(12) STANDARD PATENT (11) Application No. AU 2012322844 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Device linking

(51) International Patent Classification(s)
HO4L 12/12 (2006.01) HO4L 12/16 (2006.01)

(21) Application No: 2012322844 (22) Date of Filing: 2012.10.10
(87) WIPONo: WO13/055835

(30) Priority Data

(31) Number (32) Date (33) Country
61/545,947 2011.10.11 us
13/291,354 2011.11.08 us

(43) Publication Date: 2013.04.18

(44) Accepted Journal Date: 2017.02.23

(71) Applicant(s)
Microsoft Technology Licensing, LLC

(72) Inventor(s)
Liu, Min;Discolo, Anthony V.;Lui, Edmund Hon-Sum;Lim, Kean Ee;Elgram, Ryan
B.;Box, Donald F.;Gudgin, Martin J_;Xu, Zhangwei;Manion, Todd R.;Gardner,
Grant;Dewey, Jeremy L.;Cupala, Shiraz J.;Steeb, Curt A.

(74) Agent/ Attorney
Davies Collison Cave Pty Ltd, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000, AU

(56) Related Art
US 2005/0159221 A1
US 2007/0067431 A1
WO 2009/135312 A1

wo 2013/055835 A3 |} JI ¥ 0O 00RO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau '}/

(43) International Publication Date .'//j

18 April 2013 (18.04.2013) WIPO I PCT

\

(10) International Publication Number

WO 2013/055835 A3

(51) International Patent Classification:
HO4L 12/16 (2006.01) HO4L 12/12 (2006.01)

(21) International Application Number:
PCT/US2012/059621

(22) International Filing Date:
10 October 2012 (10.10.2012)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
61/545,947 11 October 2011 (11.10.2011) US
13/291,354 8 November 2011 (08.11.2011) US

(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

(72) Imventors: LIU, Min; c/o Microsoft Corporation, LCA -
International Patents, One Microsoft Way, Redmond,
Washington 98052-6399 (US). DISCOLO, Anthony, V.;
c/o Microsoft Corporation, LCA - International Patents,
One Microsoft Way, Redmond, Washington 98052-6399
(US). LUI, Edmund, Hon-Sum; c¢/o0 Microsoft Corpora-

tion, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). LIM, Kean, Ee;
c/o Microsoft Corporation, LCA - International Patents,
One Microsoft Way, Redmond, Washington 98052-6399
(US). ELGRAM, Ryan, B.; c¢/o Microsott Corporation,
LCA - International Patents, One Microsoft Way, Red-
mond, Washington 98052-6399 (US). BOX, Donald, F.;
c/o Microsoft Corporation, LCA - International Patents,
One Microsoft Way, Redmond, Washington 98052-6399
(US). GUDGIN, Martin, J.; c/o Microsoft Corporation,
LCA - International Patents, One Microsoft Way, Red-
mond, Washington 98052-6399 (US). XU, Zhangwei; c¢/o
Microsoft Corporation, LCA - International Patents, One
Microsott Way, Redmond, Washington 98052-6399 (US).
MANION, Todd, R.; ¢/o Microsoft Corporation, LCA -
International Patents, One Microsoft Way, Redmond,
Washington 98052-6399 (US). GARDNER, Grant; c/o
Microsoft Corporation, LCA - International Patents, One
Microsott Way, Redmond, Washington 98052-6399 (US).
DEWEY, Jeremy, L.; ¢/o Microsoft Corporation, LCA -
International Patents, One Microsoft Way, Redmond,
Washington 98052-6399 (US). CUPALA, Shiraz, J.; c/o
Microsoft Corporation, LCA - International Patents, One
Microsott Way, Redmond, Washington 98052-6399 (US).

[Continued on next page]

(54) Title: DEVICE LINKING

(57) Abstract: Device linking is described. In one or more implementations,

R

CERRREREEE

X

Service Provider
L Module

Input/Output Module 106
Linking Drive the Car
Module 114 with your phone!

Computing Device

Input/Cutput
Module 108

Linking
Module 116

Fig. 1

data is maintained at a network service that describes characteristics of a
plurality of devices that are associated with a user account of the network
service. A communication is formed to be received by one of the plurality of
devices that includes a portion of the data that pertains to another one of the
plurality of devices and that is suitable by the receiving device to discover
the other one of the plurality of devices to initiate a local network connection
between the devices.

WO 2013/055835 A3 |IIIWAIL 00TV VAT

31

84)

STEEB, Curt, A.; ¢/o Microsoft Corporation, LCA - In-
ternational Patents, One Microsoft Way, Redmond,
Washington 98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM,
GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN,
KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA,
MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG,
NI NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS,
RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, ZIM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, S, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

(88) Date of publication of the international search report:

1 August 2013

15

20

25

30

35

WO 2013/055835 PCT/US2012/059621

BACKGROUND

[0001] Users may interact with a variety of different devices in a given day. For
example, a user may interact with a desktop PC, a laptop computer, a mobile
communication device (e.g., a mobile phone), a game console, and so on.
Traditional interaction with the devices, however, was often disjointed such that
interaction with one device was divorced from interaction with another device.
Further, even though techniques were subsequently developed in an attempt to
rectify this problem, these techniques were often complicated and inefficient and
therefore users typically chose to forgo this functionality.

SUMMARY
[0002] Device linking is described. In one or more implementations, data is
maintained at a network service that describes characteristics of a plurality of
devices that are associated with a user account of the network service. A
communication is formed to be received by one of the plurality of devices that
includes a portion of the data that pertains to another one of the plurality of devices
and that is suitable by the receiving device to discover the other one of the plurality
of devices to initiate a local network connection between the devices.
[0003] In one or more implementations, data is received at a computing device,
which is associated with a user account, from a network service that identifies
another computing device associated with the user account. Responsive to a
determination by the computing device that the other computing device is available
via a local network connection, the local network connection is formed by the
computing device with the other computing device. Responsive to a determination
by the computing device that the other computing device is not available via a local
network connection, a non-local network connection is formed by the computing
device with the other computing device.
[0004] In one or more implementations, availability is discovered, through
communication with a network service, of a device to support a companion

experience, the availability determined through association of the device with a

13 Jan 2017

2012322844

user account. Data received from the network service is used to initiate a local
network connection between the computing device and the device as a result of
the discovering that is usable to communicate data involved in the companion
experience.
[0004A] In one aspect there is provided a method implemented by one or
more network service provider computing devices of a service provider that
provide a network service, the method comprising:

associating, by the one or more network service provider computing
devices, a plurality of user devices with a user account of the network service;

maintaining data, at the one or more network service provider computing
devices, that describes characteristics of the plurality of user devices that are
associated with the user account of the network service;

forming, at the one or more network service provider computer devices,
a communication to be received by one of the plurality of user devices that
includes a portion of the data maintained at the network service that pertains to
another one of the plurality of user devices, the portion of the data enabling the
receiving user device to discover the other one of the plurality of user devices
to initiate a local network connection between the user devices that facilitates a
companion experience between the user devices; in which one of the receiving
user device or the other one of the plurality of user devices is used to control
content output at a different one of the receiving user device or the other one of
the plurality of user devices; and

communicating the formed communication to the receiving user device.
[0004B] In a further aspect there is provided a method comprising:

receiving data at a computing device, which is associated with a user
account, from one or more network service provider computing devices that
identifies another computing device associated with the user account, the
computing device and the other computing device being associated with the
user account of the one or more network service provider computing devices

before the receiving;

13 Jan 2017

2012322844

responsive to a determination by the computing device that the other
computing device is available via a local network connection, using the data
received from the one or more network service provider computing devices to
form the local network connection by the computing device with the other
computing device to facilitate a companion experience between the computing
device and the other computing device;

responsive to a determination by the computing device that the other
computing device is not available via a local network connection, using the data
received from the one or more network service provider computing devices to
form a non-local network connection by the computing device with the other
computing device to facilitate the companion experience between the
computing device and the other computing device; and

responsive to forming the local or non-local network connection, using
the data from the one or more network service provider computing devices to
configure control communications that enable one of the computing device or
the other computing device to control operations of a different one of the
computing device or the other computing device.
[0004C] In a further aspect there 1s provided a method implemented by a
computing device, the method comprising:

discovering availability, through communication with a network service,
of a device to support a companion experience in which content is output by
one of the computing device or the device and supplemental content, which
supplements the content being output, i1s output by a different one of the
computing device or the device, the availability determined through association
of the device with a user account;

using data received from the network service to initiate a local network
connection between the computing device and the device as a result of the
discovering that i1s usable to communicate data involved in the companion

experience;

2A

13 Jan 2017

2012322844

sending control communications to the device that are effective to
control output of the content at the device when the computing device outputs
the supplemental content; and

receiving control communications from the device that are effective to
control output of the content at the computing device when the device outputs
the supplemental content.
[0005] This Summary 1s provided to introduce a selection of concepts in a
simplified form that are further described below in the Detailed Description.
This Summary is not intended to identify key features or essential features of
the claimed subject matter, nor is it intended to be used as an aid in determining
the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The detailed description 1is described with reference to the

accompanying figures. In the figures, the left-most digit(s) of a reference
number identifies the figure in which the reference number first appears. The
use of the same reference numbers in different instances in the description and
the figures may indicate similar or identical items. Entities represented in the
figures may be indicative of one or more entities and thus reference may be
made interchangeably to single or plural forms of the entities in the discussion.

(00071 FIG. 1 is an 1llustration of an environment in an example
implementation that is operable to perform device linking techniques described
herein.

[0008] FIG. 2 is an illustration of a system in an example implementation
showing the computing devices and service provider of FIG. 1 in greater detail.
[0009] FIG. 3 1s a flow diagram that depicts a procedure in an example
implementation in which a network service is configured to broker connections
between devices.

[0010] FIG. 4 1s a flow diagram that depicts a procedure in an example
implementation in which a computing device is configured to leverage local
and/or remote network connections to communicate with another computing

device.

2B

13 Jan 2017

2012322844

(00111 FIG. 5 1s a flow diagram that depicts a procedure in an example
implementation in which a companion experience is supported through device

linking.

2C

10

15

20

25

30

WO 2013/055835 PCT/US2012/059621

0012] FIG. 6 illustrates an example system that includes the computing device as
described with reference to FIG. 1.

(0013] FIG. 7 illustrates various components of an example device that can be
implemented as any type of computing device as described with reference to FIGS.
1-4 to implement embodiments of the techniques described herein.

