Europédisches Patentamt

— 0 European Patent Office

EP 0 127 815 B1

Office européen des brevets

A0 1

@ Publication number: 0 127 81 5 B1

) EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 22.07.92 G Int. 15 GO6F 5/00

@) Application number: 84105546.0

@) Date of filing: 16.05.84

&) Data compression method.

&) Priority: 01,06.83 US 499943

@ Date of publication of application:
12.12.84 Bulletin 84/50

Publication of the grant of the patent:
22.07.92 Bulletin 92/30

Designated Contracting States:
DE FR GB

References cited:
EP-A- 0 129 439
US-A- 4 386 416

IEEE TRANSACTIONS ON INFORMATION
THEORY, vol. IT-24, no. 5, septembre 1978,

pages 530-536, |IEEE, New York, US; J. ZIV et

al.: "Compression of individual sequences
via varfable-rate coding"

[EEE TRANSACTIONS ON INFORMATION
THEORY, vol. IT-29, no. 2, mars 1983, pages

284-287, |IEEE, New York, US; G.G. LANGDON,

Jr.: "A note on the Ziv-Lempel model for
compressing indlvidual sequences"

(3 Proprietor: International Business Machines
Corporation
Old Orchard Road
Armonk, N.Y. 10504(US)

@ Inventor: Miller, Victor Saul
626 Cardinal Road
Peekskllf New York 10566(US)
Inventor: Wegman, Mark N.
127 West 70th Street, Apt. 4B
New York New York 10023(US)

Representative: Schutfenecker, Thierry
Compagnle IBM France, Département de
Propriété Intellectuelle
F-06610 La Gaude(FR)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person
may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition
shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fea

has been paid (Art. 99(1) European patent convention).

Rank Xerox {UK) Business Services

1 EP 0127 815 B1 2

Description

ACKGROUND OF THE INVENTION
1. Field of the Invention

The present invention relates to data process-
ing methods and more particularly to methods for
compression of data for transmission or storage.

2. Description of the Prior Art

In the prior art there are many data compress-
ing methods. The following are methods repre-
sentative of the prior art.

An article entitled "Compression of Individual
Sequences via Variable Rate Coding" by Ziv and
Lempet published in the IEEE Transactions on In-
formation Theory IT-24 pp 530-536, discloses a
basic algorithm on which the present invention is
an improvement, The structurs, operation, advan-
tages and disadvantages of the Lempel-Ziv method
are discussed in greater detail in the Description of
a Preferred Embodiment of the Present Invention.
The prior art discussed above does not teach nor
suggest the present invention as disclosed and
claimed herein,

SUMMARY OF THE INVENTION

Therefore, it is an object of the present inven-
tion to compress data for storage or transmission
by a method including a character extension im-
provement, a string extension improvement, and a
LRU algorithm improvement to enhance storage
officiency or to enhance transmission efficiency
and to reduce line costs in remote terminal data
communications systems.

it is another object of the present invention to
compress data for storage or transmission by a
method including the steps of: initializing a set of
strings to consist of n sequences; determining a
longest string S of the set which matches a current
string; generating an identifier | for S; transmitting |
to a utilization device; testing dictionary for an
empty slot; deleting a least recently used string
from dictionary if no empty slot is found to create
an empty slot; assigning a slot identifier j to said
empty slot found or created from the above steps
of testing and deleting; adding a new string $' to
said set where S' comprises a concatenation of a
previous string match and said current sking
match; assigning an identifier k to string S"; advan-
cing the input position to a next character in said
stream; oulputting an identifier m to indicate a
match; and repeating the above steps for a next
string.

It is yet another object of the present invention

10

15

20

25

30

35

40

50

55

o control data transmission between a host com-
puting system and one or more remote terminals
by thé method set forth above.

Accordingly, a data compression and terminal
communications control method according to the
present invention includes the steps of : initializing
a set of strings to consist of n sequences: deter-
mining a longest string S of the set which matches
a current string; generating an identifier | for S;
transmitting 1 to a utilization device; testing dic-
tionary for an empty slot; deleting a least recently
used string from dictionary if no empty slot is
found to create an empty slot; assigning a slot
identifier | to said empty siot found or created from
the above steps of testing and deleting; adding a
new string 8’ to said set where S' comprises a
concatenation of a previous string match and said
current string match; assigning an Iidentifior k to
string S'; advancing the Input position to a next
character in said stream; outputting an identifier m
to indicate a match; and repeating the above steps
for & next string.

