007/056893 A1 |00 0 000 0O 0O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O T R R O

International Bureau

(43) International Publication Date
24 May 2007 (24.05.2007)

(10) International Publication Number

WO 2007/056893 Al

(51) International Patent Classification:
GOGF 9/38 (2006.01)

(21) International Application Number:
PCT/CN2005/001960

(22) International Filing Date:
18 November 2005 (18.11.2005)

English
English

(71) Applicant (for all designated States except US): INTEL
CORPORATION [US/US]; 2200 Mission College Boule-
vard, Santa Clara, CA 95052 (US).

(25) Filing Language:
(26) Publication Language:

(72) Inventors; and

(75) Inventors/Applicants (for US only): GUO, Xiaofeng
[CN/CN]; Room 301, Building 13, No.451, Xianxia
Road, Shanghai 21000 (CN). DAL Jinquan [CN/CN];
Room 309, Block 2, Ren Le Xin Cun, Songjiang District,
Shanghai 210000 (CN). LI, Long [CN/CN]; Room 202,
Building 34, #123, Fuguan Road, Shanghai 210000 (CN).
LV, Zhiyuan [CN/CN]; Room 202, Building 8, Yongila
St., Luwan District, Shanghai 21000 (CN).

Agent: CHINA PATENT AGENT (H.K) LTD.; 22/F,
Great Engle Centre, 23 Harbour Road, Wanchai, Hong
Kong (CN).

(74)

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, 7ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: LATENCY HIDING OF TRACES USING BLOCK COLORING

o (57) Abstract: An embodiment of the present invention is a technique to hide latency in program traces. Blocks of instructions
between start and end of a critical section are associated with color information. The blocks correspond to a program trace and
containing a wait instruction. The wait instruction is sunk down the blocks globally to the end of the critical section using the color

=

information and a dependence constraint on the wait instruction.

WO 2007/056893 PCT/CN2005/001960

LATENCY HIDING OF TRACES USING BLOCK COLORING

BACKGROUND

FIELD OF THE INVENTION

[001] Embodiments of the invention relate to the field of software, and more

specifically, to program transformation.

DESCRIPTION OF RELATED ART.

[002] Modern network processors generally have asynchronous, or non-blocking,
memory access operations, so that other computation work may be overlapped with the
latency of the memory accesses. For instance, every memory access instruction is non-
blocking and is associated with an event signal. That is, when a memory access
instruction is issued, other instructions following it may continue to run while the
memory access is in flight, until a waif instruction for the associated signal blocks the
execution. Once the memory access is completed (e.g., its result is available), the
associated signal is asserted by the hardware and the waif instruction then clears the
signal and returns to execution. Consequently, all the instructions between the memory
access instruction and the wait instruction may be overlapped with the latency of the
memory access. In addition, modern network processors usually have a highly parallel
architecture and are multi-threaded. For example, whenever a new packet arrives, a
series of tasks (e.g., receipt of the packet, routing table look-up, and en-queuing) is
performed on that packet by a new thread. In such a parallel programming paradigm,
accesses to global resources (e.g., memory) are protected by critical sections to ensure

the mutual exclusiveness and synchronizations between threads

[003] Together with the asynchronous memory access operations, the multi-
threading/multi-processing programming model helps hide the long memory access
latency, by overlapping the latency of the memory access in one thread with the latency
of memory accesses and/or the computations in other threads. However, if both the
memory access and its associated waif instruction are contained in the same critical
section, the memory latency hiding is greatly impacted due to the sequential execution

of the critical section between threads. This may result in performance degradation.

WO 2007/056893 PCT/CN2005/001960

BRIEF DESCRIPTION OF THE DRAWINGS

[004] Embodiments of invention may best be understood by referring to the following
description and accompanying drawings that are used to illustrate embodiments of the

invention. In the drawings:

[005] Figure 1A is a diagram illustrating a system in which one embodiment of the

invention can be practiced.

[006] Figure 1B is a diagram illustrating a host processor system according to one

embodiment of the invention.

[007] Figure 2A is a diagram illustrating a program module of program traces with a

critical section according to one embodiment of the invention.

[008] Figure 2B is a diagram illustrating coloring blocks in the program traces

according to one embodiment of the invention.

[009] Figure 3A is a diagram illustrating speculative moving of wait instruction

according to one embodiment of the invention.,

[0010] Figure 3B is a diagram illustrating intermediate moving of wait instruction

according to one embodiment of the invention.

[0011] Figure 3C is a diagram illustrating final moving of wait instruction according to

one embodiment of the invention.

[0012] Figure 4 is a diagram illustrating update of color information when sinking

critical section begin according to one embodiment of the invention.

[0013] Figure 5 is a flowchart illustrating a process to hide latency of a program trace

according to one embodiment of the invention.

[0014] Figure 6 is a flowchart illustrating a process to associate blocks with color

information according to one embodiment of the invention.

WO 2007/056893 PCT/CN2005/001960

[0015] Figure 7 is a flowchart illustrating a process to sink the wait instruction

according to one embodiment of the invention.

[0016] Figure 8 is a flowchart illustrating a process to update the color information

according to one embodiment of the invention.

[0017] Figure 9 is a diagram illustrating a compiler to enhance latency hiding

according to one embodiment of the invention.

WO 2007/056893 PCT/CN2005/001960

DESCRIPTION

[0018] An embodiment of the present invention is a technique to hide latency in
program traces. Blocks of instructions between start and end of a critical section are
associated with color information. The blocks correspond to a program trace and
containing a wait instruction. The wait instruction is sunk down the blocks globally to
the end of the critical section using the color information and a dependence constraint

on the wait instruction.

[0019] In the following description, numerous specific details are set forth. However,
it is understood that embodiments of the invention may be practiced without these
specific details. In other instances, well-known circuits, structures, and techniques

have not been shown to avoid obscuring the understanding of this description.

[0020] One embodiment of the invention may be described as a process which 1s
usually depicted as a flowchart, a flow diagram, a structure diagram, or a block diagram.
Although a flowchart may describe the operations as a sequential process, many of the
opérations can be performed in parallel or concurrently. In addition, the order of the
operations may be re-arranged. A process is terminated when its operations are
completed. A process may correspond to a method, a program, a procedure, a method

of manufacturing or fabrication, etc.

