The present disclosure describes genetically-modified plants having enhanced tolerance to multiple abiotic stressors, such as extreme temperatures (heat or cold) and/or drought. Abiotic stress tolerance is enhanced by ectopic expression of a heterologous glutaredoxin. Abiotic stress tolerance (particularly drought) is also enhanced by inhibited function, activity, or expression of an endogenous glutaredoxin. Methods of producing such genetically-modified plants are also disclosed.
Fig. 1
Fig. 2

BF Nu-GFP yGrx3-RFP Merged

BF AtGRXS17-GFP yGrx3-RFP Merged

Fig. 3

Wild type AtGRXS17-3 AtGRXS17-5 AtGRXS17-6 AtGRXS17-9 +Control

10 kb 5 kb 3 kb 2 kb 1.5 kb

Fig. 4

Wild type AtGRXS17-3 AtGRXS17-5 AtGRXS17-6 AtGRXS17-9

GRX 18S rRNA
<table>
<thead>
<tr>
<th>Gene name</th>
<th>Accession #</th>
<th>Forward primer</th>
<th>Reverse primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOISPI1</td>
<td>U66100</td>
<td>TGGCTTTTGACATGCCGGGA SEQ ID NO: 10</td>
<td>TCTGGGAGACTTAAACGAGTGTCG SEQ ID NO: 11</td>
</tr>
<tr>
<td>LaERUSP21.5</td>
<td>A6026983</td>
<td>GCCATTGTTGAAAGGAAGGATGGCA SEQ ID NO: 12</td>
<td>CCACAGAGAGAAACAGAGGATGAAC SEQ ID NO: 13</td>
</tr>
<tr>
<td>LaHSPM1</td>
<td>AB017134</td>
<td>GCCGGAGGAGGAAGAACGCT SEQ ID NO: 14</td>
<td>TCCGCGCTTGATTCATCCA SEQ ID NO: 15</td>
</tr>
<tr>
<td>HSFA1a</td>
<td>AW223323</td>
<td>GCCAGCAAAAGGCATGTGAGGGA SEQ ID NO: 16</td>
<td>TGGGAATGTCGCCAAGATGAGATGA SEQ ID NO: 17</td>
</tr>
<tr>
<td>HSFA2</td>
<td>AK325085</td>
<td>GGCGCTCTCTGATACGCTGTA SEQ ID NO: 18</td>
<td>TGGTGAGGAAAGCCGAGTCCA SEQ ID NO: 19</td>
</tr>
</tbody>
</table>

Fig. 5
Free GFP

25 °C 45 °C

AtGRXS17-GFP

25 °C 45 °C

Fig. 6
Wild type AtGRXS17-GFP

Fig. 7

<table>
<thead>
<tr>
<th>WT</th>
<th>#1</th>
<th>#4</th>
<th>#6</th>
<th>#9</th>
</tr>
</thead>
<tbody>
<tr>
<td>202 KD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133 KD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71 KD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41 KD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 KD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.8 KD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.9 KD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 8
Weak nuclear signal

Strong nuclear signal

25 °C 45 °C 25 °C 45 °C
Free GFP AtGRXS17-GFP

Fig. 9

Wild type GRX

Wild type GRX

Fig. 10
Fig. 13
Fig. 14

Fresh weight

Dry weight

Fig. 15

Heat Stress *in vitro* vs Heat Stress *in vivo*

Control vs Heat stress

WT vs AtGRXS17-6 vs AtGRXS17-9
Fig. 18

Fig. 19
Fig. 21
Fig. 22

Fig. 23
<table>
<thead>
<tr>
<th>Gene name</th>
<th>Accession #</th>
<th>Primer sequence</th>
<th>SEQ ID NO:</th>
</tr>
</thead>
</table>
| SIABRE1 | AY530758 | Forward: ACCAACAATCACAGCCACAG 20
Reverse: TGCTCTTCCCAAGTCCATCT 21 | |
| SICBF1 | AY034473.1 | Forward: GCTGAGAGGAAGAAGTTTCG 22
Reverse: GAGTTGGGAGGAAGGGAGATAG 23 | |
| SICAT1 | M93719 | Forward: ATGCTGCTGGAAACTATCTGAG 24
Reverse: GGTGCAATACGGGTGCTCCTGAGTA 25 | |
| SPP2Acs | AY325818 | Forward: CGATGTGTGATCTCTATGTGTC 26
Reverse: AAGCTGATGGGCTCTAGAAATC 27 | |

Fig. 24

Fig. 25
Fig. 26
Fig. 27

Fig. 28
Fig. 29
Fig. 30

A
- **Electrolyte leakage (%)**
 - Wild type
 - CBF3-2
 - CBF3-3
 - AtGRXS17-5
 - AtGRXS17-6
 - AtGRXS17-9

B
- **Fv/Fm**
 - Wild type
 - CBF3-2
 - CBF3-3
 - AtGRXS17-5
 - AtGRXS17-6
 - AtGRXS17-9

Time (h and d)
- 0h, 6h, 12h, 1d, 3d, 5d, 7d
Closer view of CBF3

Fig. 31

Relative expression level of SICBF1

- Wild type
- AtGRXS17-3
- AtGRXS17-6

Time of cold treatment (h)

Fig. 32
A Wild type AtGRXS17-3 AtGRXS17-6

Control

20 μM MV

B

Primary root length (cm)

Wild type AtGRXS17-3 AtGRXS17-6

Fig. 33
Fig. 34
PLANTS WITH ENHANCED TOLERANCE TO MULTIPLE ABIOTIC STRESSES
CROSS-REFERENCE TO RELATED APPLICATIONS

SEQUENCE LISTING

0002 The nucleic and amino acid sequences listed in the accompanying Sequence Listing are presented in accordance with 37 C.F.R. 1.822. Only one strand of each nucleic acid sequence is shown, but the complementary strand is understood as included by any reference to the displayed strand. The Sequence Listing is submitted as an ASCII computer readable text file, created on Aug. 24, 2012, 35 KB, which is incorporated by reference herein. In the accompanying sequence listing: SEQ ID NO:1 is a coding complementary (cDNA) sequence of the mRNA for the AGRXS17 gene; SEQ ID NO:2 is the amino acid sequence of AGRXS17; SEQ ID NO:3 is the nucleotide sequences of the AGRXS17-GFP fusion protein; SEQ ID NO:4 is the amino acid sequence of the fusion protein; SEQ ID NO:5 is a coding cDNA sequence of the OsGRXS17 gene; SEQ ID NO:6 is the amino acid sequence of OsGRXS17; SEQ ID NO: 7 is the complete coding sequence of chromosome 10 of Oryza salina, where residues 1295-1688 correspond to the sequence used for RNAi; SEQ ID NO:8:29 are nucleotide sequences of primers; SEQ ID NO:30 is the coding sequence of the SIGRXS17 gene; and SEQ ID NO:31 is the amino acid sequence of SIGRXS17.

BACKGROUND OF THE INVENTION

0003 1. Field of the Invention

0004 The present invention relates to genetically-modified plants having enhanced tolerance to multiple abiotic stressors.

0005 2. Description of Related Art

0006 Abiotic stress (drought, cold, heat, salt, etc.) adversely affects the growth and development of plants and limits agricultural productivity, often causing losses of billions of dollars per year. Worldwide extensive agricultural losses are attributed to temperature stress and drought. Drought stress alone affects more than 50% of the Earth’s surface area. Furthermore, drought and heat stress often occur simultaneously, and both are tightly related to oxidative stress.

0007 While various signaling networks regulate plant responses to stress, the mechanisms unifying these diverse biological processes are largely unknown. A common plant response to drought or cold as well as heat stresses involves dramatic increases in the production of reactive oxygen species (ROS). Although ROS can act as signals for stress responses, excessive ROS production causes oxidative damage to macromolecules and cell structures, leading to inhibition of plant development. Therefore, the level of ROS must be regulated in plants through the coordination of ROS production, signaling and scavenging. Heat stress is known to induce oxidative stress. Furthermore, during prolonged heat stress, ROS levels increase dramatically, resulting in significant oxidative damage to plant macromolecules and cell structures. Thus, toxic ROS must be rapidly detoxified by various cellular enzymatic or nonenzymatic mechanisms. In particular, H$_2$O$_2$ has been known to block heat shock response and macromolecule refolding activity under heat stress, for example, thereby leading to insufficient macromolecule biosynthesis and enhanced endoplasmic reticulum (ER) stress. Uncontrolled stress responses may enhance cell death. Protection against oxidative stress, therefore, is an important component in determining the survival of a plant under stress.

0008 The phytohormone abscisic acid (ABA) is a key mediator of drought stress and coordinates a complex regulatory network enabling plants to cope with decreased water availability by regulation of downstream signaling pathways, including the transcription factor AREB (ABA-responsive element binding protein). Cold stress also adversely affects plant crop productivity. Plants have evolved sophisticated response pathways that include the CBF (C-repeat binding factor) pathway, which contributes to chilling resistance and cold acclimation. Tomato, in particular, has poor freezing tolerance and suffers chilling injury when exposed to low temperatures.

0009 Glutaredoxins are small ubiquitous proteins of the thioredoxin family and mediate reversible reduction of disulfide bonds of substrate proteins in the presence of glutathione (GSH) via a dithiol or monothiol mechanism. These enzymes have emerged as key regulators in diverse cellular processes, including oxidative stress responses. Glutaredoxins and thioredoxins function by regulating cellular redox state and redox-dependent signaling pathways and are conserved in both prokaryotes and eukaryotes. In plants, glutaredoxins represent a large protein family, the members of which are not only necessary for redox buffering, but also play roles in heavy metal detoxification, plant development, plant-pathogen interactions, iron homeostasis, and abiotic stress response. All glutaredoxins have a CXXC/S active site motif where the cysteines can be used in the reduction reaction via a dithiol (using the two cysteines) or monothiol (involving only the N-terminal cysteine) mechanism. Plant glutaredoxins are divided into three classes: namely the CPYC, CGFS, and CC-type classes. The CPYC and CGFS classes exist in all examined organisms from prokaryotes to eukaryotes. Glutaredoxins from the CGFS class all contain the strictly conserved CGFS motif. A single glutaredoxin protein can have multiple functions in plants.

SUMMARY OF THE INVENTION

0010 The present disclosure is broadly concerned with a genetically-modified plant having enhanced tolerance to an abiotic stressor as compared to a control plant. The genetically-modified (or engineered) plant has ectopic expression of a heterologous, abiotic stress tolerance gene, which encodes for a glutaredoxin.

0011 Embodiments described herein are also directed towards methods of enhancing the tolerance of a plant to an abiotic stressor. The methods comprise transforming the plant with a heterologous, abiotic stress tolerance gene, wherein the gene encodes a glutaredoxin, thereby enhancing the tolerance of the plant to an abiotic stressor.

0012 Methods of producing genetically-modified plants having enhanced tolerance to an abiotic stressor are also provided. The methods comprise crossing a first plant with a second plant to thereby produce progeny, wherein at least one
of the first or second plants is a genetically-modified plant having ectopic expression of a heterologous, abiotic stress tolerance gene. Advantageously, the progeny have enhanced tolerance to an abiotic stressor.

[0013] Genetically-modified seeds produced according to the various methods described herein are also provided. In some embodiments, a method of producing genetically-modified seed is provided, which comprises providing a genetically-modified plant having ectopic expression of a heterologous, abiotic stress tolerance gene, and self-pollinating the plant to thereby produce genetically-modified seed. The genetically-modified seed comprises the heterologous, abiotic stress tolerance gene.

[0014] Recombinant plant cells are also provided. The plant cells have ectopic expression of a heterologous glutaredoxin by stable transformation with a nucleic acid construct encoding the glutaredoxin, wherein the glutaredoxin is GRXS17.

[0015] An isolated nucleotide sequence encoding a fusion protein for enhancing the abiotic stress tolerance of a plant is also provided. The isolated nucleotide sequence comprises: (a) a sense or antisense sequence corresponding to SEQ ID NO-3, or the conservatively modified variants thereof; or (b) a nucleotide sequence encoding a protein comprising SEQ ID NO-4, or a protein having at least about 40% sequence identity to SEQ ID NO-4 and retaining the functional characteristics thereof.

[0016] The disclosure is also concerned with fusion proteins for enhancing the abiotic stress tolerance of a plant. The fusion protein comprises a glutaredoxin amino acid sequence linked to a reporter amino acid sequence by one or more peptide bonds.

[0017] In some embodiments, a genetically-modified plant having enhanced resistance to an abiotic stressor (particularly drought stress) is also provided, which has inhibited expression, activity, or function of an endogenous glutaredoxin gene.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] The patent or application file contains at least one drawing executed in color. Copies of this patent or application publication with color drawings will be provided by the Office upon request and payment of the necessary fee.

[0019] FIG. 1 shows a (A) data that AtGRXS17 rescues the cell growth of yeast Gpx3/Gpx4 mutant. Vector-expressing wild type cells and vector-, yeast Gpx3-, AtGRXS17-, and AtGRXS17-GFP-expressing gpx3gpx4 cells were grown on YPD and SC-Ura media. The photographs were taken after 3 days of growth at 30° C.; (B) Yeast strains carrying various plasmid DNAs as indicated in Example 1 were grown in SC-Ura liquid media with 1 mM H₂O₂; (C) Yeast strains carrying various plasmid DNAs as indicated in Example 1 were grown in SC-Ura liquid media 0.5 mM Diamide; (D) data showing that AtGRXS17 suppresses the sensitivity of yeast Gpx3/Gpx4 mutants to heat shock;

[0020] FIG. 2 contains images of co-localization of AtGRXS17-GFP and yeast Gpx3-RFP with nuclear markers in yeast cells. BF: bright field. Scale bars =10 μm;

[0021] FIG. 3 shows the DNA gel blot analysis from Example 2, which confirmed the stable integration of AtGRXS17 into the genome of tomato plants;

[0022] FIG. 4 shows the RT-PCR confirmation of AtGRXS17 expression in different lines;

[0023] FIG. 5 is a table of PCR primers used in the Examples;

[0024] FIG. 6 shows images of the subcellular localization of AtGRXS17. Transient expression of (A) free GFP and (B) GFP-AtGRXS17 in tobacco cells after being treated at 25° C. and 45° C. for 90 min. Scale bars =25 μm. The arrows highlight the nucleus;

[0025] FIG. 7 is a photograph of wild type and AtGRXS17-GFP-expressing tomato plants after being treated at 38° C./28° C. (day/night) for 3 days, followed by 42° C./32° C. (day/night) for 3 more days;

[0026] FIG. 8 is an image of the immunoblot detection of GFP-tagged recombinant proteins extracted from wild type and AtGRXS17-GFP-expressing tomato plants;

[0027] FIG. 9 shows a graph of the total 100 nuclei counted for fluorescent signals. The percentage of weak or strong nuclear signals was recorded;

[0028] FIG. 10 shows photographs indicating that the growth and development of the tomato plants is indistinguishable before heat treatment, indicating that the expression of AtGRXS17 does not adversely affect the plant or fruit phenotype or yield;