The foregoing and other objects, features and
advantages of the invention will be apparent from
the more particular description of the preferred
embodiments of the invention, as iHustrated in the
accompanying drawing.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 is a flow chart of a Prior Art method for
data compression,

FIG. 2 ts a flow chart of a data compression
method according to the present invention includ-
ing each component thereof.

FIG. 3 is a flow chart of a first component of a
data compression method according to the present
invention.

FIG. 4 is a flow chart of a second component
of a data compression method according to the
prasent invention,

FIG. 5 is a flow chart of a third component of a
data compression method according to the present
invention.

in the drawing, like elements are designated
with similar reference numbers, and identical ele-
ments in different specific embodiments are des-
ignated by identical reference numbers.

DESCRIPTION OF PREFERRED EMBODIMENT
OF THE INVENTION

THE PRIOR ART COMPRESSION METHODS OF
LEMPEL AND ZIV

Lempel and Ziv (LZ) propose two related meth-
ods for data compression which are based on the
theory of algorithmic complexity, rather than more

3 EP 0 127 815 B1 4

traditional probability based approaches. The sec-
ond, simpler, method can be implemented straight-
forwardly and efficiently, and produces satisfactory
compression on most data. However, the msthod
has some shoricomings, which are remedied by
the present invention. In the following discussion,
the term encoder is used for the compression
program, and decoder for the inverse operation.
The LZ algorithm is shown in fig 1.

It is adaptive. Thus, it can work on a wide
variety of different file types and still get accept-
able performance.

It can be thought of as a general model for
compression. Both the encoder and the decoder
maintain a dictionary of strings, and at every point
those dictionaries change in fock-step, so that bits
nead not be used to transmit the dictionary. This is
possible because strings are only added to the
dictionary after the decoder would have seen them,
and it uses the exact same strategy for adding
them to the dictionary as the encoder.

LZ records probable events and does not
waste space with information about improbable
events. If one wanted to have a Huffman code
comprassing alt pairs of characters. One would
need 64k pieces of information. And one would
only have information about diagram frequency.
{An n-gram is & siring of n characters). With the
above method if there is a 100-gram which is more
common than a single letter, the system will
"learn™ that 100-gram first.

It may well be more important to store informa-
tion that strings of 80 blanks long (lines) occur
often than that the letter "z" appears with some
given frequency. Lings of blanks will be more im-
portant than the letter 'z" if they occur more often,
and this is precisely the case when LZ stores
information on them.

Ancther feature is that there is a good repre-
sentation for the dictionary. i is possible to keep a
fixed number of bits for each dictionary entry, no
matter how long the string of characters repre-
sented by that dictionary entry is.

The first problem with the above method is that
part of the output consists of uncompressed sym-
bols from the input. While this is of little con-
sequence asymptotically, it is of significant con-
sequence for practical data. For exampie, if a file is
partitioned into 20,000 sequences by the above
algorithm, over one-third of the output will consist
of uncompressed characters.

THE PRESENT INVENTION

The solution proposed here avoids transmitting
any uncompressed data. The entire output consists
of a sequence of identifying numbers. The present
invention will be described with reference to figures

1o

20

25

30

36

45

50

55

2,3, 4, and 5.

Referring now to fig. 2, the method according
to the present invention will be described.

The first step of the present invention initializes
the dictionary to contain all strings of length 1,
instead of initializing the dictionary to contain the
empty string. Thus, a match is always found. The
dictionary must be augmented by adding the string
S concatonated with the first character of the next
string which is matched. This new string is added
after the next match has been found.

Next, in step 2, since the first character of a
string is always known, the longest string, S, is
found in the dictionary which matches the current
string in the data stream from the cursor forward.

Another assumption made by Lempel and Ziv
is that the dictionary can grow to an infinite size.
This is clearly not practical. The method recom-
mended by Lempel and Ziv is to block the input,
into those segments whose dictionaries just fill up
available space, compressing each block indepen-
dently. However it is more advantageous to replace
individual strings in the dictionary. Step 3 of the
present method discards strings which have been
in some sense least recently used. (See fig. 4) A
string is defined as "used" if it is matched, or is a
prefix of a match. The other definition associates a
refarence count with each string in the dictionary.
The reference count of a string S, is the number of
strings in the dictionary which are of the form §|T,
or T||S, for some T (S|IS is counted twice). Among
those strings with reference count 0, the one whose
reference count has been 0 the longest is the
"least recently used.”