[0021] Elements of embodiments of the invention may be implemented by hardware,
firmware, software or any combination thereof. The term hardware generally refers to
an element having a physical structure such as electronic, electromagnetic, optical,
electro-optical, mechanical, electro-mechanical parts, components, or devices, etc. The
term software generally refers to a logical structure, a method, a procedure, a program,
a routine, a process, an algorithm, a formula, a function, an expression, etc. The term
firmware generally refers to a logical structure, a method, a procedure, a program, a
routine, a process, an algorithm, a formula, a function, an expression, etc., that is
implemented or embodied in a hardware structure (e.g., flash memory). Examples of
firmware may include microcode, writable control store, micro-programmed structure.
When implemented in software or firmware, the elements of an embodiment of the

present invention are essentially the code segments to perform the necessary tasks. The

WO 2007/056893 PCT/CN2005/001960

software/firmware may include the actual code to carry out the operations described in
one embodiment of the invention, or code that emulates or simulates the operations.
The program or code segments can be stored in a processor or machine accessible
medium or transmitted by a computer data signal embodied in a carrier wave, or a
signal modulated by a carrier, over a transmission medium. The "processor readable or
accessible medium" or “machine readable or accessible medium” may include any
medium that can store, transmit, or transfer information. Examples of the processor
readable or machine accessible medium include an electronic circuit, a semiconductor
memory device, a read only memory (ROM), a flash memory, an erasable ROM
(EROM), an erasable programmable ROM (EPROM), a floppy diskette, a compact disk
(CD) ROM, an optical disk, a hard disk, a fiber optic medium, a radio frequency (RF)
link, etc. The computer data signal may include any signal that can propagate over a
transmission medium such as electronic network channels, optical fibers, air,
electromagnetic, RF links, etc. The code segments may be downloaded via computer
networks such as the Internet, Intranet, etc. The machine accessible medium may be
embodied in an article of manufacture. The machine accessible medium may include
data that, when accessed by a machine, cause the machine to perform the operations
described in the following. The machine accessible medium may also include program
code embedded therein. The program code may include machine readable code to
perform the operations described in the following. The term “data” here refers to any
type of information that is encoded for machine-readable purposes. Therefore, it may

include program, code, data, file, etc.

[0022] All or part of an embodiment of the invention may be implemented by hardware,
software, or firmware, or any combination thereof. The hardware, software, or
firmware element may have several modules coupled to one another. A hardware
module is coupled to another module by mechanical, electrical, optical, electromagnetic
or any physical connections. A software module is coupled to another module by a
function, procedure, method, subprogram, or subroutine call, a jump, a link, a
parameter, variable, and argument passing, a function return, etc. A software module is
coupled to another module to receive variables, parameters, arguments, pointers, etc.
and/or to generate or pass results, updated variables, pointers, etc. A firmware module

is coupled to another module by any combination of hardware and software coupling

WO 2007/056893 PCT/CN2005/001960

methods above. A hardware, software, or firmware module may be coupled to any one
of another hardware, software, or firmware module. A module may also be a software -
driver or interface to interact with the operating system running on the platform. A
module may also be a hardware driver to configure, set up, initialize, send and receive
data to and from a hardware device. An apparatus may include any combination of

hardware, software, and firmware modules.

[0023] One embodiment of the invention may be described as a process, which is
usually depicted as a flowchart, a flow diagram, a structure diagram, or a block diagram.
Although a flowchart may describe the operations as a sequential process, many of the
operations can be performed in parallel or concurrently. A loop or iterations in a
flowchart may be described by a single iteration. It is understood that a loop index or
Joop indices or counter or counters are maintained to update the associated counters or
pointers. In addition, the order of the operations may be re-arranged. A process
terminates when its operations are completed. A process may correspond to a method,
a program, a procedure, etc. A block diagram may contain blocks or modules that
describe an element, an item, a component, a device, a unit, a subunit, a structure, a
method, a process, a function, an operation, a functionality, or a task, etc. A

functionality or an operation may be performed automatically or manually.

[0024] Figure 1A is a diagram illustrating a system 10 in which one embodiment of the
invention can be practiced. The system 10 includes an ingress processor 20, an egress
processor 30, a physical layer device 40, a fabric interface device 50, an interconnect
interface 60, and a host processor system 70. Note that the system 10 may include
more or less than the above elements. The system 10 represents an Ethernet processing
unit for a number of network protocols or standards such as Synchronous Optical
Network (SONET), Synchronous Digital Hierarchy (SDH), Asynchronous Transfer
Mode (ATM), etc.

[0025] The ingress processor 20 may perform a number of network tasks such as
segmentation and re-assembly (SAR), classification, metering, policing, initial
congestion management, etc. The egress processor 30 may perform functions such as
traffic shaping, etc. The ingress and egress processors 20 and 30 may be the same or

different. They may be network processors, digital signal processors, controllers, or

WO 2007/056893 PCT/CN2005/001960

any processors that may perform network functions. In one embodiment, the ingress
and egress processors 20 and 30 are multi-threaded network processors. They may
support a wide variety of wide are network (WAN) and local area network (LAN) with
speeds ranging from Optical Carrier Level 3 (OC-3) to OC-192, or 155.52 Megabits per
second (Mbps) to 10 Gigabits per second (Gbps). Each of the ingress and egress
processors 20 and 30 may have a number of integrated micro-engines. Each micro-
engine may be configured to have multiple threads (e.g., 4 or 8). In addition, they may
include integrated core processor, cryptographic units, dynamic random access memory
(DRAM) interfaces, static random access memory (SRAM) interfaces, media switch
fabric interface, interconnect interface, etc. The ingress processor 20 may have
interfaces to an SRAM bank 22 and a DRAM bank 24. The SRAM bank 22 may
include a number of quad data rate (QDR) SRAM devices to store fast access network
data such as queues and tables. The DRAM bank 24 may include a number of high
performance DRAM devices to store packet data, program, or other data. Similarly, the
egress processor 30 may have interfaces to an SRAM bank 32 and a DRAM bank 34
with similar functionalities. The egress processor 30 may provide flow control to the

ingress processor 20.

[0026] The physical layer device 40 may provide interface to physical layer data. It
may support various modes of operation for transport of Synchronous Transport Signal
(STS)-192¢/ Synchronous Transport Module (STM) 64¢ and 10 Gigabit Ethernet, high
level data link control (HDLC) frame, Packet over SONET (POS), or generic framing
procedure (GFP) packet formatting. It may include internal mapping engines to
provide the required formatting and maintenance of packet data into the STS-
192¢/STM 64¢c SONET/SDH frame payload. It may include 10 Gigabit media access
controller (MAC) to perform frame encapsulation, verification, flow control, statistics

management,

[0027] The fabric interface device 50 may provide interface to a switch fabric that may
be connected to a network. The interconnect interface 60 may provide interface to
interconnect such as peripheral component interconnect (PCI). The host processor
system 70 may provide control function or program development. It may be used to
develop code to be downloaded or transferred to the program memory of the ingress or

egress processors 20 and 30.