DETAILED DESCRIPTION

Overview
[0014) Traditional techniques that were utilized to link devices together typically
involve a multitude of manual steps to be performed by the user. Further, these
steps were often complicated and therefore users traditionally did not avail
themselves of these techniques, even when available.
[0015] Device linking techniques are described. In one or more implementations,
techniques are described in which different types of devices may work in
conjunction, such as use of a mobile communications device to support interaction
with a game console. A variety of techniques are discussed herein that may be
leveraged to link the devices together, such as to support this interaction. Examples
of this include leveraging use of the “cloud” and a local connection to perform the
setup, use of local and remote connections, support of fallback functionality, and so
on. Further discussion of this and other techniques may be found in relation to the
following sections.
[0016] In the following discussion, an example environment is first described that
may employ the techniques described herein. Example procedures are then
described which may be performed in the example environment as well as other
environments. Consequently, performance of the example procedures is not limited
to the example environment and the example environment is not limited to
performance of the example procedures.

Example Environment

o177 FIG. 1 is an illustration of an environment 100 in an example
implementation that is operable to employ techniques described herein. The
illustrated environment 100 includes examples of two computing devices 102, 104

that may be configured in a variety of ways. The computing devices 102, 104, for

10

15

20

25

30

WO 2013/055835 PCT/US2012/059621

instance, may be configured as a traditional computer (e.g., a desktop personal
computer, laptop computer, and so on), a mobile station, an entertainment
appliance, a game console communicatively coupled to a display device (e.g., a
television, a mobile communication device (e.g., a wireless phone, a tablet), a
netbook, and so forth as further described in relation to the example operating
environment and device. Thus, the computing devices 102, 104 may range from
full resource devices with substantial memory and processor resources (€.g.,
personal computers, game consoles) to low-resource devices with limited memory
and/or processing resources (e.g., traditional set-top boxes, hand-held game
consoles). In the illustrated implementation the computing device 102 is
configured as a game console and the other computing device 104 is configured as
a mobile communication device, although other implementations are also
contemplated as described above.

[0018] The computing devices 102, 104 are each illustrated as including an
input/output module 106, 108, respectively. The input/output modules 106, 108 are
representative of functionality relating to recognition of inputs and/or provision of
outputs by the respective computing device. For example, the input/output
modules 106, 108 may be configured to receive inputs from a keyboard, mouse, to
identify gestures and cause operations to be performed that correspond to the
gestures, and so on. The inputs may be detected by the input/output modules 106,
108 in a variety of different ways.

[0019] The input/output module 106 for instance, may be configured to receive
one or more inputs via touch interaction with a hardware device, such as a
controller 110 as illustrated. Touch interaction may involve pressing a button,
moving a joystick, movement across a track pad, use of a touch screen of the
display device (e.g., detection of a finger of a user’s hand or a stylus by the
computing device 102), and so on.

[0020] Recognition of the inputs may be leveraged by the input/output modules
106, 108 to interact with a user interface output by the respective computing device
102, 104 such as to interact with a game, an application, browse the internet,

change one or more settings of the computing devices 102, 104, and so forth. A

10

15

20

25

30

WO 2013/055835 PCT/US2012/059621

variety of other hardware devices are also contemplated that involve touch
interaction with the device. Examples of such hardware devices include a cursor
control device (e.g., a mouse), a remote control (e.g. a television remote control), a
mobile communication device (e.g., a wireless phone configured to control one or
more operations of the computing device 102 as illustrated by computing device
104), and other devices that involve touch on the part of a user or object.

[0021] A natural user interface (NUI) may also be supported by the input/output
modules 106, 108, such as to recognize interactions that may not involve touch.
For example, the computing devices 102, 104 may leverage input devices to detect
inputs without having a user touch a particular device, such as to recognize audio
inputs through use of a microphone. For instance, the input/output modules 106,
108 may be configured to perform voice recognition to recognize particular
utterances (e.g., a spoken command) as well as to recognize a particular user that
provided the utterances.

[0022] In another example, the input/output modules 106, 108 that may be
configured to recognize gestures, presented objects, images, and so on through use
of a camera. The camera, for instance, may be configured to include multiple
lenses so that different perspectives may be captured and thus determine depth as
shown for computing device 102 in the game console configuration. The different
perspectives, for instance, may be used to determine a relative distance from the
input device and thus a change in the relative distance. The different perspectives
may be leveraged by the respective computing devices 102, 104 as depth
perception. Naturally, other images may also be leveraged without use to depth
sensing, such as a camera of the computing device 104 as configured as a mobile
communications device. The images may be leveraged to provide a variety of
functionality, such as techniques to identify particular users (e.g., through facial
recognition), objects, perform searches, and so on.

[0023] The input-output modules 106, 108 may leverage the inputs to perform
skeletal mapping along with feature extraction of particular points of a human body
(e.g., 48 skeletal points) to track one or more users (e.g., four users simultaneously)

to perform motion analysis. For instance, captured images may be analyzed by the

10

15

20

25

30

WO 2013/055835 PCT/US2012/059621

input/output modules 106, 108 to recognize one or more motions made by a user,
including what body part is used to make the motion as well as which user made
the motion. An example is illustrated through recognition of positioning and
movement of one or more fingers of a user’s hand 112 and/or movement of the
user’s hand 112 as a whole. The motions may be identified as gestures by the
input/output modules 106, 108 to initiate a corresponding operation.

[0024] The computing devices 102, 104 are further illustrated as including
respective linking modules 114, 116. The linking modules 114, 116 are
representative of functionality of the respective devices to initiate and manage one
or more network connections between the devices. The connections may be used to
support a variety of different functionality, such as a companion experience. For
example, the computing device 104 configured as a mobile communications device
may interact with the computing device 102 configured as a game console to
supplement the user experience. This may include use of the computing device 104
as a game controller, output of an electronic program guide to control an output of
broadcast content by the computing device 102, and so on. Thus, interaction with
the computing device 104 may be used to control one or more operations
performed by the computing device 102 and vice versa. The computing device
102, for instance, may provide supplemental content for output by the computing
device 104.

[0025] The linking modules 114, 116 may include a variety of different
functionality to initiate and manage the network connections. For example, the
linking modules 114, 116 may include functionality to form a local network
connection 118 between the devices (e.g., a local Wi-Fi connection) and/or a
remote connection involving a network 120, e.g., “over the cloud” by leveraging a
service provider 122 that is accessible via the Internet. Accordingly, in this second
example the service provider 122 is also illustrated as including a linking module
124 which is representative of functionality of the service provider 122 to also

support device linking functionality.

10

15

20

25

30

WO 2013/055835 PCT/US2012/059621

(0026 The linking modules 114, 116, for instance, may leverage the remote
connection of the network 120 to contact the service provider 120 to perform
device discovery, e.g., “locate” a device with which to communicate. This data
may then be used to set-up a local network connection 118 between the devices to
support the companion experience as described earlier. In another example, this
connection may be maintained in whole or in part over a remote connection
involving the network 120, e.g., the Internet or other wide area network. Thus, the
linking modules 114, 116 may leverage a variety of different types of connections
and techniques to form the connections, further discussion of which may be found
in relation to the following figure.

00271 Generally, any of the functions described herein can be implemented using
software, firmware, hardware (e.g., fixed logic circuitry), or a combination of these
implementations. The terms “module,” “functionality,” and “logic” as used herein
generally represent software, firmware, hardware, or a combination thereof. In the
case of a software implementation, the module, functionality, or logic represents
program code that performs specified tasks when executed on a processor (e.g.,
CPU or CPUs). The program code can be stored in one or more computer readable
memory devices. The features of the techniques described below are platform-
independent, meaning that the techniques may be implemented on a variety of
commercial computing platforms having a variety of processors.

[0028] For example, the computing devices 102, 104 may also include an entity
(e.g., software) that causes hardware of the computing devices 102, 104 to perform
operations, ¢.g., processors, functional blocks, and so on. For example, the
computing devices 102, 104 may include a computer-readable medium that may be
configured to maintain instructions that cause the computing device, and more
particularly hardware of the computing devices 102, 104 to perform operations.
Thus, the instructions function to configure the hardware to perform the operations
and in this way result in transformation of the hardware to perform functions. The
instructions may be provided by the computer-readable medium to the computing

device 102 through a variety of different configurations.

10

15

20

25

30

WO 2013/055835 PCT/US2012/059621

[0029] One such configuration of a computer-readable medium is signal bearing
medium and thus is configured to transmit the instructions (e.g., as a carrier wave)
to the hardware of the computing device, such as via a network. The computer-
readable medium may also be configured as a computer-readable storage medium
and thus is not a signal bearing medium. Examples of a computer-readable storage
medium include a random-access memory (RAM), read-only memory (ROM), an
optical disc, flash memory, hard disk memory, and other memory devices that may
use magnetic, optical, and other techniques to store instructions and other data.
0030 FIG. 2 illustrates a system 200 showing the computing devices 102, 104
and service provider 122 in greater detail. Connections to support a companion
experience between the computing devices 102, 104 may be initiated and
maintained in a variety of ways. For example, each of the computing devices 102,
104 may be associated with a user account of a network service of the service
provider 122. Therefore, users may simply login to the user account of the service
provider 122 by providing credentials via the network 120 without involving extra
login information, key codes, and so forth. These credentials may then be
processed by an account manager module 202 of the service provider 122 to
authenticate the user. Further, this authentication may be used to access a variety
of different services of the service provider 122 (and other service providers)
through a “one-time” login, such as a music service, messaging service, calendaring
service, contact service, and so forth.

[(0031] Once authenticated, functionality of the linking module 124 may be
exposed, such as to form a connection between the devices. The linking module
124, for instance, may be configured to maintain data that describes network
connection details that may be utilized to form a network connection between the
devices. This may include data that describes local network connection 118 details,
such as to support a Wi-Fi connection through use of an identifier, network name,
and so on. This data may also describe remote connection details for access via the
network 120 (e.g., the Internet), such as an I[P address, bandwidth supported,

location information, network access type, and so on.

10

15

20

25

30

WO 2013/055835 PCT/US2012/059621

[0032] The data may be communicated to the service provider 122 in a variety of
ways and at a variety of times. For example, the data may be communicated as part
of authentication, may be stored from a previous communication, may be provided
in response to a request received from the service provider 122 (e.g., after
authentication has been achieved), and so on. Thus, the linking modules 114, 116
may communicate a variety of different data that may be leveraged to form a
connection.

[0033] In one or more implementations, settings may be exposed on the respective
linking modules 114, 116 to control whether to provide this data. For example, a
configuration setting may be exposed to make the respective computing device
discoverable, which may be set “on” as a default although other examples are also
contemplated.

[0034] Additionally, another configuration setting may be used to control whether
the computing device is to maintain a live connection with the service provider 122,
which may be set to “off” as a default. This may be used to reduce resource
consumption (e.g., by the network 120 and/or service provider), such that the
service provider 122 is not forced to maintain the device connection feature for
devices that do not wish to do so. For example, this setting may be set to “off”
initially. However, once a connection is attempted this setting may be switched to
“on” automatically and without user intervention to maintain a “ready” open
connection to perform the linking described herein.