[0029] FIG. 11 shows photographs depicting the comparative heat tolerance of the wild type vs. the AtGRXS17-expressing tomato plants;

[0030] FIG. 12 shows photographs of the plants depicting the recovery of the AtGRXS17-expressing tomato plants when transferred to normal growing conditions after 6 days of heat treatment, as compared to the wild-type plant, which was unable to recover;

[0031] FIG. 13 shows graphs of (A) Chlorophyll fluorescence of wild type and AtGRXS17-expressing plants; and (B) Electrolyte leakage of wild type and AtGRXS17-expressing plants after heat stress;

[0032] FIG. 14 shows graphs of the above-ground fresh weights and dry weights of wild type and AtGRXS17-expressing plants after heat treatment growth for 28 days as compared with Control (normal growing conditions);

[0033] FIG. 15 shows images demonstrating the effects of heat stress on the accumulation of H₂O₂ in the leaves of 30-day-old wild-type (WT) and AtGRXS17-expressing (GRXS17 #6 and GRXS17 #9) tomato plants;

[0034] FIG. 16 shows a graph of the effects of AtGRXS17-expression on the Cai (catallase) activity under control or heat treatments. Control, the 33-day-old tomato plants grown under normal growth condition as described above. Heat, the 30-day-old tomato plants were grown under normal growth condition and then treated at 42° C./32° C. (day/night) for 3 days;

[0035] FIG. 17 shows graphs of the expression analysis of heat shock proteins (HSP) and heat shock factors (HSF) in the wild type and AtGRXS17-expressing tomato plants by qRT-PCR. Data are expressed as relative values based on wild type plants grown under control condition as reference sample set to 1.0;

[0036] FIG. 18 shows photographs of wild type and AtGRXS17-expressing rice after heat stress;

[0037] FIG. 19 shows photographs of (A) 5 weeks of Arabidopsis seedlings after drought stress was applied by withholding water for 20 d in a growth chamber (16 h light, 100 μmol m⁻² s⁻¹, 22±2° C.), and recovery was initiated by placing pots in a shallow tray of water; and (B) Plant viability evaluated 12 d after initiation of recovery under normal
growth conditions. Plants were scored as viable if one or more new leaves appear during the recovery period; FIG. 20 shows photographs of 4 weeks of rice seedlings (transgenic line 7 and WT) after drought stress was applied by withholding water for 11 d in a growth chamber (16 h light, 100 μmol m⁻² s⁻¹, 28±2°C), and recovery was initiated by placing pots in a shallow tray of water. 0 d represents the initial day of withholding water, 9 d and 11 d represent the days after withholding water; “14 d after rewatering” represents the days after rewatering and recovering the rice plants; FIG. 21 shows four-week-old rice seedlings (transgenic lines RNAi-6, -7, -8, and -13) with reduced expression of OsGRXS17 by RNA-mediated silencing and WT plants after drought stress treatment followed by recovery after rewatering; FIG. 22 is a graph of the relative expression levels of DST by quantitative real-time PCR in leaves of two-week rice plants from Example 4; FIG. 23 is a graph of the water loss rates in Example 4 as calculated by the formula: water loss rate (%) = [(FW-DW)/(FW)]*100. FW = Fresh weight, DW = Dried weight; FIG. 24 is a graph of the water content (RWC) calculated the day when wilting of OsGRXS17-silenced rice appeared under drought stress treatment. RWC (%) = [(FW-DM)/(TM-DM)]*100. FW = Fresh Mass, DM = Dry Mass, TM = Turgid Mass; FIG. 25 is a table of PCR primers used in the Examples; FIG. 26 shows (A) photographs of the morphology of AtGRXS17-expressing and wild-type plants before and after drought stress; (B) a graph of shoot water content of AtGRXS17-expressing and wild-type plants after 10 d withholding water; and (C) a graph of chlorophyll fluorescence of AtGRXS17-expressing and wild-type plants during drought treatment. Data represent mean±SD from three independent biological replicates (* P<0.05, ** P<0.01); FIG. 27 shows a graph of the relative mRNA levels of SIA BRE1 gene in 14-d-old AtGRXS17-expressing and wild-type tomato seedlings after being treated at 4°C for 0, 0.5, 2, 4, 8, and 24 h, respectively. Data represent mean±SD from three independent biological replicates, and indicates that SIA BRE1 transcripts remain longer at a higher level in AtGRXS17-expressing tomato plants under drought stress; FIG. 28 is a PCR gel age of the integration of AtCBF3 into the tomato genome using HYG primers; FIG. 29 shows photographs of (A) Four-week-old AtGRXS17-expressing, AtCBF3-expressing or wild-type seedlings treated under 4°C (day/night) for 3 weeks; (B) AtGRXS17-expressing, AtCBF3-expressing and wild-type tomato leaves after cold treatment; and (C) Five-days recovery after 3-week-cold treatment; FIG. 30 shows graphs of (A) Electrolyte leakage of AtCBF3-, AtGRXS17-expressing and wild-type tomato plants during cold treatment; and (B) Chlorophyll fluorescence of the bottom second leaves of wild type, AtCBF3-, AtGRXS17-expressing tomato plants during cold treatment. The error bars indicates ±SD (n=3); FIG. 31 is a photograph comparing the phenotypes of wild-type and AtCBF3-expressing tomato plants under normal growth condition; FIG. 32 is a graph of relative mRNA levels of SICBF1 gene in 14-d-old wild-type and AtGRXS17-expressing tomato seedlings after being treated at 4°C for 0, 0.5, 2, 4, 8, 24, and 48 h, respectively. Data represent mean±SD from three independent biological replicates, and indicate dynamic changes in SICBF1 transcript levels of AtGRXS17-expressing tomato plants under cold stress; FIG. 33 is (A) photographs of AtGRXS17-expressing and wild-type tomato seedlings treated with oxidative herbicide. Seven-day-old AtGRXS17-expressing and wild-type tomato seedlings were transferred onto MS media with (lower panel) or without (upper panel) 20 μM MV and incubated for 14 d. Bars = 5 cm; and (B) a graph of the root length of wild-type and AtGRXS17-expressing tomato seedlings that were being treated by 20 μM MV. Data represent mean SD from eight independent biological replicates (** P<0.01, *** P<0.001); and FIG. 34 is a graph of the relative mRNA levels of SICAT1 gene in leaf tissue of AtGRXS17-expressing and wild-type plants exposed to oxidative stress. Data represent mean±SD from three independent biological replicates.

DETAILED DESCRIPTION

In more detail, the present invention is concerned with plants having ectopic expression of an exogenous, abiotic stress tolerance gene, which thereby have increased tolerance or resistance to abiotic stresses relative to a control plant. Unless otherwise indicated by the context, references herein to a “plant” or “plants” includes tissues, organs, or parts thereof (e.g., leaves, stems, tubers), fruit, or cells thereof. The invention is also concerned with various methods of increasing plant tolerance or resistance to abiotic stresses by ectopic expression of an exogenous, abiotic stress tolerance gene in a plant. Methods of creating such non-naturally occurring genetically-modified plants are also provided, along with nucleic acid constructs, vectors, and fusion proteins useful in such methods. The invention is suitable for use with various plants, including both monocotyledons (i.e., plants having one cotyledon (seed-leaf), aka “monocots”) and dicotyledons (i.e., plants having two cotyledons, aka “dicots”). Non-limiting examples of plants suitable for the disclosed embodiments include grains (e.g., wheat, oat, barley, rice, maize, millet, rye, sorghum, triticale, buckwheat, quinoa), legumes (e.g., soybeans, beans, peas, alfalfa), tubers (e.g., potatoes, sweet potatoes, cassava, yam), nightshades (e.g., tomatoes, peppers, tobacco), other cash crops (e.g., cotton), and the like. The inventive methods can be used to produce plants with enhanced tolerance to a variety of abiotic stresses. The term “abiotic” stress is used herein to refer to non-living chemical and/or physical factors in the environment that affect plant growth and/or development. Examples include extreme temperatures (heat or cold), water availability (e.g., drought), salinity (e.g., salt), and the like. Such abiotic factors are considered “stressors” when they influence the environment beyond its normal range of variation to adversely affect plant growth and/or development. For example, heat or cold stress may occur when the plant is subjected to temperatures at least about 10-20°C. higher or lower than the normal plant growing temperatures. “Normal plant growing temperatures” refers to temperature ranges suggested for optimal growth and yield, which for most species are known in the art. For example, many plants prefer a daytime temperature of between about 24°C. and about 28°C., and a nighttime temperature of between about 19°C. and about 21°C. In general, preferred nighttime temperatures are about 5°C. to 7°C. lower than daytime temperatures. The tolerance of the
transgenic plant is considered to be “enhanced” when the transgenic plant’s growth or development is superior to the growth and development of a control plant under the same conditions or stressors, even if the transgenic plant is not completely resistant to or unaffected by the stressor.

[0055] As noted above, the transgenic plants have ectopic expression of an exogenous gene. The term “exogenous” is used herein to refer to a nucleic acid sequence (e.g., DNA, RNA) or gene that originates from a source outside of a particular plant species, and is introduced into another (host) plant species to create the transgenic plant. For example, the term as it is used in reference to expression of an encoding nucleic acid, refers to introduction of the encoding nucleic acid in an expressible form into the host plant. Transformation techniques for plants are well known in the art and include Agrobacterium-mediated techniques, as described herein, as well as other techniques involving the uptake of exogenous genetic material by the plant, such as PEG- or electroporation-mediated uptake, particle bombardment-mediated delivery, and/or microinjection.

[0056] In one or more embodiments, the exogenous abiotic stress tolerance gene is heterologous. The term “heterologous” refers to genetic material derived from a source other than (i.e., foreign to) the referenced species, whereas “homologous” refers to genetic material derived from, naturally associated with, or native to, the host plant species. For example, in some embodiments, the transgenic plants are created by introducing genetic material encoding for an abiotic stress tolerance gene product from one species into a host plant of a different species, wherein the host plant expresses that heterologous gene product. Advantages of ectopic expression or overexpression of the heterologous abiotic stress tolerance gene increases the tolerance or resistance of the transgenic plant to abiotic stresses.

[0057] The abiotic stress tolerance gene described herein is a glutaredoxin gene (aka glutaredoxin transgene), and more preferably a gene encoding a CGFS-type monothiol glutaredoxin, preferably GRXS17, which is highly conserved across different species. More particularly, transgenic plants according to the invention preferably express a heterologous gene for this glutaredoxin. In some embodiments, the gene is expressed in the presence of the abiotic stress and/or is dependent on the plant being under stress for expression to be activated. In other embodiments, expression is not dependent on the presence or absence of a stressor. In some embodiments, Arabidopsis gene AGRXS17 can be used to transform plant species other than Arabidopsis, such as tomatoes, rice, wheat, etc., into stress tolerant transgenic plants. Likewise, tomato gene SIGRXS17 can be used to transform other plant species such as rice, wheat, corn, etc., into stress tolerant transgenic plants.

[0058] In some embodiments, the tolerance to an abiotic stressor in the plant is enhanced by expressing in the plant an abiotic stress tolerance gene which comprises (or consists of) a sequence selected from the group consisting of: (a) a nucleotide sequence comprising SEQ ID NO:1, 3, 5, or 30; (b) a nucleotide sequence comprising an antisense sequence corresponding to SEQ ID NO:1, 3, 5, or 30; (c) a nucleotide sequence having at least about 70% sequence identity (preferably at least about 80% sequence identity, and more preferably at least about 90% sequence identity) to SEQ ID NO:1, 3, 5, or 30 (i.e., conservatively modified variants thereof); (d) a nucleotide sequence encoding a glutaredoxin protein comprising SEQ ID NO:2, 4, 6, or 31; and (e) a nucleotide sequence encoding a glutaredoxin protein having at least about 50% amino acid identity (preferably at least about 70% amino acid identity, and more preferably at least about 80% amino acid identity) to SEQ ID NO: 2, 4, 6, or 31 and retaining the functional characteristics thereof. The “functional characteristics” of the abiotic stress tolerance protein refers to the ability of the expressed protein or enzyme to regulate endogenous stress response pathways and/or the enzymatic function of reactive oxygen species, protect the plant from oxidative stress, and enhance endogenous antioxidant activity. In some embodiments, the plant abiotic stress tolerance protein is an antioxidant for reactive oxygen species, such as .H2O2 and/or —OH radicals. In some embodiments, the abiotic stress tolerance protein upregulates endogenous heat shock proteins in the plant. In some embodiments, the abiotic stress tolerance protein upregulates catalase enzyme activity in the plant. Thus, “conserved variants” of the disclosed nucleic acid and amino acid sequences are contemplated herein, as long as the resulting proteins or enzymes retain one or more of the abilities described above.

[0059] In one or more embodiments, the method of enhancing the tolerance of a plant to abiotic stress comprises introducing and expressing in a plant cell a heterologous nucleic acid construct encoding a glutaredoxin, preferably a CGFS-type monothiol glutaredoxin, and more preferably GRXS17. A recombinant plant cell comprising the nucleic acid construct, preferably stably incorporated into its genome, is also provided herein. The nucleic acid construct can comprise a nucleic acid coding sequence which is operably linked to a promoter that drives expression in the plant cell. Suitable promoters include the cauliflower mosaic virus promoter (CaMV35S), the rice actin promoter, the maize ubiquitin promoter, or other stress-inducible promoters that can be selected by those of ordinary skill in the art. A “stress-inducible promoter” is one that is activated in response to stress. More preferably, the transgenic plant is prepared by introducing into plant cell a vector or plasmid comprising the nucleic acid construct. Thus, in one or more embodiments, a plant cell transformed with an expression vector or plasmid described herein is also provided. In further embodiments, a vector or plasmid is provided for preparing a transgenic plant having enhanced resistance to abiotic stress. The vector or plasmid comprises an expression cassette comprising a nucleic acid construct, which encodes an abiotic stress tolerance gene, operably linked a suitable promoter for driving expression of the nucleic acid in the plant cell.

[0060] In some embodiments, the nucleic acid construct comprises (or consists of) a sequence selected from the group consisting of: (a) a nucleotide sequence comprising SEQ ID NO:1, 3, 5, or 30; (b) a nucleotide sequence comprising an antisense sequence corresponding to SEQ ID NO:1, 3, 5, or 30; (c) a nucleotide sequence having at least about 70% sequence identity (preferably at least about 80% sequence identity, and more preferably at least about 90% sequence identity) to SEQ ID NO:1, 3, 5, or 30 (i.e., conservatively modified variants thereof); (d) a nucleotide sequence encoding a glutaredoxin protein comprising SEQ ID NO:2, 4, 6, or 31; and (e) a nucleotide sequence encoding a glutaredoxin protein having at least about 50% amino acid identity (preferably at least about 70% amino acid identity, and more
preferably at least about 80% amino acid identity) to SEQ ID NO: 2, 4, 6, or 31 and retaining the functional characteristics thereof.