WO 2007/056893 PCT/CN2005/001960

[0028] Figure 1B is a diagram illustrating a host processor system 70 according to one
embodiment of the invention. The system 70 includes a processor unit 110, a memory
controller (MC) 120, a main memory 130, an input/output controller (I0C) 140, an
interconnect 145, a mass storage interface 150, and input/output (I/O) devices 160, to
160,

[0029] The processor unit 110 represents a central processing unit of any type of
architecture, such as processors using hyper threading, security, network, digital media
technologies, single-core processors, multi-core processors, embedded processors,
mobile processors, micro-controllers, digital signal processors, superscalar computers,
vector processors, single instruction multiple data (SIMD) computers, complex
instruction set computers (CISC), reduced instruction set computers (RISC), very long

instruction word (VLIW), or hybrid architecture.

[0030] The MC 120 may provide control and configuration of memory and
input/output devices such as the main memory 130 and the IOC 140. The MC 120 may
be integrated into a chipset that integrates multiple functionalities such as graphics,
media, isolated execution mode, host-to-peripheral bus interface, memory control,
power management, etc. The MC 120 or the memory controller functionality in the
MC 120 may be integrated in the processor unit 110. In some embodiments, the
memory controller, either internal or external to the processor unit 110, may work for
all cores or processors in the processor unit 110. In other embodiments, it may include
different portions that may work separately for different cores or processors in the

processor unit 110.

[0031] The main memory 130 stores system code and data. The main memory 130 is
typically implemented with dynamic random access memory (DRAM), static random
access memory (SRAM), or any other types of memories including those that do not
need to be refreshed. The main memory 30 may include multiple channels of memory
devices such as DRAMs. It may include a compiler or program translator or program
transformer 135 to compile, translate, or transform the program code to be used by the
egress or ingress processor 20 or 30 shown in Figure 1A. In particular, it includes a

compiler to perform latency hiding using a coloring approach.

WO 2007/056893 PCT/CN2005/001960

[0032] The IOC 140 may have a number of functionalities that are designed to support
I/O functions. The IOC 140 may also be integrated into a chipset together or separate
from the MC 120 to perform I/O functions. The IOC 140 may include a number of
interface and I/O functions such as peripheral component interconnect (PCI) bus
interface, processor interface, interrupt controller, direct memory access (DMA)
controller, power management logic, timer, system management bus (SMBus),
universal serial bus (USB) interface, mass storage interface, low pin count (LPC)

interface, etc.

[0033] The interconnect 145 may provide interface to peripheral devices. The
interconnect 145 may be point-to-point or connected to multiple devices. For clarity,
not all the interconnects are shown. It is contemplated that the interconnect 145 may
include any interconnect or bus such as Peripheral Component Interconnect (PCI), PCI
Express, Universal Serial Bus (USB), and Direct Media Interface (DMI), etc. In
particular, the interconnect 145 interfaces to the interconnect interface 60 (Figure 1A)
to allow the processor unit 110 to communicate with the ingress or egress processor 20
or 30.

[0034] The mass storage interface 150 may provide interface to mass storage devices
that store archive information such as code, programs, files, data, and applications. The
mass storage device may include compact disk (CD) read-only memory (ROM) 152,
digital video/versatile disc (DVD) 154, floppy drive 156, and hard drive 158, and any
other magnetic or optic storage devices. The mass storage device provides a mechanism

to read machine-accessible media.

[0035] The I/O devices 160, to 160 may include any I/O devices to perform I/O
functions. Examples of I/O devices 160, to 160 include controller for input devices
(e.g., keyboard, mouse, trackball, pointing device), media card (e.g., audio, video,

graphic), network card, and any other peripheral controllers.

[0036] One embodiment of the invention involves program traces that have accesses to
a critical section (CS). Critical section is a common synchronization problem. There
are a number of solutions to a critical section problem. One popular solution is the use
of semaphore. Semaphore may be implemented by using a wait instruction before

entering a CS and a signal instruction after leaving a CS.

WO 2007/056893 PCT/CN2005/001960

[0037] Figure 2A is a diagram illustrating a program module 200 of program traces
with a critical section according to one embodiment of the invention. The program
module 200 provides an example of multiple program traces having a critical section
(CS) 1. The program module 200 includes blocks 1, 2, 3,4, 5,6, 7, 8, 9, and 10
referenced by the numeral labels 210, 220, 230, 240, 250, 252, 254, 260, 262, and 264,

respectively.

[0038] Trace 1 includes blocks 1 210, block 4 240, block 5 250, and block 8 260.
Trace 2 includes block 3 230, block 4 240, block 7 254, and block 10 264. The critical
section 1 (CS1) includes blocks 1 through 10 but only block 4 240, block 5 250, block
6 252, and block 7 254 are colored. The CS1 begins at block 1 210, block 2 220, and
block 3 230. The CS1 ends at block 8 260, block 9 262, and block 10 264.

[0039] In block 1 210, there is a memory access mem1 and a wait instruction “wait s1”.
The order of the instructions is “CS1 begin”, “memory access 17, and “wait s1”. The
memory access “mem1” is in the same critical section as the “wait s1” instruction, i.e.,
“wait s1” is associated with the memory access “mem1”. In block 3 230, there is a
memory access “mem?2” and a wait instruction “wait s2”. The order of the instructions
is “memory access 2”7, “CS1 begin”, and “wait s2”. The memory access “mem2” is
associated with the wait instruction “wait s2” but is not in the same critical section with

wait s2. Therefore, “wait s2” is not colored.

[0040] In this example, since the wait instruction “wait s1” is in the same critical
section with the memory access “mem1”, the latency of the memory aécess “mem1”
cannot be overlapped with the latency and/or the computations of other threads.
Therefore, latency hiding using multiple threads or multiple processes is not possible.
To provide latency hiding, it is necessary to move, or to sink, the wait instruction “wait
s1” out of the critical section whose associated memory access is “mem1”. This is
done for all wait instructions in all program traces that are in the same critical sections

with the associated memory accesses.

