发明名称
分组处理设备与方法

摘要
提出一种分组处理设备，当译码被分割为分组的可变长数据时，通过提供识别该数据开始位置的信息，减轻了译码器的处理负荷。首部分析部(11)判断存储在分组里的数据是否包含开始信息的开始数据还是其它数据，数据提取部(12)从分组里提取数据并把它存入缓冲器(13)。缓冲器控制部(14)令开始位置存储器(15)和开始数值计数器(16)保持开始数据存储在缓冲器(13)中的地址位置与数值。译码部(20)则引用开始位置存储器(15)和开始数值计数器(16)对存储在缓冲器(13)中的数据作译码处理。
1. 一种处理可变长度数据的分割存储的分组的分组处理设备，所述分组处理设备包括：

首部分析部，用于分析输入分组的首部，并判断存储在有效荷载中的数据是否包含开始信息的开始数据还是其它数据；

数据提取部，用于引用来自所述首部分析部的分析结果，并从分组的有效荷载中提取数据；

缓冲器，用于存储由数据提取部提取的数据；

缓冲器控制部，用于控制缓冲器中数据的存储位置和累计数据量；和

开始数据识别部，用于根据来自首部分析部的分析结果并在缓冲器控制部的控制下，产生用于识别缓冲器的开始数据的信息。

2. 根据权利要求 1 所述的分组处理设备，其特征在于，所述开始数据识别部包括：

开始位置存储器，用于保持存储在缓冲器中的开始数据的存储位置信息；和

开始数值计数器，用于统计存储在缓冲器的开始数据数值。

3. 根据权利要求 2 所述的分组处理设备，其特征在于，所述开始位置存储器是保持存储位置信息的寄存器。

4. 根据权利要求 2 所述的分组处理设备，其特征在于，所述开始位置存储器独立于缓冲器构成的存储器，用于保持存储位置信息。

5. 根据权利要求 2 所述的分组处理设备，其特征在于，所述存储位置信息是缓冲器中存储开始数据的写地址。

6. 根据权利要求 2 所述的分组处理设备，其特征在于，存储位置信息是代表开始数据相对于首次存储在缓冲器中的数据的位置的信息。

7. 根据权利要求 2 中所述的分组处理设备，其特征在于，所述缓冲器控制部将累计数据量与预定的阈值作比较，当所述累计数据量变得等于或大于所述阈值时，输出预定的通知信号。

8. 根据权利要求 7 所述的分组处理设备，其特征在于，在检测预定的通知信号时，开始数值计数器显示包含在对应于所述阈值的数据量里的开始数据数值。
9. 根据权利要求2所述的分组处理设备，其特征在于，所述缓冲器控制部将开始数值计数器的数值与预定的阈值作比较，当所述数值变得等于或大于所述阈值时，输出预定的传输信号。

10. 根据权利要求7所述的分组处理设备，其特征在于，所述阈值是开始位置存储器中能保持存储位置信息的区号。

11. 根据权利要求2～10中任一项所述的分组处理设备，所述分组处理设备还包括：

译码部，用于以预定的时间从缓冲器里读出数据，从开始数据识别部获取存储位置信息与计数值，把基于存储位置信息与计数值读出的数据中所含的开始数据分成开始信息与数据，并对按开始信息读出的数据作译码处理。

12. 根据权利要求11所述的分组处理设备，其特征在于，所述缓冲器控制部将累计数据量与预定的阈值作比较，当所述累计数据量变得等于或大于所述预定的阈值时，输出预定的传输信号，

其中，在检测预定的传输信号时，开始数值计数器显示包含在对应于阈值的数据量里的开始数据数值，以及

译码部在接收通知信号的时间从缓冲器中读出对应于阈值的数据量。

13. 根据权利要求11所述的分组处理设备，其特征在于，所述缓冲器控制部将开始数值计数器的数值与预定的阈值作比较，当所述数值变成等于或大于阈值时，输出预定的传输信号，以及

其中，译码部在接收通知信号的时间从缓冲器里读出数据。

14. 根据权利要求1所述的分组处理设备，其特征在于，当输入属于存贮可变长PES数据的MPEG技术的传送流分组时，

首部分析部分析输入传送流里TS分组的首部，并判断存储在有效负荷里的数据是包含PES首部的开始PES数据还是其它PES数据，

数据提取部引用首部分析部得出的分析结果，从TS分组有效负荷中提取PES数据，

缓冲器存贮由数据提取部提取的PES数据，
缓冲器控制部控制PES数据在缓冲器里的存贮位置和累计数据量，以及
开始数据识别部根据首部分析部得出的分析结果并在缓冲器控制部控制下，
产生识别缓冲器中开始 PES 数据的信息。

