Title: COMPOUNDS MODULATING C-KIT AND C-FMS ACTIVITY AND USES THEREOF

Abstract: Compounds active on the receptor protein tyrosine kinases c-kit and c-fms are provided herewith. Also provided herewith are compositions useful for treatment of c-kit mediated diseases or condition and c-fms-mediated diseases or condition, and methods for the use thereof.
COMPOUNDS MODULATING C-KIT AND C-FMS ACTIVITY

AND USES THEREFOR

FIELD OF THE INVENTION

[0001] This invention relates to ligands for b-kit and c-fms, and to methods for use thereof. The information provided is intended solely to assist the understanding of the reader. None of the information provided nor references cited is admitted to be prior art to the present invention. Each of the references cited is incorporated herein in its entirety and for any purpose.

BACKGROUND OF THE INVENTION

[0002] C-kit and c-fms are both type III transmembrane receptor protein tyrosine kinases (RPTKs) that regulate key signal transduction cascades that control cellular growth and proliferation. Both receptors have similar structural features comprising five extracellular immunoglobulin (IG) domains, a single transmembrane domain, and a split cytoplasmic kinase domain separated by a kinase insert segment.
c-KIT

[0004] SCF is synthesized as a transmembrane protein with a molecular weight of 220 or 248 Dalton, depending on alternative splicing of the mRNA to encode exon 6. The larger protein can be proteolytically cleaved to form a soluble, glycosylated protein which noncovalently dimerizes. Both the soluble and membrane-bound forms of SCF can bind to and activate c-kit. For example, in the skin, SCF is predominantly expressed by fibroblasts, keratinocytes, and endothelial cells, which modulate the activity of melanocytes and mast cells expressing c-kit. In bone, marrow stromal cells express SCF and regulate hematopoiesis of c-kit expressing stem cells. In the gastrointestinal tract, intestinal epithelial cells express SCF and affect the interstitial cells of Cajal and intraepithelial lymphocytes. In the testis, Sertoli cells and granulosa cells express SCF which regulates spermatogenesis by interaction with c-kit on germ cells.

c-Fms

[0005] C-fms is a member of the family of genes originally isolated from the Susan McDonough strain of feline sarcoma viruses. The cellular proto-oncogene FMS (c-fins, _cellular_feline McDonough sarcoma) codes for the receptor for the macrophage colony-stimulating factor (M-CSF). C-fins is crucial for the growth and differentiation of the monocyte-macrophage lineage, and upon binding of M-CSF to the extracellular domain of c-fins, the receptor dimerizes and trans-autophosphorylates cytoplasmic tyrosine residues.

[0006] M-CSF first described by Robinson and co-workers (Blood. 1969, 33:396-9), is a cytokine that controls the production, differentiation, and function of macrophages. M-CSF stimulates differentiation of progenitor cells to mature monocytes, and prolongs the
survival of monocytes. Furthermore, M-CSF enhances cytotoxicity, superoxide production, phagocytosis, chemotaxis, and secondary cytokine production of additional factors in monocytes and macrophages. Examples of such additional factors include granulocyte colony stimulating factor (G-CSF), interleukin-6 (IL-6), and interleukin-8 (IL-8). M-CSF stimulates hematopoiesis, promotes differentiation and proliferation of osteoclast progenitor cells, and has profound effects on lipid metabolism. Furthermore, M-CSF is important in pregnancy. Physiologically, large amounts of M-CSF are produced in the placenta, and M-CSF is believed to play an essential role in trophoblast differentiation (Motoyoshi, hit J Hematol. 1998, 67:109-22). The elevated serum levels of M-CSF in early pregnancy may participate in the immunologic mechanisms responsible for the maintenance of the pregnancy (Flanagan & Lader, Curr Opin Hematol. 1998, 5:181-5).

[0007] Related to c-fms and c-kit are two platelet-derived growth factor receptors, alpha (i.e., pdgfra) and beta (pdgfrb) (PDGF). The gene coding for pdgfra is located on chromosome 4ql 1-q12 in the same region of chromosome 4 as the oncogene coding for c-kit. The genes coding for pdgfra and c-fms appear to have evolved from a common ancestral gene by gene duplication, inasmuch as these two genes are tandemly linked on chromosome 5. They are oriented head-to-tail with the 5-prime exon of the c-fhis gene located only 500 bp from the last 3-prime exon of the gene coding for pdgfra. Most gastrointestinal stromal tumors (GIST) have activating mutations in c-kit, and most patients with GISTs respond well to Gleevec, which inhibits c-kit. Heinrich et al. (Science 2003, 299:708-10) have shown that approximately 35% of GISTs lacking c-kit mutations have intragenic activation mutations in the gene encoding pdgfra, and that tumors expressing c-kit or pdgfra are indistinguishable with respect to activation of downstream signaling intermediates and cytogenetic changes associated with tumor progression. Thus, c-kit and pdgfra mutations appear to be alternative and mutually exclusive oncogenic mechanisms in GISTS.

[0008] Similarly, the observation that production of M-CSF, the major macrophage growth factor, is increased in tissues during inflammation points out a role for c-fms in diseases, such as for example inflammatory diseases. More particularly, because elevated levels of M-CSF are found in the disease state, modulation of the activity of c-fms can ameliorate disease associated with increased levels of M-CSF.
Accordingly, there is need in the art for potent and specific inhibitors and modulators of c-kit and/or c-fms and methods for designing them.

SUMMARY OF THE INVENTION

The present invention relates to compounds active on c-kit, c-fms, or both c-kit and c-fms. In accordance with one aspect of the present invention, it has been discovered that in the treatment of diseases amenable to treatment by an effective amount of a modulator of either c-kit alone or c-fms alone, the efficacy of treatment can be enhanced if said compounds are dual inhibitors of both c-kit and c-fms. In particular, the invention provides methods of using compounds of Formula I as described below. Thus, the invention provides methods of using compounds that can be used therapeutically and/or prophylactically involving modulation of c-kit, c-fms, or both c-kit and c-fms.

The compounds of Formula I have the following structure:

all salts, prodrugs, tautomers, and isomers thereof,

wherein:

X_1 is N or CR2, X_2 is N or CR6, Y_1 is N or CR4, and Y_2 is N or CR5, provided,

however, that not more than one of X_2, Y_1 and Y_2 is N;

L_1 is selected from the group consisting of optionally substituted lower alkylene, -S-, -O-, -C(O)-, -C(S)-, -S(O)-, -S(O)$_2$-, and -NR7-;

L_2 is selected from the group consisting of a bond, optionally substituted lower alkylene, -(alk)$_a$-S-(alk)$_b$-, -(alk)$_a$-O-(alk)$_b$-, -(alk)$_a$-OC(O)-(alk)$_b$-, -(alk)$_a$-C(O)O-(alk)$_b$-, -(alk)$_a$-C(S)O-(alk)$_b$-,

-(alk)$_a$-C(OO)(alk)$_b$-, -(alk)$_a$-C(O)-(alk)$_b$-,

-(alk)$_a$-C(S)-(alk)$_b$-,

-(alk)$_a$-OC(S)(alk)$_b$-,

-(alk)$_a$-C(S)NR9-(alk)$_b$-,

-(alk)$_a$-S(O)NR9-(alk)$_b$-,

-(alk)$_a$-S(O)$_2$NR9-(alk)$_b$-.
(alk)_a-NR^9-(alk)_b-, -(alk)_a-NR^9C(O)-(alk)_b-, -(alk)_a-NR^9C(S)-(alk)_b-,
(alk)_a-NR^9C(O)NR^9-(alk)_b-, -(alk)_a-NR^9C(S)NR^9-(alk)_b-,
(alk)_a-NR^9C(O)NR^9-(alk)_b-, -(alk)_a-NR^9C(S)NR^9-(alk)_b-, and
(alk)_a-NR^9S(O)_2-alkb-, wherein alk is optionally substituted C_1-3 alkylene
and a and b are independently 0 or 1;

R^1 is selected from the group consisting of optionally substituted lower alkyl,
optionally substituted cycloalkyl, optionally substituted heterocycloalkyl,
optionally substituted aryl, and optionally substituted heteroaryl;

R^2, R^4, R^5 and R^6 are independently selected from the group consisting of hydrogen,
halogen, optionally substituted lower alkyl, optionally substituted lower alkenyl,
optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally
substituted heterocycloalkyl, optionally substituted aryl, optionally substituted
heteroaryl, -OH, -NH_2, -NO_2, -CN, -C(O)OH, -C(S)OH, -C(O)NH_2, -C(S)NH_2,
-S(O)_2NH_2, -NHC(O)NH_2, -NHC(S)NH_2, -NHS(O)_2NH_2, -NR^{10}R^{11}, -NHR^3, -OR^3,
-SR^3, -C(O)R^3, -C(S)R^3, -S(O)R^3, -S(O)_2R^3, -C(O)OR^3, -C(S)OR^3, -C(O)NHR^3,
-C(O)NHR^3, -C(S)NH^3, -C(S)NHR^3, -S(O)_2NHR^3, -S(O)_2NR^3R^3, -NHC(O)R^3,
-NR^3C(O)R^3, -NHC(S)R^3, -NR^3C(S)R^3, -NHS(O)_2R^3, -NR^3S(O)_2R^3, -NHC(O)OR^3,
-NR^3C(O)OH, -NR^3C(O)OR^3, -NHC(S)OR^3, -NR^3C(S)OH, -NR^3C(S)OR^3,
-NHC(O)NHR^3, -NHC(O)NR^3R^3, -NR^3C(O)NH_2, -NR^3C(O)NHR^3,
-NR^3C(O)NR^3R^3, -NHC(S)NHR^3, -NHC(S)NR^3R^3, -NR^3C(S)NH_2,
-NR^3C(S)NHR^3, -NR^3C(S)NR^3R^3, -NHS(O)_2NHR^3, -NHS(O)_2NR^3R^3,
-NR^3S(O)_2NH_2, -NR^3S(O)_2NHR^3, and -NR^3S(O)_2NR^3R^3;

Ar_1 is a 5 or 6 membered optionally substituted heteroarylene having the structure

wherein \(\circ \) indicates the point of attachment of L^1 and \(\bullet \) indicates the
point of attachment of L^2, and wherein the indicated N is either =N- or -N=;

n is 0 or 1;

F and J are both C or one of F and J is C and the other of F and J is N;
P and Q are independently selected from CR, N, NR, O or S;
T is selected from CR or N;

wherein

when n is 1, F and J are C, and P, T and Q are CR, or any one of P, T and Q is N and the other two of P, T and Q are CR,

when n is 0 and F and J are both C, then one of P and Q are CR, N or NR and the other of P and Q is C, N₂NR, O or S, provided both P and Q are not CR,

when n is 0, one of F and J is N and the other of F and J is C, then one of P and Q is N and the other of P and Q is CR or both P and Q are CR, and

R is hydrogen or an optional substituent as defined herein for optionally substituted heteroarylène that provides a stable compound;

R³ at each occurrence is independently selected from the group consisting of optionally substituted lower alkyl, optionally substituted lower alkenyl, provided, however, that no alkene carbon thereof is bound to any -C(O)-, -C(S)-, -S(O)-, -S(O)₂-, -O-, -S-, or -N- of any of -OR³, -SR³, -C(O)R³, -C(S)R³, -S(O)R³, -S(O)₂R³, -C(O)R³, -C(S)OR³, -C(S)NHR³, -C(O)NR³R³, -C(S)NHR³, -C(S)OH, -NH₂, -NHR, -C(S)NH₂, -NHC(S)R³, -NHC(S)OR³, -NHC(S)NHR³, -NHC(S)NR³R³, -NHC(S)OH, -NHC(S)OR³, -NHC(S)NHR³, -NHC(S)NR³R³, -NHS(O)₂NHR³, -NHS(O)₂NR³R³, -NHS(O)₂NHR³, -NHS(O)₂NR³R³, or -NR³S(O)₂NR³R³, optionally substituted lower alkynyl, provided, however, that no alkyne carbon thereof is bound to any -C(O)-, -C(S)-, -S(O)-, -S(O)₂-, -O-, -S-, or -N- of any of -OR³, -SR³, -C(O)R³, -C(S)R³, -S(O)R³, -S(O)₂R³, -C(O)R³, -C(S)OR³, -C(S)NHR³, -C(O)NR³R³, -C(S)NHR³, -C(S)OH, -NH₂, -NHR, -C(S)NH₂, -NHC(S)R³, -NHC(S)OR³, -NHC(S)NHR³, -NHC(S)NR³R³, -NHC(S)OH, -NHC(S)OR³, -NHC(S)NHR³, -NHC(S)NR³R³, -NHS(O)₂NHR³, -NHS(O)₂NR³R³, -NHS(O)₂NHR³, -NHS(O)₂NR³R³, or -NR³S(O)₂NR³R³, optionally substituted
cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl;

\(R^7 \) is selected from the group consisting of hydrogen, optionally substituted lower alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, -C(O)R^8, and -S(O)\(_2\)R^8;

\(R^8 \) is selected from the group consisting of optionally substituted lower alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl and optionally substituted heteroaryl;

\(R^9 \) at each occurrence is independently selected from the group consisting of hydrogen, lower alkyl, and lower alkyl substituted with one or more substituents selected from the group consisting of fluoro, -OH, -NH\(_2\), lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro substituted lower alkylthio, mono-alkylamino, fluoro substituted mono-alkylamino, di-alkylamino, fluoro substituted di-alkylamino, and -NR\(^2\)R\(^3\), provided, however, that when \(R^9 \) is substituted lower alkyl, any substitution on the alkyl carbon bound to the -N- of -NR\(^9\) is fluoro;