In some sonse the dictionary should be filled
with the natural units of the file being compressed.
in English this would mean that most entries in the
dictionary would be words, or even phrases. How-
ever, the method used to build up larger units must
go through transitions which are not units. So, one
rmight have a unit composed of one word, plus the
first half of another word. 1t is less likely to have the
last part of that word in the dictionary, than the
whole word. Moreover, if pieces of words are
stored in the dictionary, they may make the dic-
tionary bigger than it should be. For example if
three fourths of the dictionary has strings which are
never, or rarely used then two extra bits will be
used in the transmission of each bit so that these
useless entries can be referred to. Furthermore, it
takes a long time to adapt to long sirings. All these
problems can be eliminated or ameliorated by add-
ing into the dictionary entries which are the concat-
enation of two maiches rather than the concatena-
tion of the first match and the first character of the
second match.

Combining the three concepts, a powerfut en-
coder is achieved whose embodiment is discussed

5 EP 0 127 815 B1 8

naxt.
~—- The major difficulties in obtaining a practical
aplementation are in finding a good data structure
for the dictionary of strings. This structure should
be small, yet allow rapid searches.

First will be described a data structure suffi-
cient for all the encodings save the last presented.
The size of all these structures is proportional to
the number of strings in the dictionary, and does
not depend on the size of the strings.

In the first encodings all strings, S, in the
dictionary are either one character longer than a
prefix, P, of S, with P being in the dictionary, or $
is one character long. Thus the dictionary resem-
bles a tree. The root of the tree is the empty string.
Each node (except for the root) is the child of the
node representing the string fabeling the node with
the last symbol omitted. in the encoding algorithm
the recognition is accomplished by first recognizing
a prefix and then seeing if it has a child which
matches the next character. Let n be a node with
parent, P, C being the last character of the string
corrasponding to n (the character which is not in
the string corresponding to P). A hash table, which
may be implemented by one of a number of hash
functions, such as is shown in "Universal Classes
of Hash Functions" J. Lawrence Carter and Mark
N. Wegman, Journal of Computer and System Sci-
ences Vol 18 No 2 Apr 79, pp 143 - 154, indexed
by the pair (P,C) returns n if there is such a child.
Hashing techniques are well known to those skilled
in the art and need not be set forth in detail herein.
Thus, given a node, one can quickly tell if there is
a longer match. The decoding algorithm works
similarly, but instead of a hash table a simple
pointer from n to P suffices.

The least recently used encoding presents little
problem. The only thing worth noting is that holes
cannot be left in the dictionary. Thus the siring
‘abc’ cannot stay in the dictionary when the string
‘ab' is thrown out. The simplest strategy is to only
place strings on the LRU list when they are leaves
of the tree. Thus, a new string or one whose
children have been deleted become candidates for
deletion.

The string concatenation method is more dif-
ficult. Two data structures must be maintained. One
structure is called the discriminator tres, and is
used to rapidly find candidates for matches. This
structure resembles the above dictionary and is
similar to a prefix tree. The other data structure is
called the pair forest and it allows one to choose
between the candidates. The pair forest succinctly
represents all strings. Each string is represented by
a node. A node is either a character, or iwo point-
ors to other nodes. Thus the concatenation of two
strings in the dictionary can be represented by a
node which points to both. All nodes in the forest

10

15

20

25

30

35

40

45

50

55

are placed in an array, the ith element of which
points to the ith string in the dictionary.

The discriminator tree maintains the property
that the parent, P, of a node, n, corresponds to a
prefix of the string represented by n. However the
prefix may be more than one character shorter.
Moreover, not all nodes in the tree necessarily
correspond to strings in the dictionary; they may
be prefixes of strings in the dictionary.

All strings in the dictionary which are not pre-
fixes of other strings in the dictionary correspond to
ieaves in the discriminator tree. All other strings in
the dictionary are aiso placed in the tree as internal
nodes. If S is the prefix of two or more strings,
S:sub./1/ and S:sub./2/ , which are in the dictionary
and S is the longest such string, then a node, N,
corresponding to S is in the tree, even if S is not in
the dictionary. Since we cannot store S efficiently,
we store in n a pointer to either S:sub./1/ or
S:sub./2/ in the pair forest. From this information it
is possible to re-create S.

With each ncde is stored the length of the
string that it matches. A hash table, as above,
allows us to find the appropriate child from a par-
ent. So, if we are trying to maich a string which is
a leaf in the tree, start at the root, and hash the first
character to find the next node. From this node find
the length of the string it matches, and hence the
character beyond it. Hash the node and that char-
acter to obtain the next node. This process is
repeated to find a candidate match. A problem
arises if the candidate match does not match the
text on a character which was not used in the
bashing process.