[0035] To initiate a connection, the computing devices 102, 104 may first
“discover” each other in a variety of ways. For example, the linking modules 114,
116 may be configured to first determine whether another device is available via
the local network connection 118, such as available via a Wi-Fi, Bluetooth, or other
wired or wireless network. This discovery may be configured to leverage data
previously stored by the respective linking modules 114, 116, such as identification
of particular network identifiers of the respective computing devices 102, 104,

networks, and other information, although other examples are also contemplated.

10

15

20

25

30

WO 2013/055835 PCT/US2012/059621

[0036] If a device is not so discovered, the linking modules 114, 116 may
communicate with the service provider 112 to discover if another device is
available for a connection. The computing devices 102, 104, for instance, may
communicate data that indicates a location of the devices, data that is usable to
discover the devices over a local connection, and so on. The data may indicate a
particular location, such as in a particular room, leverage GPS coordinates, and
other position-determination functionality. Further, this information may be used
to determine a type of connection to establish, such as to establish a remote
connection via the network 120 when a local network connection 118 is not
available, e.g., the devices are located apart at a distance that is greater than that
supported by the local network connection 118.

00371 For example, the computing device 104 may communicate with the linking
module 124 of the service provider 122 via the network 120 to determine whether
other devices (e.g., computing device 102) that are registered with the user’s
account are available for linking. The service provider 122 may then return an
answer, which may include additional local network connection information (e.g.,
wireless or wired subnet) for those devices. The linking module 116 of the
computing device 104 may then search the local network to try to find the other
device or devices using that information. If found, the computing devices 102, 104
may negotiate a direct link via a local network connection 118 to communicate,
which may support more efficient communication than that supported via the
network 120 in one or more instances. For instance, the local network connection
118 may support a higher bandwidth than a remote connection via network 120.
Further, cost considerations may also be utilized as part of a decision process
regarding which network to use, e.g., a Wi-Fi network versus a mobile phone
network that has a usage cap.

[0038] If not found, the computing devices 102, 104 may communicate via the
network 120 in a variety of ways. For example, communications may pass through
the service provider 122 as an intermediary. Thus, the communications in this
example may leverage the internet or other wide area network to connect the

devices, one to another. In another example of a remote connection, tunneling

10

10

15

20

25

30

WO 2013/055835 PCT/US2012/059621

techniques may be supported to pass the communications, such as by leveraging 1P
addresses of the other devices by the respective linking modules 114, 116 to
communicate directly via the network 120 without having the service provider 122
actively work as an intermediary.

[0039] A variety of other examples are also contemplated, such as a hybrid mode
in which different communications are passed via different networks. For example,
such a hybrid mode may be used to support communication of commands via the
network 120 and content via the local network connection 118 and vice versa. This
division of communications may be performed for a variety of reasons, such as due
to limitations in a topology of specific network connections supported by the
respective networks.

[0040] In some instances, characteristics of a network connection may change
during usage. Accordingly, the linking modules 114, 116, 124 may be configured
in a variety of different ways to address these changes. For example, the linking
modules 114, 116, 124 may be configured to notify a user (e.g., via a user interface)
of this change. Additionally, the linking modules 114, 116, 124 may be configured
to adjust (e.g., disable) features that may not work well in this state, such as to
reduce a resolution, functionality that is communication intensive, features that are
not supported by that network, and so on.

[0041] Further, the linking modules 114, 116, 124 may be configured to cache
commands, which may be used to improve efficiency and handle intermittent
connection issues. This caching may be performed at the computing devices 102,
104 as well as at the service provider 122. A variety of other examples are also
contemplated.

[0042] For example, the linking modules 114, 116, 124 may be configured to
support automatic fallback recovery. The local network connection 118, for
instance, may degrade or become disconnected, such as due to movement of the
computing device 104 away from computing device 102, network interference, and
so on. In such instances, the linking modules 114, 116, 124 may cause a
connection to be achieved via the network 120, instead, may decide to employ a

hybrid format as previously described, and so on. The reverse is also true in that if

11

10

15

20

25

30

WO 2013/055835 PCT/US2012/059621

reliability of the network 120 decreases the local network connection 118 may be
leveraged automatically and without user intervention to support communication
between the devices.

[0043] This change may also be used to switch networks responsive to a
determination that another one of the networks has become available. For example,
computing device 104 may initially communicate with computing device 102 over
the Internet, such as when the computing device 104 is positioned at a distance at
which the local network connection 118 is not supported. Responsive to a
determination that the computing device 104 is now within local network range of
the computing device 102, the linking modules 114, 116 may automatically
communicate over the local network connection 118. As previously described, a
variety of considerations may be taken into account in use of this functionality,
such as cost considerations described above. Thus, a variety of different
functionality may be leveraged to support device linking, which may also be used
to support a variety of additional functionality such as a companion experience as
previously described.

[0044] A variety of other functionality may also be supported by the linking
modules 114, 116, 124. For example, as described above the connection may be bi-
direction such that each of the devices may send and receive data from other
devices. This functionality may be leveraged in a variety of ways. Computing
device 102, for instance, may be configured to inform computing device 104 as to a
current state in an output of content. Computing device 104 may then leverage this
information to provide functionality, such as to locate related content, perform an
Internet search based on one or more scenes associated with the related content, and
so forth. The reverse is also true in that computing device 104 may communicate a
state to computing device 102, which may be leveraged by the device to support
functionality, such as to continue playback of content at a current point by
computing device 102 that corresponds to an output of content by computing

device 104.

12

10

15

20

25

30

WO 2013/055835 PCT/US2012/059621

[0045] In another example, the linking modules 114, 116, 124 may also support a
variety of different encryption methods to protect communications, both via the
local network connection 118, remotely via the network 120, and so on. Further,
although the internet was described in relation to network 120, a variety of different
types of networks may also be supported by the techniques, such as with a single
domain, as part of an enterprise, an intranet, and so on. Further discussion of
device linking techniques may be found in relation to the following procedures.

Example Procedures

[0046] The following discussion describes device linking techniques that may be
implemented utilizing the previously described systems and devices. Aspects of
each of the procedures may be implemented in hardware, firmware, or software, or
a combination thereof. The procedures are shown as a set of blocks that specify
operations performed by one or more devices and are not necessarily limited to the
orders shown for performing the operations by the respective blocks. In portions of
the following discussion, reference will be made to the environment 100 of FIG. 1
and the system 200 of FIG. 2.

00471 FIG. 3 is a flow diagram that depicts a procedure 300 in an example
implementation in which a network service is configured to broker connections
between devices. Data is maintained at a network service that describes
characteristics of a plurality of devices that are associated with a user account of the
network service (block 302). The linking module 124 of the service provider 122,
for instance, may receive data from the computing devices 102, 104 that are
associated with a user’s account. This data may be received responsive to selection
of a setting at the respective devices to permit discovery of the device.

[0048] A communication is formed to be received by one of the plurality of
devices that includes a portion of the data that pertains to another one of the
plurality of devices and that is suitable by the receiving device to discover the other
one of the plurality of devices to initiate a local network connection between the
devices (block 304). The communication, for instance, may include data usable to
locate the devices locally, e.g., a wired or wireless subnet via which the other

device is accessible via the local network connection. The communication may

13

10

15

20

25

30

WO 2013/055835 PCT/US2012/059621

also include data usable to locate the devices remotely, such as an [P address. This
data may then be used to form connections that may be used to support a variety of
functionality, such as a companion experience as described earlier.

[0049] FIG. 4 is a flow diagram that depicts a procedure 400 in an example
implementation in which a computing device is configured to leverage local and/or
remote network connections to communicate with another computing device. Data
is received at a computing device, which is associated with a user account, from a
network service that identifies another computing device associated with the user
account (block 402). As described earlier, the data may describe the device in a
variety of ways, such as through a network address, name of the device, and so on.
[0050] Responsive to a determination by the computing device that the other
computing device is available via a local network connection, the local network
connection is formed by the computing device with the other computing device
(block 404). The computing device 102, for instance, may form a local wireless
connection (e.g., Wi-Fi) with computing device 104, if available.

[005s1] Responsive to a determination by the computing device that the other
computing device is not available via a local network connection, a non-local
network connection is formed by the computing device with the other computing
device (block 406). Continuing with the previous example, if the computing device
104 is not available via the local network connection 118, the computing device
102 may form a network connection via the network 120, e.g., the Internet or other
wide area network. A variety of other examples are also contemplated.

00s2] FIG. 5 is a flow diagram that depicts a procedure 500 in an example
implementation in which a companion experience is supported through device
linking. Availability is discovered, through communication with a network service,
of a device to support a companion experience, the availability determined through
association of the device with a user account (block 502). Computing device 104
configured as a mobile communications device (e.g., a wireless phone), for
instance, may communicate with the service provider 122 to determine whether a

device is available, such as computing device 102 configured as a game console.

14

10

15

20

25

30

WO 2013/055835 PCT/US2012/059621

[005s3] Data received from the network service is used to initiate a local network
connection between the computing device and the device as a result of the
discovering that is usable to communicate data involved in the companion
experience (block 504). The computing device 104, for instance, may receive data
described a wired or wireless subnet via which computing device 102 is available.
A variety of other examples are also contemplated, examples of which may be
found in relation to the following implementation example.

Implementation Example

[00s4) The following describes an implementation example of the techniques
described previously. In one or more companion experience scenarios, a user may
be able to use a device to browse the video catalog and so on and then pick a
movie, rent it and play it on the console. During the movie, the user may be able to
control it, for example, play/pause, fast forward and rewind and so on using a
mobile communications device or other device. A game console may also be
configured to notify the device about things happening on the console, like current
movie state, title change on the console etc. From the device, the user may be able
to launch a title on the console, e.g., to get the title ID of the title running on the
console.

[00s5] In terms of communication between the devices, message exchanges may
fall into a variety of categories, examples of which include:

e Operations: How do I trigger work on another device?

e Notifications: How do I get notified of state changes on another device?

[005s6] There are a variety of notifications that may occur in the system:

e Active Title Changed: A new title has been launched. This notification
occurs when a new title is launched on the console, cither via controller
input or companion commands.

e Media State Change: Some aspect of playhead state has changed, such as
content ID, playback rate, playhead position, or playing/paused state. This
notification happens both periodically to keep position variables
synchronized across devices, as well as instantancously whenever a change

occurs based on user input (e.g., the stop button was pressed).

15

10

15

20

25

WO 2013/055835 PCT/US2012/059621

[0057]

There are a variety of operations that can be issued in the system:
Launch Title: Launch a console title, optionally with a command line
argument used to indicate which piece of media content to display. This
command may be issued by the companion device (also referred to as a
“companion” in the following discussion) when a new piece of content is
selected from the guide or search results.
Get Active Title: Query the console for the currently running title. This may
be called when the companion first connects to the console to acquire the
initial title 1D, as well as whenever the client explicitly refreshes this
information (for example, returning from sleep). The result of this command
contains the same information as an Active Title Changed notification.
Send Input: Send an input command to the console. This command is issued
by the companion whenever a transport control (e.g., play, pause, stop) is
clicked.
Get Media State: Query the console for the current media state. This is
called when the companion first connects to the console to acquire the initial
media state, as well as whenever the client needs to explicitly refresh this
information (for example, returning from sleep). The result of this command

contains the same information as a Media State Changed notification.