15. 一种处理可变长度被分割存贮的分组的分组处理法，其特征在于，所述分组处理法包括以下步骤：

分析步骤，分析输入分组的首部，判断存储在有效负荷里的数据是包含开始信息的开始数据还是其它数据；

提取步骤，引用分析步骤得出的分析结果，从分组有效负荷里提取数据；

把提取步骤提取的数据存贮到缓冲器的步骤；

控制步骤，控制数据在缓冲器的存贮位置与累计数据量；和

识别步骤，根据分析步骤的分析结果和控制步骤的控制，产生识别在缓冲器中开始数据的信息。

16. 一种利用识别包含在缓冲器中存贮的数据里的包含开始信息的开始数据的信息进行译码缓冲器中存贮的数据的译码处理法，其特征在于，所述处理法包括：

以预定时间读出缓冲器中数据的读出步骤；

根据识别开始数据的信息把读出数据所含的开始数据分成开始信息与数据的分离步骤；和

按开始信息对读出数据作译码处理的译码步骤。

17. 一种利用识别开始数据的信息来译码存储在缓冲器里的数据的译码装置，所述开始数据包含开始信息，所述开始信息被包括在缓冲器中所存贮的数据中所述译码装置包括：

用于以预定时间读出缓冲器里的数据的装置；

用于根据识别开始数据的信息，把读出数据所含的开始数据分成开始信息与数据的装置；和

用于按开始信息对读出数据作译码处理的装置。

18. 一种结合在处理可变长度数据被分割存贮的分组的设备中的集成电路，其特征在于，所述设备包括存贮数据的缓冲器，而集成电路集成了以下功能电路：

首部分析部，用于分析输入分组的首部，判断存储在有效负荷里的数据是含开始信息的开始数据还是其它数据；

数据提取部，用于引用来自首部分析部的分析结果，从分组的有效负荷中提取数据；
缓冲器，用于存贮数据提取部提取的数据；
缓冲器控制部，用于控制数据在缓冲器中的存贮位置和累计数据量；和
开始数据识别部，用于根据来自首部分析部的分析结果并在缓冲器控制部控制下，产生识别在缓冲器中开始数据的信息。

19. 根据权利要求 18 所述的集成电路，其特征在于，所述集成电路还集成了以下功能电路：

译码部，用于以预定时间读出缓冲器中的数据，从开始数据识别部获取识别开始数据的信息，根据存贮位置信息和计数值把读出数据所含的开始数据分成开始信息与数据，并按开始信息对读出数据作译码处理。
分组处理设备与方法

技术领域
本发明涉及分组处理设备与方法，尤其涉及从可变长数据被分割储存的分组里译码压缩编码的图像数据、音频数据等的分组处理设备与方法。

背景技术
近年在数字广播与基于 CS 和 BS 的领域中，一般采用 MPEG（活动图像专家组）技术作为压缩图像数据、音频数据等的编码技术，因此数字广播等的接收设备和录制/再现设备要包括一种对经过 MPEG 技术压缩编码的数据位流译码的设备。

现在简单描述一下主要用于数字广播的 MPEG2 技术。在 MPEG2 技术中，压缩编码的图像数据、音频数据等位流称为基本流（ES）。作为运送这一基本流的分组结构，已定义了 PES（分组化基本流），图 15 是示出了 PES 分组的详细结构的图形。另在 MPEG2 技术中，PES 分组被分成一预定单位存入传输流分组（下简称 TS 分组）并被播送。图 16 是示出 TS 分组的详细结构的图形，图 17 描述了 TS 分组与 PES 数据的关系。

为此，按 MPEG2 技术处理位流的设备要作分组处理，即从多个 TS 分组中提取 PES 数据并对它译码。以后再描述该分组处理。

图 18 是执行常规分组处理的 MPEG 译码设备一示例结构的框图。图 18 中，常规 MPEG 译码设备 101 包括 TS 首部分析部 111、PES 提取部 112、PES 缓冲器 113、PES 缓冲器控制部 114 和 MPEG 译码部 120；TS 首部分析部 111、PES 提取部 112、PES 缓冲器 113 和 PES 缓冲器控制部 114 一起构成传输流译码部 110。

对 TS 首部分析部 111 和 PES 提取部 112 依次输入属于 MPEG2 技术的 TS 分组。每次输入 TS 分组的，TS 首部分析部 111 分析该 TS 分组的 TS 首部。PES 提取部 112 参照 TS 首部分析部 111 对 TS 首部的分析结果，从输入的 TS 分组中提取必要的 TES 数据，然后把提取的 PES 数据输出给 PES 缓冲器 113，而后
者暂时存贮 PES 提取部 112 里提取的该 PES 数据。PES 缓冲器控制部 114 向 PES 缓冲器 113 输出一控制信号，对 PES 缓冲器 113 作地址控制、累计数据控制等。

MPEG 译码部 120 从 PES 缓冲器 113 中以任一时间读出 PES 数据，执行译码处理，并输出译码的音像。此时，为分析 MPEG 译码处理所需的 PES 首部，PES 数据的开始位置即限定 PES 数据（包括 PES 首部）的信息是必需的。因此，MPEG 译码部 120 通常通过检测存贮在 PES 缓冲器 113 里的 PES 数据中 PES 首部所拥有的分组开始码，来识别该 PES 数据的开始位置。如在日本公开专利公报 No. 2001-16547 (6 〜 8 页，图 1) 中，已描述了识别 PES 数据中开始位置的技术。