[0041] One embodiment of the invention sinks the wait instructions globally and
speculatively based on the program traces using a coloring approach. This may be
accomplished by two stages. In the first stage, the compiler colors, or assigns unique

codes to, the basic blocks and the wait instructions based on the program traces and the

10

WO 2007/056893 PCT/CN2005/001960

critical sections. In the second stage, the compiler sinks the wait instructions down
globally, i.e., across basic blocks, and speculatively, such that the wait instructions are

in those traces are moved out of the associated critical sections.

[0042] Figure 2B is a diagram illustrating coloring blocks in the program traces
according to one embodiment of the invention. Figure 2B illustrates the first stage

applied to the program module 200 shown in Figure 2A.

[0043] Block 1 210, block 4, 240, and block 5 250 in trace 1 are colored to become
block 1 215, block 4 242, and block 5 255, respectively. Each of these blocks is
colored with the same color, or is assigned with the same code. Block 8 260 in trace 1
is not colored because it is the last block of the critical section 1. Block 3 230, block 4
240, and block 7 254 in trace 2 are colored to become block 3 235, block 4 245, and
block 7 256, respectively. Each of these blocks is colored with the same color, or is
assigned with the same code. The color of the blocks in trace 2 is different than the
color of the blocks in trace 1. Note that block 4 has two colors corresponding to blocks
4 242 and 245 because it belongs to two different traces. Block 10 264 in trace 2 and
block 9, 262 are not colored because they are the last blocks in CS1.

[0044] The wait instruction “wait s1” in the block 1 215 is also colored with the same
color as the block 1 215 because it is in the same critical section CS1 with the
associated memory access “mem1”. The wait instruction “wait s2” in the block 3 235
is empty because it is not in the same critical section with the associated memory

access “mem?2”,

[0045] The association of the blocks in the program traces with the color information
may be carried out by a coloring technique described by the following pseudo-code.
The pseudo-code uses a C-like language.

Input: the program flow graph and the selected traces

Output: BlockColorSet: basic block & — the set of colors for the blocks
WaitColorSet: wait instruction w — the set of colors for the wait
instructions
MemoryAccess2Waits: memory access -> associated wait instructions

ncolors = 0;

inCrticalSection = inCrticalSectionNow = false;

for (each trace #, where # is a sequence of basic blocks b, —b, —... —b,)

{

11

WO 2007/056893 PCT/CN2005/001960

for (j from n to 1, where basic block &; is a sequence of instructions i, ~i, —... —=1,,)

{

inCrticalSection = inCrticalSectionNow;

if (inCrticalSection == true)
BlockColorSet[5;] += ncolors;

for (k from mto 1)

if (instruction i, is critical section begin)

inCrticalSection = inCrticalSectionNow = false;
WaitSet = {}

else if (i, is critical section end)

inCrticalSectionNow = true;
ncolors ++;

else if (inCrticalSection == true)

if (i, is a wait instruction)
WaitSet +=1i,;
else if (7, is a memory access and its associated wait instruction w is in

WaitSet)

WaitColorSet[w] += ncolors;
MemoryAccess2Waits[7,] += w;

[0046] Blocks are colored when they are in the critical sections and on traces. The
color of a block or blocks is not related to the color of the wait instruction. In the above
pseudocode, the colors of the blocks are saved in the BlockColorSet[] array. The colors
of the wait instructions are saved in the WaitColorSet[] array. The color of a wait
instruction depends on the two conditions: (1) the wait instruction is in a critical
section and on a trace or traces, and (2) any of its associated memory accesses are in the

same critical section and on the same trace or traces.

[0047] After the blocks and the wait instructions are colored, the wait instructions are
moved out of the corresponding critical sections. This may take place along the
sequence of the blocks of each of the program traces. The sinking of the wait

instructions may be carried out by a pseudo-code as follows. In the following pseudo-

12

WO 2007/056893 PCT/CN2005/001960

code, an instruction is ready when it may be sunk down without any dependence
constraint. An instruction is not ready when it may not be sunk down due to

dependence constraints.

Input: the program flow graph

the basic block & with multiple predecessors

the coloring information
Output: the program flow graph after speculative code motion
for (each predecessor p of basic block b)

if (BlockColorSet[p] is not empty)

for (each instruction 7 that is in block p and is not in SinkSet)

{
if (is an instruction of wait s , 7 is ready in p,
and either i does not exit or is not ready in some of the predecessors of b)

if (the intersection of BlockColorSet[p] and WaitColorSet[/] is not
empty)

{

SinkSet +=i;

for (each predecessor g of b where i does not exit or is not ready)
insert an instruction of send signal s into the end of g;

Insert the instructions in SinkSet into the beginning of b;

[0048] Note that in the above pseudo-code, the BlockColorSet[p] contains the block
color of the block p and the WaitColorSet[7] contains the wait color of the wait

instruction i. If the intersection of these two sets is not empty, it means that the wait
instruction 1 has the same color as the block p, and therefore it may be speculatively

sunk down.

[0049] Figure 3A is a diagram illustrating speculative moving of wait instruction
according to one embodiment of the invention. Figure 3A shows a transformation from
Figure 2A. Block 1215, block 2 220, block 3 235, blocks 4 242 and 245 in Figure 2A
now become block 1 310, block 2 320, block 3 330, blocks 4 342 and 345, respectively.

13

WO 2007/056893 PCT/CN2005/001960

[0050] The wait instruction “wait s1” is moved from block 1 310 to block 4 342. Since
this wait instruction “wait s1” is eventually moved out of the critical section CS1,
compensation code is inserted in block 2 320 and block 3 330 because the blocks are
the predecessor blocks of blocks 4 342 and 345. In one embodiment, the compensation

code is the “send signal s1” instruction.

[0051] Figure 3B is a diagram illustrating intermediate moving of wait instruction
according to one embodiment of the invention. Block 5 255, block 6 252, and block 7
256 in Figure 2A become block 5 355, block 6 352 and block 7 356, respectively.
Blocks 4 342 and 345 in Figure 3 A become blocks 2 242 and 245.

[0052] The wait instruction “wait s1” is moved from block 4 242 to block 5 355, block
6 352, and block 7 356 because blocks 4 242 and 245 are the predecessor blocks of
block 5 355, block 8 352, and block 7 356.

[0053] Figure 3C is a diagram illustrating final moving of wait instruction according to
one embodiment of the invention. Block 5 355 and block 8 260 in Figure 3B become
block 5 255 and block 8 360, respectively.