Media State

[0058]

The primary data structure in this example that is used in both protocol and

APIs is the media state structure. This structure represents the current play head

state and content ID that is playing within a media application/title. Media State

may be derived from the console Media APIs and includes the following

fields/properties:
Name Datatype Description
duration Unsigned 64-bit Integer Total duration of content
in 100ns units
minSeek Unsigned 64-bit Integer Minimum seek position
in 100ns units

16

10

15

WO 2013/055835

PCT/US2012/059621

maxSeek Unsigned 64-bit Integer Maximum seck position
in 100ns units
position Unsigned 64-bit Integer Current playback position
in 100ns units
fRate 32-bit floating point Current playback rate
number (1.0f is normal play)
eTransportState ScourTransportState (see | Current transport state

below)

(e.g., play, pause, etc.)

eTransportCapabilities

TransportCapabilities (see
below)

Which transport controls
are supported by the

current playback

application/content
MediaAssetld UTF-8 Text (256 bytes Text-based identifier of
max) current content.

[0059] ScourTransportState is an enumeration taken from the console media
APIs:

enum ScourTransportState

{

//' Undefined

SCOURTRANSPORTSTATE INVALID

=0,

/I Stop was received or end of content was reached

SCOURTRANSPORTSTATE STOPPED

:1’

// Play/unpause was received but playback has not yet started.
SCOURTRANSPORTSTATE STARTING

// Content is currently playing
SCOURTRANSPORTSTATE PLAYING

:2’

=3,

// Pause was received and playback is suspended until a play/unpause

// 1s received

SCOURTRANSPORTSTATE PAUSED

:4’

// Content buffering has occurred and playback is suspended until
// buffering has ended

17

10

15

20

25

30

WO 2013/055835 PCT/US2012/059621

SCOURTRANSPORTSTATE BUFFERING =35,
¥
[0060] An additional enumeration value to indicate that no media is playing (e.g.,
a game is running) may be configured as follows:
// No media is playing
SCOURTRANSPORTSTATE NOMEDIA =-1,
When this value is used, the remaining fields of the media state are undefined.
[0061] TransportCapabilities is a flags enumeration that indicates what operations
the media player may perform:
enum TransportCapabilities
{
// Can respond to SendInput(Stop)
TRANSPORTCAPABILITIES CANSTOP = 0x1,
// Can respond to SendInput(Pause)
TRANSPORTCAPABILITIES CANPAUSE = 0x2,
// Can respond to SendInput(Rewind)
TRANSPORTCAPABILITIES CANREWIND = 0x4,
// Can respond to SendInput(FastForward)
TRANSPORTCAPABILITIES CANFASTFORWARD = 0x8,
// Can respond to SendInput(Play)
TRANSPORTCAPABILITIES CANPLAY = 0x10,
// Can respond to SendInput(TogglePlayPause)
TRANSPORTCAPABILITIES CANPLAYPAUSE = 0x20,
// Can respond to SendInput(SkipForward)
TRANSPORTCAPABILITIES CANSKIPFORWARD = 0x40,
// Can respond to SendInput(SkipBackward)
TRANSPORTCAPABILITIES CANSKIPBACKWARD = 0x80,
// Can respond to SendInput(Seek, Positon)
TRANSPORTCAPABILITIES CANSEEK = 0x100,
// TODO, grant: 77?
TRANSPORTCAPABILITIES ISLIVETRANSPORT = 0x200,

18

10

15

20

25

30

WO 2013/055835 PCT/US2012/059621

}

Communication

[0062] The communication stack used to enable companion scenarios may
combine local low-latency TCP and UDP messaging with a cloud-based service to
support security and device discovery as well as communication between devices
that do not have line-of-sight IP connectivity.

[0063] Communication may be coordinated through the cloud, e.g., a network
service. The console registers with the companion service in order to be discovered
by companion devices. The companion device uses the companion service to
determine with which device it may communicate. If there is line-of-sight IP
connectivity between the console and the companion device, subsequent
communication between that device and the console may happen over local TCP
and UDP messaging without service intervention. If there is no line-of-sight 1P
connectivity between the console and the companion device, communication may
happen via the companion service, albeit at a higher latency. The companion
application may adapt its user interface based on whether a low-latency
communication stack is available, disabling features that” do not make sense” when
relying on cloud-based messaging.

[0064] Device discovery/pairing/authorization may happen through the
companion service. The system may perform this as follows:

1. companion devices use an authenticated network ID that corresponds to a
Login ID.

2. A given device communicates with the console that the current user on that
device is logged into. Guest pairing/authorization using invitation codes or
other more advanced user interface may also be supported.

[0065] The console may re-register with the companion service when the set of
logged on users changes. Part of this registration may include a set of active users,
an IP address of the console, and the TCP port being used to listen for local
companion commands. Upon registering, the companion service may return a
secure session key that the console can use to securely sign and encrypt messages

on the local subnet.

19

10

15

20

25

WO 2013/055835 PCT/US2012/059621

[0066] When the companion device attempts to join a session, it contacts the
companion service, which then returns both the network address of the console the
current user is logged into, as well as the secure session key that can be used to sign
and seal messages on the local subnet.
00677 Communication with the service may be performed over HTTPS. If line-
of-sight IP connectivity is available, subsequent communication may take place
using the TCP/IP for commands (using the TCP/IP address of the console), and
UDP broadcast for notifications (using the IP subnet address of the console). If
line-of-sight IP connectivity is not available, subsequent communications may take
place via the companion service.
[0068] In one or more implementations, it is possible that TCP connectivity to the
console is possible, but UDP broadcast to the device is not due to the console and
companion device being separated by an IP router. In that case, the companion
device may receive notifications via the companion service but still issue
commands (and receive their responses) over direct TCP to the console.

Security
[0069] In addition to the security provided by the local-subnet (e.g., WEP or WPA
over Wi-Fi), communication in the system may be secured as follows.

Companion device to companion service

0070 Communication between the companion device and the service may be
performed over HTTPS, which may be authenticated using a network ID that
corresponds to a valid console ID. The mobile communications device, for
instance, may acquire an authentication (e.g., SAML) token from a linking service
such as XBL, which it then presents to the companion service. The companion
service then issues one or more security tokens for subsequent calls to the service.
For example, a token may be used of subsequent calls to the service and another
token may be used for the console and the mobile communication device to

authenticate the messages.

20

10

15

20

25

WO 2013/055835 PCT/US2012/059621

Console to companion service

00711 Communication between the console and the service may be performed
over HTTPS. When the set of logged in XBL users on the console changes, the
console may acquire a SAML token from XBL, which it then presents to the
companion service. The companion service then issues a security token for
subsequent calls to the service.

Companion device to/from console

00721 Once the companion device or console have authenticated against the
companion service, the devices may then establish a secure session to
communicate, one with another. A session may be thought of as a secure context
that multiple devices can use to communicate. Each session may have:
1. A session ID (guid) that is tracked by the service that uniquely identifies this
communication session.
2. A 128-bit session key that is used to sign and encrypt messages that are sent
over the local subnet.
Whenever the set of logged on users changes on the console, the console may re-
authenticate with the companion service, and, if a previous user has logged off, a
new session key may be generated for that session.
[0073] Messages sent between devices on the local subnet may be integrity
protected and encrypted. Integrity protection may be provided using HMAC-SHAT,
while encryption may be performed using AES-128 in CBC mode. Replay
protection may be implemented using sequence numbers. The receiver may
maintain a ‘high water mark’ number and reject messages with a lower number.

Console Implementation

[0074] The majority of the communication stack for companion may be
implemented in the console operating system, with a minimal API set exposed to

titles.

21

10

15

20

25

30

WO 2013/055835 PCT/US2012/059621

[0075]

Console API

The companion APl may be called by titles. The API may be referred to as

“LrcSetMediaState.” LrcSetMediaState is called by media player titles to

communicate that the playhead state or content ID has changed. This function may

be called:

1.

In response to an explicit change in content ID (e.g., changing from playing
a first movie to playing a second movie within the same console title/app)
In response to processing a transport control request (e.g., stop was pushed,
playrate was changed due to FF/REW).

Periodically as playhead state advances due to normal playback, including

reaching the end of stream or buffering beginning or ending.

The implementation of this API may cache the data passed in the last call in order

to satisfy subsequent requests for playhead state without perturbing execution of

the application or consuming title resources.

[0076]

The implementation of this API may implement the heuristics to determine

when to actually send media state change notifications based on the type of change

that has occurred. In general:

1.

[0077]

Changes to fields other than position may trigger notifications being sent at
the next available opportunity.
Changes made solely to the position field may not trigger a notification
being sent. Rather, the console operating system may send periodic media
state change notifications, and the next one may pick up the last change in
position. For periodic changes over the local subnet, these changes may be
sent every ten seconds. For periodic changes over the cloud, these changes
may be sent every thirty seconds.

The signature of the API is as follows
HRESULT WINAPI LrcSetMediaState(IN LrcMediaState *pMediaState);

struct LrcMediaState
{

ULONGLONG duration; // Total duration of content, in 100ns units

22

10

15

20

25

30

WO 2013/055835 PCT/US2012/059621

ULONGLONG minSeek; // Minimum seek position, in 100ns units
ULONGLONG maxSeck; // Maximum seek position, in 100ns units
ULONGLONG position; // Current playback position, in 100ns units
float fRate; // Current playback rate (1.0f == normal play)
ScourTransportState eTransportState; // Current transport state
TransportCapabilities eTransportCapabilities;

// Wire rep is "mediaType:mediaAssetld”

BYTE MediaAssetld[256]; // Null-terminated UTF-8

// TODO: Min make sure he can get the right asset id from Zune on

console

35

The function returns S_OK upon success, E_ FAIL upon failure.

LreGetlnput/LreGetlnputWithSeek

[0078]

The LrcGetlnput/LrcGetInputWithSeek API is designed to be called as

part of a title’s input polling routine. LrcGetlnput is designed to be called from

titles that cannot support seek commands for getting control commands from a

companion device. LrcGetInputWithSeek is designed for titles that can support a

“seek” operation.