\(R^{10} \) and \(R^{11} \) at each occurrence are independently selected from the group consisting of optionally substituted lower alkyl, optionally substituted lower alkenyl, provided, however, that no alkene carbon thereof is bound to the nitrogen of -NR\(^{10}\)R\(^{11}\), optionally substituted lower alkynyl, provided, however, that no alkyne carbon thereof is bound to the nitrogen of-NR\(^{10}\)R\(^{11}\), optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl; or

\(R^{10} \) and \(R^{11} \) together with the nitrogen to which they are attached form a monocyclic 5-7 membered optionally substituted heterocycloalkyl or a monocyclic 5 or 7 membered optionally substituted nitrogen containing heteroaryl; and

\(R^{12} \) and \(R^{13} \) combine with the nitrogen to which they are attached to form a 5-7 membered heterocycloalkyl or 5-7 membered heterocycloalkyl substituted with one or more substituents selected from the group consisting of fluoro, -OH, -NH\(_2\), lower alkyl, fluoro substituted lower alkyl, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, and fluoro substituted lower alkylthio;

provided, however that when compounds have the structure
and \(L^{1a}\) is -CH\(_2\)-, -CH(OH)-, or -C(O)-, then \(R^{1a}\) is not phenyl, 4-trifluoromethylphenyl, 4-methoxy-phenyl, 4-chloro-phenyl, 4-fluoro-phenyl, 4-methyl-phenyl, 3-fluoro-phenyl or thiophen-2-yl and compounds do not have the structure

[0012] In reference to Formula I, the core structure shown above with \(X_1, X_2, Y_1\) and \(Y_2\) as CH and with \(L'-\text{Ari-l} \Lambda R^1\) replaced with H is referred to as the "azaindole core." For that azaindole core, reference to ring atoms or ring positions is as shown in the following structure:

[0013] In one embodiment of compounds of Formula I, compounds have a structure selected from the following:
wherein \(L^1, L^2, R^1, R^2, R^4, R^5 \) and \(R^6 \) are as defined for Formula I.

[0014] In one embodiment of compounds of Formula I, \(X_1 \) and \(X_2 \) are N or CH. In another embodiment, \(X_1, X_2 \) and \(Y_1 \) are N or CH, where in a further embodiment, \(Y_2 \) is CR\(^5\) and \(R^5 \) is other than hydrogen. In another embodiment, \(X_1, X_2 \) and \(Y_2 \) are N or CH, where in a further embodiment \(Y_1 \) is CR\(^4\) and \(R^4 \) is other than hydrogen. In another embodiment, \(X_1, X_2 \) and \(Y_1 \) are CH, where in a further embodiment, \(Y_2 \) is CR\(^5\) and \(R^5 \) is other than hydrogen. In another embodiment, \(X_1, X_2 \) and \(Y_2 \) are CH, where in a further embodiment \(Y_1 \) is CR\(^4\) and \(R^4 \) is other than hydrogen.

[0015] In one embodiment of compounds of Formula I, wherein \(X_1, X_2, Y_1 \) and \(Y_2 \) are independently CR\(^2\), CR\(^6\), CR\(^4\) and CR\(^5\) respectively, one of \(R^4 \) or \(R^5 \) is other than hydrogen, preferably where \(R^2 \) and \(R^6 \) are hydrogen. In one embodiment, wherein \(X_1, X_2, Y_1 \) and \(Y_2 \) are independently CR\(^2\), CR\(^6\), CR\(^4\) and CR\(^5\) respectively, \(R^2, R^5 \) and \(R^6 \) are hydrogen and \(R^4 \) is other than hydrogen. In one embodiment, wherein \(X_1, X_2, Y_1 \) and \(Y_2 \) are independently CR\(^2\), CR\(^6\), CR\(^4\) and CR\(^5\) respectively, \(R^2, R^4 \) and \(R^6 \) are hydrogen and \(R^5 \) is other than hydrogen.

[0016] In one embodiment of compounds of Formula I, \(X_1 \) and \(X_2 \) are N or CH, preferably wherein both \(X_1 \) and \(X_2 \) are CH.

[0017] In one embodiment of compounds of Formula I, \(L^1 \) is selected from the group consisting of -S-, -O-, lower alkylene, -C(O)-, -C(S)-, -S(O)-, -S(O)\(^2\)-, and -NR\(^7\)-.
wherein lower alkylene is optionally substituted with fluoro, and wherein when L is optionally substituted lower alkylene or comprises optionally substituted C₁₋₃ alkylene, the alkylene is optionally substituted with fluoro or lower alkyl. In one embodiment, L is selected from the group consisting of -S-, -O-, -CH₂-, -CF₂-, -C(O)-, -C(S)-, -S(O)-, -S(O)₂-, and -NH-.

[0018] In one embodiment of compounds of Formula I, L is selected from the group consisting of a bond, optionally substituted lower alkylene, -O-(alk)_b-, -OC(O)-(alk)_b-, -C(O)O-(alk)_b-, -C(S)(alk)_b-, -C(O)-(alk)_b-, -C(S)-(alk)_b-, -C(O)NR_b-(alk)_b-, -OC(S)-(alk)_b-, -OC(O)NR_b-(alk)_b-, -C(S)NR_b-(alk)_b-, -S(O)-(alk)_b-, -S(O)₂-(alk)_b-, S(O)₂NR_b-(alk)_b-, -NR_b-(alk)_b-, -NR⁹c(C)(alk)_b-, -NR⁹C(S)(alk)_b-, -NR⁹C(S)(alk)_b-, -NR⁹C(S)O-(alk)_b-, -NR⁹C(O)NR_b-(alk)_b-, -NR⁹C(S)NR_b-(alk)_b-, -NR⁹S(O)₂-(alk)_b-, and -NR⁹S(O)₂NR_b-(alk)_b.-

[0019] Further to any of the above embodiments of Formula I, when L is substituted lower alkylene or when L is substituted lower alkylene or comprises substituted C₁₋₃ alkylene, the alkylene is substituted with one or more, preferably 1, 2, or 3 substituents selected from the group consisting of fluoro, -OH, -NH₂, lower alkoxy, lower alkylthio, mono-alkylamino, di-alkylamino, and -NR¹²R¹³, wherein the alkyl chain(s) of lower alkoxy, lower alkylthio, mono-alkylamino or di-alkylamino are optionally substituted with one or more, preferably 1, 2, or 3 substituents selected from the group consisting of fluoro, -OH, -NH₂, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro substituted lower alkylthio, mono-alkylamino, di-alkylamino, or cycloalkylamino.

[0020] In one embodiment of the compounds of Formula I, the variables P, J, Q, T, F, and n are selected to provide structures of Ar₁ selected from the group consisting of
[0021] The compounds of Formula I, and all sub-embodiments detailed herein, may be used to treat a subject suffering from or at risk of a Kit and/or Fms protein kinase mediated disease or condition, such as those disclosed in this application.
In one embodiment, a compound of Formula I has a structure according to the following sub-generic structure, Formula Ia,

![Formula Ia]

all salts, prodrugs, tautomers, and isomers thereof,

wherein \(L^1, \text{Ar}_1, R^1, R^2, R^4, R^5 \) and \(R^6 \) are as defined for Formula I;

\(L^3 \) is selected from the group consisting of a bond, optionally substituted lower alkylene, \(-O-(\text{alk})_b^-, -S-(\text{alk})_b^-, -\text{NR}^{14}-(\text{alk})_b^-, -\text{C}(\text{O})-(\text{alk})_b^-, -\text{C}(\text{S})-(\text{alk})_b^-\),

\(-\text{S}(\text{O})-(\text{alk})_b^-, -\text{S}(\text{O})_2-(\text{alk})_b^-, -\text{NR}^{14}\text{C}(\text{O})-(\text{alk})_b^-, -\text{C}(\text{O})\text{NR}^{14}-(\text{alk})_b^-, -\text{S}(\text{O})_2\text{NR}^{14}-(\text{alk})_b^-, -\text{NR}^{14}\text{S}(\text{O})_2-(\text{alk})_b^-, -\text{NR}^{14}\text{C}(\text{O})\text{NR}^{14}-(\text{alk})_b^-, -\text{NR}^{14}\text{C}(\text{S})\text{NR}^{14}-(\text{alk})_b^-, \) and \(-\text{NR}^{14}\text{S}(\text{O})_2\text{NR}^{14}-(\text{alk})_b^-;\)

\(\text{alk} \) is optionally substituted lower alkylene;

\(b \) is 0 or 1; and

\(\text{R}^{14} \) is hydrogen or lower alkyl.

In another embodiment of compounds of Formula Ia, \(R^2, R^5 \) and \(R^6 \) are hydrogen, further wherein \(R^4 \) is other than hydrogen. In another embodiment, \(R^2, R^4 \) and \(R^6 \) are hydrogen, further wherein \(R^5 \) is other than hydrogen.

The compounds of Formula Ia, and all sub-embodiments detailed herein, may be used to treat a subject suffering from or at risk of a Kit and/or Fms protein kinase mediated disease or condition, such as those disclosed in this application.

In particular embodiments the compound of Formula I has a structure according to the following sub-generic structure, Formula Ib,
all salts, prodrugs, tautomers, and isomers thereof,

wherein:

V and W are independently selected from the group consisting of N and CH;
U and Z are independently selected from the group consisting of N and CR18,

provided, however, that not more than one of W, U and Z is N;
A is selected from the group consisting of -CR19R20, -C(O)-, -C(S)-, -S-, -S(O)-,
-S(O)\textsubscript{2}-, -NR21, and -O-;
n is 0 or 1;
F and J are both C or one of F and J is C and the other of F and J is N;
E and K are selected from C, N, O or S;
G is selected from C or N;

wherein

when n is 1, F and J are C, and E, G and K are C, or any one of E, G and K is N
and the other two of E, G and K are C, provided that when E, G or K is N,
R15, R17 and R16, respectively, are absent,
when n is 0 and F and J are both C, then one of E and K is C or N and the other of E and K is C, N, O or S, provided both E and K are not C, and provided that when both E and K are N, one of R15 and R16 is absent, and provided that when one of E and K are N and the other is O or S, R15 and R16 are absent,
when n is 0, one of F and J is N and the other of F and J is C, then one of E and K is N and the other of E and K is C, or both E and K are C, provided that when E is N, R15 is absent and when K is N, R16 is absent;
R₁ is selected from the group consisting of optionally substituted lower alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl and optionally substituted heteroaryl;

R₁₅ is selected from the group consisting of hydrogen, optionally substituted lower alkyl, -OR²₂, -SR²₂ and halogen when E is C, is absent when E is O or S or when n=1 and E is N, and is absent or selected from the group consisting of hydrogen and optionally substituted lower alkyl when n=0 and E is N;

R₁₆ is selected from the group consisting of hydrogen, optionally substituted lower alkyl, -OR²₂, -SR²₂ and halogen when K is C, is absent when K is O or S or when n=1 and K is N, and is absent or selected from the group consisting of hydrogen and optionally substituted lower alkyl when n=0 and K is N;

R₁₇ is selected from the group consisting of hydrogen, optionally substituted lower alkyl, -OR²₂, -SR²₂ and halogen when G is C, or is absent when G is N;

R₁₈ is selected from the group consisting of hydrogen, halogen, optionally substituted lower alkyl, optionally substituted aryl, optionally substituted heteroaryl, -OH, -NH₂, -NO₂, -CN, -NHC(O)NH₂, -NHC(S)NH₂, -NHS(O)₂NH₂, -NR²⁴R²⁵, -NHR²³, -OR²³, -SR²³, -NHC(O)R²¹, -NR²²C(O)R²³, -NHC(S)R²³, -NR²³C(S)R²³, -NHS(O)₂R²³, -NR²³S(O)₂R²³, -NHC(O)NHR²³, -NR²³C(O)NH₂, -NR²³C(O)NR²³R²³, -NR²³C(O)NR²³R²³, -NHC(S)NHR²³, -NR³³C(S)NH₂, -NR³³C(S)NH₂, -NR³³C(S)NH₂, -NHC(S)NR²³R²³, -NR³³C(S)NR³³R²³, -NHS(O)₂NHR²³, -NR³³S(O)₂NHR²³, -NHS(O)₂NR³³R²³, and -NR³³S(O)₂NR³³R²³;