[0054] The wait instruction “wait s1” is moved from block 5 255 to block 8 360
because the color set of “wait s1” intersects with the color set of block 5. This means
there should be any associated memory access instructions of “wait s1” are in the same
critical section and on the same trace with “wait s1”. “Memory access 17 is one of this
kind of instruction in this example. The wait instructions “wait s1” in block 6 352 and

block 7 356 remain there because these blocks do not belong to the trace 1.

[00S5] After all the wait instructions or the beginnings of the critical sections sink
across the basic blocks, the color information is updated to maintain the correctness of
the program logic. The updating of the color information may be carried out by a
pseudo-code as follows.

Input: the coloring information and the code motion information

Output: the updated coloring information

for (each of the instructions of critical section begin that sinks out of basic block b)

colorset = {c | color ¢ is associated with the particular critical section};
BlockColorSet[6] -= colorset;
for (each memory access i in b)

14

WO 2007/056893 PCT/CN2005/001960

for (each wait instruction w in MemoryAccess2Waits[7])
} WaitColorSet[w] -= colorset;

}

for (each wait instruction w that sinks into basic block)
WaitColorSet[w] = the intersection of WaitColorSet[w] and BlockColorSet[5];

[0056] Figure 4 is a diagram illustrating update of color information when sinking
critical section begin according to one embodiment of the invention. The block 1 215,
block 2 220, block 3 235, and blocks 4 242 and 245 in Figure 2A become block 1 410,
block 2 420, block 3 430, and blocks 4 442 and 445, respectively.

[0057] The instructions CS1 begin in blocks 1, 2, and 3 are moved to block 4. The
colors of blocks 1 410, 3 430, and the instruction “wait s1” in block 1 410 are all set to

empty or reset.

[0058] Figure 5 is a flowchart illustrating a proceés 500 to hide latency of a program
trace according to one embodiment of the invention. Each of the blocks in the process
500 may correspond to a module which may be a pfogram module, a hardware circuit,
a firmware module, or a combination of them. The process 500 may correspond to the

program transformer 135 shown in Figure 1B.

[0059] Upon START, the process 500 associates blocks of instructions between the
start and the end of a critical section with color information (Block 510). The blocks
correspond to a program trace and contain a wait instruction. Then, the process 500
sinks the wait instruction down the blocks globally to the end of the critical section
using the color information and a dependence constraint on the wait instruction (Block
520). A dependence constraint may be a constraint that limits the mobility of an
instruction due to a dependency or a relationship between that instruction with another
instruction. For example, there is a dependence constraint between a memory access
instruction and a wait instruction associated with the memory access. The process 500

is then terminated.

[0060] Figure 6 is a flowchart illustrating a process 510 to associate blocks with color
information according to one embodiment of the invention. The process 510 may

correspond to the example shown in Figure 2B.

15

WO 2007/056893 PCT/CN2005/001960

[0061] Upon START, the process 510 identifies a sequence of the blocks
corresponding to the program trace from a starting block at the start of the critical
section to an ending block at the end of the critical section (Block 610). The starting
block contains the wait instruction. Then, the process 510 assigns a block color to the
sequence of the blocks and a wait color to the wait instruction (Block 620). The block
color or the wait color may be any uniquely identified code. In one embodiment, the
block color or the wait color is a code that is incremented after an assignment. The

process 510 is then terminated.

[0062] Figure 7 is a flowchart illustrating a process 520 to sink the wait instruction
according to one embodiment of the invention. The process 520 may correspond to the

example shown in Figure 3A.

[0063] Upon START, the process 520 speculatively moves the wait instruction to a
basic block having multiple predecessor blocks (Block 710). The multiple predecessor
blocks include the starting block. Then, the process 520 inserts compensation code to
at least one of the multiple predecessors blocks excluding the starting block (Block
720). This is because the starting block belongs to the current trace, and the other
predecessor blocks do not belong to the current trace. Next, the process 520 updates

the color information (Block 730) and is then terminated.

[0064] Figure 8 is a flowchart illustrating a process 730 to update the color information
according to one embodiment of the invention. The process 730 may correspond to the

example shown in Figure 4.

[0065] Upon START, the process 730 resets the block color of the basic block (Bock
810). In one embodiment, resetting may be performed by decrementing the color code.
Next, the process 730 resets the wait color of the wait instruction having an associated
memory access instruction in the basic block (Block 820). Then, the process 730
changes the color of the wait instruction to intersection of reset color of the wait
instruction and the reset color of the basic block (Block 830). Then, the process 730 is

terminated.

[0066] Figure 9 is a diagram illustrating a program transformer 135 to enhance latency

hiding according to one embodiment of the invention. The program transformer 135

16

WO 2007/056893 PCT/CN2005/001960

may be implemented by software, hardware, firmware, or any combination of these
elements. It includes a color associator 920 and a code mover and compensator 930.

Note that the compiler 135 may include more or less than the above elements.

[0067] The color associator 920 associates blocks of instructions between start and end
of a critical section with color information. The blocks correspond to a program trace
and containing a wait instruction. The color associator 920 includes a trace identifier
922 and a color assigner 924. The trace identifier 922 identifies the program traces in a
program module 910. It may collect blocks belonging to each program trace. It
identifies critical sections, start and end of the critical sections, the memory access
instructions, and all the relevant wait instructions. The relevant wait instructions are
those instructions that are in the same critical section that contain the associated
memory access instructions. The color assigner 924 colors, or assigns codes to, the
blocks and the corresponding wait instruction for all the program traces identified by

the trace identifier or collector 922.

[0068] The code mover and compensator 930 includes a code mover 932, a code
compensator 934, and a color updater 936. The code mover 922 sinks the wait
instruction down the blocks globally to the end of the critical section using the color
information and a dependence constraint on the wait instruction. The code mover 922
moves the wait instruction to the basic block if the block color of the starting block and
the wait color of the wait instruction have same color and if the wait instruction is ready.
The code compensator 934 inserts a compensation code to predecessor blocks of a
basic block. In one embodiment, it inserts a send signal to the at least one of the
multiple predecessors excluding the starting block. The color updater 936 updates the
color information to maintain program correctness. It resets block the color of the basic
block, and the wait color of the wait instruction having an associated memory access
instruction in the basic block. It may also change the wait color of the wait instruction
to intersection of reset wait color of the wait instruction and the reset block color of the
basic block.

[0069] The output of the code mover and compensator 930 is an enhanced program

module 960. The enhanced program module 940 now has all wait instructions moved

17

WO 2007/056893 PCT/CN2005/001960

out of corresponding critical sections. Therefore, it may be processed by a multi-

thread/multi-process module that hides memory access latencies.

