25 connection details that may be utilized to form a network connection between the

devices. This may include data that describes local network connection 118 details,

such as to support a Wi-Fi connection through use of an identifier, network name,

and so on. This data may also describe remote connection details for access via the

network 120 (e.g., the Internet), such as an IP address, bandwidth supported,

30 location information, network access type, and so on.

8

WO 2013/055835 PCT/US2012/059621

[0032] The data may be communicated to the service provider 122 in a variety of

ways and at a variety of times. For example, the data may be communicated as part

of authentication, may be stored from a previous communication, may be provided

in response to a request received from the service provider 122 (e.g., after

5 authentication has been achieved), and so on. Thus, the linking modules 114, 116

may communicate a variety of different data that may be leveraged to form a

connection.

[0033] In one or more implementations, settings may be exposed on the respective

linking modules 114, 116 to control whether to provide this data. For example, a

10 configuration setting may be exposed to make the respective computing device

discoverable, which may be set "on" as a default although other examples are also

contemplated.

[0034] Additionally, another configuration setting may be used to control whether

the computing device is to maintain a live connection with the service provider 122,

is which may be set to "off' as a default. This may be used to reduce resource

consumption (e.g., by the network 120 and/or service provider), such that the

service provider 122 is not forced to maintain the device connection feature for

devices that do not wish to do so. For example, this setting may be set to "off'

initially. However, once a connection is attempted this setting may be switched to

20 "on" automatically and without user intervention to maintain a "ready" open

connection to perform the linking described herein.

[0035] To initiate a connection, the computing devices 102, 104 may first

"discover" each other in a variety of ways. For example, the linking modules 114,

116 may be configured to first determine whether another device is available via

25 the local network connection 118, such as available via a Wi-Fi, Bluetooth, or other

wired or wireless network. This discovery may be configured to leverage data

previously stored by the respective linking modules 114, 116, such as identification

of particular network identifiers of the respective computing devices 102, 104,

networks, and other information, although other examples are also contemplated.

30

9

WO 2013/055835 PCT/US2012/059621

[0036] If a device is not so discovered, the linking modules 114, 116 may

communicate with the service provider 112 to discover if another device is

available for a connection. The computing devices 102, 104, for instance, may

communicate data that indicates a location of the devices, data that is usable to

5 discover the devices over a local connection, and so on. The data may indicate a

particular location, such as in a particular room, leverage GPS coordinates, and

other position-determination functionality. Further, this information may be used

to determine a type of connection to establish, such as to establish a remote

connection via the network 120 when a local network connection 118 is not

10 available, e.g., the devices are located apart at a distance that is greater than that

supported by the local network connection 118.

[0037] For example, the computing device 104 may communicate with the linking

module 124 of the service provider 122 via the network 120 to determine whether

other devices (e.g., computing device 102) that are registered with the user's

15 account are available for linking. The service provider 122 may then return an

answer, which may include additional local network connection information (e.g.,

wireless or wired subnet) for those devices. The linking module 116 of the

computing device 104 may then search the local network to try to find the other

device or devices using that information. If found, the computing devices 102, 104

20 may negotiate a direct link via a local network connection 118 to communicate,

which may support more efficient communication than that supported via the

network 120 in one or more instances. For instance, the local network connection

118 may support a higher bandwidth than a remote connection via network 120.

Further, cost considerations may also be utilized as part of a decision process

25 regarding which network to use, e.g., a Wi-Fi network versus a mobile phone

network that has a usage cap.

[0038] If not found, the computing devices 102, 104 may communicate via the

network 120 in a variety of ways. For example, communications may pass through

the service provider 122 as an intermediary. Thus, the communications in this

30 example may leverage the internet or other wide area network to connect the

devices, one to another. In another example of a remote connection, tunneling

10

WO 2013/055835 PCT/US2012/059621

techniques may be supported to pass the communications, such as by leveraging IP

addresses of the other devices by the respective linking modules 114, 116 to

communicate directly via the network 120 without having the service provider 122

actively work as an intermediary.

5 [0039] A variety of other examples are also contemplated, such as a hybrid mode

in which different communications are passed via different networks. For example,

such a hybrid mode may be used to support communication of commands via the

network 120 and content via the local network connection 118 and vice versa. This

division of communications may be performed for a variety of reasons, such as due

10 to limitations in a topology of specific network connections supported by the

respective networks.

[0040] In some instances, characteristics of a network connection may change

during usage. Accordingly, the linking modules 114, 116, 124 may be configured

in a variety of different ways to address these changes. For example, the linking

15 modules 114, 116, 124 may be configured to notify a user (e.g., via a user interface)

of this change. Additionally, the linking modules 114, 116, 124 may be configured

to adjust (e.g., disable) features that may not work well in this state, such as to

reduce a resolution, functionality that is communication intensive, features that are

not supported by that network, and so on.

20 [0041] Further, the linking modules 114, 116, 124 may be configured to cache

commands, which may be used to improve efficiency and handle intermittent

connection issues. This caching may be performed at the computing devices 102,

104 as well as at the service provider 122. A variety of other examples are also

contemplated.

25 [0042] For example, the linking modules 114, 116, 124 may be configured to

support automatic fallback recovery. The local network connection 118, for

instance, may degrade or become disconnected, such as due to movement of the

computing device 104 away from computing device 102, network interference, and

so on. In such instances, the linking modules 114, 116, 124 may cause a

30 connection to be achieved via the network 120, instead, may decide to employ a

hybrid format as previously described, and so on. The reverse is also true in that if

11

WO 2013/055835 PCT/US2012/059621

reliability of the network 120 decreases the local network connection 118 may be

leveraged automatically and without user intervention to support communication

between the devices.

[0043] This change may also be used to switch networks responsive to a

5 determination that another one of the networks has become available. For example,

computing device 104 may initially communicate with computing device 102 over

the Internet, such as when the computing device 104 is positioned at a distance at

which the local network connection 118 is not supported. Responsive to a

determination that the computing device 104 is now within local network range of

10 the computing device 102, the linking modules 114, 116 may automatically

communicate over the local network connection 118. As previously described, a

variety of considerations may be taken into account in use of this functionality,

such as cost considerations described above. Thus, a variety of different

functionality may be leveraged to support device linking, which may also be used

15 to support a variety of additional functionality such as a companion experience as

previously described.

[0044] A variety of other functionality may also be supported by the linking

modules 114, 116, 124. For example, as described above the connection may be bi

direction such that each of the devices may send and receive data from other

20 devices. This functionality may be leveraged in a variety of ways. Computing

device 102, for instance, may be configured to inform computing device 104 as to a

current state in an output of content. Computing device 104 may then leverage this

information to provide functionality, such as to locate related content, perform an

Internet search based on one or more scenes associated with the related content, and

25 so forth. The reverse is also true in that computing device 104 may communicate a

state to computing device 102, which may be leveraged by the device to support

functionality, such as to continue playback of content at a current point by

computing device 102 that corresponds to an output of content by computing

device 104.

30

12

WO 2013/055835 PCT/US2012/059621

[0045] In another example, the linking modules 114, 116, 124 may also support a

variety of different encryption methods to protect communications, both via the

local network connection 118, remotely via the network 120, and so on. Further,

although the internet was described in relation to network 120, a variety of different

5 types of networks may also be supported by the techniques, such as with a single

domain, as part of an enterprise, an intranet, and so on. Further discussion of

device linking techniques may be found in relation to the following procedures.

Example Procedures

[0046] The following discussion describes device linking techniques that may be

10 implemented utilizing the previously described systems and devices. Aspects of

each of the procedures may be implemented in hardware, firmware, or software, or

a combination thereof. The procedures are shown as a set of blocks that specify

operations performed by one or more devices and are not necessarily limited to the

orders shown for performing the operations by the respective blocks. In portions of

is the following discussion, reference will be made to the environment 100 of FIG. 1

and the system 200 of FIG. 2.