At this point the real match in the dictionary
must either be the string found by the discriminator
tree or a prefix of it. The pair forest is used to find
the longest prefix of the candidate match that
matches the text being compressed. As this pro-
cess goes on, the discriminator tree is scanned to
find the longest string in the dictionary which cor-
responds to this prefix. That string is the correct
match.

It should be pointed out, that in the string
axtension algorithm the possibility arises that when
adding a string to the discriminator tree, that it is
already there. In that case no changes should be
made to the discriminator tree.

The method proposed hersin can also be used
to produce a probability distribution for the next
character in a string of characters {or bit in a string
of -bits). This may be useful in applications involv-
ing recognizing data. For example, optical scanners
can often tell that a particular character is either an
"n" or an "h". Howevaer, they may have difficulty
distinguishing between them. In such a case, if the
probability is very low of an "h" following the
current string of characters, the scanner might de-

7 EP 0127 815 B1

cide that the next character is an "n". Another
example is recognizing Phonemes or words in
speech recognition.

A number of authors have shown that any
compression methed can be used to make a pre-
diction. For example, see Thomas M. Cover
"Universal Gambling Schemes and the Complexity
Measures of Kolmogorov and Chaitin" in technical
report no. 12, QOct 14 1974, Dept. of Statistics,
Stanford University.

Claims

1. A method for data compression of individual
sequences in a data stream, comprising the
steps of:

initializing a dictionary consisting of a set of
strings with an index for each of said strings
and including all possible strings of length 1;

seiting a current input position at the beginning
of said data stream and repeating the following
steps until the data stream to be compressed
is exhausted;

determining a longest string S in said dic-
tionary which matches a current string in the
data stream starting from the current input
position;

generating an identifier | for S consisting of an
encoding of the index associated with said
longest matched string S;

advancing the current input position to imme-
diately after said current string in the data
stream;

modifying said dictionary based on the preced-
ing longest matched string S, the immediately
succeeding symbols in the next string in the
data stream, and the sequence of previously
matched strings;

transmitting | to a utifization device; and

decoding | at said utilization device o recover
said string S.

2. A methed according to claim 1, wherein said
modifying step comprises the steps of:

adding a new string S' to said set, where S'
comprises a concatenation of said current
string match and an immediately succeeding
symbol in said data stream; and

10

15

20

26

30

35

45

50

55

assigning an identifier I' to said string S'.

A method according to claim 2, further com-
prising the step of:

testing a dictionary of fixed size in storage
containing said set of strings for an empty slot
to store said new string $°, and if an empty
slot is not found, deleting a string from the
dictionary in order to create an empty slot.

A method according to claim 3, wherein the
step of deleting comprises deleting a least
recently used string from said dictionary to
create an empty slot, it no smpty siot is found.

Apparatus for data compression of individual
sequences arranged in a data stream, compris-

ing:

means for initializing a dictionary consisting of
a seot of strings with a index for sach of said
strings and including all possible strings of
length 1;

means for setting a current input position at
the beginning of said data stream;

means for determining a longest string S in
said dictionary which maiches a current string
in the data stream starting from the current
input position;

means for generating an Identifier | for S con-
sisting of an encoding of the index associated
with said longest matched string S;

means for advancing the current input position
to immediately after said current string in the
data stream;

means for modifying said dictionary based on
the preceding longest matched string S, the
immediately succeeding symbols in the next
string in the data stream, and the sequence of
previously matched strings;

means for transmitting | to a utilization device;
and

means for decoding | at said utilization device
{0 recover said string S, and,

means for repeating the steps of initializing,
setting a current input position, determining,
generating, advancing, modifying, transmitting
and decoding until the data stream to be com-
pressed is exhausted;

9 EP 0 127 815 Bt

Apparatus according to claim 5, wherein said
modifying means comprises:

means for adding a new string S' to said set,
where S' comprises a concatenation of said
current string match and an immediately suc-
ceading symbol in said data stream; and

means for assigning an identifier I to said
string S'.

Apparatus according to claim 6, further com-
prising:

storing a dictionary of fixed size containing
said set of strings,

means for testing said dictionary for an empty
stot 1o store said new string §', and

means for deleting a string from the dictionary
in order to create one, if an empty slot is not
found.

Apparatus according to claim 7, wherein the
means for deleting a string comprises means
for deleting a least recently used string from
said dicttonary to create an empty slot, if no
empty slot is found.

Revendlcations

1.