[0070] While the invention has been described in terms of several embodiments, those
of ordinary skill in the art will recognize that the invention is not limited to the
embodiments described, but can be practiced with modification and alteration within
the spirit and scope of the appended claims. The description is thus to be regarded as

illustrative instead of limiting.

18

WO 2007/056893 PCT/CN2005/001960

CLAIMS

‘What is claimed is:

L. A method comprising;

associating blocks of instructions between start and end of a critical section with
color information, the blocks corresponding to a program trace and containing a wait
instruction; and

sinking the wait instruction down the blocks globally to the end of the critical

section using the color information and a dependence constraint on the wait instruction.

2. The method of claim 1 wherein associating the blocks comprises:

identifying a sequence of the blocks corresponding to the program trace from a
starting block at the start of the critical section to an ending block at the end of the
critical section, the starting block containing the wait instruction; and

assigning a color to the sequence of the blocks and the wait instruction.

3. The method of claim 1 wherein sinking the wait instruction comprises:

speculatively moving the wait instruction to a basic block having multiple
predecessor blocks, the multiple predecessor blocks including the starting block;

inserting compensation code to at least one of the multiple predecessors
excluding the starting block; and

updating the color information.

4, The method of claim 3 wherein speculatively moving the wait
instruction comprises:
moving the wait instruction to the basic block if the starting block and the wait

instruction have same color and if the wait instruction is ready.

5. The method of claim 3 wherein inserting the compensation code
comprises:
inserting a send signal to the at least one of the multiple predecessors excluding

the starting block.

6. The method of claim 3 wherein updating the coloring information

comprises:
19

WO 2007/056893 PCT/CN2005/001960

resetting the color of the basic block; and
resetting the color of the wait instruction having an associated memory access

instruction in the basic block.

7. The method of claim 6 wherein updating the color information further
comprises:
changing the color of the wait instruction to intersection of reset color of the

wait instruction and the reset color of the basic block.

8. A program transformer comprising:

a color associator to associate blocks of instructions between start and end of a
critical section with color information, the blocks corresponding to a program trace and
containing a wait instruction; and

a code mover and compensator coupled to the color associator to sink the wait
instruction down the blocks globally to the end of the critical section using the color

information and a dependence constraint on the wait instruction.

9. The program transformer of claim 8 wherein the color associator
comprises:

a trace identifier to identify a sequence of the blocks corresponding to the
program trace from a starting block at the start of the critical section to an ending block
at the end of the critical section, the starting block containing the wait instruction; and

a color assigner coupled to the trace identifier to assign a block color to the

sequence of the blocks and a wait color to the wait instruction.

10. The program transformer of claim 8 wherein the code mover and
compensator comprises:

a code mover to speculatively move the wait instruction to a basic block having
multiple predecessor blocks, the multiple predecessor blocks including the starting
block;

a code compensator to insert compensation code to at least one of the multiple
predecessors excluding the starting block; and

a color updater to update the color information.

20

WO 2007/056893 PCT/CN2005/001960

"3

11. The program transformer of claim 10 wherein the code mover moves the
wait instruction to the basic block if the block color of the starting block and the wait

color of the wait instruction have same color and if the wait instruction is ready.

12. The program transformer of claim 10 wherein the code compensator
inserts a send signal to the at least one of the multiple predecessors excluding the

starting block.

13. The program transformer of claim 10 wherein the color updater resets
the block color of the basic block, and the wait color of the wait instruction having an

associated memory access instruction in the basic block.

14. The program transformer of claim 10 wherein the color updater changes
the wait color of the wait instruction to intersection of reset wait color of the wait

instruction and the reset block color of the basic block.

15, A system comprising:
a network processor;
a host processor coupled to the network processor; and
a memory coupled to the host processor having a program transformer to
transform a program module to be executed on the network processor, the program
transformer comprising:
a color associator to associate blocks of instructions between start and
end of a critical section with color information, the blocks corresponding
to a program trace and containing a wait instruction, and
a code mover and compensator coupled to the color associator to sink
the wait instruction down the blocks globally to the end of the critical
section using the color information and a dependence constraint on the

wait instruction.

16. The system of claim 15 wherein the color associator comprises:
a trace identifier to identify a sequence of the blocks corresponding to the
program trace from a starting block at the start of the critical section to an ending block

at the end of the critical section, the starting block containing the wait instruction; and

21

WO 2007/056893 PCT/CN2005/001960

a color assigner coupled to the trace identifier to assign a block color to the

sequence of the blocks and a wait color to the wait instruction.

17. The system of claim 15 wherein the code mover and compensator
comprises:

a code mover to speculatively move the wait instruction to a basic block having
multiple predecessor blocks, the multiple predecessor blocks including the starting
block;

a code compensator to insert compensation code to at least one of the multiple
predecessors excluding the starting block; and

a color updater to update the color information.

18. The system of claim 17 wherein the code mover moves the wait
instruction to the basic block if the block color of the starting block and the wait color

of the wait instruction have same color and if the wait instruction is ready.

19. The system of claim 17 wherein the code compensator inserts a send

signal to the at least one of the multiple predecessors excluding the starting block.

20. The system of claim 17 wherein the color updater resets the block color
of the basic block, and the wait color of the wait instruction having an associated

memory access instruction in the basic block.

21. The system of claim 17 wherein the color updater changes the wait color
of the wait instruction to intersection of reset wait color of the wait instruction and the

reset block color of the basic block.

22. An article of manufacture comprising:

a machine-accessible medium including data that, when accessed by a machine,
cause the machine to perform operations comprising:

associating blocks of instructions between start and end of a critical section with

color information, the blocks corresponding to a program trace and containing a

wait instruction; and

WO 2007/056893 PCT/CN2005/001960

sinking the wait instruction down the blocks globally to the end of the critical
section using the color information and a dependence constraint on the wait

instruction.

23. The article of manufacture of claim 22 wherein the data causing the
machine to perform associating the blocks comprises data that, when accessed by a
machine, cause the machine to perform operations comprising:

identifying a sequence of the blocks corresponding to the program trace from a
starting block at the start of the critical section to an ending block at the end of the
critical section, the starting block containing the wait instruction; and

assigning a block color to the sequence of the blocks and a wait color to the wait

instruction.

24, The article of manufacture of claim 22 wherein the data causing the
machine to perform sinking the wait instruction comprises data that, when accessed by
a machine, cause the machine to perform operations comprising:

speculatively moving the wait instruction to a basic block having multiple
predecessor blocks, the multiple predecessor blocks including the starting block;

inserting compensation code to at least one of the multiple predecessors
excluding the starting block; and

updating the color information.