[0047] FIG. 3 is a flow diagram that depicts a procedure 300 in an example

implementation in which a network service is configured to broker connections

between devices. Data is maintained at a network service that describes

20 characteristics of a plurality of devices that are associated with a user account of the

network service (block 302). The linking module 124 of the service provider 122,

for instance, may receive data from the computing devices 102, 104 that are

associated with a user's account. This data may be received responsive to selection

of a setting at the respective devices to permit discovery of the device.

25 [0048] A communication is formed to be received by one of the plurality of

devices that includes a portion of the data that pertains to another one of the

plurality of devices and that is suitable by the receiving device to discover the other

one of the plurality of devices to initiate a local network connection between the

devices (block 304). The communication, for instance, may include data usable to

30 locate the devices locally, e.g., a wired or wireless subnet via which the other

device is accessible via the local network connection. The communication may

13

WO 2013/055835 PCT/US2012/059621

also include data usable to locate the devices remotely, such as an IP address. This

data may then be used to form connections that may be used to support a variety of

functionality, such as a companion experience as described earlier.

[0049] FIG. 4 is a flow diagram that depicts a procedure 400 in an example

5 implementation in which a computing device is configured to leverage local and/or

remote network connections to communicate with another computing device. Data

is received at a computing device, which is associated with a user account, from a

network service that identifies another computing device associated with the user

account (block 402). As described earlier, the data may describe the device in a

10 variety of ways, such as through a network address, name of the device, and so on.

[0050] Responsive to a determination by the computing device that the other

computing device is available via a local network connection, the local network

connection is formed by the computing device with the other computing device

(block 404). The computing device 102, for instance, may form a local wireless

15 connection (e.g., Wi-Fi) with computing device 104, if available.

[0051] Responsive to a determination by the computing device that the other

computing device is not available via a local network connection, a non-local

network connection is formed by the computing device with the other computing

device (block 406). Continuing with the previous example, if the computing device

20 104 is not available via the local network connection 118, the computing device

102 may form a network connection via the network 120, e.g., the Internet or other

wide area network. A variety of other examples are also contemplated.

[0052] FIG. 5 is a flow diagram that depicts a procedure 500 in an example

implementation in which a companion experience is supported through device

25 linking. Availability is discovered, through communication with a network service,

of a device to support a companion experience, the availability determined through

association of the device with a user account (block 502). Computing device 104

configured as a mobile communications device (e.g., a wireless phone), for

instance, may communicate with the service provider 122 to determine whether a

30 device is available, such as computing device 102 configured as a game console.

14

WO 2013/055835 PCT/US2012/059621

[0053] Data received from the network service is used to initiate a local network

connection between the computing device and the device as a result of the

discovering that is usable to communicate data involved in the companion

experience (block 504). The computing device 104, for instance, may receive data

5 described a wired or wireless subnet via which computing device 102 is available.

A variety of other examples are also contemplated, examples of which may be

found in relation to the following implementation example.

Implementation Example

[0054] The following describes an implementation example of the techniques

10 described previously. In one or more companion experience scenarios, a user may

be able to use a device to browse the video catalog and so on and then pick a

movie, rent it and play it on the console. During the movie, the user may be able to

control it, for example, play/pause, fast forward and rewind and so on using a

mobile communications device or other device. A game console may also be

15 configured to notify the device about things happening on the console, like current

movie state, title change on the console etc. From the device, the user may be able

to launch a title on the console, e.g., to get the title ID of the title running on the

console.

[0055] In terms of communication between the devices, message exchanges may

20 fall into a variety of categories, examples of which include:

e Operations: How do I trigger work on another device?

e Notifications: How do I get notified of state changes on another device?

[0056] There are a variety of notifications that may occur in the system:

e Active Title Changed: A new title has been launched. This notification

25 occurs when a new title is launched on the console, either via controller

input or companion commands.

" Media State Change: Some aspect of playhead state has changed, such as

content ID, playback rate, playhead position, or playing/paused state. This

notification happens both periodically to keep position variables

30 synchronized across devices, as well as instantaneously whenever a change

occurs based on user input (e.g., the stop button was pressed).

15

WO 2013/055835 PCT/US2012/059621

[0057] There are a variety of operations that can be issued in the system:

e Launch Title: Launch a console title, optionally with a command line

argument used to indicate which piece of media content to display. This

command may be issued by the companion device (also referred to as a

5 "companion" in the following discussion) when a new piece of content is

selected from the guide or search results.

e Get Active Title: Query the console for the currently running title. This may

be called when the companion first connects to the console to acquire the

initial title ID, as well as whenever the client explicitly refreshes this

10 information (for example, returning from sleep). The result of this command

contains the same information as an Active Title Changed notification.

" Send Input: Send an input command to the console. This command is issued

by the companion whenever a transport control (e.g., play, pause, stop) is

clicked.

15 e Get Media State: Query the console for the current media state. This is

called when the companion first connects to the console to acquire the initial

media state, as well as whenever the client needs to explicitly refresh this

information (for example, returning from sleep). The result of this command

contains the same information as a Media State Changed notification.

20 Media State

[0058] The primary data structure in this example that is used in both protocol and

APIs is the media state structure. This structure represents the current play head

state and content ID that is playing within a media application/title. Media State

may be derived from the console Media APIs and includes the following

25 fields/properties:

Name Datatype Description

duration Unsigned 64-bit Integer Total duration of content

in 1 OOns units

minSeek Unsigned 64-bit Integer Minimum seek position

in 1 OOns units

16

WO 2013/055835 PCT/US2012/059621

maxSeek Unsigned 64-bit Integer Maximum seek position

in 1 OOns units

position Unsigned 64-bit Integer Current playback position

in 1 OOns units

fRate 32-bit floating point Current playback rate

number (1.Of is normal play)

eTransportState ScourTransportState (see Current transport state

below) (e.g., play, pause, etc.)

eTransportCapabilities TransportCapabilities (see Which transport controls

below) are supported by the

current playback

application/content

MediaAssetId UTF-8 Text (256 bytes Text-based identifier of

max) current content.

[0059] ScourTransportState is an enumeration taken from the console media

APIs:

enum ScourTransportState

{
5 // Undefined

SCOURTRANSPORTSTATEINVALID =0,

// Stop was received or end of content was reached

SCOURTRANSPORTSTATESTOPPED = 1,

// Play/unpause was received but playback has not yet started.

10 SCOURTRANSPORTSTATESTARTING =2,

// Content is currently playing

SCOURTRANSPORTSTATEPLAYING =3,

// Pause was received and playback is suspended until a play/unpause

// is received

15 SCOURTRANSPORTSTATEPAUSED =4,

// Content buffering has occurred and playback is suspended until

// buffering has ended

17

WO 2013/055835 PCT/US2012/059621

SCOURTRANSPORTSTATEBUFFERING =5,

} ;

[0060] An additional enumeration value to indicate that no media is playing (e.g.,

a game is running) may be configured as follows:

5 // No media is playing

SCOURTRANSPORTSTATENOMEDIA = -1,

When this value is used, the remaining fields of the media state are undefined.

[0061] TransportCapabilities is a flags enumeration that indicates what operations

the media player may perform:

10 enum TransportCapabilities

{
// Can respond to Sendlnput(Stop)

TRANSPORTCAPABILITIESCANSTOP = Ox1,

// Can respond to Sendlnput(Pause)

15 TRANSPORTCAPABILITIESCANPAUSE = 0x2,

// Can respond to Sendlnput(Rewind)

TRANSPORTCAPABILITIESCANREWIND = 0x4,

// Can respond to Sendlnput(FastForward)

TRANSPORTCAPABILITIESCANFASTFORWARD = 0x8,

20 // Can respond to Sendlnput(Play)

TRANSPORTCAPABILITIESCANPLAY = Ox1O,

// Can respond to Sendlnput(TogglePlayPause)

TRANSPORTCAPABILITIESCANPLAYPAUSE = 0x20,

// Can respond to Sendlnput(SkipForward)

25 TRANSPORTCAPABILITIESCANSKIPFORWARD = 0x40,

// Can respond to Sendlnput(SkipBackward)

TRANSPORTCAPABILITIESCANSKIPBACKWARD = 0x80,

// Can respond to Sendlnput(Seek, Positon)

TRANSPORTCAPABILITIESCANSEEK = Ox 100,

30 // TODO, grant: ???