发明内容

但在 MPEG 译码部 120 通过检测从 TS 分组里提取的 PES 数据中的分组开始码而识别 PES 数据开始位置的情况下，如前述的常规 MPEG 译码设备 101 一样，存在以下诸问题。

首先，PES 的长度可变，因而要识别 PES 数据的开始位置，必须对存贮在 PES 缓冲器 113 里的所有 PES 数据执行分组开始码检测处理。注意，PES 首部包含的 PES 分组长度可能取“0”值；即使这样，PES 分组的实际长度并非为“0”，因此要识别起始位置就必须检测分组开始码。另在修正字段和 PES 首部内，可能出现与分组开始码相同的称为伪开始码的模式。因此，为识别 PES 数据正确的开始位置并排除伪开始码，必须作大量处理。

这样，存在 MPEG 译码部 120 的处理负荷加重的问题，因而降低了 MPEG 译码处理速度，增大了与 PES 数据开始位置识别操作关联的电力耗用。这些问题不只限于属于 MPEG2 技术的 TS 分组，还涉及可变长数据分成等尺寸分组的所有分组传输。

因此，本发明的一个目的是提供一种分组处理设备与方法，在译码可变长数据被分割存贮的分组数据时，通过生成识别数据开始位置的信息并把它供给译码器，来实现减小译码器的处理负荷，提高译码处理速度和降低电力耗用。

本发明针对处理可变长数据被分散存贮的分组的分组处理设备。为实现上述目的，本发明的分组处理设备包括首部分析部、数据提取部、缓冲器、缓冲器控制部和开始数据识别部。
首部分析部分析输入分组的首部，判断贮存在有效负载里的数据是含开始信息的开始数据还是其它数据。数据提取部参照首部分析部得出的分析结果，从分组的有效负载里提取数据。缓冲器存贮数据提取部提取的数据。缓冲器控制部控制缓冲器里数据的存贮位置和累计数据量。开始数据识别部根据首部分析部的分析结果，在缓冲器控制部控制下产生识别缓冲器中开始数据的信息。

典型的开始数据识别部由保持存贮在缓冲器开始数据的被存位置信息的开始位置存贮器和统计存贮在缓冲器里开始数据数值的开始数值计数器组成。开始位置存储器可以是一种保持被存位置信息的寄存器。被存位置信息可以是存贮开始数据或代表开始数据相对于存贮在缓冲器中第一数据的位置的信息的缓冲器写地址。

另外，本发明的分组处理设备还包括一译码部，它以预定的时间读出缓冲器里的数据，从开始数据识别部得到被存位置信息与计数，把包含在根据被存位置信息与计数读出的数据里的开始数据分离为开始信息与数据，并对根据开始信息读出的数据作译码处理。

在这方面，较佳的是缓冲器控制部将累计的数据量与一预定的阈值作一比较，当累计的数据量变成等于或大于阈值时，输出一预定的通知信号。在检测这一预定的通知信号时，较佳的是开始数值计数器显示对应于阈值的数据量中所含的开始数据数值。在包括译码部的情况下，以接收通知信号的时间从缓冲器中读出对应于阈值的数据量。

或者，较佳的是缓冲器控制部将开始数值计数器里的数与预定的阈数相比较，当该数值变得等于或大于阈值时，就输出预定的通知信号。该阈值只是开始位置存储器中能保持被存位置信息的区号。在包括译码部的情况下，以接收通知信号的时间从缓冲器中读出数据。

具体地说，输入按 MPEG 技术存贮可变长 PES 数据的传送流分组。此时，首部分析部分析输入的传送流里 TS 分组的首部，判断存贮在有效负载里的数据是否是含 PES 首部的开始 PES 数据还是其它 PES 数据；分组数据提取部参照来自首部分析部的分析结果，从 TS 分组的有效负荷中提取 PES 数据；缓冲器存贮分组数据提取部提取的 PES 数据；缓冲器控制部控制缓冲器中 PES 数据的
存贮位置和累计数据量；而开始数据识别部根据首部分析部的分析结果并在缓冲器控制部控制下，产生识别缓冲器中开始 PES 数据的信息。

可将上述分组处理设备各组成部分所执行的每一处理当作规定一系列处理步骤的分组处理法与译码处理法。换言之，这是一种分组处理法，用于分析输入分组的首部，判断存贮在有效负荷里的数据是含开始信息的开始数据还是其它数据，参照分析结果以从分组的有效负荷中提取数据，把提取的数据存贮到缓冲器，控制缓冲器中数据的存贮位置与累计数据量，并根据分析结果在控制下产生识别缓冲器中开始数据的信息。另外，这也是一种译码处理法，能以预定的时间从缓冲器中读出数据，根据识别开始数据的信息把包含在读出数据里的开始数据分为开始信息与数据，并根据开始信息对读出数据作译码处理。