25. The article of manufacture of claim 24 wherein the data causing the
machine to perform speculatively moving the wait instruction comprises data that,
when accessed by a machine, cause the machine to perform operations comprising:

moving the wait instruction to the basic block if the block color of the starting
block and the wait color of the wait instruction have same color and if the wait

instruction is ready.

26. The article of manufacture of claim 24 wherein the data causing the
machine to perform inserting the compensation code comprises data that, when
accessed by a machine, cause the machine to perform operations comprising:

inserting a send signal to the at least one of the multiple predecessors excluding

the starting block.

23

WO 2007/056893 PCT/CN2005/001960

27. The article of manufacture of claim 24 wherein the data causing the
machine to perform updating the coloring information comprises data that, when
accessed by a machine, cause the machine to perform operations comprising:

resetting the block color of the basic block; and

resetting the wait color of the wait instruction having an associated memory

access instruction in the basic block.

28. The article of manufacture of claim 27 wherein the data causing the
machine to perform updating the color information further comprises data that, when
accessed by a machine, cause the machine to perform operations comprising:

changing the wait color of the wait instruction to intersection of reset block

color of the wait instruction and the reset block color of the basic block.

24

PCT/CN2005/001960

WO 2007/056893

1/11

VI 'OI4

oor \\

WYYa WVYS
Yy])
vE ze
43— QM.
YOSSID0Ud SSTUD3
inaa | SqQO5T SAO0T 30IA3d
_‘u_wwm%w «———] IOVAUTINI A 1041NOD a MIAVT
ordavd | MO TWOISAHd
SqoST sqo0T
i i
))
0s Y VOSSID0Ud SSTUONI U
i
v Y b
0z
N oﬁmmwmmr%m g IOVAYILINI WY a NYAS
* 1D3INNODJYALNI))
1SOH ¢ ¢
7 I
)) <4 zz
o/ 09

— YIA3NW

PCT/CN2005/001960

11NN dgr ‘OId

2/11

WO 2007/056893

EO)NANEIT
NYOMLIN
{
) T .) t
3IDIA3A ces IDINIA 04T
, O\H , O\H “ » JATHd QN_<II\ImmN
J 4 J A
- > LIDQSO\ <+ mw§OA—Im
S#T 1D3INNODYILNI 1ndNI SSYWN fe—s
«—> ana
d~p51
£ ; ‘ —] nWouwa | ...
orr |)
ONIGIH ADNILY] 4O+ 0st
YIWIOISNVAIL WVHDONd YT TIOULNGD
) AHOWIW
SET
| AYOWaW J 7
) ozr
O€T
1INN
¥OSSIADOUd
)
orr

oo —"

WO 2007/056893 PCT/CN2005/001960
3/11
TRACE 1 TRACE 2
210 220 230
s s «,
BLOCK 1> <BLOCK 3>
CS1 BEGIN <BLOCK 2> MEMORY ACCESSZ2, S2
MEMORY ACCESS]1, S1 CS1 BEGIN CS1 BEGIN
WAIT S1 WAIT S2
240 /
P
<BLOCK 4>
250 252 254
{ Y { \
7 / !
<BLOCK 5> <BLOCK 6> <BLOCK 7>
260 262 264
4 \ Y K \ k
[I i
<BLOCK 8> <BLOCK 9> <BLOCK 10>
CS1 END CS1 END CS1 END

FIG. 2A

PCT/CN2005/001960

TRACE 2

Tele

/—-210

235

<BLOCK 3>

MEMORY ACCESSZ2, S2

CS1 BEGIN
WAIT S2

TR

245

256

<BLOCK 7>

264

WO 2007/056893
4/11
TRACE 1
215 220
{
7
<BLOCK 1>
CS1 BEGIN <BLOCK 2>
MEMORY ACCESS], St CS1 BEGIN
WAIT S1
242
<BLOCK 4>
255 252
)
<BLOCK 5> <BLOCK 6>
260 262
{ ! {
<BLOCK 8> <BLOCK 9>
CS1 END CS1 END

<BLOCK 10>
CS1 END

FIG. 2B

WO 2007/056893 PCT/CN2005/001960

5/11
TRACE 1 TRACE 2
310 320 330
§
7 Z 7
<BLOCK 3>
<BLOCK 1> <BLOCK 2> < MEMORY ACCESS2, S2 }
CS1 BEGIN CS1 BEGIN & CS1 BEGIN
MEMORY ACCESS1, S1 SEND SIGNAL S1 ' WAIT S2
SEND SIGNAL S1
342
345
<BLOCK 4>
WAIT S1
255 252 256
)
. é
<BLOCK 5> <BLOCK 6> <BLOCK 7> ?
260 262 264
\r VL ,& \ A &’
<BLOCK 8> <BLOCK 9> <BLOCK 10>
CS1 END CS1 END CS1 END

FIG. 3A

WO 2007/056893
TRACE 1

310
% %
% <BLOCK 1> %
% CS1 BEGIN %
g MEMORY ACCESS1, S1 %
T

6/11

<BLOCK 2>
CS1 BEGIN

SEND SIGNAL S1

PCT/CN2005/001960

TRACE 2

I S AR TN A T 0 P AN AT NS P
LA RAIIILAK AR KSR
T

<BLOCK 3>

2505 o

&
5
8
el
e

CS1 BEGIN
WAIT S2

R
SRR ;

] MEMORY ACCESS2, S2 |

8% SEND SIGNAL S1

{ X sy s perpery—r———
ORI T S R R o
RSO TN

e
—
&,(S

242
%///’//f////////////x///////////%w
% %%ﬁ% 245
% <BLOCK 4> %gﬁ
% i
355 352 356
y {
%///////////////////////////% ’ ‘f":"‘"‘1‘"3‘3‘3‘1""‘:‘:‘-’4*"*{
. . :
% <BLOCK 5> % <BLOCK 6> g <BLOCK 7> KX
% WAIT S1 % WAIT S1 warrst f3
260 262 264
S \ S \ 4 s
<BLOCK 8> <BLOCK 9> <BLOCK 10>
CS1 END CS1 END CS1 END