TRANSPORTCAPABILITIESISLIVETRANSPORT = 0x200,

18

WO 2013/055835 PCT/US2012/059621

}

Communication

[0062] The communication stack used to enable companion scenarios may

combine local low-latency TCP and UDP messaging with a cloud-based service to

5 support security and device discovery as well as communication between devices

that do not have line-of-sight IP connectivity.

[0063] Communication may be coordinated through the cloud, e.g., a network

service. The console registers with the companion service in order to be discovered

by companion devices. The companion device uses the companion service to

10 determine with which device it may communicate. If there is line-of-sight IP

connectivity between the console and the companion device, subsequent

communication between that device and the console may happen over local TCP

and UDP messaging without service intervention. If there is no line-of-sight IP

connectivity between the console and the companion device, communication may

15 happen via the companion service, albeit at a higher latency. The companion

application may adapt its user interface based on whether a low-latency

communication stack is available, disabling features that" do not make sense" when

relying on cloud-based messaging.

[0064] Device discovery/pairing/authorization may happen through the

20 companion service. The system may perform this as follows:

1. companion devices use an authenticated network ID that corresponds to a

Login ID.

2. A given device communicates with the console that the current user on that

device is logged into. Guest pairing/authorization using invitation codes or

25 other more advanced user interface may also be supported.

[0065] The console may re-register with the companion service when the set of

logged on users changes. Part of this registration may include a set of active users,

an IP address of the console, and the TCP port being used to listen for local

companion commands. Upon registering, the companion service may return a

30 secure session key that the console can use to securely sign and encrypt messages

on the local subnet.

19

WO 2013/055835 PCT/US2012/059621

[0066] When the companion device attempts to join a session, it contacts the

companion service, which then returns both the network address of the console the

current user is logged into, as well as the secure session key that can be used to sign

and seal messages on the local subnet.

5 [0067] Communication with the service may be performed over HTTPS. If line

of-sight IP connectivity is available, subsequent communication may take place

using the TCP/IP for commands (using the TCP/IP address of the console), and

UDP broadcast for notifications (using the IP subnet address of the console). If

line-of-sight IP connectivity is not available, subsequent communications may take

10 place via the companion service.

[0068] In one or more implementations, it is possible that TCP connectivity to the

console is possible, but UDP broadcast to the device is not due to the console and

companion device being separated by an IP router. In that case, the companion

device may receive notifications via the companion service but still issue

15 commands (and receive their responses) over direct TCP to the console.

Security

[0069] In addition to the security provided by the local-subnet (e.g., WEP or WPA

over Wi-Fi), communication in the system may be secured as follows.

Companion device to companion service

20 [0070] Communication between the companion device and the service may be

performed over HTTPS, which may be authenticated using a network ID that

corresponds to a valid console ID. The mobile communications device, for

instance, may acquire an authentication (e.g., SAML) token from a linking service

such as XBL, which it then presents to the companion service. The companion

25 service then issues one or more security tokens for subsequent calls to the service.

For example, a token may be used of subsequent calls to the service and another

token may be used for the console and the mobile communication device to

authenticate the messages.

20

WO 2013/055835 PCT/US2012/059621

Console to companion service

[0071] Communication between the console and the service may be performed

over HTTPS. When the set of logged in XBL users on the console changes, the

console may acquire a SAML token from XBL, which it then presents to the

5 companion service. The companion service then issues a security token for

subsequent calls to the service.

Companion device to/from console

[0072] Once the companion device or console have authenticated against the

companion service, the devices may then establish a secure session to

10 communicate, one with another. A session may be thought of as a secure context

that multiple devices can use to communicate. Each session may have:

1. A session ID (guid) that is tracked by the service that uniquely identifies this

communication session.

2. A 128-bit session key that is used to sign and encrypt messages that are sent

15 over the local subnet.

Whenever the set of logged on users changes on the console, the console may re

authenticate with the companion service, and, if a previous user has logged off, a

new session key may be generated for that session.

[0073] Messages sent between devices on the local subnet may be integrity

20 protected and encrypted. Integrity protection may be provided using HMAC-SHAl,

while encryption may be performed using AES-128 in CBC mode. Replay

protection may be implemented using sequence numbers. The receiver may

maintain a 'high water mark' number and reject messages with a lower number.

Console Implementation

25 [0074] The majority of the communication stack for companion may be

implemented in the console operating system, with a minimal API set exposed to

titles.

21

WO 2013/055835 PCT/US2012/059621

Console API

[0075] The companion API may be called by titles. The API may be referred to as

"LrcSetMediaState." LrcSetMediaState is called by media player titles to

communicate that the playhead state or content ID has changed. This function may

5 be called:

1. In response to an explicit change in content ID (e.g., changing from playing

a first movie to playing a second movie within the same console title/app)

2. In response to processing a transport control request (e.g., stop was pushed,

playrate was changed due to FF/REW).

10 3. Periodically as playhead state advances due to normal playback, including

reaching the end of stream or buffering beginning or ending.

The implementation of this API may cache the data passed in the last call in order

to satisfy subsequent requests for playhead state without perturbing execution of

the application or consuming title resources.

15 [0076] The implementation of this API may implement the heuristics to determine

when to actually send media state change notifications based on the type of change

that has occurred. In general:

1. Changes to fields other than position may trigger notifications being sent at

the next available opportunity.

20 2. Changes made solely to the position field may not trigger a notification

being sent. Rather, the console operating system may send periodic media

state change notifications, and the next one may pick up the last change in

position. For periodic changes over the local subnet, these changes may be

sent every ten seconds. For periodic changes over the cloud, these changes

25 may be sent every thirty seconds.

[0077] The signature of the API is as follows

HRESULT WINAPI LrcSetMediaState(IN LrcMediaState *pMediaState);

struct LrcMediaState

30 {
ULONGLONG duration; // Total duration of content, in 1 OOns units

22

WO 2013/055835 PCT/US2012/059621

ULONGLONG minSeek; // Minimum seek position, in 100ns units

ULONGLONG maxSeek; // Maximum seek position, in 100ns units

ULONGLONG position; // Current playback position, in 1 OOns units

float fRate; // Current playback rate (1.Of == normal play)

5 ScourTransportState eTransportState; // Current transport state

TransportCapabilities eTransportCapabilities;

// Wire rep is "mediaType:mediaAssetld"

BYTE MediaAssetld[256]; // Null-terminated UTF-8

// TODO: Min make sure he can get the right asset id from Zune on

10 console

} ;

The function returns SOK upon success, E_FAIL upon failure.

LrcGetlnput/LrcGetlnputWithSeek

[0078] The LrcGetlnput/LrcGetlnputWithSeek API is designed to be called as

15 part of a title's input polling routine. LrcGetlnput is designed to be called from

titles that cannot support seek commands for getting control commands from a

companion device. LrcGetlnputWithSeek is designed for titles that can support a

"seek" operation.

20 HRESULT WINAPI LrcGetlnput(

IN OUT DWORD* pdwUserlndex,

IN DWORD dwFlags,

OUT XINPUTKEYSTROKE *pKeystroke

25 HRESULT WINAPI LrcGetlnputWithSeek(

IN OUT DWORD* pdwUserlndex,

IN DWORD dwFlags,

OUT XINPUTKEYSTROKE *pKeystroke,

OUT ULONGLONG *pSeekPos

30

23

WO 2013/055835 PCT/US2012/059621

If there is an input event present, the function returns ERRORSUCCESS. If there

is no input event present, the function returns ERROREMPTY.

[0079] The pdwUserlndex is a pointer to an index of the signed-in user (e.g.,

gamer) associated with the device, which can be a value in the range from 0 to

5 XUSERMAXCOUNT - 1, or set to XUSERINDEXANY to fetch the next

available input event from any user.