[0061] In some embodiments, there is provided an isolated nucleotide sequence encoding a glutaredoxin protein for enhancing abiotic stress tolerance in plants. In some embodiments, the nucleotide sequence comprises a sense or antisense sequence corresponding to SEQ ID NO: 1, 5, or 30 or the conservatively modified variants thereof. In some embodiments, the nucleotide sequence encodes a protein comprising SEQ ID NO: 2, 6, or 31 or a protein having at least about 50% amino acid identity (preferably at least about 70% amino acid identity, and more preferably at least about 80% amino acid identity) to SEQ ID NO: 2, 6, or 31 and retaining the functional characteristics thereof.

[0062] In some embodiments, there is provided an isolated nucleotide sequence encoding a fusion protein for enhancing the abiotic stress tolerance of a plant. In some embodiments, the nucleotide sequence comprises a sense or antisense sequence corresponding to SEQ ID NO: 3, or the conservatively modified variants thereof. In some embodiments, the nucleotide sequence encodes a protein comprising SEQ ID NO: 4, or a protein having at least about 50% amino acid identity (preferably at least about 70% amino acid identity, and more preferably at least about 80% amino acid identity) to SEQ ID NO: 4 and retaining the functional characteristics thereof. Thus, in one or more embodiments, a fusion protein for enhancing the abiotic stress tolerance of a plant is provided. In some embodiments, the fusion protein comprises a glutaredoxin amino acid sequence, such as those described herein (e.g., 2, 6, or 31), linked to reporter amino acid sequence by one or more peptide bonds. In some embodiments, the reporter is a fluorescent protein, such as green fluorescent protein (GFP). Other suitable reporters include beta-glucuronidase (GUS), luciferase, dsRed (red fluorescent protein), and the like.

[0063] Methods of the invention include, cultivating plant tissue (e.g., leaf, cotyledon, or hypocotyl explants) on a suitable medium (e.g., Murashige and Skoog (MS), or Chu (N2)), followed by introduction of the exogenous abiotic stress tolerance gene into the tissue using suitable techniques, such as those described above and in the working examples. The abiotic stress tolerance gene can be introduced using a construct, vector, plasmid or other suitable technique. Expression of the gene results in transformed or modified tissue. As noted above, reporter genes can be used to verify transformation. The transformed tissue can then be used to regenerate transgenic whole plants having enhanced tolerance to abiotic stressors. Transgenic plants can be regenerated using various techniques depending upon the plant species involved. In one or more embodiments, regeneration comprises inducing callus formation from the transformed tissue, and regeneration of shoots, followed by rooting of the shoots in soil or other appropriate rooting media to generate the whole plant.

[0064] The resulting transgenic plants can be crossed to prepare progeny, and preferably homozygous progeny or seeds. Thus, abiotic stress-tolerant plants can also be produced indirectly by breeding parent plants having enhanced abiotic stress tolerance with other abiotic stress-tolerant plants, or even with other cultivars having additional desired characteristics (e.g., pest or herbicide resistance, geographic adaptation, stalk strength, etc.). The resulting progeny can then be screened to identify abiotic stress-tolerant progeny.

[0065] In one or more embodiments, the invention is also concerned with a process of producing (transgenic) seed. In some embodiments, the method comprises self-pollination of a transgenic plant as described herein. In some embodiments, the method comprises crossing a first plant with a second plant, wherein at least one of the first or second plants is a transgenic plant having enhanced abiotic stress tolerance, as described herein. In some embodiments, the first and second plants are both transgenic plants as described herein. In one or more embodiments, the first and second plants can be crossed via cross-pollination using insects (e.g., flies in cloth cages), manual (hand) pollination, and the like.

[0066] Advantageously, transgenic plants according to the various embodiments of the invention have enhanced tolerance to abiotic stress. However, unlike many other transgenic plants with similar improvements in tolerance to one or more specific stresses, plants according to the invention have a phenotype/morphology that is otherwise substantially similar to, and in some cases, nearly identical to wild type plants of the same species (when such wild type plants are grown under non-stress conditions). In other words, the shape, size, and/or abundance of foliage and/or fruit/vegetable is substantially similar between the transgenic plants and wild type plants. Plants are considered to be “substantially similar” herein if those skilled in the art have difficulty visually distinguishing between the genetically-modified plant and the control plant when grown under identical normal growing conditions. In contrast, when grown under stress, transgenic plants according to the various embodiments of the invention, have significantly improved morphologies as compared to control plants grown under the same conditions. For example, the transgenic plant may have one or more of the following improved characteristics: vigorous growth, abundant foliage, longer primary roots, yield, height, and/or shoot water potential, when grown in the presence of one or more abiotic stressors. Similarly, the transgenic plants have significantly improved recovery after stress.

[0067] In one or more embodiments, the invention is also concerned with enhancing the abiotic stress tolerance of plants by silencing the expression of an endogenous glutaredoxin gene that is normally expressed in the plant. In some embodiments, the target gene encodes a CIGS-type monoth glutaredoxin, and more preferably is GRXS17. The method comprises inhibiting the expression, activity, or function of an endogenous glutaredoxin gene in a plant to thereby produce a modified plant having enhanced resistance to an abiotic stress. It is noted that plants produced according to these methods are particularly resistant to drought. This method can be carried out in addition to, or in lieu of the ectopic expression of the abiotic stress tolerance gene described above.

[0068] It will be appreciated that the expression, activity, or function of an endogenous glutaredoxin gene in a plant can be inhibited by any suitable gene down-regulation technique, which can include modifying the target gene itself, as well as methods involving modification of adjacent sequences. For example, transgenic techniques can be used to alter expression of the target gene. In one aspect, the plant can comprise a nucleic acid construct, preferably stably incorporated into its genome, which inhibits expression, activity, or function of the endogenous glutaredoxin gene. Thus, the resulting plant is prepared by introducing into a plant cell a nucleic acid construct that inhibits expression, activity, or function of the target endogenous glutaredoxin gene. In some embodiments,
the nucleic acid encodes a double-stranded RNA that inhibits expression, activity, or function of the endogenous glutaredoxin gene. The nucleic acid can be introduced in a construct, vector, or plasmid including applicable promoters using any suitable method, as described herein.

[0069] In some embodiments, RNA interference (RNAi) is used to inhibit the expression, activity, or function of the target gene. More specifically, RNAi is used to reduce the expression of one or more transcripts of the endogenous glutaredoxin gene. RNAi relies on sequence-specific, post-transcriptional gene silencing, and is broadly defined herein to include all post-transcriptional and transcriptional mechanisms of RNA-mediated inhibition of gene expression. Generally, in RNAi, all or a portion of the target gene (typically greater than 200 bp) is duplicated in an expression vector in a sense/antisense or an antisense/sense orientation so that the resulting mRNA hybridizes to itself forming a large hairpin loop. This product is then processed by the cell into small interfering RNAs (siRNAs) which are approximately 21-24 nucleotides in length triggering RNAi and silencing the endogenous target gene. RNAi can be used to either partially or completely inhibit expression of the target gene. RNAi may also be considered to completely or partially inhibit the function of a target RNA. Thus, in one aspect, the nucleic acid construct preferably comprises a sense and/or an antisense sequence for the target endogenous glutaredoxin gene and encodes double stranded RNA that inhibits the expression, activity, or function of the target endogenous glutaredoxin gene. In a further aspect, the nucleic acid construct will preferably comprise a sense sequence operably linked to its complementary antisense sequence and encoding double stranded RNA that inhibits expression, activity, or function of the target endogenous glutaredoxin gene.

[0070] Virus-induced gene silencing (VIGS) can also be used to inhibit the expression, activity, or function of the target endogenous glutaredoxin gene. This technology uses plant viruses to express a small fragment of a host gene in the form of dsRNA in inoculated plants. The replication of the viral vector, which includes the target gene fragment, induces a host response that knocks down or inhibits expression of the endogenous glutaredoxin gene. In these embodiments, the plant is inoculated with a viral vector comprising a sequence (sense or antisense) of the targeted endogenous glutaredoxin gene, which encodes for RNA that inhibits the expression, activity, or function of the target gene to thereby produce the transgenic plant.

[0071] It will be appreciated that other known transgenic methods can also be utilized to silence the target gene, including microRNAs, artificial microRNAs, antisense RNA, or T-DNA insertional inactivation of the target gene or associated promoter. Mutagenesis (e.g., insertions, deletions, and/or point mutations) of the target gene can also be used to disrupt gene function.

[0072] Advantageously, plants with a silenced endogenous glutaredoxin gene have a phenotype/morphology that is otherwise substantially similar to, and in some cases, nearly identical to wild type plants of the same species (when such wild type plants are grown under non-stress conditions). In other words, the shape, size, and/or abundance of foliage and/or fruit/vegetable is substantially similar between the genetically-modified plants and wild type plants. In contrast, when grown under stress, silenced plants have significantly improved morphologies as compared to control plants grown under the same conditions. In some embodiments, the silenced plants have significantly improved drought tolerance.

[0073] Additional advantages of the various embodiments of the invention will be apparent to those skilled in the art upon review of the disclosure herein and the working examples below. It will be appreciated that the various embodiments described herein are not necessarily mutually exclusive unless otherwise indicated herein. For example, a feature described or depicted in one embodiment may also be included in other embodiments, but is not necessarily included. Thus, the present invention encompasses a variety of combinations and/or integrations of the specific embodiments described herein.

[0074] As used herein, the phrase “and/or,” when used in a list of two or more items, means that any one of the listed items can be employed by itself or any combination of two or more of the listed items can be employed. For example, if a composition is described as containing or excluding components A, B, and/or C, the composition can contain or exclude A alone; B alone; C alone; and/or A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.

[0075] A “control” plant, as used in the present invention, refers to a plant used to compare against transgenic or genetically modified plants according to the invention for the purpose of identifying changes in the transgenic or genetically modified plant. The control plant is of the same species as the non-naturally occurring plant. In some cases, the control plant may be a wild type (native) plant, although cultivars and genetically altered plants that otherwise have normal expression of glutaredoxin and/or abiotic stress tolerance can also be used a references for comparison. A “wild type” plant is a plant that has not been genetically modified or treated in an experimental sense. A “wild-type” gene is one that has the characteristics of a gene isolated from a naturally occurring source. A “wild-type” gene product is one that has the characteristics of a gene product isolated from a naturally occurring source, whereas “modified” genes or gene products are those having modifications in sequence and/or functional properties (i.e., altered characteristics) when compared to the wild-type gene or gene product. Likewise, “genetically-modified” cells, tissues, seeds, plants etc. are those that have been altered to include a transgene and/or to change the expression, activity, or function of the target genes or gene products, as opposed to non-modified cells, tissues, etc. The term is synonymous with “genetically-engineered.”

[0076] The term gene “expression” is used herein to refer to the process of converting genetic information encoded in a gene into RNA (e.g., mRNA, rRNA, tRNA, or snRNA) through transcription of the gene (i.e., via the enzymatic action of an RNA polymerase), and into protein, through translation of mRNA. Gene expression can be regulated at many stages in the process. The term “overexpression” refers to the production of a gene product in transgenic plants that exceeds levels of production in normal, control, or non-transgenic plants. References to altered “levels” of expression refers to the production of gene product(s) in modified plants, such as transgenic plants, in amounts or proportions that differ from that of normal, control, or non-modified plants.

[0077] The “inhibition,” “silencing,” or “knock down” of the expression, activity, or function of a gene, as used herein, is intended to refer to any suitable method of reducing or even completely suppressing protein expression from a gene or a
coding sequence, including methods of reducing the levels of protein produced as a result of gene transcription to mRNA and subsequent translation of the mRNA.

[0078] References herein to "genes" encompass both the partial (fragment) or complete coding sequence of a gene (including its cDNA sequence), its complement, and its 5' or 3' untranslated regions.

[0079] The term "operably linked" refers to the linkage of nucleic acid sequences in such a manner that a nucleic acid molecule capable of directing the transcription of a given gene and/or the synthesis of a desired protein molecule is produced. The term also refers to the linkage of amino acid sequences in such a manner so that a functional protein is produced.

[0080] The term "vector" refers to nucleic acid molecules that transfer DNA segment(s) from one cell to another. The term includes recombinant DNA molecules containing a desired coding sequence(s) and appropriate nucleic acid sequences (e.g., promoters) necessary for the expression of the operably linked coding sequence in a particular host organism.

[0081] The term "transform" is used herein to refer to the introduction of foreign DNA into cells. Transformation may be accomplished by a variety of means known to the art and described herein.

[0082] A "sense" strand of nucleic acid construct refers to a strand that is transcribed by a cell in its natural state into a "sense" mRNA. The term "antisense" refers to a DNA sequence whose sequence of deoxyribonucleotide residues is complementary to all or part of the sequence of deoxyribonucleotide residues in a sense strand. Thus, an "antisense" sequence is a sequence having the same sequence as the non-coding strand in a DNA duplex. With respect to RNA, the term "antisense" refers to a RNA transcript that is complementary to all or part of a target primary transcript or mRNA and that blocks the expression of a target gene by interfering with the processing, transport and/or translation of its primary transcript or mRNA. The complementarity of an antisense RNA or DNA may be with any part of the specific gene or transcript, i.e., at the 5' non-coding sequence, 3' non-coding sequence, introns, or the coding sequence.

[0083] The term "isolated" when used in relation to a nucleic acid, refers to a nucleic acid sequence that is identified and separated from at least one contaminant nucleic acid with which it is ordinarily associated in its natural environment. That is, an isolated nucleic acid is one that is present in a form or setting that is different from that in which it is found in nature.

[0084] The terms "sequence identity" or "amino acid identity" are used herein to describe the sequence relationships between two or more nucleic acid or amino acid sequences when aligned for maximum correspondence over a specified comparison window. The percentage of "identity" is determined by comparing two optimally aligned sequences over the comparison window. For "optimal alignment" of the two sequences, it will be appreciated that the portion of the sequence in the comparison window may include gaps (e.g., deletions or additions) as compared to the reference sequence, which does not contain additions or deletions. After alignment, the number of matched positions (i.e., positions where the identical nucleic acid base or amino acid residue occurs in both sequences) is determined and then divided by the total number of positions in the comparison window. This result is then multiplied by 100 to calculate the percentage of sequence or amino acid identity. It will be appreciated that a sequence having a certain % of sequence identity to a reference sequence does not necessarily have to have the same total number of nucleotides or amino acids (see e.g., microRNAs discussed above). Thus, a sequence having a certain level of "identity" includes sequences that correspond to only a portion (i.e., 5' non-coding regions, 3' non-coding regions, coding regions, etc.) of the reference sequence.

[0085] The present description also uses numerical ranges to quantify certain parameters relating to various embodiments of the invention. It should be understood that when numerical ranges are provided, such ranges are to be construed as providing literal support for claim limitations that only recite the lower value of the range as well as claim limitations that only recite the upper value of the range. For example, a disclosed numerical range of about 10 to about 100 provides literal support for a claim reciting "greater than about 10" (with no upper bounds) and a claim reciting "less than about 100" (with no lower bounds).

EXAMPLES

[0086] The following examples set forth methods in accordance with the invention. It is to be understood, however, that these examples are provided by way of illustration and nothing therein should be taken as a limitation upon the overall scope of the invention.