Procédé pour la compression des données des
séquences individuelles dans un train de don-
nées, comprenant les étapes consistant & :

initialiser un dictionnaire constitué d'un en-
semble de chaihes avec un index pour cha-
cune desdites chaines et comportant toutes les
chates possibles de longueur 1 ;

établir une position d'entrée courante au
commeancement dudit train de données et ré-
péter los étapes suivantes jusqu'a ce que le
train de données qui doit tre comprimé soit
sorti ;

déterminer une chaine S la plus longue
dans ledit dictionnaire qui s'apparie avec une
chaine courante dans le train de données com-
mangant & partir de fa position d'entrée cou-
rants ;

produire un identificateur | pour § qui est
constitué du codage de l'index associé a ladite
chaine la plus longue appariée S ;

avancer la position d'entrée courante i
ladite chaine courante immédiaterment suivanie
dans le train de données ;

modifier ledit dictionnaire basé sur la chaf
ne précédente la plus longue appariée S, les
symboles successifs immédiatement suivants

10

15

20

25

30

35

40

45

a0

55

10

dans la prochaine chafne dans le train de
données et la séquence des chafnes précé-
dentes appari€es ;

transmettre | vers un dispositif utilisateur,
ot

décoder 1 audit dispositif utilisateur pour
récupérer ladite chaine S.

Procédé selon la revendication 1, dans lequel
ladite étape de modification comprend les éta-
pes consistant & :

ajouter une nouvelle chaine §' audit en-
semble, ol S’ constitue une concaténation du-
dit appariement de chaine courante et d'un
symbole immédiatement suivant dans ledit
train de données, et

affecter un identificateur I' A ladite chalne
s

Procédé selon la revendication 2, comprenant
de plus F'étape consistant 4 :

tester un dictionnaire de volume fixe dans
la mémoire contenant ledit ensemble de chai-
nes pour un emplacement vide afin de mémo-
riser ladite nouvelle chathe §' et si la place
vide n'est pas trouvée, supprimer une chaine
du dictionnaire afin de créer un emplacement
vide.

Procédé selon la revendication 3, dans lequel
I'étape consistant & supprimer une chaine
comprend [a suppression de la chaine la
moins récemment utilisée A partir du diction-
naire pour créer un emplacement vide, si au-
cun emplacement vide n'est trouvé.

Dispositif pour la compression des données
des séquences individuelies disposées en un
train de données, comprenant :

un moyen pour initialiser un dictionnaire
constitué d'un ensemble de chaines avec un
index pour chacune desdites chafhes et com-
portant toutes les chaines possibles de lon-
gueur 1 ;

un moyen pour établir une position d'en-
trée courante au début dudit irain de données ;

un moyen pour déterminer une chaine la
plus longue S dans ledit dictionnaire qui s'ap-
parie & une chaine courante dans ladit train de
données commengant & partir de la position
d'entrée courante ;

un moyen pour produire un identificateur |
pour S constitué de I'encodage de I'index as-
socié & fadite chaine la plus longue appariée S

un moyen pour avancer la position d'en-
trée courante i ladite chafne courante immé-
diatement suivante dans ledit train de données

1 EP 0 127 815 B1

un moyen pour modifier ledit dictionnaire
basé sur la chaine précédente appariée la plus
longus S, les symboles immédiatement sui-
vants dans la prochaine chaine dans te train de
données et la séquence des chaines précé-
demment apparices ;

un moyen pour transmettre | & un disposi-
tif utilisateur, et

un moyen pour décoder [audit dispositif
utilisateur pour récupérer ladite chaine S, et

un moyen pour répéter les étapes consis-
tant a initialiser, établir une position d'entrée
courante, produire, déterminer, avancer, modi-
fier, transmettre et décoder jusqu'a ce que le
train de données qui doit &re comprimé soit
sorti.

Dispositit selon la revendication 5, dans fequel
ledit moyen de modification comprend :

un moyen pour ajouter une nouveile chai-
ne S’ audit ensemble, ot §' comprend une
concaténation dudit appariement de chaies
courantes et d'un symbole immédiatement sui-
vant dans ledit train de données, et

un moyen pour affecter un identificateur I’
a Jadite chaine S'.

Dispositif selon la revendication 6, comprenant
de plus :

la mémorisation d'un dictionnaire de volu-
me fixe contenant ledit ensemble des chaines,

un moyen pour tester ledit dictionnaire
pour un emplacement libre afin de mémaoriser
ladite nouvelle chathe $', et

un moyen pour supprimer une chaine du
dictionnaire afin d'sn créer une, si un emplace-
ment vide n'est pas trouvé.