[0080] On return, the variable pointed to by pdwUserIndex may contain the index

of the gamer associated with the device that was the source of the input event. This

is useful if the variable pointed to by pdwUserlndex contained

10 XUSERINDEXANY on input.

[0081] The dwFlags parameters may be either XINPUTFLAGANYDEVICE

or, if pdwUserIndex has the value XUSERINDEXANY,

XINPUTFLAGANYUSER.

[0082] The pKeystroke parameter may be a non-null pointer to an

is XINPUTKEYSTROKE structure.

[0083] The pSeekPos parameter may be a non-null pointer to a ULONGLONG.

[0084] For LrcGetlnput, if the function returns ERRORSUCCESS, the structure

referenced by pKeystroke may contain the XINPUTKEYSTROKE data for this

input event.

20 [0085] For LrcGetlnputWithSeek,

1. If the input was a seek command, the ULONGLONG referenced by

pSeekPos may contain the desired position, in 1 OOns units, and the structure

referenced by pKeystroke may be undefined.

2. If the input was not a seek command but the function returned

25 ERRORSUCCESS, the ULONGLONG referenced by pSeekPos may be -1

and the structure referenced by pKeystroke may contain the

XINPUTKEYSTROKE data for this input event.

[0086] For both of these APIs, the human interface device (HID) code

corresponding to the input is standard hardware code. The UserIndex may be set to

30 the correct index based on the companion device's current user, which may be zero

to three. In no new keys have been pressed (and the case of GetlnputWithSeek,

24

WO 2013/055835 PCT/US2012/059621

there is no seek information), the APIs return ERROREMPTY. If pdwUserIndex

contains an ID on input for which there is no corresponding logged on user, these

APIs return ERRORDEVICENOTCONNECTED.

Implementation of Companion Component inside Console

5 [0087] At boot, the console creates a TCP listener socket on a dynamic port

between X and Y to support incoming connections for commands. The listen queue

length is one (1), and the console may accept one incoming connection at a time to

conserve resources. That means that after servicing an incoming command request

and sending the corresponding response, the console may close the TCP connection

10 prior to making the next accept call on the listener socket.

[0088] When sending a notification over the local subnet, the console may create

a UDP socket, make the call to sendto, and then close the socket. Note that both

the TCP and UDP socket usage is optimized to reduce the number of open sockets,

which is the correct optimization for code running in the console. The protocol

15 may be designed to allow implementations to hold TCP connections open for more

than one message exchange. In addition to the socket usage described above, one

additional socket may be consumed for the console to interact with the companion

service.

[0089] At each logon change that involves an XBL account/profile logging in or

20 out, the console contacts the companion service indicating that the set of users has

changed on that console. This call also registers the local IP address of the console

and the TCP port being used to listen for incoming command requests.

Additionally, a pending COMET-style HTTP request may be kept "parked" on the

service to respond to incoming requests from non-line-of-sight-IP devices. This

25 request is reissued every thirty seconds, and is terminated when the logon set on the

console changes.

Console Resource Consumption

[0090] The total socket usage from the console is:

1 statically allocated outbound TCP socket for HTTP communications with

30 the service that is used for both logon set registration and COMET event

pull.

25

WO 2013/055835 PCT/US2012/059621

* 1 statically allocated TCP listen socket for local subnet requests

* 1 dynamically allocated TCP stream socket to service an incoming local

subnet request

1 dynamically allocated UDP socket to send notification a message

5 [0091] That means a minimum of 2 sockets are consumed, and a maximum of 4

(if a UDP notification is allowed to be sent prior to sending a TCP response) or 3

(if notifications are deferred for sending until the TCP connection is torn down).

Protocol Overview

[0092] The protocol uses direct TCP connections that are initiated from the

10 companion device to the console to support invoking operations on the console.

The protocol design supports multiple pending requests per TCP connection, as

well as out-of-order response delivery, however, our console implementation may

close the connection after sending the first response.

[0093] The protocol uses UDP broadcast from the console to companion devices

15 to support sending notifications. The message formats below may be sent securely

over TCP or UDP using the signing/encryption rules described below.

Message Formats

[0094] Messages may be encoded in binary big-endian format over the

network. Each message fields may be aligned on their native boundary (i.e.,

20 WORD on a 2-byte boundary, DWORD on a 4-byte boundary, etc.). Fixed length

strings are encoded as '\O'-terminated UTF-8 text, and do not contain a leading

Unicode BOM, which may be stripped by the writer.

[0095] A secure framing protocol is defined for use in both TCP connections and

UDP payloads. The format of those messages includes:

25 1. A fixed-length Message Header that contains version information, security

data, address information and message IDs.

2. A variable-length Message Body that contains message-type-specific data.

The length of the message body is indicated by a field in the message

header.

30 3. A fixed length Message Trailer that contains the HMAC-SHAl signature

over the message header and message body.

26

WO 2013/055835 PCT/US2012/059621

Message Headers

[0096] Messages begin with a 32 byte message header whose content is as

follows:

DWORD HeaderSignature = OxBEDABEDA

5 DWORD MessageLength = <number of bytes in remainder of the message>

DWORD SequenceNumber = <used for replay detection, correlating replies

and as the initialization vector for encryption, incremented for each

message>

DWORD ProtocolVersion = OxOOOOOOO

10 DWORD To = <device id message is intended for, OxFFFFFFFF indicates

broadcast>

DWORD From = <device id message is from, used for addressing

responses>

DWORD MessageKind = <see below>

15 DWORD MessageType = <see below>

[0097] The "To" and "From" message header fields are used to support replay

detection as each companion device has its own sequence number. Without the

"From" field in requests, the console would not be able to determine which client

had sent the message and so would be unable to determine the correct sequence

20 number. Without the "To" field in responses, an attacker could potentially replay a

message intended for one device to a different device.

[0098] There are two discriminator fields in the message header: MessageKind

and MessageType. The MessageKind field indicates whether the message is a:

[OxOOOOOOO 1] Request messages that are used to request an operation be

25 performed (e.g., commands, queries, connection management) or a

[0x00000002] Response messages that conveys the result of an operation

that was performed in response to a specific request message, or a

[0x00000003] Notification messages that conveys a state change event

[0099] The MessageType field identifies the format and semantics of a given

30 operation or notification. An example list of message types supported are:

[0x80000001] JoinSession (request and response)

27

WO 2013/055835 PCT/US2012/059621

[0x80000002] LeaveSession (request and response)

[OxOOOOOOO 1] GetActiveTitleld (request and response)

[0x00000002] LaunchTitle (request and response)

[0x00000003] SendInput (request and response)

5 [0x00000004] GetMediaAndTitleState (request and response)

[0x00000005] NonMediaTitleStateNotification (notification)

[0x00000006] MediaTitleStateNotification (notification)

[00100] Response messages have to additional fields in their message header.

DWORD ResponseTo =<SequenceNumber of request this corresponds to>

10 DWORD ResultCode = <HRESULT-based status code>

[00101] "Response" messages begin with a four byte result code that is treated like

an HRESULT. Specifically, a value of OxOOOOOOOO/SOK indicates successful

execution of the requested operation. Specific result codes are defined for each

response message type.

15 Message Trailers

[00102] Messages ends with a 20 byte

BYTE[20] hmac = <HMAC-SHA1 over HeaderSignature, MessageLength,

SequenceNumber and encrypted versions of subsequent message header

fields and entire message body>

20 Message Bodies

[00103] This section defines the format and semantics of the specific message

types that may be supported by the protocol. The bytes follow the

SequenceNumber message header field and precede the message trailer are

encrypted.

25 JoinSession Request Message

[00104] This message is sent from a companion device to a console in order to (a)

ensure that the protocol versions match and (b) acquire initial sequence numbers to

use for inbound and outbound messages. The JoinSession request/response may

occur before any additional messages from the companion device are sent to the

30 console over the local subnet.