M is selected from the group consisting of a bond, -(CR¹⁹R²⁰)ₙ⁻,

-(CR¹⁹R²³)₂V(C(O))-(CR¹⁹R²³), -(CR¹⁹R²³)₂V(C(S))-(CR¹⁹R²³),

-(CR¹⁹R²³)₂V(O)-(CR¹⁹R²³), -(CR¹⁹R²³)₂V(O)-(CR¹⁹R²³),

-(CR¹⁹R²³)₁C(O)NR²⁶-(CR¹⁹R²³)ₙ⁻, -(CR¹⁹R²³)₁C(S)NR²⁶-(CR¹⁹R²³)ₙ⁻,

-(CR¹⁹R²³)₁V(S(O))-(CR¹⁹R²³), -(CR¹⁹R²³)₁V(S(O))-(CR¹⁹R²³),

-(CR¹⁹R²³)₁V(O)(C(O))-(CR¹⁹R²³)ₙ⁻, -(CR¹⁹R²³)₁V(O)(C(S))-(CR¹⁹R²³)ₙ⁻,

-(CR¹⁹R²³)₁V(O)NR²⁶-(CR¹⁹R²³)ₙ⁻, -(CR¹⁹R²³)₁V(O)NR²⁶-(CR¹⁹R²³)ₙ⁻,

-(CR¹⁹R²³)₁V(O)NR²⁶-(CR¹⁹R²³)ₙ⁻, -(CR¹⁹R²³)₁V(O)NR²⁶-(CR¹⁹R²³)ₙ⁻,

-(CR¹⁹R²³)₁V(O)NR²⁶-(CR¹⁹R²³)ₙ⁻, -(CR¹⁹R²³)₁V(O)NR²⁶-(CR¹⁹R²³)ₙ⁻,
- (CR
19
R
20
) 1 NR
26
C(O)NR
26-(CR
19
R
20
) s - , -(CR
19
R
20
) 1 NR
26
C(S)NR
26-(CR
19
R
20
) s - 3
- (CR
19
R
20
) 1 NR
26
S(O) 2 (CR
19
R
20
) s - 5 and -(CR
19
R
20
) 1 NR
26
S(O) 2 NR
26-(CR
19
R
20
) s - ;

wherein R
19
 and R
20
 at each occurrence are independently selected from the group consisting of hydrogen, fluoro, -OH, -NH
2
, lower alkyl, lower alkoxy, lower alkylthio, mono-alkylamino, di-alkylamino, and -NR
27
R
28
, wherein the alkyl chain(s) of lower alkyl, lower alkoxy, lower alkylthio, mono-alkylamino, or di-alkylamino are optionally substituted with one or more substituents selected from the group consisting of fluoro, -OH
5
-NH
2
, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro substituted lower alkylthio, mono-alkylamino, di-alkylamino, and cycloalkylamino; or

any two of R
19
 and R
20
 on the same or different carbons combine to form a 3-7

membered monocyclic cycloalkyl or 5-7 membered monocyclic heterocycloalkyl and any others of R
19
 and R
20
 are independently selected from the group consisting of hydrogen, fluoro, -OH, -NH
2
, lower alkyl, lower alkoxy, lower alkylthio, mono-alkylamino, di-alkylamino, and -NR
27
R
28
, wherein the alkyl chain(s) of lower alkyl, lower alkoxy, lower alkylthio, mono-alkylamino, or di-alkylamino are optionally substituted with one or more substituents selected from the group consisting of fluoro, -OH, -NH
2
, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro substituted lower alkylthio, mono-alkylamino, di-alkylamino, and cycloalkylamino, and wherein the monocyclic cycloalkyl or monocyclic heterocycloalkyl are optionally substituted with one or more substituents selected from the group consisting of halogen, -OH, -NH
2
, lower alkyl, fluoro substituted lower alkyl, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro substituted lower alkylthio, mono-alkylamino, di-alkylamino, and cycloalkylamino;

R
21
 and R
22
 at each occurrence are independently hydrogen or optionally substituted lower alkyl;

R
23
 at each occurrence is independently selected from the group consisting of optionally substituted lower alkyl, optionally substituted lower alkenyl, provided, however, that no alkene carbon thereof is bound to any -C(O)-, -C(S)-, -S(O) 2 , -O-, -S-, or -N- of any of -NHR
23
, -OR
23
, -SR
23
, -NHC(O)R
23
, -NR
23
C(O)R
23
, -NHC(S)R
23
, -NR
23
C(S)R
23
, -NHS(O) 2 R
23
, -NR
23
S(O) 2 R
23
, -NHC(O)NHR
23
, -NR
23
C(O)NH
2
, -NR
23
C(O)NHR
23
, -NHC(O)NR
23
R
23
, -NR
23
C(O)NR
23
R
23
,
-NHC(S)NHR23, -NR23C(S)NH\textsubscript{2}, -NR23C(S)NHR23, -NHC(S)NR23R23,
-NR23C(S)NR23R23, -NHS(O)\textsubscript{2}NHR23, -NR23S(O)\textsubscript{2}NH\textsubscript{2}, -NR23S(O)\textsubscript{2}NHR23,
-NHS(O)\textsubscript{2}NR23R23, or -NR23S(O)\textsubscript{2}NR23R23, optionally substituted lower alkynyl,
provided, however, that no alkyne carbon thereof is bound to any -C(O)-, -C(S)-, -S(O)-, -S(O)-, -O-, -S-, or -N- of any of -NHR23, -OR23, -SR23, -NHC(O)R23,
-NR23C(O)R23, -NHS(O)R23, -NR23C(S)R23, -NHS(O)\textsubscript{2}R23, -NR23S(O)\textsubscript{2}R23,
-NHC(O)NR23, -NR23C(O)NH\textsubscript{2}, -NR23C(O)NHR23, -NHC(O)NR23R23,
-NR23C(O)NR23R23, -NHC(S)NR23, -NR23C(S)NH\textsubscript{2}, -NR23C(S)NHR23,
-NH(C(S)NR23, -NR23C(S)NR23R23, -NHS(O)\textsubscript{2}NHR23, -NR23S(O)\textsubscript{2}NH\textsubscript{2},
-NR23S(O)\textsubscript{2}NR23R23, -NHS(O)\textsubscript{2}NR23R23, or -NR23S(O)\textsubscript{2}NR23R23, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl;

R24 and R25 at each occurrence are independently selected from the group consisting of optionally substituted lower alkyl, optionally substituted lower alkenyl, provided, however, that no alkene carbon thereof is bound to the nitrogen of -NR24R25, optionally substituted lower alkynyl, provided, however, that no alkyne carbon thereof is bound to the nitrogen of -NR24R25, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl; or

R24 and R25 together with the nitrogen to which they are attached form a monocyclic 5-7 membered optionally substituted heterocycloalkyl or a monocyclic 5 or 7 membered optionally substituted nitrogen containing heteroaryl;

R26 at each occurrence is independently selected from the group consisting of hydrogen, lower alkyl, and lower alky substituted with one or more substituents selected from the group consisting of fluoro, -OH, -NH\textsubscript{2}, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro substituted lower alkylthio, mono-alkylamino, fluoro substituted mono-alkylamino, di-alkylamino, fluoro substituted di-alkylamino, and -NR27R28, provided, however, that when R26 is substituted lower alkyl, any substitution on the lower alkyl carbon bound to the -N- of -NR26 is fluoro;

R27 and R28 combine with the nitrogen to which they are attached to form a 5-7 membered heterocycloalkyl or 5-7 membered heterocycloalkyl substituted with one or more substituents selected from the group consisting of fluoro, -OH, -NH\textsubscript{2},
lower alkyl, fluoro substituted lower alkyl, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, and fluoro substituted lower alkylthio;

u is 1-6;
t is 0-3; and
s is 0-3;

provided that

when V, W, U and Z are CH₃n=1, E₅F, G₅J, and K are C₅R₁⁵₅R₁⁶ and R₁⁷ are
H₅A is -CH₂-, -CH(OH)-, or -C(O)-, and M is -NHCH₂-, then R¹ is not phenyl, 4-trifluoromethyl-phenyl, 4-methoxy-phenyl, 4-chloro-phenyl, 4-fluoro-phenyl, 4-methyl-phenyl, 3-fluoro-phenyl or thiophen-2-yl,

when V, W, U and Z are CH₃n=1, E₅F, G₅J and K are C, R₁⁵, R₁⁶ and R₁⁷ are
H₅ and A is -CH₂-, then M-R¹ is not -NHCH₂CH(CH₃)₂,

when V, W, and U are CH₃n=1, E₅F, G₅J and K are C, R₁⁵, R₁⁶ and R₁⁷ are H, A is -CH₂-, M-R¹ is -OCH₃, and Z is CR¹⁸, then R¹⁸ is not thiophen-3-yl, and

when V₅W, and U are CH₃n=0, F₅J, and K are C₅E is N₅R₁⁵ is CH₃, R₁⁶ is H₅ A is -C(O)-, M-R¹ is -CH(CH₃)₃, and Z is CR¹⁸, then R¹⁸ is not 3-((E)-2-carboxy-vinyl)phenyl.

[0026] In one embodiment of the compounds of Formula Ib, E, J, K, G, F, n, R₁⁵, R₁⁶ and R₁⁷ are selected to provide structures selected from the group consisting of

![Chemical structures](image-url)
[0027] In one embodiment of compounds of Formula Ib, M is selected from the group consisting of -O-(CR19R20)\textsubscript{=}, -S-(CR19R20)\textsubscript{=}, -OC(O)-(CR19R20)\textsubscript{=}, -OC(S)-(CR19R20)\textsubscript{=}, -OC(O)NR26-(CR19R20)\textsubscript{=}, -OC(S)NR26-(CR19R20)\textsubscript{=}, -C(O)NR26-(CR19R20)\textsubscript{=}, -C(S)NR26-(CR19R20)\textsubscript{=}, -S(O)\textsubscript{2}NR26-(CR19R20)\textsubscript{=}, and -NR26-(CR19R20)\textsubscript{=}, wherein \(R_{15}^{15} \tau R_{16}^{16} \) and \(R_{17}^{17} \) are as defined for compounds of Formula Ib and wherein indicates the point of attachment of A and indicates the point of attachment of M.
In one embodiment of compounds of Formula Ib, R^26 at each occurrence is independently selected from the group consisting of hydrogen, lower alkyl, or lower alkyl substituted with 1, 2, or 3 substituents selected from the group consisting of fluoro, -OH, -NH₂, alkoxy, lower alkylthio, mono-alkylamino, di-alkylamino and cycloalkylamino, provided that any substitution on the carbon that is bound to the nitrogen of -NR^26 is fluoro.

In one embodiment of compounds of Formula Ib, R^1 is selected from the group consisting of optionally substituted aryl and optionally substituted heteroaryl.

In one embodiment of the compounds of Formula Ib, Z is N or CH, n is 1, E-R^15 is N or CH, K-R^16 is N or CH, and G-R^17 is N or CH, provided no more than one of E-R^15, K-R^16 and G-R^17 is N. In one embodiment, Z is N or CH, n is 1, and E-R^15, K-R^16 and G-R^17 are CH.

In one embodiment of the compounds of Formula Ib, V, W and Z are CH, U is CR^18, n is 1, E-R^15 is N or CH, K-R^16 is N or CH, and G-R^17 is N or CH, provided no more than one of E-R^15, K-R^16 and G-R^17 is N. In another embodiment, V, W and Z are CH, U is CR^18, n is 1, and E-R^15, K-R^16 and G-R^17 are CH.

In one embodiment of the compounds of Formula Ib, Z is N or CH, n is 1, E-R^15, K-R^16 and G-R^17 are CH, A is -CH₂⁻, M is -NHCH₂⁻, further wherein R^1 is optionally substituted phenyl. In another embodiment, V, Z, U and W are CH, n is 1, E-R^15 is N or CH, K-R^16 is N or CH, and G-R^17 is N or CH, provided no more than one of E-R^15, K-R^16 and G-R^17 is N.

In one embodiment of the compounds of Formula Ib, Z is N or CH, n is 1, E-R^15 is N or CH, K-R^16 is N or CH, and G-R^17 is N or CH, provided no more than one of E-R^15, K-R^16 and G-R^17 is N, and R^1 is phenyl optionally substituted with one or more substituents selected from the group consisting of halogen, -OH, -NH₂, -NO₂, -CN, optionally substituted lower alkyl and -OR, where R^29 is selected from the group consisting of optionally substituted lower alkyl, optionally substituted cycloalkyl,
optionally substituted heterocycloalkyl, optionally substituted aryl and optionally substituted heteroaryl.

[0034] In one embodiment of the compounds of Formula Ib, V, Z, U and W are CH, n is 1, E-R_{15}, K-R_{16} and G-R_{17} are CH, A is -CH_{2}, M is -NHCH_{2}, and R_{1} is optionally substituted phenyl, further wherein R_{1} is phenyl optionally substituted with one or more substituents selected from the group consisting of halogen, -OH, -NH_{2}, -NO_{2}, -CN, optionally substituted lower alkyl and -OR_{29}, where R_{29} is selected from the group consisting of optionally substituted lower alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl and optionally substituted heteroaryl.

[0035] In one embodiment of the compounds of Formula Ib, V, W and Z are CH, U is CR_{18}, n is 1, E-R_{15}, K-R_{16} and G-R_{17} are CH, A is -CH_{2}, M is -NHCH_{2}, and R_{1} is optionally substituted phenyl, further wherein R_{1} is phenyl optionally substituted with one or more substituents selected from the group consisting of halogen, -OH, -NH_{2}, -NO_{2}, -CN, optionally substituted lower alkyl and -OR_{29}, where R_{29} is selected from the group consisting of optionally substituted lower alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl and optionally substituted heteroaryl.

[0036] In one embodiment of the compounds of Formula Ib, when n is 1, and E, K and G are C, at least one of R_{15}, R_{16} and R_{17} is other than hydrogen. In another embodiment, n is 1, one of E, K, and G are N and the other two of E, K, and G are C and at least one of R_{15}, R_{16} and R_{17} is other than hydrogen. In another embodiment, n is 1, E, K and G are C, and at least one of R_{15}, R_{16} and R_{17} is other than hydrogen.