HRESULT WINAPI LrcGetInput(

);

IN OUT DWORD* pdwUserIndex,
IN DWORD dwFlags,
OUT XINPUT KEYSTROKE *pKeystroke

HRESULT WINAPI LrcGetlnputWithSeek(

IN OUT DWORD* pdwUserIndex,

IN DWORD dwFlags,

OUT XINPUT KEYSTROKE *pKeystroke,
OUT ULONGLONG *pSeckPos

23

10

15

20

25

30

WO 2013/055835 PCT/US2012/059621

If there is an input event present, the function returns ERROR_SUCCESS. If there
is no input event present, the function returns ERROR_EMPTY.

[0079] The pdwUserIndex is a pointer to an index of the signed-in user (e.g.,
gamer) associated with the device, which can be a value in the range from O to
XUSER_ MAX COUNT — 1, or set to XUSER INDEX ANY to fetch the next
available input event from any user.

[0080] On return, the variable pointed to by pdwUserIndex may contain the index
of the gamer associated with the device that was the source of the input event. This
is useful if the wvariable pointed to by pdwUserlndex contained
XUSER _INDEX ANY on input.

0081] The dwFlags parameters may be either XINPUT FLAG ANYDEVICE
or, if pdwUserIndex has the value XUSER INDEX ANY,
XINPUT FLAG_ANYUSER.

0082 The pKeystroke parameter may be a non-null pointer to an
XINPUT KEYSTROKE structure.

[0083] The pSeckPos parameter may be a non-null pointer to a ULONGLONG.
[0084] For LrcGetlnput, if the function returns ERROR_SUCCESS, the structure
referenced by pKeystroke may contain the XINPUT KEYSTROKE data for this
input event.

0085] For LrcGetlnputWithSeek,

1. If the input was a seek command, the ULONGLONG referenced by
pSeekPos may contain the desired position, in 100ns units, and the structure
referenced by pKeystroke may be undefined.

2. If the input was not a seek command but the function returned
ERROR_SUCCESS, the ULONGLONG referenced by pSeekPos may be -1
and the structure referenced by pKeystroke may contain the
XINPUT _KEYSTROKE data for this input event.

[0086] For both of these APIs, the human interface device (HID) code
corresponding to the input is standard hardware code. The UserIndex may be set to
the correct index based on the companion device’s current user, which may be zero

to three. In no new keys have been pressed (and the case of GetlnputWithSeek,

24

10

15

20

25

30

WO 2013/055835 PCT/US2012/059621

there is no seek information), the APIs return ERROR _EMPTY. If pdwUserIndex
contains an ID on input for which there is no corresponding logged on user, these
APIs return ERROR_DEVICE NOT_CONNECTED.

Implementation of Companion Component inside Console

[0087] At boot, the console creates a TCP listener socket on a dynamic port
between X and Y to support incoming connections for commands. The listen queue
length is one (1), and the console may accept one incoming connection at a time to
conserve resources. That means that after servicing an incoming command request
and sending the corresponding response, the console may close the TCP connection
prior to making the next accept call on the listener socket.

[0088] When sending a notification over the local subnet, the console may create
a UDP socket, make the call to sendto, and then close the socket. Note that both
the TCP and UDP socket usage is optimized to reduce the number of open sockets,
which is the correct optimization for code running in the console. The protocol
may be designed to allow implementations to hold TCP connections open for more
than one message exchange. In addition to the socket usage described above, one
additional socket may be consumed for the console to interact with the companion
service.

[0089] At each logon change that involves an XBL account/profile logging in or
out, the console contacts the companion service indicating that the set of users has
changed on that console. This call also registers the local IP address of the console
and the TCP port being used to listen for incoming command requests.
Additionally, a pending COMET-style HTTP request may be kept “parked” on the
service to respond to incoming requests from non-line-of-sight-IP devices. This
request is reissued every thirty seconds, and is terminated when the logon set on the
console changes.

Console Resource Consumption

[0090] The total socket usage from the console is:
e | statically allocated outbound TCP socket for HTTP communications with
the service that is used for both logon set registration and COMET event

pull.

25

10

15

20

25

30

WO 2013/055835 PCT/US2012/059621

o 1 statically allocated TCP listen socket for local subnet requests
e 1 dynamically allocated TCP stream socket to service an incoming local
subnet request
e 1 dynamically allocated UDP socket to send notification a message
[0091] That means a minimum of 2 sockets are consumed, and a maximum of 4
(if a UDP notification is allowed to be sent prior to sending a TCP response) or 3
(if notifications are deferred for sending until the TCP connection is torn down).

Protocol Overview

00921 The protocol uses direct TCP connections that are initiated from the
companion device to the console to support invoking operations on the console.
The protocol design supports multiple pending requests per TCP connection, as
well as out-of-order response delivery, however, our console implementation may
close the connection after sending the first response.

[0093] The protocol uses UDP broadcast from the console to companion devices
to support sending notifications. The message formats below may be sent securely
over TCP or UDP using the signing/encryption rules described below.

Message Formats

[0094] Messages may be encoded in binary big-endian format over the
network. Each message fields may be aligned on their native boundary (i.e.,
WORD on a 2-byte boundary, DWORD on a 4-byte boundary, etc.). Fixed length
strings are encoded as "\O'-terminated UTF-8 text, and do not contain a leading
Unicode BOM, which may be stripped by the writer.

[0095] A secure framing protocol is defined for use in both TCP connections and
UDP payloads. The format of those messages includes:

1. A fixed-length Message Header that contains version information, security
data, address information and message IDs.

2. A variable-length Message Body that contains message-type-specific data.
The length of the message body is indicated by a field in the message
header.

3. A fixed length Message Trailer that contains the HMAC-SHA1 signature

over the message header and message body.

26

10

15

20

25

30

WO 2013/055835 PCT/US2012/059621

Message Headers

[0096]

Messages begin with a 32 byte message header whose content is as

follows:

[0097]

DWORD HeaderSignature = 0OxBEDABEDA

DWORD MessageLength = <number of bytes in remainder of the message>
DWORD SequenceNumber = <used for replay detection, correlating replies
and as the initialization vector for encryption, incremented for each
message>

DWORD ProtocolVersion = 0x00000001

DWORD To = <device id message is intended for, OXFFFFFFFF indicates
broadcast>

DWORD From = <device id message is from, used for addressing
responses>

DWORD MessageKind = <see below>

DWORD MessageType = <see below>

The “To” and “From” message header fields are used to support replay

detection as each companion device has its own sequence number. Without the

“From” field in requests, the console would not be able to determine which client

had sent the message and so would be unable to determine the correct sequence

number. Without the “To” field in responses, an attacker could potentially replay a

message intended for one device to a different device.

[0098]

There are two discriminator fields in the message header: MessageKind

and MessageType. The MessageKind field indicates whether the message is a:

[0099]

[0x00000001] Request messages that are used to request an operation be
performed (e.g., commands, queries, connection management) or a
[0x00000002] Response messages that conveys the result of an operation
that was performed in response to a specific request message, or a
[0x00000003] Notification messages that conveys a state change event

The MessageType field identifies the format and semantics of a given

operation or notification. An example list of message types supported are:

[0x80000001] JoinSession (request and response)

27

10

15

20

25

30

WO 2013/055835 PCT/US2012/059621

0x80000002] LeaveSession (request and response)
0x00000001] GetActiveTitleld (request and response)
0x00000002

[

[

[LaunchTitle (request and response)
[0x00000003

[

[

[

SendInput (request and response)

0x00000004] GetMediaAndTitleState (request and response)
0x00000005] NonMediaTitleStateNotification (notification)
0x00000006] MediaTitleStateNotification (notification)

]
]
]
]
]
]

[00100] Response messages have to additional fields in their message header.
DWORD ResponseTo = <SequenceNumber of request this corresponds to>
DWORD ResultCode = <HRESULT-based status code>

[0o101] “Response” messages begin with a four byte result code that is treated like

an HRESULT. Specifically, a value of 0x00000000/S_OK indicates successful

execution of the requested operation. Specific result codes are defined for each
response message type.

Message Trailers

[00102] Messages ends with a 20 byte
BYTE[20] hmac = <HMAC-SHA1 over HeaderSignature, MessageLength,
SequenceNumber and encrypted versions of subsequent message header
fields and entire message body>

Message Bodies

[00103] This section defines the format and semantics of the specific message
types that may be supported by the protocol. The bytes follow the
SequenceNumber message header field and precede the message trailer are
encrypted.

JoinSession Request Message

[00104] This message is sent from a companion device to a console in order to (a)
ensure that the protocol versions match and (b) acquire initial sequence numbers to
use for inbound and outbound messages. The JoinSession request/response may
occur before any additional messages from the companion device are sent to the
console over the local subnet.

DWORD HeaderSignature = 0OxBEDABEDA

28

WO 2013/055835 PCT/US2012/059621

DWORD MessageLength = <number of bytes in remainder of the message>
DWORD SequenceNumber = Oxnnnnnnnn <random initial value>
DWORD ProtocolVersion = 0x00000001

DWORD To = <device id message is intended for>

DWORD From = <device id message is from>

DWORD MessageKind = 0x00000001 <Request>

DWORD MessageType = 0x80000001 <JoinSession>

BYTE[20] hmac = <HMAC-SHA1 over HeaderSignature, MessageLength,
SequenceNumber and encrypted versions of subsequent message header
fields and entire message body>

JoinSession Response Message

[00105] This message is sent to a companion device to/from a console in order to
(a) ensure that the protocol versions match and (b) convey initial sequence numbers

to use for inbound and outbound messages.

15

20

25

30

DWORD HeaderSignature = 0OxBEDABEDA
DWORD Messagelength = <number of bytes in remainder of the message>
DWORD SequenceNumber = Oxnnnnnnnn <always the request’s

SegeuenceNumber + 1>

DWORD ProtocolVersion = 0x00000001

DWORD To = <device id message is intended for, same as the From in the
JoinSession Request message™>

DWORD From = <device id message is from>

DWORD MessageKind = 0x00000002 <Response>

DWORD MessageType = 0x80000001 <JoinSession>

DWORD ResponseTo = Oxnnnnnnnn

DWORD ResultCode = <see below>

DWORD SupportedProtocol Version = Oxnnnnnnnn

DWORD ClientSequenceNumber = <sequence number the client may use

for next request>

29

10

15

20

25

30

WO 2013/055835 PCT/US2012/059621

[00106]

DWORD NotificationSequenceNumber = <sequence number the server may
use for next UDP notification message>

BYTE[20] hmac = <HMAC-SHAT1 over HeaderSignature, MessageLength,
SequenceNumber and encrypted versions of subsequent message header
fields and entire message body>

If the ResultCode is S OK (0), then the requested protocol version is

supported. Also:

1.

The SupportedProtocolVersion contains the protocol version number
supported by this server.

The ClientSequenceNumber contains the sequence number that the client
may use for the next message it sends to the server.

The NotificationSequenceNumber contains the sequence number for the

next notification message to be sent by the server over UDP.