Dispositif selon la revendication 7, dans lequel
le moyen pour supprimer une chaie com-
prend un moyen pour supprimer une chaine la
moins récemment utilisée & partir du diction-
naire pour créer un emplacement vide, si au-
cun emplacement vide n'est trouvé.

Patentanspriiche

1.

Verfahren zum Komprimieren von Daten in ein-
zelnen Folgen in einem Datenstrom, welches
die folgenden Schritte umifaft:

Initialisiersn sines Wérterbuchs, das aus einem
Satz von Ketten mit einem Index fiir jede der
Ketten besteht und alle moglichen Ketten mit
einer Linge 1 enthilt,

Setzen siner aktuellen Eingabeposition an dem

75

20

25

30

35

40

45

&0

§5

12

Anfang des Datenstroms und Wiederholen der
folgenden Schritte solange, bis der Datenstrom
ausgeschdpft ist, der kemprimiert werden soll,

Bestimmen siner lingsten Kette S in dem
Worterbuch, die zu einer aktuellen Kstte in
dem Datenstrom beginnend von der aktusllen
Eingabeposition paft,

Erzeugen einer Identifizierung | flir S, die aus
einer Codierung des Index bestehi, welcher
der lingsten angepaften Kette S zugeordnet
ist,

Voranschieben dor aktusllen Eingabeposition
unmittelbar nach der akiuellen Kette in dem
Datenstrom,

Andern des Wérterbuchs auf der Grundlage
der vorangehenden l&ngsten angepaBten Kette
S, der unmittelbar nachfolgenden Symbeole in
der nédchsten Kette in dem Datenstrom und der
Folge verangehend angepafter Ketten,

Ubertragen von | zu siner Benutzungseinrich-
tunig und

Decodieren von | bei der Benutzungseinrich-
tung, um die Kette S wiederherzustellen.

Verfahren nach Anspruch 1, bei welchem der
Schritt des Anderns die folgenden Schritte um-
fapt:

Hinzufligen einer neuen Kette S' zu dem Satz,
wo 5' eine Verkettung der aktuellen Kettenan-
passung und eines unmittelbar nachfolgenden
Symbois in dem Datenstrom enthilt und

eine Identifizierung I' wird der Kette S' zuge-
wiesen.

Vertahren nach Anspruch 2, das ferner den

folgenden Schritt umfaBt:

Prifen eines Wérterbuchs mit fester Speicher-
grifle, welches den Satz von Ketten flr einen
leeren Schlitz zum Speichern der neuen Kette
S' enthilt und, falls ein leerer Schlitz nicht
gefunden wird, Léschen einer Kette in dem
Wérterbuch, um einen lesren Schlitz zu erzeu-
gen,

Verfahren nach Anspruch 3, bei welchem der
Schritt des L&schens das Léschen siner LRU-
Kofte in dem Wdrterbuch umifaBt, um einen
leeren Schiitz zu erzeugen, falls kein leerer
Schiitz gefunden wird.

13 EP 0 127 815 B1

Einrichtung zum Komprimieren von Daten in
ginzelnen in sinem Datenstrom gruppierten
Folgen, die folgendes aufweist:

Mittel zum Initialisieren eines Worterbuchs,
das aus einem Satz von Ketten mit einem
Index fiir jede der Ketten besteht und alle
mdéglichen Ketten mit einer Lange 1 enthilt,

Mittel zum Setzen einer aktuellen Eingabeposi-
tion an den Anfang des Datenstroms,

Mittel zum Bestimmen einer lAngsten Kette S
in dem Wdrterbuch, die zu einer akiuellen Ket-
te in dem Datenstrom beginnend von der aktu-
ellen Eingabeposition past,

Mittel zum Erzeugen einer ldentifizierung I fir
S, die aus einer Codierung des Index besteht,
welcher der ldngsten angepafBten Kette S zu-
geordnet ist,

Mittel zum Voranschieben der akiuellen Einga-
beposition unmittelbar nach der aktuellen Kette
in dem Datenstrom,

ein Mittel zum Andern des Worterbuchs auf
der Grundlage der vorangehenden lngsten
angepaften Kette 3, der unmittelbar nachfol-
genden Symbole in der ndchsten Kette in dem
Datenstrom und der Folge vorangehend ange-
pajter Ketten,

Mittel zum Ubertragen von | zu einer Benut-
zungseinrichiung und

Mittet zum Decodieren von | bei der Benut-
zungsreinrichtung, um die Kette S wiederher-
zustellen und

Mittel zum Wiederholen der Schritte des Initia-
lisierens, des Setzens einer aktuellen Eingabe-
position, des Bestimmens, Erzeugens, Voran-
schiebens, Anderns, Ubertragens und Decodie-
rens solange, bis der Datenstrom ausgeschipft
ist, der komprimiert werden sotl.