[0037] In one embodiment of the compounds of Formula Ib, n is 1, V and W are CH, U and Z are independently CR_{18}, one of E, K, and G are N and the other two of E, K, and G are C and at least one of R_{15}, R_{16} and R_{17} is other than hydrogen. In another embodiment, n is 1, V and W are CH, U and Z are independently CR_{18}, E, K and G are C, and at least one of R_{15}, R_{16} and R_{17} is other than hydrogen.

[0038] In one embodiment of the compounds of Formula Ib, n is 1, one of E, K, and G are N and the other two of E, K, and G are C, at least one of R_{15}, R_{16} and R_{17} is other than
hydrogen, A is -CH₂-, M is -NHCH₂-, further wherein R₁ is optionally substituted phenyl.

In another embodiment, n is 1, E, K, and G are C, at least one of R₁⁵, R₁⁶ and R₁⁷ is other than hydrogen, A is -CH₂-, M is -NHCH₂-, further wherein R₁ is optionally substituted phenyl.

[0039] In one embodiment of the compounds of Formula Ib, n is 1, V, Z, U and W are CH, one of E, K, and G are N and the other two of E, K, and G are C and at least one of R₁⁵, R₁⁶ and R₁⁷ is other than hydrogen. In another embodiment, V, Z, U and W are CH, E, K and G are C, and at least one of R₁⁵, R₁⁶ and R₁⁷ is other than hydrogen.

[0040] In one embodiment of the compounds of Formula Ib, Z is CR₁⁸, wherein R₁⁸ is other than hydrogen, n is 1, E-R₁⁵ is N or CH, K-R₁⁶ is N or CH and G-R₁⁷ is N or CH. In another embodiment, Z is CR₁⁸, wherein R₁⁸ is other than hydrogen, n is 1, and E-R₁⁵, K-R₁⁶ and G-R₁⁷ are CH. In another embodiment, Z is CR₁⁸, wherein R₁⁸ is other than hydrogen, U is CR₁⁸, V and W are CH, n is 1, and E-R₁⁵, K-R₁⁶ and G-R₁⁷ are CH, further wherein U is CH.

[0041] In one embodiment of the compounds of Formula Ib, Z is CR₁⁸, wherein R₁⁸ is other than hydrogen, n is 1, E-R₁⁵, K-R₁⁶ and G-R₁⁷ are CH, A is -CH₂-, M is -NHCH₂-, further wherein R₁ is optionally substituted phenyl. In a further embodiment, Z is CR₁⁸, wherein R₁⁸ is other than hydrogen, U is CR₁⁸, V and W are CH, n is 1, E-R₁⁵, K-R₁⁶ and G-R₁⁷ are CH, A is -CH₂-, M is -NHCH₂-, further wherein R₁ is optionally substituted phenyl. In a further embodiment, Z is CR₁⁸, wherein R₁⁸ is other than hydrogen, V, U and W are CH, n is 1, E-R₁⁵, K-R₁⁶ and G-R₁⁷ are CH, A is -CH₂-, M is -NHCH₂-, further wherein R₁ is optionally substituted phenyl.

[0042] In one embodiment of the compounds of Formula Ib, U is CR₁⁸, wherein R₁⁸ is other than hydrogen, n is 1, E-R₁⁵ is N or CH, K-R₁⁶ is N or CH and G-R₁⁷ is N or CH. In another embodiment, U is CR₁⁸, wherein R₁⁸ is other than hydrogen, n is 1, and E-R₁⁵, K-R₁⁶ and G-R₁⁷ are CH. In another embodiment, U is CR₁⁸, wherein R₁⁸ is other than hydrogen, Z is CR₁⁸, V and W are CH, n is 1, and E-R₁⁵, K-R₁⁶ and G-R₁⁷ are CH, further wherein Z is CH.

[0043] In one embodiment of the compounds of Formula Ib, U is CR₁⁸, wherein R₁⁸ is other than hydrogen, n is 1, E-R₁⁵, K-R₁⁶ and G-R₁⁷ are CH, A is -CH₂-, M is -NHCH₂-.
further wherein \(R^1 \) is optionally substituted phenyl. In a further embodiment, \(U = CR^{18} \), wherein \(R^{18} \) is other than hydrogen, \(Z = CR^{18}, V \) and \(W \) are CH, \(n = 1 \), \(E-R^{15}, K-R^{16} \) and \(G-R^{17} \) are CH, \(A = -CH_2^- \), \(M = -NHCH_2^- \), further wherein \(R^1 \) is optionally substituted phenyl. In a further embodiment, \(U = CR^{18}, \) wherein \(R^{18} \) is other than hydrogen, \(V, Z \) and \(W \) are CH, \(n = 1 \), \(E-R^{15}, K-R^{16} \) and \(G-R^{17} \) are CH, \(A = -CH_2^- \), \(M = -NHCH_2^- \), further wherein \(R^1 \) is optionally substituted phenyl.

[0044] In one embodiment of the compounds of Formula Ib, further to any of the above embodiments, \(R^{15}, R^{16} \) and \(R^{17} \) are independently selected from the group consisting of halogen, -OH, lower alkyl, fluoro substituted lower alkyl, lower alkoxy, and fluoro substituted lower alkoxy. Further to any of these embodiments \(R^1 \) is phenyl optionally substituted with one or more substituents selected from the group consisting of halogen, -OH, -NH_2, -NO_2, -CN, optionally substituted lower alkyl and -OR \(^{29} \), where \(R^{29} \) is selected from the group consisting of optionally substituted lower alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl and optionally substituted heteroaryl.

[0045] In one embodiment of the compounds of Formula Ib, further to any of the above embodiments, \(R^{18} \) is selected from the group consisting of halogen, -OH, optionally substituted lower alkyl and -OR \(^{29} \), where \(R^{29} \) is selected from the group consisting of optionally substituted lower alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl and optionally substituted heteroaryl. Further to any of these embodiments, \(R^1 \) is phenyl optionally substituted with one or more substituents selected from the group consisting of halogen, -OH, -NH_2, -NO_2, -CN, optionally substituted lower alkyl and -OR \(^{29} \), where \(R^{29} \) is selected from the group consisting of optionally substituted lower alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl and optionally substituted heteroaryl.

[0046] In another embodiment of compounds of Formula Ib, \(M \) is a bond and \(R^1 \) is other than thiophenyl.

[0047] In another embodiment of the compounds of Formula Ib, \(Z = N \) or \(CR^{18} \) wherein \(R^{18} \) is not hydrogen. Further to this embodiment, as allowed in the description of Formula
Ib, E is NR15 or CR15, K is NR16 or CR16 and G is CR17, or combinations thereof, wherein at least one of R15, R16 and R17 is not hydrogen.

[0048] The compounds of Formula Ib, and all sub-embodiments detailed herein, may be used to treat a subject suffering from or at risk of a Kit and/or Fms protein kinase mediated disease or condition, such as those disclosed in this application.

[0049] In one embodiment, a compound of Formula I has a structure according to the following sub-generic structure, Formula Ig,

\begin{center}
\includegraphics{formula_ig.png}
\end{center}

Formula Ig,

all salts, prodrugs, tautomers, and isomers thereof,

wherein:

- Z\textsubscript{1} is selected from the group consisting of N and CR34;
- U\textsubscript{1} is selected from the group consisting of N and CR35;
- A\textsubscript{1} is selected from the group consisting of -CH\textsubscript{2}- and -C(O)-;
- M\textsubscript{3} is selected from the group consisting of a bond, -NR39-, -S-, -O-, -NR39CH\textsubscript{2}-, -NR39CH(R40)-, -SCH\textsubscript{2}-, -OCH\textsubscript{2}-, -C(O)NR39-, -S(O)\textsubscript{2}NR39-, -CH\textsubscript{2}NR39-, -CH(R40)NR39-, -NR39C(O)-, and -NR39S(O)\textsubscript{2}-;
- n is 0 or 1;
- v is 0, 1, 2 or 3;
- F\textsubscript{1} and J\textsubscript{1} are both C or one of F\textsubscript{1} and J\textsubscript{1} is C and the other of F\textsubscript{1} and J\textsubscript{1} is N;
- E\textsubscript{1} and K\textsubscript{1} are selected from C, N, O or S;
- G\textsubscript{1} is selected from C or N;

wherein

- when n is 1, F\textsubscript{1} and J\textsubscript{1} are C, and E\textsubscript{1}, G\textsubscript{1} and K\textsubscript{1} are C, or any one of E\textsubscript{1}, G\textsubscript{1} and K\textsubscript{1} is N and the other two of E\textsubscript{1}, G\textsubscript{1} and K\textsubscript{1} are C, provided that when E\textsubscript{1}, G\textsubscript{1} or K\textsubscript{1} is N, R36, R37 and R38, respectively, are absent.
when n is 0 and F_1 and J_1 are both C, then one of E_1 and K_1 is C or N and the other of E_1 and K_1 is C, N, O or S, provided both E_1 and K_1 are not C, and provided that when both E_1 and K_1 are N, one of R_3^{36} and R_3^{37} is absent, and provided that when one of E_1 and K_1 are N and the other is O or S, R_3^{36} and R_3^{37} are absent,

when n is 0, one O, and J_1 is N and the other O, and J_1 is C, then one of E_1 and K_1 is N and the other of E_1 and K_1 is C, or both E_1 and K_1 are C, provided that when E_1 is N, R_3^{36} is absent and when K_1 is N, R_3^{37} is absent;

Cy is selected from the group consisting of cycloalkyl, heterocycloalkyl, aryl and heteroaryl;

R_3^{34} and R_3^{35} are independently selected from the group consisting of hydrogen, $-OR_4^{41}$, $-SR_4^{41}$, $-NHR_4^{41}$, $-NR_4^{41}R_4^{41}$, $-NR_3^{39}C(O)R_4^{41}$, $-NR_3^{39}S(O)_2R_4^{41}$, halogen, lower alkyl, cycloalkyl, heterocycloalkyl, aryl and heteroaryl, wherein lower alkyl is optionally substituted with one or more substituents selected from the group consisting of fluoro, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro substituted lower alkylthio, mono-alkylamino, di-alkylamino, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl, wherein cycloalkyl, heterocycloalkyl, aryl, and heteroaryl as R_3^{34} or R_3^{35}, or as substituents of lower alkyl are optionally substituted with one or more substituents selected from the group consisting of $-OH$, $-NH_2$, $-CN$, $-NO_2$, $-S(O)_2NH_2$, $-C(O)NH_2$, $-OR_4^{42}$, $-SR_4^{42}$, $-NHR_4^{42}$, $-NR_4^{42}R_4^{42}$, $-NR_3^{39}C(O)R_4^{42}$, $-NR_3^{39}S(O)_2R_4^{42}$, $-S(O)_2R_4^{42}$, halogen, lower alkyl, fluoro substituted lower alkyl, and cycloalkylamino;

R_3^{45} at each occurrence is independently selected from the group consisting of $-OR_4^{41}$, $-SR_4^{41}$, $-NHR_4^{41}$, $-NR_4^{41}R_4^{41}$, $-NR_3^{39}C(O)R_4^{41}$, $-NR_3^{39}S(O)_2R_4^{41}$, halogen, lower alkyl, cycloalkyl, heterocycloalkyl, aryl and heteroaryl, wherein lower alkyl is optionally substituted with one or more substituents selected from the group consisting of fluoro, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro substituted lower alkylthio, mono-alkylamino, di-alkylamino, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl, wherein cycloalkyl, heterocycloalkyl, aryl, and heteroaryl as R_3^{45}, or as substituents of lower alkyl are optionally substituted with one or more substituents selected from the group consisting of $-OH$, $-NH_2$, $-CN$, $-NO_2$, $-S(O)_2NH_2$, $-C(O)NH_2$, $-OR_4^{42}$, $-SR_4^{42}$, $-NHR_4^{42}$, $-NR_4^{42}R_4^{42}$,
-NR39C(O)R42, -NR39S(O)\textsubscript{2}R42, -S(O)\textsubscript{2}R42, halogen, lower alkyl, fluoro substituted lower alkyl, and cycloalkylamino;

R36 is selected from the group consisting of hydrogen, halogen, lower alkyl, fluoro substituted lower alkyl, lower alkoxy, and fluoro substituted lower alkoxy when E\textsubscript{1} is C, is absent when E\textsubscript{1} is O or S or when n=1 and E\textsubscript{1} is N, and is absent or selected from the group consisting of hydrogen, lower alkyl, and fluoro substituted lower alkyl when n=0 and E\textsubscript{1} is N;

R37 is selected from the group consisting of hydrogen, halogen, lower alkyl, fluoro substituted lower alkyl, lower alkoxy, and fluoro substituted lower alkoxy when K\textsubscript{1} is C, is absent when K\textsubscript{1} is O or S or when n=1 and K\textsubscript{1} is N, and is absent or selected from the group consisting of hydrogen, lower alkyl, and fluoro substituted lower alkyl when n=0 and K\textsubscript{1} is N;

R38 is selected from the group consisting of hydrogen, halogen, lower alkyl, fluoro substituted lower alkyl, lower alkoxy, and fluoro substituted lower alkoxy when G\textsubscript{1} is C, or is absent when G\textsubscript{1} is N;

R39 at each occurrence is independently selected from the group consisting of hydrogen and lower alkyl;

R40 is selected from the group consisting of lower alkyl, and fluoro substituted lower alkyl;

R41 is selected from the group consisting of lower alkyl, cycloalkyl, heterocycloalkyl, aryl and heteroaryl, wherein lower alkyl is optionally substituted with one or more substituents selected from the group consisting of fluoro, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro substituted lower alkylthio, monoalkylamino, di-alkylamino, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl, wherein cycloalkyl, heterocycloalkyl, aryl, and heteroaryl as R41 or as substituents of lower alkyl are are optionally substituted with one or more substituents selected from the group consisting of -OH, -NH\textsubscript{2}, -CN, -NO\textsubscript{2}, -S(O)\textsubscript{2}NH\textsubscript{2}, -C(O)NH\textsubscript{2}, -OR42, -SR42, -NHR42, -NR42R42, -NR39C(O)R42, -NR39S(O)\textsubscript{2}R42, -S(O)\textsubscript{2}R42, halogen, lower alkyl, fluoro substituted lower alkyl, and cycloalkylamino; and

R42 at each occurrence is independently selected from the group consisting of lower alkyl, heterocycloalkyl and heteroaryl, wherein lower alkyl is optionally substituted with one or more substituents selected from the group consisting of fluoro, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro
substituted lower alkylthio, mono-alkylamino, di-alkylamino, and
cycloalkylamino.