FIG. 3B

WO 2007/056893

TRACE 1

310

<BLOCK 1>
CS1 BEGIN
MEMORY ACCESS], S1

/11

320

pN P

<BLOCK 2>
CS1 BEGIN
SEND SIGNAL S1

PCT/CN2005/001960

TRACE 2
330
<BLOCK 3> 5
MEMORY ACCESS2, S2
CS1 BEGIN
WAIT S2

_SEND SIGNAL S1

L S ¢

RRBSRRS

242
<BLOCK 4>
255 352
)
<BLOCK 6>
<BLOCK 5> WAIT S1
360 262
s b
<BLOCK 8> <BLOCK 9>
CS1 END CS1 END
WAIT S1

245

356

<BLOCK 7>
WAIT S1

264

<BLOCK 10>
CS1 END

FIG. 3C

WO 2007/056893 PCT/CN2005/001960

8/11
TRACE 1 TRACE 2
410 420 i 430
s ; s
<BLOCK 1> <BLOCK 3>
MEMORY ACCESS1, S1 <BLOCK 2> MEMORY ACCESS2, S2
WAIT S1 WAIT S2
442
445
<BLOCK 4>
CS1 BEGIN
255 262 256
)
<BLOCK 6> <BLOCK 7>
<BLOCK 5> WAIT S1 1 waIT st
260 262 264
\ \J & v &
<E'S-‘13CE‘I<“§> <BLOCK 9> <BLOCK 10>
VAT 8] CS1 END CS1 END

FIG. 4

WO 2007/056893 PCT/CN2005/001960

9/11

/’ 500

< START >
510

{

{

A 4

ASSOCIATE BLOCKS OF INSTRUCTIONS BETWEEN START AND
END OF A CRITICAL SECTION WITH COLOR INFORMATION.
BLOCKS CORRESPOND TO PROGRAM TRACE AND CONTAIN WAIT INSTRUCTION

520
A

v
i

SINK WAIT INSTRUCTION DOWN THE BLOCKS GLOBALLY TO
END OF CRITICAL SECTION USING COLOR INFORMATION
AND DEPENDENCE CONSTRAINT ON WAIT INSTRUCTION

END

FIG. 5

< START }
610

r

IDENTIFY SEQUENCE OF BLOCKS CORRESPONDING TO
PROGRAM TRACE FROM STARTING BLOCK AT START OF CRITICAL
SECTION TO ENDING BLOCK AT END OF CRITICAL SECTION.
STARTING BLOCK CONTAINS WAIT INSTRUCTION

620
§

L 4
7

ASSIGN COLOR TO SEQUENCE OF BLOCKS AND WAIT INSTRUCTION

END

FIG. 6

WO 2007/056893

PCT/CN2005/001960

10/11

o 520
(sTART)
710
' {

SPECULATIVELY MOVE WAIT INSTRUCTION TO BASIC
BLOCK HAVING MULTIPLE PREDECESSOR BLOCKS.
PREDECESSOR BLOCKS INCLUDE STARTING BLOCK

720

, §

[

INSERT COMPENSATION CODE (e.g., SEND SIGNAL) TO AT LEAST
ONE OF PREDECESSOR BLOCKS EXCLUDING STARTING BLOCK

730

A 4 K
T

UPDATE COLOR INFORMATION

/—’ 730
‘ START ’
810
A 2 S
RESET COLOR BASIC BLOCK
820
! (

RESET COLOR OF WAIT INSTRUCTION HAVING ASSOCIATED
MEMORY ACCESS INSTRUCTION IN BASIC BLOCK

830
I (

CHANGE COLOR OF WAIT INSTRUCTION TO INTERSECTION
OF RESET COLORS OF THE WAIT INSTRUCTION AND BASIC BLOCK

END

FIG. 8

PCT/CN2005/001960

WO 2007/056893

11/11

06
A1NAOKW
WYY4O0uUd
Q3ONVHNI

m.m.wx\

I

|

__ y3ailvdadn
|

|

|

I

| -

o —— — — — — — — — — — — — — — —— —— — — — — -

| worvsnaawoo || wanow

3qoo [T} 3qoo | 3a00
)))
9¢6 ve6 z€6

JOLVYSNIdIWOD ANV d3AOW 300D

e
'l wanoissv YAIJLINAGT
) __ V010D IOVl
“))
| ¥Z6 zz6
| HOLVIDOSSY ¥010D

or6
3INAON
WYdD0ud

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CN2005/001960

A. CLASSIFICATION OF SUBJECT MATTER

GO6F9/38 (2006.01) i

According to International Patent Classification (IPC) or to both national classification and IPC

B.

FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GOG6F9/38 (2006.01) , GO6F/45 (2006.01) , GO6F12/00 (2006.01)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNPAT, WPI, EPODOC, PAJ: latency hid+ instruction associat+ identify+ assign+ color code critical section

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A CN,A ,1561480 ((ITLC) INTEL CORP ETAL) 05.Jan 2005(05.01.2005) 1-28
see whole document
A WO ,A2, 2005062170 (KONINKL PHILIPS ELECTRONICS NV ET AL) 07.Jul 1-28
2005(07.07.2005)
see whole document
A lUS,B1,6785796 (SUN MICROSYSTEMS INC) 31.Aug 2004 (31.08.2004) 1-28
see whole document

[T1 Further documents are listed in the continuation of Box C.

See patent family annex.

*

“A”

“E”

“L”

“O”

“P”

Special categories of cited documents:

document defining the general state of the art which is not
considered to be of particular relevance

earlier application or patent but published on or after the
international filing date

document which may throw doubts on priority claim (S) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

document referring to an oral disclosure, use, exhibition or
other means

document published prior to the international filing date
but later than the priority date claimed

uTn

tcxn

uYn

later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to involve
an inventive step when the document is taken alone

document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such
documents, such combination being obvious to a person
skilled in the art

“& ”document member of the same patent family

Date of the actual completion of the international search

23 May 2006(23.05.2006)

TE I 9066 AE™ TET2 008

IName and mailing address of the ISA/CN

The State Intellectual Property Office, the P.R.China

6 Xitucheng Rd., Jimen Bridge, Haidian District, Beijing, China
100088 .

Facsimile No. 86-10-62019451

Authorized officer

Form PCT/ISA /210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.

PCT/CN2005/001960
Patent document Publication Patent family Publication
Cited in search report date member(s) date

CN1561480A 05.01.2005 US2003065887A 03.04.2003
US6718440B 06.04.2004
WO03029962A 10.04.2003
GB2397918AB 04.08.2004

WO02005062170A2 07.07.2005 NONE
US6785796B1 31.08.2004 WO0210923A 07.02.2002
AUS8137501A 13.02.2002
EP1305714A 02.05.2003

Form PCT/ISA /210 (second sheet) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - wo-search-report
	Page 38 - wo-search-report