Einrichtung nach Anspruch 5, bei welcher das
Mittel zum Andern folgendes aufweist:

Mittel zum Hinzuflgen einer neuen Kette S' zu
dem Satz, wo $' eine Verkettung der akiuellen
Kettenanpassung und eines unmittelbar nach-
folgenden Symbols in dem Datenstrom enthiit
und

Mittel, um der Kette S' eine Identifizierung ¥
zuzuwseisen.

10

15

20

25

30

35

40

45

50

55

14

Einrichtung nach Anspruch 8, die ferner folgen-
des aufweist:

Speicherung eines Worterbuchs fester Grifs,
welches den Satz von Ketten enthilt,

Mittel zum Priifen des Worterbuchs auf einen
leeren Schlitz hin, um die neue Kette S zu
speichern und

sin Mittel zum LOschen einer Kette in dem
Worterbuch, um eine solche zu erzeugen, falls
ein leerer Schliitz nicht gefunden wird.

Einrichtung nach Anspruch 7, bei welcher das
Mittel zum Ldschen einer Kette Mittel zum
Lischen einer LRU-Kette in dem Worterbuch
zum Erzeugen eines lesren Schiitzes aufweist,
fakts kein leerer Schlitz gefunden wird,

EP 0 127 815 B1

DICTIONARY = {})

CURSOR = 1, n = 1

GIVE), THE EMPTY STRING,
THE IDENTIFYING NUMBER 1

FIND LONGEST

STRING, S, IN DICTIONARY
WHICH MATCHES STRING
FRCM CURSOR ON

:

OUTPUT NUMBER

FOR S, USING wAX (1, [L0G 5 n]) BITS,

AND C, CHARACTER FOLLOWING S

y

n<n+l

ADD STRING S,C T0
DICTIONARY AND GIVE

S' IDENTIFYING NUMBER n
MOVE CURSOR

10 CHARACTER AFTER C

FIG. 1 -

PRIOR ART

LZ with new
string exiension
and LRU

EP 0127 815 B1

DICTIONARY = {ALL SINGLE CHARACTERS
IN SLOTS 1 THROUGH A (WYHERE

A = ALPHABET SIZE)}

S:=)

SLOTS ARE FILLED OR "AVAILABLE"
SLOTS A+1 THROUGH 2P ARE “AVAILABLE"

{

FIND LCNGEST

STRING, S, IN DICTIONARY
WHICH MATCHES STRING
FROM CURSOR ON

'

QUTPUT NUMBER
FOR S, USING n BITS

4

IF NO SLOTS AVAILABLE, DELETE

LEAST RECENTLY USED

STRIEG FROM DICTIONARY

LET J=3CF THIS SLOT.

OTHERWISE LET J=0F AVAILABLE SLOT

\

ADD STRING S'S TO DICTIONARY AND GIVE
NEW IDENTIFYING NUMBER, J.MOVE CURSOR
TO CHARACTER AFTER S. §' =S,

FIG. 2

10

EP 0 127 815 B1

DICTIONARY = <{ALL SINGLE CHARACTERS
WITH IDENTIFYING NUMBERS 1 THRU A)
CURSOR = 1

n= ALPHABET SIZE

1

FIND LONGEST

STRING, S, IN DICTIONARY
[~ WHICH MATCHES STRING
FROM CURSOR ON

FIG. 3 1

OUTPUT NUMBER _
FOR S USING T logpn | BITS

n=n+1

A

C = FIRST CHARACTER AFTER CURSOR
ADD STRING S, C TO DICTIONARY

AND GIVE IT IDENTIFYING NUMBER n.
WOVE CURSOR TO CHARACTER AFTER S.

1

FIG. 4

EP 0 127 815 B1

DICTIONARY HAS 20 SLOTS

SLOTS ARE FILLED OR "AVAILABLE"
DICTIONARY (1) = 1

SLOTS 2 THROUGH 27 ARE "AVAILABLE"

A

FIND LONGEST

STRING, S, IN DICTIONARY
WHICH MATCHES STRING
FROM CURSOR ON

|

OUTPUT NUMBER
FOR S, USING n BITS AND C,
CHARACTER FOLLOWING S

A

IF NO SLOTS AVAILABLE, DELETE

LEAST RECENTLY USED

STRING FROM DICTIONARY

LET J=4fOF THIS SLOT.