构成上述分组处理设备的诸功能块，可实现为 LSI（集成电路）。而分组处理法可以取执行一系列处理步骤的计算机程序的形式。该程序可以记录在可被计算机读出的记录媒体上的形式导入计算机。

如上所述，按照本发明，当为了译码而读出存贮在缓冲器里的数据时，可得到识别开始数据的信息，因而无须在译码侧检测开始位置，减少了译码处理负荷，提高了译码处理速度，并可降低电力耗用。另通过保证译码一侧只在收到缓冲器中累计的数据量已达到阈值的通知信号时才执行数据读处理，能减轻译码处理。再者，通过确保译码一侧在预定数值的开始数据已被存贮到缓冲器时自动地读出数据，故即使例如由于连续输入短长度数据而可能将大量开始数据存入缓冲器，也能防止增大开始位置存储器的电路规模。

附图说明

图 1 是本发明一实施例的分组处理设备 1 的构成框图。
图 2 是数据处理部 10 执行的示例基本数据处理步骤的流程图。
图 3 是示意输入分组处理设备 1 的示例分组的图形。
图 4A～4F 是按图 3 的分组描绘出缓冲器 13、开始位置存储器 15 和开始数值计数器 16 的状态的图形。
图 5A 是译码部 20 对数据作示例读处理步骤（第一技术）的流程图。
图 5B 是图 5A 步骤的示例处理顺序图。
图 6A 是译码部 20 执行的数据读处理一示例步骤（第二技术）的流程图。
图 6B 是图 6A 步骤一示例处理顺序图。
图 7A 是译码部执行数据读处理一示例步骤（第三技术）的流程图。
图 7B 是图 7A 步骤一示例处理顺序图。
图 8A 是译码部 20 执行数据读处理一示例步骤（第四技术）的流程图。
图 8B 是图 8A 步骤一示例处理顺序图。
图 9A 是译码部 20 执行数据读处理一示例步骤（第五技术）的流程图。
图 9B 是图 9A 步骤一示例处理顺序图。
图 10A 是译码部 20 执行数据读处理一示例步骤（第六技术）的流程图。
图 10B 是图 10A 步骤一示例处理顺序图。
图 11 是示出要输入分组处理设备 1 的示例 TS 分组的图形。
图 12A～12F 是按图 11 的 TS 分组描绘缓冲器 13、开始位置存储器 15 和
开始数据计数器 16 的状态的图形。
图 13 是示出在对缓冲器 13 只存贮数据时开始位置存储器 15 的一示例结
构的图形。
图 14A 示出在应用图 7A（第三技术）与图 9A（第五技术）二者时的示例
处理顺序图。
图 14B 示出在应用图 8A（第四技术）与图 10A（第六技术）二者时的示
例处理顺序图。
图 15 是示出 PES 分组的详细结构的图形。
图 16 是示出 TS 分组的详细结构的图形。
图 17 示出 TS 分组与 PES 数据的关系。
图 18 是常规 MPEG 译码设备 101 的构成框图。

具体实施方式

下面以输入可变长数据被分割存贮的分组的示例情况为例，描述本发明的
分组处理设备。

图 1 是本发明一实施例的分组处理设备 1 的构成框图。图 1 中，分组处理
设备 1 包括首部分析部 11、数据提取部 12、缓冲器 13、缓冲器控制部 14、开
始数据识别部 17 和译码部 20。首部分析部 11、数据提取部 12、缓冲器 13、缓冲器控制部 14 和开始数据识别部 17 构成数据处理部 10。开始数据识别部 17 一般由开始位置存储器 15 和开始数值计数器 16 组成。注意，本实施例示出的译码部 20 结合在分组处理设备 1 中的结构，但译码部 20 可独立于分组设备 1 构成。

对首部分析部 11 和数据提取部 12 顺序地输入可变长数据被分散存贮的分组。每次输入分组时，首部分析部 11 分析该分组的首部，判断存贮在有效负荷中的数据是含开始信息的开始数据还是其它数据（非开始数据）。这里的开始信息是首部信息和写有译码处理所必需的时间信息等的信息。数据提取部 12 引用来自首部分析部 11 的首部分析结果，从输入分组的有效负荷中提取必要的数据。然后，数据提取部 12 向缓冲器 13 输出提取的数据，若已输出开始数据，就通知缓冲器控制部 14。缓冲器 13 按缓冲器控制部 14 的存贮位置控制，把数据提取部 12 输出的数据存贮在预定的位置。

缓冲器控制部 14 对缓冲器 13 实行存贮位置控制与累计数据控制。该存贮位置控制意味着控制写数据提取部 12 所提取数据的位置（写地址），通常用写指针（wp）执行。累计数据控制意味着进行控制，使数据提取部 12 提取的数据存贮到缓冲器 13 而不溢出，通常是管理存贮在缓冲器 13 里的数据的累计数据量。另在数据提取部 12 通知开始数据被存入缓冲器 13 时，缓冲器控制部 14 就向开始位置存储器 15 通知存贮的位置信息，并向开始数值计数器 16 通知该存贮。