[0050] In one embodiment of compounds of Formula Ig, n is 1, G₁ and K₁ are C, and E
is N or C, preferably wherein E is C.

[0051] In one embodiment of compounds of Formula Ig, M₃ is selected from the group
consisting of -NR₃⁹-, -O-, -NR₃⁹CH₂-, -NR₃⁹CH(R⁴₀)-, -SCH₂-, -OCH₂-, -CH₂NR₃⁹-, -NR₃⁹C(O)-, and
-NR₃⁹S(O)₂-, preferably wherein M₃ is -NR₃⁹CH₂-, -NR₃⁹CH(R⁴₀)-, -SCH₂-, -OCH₂-, -CH₂NR₃⁹-, -NR₃⁹C(O)-, and
-NR₃⁹S(O)₂-, preferably wherein M₃ is -NR₃⁹CH₂-, -NR₃⁹CH(R⁴₀)-, -SCH₂-, -OCH₂-, or
-CH₂NR₃⁹-.

[0052] In one embodiment of compounds of Formula Ig, n is 1, G₁ and K₁ are C, and E
is N or C, preferably wherein E is C, and M₃ is selected from the group consisting of
-NR₃⁹-, -O-, -NR₃⁹CH₂-, -NR₃⁹CH(R⁴₀)-, -SCH₂-, -OCH₂-, -CH₂NR₃⁹-, -NR₃⁹C(O)-, and
-NR₃⁹S(O)₂-, preferably wherein M₃ is -NR₃⁹CH₂-, -NR₃⁹CH(R⁴₀)-, -SCH₂-, -OCH₂-, -CH₂NR₃⁹-, or
-CH₂NR₃⁹-.

[0053] In one embodiment of compounds of Formula Ig, each R⁴⁵ is selected from the
group consisting of -OH, -NH₂, -CN, -NO₂, halogen, lower alkyl, fluoro substituted lower
alkyl, lower alkoxy, fluoro substituted lower alkoxy, lower thioalkyl, fluoro substituted
lower thioalkyl, mono-alkylamino, di-alkylamino and cycloalkylamino, preferably
wherein v is 0, 1, or 2, also Oor 1.

[0054] In one embodiment of compounds of Formula Ig, n is 1, G₁ and K₁ are C, and E
is N or C, preferably wherein E is C, M₃ is selected from the group consisting of -NR₃⁹-, -O-, -NR₃⁹CH₂-, -NR₃⁹CH(R⁴₀)-, -SCH₂-, -OCH₂-, -CH₂NR₃⁹-, -NR₃⁹C(O)-, and
-NR₃⁹S(O)₂-, preferably wherein M₃ is -NR₃⁹CH₂-, -NR₃⁹CH(R⁴₀)-, -SCH₂-, -OCH₂-, -CH₂NR₃⁹-, or
-CH₂NR₃⁹-, and each R⁴⁵ is selected from the group consisting of -OH, -NH₂, -CN, -NO₂,
halogen, lower alkyl, fluoro substituted lower alkyl, lower alkoxy, fluoro substituted lower
alkoxy, lower thioalkyl, fluoro substituted lower thioalkyl, mono-alkylamino, di-
alkylamino and cycloalkylamino, preferably wherein v is 0, 1, or 2, also Oor 1.

[0055] In one embodiment of compounds of Formula Ig, Z₁ is CR₃⁴, U₁ is CR₃⁵, and R₃⁴
and R₃⁵ are both hydrogen. In one embodiment, Z₁ is CR₃⁴, U₁ is CR₃⁵, and R₃⁴ and R₃⁵
are independently selected from the group consisting of hydrogen, -OR⁴¹, halogen, lower
alkyl, cycloalkyl, heterocycloalkyl, aryl and heteroaryl, wherein cycloalkyl,
heterocycloalkyl, aryl and heteroaryl are optionally substituted with one or more substituents selected from the group consisting of -OH, -NH₂, -CN, -NO₂, -S(O)₂NH₂, -C(O)NH₂, -OR, -SR, -NHR, -NR²R₄², -NR³9C(O)R⁴², -NR³⁹S(O)₂R⁴², -S(O)₂R⁴², halogen, lower alkyl, fluoro substituted lower alkyl, cycloalkylamino, and wherein lower alkyl is optionally substituted with one or more substituents selected from the group consisting of fluoro, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro substituted lower alkylthio, mono-alkylamino, di-alkylamino, and cycloalkylamino. In a further embodiment, one of R³⁴ and R³⁵ is hydrogen, and the other of R³⁴ and R³⁵ is selected from the group consisting of hydrogen, halogen, lower alkyl, lower alkoxy, aryl and heteroaryl, wherein aryl and heteroaryl are optionally substituted with one or more substituents selected from the group consisting of -OH, -NH₂, -CN, -NO₂, -S(O)₂NH₂, -C(O)NH₂, -OR, -SR, -NHR, -NR²R₄², -NR³9C(O)R⁴², -NR³⁹S(O)₂R⁴², -S(O)₂R⁴², halogen, lower alkyl, fluoro substituted lower alkyl, cycloalkylamino, and wherein lower alkyl and lower alkoxy are optionally substituted with one or more substituents selected from the group consisting of fluoro, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro substituted lower alkylthio, mono-alkylamino, di-alkylamino, and cycloalkylamino, further wherein the other of R³⁴ and R³⁵ is selected from the group consisting of halogen, lower alkyl, and lower alkoxy, wherein lower alkyl and lower alkoxy are optionally substituted with one or more substituents selected from the group consisting of fluoro, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro substituted lower alkylthio, mono-alkylamino, di-alkylamino, and cycloalkylamino.

[0056] In one embodiment of compounds of Formula Ig, each R⁴⁵ is independently selected from the group consisting of -OH, -NH₂, -CN, -NO₂, halogen, lower alkyl, fluoro substituted lower alkyl, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro substituted lower alkylthio, mono-alkylamino, di-alkylamino and cycloalkylamino, preferably wherein v is 0, 1, or 2, also Oor 1, Z₁ is CR³⁴, U₁ is CR³⁵, and R³⁴ and R³⁵ are independently selected from the group consisting of hydrogen, -OR, halogen, lower alkyl, cycloalkyl, heterocycloalkyl, aryl and heteroaryl, wherein cycloalkyl, heterocycloalkyl, aryl and heteroaryl are optionally substituted with one or more substituents selected from the group consisting of -OH, -NH₂, -CN, -NO₂, -S(O)₂NH₂, -C(O)NH₂, -OR, -SR, -NHR, -NR²R₄², -NR³⁹C(O)R⁴², -NR³⁹S(O)₂R⁴², -S(O)₂R⁴², halogen, lower alkyl, fluoro substituted lower alkyl, and cycloalkylamino, and wherein
lower alkyl is optionally substituted with one or more substituents selected from the group consisting of fluoro, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro substituted lower alkylthio, mono-alkylamino, di-alkylamino, and cycloalkylamino. In a further embodiment, both of R^{34} and R^{35} are hydrogen.

[0057] In one embodiment of compounds of Formula I$_g$ each R^{45} is selected from the group consisting of -OH, -NH_2, -CN, -NO$_2$, halogen, lower alkyl, fluoro substituted lower alkyl, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro substituted lower alkylthio, lower thioalkyl, mono-alkylamino, di-alkylamino and cycloalkylamino, preferably wherein v is 0, 1, or 2, also 0 or 1, Z_1 is CR^{34}, U_1 is CR^{35}, one of R^{34} and R^{35} is hydrogen, and the other of R^{34} and R^{35} is selected from the group consisting of hydrogen, halogen, lower alkyl, lower alkoxy, aryl and heteroaryl, wherein aryl and heteroaryl are optionally substituted with one or more substituents selected from the group consisting of -OH, -NH_2, -CN, -NO$_2$, -S(O)$_2$NH$_2$, -C(O)NH$_2$, -OR42, -SR42, -NHR42, -NR42R42, -NR39C(O)R42, -NR39S(O)$_2$R42, -S(O)$_2$R42, halogen, lower alkyl, fluoro substituted lower alkyl, and cycloalkylamino, and wherein lower alkyl and lower alkoxy are optionally substituted with one or more substituents selected from the group consisting of fluoro, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro substituted lower alkylthio, mono-alkylamino, di-alkylamino, and cycloalkylamino, further wherein the other of R^{34} and R^{35} is selected from the group consisting of halogen, lower alkyl, and lower alkoxy, wherein lower alkyl and lower alkoxy are optionally substituted with one or more substituents selected from the group consisting of fluoro, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro substituted lower alkylthio, mono-alkylamino, di-alkylamino, and cycloalkylamino.

[0058] In one embodiment of compounds of Formula I$_g$, n is 1, G_1 and K_1 are C, and E is N or C, preferably wherein E is C, M_3 is selected from the group consisting of -NR$^{39-}$, -0-, -NR39CH$_2$-, -NR39CH(R40)-, -SCH$_2$-, -OCH$_2$-, -CH$_2$NR$^{39-}$, -NR39C(O)-, and -NR39S(O)$_2$-, preferably wherein M_3 is -NR39CH$_2$-, -NR39CH(R40)-, -SCH$_2$-, -OCH$_2$-, or -CH$_2$NR$^{39-}$, each R^{45} is selected from the group consisting of -OH, -NH_2, -CN, -NO$_2$, halogen, lower alkyl, fluoro substituted lower alkyl, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro substituted lower alkylthio, lower thioalkyl, fluoro substituted lower thioalkyl, mono-alkylamino, di-alkylamino and cycloalkylamino, preferably wherein v is Q, 1, or 2, also Oor 1, Z_1 is CR^{34}, U_1 is CR^{35}, and R^{34} and R^{35} are both hydrogen.
In one embodiment of compounds of Formula I, n is 1, G and K are C, and E is N or C, preferably wherein E is C, M is selected from the group consisting of -NR³⁹, -O-, -NR³⁹CH₂-, -NR³⁹CH(R⁴⁰)-, -SCH₂-, -OCH₂-, -CH₂NR³⁹, -NR³⁹C(O)-, and -NR³⁹S(O)₂-, preferably wherein M is -NR³⁹CH₂-, -NR³⁹CH(R⁴⁰)-, -SCH₂-, -OCH₂-, or -CH₂NR³⁹-, each R⁴⁵ is selected from the group consisting of -OH, -NH₂, -CN, -NO₂, halogen, lower alkyl, fluoro substituted lower alkyl, lower alkoxy, fluoro substituted lower alkoxy, lower thioalkyl, fluoro substituted lower thioalkyl, mono-alkylamino, di-alkylamino and cycloalkylamino, preferably wherein v is 0, 1, or 2, also O or 1, Z is CR³⁴ and U is CR³⁵, and R³⁴ and R³⁵ are independently selected from the group consisting of hydrogen, -OR⁴¹, halogen, lower alkyl, cycloalkyl, heterocycloalkyl, aryl and heteroaryl, wherein cycloalkyl, heterocycloalkyl, aryl and heteroaryl are optionally substituted with one or more substituents selected from the group consisting of -OH, -NH₂, -CN, -NO₂, -S(O)₂NH₂, -C(O)NH₂, -OR⁴², -SR⁴², -NHR⁴², -NR⁴²R⁴², -NR³⁹C(O)R⁴², -NR³⁹S(O)₂R⁴², -S(O)₂R⁴², halogen, lower alkyl, fluoro substituted lower alkyl, and cycloalkylamino, and wherein lower alkyl is optionally substituted with one or more substituents selected from the group consisting of fluoro, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro substituted lower alkylthio, mono-alkylamino, di-alkylamino, and cycloalkylamino. In a further embodiment, one of R³⁴ and R³⁵ is hydrogen, and the other of R³⁴ and R³⁵ is selected from the group consisting of halogen, lower alkyl, lower alkoxy, aryl and heteroaryl, wherein aryl and heteroaryl are optionally substituted with one or more substituents selected from the group consisting of -OH, -NH₂, -CN, -NO₂, -S(O)₂NH₂, -C(O)NH₂, -OR⁴², -SR⁴², -NHR⁴², -NR⁴²R⁴², -NR³⁹C(O)R⁴², -NR³⁹S(O)₂R⁴², -S(O)₂R⁴², halogen, lower alkyl, fluoro substituted lower alkyl, and cycloalkylamino, and wherein lower alkyl and lower alkoxy are optionally substituted with one or more substituents selected from the group consisting of fluoro, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro substituted lower alkylthio, mono-alkylamino, di-alkylamino, and cycloalkylamino, further wherein the other of R³⁴ and R³⁵ is selected from the group consisting of halogen, lower alkyl, and lower alkoxy, wherein lower alkyl and lower alkoxy are optionally substituted with one or more substituents selected from the group consisting of fluoro, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro substituted lower alkylthio, mono-alkylamino, di-alkylamino, and cycloalkylamino, further wherein R³⁴ is hydrogen.
[0060] The compounds of Formula Ig, and all sub-embodiments detailed herein, may be used to treat a subject suffering from or at risk of a Kit and/or Fms protein kinase mediated disease or condition, such as those disclosed in this application.