DWORD HeaderSignature = OxBEDABEDA

28

WO 2013/055835 PCT/US2012/059621

DWORD MessageLength = <number of bytes in remainder of the message>

DWORD SequenceNumber = Oxnnnnnnnn <random initial value>

DWORD ProtocolVersion = OxOOOOOOO

DWORD To = <device id message is intended for>

5 DWORD From = <device id message is from>

DWORD MessageKind = OxOOOOOOO 1 <Request>

DWORD MessageType = 0x80000001 <JoinSession>

BYTE[20] hmac = <HMAC-SHA1 over HeaderSignature, MessageLength,

SequenceNumber and encrypted versions of subsequent message header

10 fields and entire message body>

JoinSession Response Message

[00105] This message is sent to a companion device to/from a console in order to

(a) ensure that the protocol versions match and (b) convey initial sequence numbers

to use for inbound and outbound messages.

15 DWORD HeaderSignature = OxBEDABEDA

DWORD MessageLength = <number of bytes in remainder of the message>

DWORD SequenceNumber = Oxnnnnnnnn <always the request's

SeqeuenceNumber + 1>

20 DWORD ProtocolVersion = OxOOOOOOO

DWORD To = <device id message is intended for, same as the From in the

JoinSession Request message>

DWORD From = <device id message is from>

DWORD MessageKind = 0x00000002 <Response>

25 DWORD MessageType = 0x80000001 <JoinSession>

DWORD ResponseTo = Oxnnnnnnnn

DWORD ResultCode = <see below>

DWORD SupportedProtocolVersion = Oxnnnnnnnn

DWORD ClientSequenceNumber = <sequence number the client may use

30 for next request>

29

WO 2013/055835 PCT/US2012/059621

DWORD NotificationSequenceNumber = <sequence number the server may

use for next UDP notification message>

BYTE[20] hmac = <HMAC-SHA1 over HeaderSignature, MessageLength,

SequenceNumber and encrypted versions of subsequent message header

5 fields and entire message body>

[00106] If the ResultCode is SOK (0), then the requested protocol version is

supported. Also:

1. The SupportedProtocolVersion contains the protocol version number

supported by this server.

10 2. The ClientSequenceNumber contains the sequence number that the client

may use for the next message it sends to the server.

3. The NotificationSequenceNumber contains the sequence number for the

next notification message to be sent by the server over UDP.

If the ResultCode is EVERSIONMISMATCH (Ox8hhhhhhh), then the session

15 has not been joined and only the SupportedProtocolVersion field is valid. If the

ResultCode is ETOOMANYCONNECTIONS (Ox8hhhhhhh), then the session

has not been joined and SupportedProtocolVersion, ClientSequenceNumber and

NotificationSequenceNumber are not valid.

GetActiveTitleld Request Message

20 [00107] This message is sent from a companion device to a console in order to

query the active title ID on the console.

DWORD HeaderSignature = OxBEDABEDA

DWORD MessageLength = Oxnnnnnnnn

DWORD SequenceNumber = Oxnnnnnnnn

25

DWORD ProtocolVersion = OxOOOOOOO

DWORD To = <device id message is intended for>

DWORD From = <device id message is from>

DWORD MessageKind = OxOOOOOOO 1 <Request>

30 DWORD MessageType = OxOOOOOOO <GetActiveTitleld>

30

WO 2013/055835 PCT/US2012/059621

BYTE[20] hmac = <HMAC-SHA1 over HeaderSignature, MessageLength,

SequenceNumber and encrypted versions of subsequent message header

fields and entire message body>

GetActiveTitleld Response Message

5 [00108] This message is sent to a companion device to/from a console in response

to a GetActiveTitleld request message and indicates the currently running title.

DWORD HeaderSignature = OxBEDABEDA

DWORD MessageLength = Oxnnnnnnnn

DWORD SequenceNumber = Oxnnnnnnnn

10 DWORD ProtocolVersion = OxOOOOOOO

DWORD To = <device id message is intended for, same as the From in the

GetActiveTitleld Request message>

DWORD From = <device id message is from>

DWORD MessageKind = 0x00000002 <Response>

15 DWORD MessageType = OxOOOOOOOl <GetActiveTitleld>

DWORD ResponseTo = Oxnnnnnnnn

DWORD ResultCode = OxOOOOOOOO

DWORD Titleld = Oxnnnnnnnn

BYTE[20] hmac = <HMAC-SHA1 over HeaderSignature, MessageLength,

20 SequenceNumber and encrypted versions of subsequent message header

fields and entire message body>

The Titleld is the console Title ID for the title currently running on the console.

LaunchTitle Request Message

25 [00109] This message is sent from a companion device to a console in order to

launch a title with a specified command-line argument.

DWORD HeaderSignature = OxBEDABEDA

DWORD MessageLength = Oxnnnnnnnn

DWORD SequenceNumber = Oxnnnnnnnn

30 DWORD ProtocolVersion = OxOOOOOOO

31

WO 2013/055835 PCT/US2012/059621

DWORD To = <device id message is intended for>

DWORD From = <device id message is from>

DWORD MessageKind = OxOOOOOOO 1 <Request>

DWORD MessageType = 0x00000002 <LaunchTitle>

5 DWORD Titleld

DWORD LaunchParameterLength; (Not Used)

BYTE[900] LaunchParameter (Null-terminated UTF-8 text)

BYTE[20] hmac = <HMAC-SHA1 over HeaderSignature, MessageLength,

SequenceNumber and encrypted versions of subsequent message header

10 fields and entire message body>

The Titleld is the console Title ID for the title currently running on the console.

The LaunchParameter field typically identifies the content to be played once the

title has launched. The exact interpretation of this field is title-specific.

15 LaunchTitle Response Message

[00110] This message is sent to a companion device to from a console in order to

indicate the success/failure of title launch.

DWORD HeaderSignature = OxBEDABEDA

DWORD MessageLength = Oxnnnnnnnn

20 DWORD SequenceNumber = Oxnnnnnnnn

DWORD ProtocolVersion = OxOOOOOOO

DWORD To = <device id message is intended for, same as the From in the

LaunchTitle Request message>

DWORD From = <device id message is from>

25 DWORD MessageKind = 0x00000002 <Response>

DWORD MessageType = 0x00000002 <Launch>

DWORD ResponseTo = Oxnnnnnnnn

DWORD ResultCode = OxOOOOOOOO

BYTE[20] hmac = <HMAC-SHA1 over HeaderSignature, MessageLength,

30 SequenceNumber and encrypted versions of subsequent message header

fields and entire message body>

32

WO 2013/055835 PCT/US2012/059621

SendInput Request Message

DWORD HeaderSignature = OxBEDABEDA

DWORD MessageLength = Oxnnnnnnnn

5 DWORD SequenceNumber = Oxnnnnnnnn

DWORD ProtocolVersion = 0x00000001

DWORD To = <device id message is intended for>

DWORD From = <device id message is from>

DWORD MessageKind = OxOOOOOOO 1 <Request>

10 DWORD MessageType = 0x00000003 <SendInput>

DWORD ValidFields = 0x01 - VirtualKey, Ox02 - SeekPos, 0x03 - Both

DWORD VirtualKey = <virtual keycode from XDK>

ULONGLONG SeekPosition

BYTE[20] hmac = <HMAC-SHA1 over HeaderSignature, MessageLength,

15 SequenceNumber and encrypted versions of subsequent fields>

The ValidFields field has a value of x0 1 if the request contains a keystroke, Ox02

if the request contains a seek command and 0x03 if it contains both. The

VirtualKey is identical to its definition in XINPUTKEYSTROKE. The

20 SeekPosition is used to convey a seek command. If this request message is NOT

indicating a seek, this field may have a value of OxFFFFFFFFFFFFFFFF (-1).

SendInput Response Message

[00111] This message is sent to a companion device to/from a console in order to

indicate the success/failure of the SendInput operation.