开始位置存储器 15 把缓冲器 13 上受缓冲器控制部 14 通知的开始数据的写地址保留为开始数据的存储位置信息。该开始位置存储器 15 是内含多个寄存区的寄存器，内含多个存贮器的存储器等；若是存储器，则容易改变要存贮的数值。注意，存储器要独立于缓冲器 13 构制。开始数值计数器 16 统计已写入缓冲器 13 的开始数据数值。具体而言，当开始数据被存入缓冲器 13 时，即当被缓冲器控制部 14 通知时，开始数值计数器 16 里的计数值递增。注意，当译码部 20 从缓冲器 13 中读出对应于计数值的开始数据时，即当开始位置存储器 15 被引用时，开始数值计数器 16 中的该计数值便复位。

下面参照图 2 详述数据处理部 10 执行的处理。图 2 是数据处理部 10 执行
的示例基本数据处理步骤的流程图。

数据提取部 12 的数据存储在缓冲器 13 中由写指针指定的地址位置（步骤 S21、S22）。若被存数据不是开始数据（步骤 S23，否），缓冲器控制部 14 就将缓冲器 13 内的写指针移动到下一地址位置（步骤 S26）。反之，若被存数据是开始数据（步骤 S23，是），缓冲器控制部 14 则对开始位置存储器 15 保留存贮开始数据的位置的地址（步骤 S24），还递增开始数值计数器 16 中的计数值（步骤 S25）。之后，缓冲器控制部 14 将缓冲器 13 的写指针移动到下一地址位置（步骤 S26）。

对输入每个分组都作以上处理（步骤 S27），这样数据处理部 10 就会使开始位置存储器 15 和开始数值计数器 16 分别存贮写入缓冲器 13 中的开始数据的存贮位置信息及其数值。

下面参照图 3 和图 4A～4F，具体描述存储在缓冲器 13 中的数据、保持在开始位置存储器 15 里的存储位置信息与开始数值计数器 16 里的计数值之间的关系。图 3 是示出输入分组处理设备 1 的示例分组的图形。图 4A～4F 是按图 3 的分组描绘缓冲器 13、开始位置存储器 15 和开始数值计数器 16 的状态的图形。这里将描述当缓冲器 13、开始位置存储器 15 和开始数值计数器 16 为图 4A 所示状态时输入图 3 所示分组的情况。

首先提取的数据（1）存到缓冲器 13 的写指针指定的地址“0001”，因它不是开始数据，故写指针只移到地址“0002”（图 4B 的状态）。

下一次提取的数据（2）存储在缓冲器 13 的写指针指定的地址“0002”，因它是开始数据，故地址“0002”保留在开始位置存储器 15 中，开始数值计数器 16 的计数值由“0”更新为“1”。之后，写指针移至地址“0003”的位置（图 4C 的状态）。

同样地，不是开始数据的下次提取的数据（3）和（4），按缓冲器 13 的写指针分别存入地址“0003”与“0004”。写指针通过这一处理移至地址“0005”的位置（图 4D 的状态）。

另外，下次提取的数据（5）是开始数据，存入缓冲器 13 的写指针指定的地址“0005”，于是地址“0005”再被保留在开始位置存储器 15 中，而开始数值计数器 16 的计数值由“1”更新为“2”。之后，写指针移至地址“0006”
的位置（图 4E 的状态）。

按照缓冲器 13 的写指针，下次提取的数据（6）不是开始数据，被存入地址“0006”。写指针移至地址“0007”的位置（图 4F 的状态）。

下面描述译码部 20 的操作。译码部 20 按预定的时间参照开始位置存储器 15 和开始数值计数器 16，从缓冲器 13 中读出数据，然后对读出的数据作译码处理并输出音像。在译码部 20 中，可用下面六种技术作数据读处理。

1. 第一技术（图 5A、5B）

第一种技术是译码部 20 在该技术中以任一时间作译码处理的技术。首先在处理时间到来时，译码部 20 参照开始数值计数器 16 的计数值（步骤 S51，S52），然后判断计数值是否等于或大于“1”（步骤 S53）。若计数值等于或大于“1”，译码部 20 就得到一存储在开始位置存储器 15 中的地址的数值，它等于计数值（步骤 S54）。

如在图 4F 的状态下作译码处理时，译码部 20 引用开始数值计数器 16 的计数值“2”，然后从开始存储器 15 中得到最新信息之前的两个地址，即“0002”与“0005”。

接着，译码部 20 从例如读指针指定的一地址位置依次读出存储在缓冲器 13 里的数据（步骤 S55）。对于从对应于由开始位置存储器 15 得到的存贮位置信息的地址位置读出的开始数据，译码部 20 把它分成首部与数据，根据该首部对数据作译码处理。可利用各种时间信息执行该处理，这些信息包含在首部，是译码处理必需的。