Example 1

Protective Role of AtGRXS17 in Oxidative and Heat Stress Responses in Yeast

[0087] AtGRXS17 has a conserved Trx-HD and three tandem Grx-HDs, which are similar to yeast and mammalian monothiol Grxs, while yeast ScGrx3/ScGrx4 have one Grx-HD and a mammalian Grx3 has two repeated Grx-HDs at their C-termini. In yeast, ScGrx3 or ScGrx4 deletions do not affect cell growth; however, deletion of both ScGrx3 and ScGrx4 significantly reduce cell growth in either nutrient rich medium (YPD) or minimal medium (FIG. 1A). This impaired growth could be rescued by over-expression of either ScGrx3 or ScGrx4 (FIG. 1A). In order to examine if AtGRXS17 could complement yeast Grx3/Grx4 function in grx3grx4 double-mutant cells, AtGRXS17 and AtGRXS17-GFP (fusion protein with C-terminal green fluorescent protein) were expressed in the double mutant strain, respectively. Both AtGRXS17 and AtGRXS17-GFP could restore mutant cell growth (FIG. 1A).

[0088] Yeast Grx3 and Grx4 are required for cell survival under oxidative stress. In order to determine if AtGRXS17 could suppress the sensitivity of grx3grx4 cells to external oxidants, both AtGRXS17 and AtGRXS17-GFP were expressed in grx3grx4-mutant cells and grown in the media with or without 1.5 mM H2O2 and 0.5 mM diamide. In these conditions, both AtGRXS17 and AtGRXS17-GFP, like yeast Grx3, was able to rescue the growth of mutant cells in the presence of H2O2 or diamide (FIGS. 1B and C). Moreover, AtGRXS17-GFP was shown to be co-localized with yeast Grx3-RFP in the nuclei when expressed in grx3grx4 cells (FIG. 2).

[0089] Given the conserved function of monothiol AtGRXS17 in counteracting oxidative stress in yeast (FIGS. 1B and C), we sought to determine if the effects of
AtGRXS17 on temperature stress responses are also conserved in yeast. In comparison to normal yeast growth conditions (30°C), grx3grx4 mutant yeast cells grown at 50°C for 20 min displayed a reduced survival rates as measured by cell number, and grown at 50°C for 60 min further limited growth (FIG. 1D), indicating that heat stress impairs the growth of grx3grx4 mutant yeast cells. When yeast Grx3 or AtGRXS17 were expressed in the mutant cells, the cells were more tolerant to the temperature stress (FIG. 1D), indicating AtGRXS17 may also play a crucial role in the protective effects against elevated temperatures. These data strongly suggest that a conserved temperature and oxidative response pathway is mediated by monothiol AtGRXS17.

[0090] Yeast Assays.

[0091] The full-length cDNA of AtGRXS17 was amplified by using an AtGRXS17 forward primer (SEQ ID NO:8) and an AtGRXS17 reverse primer (SEQ ID NO:9). The fidelity of all clones was confirmed by sequencing. In order to express AtGRXS17 in yeast cells, the AtGRXS17 was subcloned into yeast expression vector, pUgpd. Saccharomyces cerevisiae wild type strain CML235 (MATa ura3-52 leu2Δ1 his3A200) and double mutant grx3grx4 (MATa ura3-52 leu2Δ1 his3A200 grx3:kanMX4 grx4:kanMX4) were provided by Dr. Enrique Herrero (Universidad de Lleida, Lleida, Spain) and used in all yeast experiments. Yeast growth assays followed the published protocol (Cheng et al., AGRXcep, an Arabidopsis chloroplastic glutaredoxin, is critical for protection against protein oxidative damage. J. Biol. Chem. 281, 26280-26288 (2006)). For AtGRXS17 subcellular localization in yeast assays, full-length AtGRXS17 was fused to the N-terminus of green fluorescent protein (GFP) using a procedure described previously by Cheng et al., supra. The AtGRX3-GFP fusion protein was then subcloned into the yeast vector as described above. In the experiments, vector-, yGRX3-, and AtGRXS17-expressing grx3grx4 cells were grown in SC-Ura selection media overnight. 10° cells from each culture were treated at 52°C for 0 min, 20 min, and 60 min and the cell cultures were diluted 10° fold and plated on YPD media for growth of 3 days at 30°C, respectively. The numbers of colonies were counted. The bars in the graphs indicate S.D. (n=3). Student t-test, *p<0.05; **p<0.01; ***p<0.001. AtGRXS3-GFP was imaged in colocalization with yeast Grx3-RFP. The fluorescence signals were detected at 510 nm (excitation at 488 nm) for GFP, at 582 nm (excitation at 543 nm) for DsRed.

Example 2

Response and Adaptation to Heat Stress in AtGRXS17-Expressing Tomato Plants.

[0092] Generation of AtGRXS17-Expressing Tomato Plants.

To test whether AtGRXS17 may be used to improve thermotolerance of crops, we introduced a construct containing AtGRXS17 driven by the cauliflower mosaic virus (CaMV) 35S promoter into tomato (Lycopersicon esculentum cv. Rubion). Seeds of tomato Lycopersicon esculentum (cv. Rubion) were surface sterilized and germinated on the Murashige and Skog. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures, Physiol. Plantarum 15, 473-497 (1962)) inorganic salt medium. Tomato transformation was performed via Agrobacterium-mediated transformation method using cotyledon and hypocotyl explants as previously described (Park et al. Efficient and genotype-independent Agrobacterium—mediated tomato transformation. J. Plant Physiol. 160, 1253-1257 (2003)). Agrobacterium tumefaciens LBA 4404 was used for generating stable transgenic plants. The plasmid pCaMV35S::AtGRXS17 and pCaMV35S::AtGRXS17-GFP was introduced into A. tumefaciens using the freeze-thaw method (Holsters et al. Transfection and Transformation of Agrobacterium-Tumefaciens. Mol. Gen. Genet. 163, 181-187 (1978)). After inoculating with A. tumefaciens, the plant cultures were maintained at 25°C under a 16-h photoperiod. After 6 to 8 weeks, regenerated shoots were transferred to rooting medium for 6 more weeks. The temperature of the greenhouse was maintained within a range of 25°C to 30°C.

[0094] More than 20 independent transgenic lines were generated and 4 morphologically normal lines containing single transgene insertions (based on Southern blot analysis) were selected for the further research (AtGRXS17 #3, 5, 6 and 9; FIG. 3). For DNA and Southern-blot analysis, tomato genomic DNA was extracted from leaf tissue by Qiagen Plant DNA extraction kit. DNA (10 μg) was digested with XbaI and separated by electrophoresis and blotted onto a nylon membrane (Zeta-probe GT membrane, Bio-Rad Laboratories) according to the manufacturer’s instructions. The probe for the AtGRXS17 gene was isolated from a pGEM-T-easy vector containing AtGRXS17 by enzyme digestion. The membranes were prehybridized overnight 3 hours at 65°C in 7% SDS and 0.25 M Na₂HPO₄, and then hybridized overnight at 65°C in the same solution containing the probe labeled by NENlot Phototote Kit (New England Biolabs). Membrane were washed twice for 40 min each with 20 mM Na₂HPO₄ and 5% SDS at 65°C, and then washed twice again for 30 min each with 20 mM Na₂HPO₄ and 1% SDS at 65°C. The signal was detected by Phototope-Star Detection Kit (New England Biolabs) according to the manufacturer’s instruction. The T1 seeds of these 4 lines showed a segregation pattern of 3:1 for the kanamycin resistance marker gene consistent with a single insertion.

[0095] To obtain homozygous T2 AtGRXS17 lines, segregation analysis on T2 seeds from self-pollinated T1 AtGRXS17 plants was carried out on 100 mg/liter kanamycin selection medium, and the expression of AtGRXS17 was examined by reverse transcriptase (RT)-PCR analysis (FIG. 4). Total RNA was isolated using the Qiagen Plant RNeasy kit from leaves of tomato plants according to the manufacturer’s instructions. RNA for real-time PCR was treated with RNase-free DNase prior to the synthesis of first-strand cDNA by oligo (dT) priming using moloney murine leukemia virus-reverse transcriptase (BD Biosciences Clontech, Palo Alto, Calif., USA). One microliter of the reverse transcription reaction solution was used as a template in a 25 μL PCR solution. Real-time PCR was performed in 25 μL reactions contain 10 μL cDNA, 0.4 μM of each primer, and 12.5 μL SYBR Green PCR Master Mix (Bio-Rad Laboratories). Analysis was performed using the Bio-Rad IQ3 (Bio-Rad Laboratories). Primer efficiencies were measured and relative expression level was calculated using the comparative Ct method. The primers for PCR are listed in the table in FIG. 5.

[0096] Subcellular Localization of AtGRXS17 with or without Heat Stress.

To investigate the subcellular localization of AtGRXS17 in plant cells, the GFP-AtGRXS17 fusion was transiently expressed in epidermal cells of tobacco leaves (Nicotiana benthamiana) through Agrobacterium-infiltration. Full-length AtGRXS17 was fused to the C-termius of
green fluorescent protein (GFP) using a procedure described previously (Cheng et al. 2006). The GFP-AtGRXS17 construct was made by LR reaction (Invitrogen) between the binary vector pB7WG2 (Karimi et al. GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7, 193-195, (2002)), and the entry vector carrying AtGRXS17 (pENTR-4. Invitrogen, Carlsbad, Calif.). pB7WG2-GFP-AtGRXS17 was introduced into Agrobacterium strain GV3101 and then used for agro-infiltration as previously described (Liu et al. The tobacco mosaic virus 126-kilodalton protein, a constituent of the virus replication complex, alone or within the complex aligns with and traffics along microfilaments. Plant Physiol. 138, 1853-1865, (2005)). For heat shock treatment, at 1.5 to 2 days post-infiltration (DPI), the infiltrated leaves were detached from tobacco plants, kept in Petri dishes with the moistened filter paper, and incubated at 25°C or 42°C for 90 min, respectively.

The GFP-AtGRXS17 signals were primarily detected in the cytoplasm and the nuclear envelope, whereas relatively weaker signal could be detected in the nucleus under normal growth conditions (FIG. 6). At increased temperatures, GFP-AtGRXS17 predominately accumulated in the nucleus, whereas free GFP targeted to nuclei independent of heat treatment (FIG. 6).

In order to further investigate the AtGRXS17 subcellular localization in tomato plants, we generated 4 stable AtGRXS17-GFP-expressing tomato plants driven by CaMV35S promoter. For AtGRXS17-GFP localization in tomato stomatal cells, 30-day-old stable AtGRXS17-GFP-expressing plants were treated by either heat or control treatments before observation under microscopy. All AtGRXS17-GFP-expressing tomato plants showed significantly improved thermotolerance in comparison with wild type plants (FIG. 7). In addition, the expression of AtGRXS17-GFP could be detected by immunoblot using a GFP-antibody (FIG. 8). During a heat stress, we could detect GFP signals in the nucleus of a number of stomatal (FIG. 9), while no GFP signals in the nuclei could be detected under normal growth conditions. Together, these data indicate that AtGRXS17 translocate from the cytoplasm to the nucleus under heat stress. Images in this Example were captured with a confocal laser scanning system (Leica, SP5 X) and fluorescence microscope (Zeiss Axioplan). The fluorescence signals were detected at 510 nm (excitation at 488 nm) for GFP, at 582 nm (excitation at 543 nm) for DsRed.

Response and Adaptation to Heat Stress in AtGRXS17-Expressing Tomato.

For heat tolerance experiment, each of 35 homozygous T2 AtGRXS17 plants derived from selected four T1 transgenic lines (AtGRXS17 #3, 5, 6 and 9) were analyzed. 1’2 generation AtGRXS17-expressing transgenic or wild type tomato seeds were surface sterilized and germinated on MS medium with 100 mg/L kanamycin or without kanamycin, respectively. Positive candidates were selected after 15 days and transferred to pots containing Miracle Gro (700) soil growing medium and grown in the growth chamber with the temperature of 25°C/22°C (day/night) under a 16-h photo-period. The plants were regularly watered and fertilized on a weekly basis with 20:20:20 fertilizer (Scotts). The 4-weeks-old seedlings were treated under 38°C/28°C (day/night) for 3 days and then 42°C/32°C (day/night) for 3 more days. The growth and development of AtGRXS17-expressing tomato plants were indistinguishable from those of wild-type plants before heat treatment (FIG. 10). Moreover, expression of AtGRXS17 did not affect fruit shape and yield (FIG. 10). AtGRXS17-expressing tomatoes displayed robust growth and heat tolerance after 3 days at 38/28°C (day/night, 16-h photoperiod) followed by 3 days at 42/32°C (day/night, 16-h photoperiod), whereas the wild-type plants were severely damaged during these growth conditions (FIG. 11). In addition, the transgenic plants were recovered when transferred to 25°C/22°C (day/night) for growth (FIG. 12).

The enhanced heat stress tolerance of the transgenic plants was further verified by measuring changes in chlorophyll fluorescence and electrolyte leakage of leaves. Chlorophyll fluorescence from the adaxial side of the leaf was monitored using a portable chlorophyll fluorometer (PEA, Hansatech Instruments, Ltd., UK). Photochemical efficiency of leaves as determined by chlorophyll fluorescence ratios (Fv/Fm) was monitored during and after the heat treatment. Measurements were made during the light cycle on the leaves using the saturation pulse method after 30 min of dark adaptation. For electrolyte leakage, leaf samples were incubated in 15 ml of distilled water for 10 h to measure the initial electrolyte leakage using an YSI conductance meter (Model 32, YSI, Inc., Yellow Springs, Ohio, USA). The samples were subjected to 80°C for 2 h to release the total electrolytes and then held at room temperature for 10 h. The final conductivity on the leachate was measured to determine the percent electrolyte leakage from the leaf samples. The chlorophyll fluorescence Fv/Fm ratio, indicating the maximum quantum efficiency of Photosystem II, were similar in the AtGRXS17-expressing transgenic plants and the wild plants during the initial 3 d treatment; however, following 5 d at 42°C/32°C (day/night), the Fv/Fm ratio of wild type plants was significantly lower than that of AtGRXS17-expressing transgenic plants (FIG. 13A). Moreover, the electrolyte leakage of wild type plants was significantly higher than that of AtGRXS17-expressing transgenic plants, indicating increased plasma membrane integrity and reduced disruption of cell membranes in the transgenic lines (FIG. 13B).

The enhanced heat stress tolerance of the AtGRXS17-expressing transgenic plants compared with wild-type plants was also confirmed by measuring above-ground fresh and dry weight of the plants. The fresh and dry weight of wild-type and AtGRXS17-expressing transgenic plants did not show significant difference when grown under normal temperature for 2 months. However, after being treated by heat stress, the AtGRXS17-expressing transgenic plants displayed significantly higher fresh and dry weight yields than those of the wild-type plants (FIG. 14). The transgenic plants demonstrated more robust recovery when transferred to 25/22°C. (day/night, 16-h photoperiod), and the yield of the AtGRXS17-expressing tomatoes was indistinguishable from that of wild-type controls under normal growth conditions.

Catalase Enzyme Activity and Accumulation of H2O2 in AtGRXS17-Expressing Tomato.

