瑞格列奈中间体的合成工艺改进

摘要

本发明涉及杂环化学技术领域，尤其涉及含氮杂环化学技术领域。具体为一种瑞格列奈中间体的合成工艺改进。为了实现上述合成工艺，本发明提供的技术方案为：一种制备具有下列式（a）结构化合物或其酸加成盐的合成工艺，由具有下列式（b）结构的化合物和具有下列式（c）结构的化合物或其盐在酸和缩合剂3-（二氧基磷酯氧基）-1,2,3-苯并三唑-4-酮（DEPBT）或叠氮磷酸二苯酯（DPFF）作用下制备得到，

![化学结构式](image)

制备得到的式（a）化合物也可不经分离直接用于制备瑞格列奈。利用本发明中的合成工艺，两步反应的总收率最高可以达到 90% 以上，光学纯度最高可达 97% 以上。
1. 一种制备具有下列式 (a) 结构化合物或其酸加成盐的合成工艺，由具有下列式 (b) 结构的化合物和具有下列式 (c) 结构的化合物或其盐在碱和缩合剂 DEPBt 或 DPPA 作用下制备得到，

![化学结构式]

其中 R 为羧基保护基。

2. 根据权利要求 1 所述的合成工艺，其中所述 R 为甲基，乙基，叔丁基，苄基，对 - 硝基苯基或对甲氧苄基。

3. 根据权利要求 2 所述的合成工艺，其中所述 R 为乙基。

4. 根据权利要求 1 所述的合成工艺，其中所述碱为有机碱或无机碱。

5. 根据权利要求 4 所述的合成工艺，其中所述有机碱选自苯胺，N, N- 二甲基苯胺，N- 甲基吗啉，二异丙胺，N, N- 异丙基乙胺，三乙胺或吡啶；所述无机碱选自碳酸钠，碳酸钾，碳酸锂，碳酸钠，碳酸氢钠，碳酸氢钾，氢氧化钠，氢氧化钾，氢氧化锂。

6. 根据权利要求 1 所述的合成工艺，所述反应过程中所使用的溶剂为醇类，酯类，烃类，腈类，环醚类，脂肪醚类，酮类或其中任意两种或两种以上溶剂的混合溶剂。

7. 根据权利要求 6 所述的合成工艺，其中所述醇类溶剂为甲醇，乙醇，或异丙醇；所述酯类溶剂为乙酸乙酯；所述烃类溶剂为苯，氯苯或二甲苯；所述腈类溶剂为乙腈；所述环醚类溶剂为四氢呋喃或二噁烷，所述脂肪醚类溶剂为乙醚，丙醚或丁醚，所述酮类溶剂为丙酮或甲基异丁基酮。

8. 根据权利要求 1 所述的合成工艺，所述式 (b) 化合物与所述碱的摩尔用量比为 1 : (1 ~ 2)。

9. 根据权利要求 1 所述的合成工艺，所述式 (b) 化合物与所述缩合剂的摩尔用量比为 1 : (1 ~ 2)。

10. 根据权利要求 1 至 9 任一权利要求所述的合成工艺，所述的式 (a) 化合物或其酸加成盐进一步的经水解步骤转化得到瑞格列奈。
瑞格列奈中间体的合成工艺改进

技术领域
[0001] 本发明涉及杂环化学技术领域，尤其涉及含氮杂环化学技术领域。

背景技术
[0002] 瑞格列奈（Repaglinide），化学名为 (S)-2-乙氧基-4-2(3-甲基-1-[2-(1-哌啶基)苯基]-丁烷基-氨基)-2-羟乙基苯甲酸, 其结构式如下：

![Repaglinide](image)

其属于甲基苯甲胺苯甲酸家族的一种口服降糖药，能促进胰岛素分泌，它与 B 细胞的结合点和磺脲类药物不同，具有吸收快、起效快、作用时间短的特点，有较高的蛋白结合率，不会在组织中蓄积，具有较好的安全性，且与双胍药物有协同作用。既可以作为一线抗糖尿病药物单独应用，也可以与其他降糖药联合应用增加疗效，将为 II 型糖尿病提供一种新的手段。

[0003] 美国专利 US5312924 公开了几种制备瑞格列奈的方法，所述方法包括使式 c 化合物和式 b 化合物在 N,N’-羰基二咪唑、N，N’-二环己基二亚胺 (DCC) 或三苯基膦 / 四氯化碳和三乙胺存在下进行反应，制得瑞格列奈酯 (式 a 化合物)，其经水解即可得到瑞格列奈，