[0061] In certain embodiments of the above compounds, compounds are excluded where N (except where N is a heteroaryl ring atom), O, or S is bound to a carbon that is also bound to N (except where N is a heteroaryl ring atom), O, or S; or where N (except where N is a heteroaryl ring atom), O, C(S), C(O), or S(O)ₙ (n is 0-2) is bound to an alkene carbon of an alkenyl group or bound to an alkyne carbon of an alkynyl group; accordingly, in certain embodiments compounds which include linkages such as the following are excluded from the present invention: -NR-CH₂-NR-, -O-CH₂-NR-, -S-CH₂-NR-, -NR-CH₂-O-, -O-CH₂-O-, -S-CH₂-O-, -NR-CH₂-S-, -O-CH₂-S-, -S-CH₂-S-, -NR-CH=CH-, -CH=CH-NR-, -NR-C≡-, -C≡-NR-, -O-CH=CH-, -CH=CH-O-, -C≡-, -C≡-O-, -S(O)₀₂₋₋CH=CH-, -CH=CH-S(O)₀₂₋₋, -S(O)₀₂₋₋C≡-, -C≡-S(O)₀₂₋₋, -C(O)-CH=CH-, -CH=CH-C(O)-, -C≡-C(O)-, or -C(O)-C≡-, -C(S)-CH=CH-, -CH=CH-C(S)-, -C≡-C(S)-, or -C(S)-C≡-.

[0062] In another aspect, the invention provides methods for treating a c-kit-mediated disease or condition in an animal subject (e.g. a mammal such as a human, other primates, sports animals, animals of commercial interest such as cattle, farm animals such as horses, or pets such as dogs and cats), e.g., a disease or condition characterized by abnormal c-kit activity (e.g. kinase activity). Invention methods involve administering to the subject suffering from or at risk of a c-kit-mediated disease or condition an effective amount of a compound of Formula I, Formula Ia, Formula Ib, or Formula Ig, and all sub-embodiments thereof, hi one embodiment, the c-kit mediated disease is selected from the group consisting of malignancies, including mast cell tumors, small cell lung cancer, testicular cancer, gastrointestinal stromal tumors (GISTs), glioblastoma, astrocytoma, neuroblastoma, carcinomas of the female genital tract, sarcomas of neuroectodermal origin, colorectal carcinoma, carcinoma in situ, Schwann cell neoplasia associated with neurofibromatosis, acute myelocytic leukemia, acute lymphocytic leukemia, chronic myelogenous leukemia, mastocytosis, melanoma, and canine mast cell tumors, and inflammatory diseases, including asthma, rheumatoid arthritis, allergic rhinitis, multiple sclerosis, inflammatory bowel syndrome, transplant rejection, and hypereosinophilia.
In a related aspect, compounds of Formula I, Formula Ia, Formula Ib, or Formula Ig, and all sub-embodiments thereof, can be used in the preparation of a medicament for the treatment of a \(c \text{-kit} \)-mediated disease or condition selected from the group consisting of malignancies, including mast cell tumors, small cell lung cancer, testicular cancer, gastrointestinal stromal tumors (GISTs), glioblastoma, astrocytoma, neuroblastoma, carcinomas of the female genital tract, sarcomas of neuroectodermal origin, colorectal carcinoma, carcinoma in situ, Schwann cell neoplasia associated with neurofibromatosis, acute myelocytic leukemia, acute lymphocytic leukemia, chronic myelogenous leukemia, mastocytosis, melanoma, and canine mast cell tumors, and inflammatory diseases, including asthma, rheumatoid arthritis, allergic rhinitis, multiple sclerosis, inflammatory bowel syndrome, transplant rejection, and hypereosinophilia.

In a further aspect, the invention provides methods for treating a \(c \text{-fms} \)-mediated disease or condition in an animal subject (e.g. a mammal such as a human, other primates, sports animals, animals of commercial interest such as cattle, farm animals such as horses, or pets such as dogs and cats), e.g., a disease or condition characterized by abnormal \(c \text{-fms} \) activity (e.g. kinase activity). Invention methods involve administering to the subject suffering from or at risk of a \(c \text{-fms} \)-mediated disease or condition an effective amount of compound of Formula I, Formula Ia, Formula Ib, or Formula Ig, and all sub-embodiments thereof. In one embodiment, the \(c \text{-fms} \) mediated disease is selected from the group consisting of immune disorders, including rheumatoid arthritis, systemic lupus erythematosus (SLE), Wegener's granulomatosis, and transplant rejection, inflammatory diseases including Chronic Obstructive Pulmonary Disease (COPD), emphysema, and atherosclerosis, metabolic disorders, including insulin resistance, hyperglycemia, and lipolysis, disorders of bone structure or mineralization, including osteoporosis, increased risk of fracture, hypercalcemia, and bone metastases, kidney diseases, including nephritis (e.g. glomerulonephritis, interstitial nephritis, Lupus nephritis), tubular necrosis, diabetes-associated renal complications, and hypertrophy and cancers, including multiple myeloma, acute myeloid leukemia, chronic myeloid leukemia (CML), breast cancer, and ovarian cancer.

In a related aspect, compounds of Formula I, Formula Ia, Formula Ib, or Formula Ig, and all sub-embodiments thereof, can be used in the preparation of a medicament for the treatment of a \(c \text{-fms} \)-mediated disease or condition selected from the group consisting
of immune disorders, including rheumatoid arthritis, systemic lupus erythematosus (SLE), Wegener's granulomatosis, and transplant rejection, inflammatory diseases including Chronic Obstructive Pulmonary Disease (COPD), emphysema, and atherosclerosis, metabolic disorders, including insulin resistance, hyperglycemia, and lipolysis, disorders of bone structure or mineralization, including osteoporosis, increased risk of fracture, hypercalcemia, and bone metastases, kidney diseases, including nephritis (e.g. glomerulonephritis, interstitial nephritis, Lupus nephritis), tubular necrosis, diabetes-associated renal complications, and hypertrophy and cancers, including multiple myeloma, acute myeloid leukemia, chronic myeloid leukemia (CML), breast cancer, and ovarian cancer.

In a further aspect, the invention provides methods for treating a c-fms-mediated and/or c-kit-mediated disease or condition in an animal subject (e.g. a mammal such as a human, other primates, sports animals, animals of commercial interest such as cattle, farm animals such as horses, or pets such as dogs and cats), e.g., a disease or condition characterized by abnormal c-fms activity and/or c-kit activity (e.g. kinase activity). Invention methods involve administering to the subject suffering from or at risk of a c-fms-mediated and/or c-kit mediated disease or condition an effective amount of compound of Formula I, Formula Ia, Formula Ib, or Formula Ig, and all sub-embodiments thereof. In one embodiment, the c-fms and/or c-kit mediated disease is selected from the group consisting of mast cell tumors, small cell lung cancer, testicular cancer, gastrointestinal stromal tumors, glioblastoma, astrocytoma, neuroblastoma, carcinomas of the female genital tract, sarcomas of neuroectodermal origin, colorectal carcinoma, carcinoma in situ, Schwann cell neoplasia associated with neurofibromatosis, acute myeloid leukemia, acute lymphocytic leukemia, chronic myelogenous leukemia, multiple myeloma, mastocytosis, melanoma, breast cancer, ovarian cancer, canine mast cell tumors, hypertrophy, asthma, rheumatoid arthritis, allergic rhinitis, multiple sclerosis, inflammatory bowel syndrome, transplant rejection, systemic lupus erythematosus, Wegener's granulomatosis, Chronic Obstructive Pulmonary Disease, emphysema, atherosclerosis, insulin resistance, hyperglycemia, lipolysis, hypereosinophilia, osteoporosis, increased risk of fracture, hypercalcemia, bone metastases, glomerulonephritis, interstitial nephritis, Lupus nephritis, tubular necrosis, and diabetes-associated renal complications.
In a related aspect, compounds of Formula I₂, Formula Ia, Formula Ib, or Formula Ig, and all sub-embodiments thereof, can be used in the preparation of a medicament for the treatment of a c-fms-mediated and/or c-kit mediated disease or condition selected from the group consisting of mast cell tumors, small cell lung cancer, testicular cancer, gastrointestinal stromal tumors, glioblastoma, astrocytoma, neuroblastoma, carcinomas of the female genital tract, sarcomas of neuroectodermal origin, colorectal carcinoma, carcinoma in situ, Schwann cell neoplasia associated with neurofibromatosis, acute myeloid leukemia, acute lymphocytic leukemia, chronic myelogenous leukemia, multiple myeloma, mastocytosis, melanoma, breast cancer, ovarian cancer, canine mast cell tumors, hypertrophy, asthma, rheumatoid arthritis, allergic rhinitis, multiple sclerosis, inflammatory bowel syndrome, transplant rejection, systemic lupus erythematosus, Wegener's granulomatosis, Chronic Obstructive Pulmonary Disease, emphysema, atherosclerosis, insulin resistance, hyperglycemia, lipolysis, hypereosinophilia, osteoporosis, increased risk of fracture, hypercalcemia, bone metastases, glomerulonephritis, interstitial nephritis, Lupus nephritis, tubular necrosis, and diabetes-associated renal complications.

In another aspect, the invention provides methods of using compounds of Formula I₂, Formula Ia, Formula Ib, or Formula Ig, and all sub-embodiments thereof, as described herein (e.g. compounds that have advantageous levels of activity and/or selectivity on c-kit, c-fms or both c-kit and c-fms). In certain embodiments, the compounds are substituted at the 3-position of the core bicyclic ring structure (azaindole core) with a substituent group that in order includes a first linker bound to a first aryl or heteroaryl group, which is bound to a linker of 1 to 3 atoms bound to a second aryl or heteroaryl group. In certain embodiments including the just-described 3-position substituent group, the first linker is methylene, ethylene, -C(O)-, -C(S)-, -O-, -S-, or -S(O)₂-; the first aryl or heteroaryl group is pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, pyrrolyl, imidazolyl, triazolyl, thiazolyl, or oxazolyl; the second linker is methyl amino (NHCH₂), ethyl amino (NHCH₂CH₃), amide (NHC(O)), or sulfonamide (NHSO₂); the second aryl or heteroaryl group is phenyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, pyrrolyl, imidazolyl, triazolyl, thiazolyl, furanyl, or oxazolyl; the second aryl or heteroaryl group is optionally substituted with a lower alkyl group (e.g. a methyl group, an ethyl group, a propyl group, or a butyl group), an alkoxy group (e.g. amethoxy group, an
ethoxy group, a propoxy group, or a butoxy group), a halo substituted lower alkyl (e.g. -CH₂F, -CHF₂, or -CF₃), or halo (e.g. F or Cl). In particular embodiments, the second aryl or heteroaryl group is a 6-membered ring; the 6-membered ring is substituted at the para position; the 6-membered ring is substituted at the meta position; the 6-membered ring is substituted at the ortho position; or the 6-membered ring is substituted at the meta and para positions, particular embodiments, the second aryl or heteroaryl group is a 5-membered ring; the 5-membered ring is substituted at a position adjacent to the atom bound to the second linker; or the 5-membered ring is substituted at a position not adjacent to the atom bound to the second linker. In particular embodiments, the 3-position substituent group is the only non-hydrogen substituent on the azaindole core.

[0069] In particular embodiments, the compound has an IC₅₀ of less than 100 nM, less than 50 nM, less than 20 nM, less than 10 nM, or less than 5 nM as determined in a generally accepted kinase activity assay. In certain embodiments, the selectivity of the compound is such that the compound is at least 2-fold, 5-fold, 10-fold, or 100-fold more active on c-kit than on Ret, PDGF, or both Ret and PDGF. In certain embodiments, the selectivity of the compound is such that the compound is at least 2-fold, 5-fold, 10-fold, or 100-fold more active on c-kit than on c-fms. In certain embodiments, the selectivity of the compound is such that the compound is at least 2-fold, 5-fold, 10-fold, or 100-fold more active on c-fms than on c-kit. In certain embodiments, the compound has in combination each pairing of activity (e.g. IC₅₀) and/or selectivity as specified in this paragraph.

[0070] In particular embodiments, the compound has an IC₅₀ of less than 100 nM, less than 50 nM, less than 20 nM, less than 10 nM, or less than 5 nM as determined in a generally accepted kinase activity assay for c-kit, c-fms, or both c-kit and c-fms kinase activity. In certain embodiments, the selectivity of the compound is such that the compound is at least 2-fold, 5-fold, 10-fold, or 100-fold more active on c-kit, c-fms, or both c-kit and c-fms than on Ret, PDGF, or both Ret and PDGF.

[0071] An additional aspect of this invention relates to compositions that include a therapeutically effective amount of a compound of Formula I (including Formula Ia, Ib, Ig and all sub-embodiments thereof) and at least one pharmaceutically acceptable carrier, excipient, and/or diluent. The composition can include a plurality of different
pharmacologically active compounds, which can include a plurality of compounds of
Formula I (including Formula Ia, Ib, Ig and all sub-embodiments thereof).