If the ResultCode is E_ VERSION MISMATCH (0x8hhhhhhh), then the session

has not been joined and only the SupportedProtocolVersion field is valid. If the
ResultCode is E TOO_MANY CONNECTIONS (0x8hhhhhhh), then the session

has not been joined and SupportedProtocolVersion, ClientSequenceNumber and

NotificationSequenceNumber are not valid.

[00107]

GetActiveTitleld Request Message

This message is sent from a companion device to a console in order to

query the active title ID on the console.

DWORD HeaderSignature = 0OxBEDABEDA
DWORD MessageLength = Oxnnnnnnnn
DWORD SequenceNumber = Oxnnnnnnnn

DWORD ProtocolVersion = 0x00000001

DWORD To = <device id message is intended for>
DWORD From = <device id message is from>

DWORD MessageKind = 0x00000001 <Request>
DWORD MessageType = 0x00000001 <GetActiveTitleld>

30

5

10

15

20

25

30

WO 2013/055835 PCT/US2012/059621

BYTE[20] hmac = <HMAC-SHAT1 over HeaderSignature, MessageLength,
SequenceNumber and encrypted versions of subsequent message header
fields and entire message body>

GetActiveTitleld Response Message

This message is sent to a companion device to/from a console in response

to a GetActiveTitleld request message and indicates the currently running title.

DWORD HeaderSignature = 0OxBEDABEDA

DWORD MessagelLength = Oxnnnnnnnn

DWORD SequenceNumber = Oxnnnnnnnn

DWORD ProtocolVersion = 0x00000001

DWORD To = <device id message is intended for, same as the From in the
GetActiveTitleld Request message>

DWORD From = <device id message is from>

DWORD MessageKind = 0x00000002 <Response>

DWORD MessageType = 0x00000001 <GetActiveTitleld>

DWORD ResponseTo = Oxnnnnnnnn

DWORD ResultCode = 0x00000000

DWORD Titleld = Oxnnnnnnnn

BYTE[20] hmac = <HMAC-SHA1 over HeaderSignature, MessageLength,
SequenceNumber and encrypted versions of subsequent message header

fields and entire message body>

The Titleld is the console Title ID for the title currently running on the console.

LaunchTitle Request Message

This message is sent from a companion device to a console in order to

launch a title with a specified command-line argument.

DWORD HeaderSignature = 0OxBEDABEDA
DWORD MessageLength = Oxnnnnnnnn
DWORD SequenceNumber = Oxnnnnnnnn

DWORD ProtocolVersion = 0x00000001

31

10

15

20

25

30

WO 2013/055835 PCT/US2012/059621

DWORD To = <device id message is intended for>

DWORD From = <device id message is from>

DWORD MessageKind = 0x00000001 <Request>

DWORD MessageType = 0x00000002 <LaunchTitle>

DWORD Titleld

DWORD LaunchParameterLength; (Not Used)

BYTE[900] LaunchParameter (Null-terminated UTF-§ text)

BYTE[20] hmac = <HMAC-SHA1 over HeaderSignature, MessageLength,
SequenceNumber and encrypted versions of subsequent message header

fields and entire message body>

The Titleld is the console Title ID for the title currently running on the console.
The LaunchParameter field typically identifies the content to be played once the
title has launched. The exact interpretation of this field is title-specific.

LaunchTitle Response Message

[o110] This message is sent to a companion device to from a console in order to
indicate the success/failure of title launch.

DWORD HeaderSignature = 0OxBEDABEDA

DWORD MessageLength = Oxnnnnnnnn

DWORD SequenceNumber = Oxnnnnnnnn

DWORD ProtocolVersion = 0x00000001

DWORD To = <device id message is intended for, same as the From in the

LaunchTitle Request message>

DWORD From = <device id message is from>

DWORD MessageKind = 0x00000002 <Response>

DWORD MessageType = 0x00000002 <Launch>

DWORD ResponseTo = Oxnnnnnnnn

DWORD ResultCode = 0x00000000

BYTE[20] hmac = <HMAC-SHA1 over HeaderSignature, MessageLength,

SequenceNumber and encrypted versions of subsequent message header

fields and entire message body>

32

10

15

20

25

30

WO 2013/055835 PCT/US2012/059621

SendInput Request Message
DWORD HeaderSignature = 0OxBEDABEDA
DWORD Messagelength = Oxnnnnnnnn

DWORD SequenceNumber = Oxnnnnnnnn

DWORD ProtocolVersion = 0x00000001

DWORD To = <device id message is intended for>

DWORD From = <device id message is from>

DWORD MessageKind = 0x00000001 <Request>

DWORD MessageType = 0x00000003 <SendInput>

DWORD ValidFields = 0x01 — VirtualKey, 0x02 — SeekPos, 0x03 - Both
DWORD VirtualKey = <virtual keycode from XDK>

ULONGLONG SeekPosition

BYTE[20] hmac = <HMAC-SHA1 over HeaderSignature, MessageLength,

SequenceNumber and encrypted versions of subsequent fields>

The ValidFields field has a value of 0x01 if the request contains a keystroke, 0x02
if the request contains a seek command and 0x03 if it contains both. The
VirtualKey is identical to its definition in XINPUT KEYSTROKE. The
SeekPosition is used to convey a seek command. If this request message is NOT
indicating a seek, this field may have a value of OXFFFFFFFFFFFFFFFF (-1).

SendInput Response Message

po111] This message is sent to a companion device to/from a console in order to
indicate the success/failure of the SendInput operation.

DWORD HeaderSignature = 0OxBEDABEDA

DWORD Messagelength = Oxnnnnnnnn

DWORD SequenceNumber = Oxnnnnnnnn

DWORD ProtocolVersion = 0x00000001

DWORD To = <device id message is intended for, same as the From in the

SendInput Request message>

DWORD From = <device id message is from>

33

10

15

20

25

WO 2013/055835 PCT/US2012/059621

DWORD MessageKind = 0x00000002 <Response>
DWORD MessageType = 0x00000003 <SendInput>

DWORD ResponseTo = Oxnnnnnnnn

DWORD ResultCode = 0x00000000

BYTE[20] hmac = <HMAC-SHA1 over HeaderSignature, MessageLength,
SequenceNumber and encrypted versions of subsequent message header
fields and entire message body>

GetMediaAndTitleState Command Message

This message is sent from a companion device to a console in order to

query the media state on the console.

DWORD HeaderSignature = 0OxBEDABEDA

DWORD MessageLength = Oxnnnnnnnn

DWORD SequenceNumber = Oxnnnnnnnn

DWORD ProtocolVersion = 0x00000001

DWORD To = <device id message is intended for>

DWORD From = <device id message is from>

DWORD MessageKind = 0x00000001 <Request>

DWORD MessageType = 0x00000004 <GetMediaAndTitleState>

BYTE[20] hmac = <HMAC-SHA1 over HeaderSignature, MessageLength,
SequenceNumber and encrypted versions of subsequent message header

fields and entire message body>

GetMediaAndTitleState Response Message
DWORD HeaderSignature = 0OxBEDABEDA
DWORD Messagelength = Oxnnnnnnnn

DWORD SequenceNumber = Oxnnnnnnnn

DWORD ProtocolVersion = 0x00000001

34

10

15

20

25

30

WO 2013/055835 PCT/US2012/059621

DWORD To = <device id message is intended for, same as the From in the

GetMediaAndTitleState Request message>

DWORD From = <device id message is from>

DWORD MessageKind = 0x00000002 <Response>

DWORD MessageType = 0x00000004 <GetMediaAndTitleState>

DWORD ResponseTo = Oxnnnnnnnn

DWORD ResultCode = 0x00000000

DWORD Titleld

ULONGLONG Duration (100ns units)

ULONGLONG Position (100ns units)

ULONGLONG MinSeek (100 ns units)

ULONGLONG MaxSeek (100ns units)

FLOAT Rate (playback rate, 1.0 == normal)

DWORD TransportState (see ScourTransportState enum in console API

below)

DWORD TransportCapabilities (see TransportCapabilities enum in console

API below)

DWORD MediaAssetldLength; (Not Used)

BYTE[256] MediaAssetld (Null-terminated UTF-8 text)

BYTE[20] hmac = <HMAC-SHA1 over HeaderSignature, MessageLength,

SequenceNumber and encrypted versions of subsequent fields>
001131 If the ResultCode is S OK (0) and the TransportState is not
SCOURTRANSPORTSTATE NOMEDIA, then the other media state fields
(Duration, Position, ..., MediaAssetld) are all valid. If the ResultCode is S OK (0)
and the TransportState is SCOURTRANSPORTSTATE NOMEDIA, then there is
no current media on the console and the remaining media state values are

undefined.

35

10

15

20

25

30

WO 2013/055835 PCT/US2012/059621

NonMediaTitleStateNotification Message

[00114] The NonMediaTitleStateNotification message indicates that a non-media-
enabled console title (e.g., a game) is currently running on the console. The
NonMediaTitleStateNotification message is sent by the console via UDP broadcast
when:
1. A non-media-enabled title is running (e.g., a game). AND
2. No NonMediaTitleStateNotification or MediaTitleStateNotification has been
sent since the update interval (10 seconds). OR a non-media-enabled title
has been launched.
[00115] This message does NOT need to be sent from the console to the cloud, as
title change forces a re-authentication against the cloud, which conveys the title ID.
This message may be sent from the cloud to the companion devices.
DWORD HeaderSignature = 0OxBEDABEDA
DWORD Messagelength = Oxnnnnnnnn
DWORD SequenceNumber = Oxnnnnnnnn
DWORD ProtocolVersion = 0x00000001
DWORD To = 0xFFFFFFFF
DWORD From = <device id message is from>
DWORD MessageKind = 0x00000003 <Notification>
DWORD MessageType = 0x00000005 <NonMediaTitleStateNotification>

DWORD Titleld
BYTE[20] hmac = <HMAC-SHA1 over HeaderSignature, MessageLength,
SequenceNumber and encrypted versions of subsequent fields>

MediaTitleStateNotification Message

[o116] The MediaTitleStateNotification message indicates that a media-enabled
console title (e.g., a tile related to a video streaming service) is currently running on
the console. This message conveys both the console title ID as well as the current

content ID and playhead state.