OTHERWISE LET J =3:OF AVAILABLE SLOT

'

C = FIRST CHARACTER AFTER CURSOR
ADD STRING S, C TO DICTIOMARY

AND GIVE IT IDENTIFYING NUMBER n.
MOVE CURSOR TO CHARACTER AFTER S.

12

LZ with new
string extension

EP 0 127 815 B1

DICTIONARY = ALL SINGLE CHARACTERS
IN SLOTS 1 THROUGH A (WHERE

A = ALPHABET SIZE)

S =)

CURSOR=1, n=A

Y

FIND LONGEST

STRING, S, IN DICTICNARY
WHICH MATCHES STRING
FROM CURSOR ON

!

OQUTPUT NUMBER
FOR S IN mox (1,llogynt) BITS

n=p+

ADD STRING S;S TO DICTIONARY AND GIVE
{T IDENTIFYING NUMBER n. MOVE CURSOR
T0 CHARACTER AFTER S. §':=§.

FIG. 5

13

- TIMED: 07/09/94 17:58:04

/ PAGE: 1
REGISTER ENTRY FOR EP0O127815 -

European Application No EP84105546.0 filing date 16.05.198

Priority claimed:
01.06.1983 in United States of America - doc: 499943

Designated States DE FR GB

Title DATA COMPRESSION METHOD

Applicant/Proprietor
INTERNATIONAL BUSINESS MACHINES CORPORATION, 0Old Orchard Road, AXrmonk,

N.Y. 10504, United States of America [ADP No,/52288057001]
Inventors
VICTOR SAUL MILLER, 626 Cardinal Road, Peekskill New York 10566, United
States of America [ADP No. 53093613001]
MARK N. WEGMAN, 127 West 70th Street, Apt. 4B, New York New York 10023,
United States of America [ADP No. 53093621001]
Classified tov
H4P
GC6F

Address for Service
IBM UK LTD, Hursley Park, Winchester, Hampshire, $021 2JN, United Kingdom
[ADP No. 00000919001]

EPO Representative
JOHN EDWARD APPLETON, IBM United Kingdom Limited Intellectual Property
Department Hursley Park, Winchester Hampshire S021 2JN, United Kingdom
[ADP No. 50266998001}

Publication No EP0127815 dated 12.12.1984
Publication in English

Examination requested 16.05.1984

Patent Granted with gffect from 22.07.19 (Section 25(1)) with title DATA
COMPRESSION MEEﬂOD.

/

i

f

22.07.1988 EPO: Search report published on 27.07.1988
Entry Type 25.11 Staff ID. Auth ID. EPT

16.10.1989 Notification from EPC of change of EPO Representative details from
JOHN EDWARD APPLETON, IBM United Kingdom Limited Intellectual
Property Department Hursley Park, Winchester Hampshire 5021 2JN,

United Kingdom [ADP No. 50266998001}
to

LARS E. JOHANSSON, IBM Svenska AB Intellectual Property Department
4-01, 5-163 92 Stockholm, Sweden [ADP No. 56460389001]

Entry Type 25.14 Staff ID. RD06 Auth ID. EPT

TIMED: 07/09/94 17:58:04

REGISTER ENTRY FOR EP0127815 (Cont.) PAGE: 2

23.06.1992 Notification from EPO of change of EPO Representative details from

01.07.1992

LARS E. JOHANSSON, IBM Svenska AB Intellectual Property Department

4-01, S8-163 92 Stockholm, Sweden [ADP No. 56460389001)
to

THIERRY SCHUFFENECKER, Compagnie IBM France, Département de
Propriété Intellectuelle, F-06610 La Gaude, France

[ADP No. 59408559001]
Entry Type 25.14 Staff ID. RDO6é Auth ID. EPT

IBM UK LTD, Hursley Park, Winchester, Hampshire, 5021 2JN, United

Kingdom [ADP No. 00000919001]
registered as address for service

Entry Type 8.11 Staff ID. SW2 Auth ID. AA

¥%%% END OF REGISTER ENTRY #¥*%

0A80-01 OPTICS - PATENTS 07/09/94 17:58:18
EP PAGE: 1

RENEWAL DETATLS

PUBLICATION NUMEER EP0127815
PROPRIETOR(S)

International Business Machines Corporation, Q0ld Orcha Road,
Armonk, N.Y. 10504, United States of America

DATE FILED 16.05.1984
DATE GRANTED 22.07.1992
DATE NEXT RENEWAL DUE 16.05.1995

DATE NOT IN FORCE

DATE OF LAST RENEWAL 15.04.1994

YEAR OF LAST RENEWAL 11

STATUS PATENT IN FORCE