25 DWORD HeaderSignature = OxBEDABEDA

DWORD MessageLength = Oxnnnnnnnn

DWORD SequenceNumber = Oxnnnnnnnn

DWORD ProtocolVersion = OxOOOOOOO

DWORD To = <device id message is intended for, same as the From in the

30 SendInput Request message>

DWORD From = <device id message is from>

33

WO 2013/055835 PCT/US2012/059621

DWORD MessageKind = 0x00000002 <Response>

DWORD MessageType = 0x00000003 <SendInput>

DWORD ResponseTo = Oxnnnnnnnn

5 DWORD ResultCode = OxOOOOOOOO

BYTE[20] hmac = <HMAC-SHA1 over HeaderSignature, MessageLength,

SequenceNumber and encrypted versions of subsequent message header

fields and entire message body>

GetMediaAndTitleState Command Message

10 [00112] This message is sent from a companion device to a console in order to

query the media state on the console.

DWORD HeaderSignature = OxBEDABEDA

DWORD MessageLength = Oxnnnnnnnn

DWORD SequenceNumber = Oxnnnnnnnn

15 DWORD ProtocolVersion = OxOOOOOOO

DWORD To = <device id message is intended for>

DWORD From = <device id message is from>

DWORD MessageKind = OxOOOOOOO 1 <Request>

DWORD MessageType = 0x00000004 <GetMediaAndTitleState>

20

BYTE[20] hmac = <HMAC-SHA1 over HeaderSignature, MessageLength,

SequenceNumber and encrypted versions of subsequent message header

fields and entire message body>

25 GetMediaAndTitleState Response Message

DWORD HeaderSignature = OxBEDABEDA

DWORD MessageLength = Oxnnnnnnnn

DWORD SequenceNumber = Oxnnnnnnnn

DWORD ProtocolVersion = OxOOOOOOO

34

WO 2013/055835 PCT/US2012/059621

DWORD To = <device id message is intended for, same as the From in the

GetMediaAndTitleState Request message>

DWORD From = <device id message is from>

DWORD MessageKind = 0x00000002 <Response>

5 DWORD MessageType = 0x00000004 <GetMediaAndTitleState>

DWORD ResponseTo = Oxnnnnnnnn

DWORD ResultCode = 0x00000000

DWORD Titleld

ULONGLONG Duration (1OOns units)

10 ULONGLONG Position (100ns units)

ULONGLONG MinS eek (100 ns units)

ULONGLONG MaxSeek (100ns units)

FLOAT Rate (playback rate, 1.0 == normal)

DWORD TransportState (see ScourTransportState enum in console API

15 below)

DWORD TransportCapabilities (see TransportCapabilities enum in console

API below)

DWORD MediaAssetIdLength; (Not Used)

BYTE[256] MediaAssetId (Null-terminated UTF-8 text)

20 BYTE[20] hmac = <HMAC-SHA1 over HeaderSignature, MessageLength,

SequenceNumber and encrypted versions of subsequent fields>

[00113] If the ResultCode is SOK (0) and the TransportState is not

SCOURTRANSPORTSTATENOMEDIA, then the other media state fields

(Duration, Position, ... , MediaAssetld) are all valid. If the ResultCode is SOK (0)

25 and the TransportState is SCOURTRANSPORTSTATENOMEDIA, then there is

no current media on the console and the remaining media state values are

undefined.

30

35

WO 2013/055835 PCT/US2012/059621

NonMediaTitleStateNotification Message

[00114] The NonMediaTitleStateNotification message indicates that a non-media

enabled console title (e.g., a game) is currently running on the console. The

NonMediaTitleStateNotification message is sent by the console via UDP broadcast

5 when:

1. A non-media-enabled title is running (e.g., a game). AND

2. No NonMediaTitleStateNotification or MediaTitleStateNotification has been

sent since the update interval (10 seconds). OR a non-media-enabled title

has been launched.

10 [00115] This message does NOT need to be sent from the console to the cloud, as

title change forces a re-authentication against the cloud, which conveys the title ID.

This message may be sent from the cloud to the companion devices.

DWORD HeaderSignature = OxBEDABEDA

DWORD MessageLength = Oxnnnnnnnn

15 DWORD SequenceNumber = Oxnnnnnnnn

DWORD ProtocolVersion = 0x00000001

DWORD To = OxFFFFFFFF

DWORD From = <device id message is from>

DWORD MessageKind = 0x00000003 <Notification>

20 DWORD MessageType = 0x00000005 <NonMediaTitleStateNotification>

DWORD Titleld

BYTE[20] hmac = <HMAC-SHA1 over HeaderSignature, MessageLength,

SequenceNumber and encrypted versions of subsequent fields>

25 MediaTitleStateNotification Message

[00116] The MediaTitleStateNotification message indicates that a media-enabled

console title (e.g., a tile related to a video streaming service) is currently running on

the console. This message conveys both the console title ID as well as the current

content ID and playhead state.

30

36

WO 2013/055835 PCT/US2012/059621

[00117] The MediaTitleStateNotification message is sent by the console via UDP

broadcast when:

1. A media-enabled title is running (e.g., a game). AND

2. No NonMediaStateTitleNotification or MediaTitleStateNotification has been

5 sent since the update interval (10 seconds). OR a media-enabled title has

been launched OR a transport control command has been processed by the

title (e.g., play, stop).

[00118] The MediaTitleStateNotification message is sent by the console to the

cloud when:

10 1. A media-enabled title is running (e.g., a game). AND

2. No NonMediaTitleStateNotification or MediaTitleStateNotification has been

sent since the update interval (30 seconds). OR a media-enabled title has

been launched OR a transport control command has been processed by the

title (e.g., play, stop).

15 [00119] This message may be sent from the cloud to the companion devices.

DWORD HeaderSignature = OxBEDABEDA

DWORD MessageLength = Oxnnnnnnnn

DWORD SequenceNumber = Oxnnnnnnnn

DWORD ProtocolVersion = 0x00000001

20 DWORD To = OxFFFFFFFF

DWORD From = <device id message is from>

DWORD MessageKind = 0x00000003 <Notification>

DWORD MessageType = 0x00000006 <MediaTitleNotification>

DWORD Titleld

25

ULONGLONG Duration (1OOns units)

ULONGLONG Position (100ns units)

ULONGLONG MinS eek (100 ns units)

ULONGLONG MaxSeek (100ns units)

30 FLOAT Rate (playback rate, 1.0 == normal)

37

WO 2013/055835 PCT/US2012/059621

DWORD TransportState (see ScourTransportState enum in console API

below)

DWORD TransportCapabilities (see TransportCapabilities enum in console

API below)

5 DWORD MediaAssetIdLength; (Not Used)

BYTE[256] MediaAssetId (Null-terminated UTF-8 text)

BYTE[20] hmac = <HMAC-SHA1 over HeaderSignature, MessageLength,

SequenceNumber and encrypted versions of subsequent fields>

[00120] If the TransportState is not SCOURTRANSPORTSTATENOMEDIA,

10 then the other media state fields (Duration, Position, ... , MediaAssetld) are valid.

If the TransportState is SCOURTRANSPORTSTATENOMEDIA, then there is no

current media on the console and the remaining media state values are undefined.

Console and Cloud Communication

[001211 When a user logs on to the console, the console reports the user info to the

is cloud so that the cloud may know who is logged onto the console. The console also

tells the cloud about its local subnet IP address. The console reports to the cloud

when a user logs off.

Notification Model

[00122] The console may use the unicast approach to announce certain changes on

20 the console, like title change, media state change, and so on. The socket established

between the device and the console may be used to do this.

[00123] On the companion device side, the runtime library may provide

notification capability. That is, a linking module can register for whatever events it

is interested in and the runtime layer may notify the app to those events as the

25 events happen.

Runtime Library on the Device Side

[00124] A runtime library may be utilized on each supported devices.

[00125] Here are example APIs that may be supported:

1. bool JoinSessiono

30 This API may connect a device to the console host specified by the

"hostIPAddress".

38

WO 2013/055835 PCT/US2012/059621

Return value: Return TRUE if the connection is good. Otherwise, return

false.