36

10

15

20

25

30

WO 2013/055835 PCT/US2012/059621

001177 The MediaTitleStateNotification message is sent by the console via UDP
broadcast when:
1. A media-enabled title is running (e.g., a game). AND
2. No NonMediaStateTitleNotification or MediaTitleStateNotification has been
sent since the update interval (10 seconds). OR a media-enabled title has
been launched OR a transport control command has been processed by the
title (e.g., play, stop).
[00118] The MediaTitleStateNotification message is sent by the console to the
cloud when:
1. A media-enabled title is running (e.g., a game). AND
2. No NonMediaTitleStateNotification or MediaTitleStateNotification has been
sent since the update interval (30 seconds). OR a media-enabled title has
been launched OR a transport control command has been processed by the
title (e.g., play, stop).
[00119] This message may be sent from the cloud to the companion devices.
DWORD HeaderSignature = 0OxBEDABEDA
DWORD Messagelength = Oxnnnnnnnn
DWORD SequenceNumber = Oxnnnnnnnn
DWORD ProtocolVersion = 0x00000001
DWORD To = 0xFFFFFFFF
DWORD From = <device id message is from>
DWORD MessageKind = 0x00000003 <Notification>
DWORD MessageType = 0x00000006 <MediaTitleNotification>
DWORD Titleld

ULONGLONG Duration (100ns units)
ULONGLONG Position (100ns units)
ULONGLONG MinSeek (100 ns units)
ULONGLONG MaxSeek (100ns units)
FLOAT Rate (playback rate, 1.0 == normal)

37

10

15

20

25

30

WO 2013/055835 PCT/US2012/059621

DWORD TransportState (see ScourTransportState enum in console API

below)

DWORD TransportCapabilities (see TransportCapabilities enum in console

API below)

DWORD MediaAssetldLength; (Not Used)

BYTE[256] MediaAssetld (Null-terminated UTF-8 text)

BYTE[20] hmac = <HMAC-SHA1 over HeaderSignature, MessageLength,

SequenceNumber and encrypted versions of subsequent fields>
[00120] If the TransportState is not SCOURTRANSPORTSTATE NOMEDIA,
then the other media state fields (Duration, Position, ..., MediaAssetld) are valid.
If the TransportState is SCOURTRANSPORTSTATE NOMEDIA, then there is no
current media on the console and the remaining media state values are undefined.

Console and Cloud Communication

[00121] When a user logs on to the console, the console reports the user info to the
cloud so that the cloud may know who is logged onto the console. The console also
tells the cloud about its local subnet I[P address. The console reports to the cloud
when a user logs off.

Notification Model

[00122] The console may use the unicast approach to announce certain changes on
the console, like title change, media state change, and so on. The socket established
between the device and the console may be used to do this.

[00123] On the companion device side, the runtime library may provide
notification capability. That is, a linking module can register for whatever events it
is interested in and the runtime layer may notify the app to those events as the
events happen.

Runtime Library on the Device Side

[00124] A runtime library may be utilized on each supported devices.
[00125] Here are example APIs that may be supported:
1. bool JoinSession()
This API may connect a device to the console host specified by the

“hostIPAddress”.

38

WO 2013/055835 PCT/US2012/059621

Return value: Return TRUE if the connection is good. Otherwise, return
false.
Sample Usage: JoinSession ();
It may get from the cloud the local subnet IP address of the console after the pairing
5 1is successful. It also gets the security key from the cloud that it can use to secure
communication with the console.

2. DisconnectSession()

10

15

20

25

30

This API may close the connection between your device and the currently
connected console. Note: the runtime uses this API to clean up the session
data ; close the socket with the console. Of course, when the device goes to

sleep, the console may know. So it can close the socket.

. TitleInfo[] GetAvailableTitles()

This API may provide you with a list of titles the living room companion

experience supports currently.

struct TitleInfo

{

uint titleld;

string friendlyName;

For example, here is one of the possible returns from this function:

{
1481115612;
“Zune”;

}

{
“14811156057;
“Netflix”;

39

10

15

20

25

30

WO 2013/055835 PCT/US2012/059621

4. unsigned int GetCurrentRunningTitleId()
This API returns you the titleID of the currently running title on the

currently connected console.

5. void Launch(unsigned int Titleld, string parameter)
This API may launch an app, specified by the “Titleld, with the given
parameter, specified in “parameter”.
TitleId----The title ID of the app you want to launch. Caller gets the friendly
app name from calling “GetListOfAvailableTitles()”

Parameter----The parameter you want to pass to the title during lunch.

6. void SendControlCommand(CommandType key)

This API sends a console control command to the current connected console.

CommandType

{
Play,
Pause,
FastForword,
Rewind,
Stop

}

7. Notification APIs

enum consoleProperty

{
TitleChanged,

MediaStateChange,

SubNetConnectionlost

40

10

15

20

25

30

WO 2013/055835 PCT/US2012/059621

public interface IconsolePropertyChangeDelegate

{
void propertyChanged(Object value);

void SetPropertyChangedCallback(consoleProperty propertyType,
IconsolePropertyChangeDelegate delegate)
[00126] These APIs are used to let the device receive notification events from the
console, like the state change, title change on the console, and so on. Although
specific examples are described, it should be readily apparent that the discussion
and following claims are not necessarily limited to those examples.

Example System and Device

001271 FIG. 6 illustrates an example system 600 that includes the computing
device 102 as described with reference to FIG. 1. The example system 600 enables
ubiquitous environments for a seamless user experience when running applications
on a personal computer (PC), a television device, and/or a mobile device. Services
and applications run substantially similar in all three environments for a common
user experience when transitioning from one device to the next while utilizing an
application, playing a video game, watching a video, and so on.

[00128] In the example system 600, multiple devices are interconnected through a
central computing device. The central computing device may be local to the
multiple devices or may be located remotely from the multiple devices. In one
embodiment, the central computing device may be a cloud of one or more server
computers that are connected to the multiple devices through a network, the
Internet, or other data communication link. In one embodiment, this
interconnection architecture enables functionality to be delivered across multiple
devices to provide a common and seamless experience to a user of the multiple
devices. Each of the multiple devices may have different physical requirements

and capabilities, and the central computing device uses a platform to enable the

41

10

15

20

25

30

WO 2013/055835 PCT/US2012/059621

delivery of an experience to the device that is both tailored to the device and yet
common to all devices. In one embodiment, a class of target devices is created and
experiences are tailored to the generic class of devices. A class of devices may be
defined by physical features, types of usage, or other common characteristics of the
devices.

[00129] In various implementations, the computing device 102 may assume a
variety of different configurations, such as for computer 602, mobile 604, and
television 606 uses. Each of these configurations includes devices that may have
generally different constructs and capabilities, and thus the computing device 102
may be configured according to one or more of the different device classes. For
instance, the computing device 102 may be implemented as the computer 602 class
of a device that includes a personal computer, desktop computer, a multi-screen
computer, laptop computer, netbook, and so on.

[00130] The computing device 102 may also be implemented as the mobile 604
class of device that includes mobile devices, such as a mobile phone, portable
music player, portable gaming device, a tablet computer, a multi-screen computer,
and so on. The computing device 102 may also be implemented as the television
606 class of device that includes devices having or connected to generally larger
screens in casual viewing environments. These devices include televisions, set-top
boxes, gaming consoles, and so on. The techniques described herein may be
supported by these various configurations of the computing device 102 and are not
limited to the specific examples the techniques described herein.

[00131] The cloud 608 includes and/or is representative of a platform 610 for
content services 612. The platform 610 abstracts underlying functionality of
hardware (e.g., servers) and software resources of the cloud 608. The content
services 612 may include applications and/or data that can be utilized while
computer processing is executed on servers that are remote from the computing
device 102. Content services 612 can be provided as a service over the Internet
and/or through a subscriber network, such as a cellular or Wi-Fi network.
Examples of this are illustrated as inclusion of the linking module 114 on the

computing device. As previously described, these techniques may also leverage

42

10

15

20

25

30

WO 2013/055835 PCT/US2012/059621

“the cloud,” such as through implementation of the linking module 124 as part of
the platform 310 described below.

[00132] The platform 610 may abstract resources and functions to connect the
computing device 102 with other computing devices. The platform 610 may also
serve to abstract scaling of resources to provide a corresponding level of scale to
encountered demand for the content services 612 that are implemented via the
platform 610. Accordingly, in an interconnected device embodiment,
implementation of functionality of the functionality described herein may be
distributed throughout the system 600. For example, the functionality may be
implemented in part on the computing device 102 as well as via the platform 610
that abstracts the functionality of the cloud 608.

[00133] FIG. 7 illustrates various components of an example device 700 that can be
implemented as any type of computing device as described with reference to FIGS.
1, 2, and 6 to implement embodiments of the techniques described herein. Device
700 includes communication devices 702 that enable wired and/or wireless
communication of device data 704 (e.g., received data, data that is being received,
data scheduled for broadcast, data packets of the data, etc.). The device data 704 or
other device content can include configuration settings of the device, media content
stored on the device, and/or information associated with a user of the device.
Media content stored on device 700 can include any type of audio, video, and/or
image data. Device 700 includes one or more data inputs 706 via which any type
of data, media content, and/or inputs can be received, such as user-selectable
inputs, messages, music, television media content, recorded video content, and any
other type of audio, video, and/or image data received from any content and/or data
source.

[00134] Device 700 also includes communication interfaces 708 that can be
implemented as any one or more of a serial and/or parallel interface, a wireless
interface, any type of network interface, a modem, and as any other type of
communication interface. The communication interfaces 708 provide a connection

and/or communication links between device 700 and a communication network by

43

10

15

20

25

30

WO 2013/055835 PCT/US2012/059621

which other electronic, computing, and communication devices communicate data
with device 700.

[00135] Device 700 includes one or more processors 710 (e.g., any of
microprocessors, controllers, and the like) which process various computer-
executable instructions to control the operation of device 700 and to implement
embodiments of the techniques described herein. Alternatively or in addition,
device 700 can be implemented with any one or combination of hardware,
firmware, or fixed logic circuitry that is implemented in connection with processing
and control circuits which are generally identified at 712. Although not shown,
device 700 can include a system bus or data transfer system that couples the various
components within the device. A system bus can include any one or combination
of different bus structures, such as a memory bus or memory controller, a
peripheral bus, a universal serial bus, and/or a processor or local bus that utilizes
any of a variety of bus architectures.

[00136] Device 700 also includes computer-readable media 714, such as one or
more memory components, examples of which include random access memory
(RAM), non-volatile memory (e.g., any one or more of a read-only memory
(ROM), flash memory, EPROM, EEPROM, etc.), and a disk storage device. A
disk storage device may be implemented as any type of magnetic or optical storage
device, such as a hard disk drive, a recordable and/or rewriteable compact disc
(CD), any type of a digital versatile disc (DVD), and the like. Device 700 can also
include a mass storage media device 716.

001377 Computer-readable media 714 provides data storage mechanisms to store
the device data 704, as well as various device applications 718 and any other types
of information and/or data related to operational aspects of device 700. For
example, an operating system 720 can be maintained as a computer application
with the computer-readable media 714 and executed on processors 710. The device
applications 718 can include a device manager (e.g., a control application, software
application, signal processing and control module, code that is native to a particular
device, a hardware abstraction layer for a particular device, etc.). The device

applications 718 also include any system components or modules to implement

44

10

15

20

25

WO 2013/055835 PCT/US2012/059621

embodiments of the techniques described herein. In this example, the device
applications 718 include an interface application 722 and an input/output module
724 that are shown as software modules and/or computer applications. The
input/output module 724 is representative of software that is used to provide an
interface with a device configured to capture inputs, such as a touchscreen, track
pad, camera, microphone, and so on. Alternatively or in addition, the interface
application 722 and the input/output module 724 can be implemented as hardware,
software, firmware, or any combination thercof. Additionally, the input/output
module 724 may be configured to support multiple input devices, such as separate
devices to capture visual and audio inputs, respectively.