Heat stress is accompanied by the formation of ROS such as .O2·, H2O2, and OH radicals which damage membranes and macromolecules. To investigate the potential mechanism by which AtGRXS17 improved thermotolerance in tomato, we measured H2O2 accumulation by using 3,3’-diaminobenzidine (DAB) staining leaves from each of 2 homozygous T2 AtGRXS17 lines (AIGRXS17 #6 and 9). Leaves from 4-weeks-old wild type and AtGRXS17-expressing tomato plants were used for the DAB (3,3’-diaminoben-
zidine) staining. For the in vivo detection, the tomato plants were treated by 42°C/32°C (day/night) for 48 hours, and then the leaves were cut and incubated in water containing 1 mg/mL DAB solution (pH 3.8) at 25°C in the dark for 1 h to take up the stain. For the in vitro detection, tomato leaves were cut and immediately immersed into water containing 1 mg/mL DAB solution (pH 3.8) and kept at 25°C (for control) and 42°C (for heat treatment) in the dark for 3 hours. Then the leaves were bleached by immersing 95% ethanol to visualize the brown spots.

In both the in vitro and in vivo tests, the leaves of AtGRXS17-expressing plants displayed less intense staining than that of the controls under the heat stress regime, indicating less H₂O₂ accumulation in the transgenic lines (FIG. 15). Although glutaredoxins have been known to perform their functions as antioxidants, it is interesting to investigate the effects of ectopic expression of AtGRXS17 in tomato on the activities of other antioxidant components. We next compared to the peroxidase (POD), catalase (CAT), and glutathione reductase (GR) activities of wild type and AtGRXS17-expressing plants in both normal growth conditions and a heat stress. Four-week-old seedlings were treated by 42°C/32°C (day/night) for 4 days, and then the shoots were harvested and homogenized (1.5 mL/mL) in liquid nitrogen. The resulting powder was suspended in an ice cold protein extraction buffer made by 50 mM PBS, 1% PVP and 1 mM PMSF, and centrifuged at 13000g for 15 min at 4°C. The protein concentration was measured by BCA protein assay kit (Pierce). The activity of CAT was assayed by measuring the rate of disappearance of H₂O₂ at 240 nm, following the method of Ouyang et al. (Receptor-like kinase OsSK1 improves drought and salt stress tolerance in rice (Orzya sativa) plants. Plant Journal 62, 316-329 (2010)). One unit of the CAT activity was defined as 0.01 absorbance decrease per minute at 240 nm. There were 6 biological replicates for each data points. The activities of CAT, but not those of GR and POD, were significantly increased in all AtGRXS17-expressing lines when compared to wild type plants after heat treatment. These data indicate that CAT activity is significantly highly induced by expression of AtGRXS17, suggesting AtGRXS17 may regulate CAT activity (FIG. 16). Together, these results demonstrate that ectopic expression of AtGRXS17 protects tomatoes from a heat stress by reducing ROS accumulation through its own antioxidant activity and higher activity of CAT than that of the controls.

Expression Analysis of HSPs in AtGRXS17-Expressing Tomato.

The induction of HSPs is one of the predominant events of response to temperature stress and these HSPs perform important physiological functions as molecular chaperones for protein quality control, such as preventing the aggregation of denatured proteins and promoting the refolding of aggregated protein molecules caused by high temperature. Given that AtGRXS17-expressing tomatoes are highly tolerant to heat stress, a possible interaction between AtGRXS17 and HSPs was further investigated.

To evaluate how the AtGRXS17-expressing tomato in response to heat stress influences expression levels of HSPs, HSP21 (nuclear coding gene located at chloroplast), LeEHSP21.5 (endoplasmatic reticulum-localized small heat shock protein), and LeMTSHP (mitochondrial small heat shock protein) were selected for real time quantitative PCR (qRT-PCR) analysis (FIG. 5). After 3 days at 38°C/28°C (day/night), both wild-type and AtGRXS17-expressing tomato (AtGRXS17 #6 and 9) showed significantly increased expression of all selected HSPs as compared to normal growth condition (25°C/22°C) (FIG. 17). Moreover, after 5 days at 38°C/28°C plus 1 day at 42°C/32°C, both wild-type and AtGRXS17-expressing tomato also showed significantly increased expression of all selected HSPs, exhibiting >100-fold elevated expression, as compared to after 3 days at 38°C/28°C; however, expression levels of all selected HSPs in the AtGRXS17-expressing tomato plants were significantly higher than those of the wild-type plants after 1 day at extreme high temperatures (42°C/32°C), exhibiting >2.5 to 4-fold elevated expression. These data suggest that AtGRXS17 predominantly stimulates up-regulation of the HSPs involved in plant heat stress responses and thermotolerance.

Expression Analysis of HSFs in AtGRXS17-Expressing Tomato.

Heat shock transcription factors (HSFs) are the terminal components of signal transduction regulating the expression of HSPs and play an important role in heat stress responses and thermotolerance of plants. Given that AtGRXS17-expressing tomatoes showed highly elevated expression levels of all tested HSPs under heat stress, a possible interaction between AtGRXS17 and HSFs was also further investigated. In this study, we selected two different tomato HSFs, HsfA1a and HsfA2, for qRT-PCR analysis (FIG. 5). HsfA1a has been defined as a master regulator of heat stress response in tomato, whereas HsfA2 is an important HSF for thermotolerance. After 3 days at 38°C/28°C (modest heat treatment), AtGRXS17-expressing tomato (AtGRXS17 #9) showed significantly increased expression of both LeHsfA1a and LeHsfA2 as compared to wild-type (FIG. 17). However, after 3 days at modest heat treatment plus 1 day at 42°C/32°C, AtGRXS17-expressing tomato (AtGRXS17 #6) showed significantly increased expression of both LeHsfA1a and LeHsfA2 as compared to wild-type and AtGRXS17 line (FIG. 17). These data suggest that AtGRXS17 also stimulates up-regulation of the HSFs, although AtGRXS17-expressing tomato lines could show different temporal expression patterns of the HSFs in response to the degree of heat stress.

Response and adaptation to cold stress in AtGRXS17-expressing tomato. AtGRXS17-expressing tomatoes grew after 1 day at 20°C followed by 13°C at 4°C, whereas the wild type plants were severely damaged by the cold stress. In addition, the transgenic plants were recovered when transferred to 25°C/22°C (day/night) for growth. The enhanced cold stress tolerance of the transgenic plants was further verified by measuring changes in chlorophyll fluorescence and electrolyte leakage.

Response and adaptation to drought stress in AtGRXS17-expressing tomato. Drought stress phenotypes were assayed by imposing a 10 d water deficit stress period, after which irrigation of both control and AtGRXS17-expressing tomatoes were withheld. AtGRXS17-expressing tomatoes did not display deleterious phenotypes after withholding irrigation for 10 d, whereas the wild type plants were severely damaged by the drought stress. Transgenic plants maintained greater shoot water potentials during imposed soil water deficits and the Vv/Fm ratio of wild type plants was significantly lower than that of AtGRXS17-expressing transgenic plants.
Example 3
Response and Adaptation to Heat Stress in AtGRXS17-Expressing Rice

[0114] In this experiment, rice (Oryza sativa L. var. japonica) cv. Nipponbare was used for producing transgenic rice with AtGRXS17 driven by the CaMV 35S promoter. Rice transgenic lines were generated via Agrobacterium-mediated transformation using mature seed-derived callus as previously established in the Park laboratory (Park et al., 2001). Calli derived from mature seed on MSD medium with Murashige and Skoog (1962) inorganic salts, 100 mg/liter myo-inositol, 0.5 mg/liter nicotinic acid, 0.5 mg/liter pyridoxin, 0.1 mg/liter thiamine HCl, 1.0 mg/liter 2,4-D, 30 g/liter sucrose, and 0.8% (w/v) agar at pH 5.7 was cocultivated with A. tumefaciens (LBA4404) on the MSD medium at pH 5.2. The binary vector plasmid (pViK118E6, gifted from John Runion’s lab) with 35S::AtGRXS17 was used. After 2 days co-cultivation, calli were transferred to the MSD medium covered with sterile filter paper for 3 more days. After co-cultivation for a total of 5 days, the calli were transferred to MSD medium containing 250 mg/liter Clavamox (ampicillin trihydrate) for 1 week. Calli were then transferred to selection medium, MSD medium containing 250 mg/liter Clavamox and 50 mg/liter Hygromycin (Roche). After subsequent rounds of selection, proliferating callus was divided and transferred to regeneration medium containing MS inorganic salts, 100 mg/liter myo-inositol, 0.5 mg/liter nicotinic acid, 0.5 mg/liter pyridoxin, 0.1 mg/liter thiamine HCl, 1.0 mg/liter kinetin, 0.2 mg/liter NAA, 250 mg/liter Clavamox, 50 mg/liter hygromycin, 30 g/liter sucrose, and 0.6% (w/v) agar. Cultures were maintained at 25°C for 16 h under 80-100 µmol m⁻² s⁻¹ light. After 8–10 weeks, regenerating shoots were transferred to rooting medium containing 250 mg/liter Clavamox and 50 mg/liter hygromycin for 4 more weeks, then established in soil.

[0115] AtGRXS17-expressing rice grew more healthy after 3 d at 38°C/28°C (day/night) followed by 14 d at 42°C/32°C (day/night), whereas the wild type plants were severely damaged by the same growth conditions (FIG. 18). In addition, the transgenic plants were recovered when transferred to 25°C/22°C (day/night) for growth (data not shown).

Discussion Examples 1-3

[0116] In the present study, glutaredoxin AtGRXS17 has been characterized and the data demonstrates that AtGRXS17 is a critical mediator of heat stress-related genes and influences heat stress responses by protecting against oxidative damage in cells. In addition, the data indicates that some glutaredoxin’s functions are conserved across species. Yeast, as well as monocots and dicots plants with mutants in glutaredoxins are sensitive to redox stress and elevated temperatures. Furthermore, expression of AtGRXS17 in yeast, tomato, and rice cells suppressed these sensitivities. The data suggests a model where AtGRXS17 functions to alter ROS signals and controls thermostolerance. The results indicate that ectopic expression of AtGRXS17 reduced the heat-induced H₂O₂ accumulation in tomato leaves, and AtGRXS17 may function in ROS scavenging.

Example 4
Drought Tolerance of AtGRXS17-Expressing Rice

[0117] The functional characterization of Arabidopsis AtGRXS17 and rice OsGRXS17 (SEQ ID NO.5) two CDS-type genes, is reported. Mutation of AtGRXS17 in Arabidopsis and reduced expression of OsGRXS17 (SEQ ID NO.6) by RNA-mediated silencing (residues 1295-1688 of SEQ ID NO.7) in rice significantly increased plant tolerance to drought stress. Ectopic expression of AtGRXS17 in rice also led to enhanced drought tolerance in the plants. Wild-type (WT), AtGRXS17-expressing, and OsGRXS17-silencing rice plants from the japonica rice (Oryza sativa L. cv. Nipponbare) were used in this study. Wild-type (WT) and atgrxs17 KO Arabidopsis thaliana plants were from the Columbia (Col-0) ecotype. Seeds were surface-sterilized, germinated and grown on Murashige and Skoog (MS) medium with 50 g/liter sucrose and 2 g/liter Gellan in a growth chamber [16 h light, 100 µmol m⁻² s⁻¹, 28°C (rice) and 22°C (Arabidopsis)].

[0118] First, 5 weeks of Arabidopsis seedlings were subjected to drought stress by withholding water for 20 d in the growth chamber, and recovery was initiated by placing pots in a shallow tray of water. Plant viability was evaluated 12 d after initiation of recovery under normal growth conditions. Plants were scored as viable if one or more new leaves appear during the recovery period. None of the wild type plants survived (0% survival rate). Of the 60 AtGRXS17 KO plants, 39 survived the drought stress (65% survival rate) (FIG. 19).

[0119] Transgenic rice with ectopic expression of AtGRXS17 was subjected to drought stress. Four-week-old rice seedlings (transgenic line 7 and WT) were used in this experiment. Drought stress was applied by withholding water for 11 d in the growth chamber, and recovery was initiated by placing pots in a shallow tray of water. The recovery of the plants after rewatering was observed. Recovery was based upon relative water content (as measured from when the wilting first occurred during drought stress) and recovery of fresh mass 14 days after rewatering. Plant survival rate was evaluated on the 14th day after rewatering under normal growth conditions. Plants were scored as viable if one or more new leaves appear during the recovery period. None of the wild type plants survived the drought stress (0% survival rate). Of the 12 initial plants, 5 survived the drought stress (41.67% survival rate) (FIG. 20).

[0120] Four-week-old rice seedlings (transgenic lines RNAI-6, -7, -8, and -13 with reduced expression of OsGRXS17 by RNA-mediated silencing and WT) were used in this experiment (FIG. 21). Methods of drought stress treatment and analysis of recovery and survival were the same as described above for the AtGRXS17-expressing plants. The results are shown in FIGS. 22-24. The survival results are shown in the Table below.

<table>
<thead>
<tr>
<th>Total plants</th>
<th>Survived plants</th>
<th>Survival rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>RNAI-6</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>RNAI-7</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>RNAI-8</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>RNAI-13</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

Example 5
Expression of AtGRXS17 in Tomato (Solanum lycopersicum) Enhances Tolerance to Multiple Abiotic Stresses

[0121] 1. Bacterial strains for plant transformation

[0122] AtGRXS17 coding region was cloned into a pBl-CaMV vector as described (Wu et al. 2012). The CBF3 coding region was also cloned into pMDC99 vector as described (Feng et al. A three-component gene expression system and
its application for inducible flavonoid overproduction in transgenic Arabidopsis thaliana. PLoS ONE 6: e17603 (2011)), and binary plasmids pMDC-CBF3 and pBiCaMV-A/gRXS17 were introduced into Agrobacterium tumefaciens strain LBA4404 using the freeze-thaw method.

2. Tomato Transformation

[0123] Seeds of tomato Solanum lycopersicum L. (cv Rubion) were surface sterilized and germinated on the Murashige and Skoog (MS) inorganic salt medium. Tomato transformation was performed via Agrobacterium-mediated transformation method using cotyledon and hypocotyl explants as described. A. tumefaciens LBA 4404 strains containing pBiCaMV-A/gRXS17 or pMDC-CBF3 were used for generating stable transgenic lines.

3. Growth Condition and Tolerance Analyses of Tomato

[0124] T2 generation of AtgRXS17-expressing, AtCBF3-expressing, or wild-type tomato seeds were surface-sterilized, germinated, and grown on pots containing Miracle Gro (700) soil growing medium in growth chamber. The temperature of the growth chamber was maintained at 24°C/20°C (day/night) under a 16-h photoperiod, and the light intensity was maintained at 300 µmol/m²/sec. The plants were regularly watered and fertilized on a weekly basis with 20:20:20 fertilizer (Scotts, Marysville, Ohio). For the drought treatment, 4-week-old AtgRXS17-expressing and wild-type seedlings were withheld from watering for 12 days, and then re-watered. The phenotype and the chlorophyll fluorescence were measured during the drought treatment. For the cold treatment, 4-week-old AtgRXS17-expressing, AtCBF3-expressing or wild-type seedlings were treated at 4°C (day/night) for 3 weeks in a walk-in growth chamber and then recovered in normal growth conditions for 5 days. Chlorophyll fluorescence was measured during the first 7-d chilling treatment. For oxidative stress treatment, 7-day-old AtgRXS17-expressing and wild-type seedlings grown on the MS media were transferred into the MS medium with or without 20 mM potassium nitrate (Kn) in Magenta boxes and incubated for 14 days. The primary root length was then measured, and total RNA was extracted from the leaves.