![Reagents](image)

其中 R 为保护基。

[0004] N,N’-羰基二咪唑价格昂贵，对湿气高度敏感，并且产率通常很低 (50%～66%)，使用三苯基膦 / 四氯化碳混合使用导致不纯的产物，必须进行色谱法纯化法或重结晶操作来制得所需纯度的瑞格列奈，而且四氯化碳对生态系统和人类健康有害；使用 DCC 会产生副产物二环己基脲 (DCU)，DCU 在大多数有机溶剂中溶解度小，混在产物中很难除去，只有通过重复结晶产物来除去，导致循环时间和生产成本增加，且 DCC 会使产物式 a 化合物产生较大程度的消旋。

[0005] PCT 专利申请 WO2003027072 在上述专利的基础上进行了改进，反应试剂为特戊酰氯 / 碱，但其报道的反应收率仅为 73%，而且其所使用的试剂会导致外消旋化，为此需要额外的纯化步骤，增加工业负担。
[0006] 基于上述缺点，现有技术方法不适合以商业规模操作制得瑞格列奈，所以需要一种改进的和商业上可行的方法，以解决与现有技术方法中相关的问题并且使之适于大规模生产。

发明内容
[0007] 为了克服现有技术中合成收率低，副产物很难除去，产物容易消旋化，不宜于实现工业化的缺点，本发明采用新的技术方案，对现有的合成工艺进行了改进，提供了一种新的用于合成瑞格列奈乙酯的合成工艺，具体方案如下：

一种制备具有下列式 a 结构化合物或其酸加成盐的合成工艺，由具有下列式 b 结构的化合物和具有下列式 c 结构的化合物或其盐在碱和缩合剂 3-(二乙氧基磷酰氧基)-1,2,3-苯并三唑-4-酮（DEPBT）或叠氮磷酸二苯酯（DPPA）作用下制备得到，

其中 R 为羧基保护基；

优选的，R 为甲基，乙基，叔丁基，苄基，对-硝基苄基，对甲氧苄基等。

[0008] 所述碱选自有机碱和无机碱，其中所述有机碱优选为胺类，所述酸类化合物优选为芳胺或烷基胺，具体可以为苯胺，N，N-二甲基苯胺，N-甲基吗啉，二异丙胺，N，N-异丙基乙胺，三乙胺或吡啶；其中所述无机碱优选为碱金属碱，具体可以为碳酸钠，碳酸钾，碳酸锂，碳酸铯，碳酸氢钠，硫酸氢钾，氢氧化钠，氢氧化钾，氢氧化锂。

[0009] 所述式 a 结构化合物的酸加成盐，可以为有机酸和无机酸加成盐，具体可以为但不限于：盐酸盐，氢溴酸盐，硫酸盐，酒石酸盐，富马酸盐，扁桃酸盐以及酒石酸衍生物。

[0010] 所述式 b 化合物与所述式 c 化合物的摩尔用量比为 1：(1 ～ 2)，优选为 1：1；

所述式 b 化合物与所述碱的摩尔用量比为 1：(1 ～ 2)；

所述式 b 化合物与所述缩合剂的摩尔用量比为 1：(1 ～ 2)；

上述的制备方法中，所用反应溶剂是本领域的技术人员已知的，包括醇类，酯类，烃类，腈类，环醚类，脂肪醚类，酮类等以及他们的混合物。例如所述醇类溶剂具体可以为但不限于：甲醇，乙醇，异丙醇；所述酯类溶剂可以为但不限于：乙酸乙酯；所述烃类溶剂可以为但不限于：苯，甲苯，苯乙烯，二甲苯；所述腈类溶剂可以为但不限于：乙腈；所述环醚类溶剂具体可以为但不限于：四氢呋喃，二噁烷；所述脂肪醚类溶剂可以为但不限于：乙醚，丙醚，丁醚；所述酮类溶剂可以为但不限于丙酮，甲基异丁基酮；反应溶剂也可为上述任意两种或两种以上溶剂的混合溶剂；反应温度根据所使用的反应溶剂，本领域的技术人员可以选定最佳的温度范围。例如，当反应溶剂为甲醇时，选定的反应温度为 15 ～ 60℃。