[00138] Device 700 also includes an audio and/or video input-output system 726
that provides audio data to an audio system 728 and/or provides video data to a
display system 730. The audio system 728 and/or the display system 730 can
include any devices that process, display, and/or otherwise render audio, video, and
image data. Video signals and audio signals can be communicated from device 700
to an audio device and/or to a display device via an RF (radio frequency) link, S-
video link, composite video link, component video link, DVI (digital video
interface), analog audio connection, or other similar communication link. In an
embodiment, the audio system 728 and/or the display system 730 are implemented
as external components to device 700. Alternatively, the audio system 728 and/or
the display system 730 are implemented as integrated components of example
device 700.

Conclusion

[00139] Although the invention has been described in language specific to
structural features and/or methodological acts, it is to be understood that the
invention defined in the appended claims is not necessarily limited to the specific
features or acts described. Rather, the specific features and acts are disclosed as

example forms of implementing the claimed invention.

45

2012322844 08 Jul 2016

[80146] Throughout this specification and the claims which follow, unless
the context requires otherwise, the word "comprise”, and variations such as
“comprises” or "comprising”, will be understood to imply the wclusion of a
stated integer or step or group of integers or steps but not the exclusion of any
other integer or step or group of integers or steps.

[60141] The reference in this specification to any prior publication (or
information derived from 1), or 1o any matter which is known, is not, and
should not be taken as, an acknowledgement or admission or any form of
suggestion that that prior publication (or information derived from it) or known
matter forms part of the common general knowledge in the lield of endeavour

to which this specification relates.

45A

13 Jan 2017

2012322844

CLAIMS
What 1s claimed is:

1. A method implemented by one or more network service provider
computing devices of a service provider that provides a network service, the
method comprising:

associating, by the one or more network service provider computing
devices, a plurality of user devices with a user account of the one or more
network service provider computing devices;

maintaining data at the network service provider computing devices that
describes characteristics of the plurality of user devices that are associated with
the user account of the network service;

forming, at the one or more network service provider computing devices,
a communication to be received by one of the plurality of user devices that
includes a portion of the data maintained at the one or more network service
provider computing devices that pertains to another one of the plurality of user
devices, the portion of the data enabling the receiving user device to discover
the other one of the plurality of user devices to initiate a local network
connection between the user devices that facilitates a companion experience
between the user devices in which one of the receiving user device or the other
one of the plurality of user devices is used to control content output at a
different one of the receiving user device or the other one of the plurality of
user devices; and

communicating the formed communication to the receiving user device.

2. The method as described in claim 1, wherein the communication
further includes another portion of the data that pertains to the other one of the
plurality of user devices and that is suitable to discover the other one of the
plurality of user devices to initiate a remote network connection between the

user devices.

46

13 Jan 2017

2012322844

3. The method as described in claim 1 or 2, wherein the portion of
the data describes a wired or wireless subnet via which the other user device is

accessible via the local network connection.

4. The method as described in claim 1 or 2, wherein the portion of
the data is usable by the receiving user device to form a remote network
connection with the other user device responsive to a determination that the

other user device is not accessible via the local network connection.

5. The method as described in claim 1 or 2, wherein the portion of
the data is usable by the receiving user device to form a hybrid network
connection with the other user device that includes the local network

connection and a remote network connection.

6. The method as described in claim 1 or 2, wherein the portion of
the data is usable by the receiving user device to perform a fallback operation to
switch between the local network connection and a remote network connection
responsive to a determination of unavailability of the local network connection

or the remote network connection.

7. The method as described in any one of claims 1 to 6, wherein the
portion of the data is usable by the receiving user device to support encryption

of communications between the receiving user device and the other user device.

8. The method as described in any of claims 1 to 7, wherein the
companion experience includes one of the receiving user device or the other
one of the plurality of user devices controlling content output at a different one

of the receiving user device or the other one of the plurality of user devices.

0. A method comprising:
receiving data at a computing device, which is associated with a user

account, from one or more network service provider computing devices

47

13 Jan 2017

2012322844

providing a network service that identifies another computing device associated
with the user account, the computing device and the other computing device
being associated with the user account of the one or more network service
provider computing devices before the receiving;

responsive to a determination by the computing device that the other
computing device is available via a local network connection, using the data
received from the one or more network service provider computing devices to
form the local network connection by the computing device with the other
computing device to facilitate a companion experience between the computing
device and the other computing device;

responsive to a determination by the computing device that the other
computing device is not available via a local network connection, using the data
received from the one or more network service provider computing devices to
form a non-local network connection by the computing device with the other
computing device to facilitate the companion experience between the
computing device and the other computing device; and

responsive to forming the local or non-local network connection, using
the data from the one or more network service provider computing devices to
configure control communications that enable one of the computing device or
the other computing device to control operations of a different one of the

computing device or the other computing device.

10. The method as described in claim 9, wherein the data describes a
wired or wireless subnet via which the other computing device is to be made

accessible via the local network connection.
11. The method as described in claim 9 or 10, wherein the data was

provided to the one or more network service provider computing devices by the

other computing device.

48

13 Jan 2017

2012322844

12. The method as described in claim 9 or 10, wherein the data was
provided by the other computing device responsive to selection of a setting to
permit discoverability of the other device to form the local network connection

or the remote network connection.

13. The method as described in any one of claims 9 to 12, wherein the

non-local connection involves an Intranet or wide area network.

14. The method as described in any one of claims 9 to 12, wherein the
non-local connection involves use of the one or more network service provider
computing devices as an intermediary to perform communication between the

computing device and the other computing device.

15. The method as described in any one of claims 9 to 12, wherein the
non-local connection involves tunneling to perform communication between

the computing device and the other computing device.

16. The method as described in any one of claims 9 to 15, further
comprising responsive to the determination by the computing device that the
other computing device is not available via a local network connection,
outputting a notification that pertains to the non-local network connection for

viewing by a user of the computing device.

17. The method as described in any one of claims 9 to 16, further
comprising responsive to the determination by the computing device that the
other computing device is not available via a local network connection,

adjusting availability of one or more features of the computing device.

18. The method as described in any one of claims 9 to 17, further

comprising caching one or more communications to be sent from the

49

13 Jan 2017

2012322844

computing device to the other computing device.

19. The method as described in any one of claims 9 to 18 wherein the
companion experience includes one of the receiving user device or the other
one of the plurality of user devices controlling content output at a different one

of the receiving user device or the other one of the plurality of user devices.

20. The method implemented by a computing device, the method
comprising:

discovering availability, through communication with a network service,
of a device to support a companion experience in which content is output by
one of the computing device or the device and supplemental content, which
supplements the content being output, i1s output by a different one of the
computing device or the device, the availability determined through association
of the device with a user account;

using data received from the network service to initiate a local network
connection between the computing device and the device as a result of the
discovering that 1s usable to communicate data involved in the companion
experience;

sending control communications to the device that are effective to
control output of the content at the device when the computing device outputs
the supplemental content; and

receiving control communications from the device that are effective to
control output of the content at the computing device when the device outputs

the supplemental content.
21. The method as described in claim 20, wherein the computing device

1S a game console or mobile communications device and the device is a

different one of the game console or the mobile communications device.

50

13 Jan 2017

2012322844

22. The method as described in claim 21, wherein the companion
experience is configured to use the mobile communications device as a game

controller for the game console.

51

WO 2013/055835 PCT/US2012/059621

117

)

—
525

)

AT,
ettty

o

AT,
ettty

o

T
ettty

o

(T
GEESSS

o

(-

>,

Service Provider

Linking Module
124

e

(Computing Device 102
Input/Output Module 106 /r ‘\
Linking Drive the Car
Module 114 with your phone!
| (start)(Exit)

_\

fComputing DeviceN
104

Input/Output
Module 108

Linking
Module 116

\\

WO 2013/055835 PCT/US2012/059621

27

200 \

~N

Service Provider

Account Manager
Module 202

Linking Module
124

Y

T N

118
5 Game

Console

\ Discovered!

(Qonnect)(Exit)

10N \ y

(Computing Device 102 fComputing Device\
Input/Output Module 106 104
Linking Input/Qutput
Module 114 Module 108
Linking
N\ Module 116
\\

WO 2013/055835 PCT/US2012/059621

37

300 \‘

302
Maintain data at the network service that describes characteristics
of a plurality of devices that are associated with a user account of the

network service

Y

304
Form a communication to be received by one of the plurality of devices
that includes a portion of the data that pertains to another one of the
plurality of devices and that is suitable by the receiving device to discover
the other one of the plurality of devices to initiate a local network
connection between the devices

\\

Fig. 3

WO 2013/055835 PCT/US2012/059621

4/7

400 ﬂ‘

402
Receive data at a computing device, which is associated with a user
account, from a network service that identifies another computing device
associated with the user account

404
Responsive to a determination by the computing device that the other
computing device is available via a local network connection, form the
local network connection by the computing device with the other
computing device

406
Responsive to a determination by the computing device that the other
computing device is not available via a local network connection, form a
non-local network connection by the computing device with the other
computing device

Fig. 4

WO 2013/055835 PCT/US2012/059621

57

500 \

502
Discover availability, through communication with a network service, of a
device to support a companion experience, the availability determined

through association of the device with a user account

Y

504
Use data received from the network service to initiate a local network
connection between the computing device and the device as a result of
the discovering that is usable to communicate data involved in the
companion experience

Fig. 5

WO 2013/055835 PCT/US2012/059621

6/7

600 j‘

Platform 610

(ContentSerwceSﬁ) \\[Module 124)

N\
N 7/
N\ 7/
N 7
N~
Cloud
608
Computing - Companion
Device 102 AN Module 114
A
4 A
Television
Computer 602 606

)

Mobile 604
OOO

WO 2013/055835 PCT/US2012/059621
717
Device 700
N 4)
Computer-Readable Media 714 Communication
evices
(~ N\ (7 ™~ 202
Device Operating N
Applications System e _ ™
718 C\ 720 Device
Pg‘ _ Data
704
N\ ™~ 9
Input/Output Interface
Module Application ™
124 122 Data
\ Input(s)
706
\,
AN (" _ ™
N A Processing)
Communication
& Control
Storage Interface(s)
. 12
Media \ 708
716 \\
N ———’ 4 _ 4 N
Audio Processor(s)
System
N
Audio /Video =3 £ X 10
Input / Output
-
126 —) Display
System
730
\\

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