4. Time-Course Analysis of Cold and Drought Stress-Responsive Genes

[0125] Cold and drought treatments were applied using 14-day-old AtgRXS17-expressing and wild-type seedlings grown in Petri dishes with MS medium. The treatment and sampling were designed according to previous reports of SIAREB1 and SCBF1 with slight modifications (Zhang et al., Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulator that differs from that of freezing-tolerant Arabidopsis. The transcription factor SIAREB1 confers drought, salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato. For cold treatment, the seedlings were moved to a growth chamber set at 4°C. The seedlings were harvested at 0, 0.5, 2, 4, 8, 24, and 48 h, respectively. For drought treatment, the seedlings were transferred and incubated in Petri dishes containing two layers of filter paper for 0, 0.5, 2, 4, 8, and 24 h, respectively. The seedlings after cold or drought treatments were harvested, and the RNA was extracted using the method described below.

5. RNA Extraction and qRT-PCR

[0126] Total RNA was isolated using the Qiagen Plant RNeasy kit from leaves of tomato plants according to the manufacturer’s instructions. RNA for real-time qRT-PCR was treated with RNase-free DNase prior to the synthesis of first-strand cDNA by oligo (dT) priming using moloney murine leukemia virus-reverse transcriptase (BD Biosciences Clontech, Palo Alto, Calif., USA). One µl of the reverse transcription reaction solution was used as a template in a 25 µl PCR solution. Real-time PCR was performed in 25 µl reactions containing 10.5 µl cDNA, 1 µl 10 mM of each primer, and 12.5 µl SYBR Green PCR Master Mix (Bio-Rad Laboratories, Hercules, Calif.). Analysis was performed using the Bio-Rad IQ5 (Bio-Rad Laboratories). Primer efficiencies were measured and relative expression level was calculated using the comparative Ct method. SIPP2ACS was used as a normalization control. The primers for PCR were listed in the Table in FIG. 25.

6. Electrolyte Leakage and Fv/Fm Ratio

[0127] Injury to plants was characterized by measuring chlorophyll fluorescence and electrolyte leakage of leaves. Chlorophyll fluorescence from the adaxial side of the leaf was monitored using a portable chlorophyll fluorometer (PEA, Hansatech Instruments, Ltd., UK). Photochemical efficiency of leaves as determined by chlorophyll fluorescence ratios (Fv/Fm) was monitored during and after the cold or drought treatment. Measurements were made during the light cycle on the leaves using the saturation pulse method after 30 min of dark adaption. For electrolyte leakage, tomato leaf samples were incubated in 15 ml of distilled water for 10 h to measure the initial electrolyte leakage using an YSI conductance meter (Model 32, YSI, Inc., Yellow Springs, Ohio, USA). The samples were subjected to 80°C for 2 h to release the total electrolytes and then held at room temperature for 10 h. The final conductivity of the leachate was measured to determine the percent electrolyte leakage from the leaf samples.

7. Shoot Water Content

[0128] Shoot water content (SWC) was expressed as the difference between leaf fresh weight and dry weight, and calculated as follows: SWC=(fresh weight–dry weight)/dry weight.

Results

1. Response and Adaptation to Drought Stress in AtgRXS17-Expressing Tomato

[0129] We initially tested if AtgRXS17-expressing tomato plants, which showed thermotolerance in examples above, confer drought tolerance. The AtgRXS17-expressing plants driven by the cauliflower mosaic virus (CaMV) 35S promoter had been generated previously, and homozygous lines (AtgRXS17-3, -5, -6 and -9) that contained single transgene insertions and displayed strong thermotolerance were used in this study. Four-week-old wild-type and AtgRXS17-expressing tomato plants (30 homozygous T2 plants derived from each of the four T1 transgenic lines) were subjected to drought treatment by withholding the water. Both wild-type and AtgRXS17-expressing tomato plants were affected by the drought stress. However, visible damage in wild-type plants in terms of leaf desiccation and wilt symptoms was more severe than that of AtgRXS17-expressing tomato plants (FIG. 26A). Concomitantly, AtgRXS17-expressing lines showed higher shoot water content compared to wild-type plants after 10-day drought treatment (FIG. 26B). In addition, AtgRXS17-expressing tomato plants showed higher Fv/Fm ratio compared to wild-type plants (FIG. 26C).
Effects of AtGRXS17 expression on the ABA signal pathway during drought stress were measured by conducting a time-course expression assay of ABA-dependent transcription factor gene SIAREB1. SIAREB1 expression peaked at 4 h and then started to decrease in both wild-type and transgenic lines. However, the abundance of SIAREB1 in AtGRXS17-expressing lines remained at a higher level than that of wild-type plants (FIG. 27).

2. Response and Adaptation to Cold Stress in AtGRXS17-Expressing Tomato

To test cold tolerance, 4-week-old AtGRXS17-expressing (AtGRXS17-3, -5, -6 and -9) and wild-type tomato plants were treated at 4°C for 3 weeks. For comparison, AtCBF3-expressing tomato plants were generated and treated simultaneously. CBF3 is a well-characterized transcription factor that confers cold tolerance. The AtCBF3-expressing tomato plants (lines AtCBF3-2 and -3) were confirmed by PCR (FIG. 28) using HYG primers (SEQ ID Nos: 28-29). Thirty homozygous T2 plants derived from each of the six T1 transgenic lines (AtGRXS17-3, -5, -6 and -9 and AtCBF3-2 and -3) were analyzed, and the wild-type tomato plants showed more severe visible damage than AtCBF3- or AtGRXS17-expressing tomato plants (FIG. 29A, B, C). However, AtGRXS17-expressing tomato plants showed more vigorous growth than AtCBF3-expressing plants upon recovery for 5 days under normal growth conditions [24/20°C (day/night)] (FIG. 29C). The visual enhanced cold tolerance of both AtGRXS17- and AtCBF3-expressing plants was accompanied by lower electrolyte leakage when compared to wild-type after cold treatment, indicating reduced disruption of cell membranes in the transgenic lines (FIG. 30A). In addition, the chlorophyll fluorescence of both AtGRXS17- and AtCBF3-expressing plants was higher than that of wild-type (FIG. 30B). The phenotype of the AtGRXS17-expressing tomatoes is indistinguishable from the wild-type plants under normal growth conditions as shown in the Examples above, while AtCBF3-expressing tomato plants displayed stunted shape as compared to wild-type plants (FIG. 31).

Three tomato CBF1 genes have been characterized, and only SICBF1 among those genes is strongly induced by cold treatment. SICBF1 expression levels in both wild-type and AtGRXS17-expressing lines peaked at 4 h after cold stress, and no significant differences in expression were observed between wild-type and AtGRXS17-expressing lines (FIG. 32). However, expression levels of SICBF1 in AtGRXS17-expressing lines returned more rapidly to resting level, in comparison to wild-type lines (FIG. 32).

3. AtGRXS17-Expressing Tomato Plants Improved Tolerance to Oxidative Stress

We hypothesized that AtGRXS17-expressing tomato plants might improve tolerance to oxidative stress as well. To examine this, 7-day-old wild-type and AtGRXS17-expressing tomato seedlings were incubated in MS media with or without methyl viologen (MV), a pro-oxidant herbicide that stimulates formation of ROS. The results showed that after 14 d of treatment, AtGRXS17-expressing tomato seedlings displayed more vigorous growth and had longer primary roots compared to wild-type seedlings (FIG. 33), indicating that AtGRXS17 reduced oxidative damages caused by excess ROS accumulation.

Catalase (CAT) plays important roles in ROS scavenging by converting H2O2 to O2 and H2O, and previous results indicated that ectopic expression of AtGRXS17 in tomato increases CAT activity under heat stress. To determine if the SICAT1 expression level was altered under oxidative stress, qRT-PCR analysis was performed. The results demonstrated that the expression of SICAT1 was significantly up-regulated in AtGRXS17-expressing lines as compared to wild-type after being treated by MV (FIG. 34).

Discussion Example 5

In this study, we investigated the effects of AtGRXS17 on drought and cold stress and demonstrated that ectopically expressed AtGRXS17 in tomato plants enhanced tolerance to cold, drought, and oxidative stress. Plants counteract abiotic stresses by modulating/interacting signaling pathways. The CBF/DREB1 pathway is a well-characterized cold response pathway, and extensive efforts have been made to improve cold (freezing and/or chilling) tolerance by manipulating CBF expression across different species. However, the CBF regulon differs between species, limiting the effectiveness of CBFs for engineering cold tolerant crop species. Expression of CBF3/DREB1a or SICBF1 in Arabidopsis, for example, improves freezing tolerance while constitutive expression of either SICBF1 or AtCBF3 in transgenic tomato plants does not increase freezing tolerance. However, here we showed that expression of AtCBF3 in tomato improved chilling tolerance in comparison to wild-type plants. Nonetheless, AtCBF3-expressing plants showed less protection against chilling stress than AtGRXS17-expressing tomato plants.

The induction of CBFs is one of the predominant responses to cold stress. Interestingly, our results demonstrated that ectopic expression of AtGRXS17 in tomato alters the response of endogenous SICBF1 expression under chilling stress conditions. In addition, the elevated expression of SICBF1 in AtGRXS17-expressing lines returned more rapidly to resting levels compared to wild-type lines, suggesting a potential direct correlation between AtGRXS17 and SICBF1 in CBF signaling pathways under chilling stress. Despite the pivotal role of CBFs in cold tolerance, constitutive expression of either AtCBF3 or SICBF1 in both Arabidopsis and tomato plants results in stunted growth. As demonstrated here, AtCBF3-expressing tomato plants also displayed stunted growth under normal growth condition. Feedback regulation by CBF1 plays an important role in regulating CBFs during normal cold acclimation. For example, CBF2 is a negative regulator of CBF1 and CBF3 expression during cold acclimation, while CBF3 negatively regulates CBF2 expression. In addition, MBY15 and ZAT12 also appear to function as negative regulator of CBFs. The lack of stunted growth in plants expressing AtGRXS17 indicates that the protein may both induce CBF1 expression and ameliorate deleterious effects of the consequential rise in ROS. AtGRXS17 may have advantages for enhanced cold tolerance in different species.

Various strategies have been proposed for improving drought tolerance including promoting a vigorous root system, inducing stomatal closure, adjusting osmolytes, and minimizing oxidative damages. Ectopic expression of AtGRXS17 in tomato enhances drought tolerance presumably by up-regulating a key antioxidant gene SICAT1 to improve ROS scavenging capability in plant cells or enhancing vigorous root system or both. Expression of AtGRXS17
may also alter endogenous drought responsive pathways, such as the ABA pathway, and, therefore, lead to improve drought tolerance in tomato plants. As part of the drought responsive signaling pathways, ABA plays a key role in regulating gene expression and stomatal aperture. Members of the AREB family have been implicated as essential components in ABA signaling pathway. For example, a protein of AREB family in tomato, SIAREB1, has been characterized and demonstrated to confer drought tolerance when overexpression in tomato, indicating SIAREB1 is an important component of ABA-dependent drought tolerance (Orellana et al. 2010). A dramatic up-regulation of SIAREB1 under drought stress was also observed in this study. SIAREB1 expression in AtGRXS17-expressing and wild-type tomato plants peak at 4 h. However, the abundance of SIAREB1 in AtGRXS17-expressing lines remains at a higher level longer than that of wild-type plants as shown by the data herein, suggesting that there may be a tight interaction between AtGRXS17 and ABA signaling during drought stress, which warrants further investigation.

[0139] AtGRXS17 relieves the defective growth of primary roots associated with increased accumulation or application of ROS. ROS are known to be accumulated during various abiotic stresses including both cold and drought stress, causing damage to cell membranes and other cellular components including DNA, proteins, and carbohydrates. Therefore, expression of AtGRXS17 into tomato plants may play an important role for the coordination of signaling and scavenging of ROS, resulting in enhanced tolerance to multiple abiotic stresses. Catalase, an H₂O₂ scavenger, is one of the most important enzymes in ROS-scavenging system. Ectopic expression of AtGRXS17 in tomato results in a more rapid response of SICAT1 to oxidative stress compared to wild-type plants. Similarly, the activity of CAT was increased in the AtGRXS17-expressing plants when compared to wild-type plants after heat treatment as shown by the examples above. Therefore, AtGRXS17 may regulate CAT at the transcriptional and/or posttranscriptional level under abiotic stress conditions that give rise to oxidative stress.