Sample Usage: JoinSession 0;

It may get from the cloud the local subnet IP address of the console after the pairing

5 is successful. It also gets the security key from the cloud that it can use to secure

communication with the console.

2. DisconnectSession(

This API may close the connection between your device and the currently

connected console. Note: the runtime uses this API to clean up the session

10 data ; close the socket with the console. Of course, when the device goes to

sleep, the console may know. So it can close the socket.

3. Titlelnfo[] GetAvailableTitleso

This API may provide you with a list of titles the living room companion

15 experience supports currently.

struct TitleInfo

{

uint titled;

20 string friendlyName;

}

For example, here is one of the possible returns from this function:

25 {

1481115612;

"Zune";

}
{

30 "1481115605";

"Netflix";

39

WO 2013/055835 PCT/US2012/059621

}

4. unsigned int GetCurrentRunningTitleld()

This API returns you the titlelD of the currently running title on the

5 currently connected console.

5. void Launch(unsigned int Titleld, string parameter)

This API may launch an app, specified by the "Titleld, with the given

parameter, specified in "parameter".

10 Titleld----The title ID of the app you want to launch. Caller gets the friendly

app name from calling "GetListOfAvailableTitleso"

Parameter----The parameter you want to pass to the title during lunch.

6. void SendControlCommand(CommandType key)

15 This API sends a console control command to the current connected console.

CommandType

{
Play,

20 Pause,

FastForword,

Rewind,

Stop

}
25

7. Notification APIs

enum consoleProperty

{
TitleChanged,

30 MediaStateChange,

SubNetConnectionLost

40

WO 2013/055835 PCT/US2012/059621

} ;

public interface IconsolePropertyChangeDelegate

{
5 void propertyChanged(Object value);

}

void SetPropertyChangedCallback(consoleProperty propertyType,

IconsolePropertyChangeDelegate delegate)

10 [00126] These APIs are used to let the device receive notification events from the

console, like the state change, title change on the console, and so on. Although

specific examples are described, it should be readily apparent that the discussion

and following claims are not necessarily limited to those examples.

Example System and Device

15 [00127] FIG. 6 illustrates an example system 600 that includes the computing

device 102 as described with reference to FIG. 1. The example system 600 enables

ubiquitous environments for a seamless user experience when running applications

on a personal computer (PC), a television device, and/or a mobile device. Services

and applications run substantially similar in all three environments for a common

20 user experience when transitioning from one device to the next while utilizing an

application, playing a video game, watching a video, and so on.

[00128] In the example system 600, multiple devices are interconnected through a

central computing device. The central computing device may be local to the

multiple devices or may be located remotely from the multiple devices. In one

25 embodiment, the central computing device may be a cloud of one or more server

computers that are connected to the multiple devices through a network, the

Internet, or other data communication link. In one embodiment, this

interconnection architecture enables functionality to be delivered across multiple

devices to provide a common and seamless experience to a user of the multiple

30 devices. Each of the multiple devices may have different physical requirements

and capabilities, and the central computing device uses a platform to enable the

41

WO 2013/055835 PCT/US2012/059621

delivery of an experience to the device that is both tailored to the device and yet

common to all devices. In one embodiment, a class of target devices is created and

experiences are tailored to the generic class of devices. A class of devices may be

defined by physical features, types of usage, or other common characteristics of the

5 devices.

[00129] In various implementations, the computing device 102 may assume a

variety of different configurations, such as for computer 602, mobile 604, and

television 606 uses. Each of these configurations includes devices that may have

generally different constructs and capabilities, and thus the computing device 102

10 may be configured according to one or more of the different device classes. For

instance, the computing device 102 may be implemented as the computer 602 class

of a device that includes a personal computer, desktop computer, a multi-screen

computer, laptop computer, netbook, and so on.

[00130] The computing device 102 may also be implemented as the mobile 604

15 class of device that includes mobile devices, such as a mobile phone, portable

music player, portable gaming device, a tablet computer, a multi-screen computer,

and so on. The computing device 102 may also be implemented as the television

606 class of device that includes devices having or connected to generally larger

screens in casual viewing environments. These devices include televisions, set-top

20 boxes, gaming consoles, and so on. The techniques described herein may be

supported by these various configurations of the computing device 102 and are not

limited to the specific examples the techniques described herein.

[00131] The cloud 608 includes and/or is representative of a platform 610 for

content services 612. The platform 610 abstracts underlying functionality of

25 hardware (e.g., servers) and software resources of the cloud 608. The content

services 612 may include applications and/or data that can be utilized while

computer processing is executed on servers that are remote from the computing

device 102. Content services 612 can be provided as a service over the Internet

and/or through a subscriber network, such as a cellular or Wi-Fi network.

30 Examples of this are illustrated as inclusion of the linking module 114 on the

computing device. As previously described, these techniques may also leverage

42

WO 2013/055835 PCT/US2012/059621

"the cloud," such as through implementation of the linking module 124 as part of

the platform 310 described below.

[00132] The platform 610 may abstract resources and functions to connect the

computing device 102 with other computing devices. The platform 610 may also

5 serve to abstract scaling of resources to provide a corresponding level of scale to

encountered demand for the content services 612 that are implemented via the

platform 610. Accordingly, in an interconnected device embodiment,

implementation of functionality of the functionality described herein may be

distributed throughout the system 600. For example, the functionality may be

10 implemented in part on the computing device 102 as well as via the platform 610

that abstracts the functionality of the cloud 608.

[00133] FIG. 7 illustrates various components of an example device 700 that can be

implemented as any type of computing device as described with reference to FIGS.

1, 2, and 6 to implement embodiments of the techniques described herein. Device

15 700 includes communication devices 702 that enable wired and/or wireless

communication of device data 704 (e.g., received data, data that is being received,

data scheduled for broadcast, data packets of the data, etc.). The device data 704 or

other device content can include configuration settings of the device, media content

stored on the device, and/or information associated with a user of the device.

20 Media content stored on device 700 can include any type of audio, video, and/or

image data. Device 700 includes one or more data inputs 706 via which any type

of data, media content, and/or inputs can be received, such as user-selectable

inputs, messages, music, television media content, recorded video content, and any

other type of audio, video, and/or image data received from any content and/or data

25 Source.

[00134] Device 700 also includes communication interfaces 708 that can be

implemented as any one or more of a serial and/or parallel interface, a wireless

interface, any type of network interface, a modem, and as any other type of

communication interface. The communication interfaces 708 provide a connection

30 and/or communication links between device 700 and a communication network by

43

WO 2013/055835 PCT/US2012/059621

which other electronic, computing, and communication devices communicate data

with device 700.

[00135] Device 700 includes one or more processors 710 (e.g., any of

microprocessors, controllers, and the like) which process various computer

5 executable instructions to control the operation of device 700 and to implement

embodiments of the techniques described herein. Alternatively or in addition,

device 700 can be implemented with any one or combination of hardware,

firmware, or fixed logic circuitry that is implemented in connection with processing

and control circuits which are generally identified at 712. Although not shown,

10 device 700 can include a system bus or data transfer system that couples the various

components within the device. A system bus can include any one or combination

of different bus structures, such as a memory bus or memory controller, a

peripheral bus, a universal serial bus, and/or a processor or local bus that utilizes

any of a variety of bus architectures.

15 [00136] Device 700 also includes computer-readable media 714, such as one or

more memory components, examples of which include random access memory

(RAM), non-volatile memory (e.g., any one or more of a read-only memory

(ROM), flash memory, EPROM, EEPROM, etc.), and a disk storage device. A

disk storage device may be implemented as any type of magnetic or optical storage

20 device, such as a hard disk drive, a recordable and/or rewriteable compact disc

(CD), any type of a digital versatile disc (DVD), and the like. Device 700 can also

include a mass storage media device 716.