通过反复执行以上步骤直至译码处理结束（步骤 S56），译码部 20 可对从缓冲器 13 读出的数据作译码处理而不必再对数据作开始位置检测。注意，图 5B 是示出图 5A 中步骤的一示例处理顺序的图例。

2. 第二技术（图 6A、6B）

第二种技术相对其步骤是第一技术人变型。在第二技术中，当处理的序列来时，译码部 20 首先从例如读指针指定的地址位置依次读出存储在缓冲器 13 里的数据（步骤 S51、S55）。然后当完成数据读出时，引用开始数值计数器 16 中的计数值，确定并获得存储在开始位置存储器 15 中的地址（步骤 S52～S54）。
通过反复执行以上步骤直至译码处理结束（步骤 S56），译码部 20 可对从缓冲器 13 里读出的数据作译码处理而不必再对数据作开始位置检测。注意，图 6B 是示出图 6A 中步骤的示例处理顺序的图形。

3. 第三技术（图 7A、7B）

在第三种技术中，译码部 20 按来自数据处理部 10 的通知信号作译码处理。在该技术中，缓冲器 13 中累计数据量预定的阈值预先保持在缓冲器控制部 14 里，该阈值设成等于或小于缓冲器 13 中最大的累计数据量（如最大累计数据量的 80%）。于是让缓冲器控制部 14 随时监视缓冲器 13，当断定累计数据量达到阈值时，就向开始位置存储器 15 和开始数值计数器 16 输出通知信号。开始位置存储器 15 接到通知信号时，就将该时点保持的地址定义为准备供给译码部 20 的存贮位置信息。另当收到通知信号时，开始数值计数器 16 把该时点的计数值，即包含在数据量内对应于阈值的开始数据的数值定义为准备供给译码部 20 的数值信息。此外，该通知信号还通过开始位置存储器 15 或开始数值计数器 16 输出给译码部 20。

首先，当收到累计数据量达到阈值的通知信号时，译码部 20 就引用开始数值计数器 16 规定的计数值（步骤 S71、S72），于是判断计数值是否等于或大于 “1”（步骤 S73）。若计数值等于或小于 “1”，译码部 20 就得到开始位置存储器 15 规定的对应于计数值的存贮位置信息量（步骤 S74）。这对于在上述通知信号之后存储在缓冲器 13 里的开始数据而言，将不向译码部 20 提供信息。然后，译码部 20 依次从例如读指针指定的地址位置读出存储在缓冲器 13 里的数据（步骤 S75）。对于从对应于自开始位置存储器 15 得到的存贮位置信息的该地址位置读出的开始数据，译码部 20 把它分成首部与数据，根据首部对数据作译码处理。

注意，在译码部 20 读出了开始位置存储器 15 中的存贮位置信息时，开始数值计数器 16 使已规定的计数值复位，并显示存储在缓冲器 13 里的开始数据在该时间点的计数值。

通过重复上述这些步骤直到译码处理结束（步骤 S76），译码部 20 可对从缓冲器 13 中读出的数据作译码处理而不必再对数据作开始位置检测。再者，在收到缓冲器 13 内累计的数据量达到阈值的通知信号时，译码部 20 只要作读
数据处理，因而能减轻译码处理。注意，图 7B 是按图 7A 中步骤的示例处理顺序的图形。

4. 第四技术（图 8A、8B）

第四种技术相对其步骤是第三技术的变型。在第四技术中，当处理时间到来时，译码器 20 首先从例如读指针指定的地址位置依次读出存储在缓冲器 13 里的数据（步骤 S71、S75）。然后在完成数据读出时，引用开始数值计数器 16 的计数值，确定和获取存储在开始位置存储器 15 里的地址（步骤 S72～S74）。

通过重复上述步骤直至译码处理结束（步骤 S76），译码器 20 可对从缓冲器 13 读出的数据作译码处理而不必再检测数据的开始位置。注意，图 8B 示出图 8A 步骤的示例处理顺序。

5. 第五技术（图 9A、9B）

第五种技术也是一种译码器 20 按来自数据处理部 10 的通知信号作译码处理的技术。在该技术中，对应于可保持在开始位置存储器 15 里的存贮位置信息数值的预定阈值，预先保留在开始数值计数器 16 中。换言之，该阈值按开始位置存储器 15 包括的存贮区编号设定。然后，当开始数值计数器 16 确定计数值已达到阈值时，就通知译码器 20。

首先在接收计数值达到阈值的通知信号时，译码器 20 引用开始数值计数器 16 的计数值（步骤 S91、92），然后获取存储在开始位置存储器 15 里对应于该计数值的存贮位置信息量（步骤 S93），再从例如读指针指定的地址位置依次读出存储在缓冲器 13 里的数据（步骤 S94）。对于从该地址位置即对应于得自开始位置存储器 15 的存贮位置信息读出的开始数据，译码器 20 把它分成首部与数据，根据首部对数据作译码处理。