SEQUENCE LISTING

<table>
<thead>
<tr>
<th>Seq ID No</th>
<th>Length</th>
<th>Type</th>
<th>Organism</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>400</td>
<td>DNA</td>
<td>Arabidopsis thaliana</td>
</tr>
</tbody>
</table>

```
<400> SEQUENCE: 1

atgagcggta cggcgaaga ttagtttca aaggccgacgc ttgataacct gcgcagcacgc 60
ggcgcacag tggcgcgctct cttcgggtgc cttcgggtgc atcgctcgc agcagcagat 120
cagcttttct ttagttcctgg ttagttcctgg ttagttcctgg ttagttcctgg 180
gagagactc cttgatgttt cttgatgttt cttgatgttt cttgatgttt cttgatgttt 240
ttcaggttct ctttacactc ggcagcatct ggcagcatct ggcagcatct ggcagcatct 300
gagatgttgtc cttcaggttct cttcaggttct cttcaggttct cttcaggttct cttcaggttct 360
gagacgagcag cttgctgctg cttgctgctg cttgctgctg cttgctgctg cttgctgctg 420
ttcaggaggtc cggcagctgg cggcagctgg cggcagctgg cggcagctgg cggcagctgg 480
ttgcgttcgct cggcagctgg cggcagctgg cggcagctgg cggcagctgg cggcagctgg 540
ttcaggtgta cggcagctgg cggcagctgg cggcagctgg cggcagctgg cggcagctgg 600
ttcacagtctg atacagcggc cggcagctgg cggcagctgg cggcagctgg cggcagctgg 660
cagctggctgc cggcagctgg cggcagctgg cggcagctgg cggcagctgg cggcagctgg 720
cggcagctgg cggcagctgg cggcagctgg cggcagctgg cggcagctgg cggcagctgg 780
gagaccctcg cggcagctgg cggcagctgg cggcagctgg cggcagctgg cggcagctgg 840
ggagtctgcc cggcagctgg cggcagctgg cggcagctgg cggcagctgg cggcagctgg 900
```
-continued

aaaggaagac cagaagaacc aagtgctggg ttgcagtgga aagtggttga aatctccaaac 960
cagaaaaaaa tcgcgtcctgg gaagttccat atctctctag atgagcagactg tgcoccaaggg 1020
ccttaaagtt atccaaactctgtc aagctcagctat cctcagcttt actcaggaagg cagagottatg 1080
gtgtgatcag ccattgctcct ggagagcagctg aagctgaaagg cagagottaag 1140
gagaaagggg tcagctgagg aacagggcct tgtggagcagagctgatcagaaaaagggg 1200
tgctcaagtt tcatatctct aagggatcag ccatagtgcc ccaatgcggg atttagctgcttcc 1260
aaagagtctga agcattgag aggagaaaac gtggatttat gctcgtttta tgttgttcat 1320
gagaaagag taaagcacaag gattagaast ttccttaaact ggcccaactctt tcttctctca 1380
tactaaaggtgtagcataa tagaggttga gagctcattag tggagcttaag tggaggttgt 1440
gtcttcagg cactcttctc gcagtaa 1467

<210> SEQ ID NO 2
<211> LENGTH: 488
<212> TYPE: PRT
<213> ORGANISM: Arabidopsis thaliana

<400> SEQUENCE: 2

Met Ser Gly Thr Val Lys Asp Ile Val Ser Lys Ala Glu Leu Asp Asn
Leu Arg Gln Ser Gly Ala Pro Val Val Leu His Phe Trp Ala Ser Trp
Cys Asp Ala Ser Lys Gln Met Asp Gln Val Phe Ser His Leu Ala Thr
Asp Phe Pro Arg Ala His Phe Arg Val Ala Glu Ala Glu Glu His Pro
Glu Ile Ser Glu Ala Tyr Ser Val Ala Ala Ala Pro Tyr Phe Val Phe
Phe Lys Asp Gly Lys Thr Val Asp Thr Leu Glu Gly Ala Asp Pro Ser
Ser Leu Ala Asn Lys Val Gly Lys Val Ala Gly Ser Ser Thr Ser Ala
Glu Pro Ala Ala Pro Ala Ser Leu Gly Leu Ala Ala Gly Pro Thr Ile
Leu Glu Thr Val Lys Glu Asn Ala Lys Ala Ser Leu Glu Asn Arg Ala
Gln Pro Val Ser Thr Ala Asp Ala Leu Lys Ser Arg Leu Glu Lys Leu
Thr Asn Ser His Pro Val Met Leu Phe Met Lys Gly Ile Pro Glu Glu
Pro Arg Cys Gly Phe Ser Arg Lys Val Val Asp Ile Leu Lys Gly Val Glu
Asn Val Asp Phe Gly Ser Phe Asp Ile Leu Ser Asp Asn Glu Val Arg
Glu Gly Leu Lys Lys Phe Ser Asn Trp Pro Thr Phe Pro Glu Leu Tyr
Cys Asn Gly Glu Leu Gly Gly Ala Asp Ile Ala Ile Ala Met His
Glu Ser Gly Glu Leu Lys Asp Ala Phe Lys Asp Leu Gly Ile Thr Thr
Val Gly Ser Lys Glu Ser Gln Asp Glu Ala Gly Lys Gly Gly Val
260 265 270
Ser Ser Gly Asn Thr Gly Leu Ser Glu Thr Leu Arg Ala Arg Leu Glu
275 280 285
Gly Leu Val Asn Ser Lys Pro Val Met Leu Phe Met Lys Gly Arg Pro
290 295 300
Glu Glu Pro Lys Cys Gly Phe Ser Gly Lys Val Glu Ile Leu Arg
305 310 315 320
Gln Glu Lys Ile Glu Phe Gly Ser Phe Asp Ile Leu Leu Asp Asp Glu
325 330 335
Val Arg Gln Gly Leu Val Tyr Ser Asn Trp Ser Ser Tyr Pro Gln
340 345 350
Leu Tyr Val Lys Gly Glu Leu Met Gly Gly Ser Asp Ile Val Leu Glu
355 360 365
Met Gln Lys Ser Gly Glu Leu Lys Val Leu Thr Glu Lys Gly Ile
370 375 380
Thr Gly Glu Ser Leu Glu Asp Leu Arg Leu Ala Leu Ile Asn Ser
385 390 395 400
Ser Glu Val Met Leu Phe Met Lys Gly Ser Pro Asp Glu Pro Lys Cys
405 410 415
Gly Phe Ser Ser Lys Val Val Lys Ala Leu Arg Gly Glu Asn Val Ser
420 425 430
Phe Gly Ser Phe Asp Ile Leu Thr Asp Glu Val Arg Gln Gly Ile
435 440 445
Lys Asn Phe Ser Asn Trp Pro Thr Phe Pro Gln Leu Tyr Tyr Lys Gly
450 455 460
Glu Leu Ile Gly Gly Cys Asp Ile Ile Met Glu Leu Ser Glu Ser Gly
465 470 475 480
Asp Leu Lys Ala Thr Leu Ser Glu
485

<210> SEQ ID NO 3
<211> LENGTH: 2202
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: ATGRXS17-GFP FUSION PROTEIN CODING SEQUENCE
<400> SEQUENCE: 3

atgagc-ggta cggtgaagga tattgatttca aagggcgagc tggataacct gggccagacg 60
ggcagcaccag tgggtgctta ctttgggccg tctctggtctg atggctggaa gcaagatgat 120
cagaattttct ctcactcgcg tactgaattc cttctgtgctc acctctttag ggtgtgaagct 180
gbagaiactac tgaagaattac ttcgggggccg tcggcttgctg cgctggccttc tttggttcttc 240
ttcagacggt gttaaatcgt gatatactTG ggggtcagc atccataaca TTTAGCTAT 300
aaggtggyca aagttgctgg ttcagtacgt cttggaaggc tcggcgcttca tggcaagctta 360
gggtgtgtcg cggccgcaac atagtggaa atgtggaggg agaatgcggaa agctcttctta 420
caagcgccag ctcagcgtct acctacgcgc gatcttcctca aagagcgttt gggaaagctc 480
actaatccct acctgctcat gtattacctag aaggtatctt ctcgagaggcc taggtgtggg 540
tttagcaga aagtaggtga catttggaa gggttacag tggatgggag aagttttgac 600
<110> SEQ ID NO 4
<111> LENGTH: 733
<112> TYPE: PRT
<113> ORGANISM: Artificial Sequence
<114> FEATURE:
<115> OTHER INFORMATION: ATGRX17-GFP FUSION PROTEIN

<400> SEQUENCE: 4

Met Ser Gly Thr Val Lys Aep Ile Val Ser Lys Ala Glu Leu Aep Aep
1 5 10 15
Leu Arg Gln Ser Gly Ala Pro Val Val Leu His Phe Trp Ala Ser Trp
20 25 30
Cys Asp Ala Ser Lys Gln Met Asp Gln Val Phe Ser His Leu Ala Thr
35 40 45
Asp Phe Pro Arg Ala His Phe Phe Arg Val Glu Ala Glu Glu His Pro
50 55 60
-continued

465 470 475 480
Asp Leu Lys Ala Thr Leu Ser Glu Gly Ile Gln Gly Asp Ile Thr Met
485 490 495
Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val Glu
500 505 510
Leu Asp Gly Val Asn Gly His Lys Phe Ser Val Ser Gly Glu Gly
515 520 525
Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr
530 535 540
Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe Ser
545 550 555 560
Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Arg His
565 570 575
Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr
580 585 590
Ile Ser Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val Lye
595 600 605
Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp
610 615 620
Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr
625 630 635 640
Asn Ser His Asn Val Tyr Ile Thr Ala Asp Lys Gln Lys Asn Gly Ile
645 650 655
Lys Ala Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Glu
660 665 670
Leu Ala Asp His Tyr Gln Glu Asn Thr Pro Ile Gly Asp Gly Pro Val
675 680 685
Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys
690 695 700
Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr
705 710 715 720
Ala Ala Gly Ile Thr His Met Asp Glu Leu Tyr Lys
725 730

<210> SEQ ID NO 5
<211> LENGTH: 1476
<212> TYPE: DNA
<213> ORGANISM: Oryza sativa

<400> SEQUENCE: 5
atggcggccg tgggagaggt ggggtcgaaag ggggagctgg aagggcggcc gggagggcg 60
cgggacggc cgtgccacct gttgggagtg aagttcaagca gatgggacag 120
gttctcgcgg acctctggcc gcaactctcc cagccgctct tctctcgggt tgaagctgag 180
gaacaaccc gaaatccgag ggcacatat ggtacacagc tgtccatat ttttttttgc 240
aagggagaga aaaccttgta aactctggag ggtgcaactc cagccagctt gggcaaatag 300
gttgcaagag tagtggccgc tgtcacgctg tgtagacagt ctttgtgctgc tagcatggtg 360
gtgatcgtct ccgtggcatgt actttgaaag gttcaagagc tggtcagccag aatggagct 420
tttgctactt gtaagctcag gatggacttg aacaagatag tgagtcgtct tgtcaacccc 480
cattgccgtct tcttatctat ggaagggata cctgagcacc caaggtgtgg tttcagtcga 540
aaactagtgg acgttttgaa gcggaagga ggtgaatgtt ggagctttga catcctatac
600
gataacgatg taagtaaggg aatgaaaaag tttcctaaac ggccgacatg ttcctoacgc
660
tatcggacag tgagttgtct ggtttgtgat gatattgtga tgtcttgcga tggaaagcgg
720
gaactgaag atgttattaa gcgtgacaca acattctcgtg agccacagg aagcaaaaaa
780
gagggaggcg tgaagacgaaacctgat tgcaggtttt cggatacagg
840
tgctattaag cagctcagaa gcagctgggg gcaggctcgg taaatttcag cagagttgatg
900
gcaattataa aaggtaccct tggagacccc aaggtggttag tcaagggagaa actagtgcat
960
taccttaaa agaggaagat cccctcctca agtttggaca tctctacgga tgtagaggg
1020
agccagggctc taaagttct ctcctacctctcag tctactgta cttataacggt
1080
gaactgtgg gcctgatcga agggtctattag cagagttcata aagatgctggga gctttagaag
1140
gttcatctcg agaagggat cggctcggaa gaaagctcag aagaagcgcgt ggagcccctg
1200
attccttcgg ccccccttacttactttgcag cgggccccccc cagctgccccc ccgctgcggc
1260	tccaggagc aggtgtggcg tgcaggtttgg cagcgggagctt cagcgtggac
1320
atctatcg cagggagcct ttagcaaggg ttagcagcgt agtcgaatcg
1380
cctcaggtt ctacaaagtc aagagtctgg gagagctggt acatgtctct tggatggag
1440
aagagttggag agctcagagc caagcttcgg gagtgag
1476
Phe Gly Ser Phe Asp Ile Leu Thr Asp Asn Asp Val Arg Glu Gly Met
195 200 205

Lys Lys Phe Ser Asn Thr Pro Thr Phe Pro Gin Leu Tyr Cys Lys Gly
210 215 220

Glu Leu Leu Gly Gly Cys Asp Ile Val Ile Ala Met His Glu Ser Gly
225 230 235 240

Glu Leu Lys Asp Val Phe Lys Glu His Asn Ile Pro Leu Gin Pro Gin
245 250 255

Gly Ser Lys Asn Glu Glu Ala Val Lys Ala Lys Pro Asp Thr Glu Lys
260 265 270

Ser Gly Ala Val Ser Glu Ala Leu Thr Ala Ala Gin Lys Glu
275 280 285

Arg Leu Glu Ser Leu Val Asn Phe Ser Thr Val Met Ala Phe Ile Lys
290 295 300

Gly Thr Pro Glu Glu Pro Lys Cys Gly Phe Ser Gly Lys Leu Val His
305 310 315 320

Ile Leu Lys Gin Glu Lys Ile Pro Phe Ser Ser Phe Asp Ile Leu Thr
325 330 335

Asp Asp Glu Val Arg Gin Gly Lys Leu Leu Ser Asn Thr Pro Ser
340 345 350

Tyr Pro Gin Leu Tyr Ile Asn Gly Glu Leu Val Gly Gly Ser Asp Ile
355 360 365

Val Met Glu Met His Lys Ser Gly Leu Glu Lys Leu Val Leu Ser Glu
370 375 380

Lys Gly Ile Val Ala Lys Glu Ser Leu Gin Arg Leu Lys Ala Leu
385 390 395 400

Ile Ser Ser Ala Pro Val Met Leu Phe Met Lys Gly Thr Pro Asp Ala
405 410 415

Pro Arg Cys Gly Phe Ser Ser Lys Val Val Asn Ala Leu Lys Gin Ala
420 425 430

Gly Val Ser Phe Gly Ala Phe Asp Ile Leu Ser Asp Glu Val Arg
435 440 445

Gin Gly Leu Lys Thr Tyr Ser Asp Thr Pro Thr Phe Pro Gin Leu Tyr
450 455 460

Tyr Lys Ser Glu Leu Ile Gly Gly Cys Asp Ile Val Leu Glu Glu Glu
465 470 475 480

Lys Ser Gly Glu Leu Lys Ser Thr Leu Ser Glu
485 490

<210> SEQ ID NO 7
<211> LENGTH: 1949
<212> TYPE: DNA
<213> ORGANISM: Oryza sativa
<400> SEQUENCE: 7

aaaaggaag cacagaaa cccccagcgc caagcccccc cgccccgcagtg cgtctttcag 60
tcttttcctgc gcgcgcgcgc gcgggcgcgt gcgggcgcgt gcgcgcgcgg gcgggcgg 120
aggggggagg ggacggcccgt atgcggggcgg tggggggggg gggggttcag ggggacgcgg 180
agggggccc ggaggggggc gcgggcggcgc gcggcgcgcgt cgggccgaggt ggtgggcggag 240
cgctccaga cagctccgcag ggtgccgggc acctggccgc gcgcgttccgc ccagcgcgtgt 300
tctccggttc gaaggtgag ggaatcggcc gaaatccgag gcgataggg gattacgcag 360
tgccatattt tgttttcttg aaggaaggtga aaactgtgtga taactcttgag gggtgcaaatc
420
cagccagcgtg ggcccaatg tattggggcc tggccagcgtt gctgagcttg
480
ctgtggtctg tagcggggtggt ggtgctgtg ggcggcctgtg acctggaaag gttoaagaga
540
tgizzcacgc aastgaaagc ttcgtcacta ttcggtgcga agatgacttg aaacaagatg
600
tggagcagct tgtcacatcc cattcgctct ttcttatatt gaaggggaacc cctgagcaac
660
cagagggtcg ttccagcgtca aagtaagttc agcttttgag gcaggaagaga tgtgaatttg
720
ggagctttga cactcctaca gataaagagt taccgtaagg aatgaaaatct ttcctcaact
780
gggcagctct tcctcagcgc taccgtaag aagcccaag tgggtgagtt gattattgtga
840
ttctcgatgcc ggaaagccggt cagctgaagg atgtttatagat ggaggcaaac attcgctgc
900
agccacaggg gaaacaaaaa cgggaggccg cgaagccgaa tgcacaggtgg cagcaagatg
960
gtgcagctttg tgaacaaggt ttctttactgt cagctcgagaa ggaaagcttg gaagagcttg
1020
taaattccg cagatgctag gatttataaa aaggtacacc tggagggcc aagttggtat
1080
tcagttggaa aagcttagcgt atttttaagc aagagaagat ccctttctca aagtttggca
1140
ttttagccg ttagttgggt aggccagggct taaagttctct cttcaacgct cttagttacc
1200
tctcaactgtg ctaaaacggt gaactctgttg gggatcagca cattgttagt gagatgcata
1260
agagcgggg gtttaaagaa gttttatctcg agaagcggag gtgtgcagcag aaaaactctag
1320
aagaccggct caggggccttt atttctctcg ccgacagcgtg acgcttctatg aaggggaccc
1380
cagatgctgc gggctgctgggc ttcagtgccag agttgtggaa tgcagctgaaa caaagccagg
1440
tcagctcggc agccctcggct acctcttcagc acgagggcgct tagggcaggg cttgaagcgt
1500
accccaactg ggcacagccg cttcgagctg actacaactc agaactggtg aggagtggctg
1560
acactggctct tggcgcggagg aagagttgagct cgcttcttcc cgaccgggga aatattcggc
gttatcggc tctttctctct cttggagtttg ctaccacgct cagaccatc
1620
agttttctct atcgatggca ttcctctgta cttcacatgc gttattgcc aactgagatg
tgtgcggctgc ccacctgttt ctaactctgtg aaactctggc aattgagctc
1740
atgtgcggcc cagctttgcct atcactgagt cagctgtgac ggagccgatg tggagctgtc
1800
ttcgagctcg ttcataaactg aggacagcctg ttcagtcggt tttattgtgcc agttcatcctt
1860
gcgcgcggcg tttccgctgct gttgagacgc ccctgcaacctt ctataattgc caattaataag
1920
agggctggct aaaaaattg aaatgtacgc
1949
-continued

tagctcggat agagttgctt t 21

<210> SEQ ID NO 10
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer sequence
<400> SEQUENCE: 10
tgcgttttga catgccggga 20