[00137] Computer-readable media 714 provides data storage mechanisms to store

the device data 704, as well as various device applications 718 and any other types

25 of information and/or data related to operational aspects of device 700. For

example, an operating system 720 can be maintained as a computer application

with the computer-readable media 714 and executed on processors 710. The device

applications 718 can include a device manager (e.g., a control application, software

application, signal processing and control module, code that is native to a particular

30 device, a hardware abstraction layer for a particular device, etc.). The device

applications 718 also include any system components or modules to implement

44

WO 2013/055835 PCT/US2012/059621

embodiments of the techniques described herein. In this example, the device

applications 718 include an interface application 722 and an input/output module

724 that are shown as software modules and/or computer applications. The

input/output module 724 is representative of software that is used to provide an

5 interface with a device configured to capture inputs, such as a touchscreen, track

pad, camera, microphone, and so on. Alternatively or in addition, the interface

application 722 and the input/output module 724 can be implemented as hardware,

software, firmware, or any combination thereof. Additionally, the input/output

module 724 may be configured to support multiple input devices, such as separate

10 devices to capture visual and audio inputs, respectively.

[00138] Device 700 also includes an audio and/or video input-output system 726

that provides audio data to an audio system 728 and/or provides video data to a

display system 730. The audio system 728 and/or the display system 730 can

include any devices that process, display, and/or otherwise render audio, video, and

15 image data. Video signals and audio signals can be communicated from device 700

to an audio device and/or to a display device via an RF (radio frequency) link, S

video link, composite video link, component video link, DVI (digital video

interface), analog audio connection, or other similar communication link. In an

embodiment, the audio system 728 and/or the display system 730 are implemented

20 as external components to device 700. Alternatively, the audio system 728 and/or

the display system 730 are implemented as integrated components of example

device 700.

Conclusion

[00139] Although the invention has been described in language specific to

25 structural features and/or methodological acts, it is to be understood that the

invention defined in the appended claims is not necessarily limited to the specific

features or acts described. Rather, the specific features and acts are disclosed as

example forms of implementing the claimed invention.

45

[00140] Throughout this specification and the claims which follow, unless

the context requires otherwise, the word "comprise", and variations such as

"comprises" or "comprising". will be understood to imply the inclusion of a

stated integer or step or group of integers or steps but not the exclusion of any

other integer or step or group of integers or steps.

[00141] The reference in this specification to any prior publication (or

information derived from it), or to any matter which is known, is not, and

should not be taken as, an acknowledgement or admission or any form of

suggestion that that prior publication (or information derived from it) or known

mater forms part of the common general knowledge in the field of endeavour

to which this specification relates.

45A

CLAIMS

What is claimed is:

1. A method implemented by one or more network service provider

computing devices of a service provider that provides a network service, the

method comprising:

associating, by the one or more network service provider computing

devices, a plurality of user devices with a user account of the one or more

network service provider computing devices;

maintaining data at the network service provider computing devices that

describes characteristics of the plurality of user devices that are associated with

the user account of the network service;

forming, at the one or more network service provider computing devices,

a communication to be received by one of the plurality of user devices that

includes a portion of the data maintained at the one or more network service

provider computing devices that pertains to another one of the plurality of user

devices, the portion of the data enabling the receiving user device to discover

the other one of the plurality of user devices to initiate a local network

connection between the user devices that facilitates a companion experience

between the user devices in which one of the receiving user device or the other

one of the plurality of user devices is used to control content output at a

different one of the receiving user device or the other one of the plurality of

user devices; and

communicating the formed communication to the receiving user device.

2. The method as described in claim 1, wherein the communication

further includes another portion of the data that pertains to the other one of the

plurality of user devices and that is suitable to discover the other one of the

plurality of user devices to initiate a remote network connection between the

user devices.

46

3. The method as described in claim 1 or 2, wherein the portion of

the data describes a wired or wireless subnet via which the other user device is

accessible via the local network connection.

4. The method as described in claim 1 or 2, wherein the portion of

the data is usable by the receiving user device to form a remote network

connection with the other user device responsive to a determination that the

other user device is not accessible via the local network connection.

5. The method as described in claim 1 or 2, wherein the portion of

the data is usable by the receiving user device to form a hybrid network

connection with the other user device that includes the local network

connection and a remote network connection.

6. The method as described in claim 1 or 2, wherein the portion of

the data is usable by the receiving user device to perform a fallback operation to

switch between the local network connection and a remote network connection

responsive to a determination of unavailability of the local network connection

or the remote network connection.

7. The method as described in any one of claims 1 to 6, wherein the

portion of the data is usable by the receiving user device to support encryption

of communications between the receiving user device and the other user device.

8. The method as described in any of claims 1 to 7, wherein the

companion experience includes one of the receiving user device or the other

one of the plurality of user devices controlling content output at a different one

of the receiving user device or the other one of the plurality of user devices.

9. A method comprising:

receiving data at a computing device, which is associated with a user

account, from one or more network service provider computing devices

47

providing a network service that identifies another computing device associated

with the user account, the computing device and the other computing device

being associated with the user account of the one or more network service

provider computing devices before the receiving;

responsive to a determination by the computing device that the other

computing device is available via a local network connection, using the data

received from the one or more network service provider computing devices to

form the local network connection by the computing device with the other

computing device to facilitate a companion experience between the computing

device and the other computing device;

responsive to a determination by the computing device that the other

computing device is not available via a local network connection, using the data

received from the one or more network service provider computing devices to

form a non-local network connection by the computing device with the other

computing device to facilitate the companion experience between the

computing device and the other computing device; and

responsive to forming the local or non-local network connection, using

the data from the one or more network service provider computing devices to

configure control communications that enable one of the computing device or

the other computing device to control operations of a different one of the

computing device or the other computing device.

10. The method as described in claim 9, wherein the data describes a

wired or wireless subnet via which the other computing device is to be made

accessible via the local network connection.

11. The method as described in claim 9 or 10, wherein the data was

provided to the one or more network service provider computing devices by the

other computing device.

48

12. The method as described in claim 9 or 10, wherein the data was

provided by the other computing device responsive to selection of a setting to

permit discoverability of the other device to form the local network connection

or the remote network connection.

13. The method as described in any one of claims 9 to 12, wherein the

non-local connection involves an Intranet or wide area network.

14. The method as described in any one of claims 9 to 12, wherein the

non-local connection involves use of the one or more network service provider

computing devices as an intermediary to perform communication between the

computing device and the other computing device.

15. The method as described in any one of claims 9 to 12, wherein the

non-local connection involves tunneling to perform communication between

the computing device and the other computing device.

16. The method as described in any one of claims 9 to 15, further

comprising responsive to the determination by the computing device that the

other computing device is not available via a local network connection,

outputting a notification that pertains to the non-local network connection for

viewing by a user of the computing device.

17. The method as described in any one of claims 9 to 16, further

comprising responsive to the determination by the computing device that the

other computing device is not available via a local network connection,

adjusting availability of one or more features of the computing device.

18. The method as described in any one of claims 9 to 17, further

comprising caching one or more communications to be sent from the

49

computing device to the other computing device.

19. The method as described in any one of claims 9 to 18 wherein the

companion experience includes one of the receiving user device or the other

one of the plurality of user devices controlling content output at a different one

of the receiving user device or the other one of the plurality of user devices.

20. The method implemented by a computing device, the method

comprising:

discovering availability, through communication with a network service,

of a device to support a companion experience in which content is output by

one of the computing device or the device and supplemental content, which

supplements the content being output, is output by a different one of the

computing device or the device, the availability determined through association

of the device with a user account;

using data received from the network service to initiate a local network

connection between the computing device and the device as a result of the

discovering that is usable to communicate data involved in the companion

experience;

sending control communications to the device that are effective to

control output of the content at the device when the computing device outputs

the supplemental content; and

receiving control communications from the device that are effective to

control output of the content at the computing device when the device outputs

the supplemental content.

21. The method as described in claim 20, wherein the computing device

is a game console or mobile communications device and the device is a

different one of the game console or the mobile communications device.

50

22. The method as described in claim 21, wherein the companion

experience is configured to use the mobile communications device as a game

controller for the game console.

51

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