通过重复上述步骤直至译码处理结束（步骤 S95），译码器 20 能对读自缓冲器 13 的数据作译码处理而不必再检测数据的开始位置。另因译码器 20 在预定数值的开始数据存入缓冲器 13 时自动读出数据，故即使在例如因连续输入短长度的数据而存储在开始数据数值被存入缓冲器 13 的可能性的情况下，也可防止增大开始位置存储器 15 的电路规模。注意，图 9B 是示出按图 9A 的示例处理顺序的图形。

6. 第六技术（图 10A、10B）
第六种技术相对其步骤是第五技术的变型。在第六技术中，当处理时间到来时，译码部 20 首先从例如读指针指定的地址位置依次读出存储在缓冲器 13 中的数据（步骤 S91、S94），然后在数据读出完成时，引用开始数值计数器 16 的计数值，获取存储在开始位置存储器 15 里的地址（步骤 S92、S93）。

通过重复上述步骤直至译码处理结束（步骤 S95），译码部 20 能对读自缓冲器 13 的数据作译码处理而不必再检测数据的开始位置。注意，图 10B 是示出图 10A 步骤的示例处理顺序的图形。

如上所述，通过本发明一实施例的分组处理设备与方法，当译码部 20 读出存储在缓冲器 13 里的数据时，能得到开始数据的存贮位置与数值的信息而与数据读出无关，因而不必在译码部 20 一侧检测开始位置，减少了译码处理负荷，提高了译码处理速度，还可降低电力耗用。

MPEG2 技术对 TS 分组的示例应用

下面描述一示例实施例，其中对属于 MPEG2 技术的 TS 分组译码处理应用了本发明的分组处理设备 1。假定通过检测 TS 首部中的同步字节（参照图 16）等，已建立了输入数据处理部 10 的 TS 分组的同步。

向首部分析部 11 和数据提取部 12 依次输入属于 MPEG2 技术的 TS 分组，每次输入 TS 分组时，首部分析部 11 分析首部信息，即该 TS 分组的 TS 首部，此时若有效负荷单位开始指示符（参照图 16）为“1”，首部分析部 11 就判定含 PES 首部的 PES 数据（下称开始 PES 数据）被存入输入 TS 分组的有效负荷里。数据提取部 12 引用首部分析部 11 对该 TS 首部的分析结果，从输入 TS 分组里提取必需的 PES 数据，然后把提取的 PES 数据输出给缓冲器 13，若输出开始 PES 数据，则通知缓冲器控制部 14。缓冲器 13 按照缓冲器控制部 14 的存贮位置控制，把数据提取部 12 输出的 PES 数据存到预定位位置。

开始位置存储器 15 把缓冲器控制部 14 通知的开始数据的写地址作为该开始数据的存贮位置信息保留在缓冲器 13 上，开始数值计数器 16 统计已写入缓冲器 13 的开始 PES 数据的数值。具体地说，当开始 PES 数据存入缓冲器 13 时，即被缓冲器控制部 14 通知时，递增开始数值计数器 16 里的计数值。注意，当译码部 20 已从缓冲器 13 中读出对应于该计数值的开始 PES 数据时，即当引用开始位置存储器 15 时，开始数值计数器 16 的计数值便复位。
图 11 是表示要输入分组处理设备 1 的示例 TS 分组的图形。图 12A～12F 是按图 11 的 TS 分组描述缓冲器 13、开始位置存储器 15 和开始数值计数器 16 的状态的图形。这里描述这样一种情况，即在缓冲器 13、开始位置存储器 15 和开始数值计数器 16 的状态如图 12A 所示时，输入图 11 中所示的 TS 分组。

第一次提取的 PES 数据（1）存到缓冲器 13 中写指针指定的地址 “0001”，因它不是开始 PES 数据，故写指针仅移到地址 “0002”（图 12B 的状态）。注意，PES 数据的基本流在图中标为 ES。

接着提取的 PES 数据（2）存到缓冲器 13 中写指针指定的地址 “0002”，因它是开始 PES 数据，故地址 “0002” 保留在开始位置存储器 15 中，开始数值计数器 16 的计数值由 0 更新为 1。之后写指针移到地址 “0003” 的位置（图 12C 的状态）。注意，PES 数据里的 PES 首部在图中示为 H。

同样地，不是开始 PES 数据的下次提取的 PES 数据（3）与（4），按缓冲器 13 里的写指针分别存入地址 “0003” 与 “0004”，写指针通过这一处理移到地址 “0005” 的位置（图 12D 的状态）。

另外，是开始 PES 数据的下次提取的 PES 数据（5）存人缓冲器 13 中写指针指定的地址 “0005”，于是地址 “0005” 再被保留在开始位置存储器 15 中，开始数值计数器 16 的计数值由 1 更新为 2。之后写指针移到地址 “0006” 的位置（图 12E 的状态）。