[0072] In a related aspect, the invention provides kits that include a composition as
described herein. In particular embodiments, the composition is packaged, e.g., in a vial,
bottle, flask, which may be further packaged, e.g., within a box, envelope, or bag; the
composition is approved by the U.S. Food and Drug Administration or similar regulatory
agency for administration to a mammal, e.g., a human; the composition is approved for
administration to a mammal, e.g., a human, for a c-kit- and/or c-fms-mediated disease or
condition; the kit of the invention includes written instructions on use and/or other
indication that the composition is suitable or approved for administration to a mammal,
e.g., a human, for a c-kit- and/or c-fms-mediated disease or condition; the composition is
packaged in unit dose or single dose form, e.g., single dose pills, capsules, or the like.

[0073] The invention also provides a method for identifying or developing additional
compounds active on c-kit and c-fms, e.g., improved modulators, by determining whether
any of a plurality of test compounds of Formula I, Formula Ia, Formula Ib, or Formula Ig,
and all sub-embodiments thereof, active on c-kit and c-fms provides an improvement in
one or more desired pharmacologic properties relative to a reference compound active on
c-kit and c-fms, and selecting a compound if any, that has an improvement in the desired
pharmacologic property, thereby providing an improved modulator.

[0074] In particular aspects of modulator development, the desired pharmacologic
property is serum half-life longer than 2 hr or longer than 4 hr or longer than 8 hr, aqueous
solubility, oral bioavailability more than 10%, or oral bioavailability more than 20%.

[0075] Furthermore, in particular aspects of modulator development, the process can be
repeated multiple times, i.e., multiple rounds of preparation of derivatives and/or selection
of additional related compounds and evaluation of such further derivatives of related
compounds can be carried out, e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more additional rounds.

[0076] In another aspect, the present invention also provides a method for modulating
c-kit or c-fms activity by contacting c-kit or c-fms with an effective amount of a
compound of Formula I (including Formula Ia, Ib, Ig and all sub-embodiments thereof)
active on c-kit and/or c-fms (such as compounds developed using methods described
herein). The compound is preferably provided at a level sufficient to modulate the activity of the c-kit or c-fms by at least 10%, more preferably at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or greater than 90%. In many embodiments, the compound will be at a concentration of about 1 µM, 100 µM, or 1 mM, or in a range of 1-100 nM, 100-500 nM, 500-1000 nM, 1-100 µM, 100-500 µM, or 500-1000 µM. In particular embodiments, the contacting is carried out in vitro.

[0077] Additional aspects and embodiments will be apparent from the following Detailed Description and from the claims.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0078] As used herein the following definitions apply:

[0079] "Halo" and "halogen" refer to all halogens, that is, chloro (Cl), fluoro (F), bromo (Br), or iodo (I).

[0080] "Hydroxyl" and "hydroxy" refer to the group -OH.

[0081] "Thiol" refers to the group -SH.

[0082] "Lower alkyl" alone or in combination means an alkane-derived radical containing from 1 to 6 carbon atoms (unless specifically defined) that includes a straight chain alkyl or branched alkyl. The straight chain or branched alkyl group is attached at any available point to produce a stable compound. In many embodiments, a lower alkyl is a straight or branched alkyl group containing from 1-6, 1-4, or 1-2, carbon atoms, such as methyl, ethyl, propyl, isopropyl, butyl, t-butyl, and the like. "Optionally substituted lower alkyl" denotes lower alkyl that is independently substituted, unless indicated otherwise, with one or more, preferably 1, 2, 3, 4 or 5, also 1, 2, or 3 substituents, attached at any available atom to produce a stable compound, wherein the substituents are selected from the group consisting of -F, -OH, -NH₂, -NO₂, -CN, -C(O)OH, -C(S)OH, -C(O)NH₂, -C(S)NH₂, -S(O)₂NH₂, -NHC(O)NH₂, -NHC(S)NH₂, -NHS(O)₂NH₂, -C(NH)NH₂, -OR, -SR, -OC(O)R, -OC(S)R, -C(O)R, -C(S)R, -C(O)OR, -C(S)OR, -S(O)R, -S(O)₂R, -C(O)NHR, -C(S)NHR, -C(O)NR₃R, -C(S)NR₃R, -S(O)₂NHR, -S(O)₂NR₃R, -C(NH)NHR, -C(NH)NR₃R, -NHC(O)R, -NHC(S)R, -NR₃C(O)R, -NR₃C(S)R.
-NHS(O)₂Rₐ, -NRₐS(O)₂Rₐ, -NHC(O)NHR₃, -NHC(S)NRₐRₐ, -NRₐC(O)NH₂,
-NRₐC(S)NH₂, -NRₐC(O)NRₐ₂, -NRₐC(S)NRₐRₐ, -NHC(O)NRₐRₐ, -NRₐC(S)NRₐRₐ,
-NRₐC(O)NRₐ²Rₐ, -NRₐC(S)NRₐ²Rₐ, -NHS(O)₂NH₂, -NRₐS(O)₂NH₂, -NRₐS(O)₂NHR₃,
-NHS(O)₂NRₐRₐ, -NRₐS(O)₂NRₐ₂Rₐ, -NHRₐ, -NRₐRₐ, -Rₐ, -Rₐ, and -Rₐ. Further, possible
substitutions include subsets of these substitutions, such as are indicated herein, for
example, in the description of compounds of Formula I (including Formulae Ia, Ib, Ig and
all sub-embodiments thereof), attached at any available atom to produce a stable
compound. For example "fluoro substituted lower alkyl" denotes a lower alkyl group
substituted with one or more fluoro atoms, such as perfluoroalkyl, where preferably the
lower alkyl is substituted with 1, 2, 3, 4 or 5 fluoro atoms, also 1, 2, or 3 fluoro atoms.
While it is understood that substitutions are attached at any available atom to produce a
stable compound, when optionally substituted alkyl is an R group of a moiety such as -OR,
-NHR, -C(O)NHR, and the like, substitution of the alkyl R group is such that substitution
of the alkyl carbon bound to any -O-, -S-, or -N- of the moiety (except where -N- is a
heteroaryl ring atom) excludes substituents that would result in any -O-, -S-, or -N- of the
substituent (except where -N- is a heteroaryl ring atom) being bound to the alkyl carbon
bound to any -O-, -S-, or -N- of the moiety.

[0083] Lower alkylene refers to a divalent alkane-derived radical containing 1-6
carbon atoms, straight chain or branched, from which two hydrogen atoms are taken from
the same carbon atom or from different carbon atoms. Examples of lower alkylene
include, but are not limited to, methylene -CH₂-, ethylene -CH₂CH₂-, propylene
-CH₂CH₂CH₂-, isopropylene -CH(CH₃)CH₂-, and the like. Optionally substituted lower
alkylene denotes lower alkylene that is independently substituted, unless indicated
otherwise, with one or more, preferably 1, 2, 3, 4 or 5, also 1, 2, or 3 substituents, attached
at any available atom to produce a stable compound, wherein the substituents are selected
from the group consisting of -F, -OH, -NH₂, -NO₂, -CN, -C(O)OH, -C(S)OH, -C(O)NH₂,
-C(S)NH₂, -S(O)₂NH₂, -NHC(O)NH₂, -NHC(S)NH₂, -NHS(O)₂NH₂, -C(NH)NH₂, -ORₐ,
-SRₐ, -OC(O)Rₐ, -OC(S)Rₐ, -C(O)ORₐ, -C(S)ORₐ, -C(O)ORₐ, -S(O)Rₐ, -S(O)₂Rₐ,
-C(O)NHRₐ, -C(S)NHRₐ, -C(O)NRₐRₐ, -C(S)NRₐRₐ, -S(O)₂NHRₐ, -S(O)₂NRₐRₐ,
-C(NH)NHRₐ, -C(NH)NRₐRₐ, -NHC(O)Rₐ, -NHC(S)Rₐ, -NRₐC(O)Rₐ, -NRₐC(S)Rₐ,
-NHS(O)₂Rₐ, -NRₐS(O)₂Rₐ, -NHC(O)NHRₐ, -NHC(S)NHRₐ, -NRₐC(O)NHRₐ,
-NRₐC(O)NH₂, -NRₐC(S)NH₂, -NRₐC(S)NHRₐ, -NHC(O)NRₐRₐ, -NHC(S)NRₐRₐ.
NR\(^a\)C(O)NR\(^b\)R\(^a\), NR\(^a\)C(S)NR\(^a\)R\(^a\), N\(-HS\)S(O)\(_2\)NHR\(^a\), NR\(^a\)S(O)\(_2\)NHR\(^a\), NR\(^3\)S(O)\(_2\)NHR\(^3\), N\(-HS\)S(O)\(_2\)NR\(^3\)R\(^3\), NR\(^8\)S(O)\(_2\)NR\(^8\)R\(^8\), -NHR\(^a\), -NR\(^a\)R\(^a\), -R\(^e\), -R\(^f\), and -R\(^g\), or two substituents on any one carbon or a substituent on each of any two carbons in the alkylene chain may join to form a 3-7 membered monocyclic cycloalkyl or 5-7 membered monocyclic heterocycloalkyl wherein the monocyclic cycloalkyl or monocyclic heterocycloalkyl are optionally substituted with one or more substituents selected from the group consisting of halogen, -OH, -NH\(_2\), lower alkyl, fluoro substituted lower alkyl, lower alkoxy, fluoro substituted lower alkoxy, lower alkythio, fluoro substituted lower alkythio, monoalkylamino, di-alkylamino, and cycloalkylamino.

[0084] "Lower alkenyl" alone or in combination means a straight or branched hydrocarbon containing 2-6 carbon atoms (unless specifically defined) and at least one, preferably 1-3, more preferably 1-2, most preferably one, carbon to carbon double bond. Carbon to carbon double bonds may be either contained within a straight chain or branched portion. Examples of lower alkenyl groups include ethenyl, propenyl, isopropenyl, butenyl, and the like. "Substituted lower alkenyl" denotes lower alkenyl that is independently substituted, unless indicated otherwise, with one or more, preferably 1, 2, 3, 4 or 5, also 1, 2, or 3 substituents, attached at any available atom to produce a stable compound, where the substituents are selected from the group consisting of -F, -OH, -NH\(_2\), -NO\(_2\), -CN, -C(O)OH, -C(S)OH, -C(O)NH\(_2\), -C(S)NH\(_2\), -S(O)\(_2\)NH\(_2\), -NHC(O)NH\(_2\), -NHC(S)NH\(_2\), -NHS(O)\(_2\)NH\(_2\), -C(NH)NH\(_2\), -OR\(^3\), -SR\(^3\), -OC(O)R\(^3\), -OC(S)R\(^3\), -C(O)R\(^3\), -C(S)R\(^3\), -C(O)OR\(^3\), -C(S)OR\(^3\), -S(O)\(_2\)R\(^3\), -S(O)\(_2\)NR\(^3\), -S(O)\(_2\)C(O)R\(^3\), -C(O)NHR\(^3\), -C(S)NHR\(^3\), -C(O)NR\(^3\), -C(S)NR\(^3\), -S(O)\(_2\)NR\(^3\), -S(O)\(_2\)C(O)R\(^3\), -C(NH)NHR\(^3\), -C(NH)NR\(^3\), -C(NH)NR\(^8\)R\(^8\), -NHC(O)R\(^3\), -NHC(S)R\(^3\), -NR\(^3\)C(O)R\(^3\), -NR\(^3\)C(S)R\(^a\), -NHS(O)\(_2\)R\(^3\), -NR\(^3\)S(O)\(_2\)R\(^3\), -NHC(O)NHR\(^3\), -NHC(S)NHR\(^3\), -NR\(^3\)C(O)NH\(_2\), -NR\(^3\)C(S)NH\(_2\), -NR\(^3\)C(O)NHR\(^3\), -NR\(^3\)C(S)NHR\(^8\), -NHC(O)NR\(^8\), -NHC(S)NR\(^8\), -NR\(^3\)C(O)NR\(^3\), -NR\(^3\)C(S)NR\(^3\), -NHS(O)\(_2\)NHR\(^3\), -NR\(^8\)S(O)\(_2\)NH\(_2\), -NR\(^3\)S(O)\(_2\)NHR\(^3\), -NHS(O)\(_2\)NR\(^8\)R\(^8\), -NR\(^3\)S(O)\(_2\)NR\(^3\), -NHR\(^3\), -NR\(^3\), -R\(^d\), -R\(^f\), and -R\(^8\). Further, possible substitutions include subsets of these substitutions, such as are indicated herein, for example, in the description of compounds of Formula I (including Formulae Ia, Ib, Ig and all sub-embodiments thereof), attached at any available atom to produce a stable compound. For example "fluoro substituted lower alkenyl" denotes a lower alkenyl group substituted with one or more fluoro atoms, where preferably the lower alkenyl is substituted with 1, 2, 3, 4 or 5 fluoro atoms, also 1, 2, or 3 fluoro
while it is understood that substitutions are attached at any available atom to
produce a stable compound, substitution of alkenyl groups are such that -F, -C(O)-, -C(S)-,
-C(NH)-, -S(O)-, -S(O)₂-, -OH, -S-, or -N- (except where -N- is a heteroaryl ring atom),
are not bound to an alkene carbon thereof. Further, where alkenyl is a substituent of
another moiety or an R group of a moiety such as -OR, -NHR, -C(O)R, and the like,
substitution of the moiety is such that any -C(O)-, -C(S)-, -S(O)-, -S(O)₂-, -O-, -S-, or -N-
thereof (except where -N- is a heteroaryl ring atom) are not bound to an alkene carbon of
the alkenyl substituent or R group. Further, where alkenyl is a substituent of another
moiety or an R group of a moiety such as -OR, -NHR, -C(O)NHR, and the like,
substitution of the alkenyl R group is such that substitution of the alkenyl carbon bound to
any -O-, -S-, or -N- of the moiety (except where -N- is a heteroaryl ring atom) excludes
substituents that would result in any -O-, -S-, or -N- of the substituent (except where -N- is
a heteroaryl ring atom) being bound to the alkenyl carbon bound to any -O-, -S-, or -N- of
the moiety. An "alkenyl carbon" refers to any carbon within an alkenyl group, whether
saturated or part of the carbon to carbon double bond. An "alkene carbon" refers to a
carbon within an alkenyl group that is part of a carbon to carbon double bond.