[0011] 具体的，通过本发明描述的方法制备得到的具体的式 a 化合物是具有下列式 a-1 结构的化合物或其盐；
通过已知方法，例如通过公开号为 CN1020002021 的中国专利中描述的方法，利用由本发明公开的方法制备得到的式 a 化合物或其加成盐经水解步骤，即可高纯度地制备瑞格列奈或其药学可接受盐形式。

0012 本发明给出的一种制备瑞格列奈中间体的合成工艺，具有的有益效果为：本发明用缩合剂 DEPB 或 DPPA 代替现有技术中（1）导致低收率，高成本的试剂 NN’-羰基二咪唑和特戊酰氯／碱（2）环境污染严重的试剂三苯基膦／四氯化碳，（3）避免了使用能够产生难除去的杂质二环己基膦的偶联剂 DCC，利用本发明中的方法，可不经重结晶或柱层析步骤，即可得到纯度 95% 以上的瑞格列奈中间体，同时避免了瑞格列奈中间体消旋产物的产生，得到的瑞格列奈中间体可不经分离，利用一锅法制反应直接经水解步骤得到瑞格列奈，两步总收率最高可以达到 90% 以上，光学纯度最高可以达到 97% 以上。因此，本发明在制备瑞格列奈方面，具有很高的应用价值和经济价值。

0013 具体实施方式

0014 为了更好的理解本发明的内容，下面结合具体实施例对本发明的技术方案做进一步的说明，但具体的实施方式并不是对本发明所做的限制。


在反应瓶中加入甲苯 200ml，3- 乙氧基 -4- 乙氧羰基苯乙酸 (55.75g, 0.22mol)，DEPB (74.8g, 0.25mol), 在 20°C 下搅拌均匀后滴加三乙胺 (25.3g, 0.25mol)，滴毕加入溶解在 100 ml 甲苯中的 (S)-3- 甲基 -1-[2-(1-嗪啶基) 苯基] 丁胺 (54.2g, 0.22mol), 滴毕继续反应 4 ～ 10 小时。加入 200ml 水，分离得到有机层，有机相依次用碳酸氢钠水溶液，饱和氯化钠溶液洗涤，有机相浓缩得到白色固体 2- 乙氧基 -4-[[2-[(S)-3- 甲基 -1-[2-(1-嗪啶基) 苯基] 丁基]氨基] -2- 氧代乙基]苯甲酸乙酯 100.4g, 收率为 95%, 光学纯度为 100%。


在反应瓶中加入乙酸乙酯 200ml, 3- 乙氧基 -4- 乙氧羰基苯乙酸 (55.75g, 0.22mol)，DPPA (68.8g, 0.25mol), 在 20°C 下搅拌均匀后滴加吡啶 (25.3g, 0.25mol)，滴毕加入溶解在 100 ml 甲苯中的 (S)-3- 甲基 -1-[2-(1-奇纳啶基) 苯基] 丁胺 (54.2g, 0.22mol), 滴毕继续反应 4 ～ 10 小时。加入 200ml 水，分离得到有机层，有机相依次用碳酸氢钠水溶液，饱和氯化钠溶液洗涤，有机相浓缩得到白色固体 2- 乙氧基 -4-[[2-[(S)-3- 甲基 -1-[2-(1-唪
啶基) 苯基] 丁基] 氨基] -2- 氧代乙基] 苯甲酸乙酯 98.5g。收率为 93.2%，光学纯度为 100%。

实施例 3: 一锅法制备瑞格列奈

在反应瓶中加入甲苯 200ml, 3- 乙氧基 -4- 乙氧基苯甲酸 (55.75g, 0.22mol), DEPBT (74.8g, 0.25mol), 在 20℃下搅拌均匀后滴加三乙胺 (25.3g, 0.25mol), 滴毕加入溶解在 100ml 甲苯中的 (S)-3- 甲基 -1-[(2-1- 哌啶基) 苯基] 丁胺 (54.2g, 0.22mol), 滴毕继续反应 4～10 小时。加入氢氧化钠 (10g, 0.25mol) 水溶液 200ml 继续反应 5 ～ 30 分钟, 反应完毕后分离收集有机相, 有机相依次用碳酸氢钠水溶液, 饱和氯化钠溶液洗涤, 有机相浓缩得到白色固体瑞格列奈 90.7g。两步总收率为 91.1%, 光学纯度为 100%。