接着，不是开始 PES 数据的下一提取的 PES 数据（6）按缓冲器 13 中写指针存人地址 “0006”，写指针移到地址 “0007” 的位置（图 12F 的状态）。

译码部 20 的操作与前述第一到第六技术的一样。注意，基本流基干从开始 PES 数据分离出来的 PES 首部的译码处理，可应用 MPEG 译码处理必需的各种信息（参照图 15），诸如 PES 首部所含的时间信息（PTS：显现记时印记和 DTS：译码记时印记）等来进行。

如上所述，本发明的分组处理设备与方法可应用于属于 MPEG2 技术的 TS 分组。

注意，上述实施例描述的情况中，缓冲器 13 存贮开始数据的地址位置被用作存贮位置信息，但也可使用代表开始数据与存入缓冲器中第一数据的相对位置的信息（字节数等）。
再者，在上述实施例描述的情况中，缓冲器 13 中存贮开始数据的位置用
开始数据识别部 17 识别，而开始数据识别部 17 由开始位置存储器 15 和开始
数值计数器 16 组成。然而，本发明并不仅限于使用存储器与计数器的结构，只
要是一种能识别缓冲器 13 中开始数据存贮位置的结构，任何其它结构的开始
数据识别部都可使用。

而且，上述实施例描述了首部与数据都存入缓冲器 13 的情况，但可能只
存入数据。在 MPEG2 技术中，ES 是数据，但此时要将通常包含在首部里且为
译码处理必需的时间信息（记时印记 T1、T2……）存入开始位置存储器 15，
例如与开始数据联系起来。图 13 示出的一实例中，该技术应用于图 12F 的状
态。

另外，上述实施例的译码器 20 被示成使用第三（第四）技术或第五（第六）
技术，但也可同时使用这两种技术。图 14A 与 14B 是示出两种步骤的示例
处理顺序的图形。

注意，在本发明分组处理设备的诸功能块当中，一般把首部分析部 11、数
据提取部 12、缓冲器控制部 14 和开始数据识别部 17 实现为集成电路 LSI（按
集成度称为 IC、系统 LSI、超 LSI 或极 LSI 等）。每个功能块以芯片形式独立
构成，全部或部分功能块可构成一块芯片形式。

而且集成方法不限于 LSI，还可用专用电路或通用处理器实现。而且，可以
使用能在制造后编程的 LSI 即 FPGA（场可编程门阵列）或 LSI 中诸电路单
元的连接与设定可重新配置的可重配处理器。

另在因半导体技术改进或从中派生出另一种技术而可用另一种集成技术
代替 LSI 的情况下，可用这种新的集成技术集成诸功能块，例如可对上述集成
应用生技术。

还得注意，本发明的分组处理法可用解释并执行程序数据的 CPU 实现，
程序数据能供 CPU 执行上述存储在存贮设备（如 ROM、RAM 或硬盘）里的处
理步骤。此时，程序数据可从 CD-ROM 或软盘等记录媒体引入存贮设备，或由
记录媒体直接执行。

工业适用性
本发明的分组处理设备与方法可用于对可变长数据被分割存贮等的分组数据作译码，尤其是，它们在要实现减轻译码器的处理负荷，提高译码处理速度，并降低电力耗用的情况下是有效的。
图 2
<table>
<thead>
<tr>
<th>数据 (1)</th>
<th>数据 (2)</th>
<th>数据 (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>数据 (4)</td>
<td>数据 (5)</td>
<td>数据 (6)</td>
</tr>
</tbody>
</table>

...
图 5A
图 5B
图 6A
开始

收到累计数据量达到阈值量的通知？

是

引用开始数值计时器中的规定的数值

计数值 > 1？

否

是

获得开始位置存储器规定的对应于计数值的存储信息量

依次读出缓冲器里的数据

解码处理结束？

否

是

结束

图 7A
图 7B
开始

S71

收到累计数据量达到阈值量的通知？

是

S75

依次读出缓冲器里的数据

S72

引用开始数值计时器中规定的计数值

S73

计数值 > 1？

否

S74

获得开始位置存储器规定的对应于计数值的存储信息量

S76

译码处理结束？

否

是

结束

图 8A
图 8B
图 9B
开始

S91

收到计数值达到阈值的通知？

是

S94

依次读出缓冲器里的数据

S92

引用开始数值计时器中的计数值

S93

获得开始位置存储器中对应于计数值的存贮信息量

S95

译码处理结束？

是

结束

图 10A
图 14A
数据处理部 10 译码部 20

通知计数值达到阈值

读开始数值计数器

统计开始数值计数器里的值

读对应于计数值的开始位置存储器的量

存储位置信息

...

通知累计数据达到阈值

读缓冲器

数据

读缓冲器

数据

...

读开始数值计数器

统计开始数值计数器里的值

读对应于计数值的开始位置存储器的量

存储位置信息

...

图 14B
图 18