<210> SEQ ID NO 11
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer sequence
<400> SEQUENCE: 11
tctgggagac ttaacagagt gtcg 24

<210> SEQ ID NO 12
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer sequence
<400> SEQUENCE: 12
gccattgtg tgaasagagt ctagga 26

<210> SEQ ID NO 13
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer sequence
<400> SEQUENCE: 13
cacacagag aacacagaga tgac 25

<210> SEQ ID NO 14
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer sequence
<400> SEQUENCE: 14
gcgttgagg agaacacgcct 20

<210> SEQ ID NO 15
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer sequence
<400> SEQUENCE: 15	tctcgccct gatccatcc a 21
<210> SEQ ID NO 16
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer sequence

<400> SEQUENCE: 16

ggcgcaasg gcaatgttga ggga

<210> SEQ ID NO 17
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer sequence

<400> SEQUENCE: 17
tggcaacatg tggcaagatg agatga

<210> SEQ ID NO 18
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer sequence

<400> SEQUENCE: 18
ggctgtctct agtgccgcgt gc

<210> SEQ ID NO 19
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer sequence

<400> SEQUENCE: 19
tggtgagg aagcgagct ca

<210> SEQ ID NO 20
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer sequence

<400> SEQUENCE: 20
accaacatc aacgccacag

<210> SEQ ID NO 21
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer sequence

<400> SEQUENCE: 21
tgctottcct agtccatct

<210> SEQ ID NO 22
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer sequence
<400> SEQUENCE: 22

gctggcagga agaagtttcg 20

<210> SEQ ID NO 23
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer sequence
<400> SEQUENCE: 23

ggttggagag cagggatag 22

<210> SEQ ID NO 24
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer sequence
<400> SEQUENCE: 24

attgctgctg gaaactatcc ttag 24

<210> SEQ ID NO 25
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer sequence
<400> SEQUENCE: 25

gtccaatacg gtgctctctg agta 24

<210> SEQ ID NO 26
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer sequence
<400> SEQUENCE: 26

cgatgctgta tgtctatggt tc 22

<210> SEQ ID NO 27
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer sequence
<400> SEQUENCE: 27

aagctgatgg gctctagaaa tc 22

<210> SEQ ID NO 28
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer sequence
<400> SEQUENCE: 28
-continued

ggcacactg tattgggaat cc 22

<210> SEQ ID NO 29
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer sequence

<400> SEQUENCE: 29
aagttcga acggtcctgga cc 22

<210> SEQ ID NO 30
<211> LENGTH: 1476
<212> TYPE: DNA
<213> ORGANISM: Solanum lycopersicum

<400> SEQUENCE: 30
atggcgccag gaaagctagt gaagagagct caattgaaag gggagcattga taagatttgc 60
gcgcacgagcat scocggcgat ttggacatct tgccgctcat gcctgtaaga ctcctaaac 120
gagccacagc ctctgcctgc taatctccct gatcctccct aagcctcatc ccattgac 180
gaatgtaag aacagctctg gatattgta cacacatctg ttcctctgtc ctaccttactt 240
gctctctcga agaagacagaa gctgtgtgtga aacttgggaag ggcggcaata cttcatgtttg 300
gctttacagc tttgcaaaaa ctctcggctcg atctgtttcc ggtgagagtctg cttttgggca 360
agcctagga gcgcgtgactc tcctcgtcttg ctgtaaagc atcagggctg gtctcagagca 420
acgctggtcct ctcaagtggtc aagtttctgtt tacccgtctc gaggaggtc caacttaaca 480
ccgctgtgttc ttctctactc agtagtttct ttcgtggagga gggccccaga aagacccag 540
tgctggttttttt gtcggaaagct ggtgtgtac tggagagaaaa ggaaggtcaa aatgaggtg 600
tttgtgatatc tggagggacct ggagggtcgc tgggctgtaa agaagaatatc tttggggc 660
acetactctct acacttacagtg caaggggtaa ctctctgttggtgtggtgatat tgttataact 720
atgctagagtg tggattgaact taacaggttt ttcagggctg aagggggtcgc ggctctgtcttg 780
tctcctgaa tcaacgcca taaaattgctg ggggaagggcg gggcatcctc tgaacacct 840
ggtgggtgac tggctgtccgc taccctgctg gcaccttca taaaattatat cccaggtattag 900
cgttttagtgc aagggcaggct ggtggggagct gggagaactc tggacaca tggagtgtggtg 960
atctcaacac aagaaaaggt gggtggtggtgc aactttcagca tttttttctg caagcgcctg 1020
cgtcaagac tcgagggctta ttacaactgtc tctagtttata cacagcagtt tcataaaggt 1080
gaaatacttt gttgactcag cttttagctg ggtgtgcaaa gagaaggggtg gtttagggag 1140
gttctagtg aagaaggagat aacccgagaa gtaagtctgag aagacttt ctttggatta 1200
tgatattcg cacacgtcgc ctctacgtcg actggtgatat atcagatgtggtg 1260
tcagccctca aggtgcctac tggcttggaag gagaaggggg ttgatttttct atctctttgtg 1320
atatctcgc aagcagaggt aaggggaggtt ccgataacgata cccaaactct 1380
cctcaggag tattacagag ggaacttgtga ggagagtgtg atatagttgt ggaattcact 1440
agcggggtgtg aatgaattag tcaatgtctt gatag 1476

<210> SEQ ID NO 31
<211> LENGTH: 491
<212> TYPE: PRT
<213> ORGANISM: Solanum lycopersicum

<400> SEQUENCE: 31

Met Gly Gly Gly Gly Ser Val Lys Glu Val Gin Ser Lys Ala Glu Leu 1 5 10 15
Asp Lys Ile Val Ala Asp Gly Ser Pro Ala Ile Leu His Phe Trp Ala 20 25 30
Ser Trp Cys Glu Ala Ser Lys His Met Asp Gin Val Phe Ser His Leu 35 40 45
Ser Thr Asp Phe Pro His Ala His Phe Leu Arg Val Glu Ala Glu Glu 50 55 60
Gln Pro Glu Ile Ser Glu Leu His Ser Val Ala Val Pro Tyr Phe 65 70 75 80
Val Phe Phe Lys Glu Gly Lys Ala Val Asp Thr Leu Glu Gly Ala Asp 85 90 95
Pro Ser Ser Leu Ala Asn Lys Val Ala Lys Ile Ala Gly Ser Ile Thr 100 105 110
Pro Gly Asp Pro Ala Ala Pro Ser Leu Gly Met Ala Ala Gly Pro 115 120 125
Ser Val Leu Glu Ala Ile Gin Glu Leu Ser Arg Gin Asn Gly Ala Pro 130 135 140
Gln Val Ser Ser Ser Gly Leu Asp Gin Arg Leu Thr Lys Arg Leu Gin 145 150 155 160
Gln Leu Val Ser Ser His Pro Val Leu Leu Phe Met Lys Gly Thr Pro 165 170 175
Glu Glu Pro Lys Cys Gly Phe Ser Glu Cin Lys Val Val Asp Ile Leu Lys 180 185 190
Lys Glu Lys Val Lys Phe Gin Ser Phe Asp Ile Leu Met Asp Ser Glu 195 200 205
Val Arg Glu Gly Leu Lys Phe Ser Asn Trp Pro Thr Tyr Pro Gin 210 215 220
Leu Tyr Cys Lys Gly Glu Leu Leu Gly Gly Cys Asp Ile Val Ile Thr 225 230 235 240
Met His Glu Ser Gly Leu Thr Asp Val Phe Lys Asp His Gly Val 245 250 255
Gly Val Ser Asp Ser Leu Glu Thr Lys Pro Asn Lys Thr Ala Gly Gly 260 265 270
Lys Gly Gly Ile Ser Glu Gin Ser Gly Leu Ser Thr Ala Leu Thr Thr 275 280 285
Arg Leu Ala Gly Leu Ile Asn Ser Ser Pro Val Met Leu Phe Met Lys 290 295 300
Gly Thr Val Asp Glu Pro Arg Cys Gly Phe Ser Arg Lys Val Val Asp 305 310 315 320
Ile Leu Lys Gin Glu Lys Val Glu Phe Glu Thr Phe Asp Ile Leu Ser 325 330 335
Asp Asp Glu Val Arg Gin Gly Leu Lys Val Tyr Ser Asn Trp Ser Ser 340 345 350
Tyr Pro Gin Leu Tyr Ile Lys Gly Leu Ile Gly Gly Ser Asp Ile 355 360 365
Val Leu Glu Met Gin Lys Ser Gly Glu Phe Arg Lys Val Leu Thr Glu 370 375 380
1. A genetically-modified plant having enhanced tolerance to an abiotic stressor as compared to a control plant, said genetically-modified plant having ectopic expression of a heterologous, abiotic stress tolerance gene, said gene encoding for a glutaredoxin.

2. The genetically-modified plant of claim 1, wherein said glutaredoxin is GRXS17.

3. The genetically-modified plant of claim 1, wherein said gene comprises a sequence selected from the group consisting of: (a) a nucleotide sequence comprising SEQ ID NO:1; (b) a nucleotide sequence comprising an antisense sequence corresponding to SEQ ID NO:1; (c) a nucleotide sequence having at least about 70% sequence identity to SEQ ID NO:1; (d) a nucleotide sequence encoding a glutaredoxin protein comprising SEQ ID NO:2; (e) a nucleotide sequence encoding a glutaredoxin protein having at least about 50% amino acid identity to SEQ ID NO:2 and retaining the functional characteristics thereof; (f) a nucleotide sequence comprising SEQ ID NO:3; (g) a nucleotide sequence comprising an antisense sequence corresponding to SEQ ID NO:3; (h) a nucleotide sequence having at least about 70% sequence identity to SEQ ID NO:3; (i) a nucleotide sequence encoding a glutaredoxin fusion protein comprising SEQ ID NO:4; and (j) a nucleotide sequence encoding a glutaredoxin fusion protein having at least about 50% amino acid identity to SEQ ID NO:4 and retaining the functional characteristics thereof.

4. The genetically-modified plant of claim 1, wherein said genetically-modified plant is a monocot or a dicot.

5. The genetically-modified plant of claim 4, wherein said plant is selected from the group consisting of grains, tubers, nightshades, and cash crops.

6. The genetically-modified plant of claim 5, wherein said genetically-modified plant is selected from the group consisting of wheat, oat, barley, rice, maize, millet, rye, sorghum, triticale, buckwheat, quinoa, soybeans, beans, peas, alfalfa, potatoes, sweet potatoes, cassava, yam, tomatoes, peppers, tobacco, and cotton.

7. The genetically-modified plant of claim 1, wherein said gene is stably incorporated into the genome of said genetically-modified plant.

8. The genetically-modified plant of claim 1, wherein said genetically-modified plant comprises a phenotype that is substantially similar to the phenotype of said control plant when said plants are grown under non-stress conditions.

9. The genetically-modified plant of claim 1, wherein said genetically-modified plant comprises an improved phenotype as compared to said control plant, when said plants are grown under abiotic stress.

10. The genetically-modified plant of claim 1, wherein said genetically-modified plant further comprises inhibited expression, activity, or function of an endogenous glutaredoxin gene.

11. The genetically-modified plant of claim 1, wherein said abiotic stressor is selected from the group consisting of: heat, cold, drought, salinity, and combinations thereof.

12.-30. (canceled)

31. A fusion protein for enhancing the abiotic stress tolerance of a plant, said fusion protein comprising a glutaredoxin amino acid sequence linked to a reporter amino acid sequence by one or more peptide bonds.

32. The fusion protein of claim 31, wherein said reporter is a fluorescent protein.

33. The fusion protein of claim 31, wherein said reporter is green fluorescent protein, beta-glucononidase, luciferase, or dsRed.

34. The fusion protein of claim 31, wherein said glutaredoxin amino acid sequence comprises a sequence selected from the group consisting of (a) SEQ ID NO:2, 6, or 31; and (b) an amino acid sequence having at least about 50% amino acid identity to SEQ ID NO:2, 6, or 31 and retaining the functional characteristics thereof.

35. The fusion protein of claim 31, wherein said fusion protein comprises SEQ ID NO:4, or a sequence having at least about 50% sequence identity to SEQ ID NO:4 and retaining the functional characteristics thereof.

36. A genetically-modified plant having enhanced resistance to an abiotic stressor, as compared to a control plant, said genetically-modified plant having inhibited expression, activity, or function of an endogenous glutaredoxin gene.

37. The genetically-modified plant of claim 36, wherein said resistant plant comprises a nucleic acid construct that inhibits expression, activity, or function of said glutaredoxin gene.

38. The genetically-modified plant of claim 37, wherein said nucleic acid construct comprises a sense sequence oper-
ably linked to its complementary antisense sequence and encoding double stranded RNA that inhibits expression, activity, or function of said glutaredoxin gene.

39. The genetically-modified plant of claim 36, wherein said expression, activity, or function in said resistant plant is inhibited by mutation of said glutaredoxin gene.

40. The genetically-modified plant of claims 36, wherein said plant does not express a glutaredoxin protein comprising SEQ ID NO:6 or 31, or an amino acid sequence comprising at least about 50% amino acid identity with SEQ ID NO:6 or 31.