[0085] "Lower alkynyl" alone or in combination means a straight or branched
hydrocarbon containing 2-6 carbon atoms (unless specifically defined) containing at least
one, preferably one, carbon to carbon triple bond. Examples of alkynyl groups include
ethynyl, propynyl, butynyl, and the like. "Substituted lower alkynyl" denotes lower
alkynyl that is independently substituted, unless indicated otherwise, with one or more,
preferably 1, 2, 3, 4 or 5, also 1, 2, or 3 substituents, attached at any available atom to
produce a stable compound, wherein the substituents are selected from the group
consisting of -F, -OH, -NH₂, -NO₂, -CN, -C(O)OH, -C(S)OH, -C(O)NH₂, -C(S)NH₂,
-S(O)₂NH₂, -NHC(O)NH₂, -NHC(S)NH₂, -NHS(O)₂NH₂, -C(NH)NH₂, -OR, -SR,
-OC(O)R, -OC(S)R, -C(O)R, -C(S)R, -C(O)OR, -C(S)OR, -S(O)R, -S(O)₂R,
-C(O)NHR, -C(S)NHR, -C(O)NR, -C(S)NR, -S(O)₂NHR, -S(O)₂NR, -C(NH)NHR,
-C(NH)NR, -NHC(O)R, -NHC(S)R, -NHS(O)₂R, -NR₃C(O)R, -NR₃C(S)R,
-NHS(O)₂R, -NR₃S(O)₂R, -NHC(O)NH₃, -NHC(S)NH₃, -NHS(O)₂NH₃, -NR₃C(O)NH₂,
-NR₃C(S)NH₂, -NR₃C(NH)NH₂, -NR₃C(O)NH₃, -NR₃C(S)NH₃, -NHS(O)₂NH₃, -NR₃C(O)N₃R₃,
-NR₃C(S)N₃R₃, -NHS(O)₂N₃R₃, -NR₃S(O)₂N₃R₃, -NR₃S(O)₂N₃R₃, -NR₃S(O)₂N₃R₃,
-NHS(O)₂N₃R₃, -NR₃S(O)₂N₃R₃, -NR₃S(O)₂N₃R₃, -NR₃S(O)₂N₃R₃, -NR₃S(O)₂N₃R₃.
Further, possible
substitutions include subsets of these substitutions, such as are indicated herein, for example, in the description of compounds of Formula I (including Formulae Ia, Ib, Ig and all sub-embodiments thereof), attached at any available atom to produce a stable compound. For example "fluoro substituted lower alkynyl" denotes a lower alkynyl group substituted with one or more fluoro atoms, where preferably the lower alkynyl is substituted with 1, 2, 3, 4 or 5 fluoro atoms, also 1, 2, or 3 fluoro atoms. While it is understood that substitutions are attached at any available atom to produce a stable compound, substitution of alkynyl groups are such that -F, -C(O)-, -C(S)-, -C(NH)-, -S(O)-, -S(O)₂-, -O-, -S-, or -N- (except where -N- is a heteroaryl ring atom), are not bound to an alkyne carbon thereof. Further, where alkynyl is a substituent of another moiety or an R group of a moiety such as -OR, -NHR, -C(O)R, and the like, substitution of the moiety is such that any -C(O)-, -C(S)-, -S(O)-, -S(O)₂-, -O-, -S-, or -N- thereof (except where -N- is a heteroaryl ring atom) are not bound to an alkyne carbon of the alkynyl substituent or R group. Further, where alkynyl is a substituent of another moiety or an R group of a moiety such as -OR, -NHR, -C(O)NHR, and the like, substitution of the alkynyl R group is such that substitution of the alkynyl carbon bound to any -O-, -S-, or -N- of the moiety (except where -N- is a heteroaryl ring atom) excludes substituents that would result in any -O-, -S-, or -N- of the substituent (except where -N- is a heteroaryl ring atom) being bound to the alkynyl carbon bound to any -O-, -S-, or -N- of the moiety. An "alkynyl carbon" refers to any carbon within an alkynyl group, whether saturated or part of the carbon to carbon triple bond. An "alkyne carbon" refers to a carbon within an alkynyl group that is part of a carbon to carbon triple bond.

[0086] "Cycloalkyl" refers to saturated or unsaturated, non-aromatic monocyclic, bicyclic or tricyclic carbon ring systems of 3-10, also 3-8, more preferably 3-6, ring members per ring, such as cyclopropyl, cyclopentyl, cyclohexyl, adamantyl, and the like. "Cycloalkylene" is a divalent cycloalkyl. A "substituted cycloalkyl" is a cycloalkyl that is independently substituted, unless indicated otherwise, with one or more, preferably 1, 2, 3, 4 or 5, also 1, 2, or 3 substituents, attached at any available atom to produce a stable compound, wherein the substituents are selected from the group consisting of halogen, -OH, -NH₂, -NO₂, -CN, -C(O)OH, -C(S)OH, -C(O)NH₂, -C(S)NH₂, -S(O)₂NH₂, -NHC(O)NH₂, -NHC(S)NH₂, -NHS(O)₂NH₂, -C(NH)NH₂, -OR a, -SR a, -OC(0)R a, -OC(S)R a, -C(O)R a, -C(S)R a, -C(O)OR a, -C(S)OR a, -S(O)R 3, -S(O)₂R 3, -C(0)NHR a,
-C(S)NHR₃, -C(O)NR₃R₄, -C(S)NR₃R₄, -S(O)₂NHR₃, -S(O)₂NR₃R₃, -C(NH)NHR₃,
-C(NH)NR₃R₄, -NH(C)R₃, -NH(C)S₃R₃, -NR₃C(O)R₃, -NR₃C(S)R₃, -NHS(O)₂R₄,
-NR₃S(O)₂R₃, -NHC(O)NHR₃, -NHC(S)NHR₃, -NR₃C(O)NH₂, -NR₃C(S)NH₂,
-NR₃C(O)NR₃R₃, -NR₃C(S)NHR₃, -NHC(S)NHR₃, -NHC(S)NR₃R₃, -NR₃C(O)NR₃R₃,
-NR₃(C)NR₃R₃, -NHS(O)₂NHR₃, -NR₃S(O)₂NH₂, -NR₃S(O)₂NHR₃, -NHS(O)₂NR₃R₃,
-NR₃S(O)₂NR₃R₃, -NHR₃, -NR₃R₃, -R₄, -R₅, -R₆, and -R₇. "Substituted
cycloalkylene" is a divalent substituted cycloalkyl.

[0087] "Heterocycloalkyl" refers to a saturated or unsaturated non-aromatic cycloalkyl
group having from 5 to 10 atoms in which from 1 to 3 carbon atoms in the ring are
replaced by heteroatoms of O, S or N, and are optionally fused with benzo or heteroaryl of
5-6 ring members. Heterocycloalkyl is also intended to include oxidized S or N, such as
sulfanyl, sulfonyl and N-oxide of a tertiary ring nitrogen. Heterocycloalkyl is also
intended to include compounds in which one of the ring carbons is oxo substituted, i.e. the
ring carbon is a carbonyl group, such as lactones and lactams. The point of attachment of
the heterocycloalkyl ring is at a carbon or nitrogen atom such that a stable ring is retained.
Examples of heterocycloalkyl groups include, but are not limited to, morpholinol,
tetrahydrofuranyl, dihydropyridinyl, piperidinyl, pyrrolidinyl, pyrrolidonyl, piperazinyl,
dihydrobenzofuryl, and dihyroindolyl. "Heterocycloalkylene" is a divalent
heterocycloalkyl. A "substituted heterocycloalkyl" is a heterocycloalkyl that is
independently substituted, unless indicated otherwise, with one or more, preferably 1, 2, 3,
4 or 5, also 1, 2, or 3 substituents, attached at any available atom to produce a stable
compound, wherein the substituents are selected from the group consisting of halogen,
-OH, -NH₂, -NO₂, -CN, -C(O)OH, -C(S)OH, -C(O)NH₂, -C(S)NH₂, -S(O)₂NH₂,
-NHC(O)NH₂, -NHC(S)NH₂, -NH₂N(O)₂NH₂, -C(NH)NH₂, -OR₃, -SR₃, -OC(O)R₃,
-OC(S)R₈, -C(O)R₈, -C(S)R₈, -C(O)OR₈, -C(S)OR₈, -S(O)R₈, -S(O)₂R₈, -C(O)NHR₃,
-C(S)NHR₃, -C(O)NR₃R₃, -C(S)NR₃R₃, -S(O)₂NHR₃, -S(O)₂NR₃R₃, -C(NH)NHR₃,
-C(NH)NR₃R₃, -NH(C)R₃, -NHC(S)R₃, -NR₃C(O)R₃, -NR₃C(S)R₃, -NHS(O)₂R₃,
-NR₃S(O)₂R₃, -NHC(O)NHR₃, -NHC(S)NHR₃, -NR₃C(O)NH₂, -NR₃C(S)NH₂,
-NR₃C(O)NR₃R₃, -NR₃C(S)NHR₃, -NHC(S)NHR₃, -NHC(S)NR₃R₃, -NR₃C(O)NR₃R₃,
-NR₃C(S)NR₃R₃, -NHS(O)₂NHR₃, -NR₃S(O)₂NH₂, -NR₃S(O)₂NHR₃, -NHS(O)₂NR₃R₃,
-NR₃S(O)₂NR₃R₃, -NHR₃, -NR₃R₃, -R₄, -R₅, and -R₆. "Substituted
cycloalkylene" is a divalent substituted heterocycloalkyl.
"Aryl" alone or in combination refers to a monocyclic or bicyclic ring system containing aromatic hydrocarbons such as phenyl or naphthyl, which may be optionally fused with a cycloalkyl of preferably 5-7, more preferably 5-6, ring members. "Arylene" is a divalent aryl. A "substituted aryl" is an aryl that is independently substituted, unless indicated otherwise, with one or more, preferably 1, 2, 3, 4 or 5, also 1, 2, or 3 substituents, attached at any available atom to produce a stable compound, wherein the substituents are selected from the group consisting of halogen, -OH, -NH₂, -NO₂, -CN, -C(O)OH, -C(S)OH, -C(O)NH₂, -C(S)NH₂, -S(O)₂NH₂, -NHC(O)NH₂, -NHC(S)NH₂, -NHS(O)₂NH₂, -C(NH)NH₂, -OR, -SR, -OC(O)R, -OC(S)R, -C(O)R, -C(S)R, -C(S)OR, -C(S)SR, -S(O)R, -S(O)₂R, -C(O)NHR, -C(S)NHR, -C(O)NR₃R, -C(S)NR₃R, -S(O)₂NHR, -S(O)₂NR₃R, -C(NH)NHR, -C(NH)NR₃R, -C(S)NHR, -C(S)NR₃R, -NHR, -NR₃R, -NR₃C(O)R, -NR₃C(S)R, -NHS(O)₂R, -NR₃S(O)₂R, -NHC(O)NHR, -NHC(S)NHR, -NR₃C(O)NH₂, -NR₃C(S)NH₂, -NR₃C(O)NHR, -NR₃C(S)NHR, -NHC(O)NH₂, -NR₃C(O)NHR, -NR₃C(S)NHR, -NR₃S(O)₂NH₂, -NR₃S(O)₂NHR, -NHS(O)₂NHR, -NR₃S(O)₂NR₃R, -NR₃S(O)₂NR₃R, -NHC(S)NHR, -NR₃R, -R₄, -R⁵, and -R⁶. A "substituted arylene" is a divalent substituted aryl.

"Heteroaryl" alone or in combination refers to a monocyclic aromatic ring structure containing 5 or 6 ring atoms, or a bicyclic aromatic group having 8 to 10 atoms, containing one or more, preferably 1-4, more preferably 1-3, even more preferably 1-2, heteroatoms independently selected from the group consisting of O, S, and N. Heteroaryl is also intended to include oxidized S or N, such as sulfinyl, sulfonyl and N-oxide of a tertiary ring nitrogen. A carbon or nitrogen atom is the point of attachment of the heteroaryl ring structure such that a stable compound is produced. Examples of heteroaryl groups include, but are not limited to, pyridinyl, pyridazinyl, pyrazinyl, quinoxalyl, indolizinyl, benzo[b]thienyl, quinazolinyl, purinyl, indolyl, quinolinyl, pyrimidinyl, pyrrolyl, oxazolyl, thiazolyl, thienyl, isoxazolyl, oxathiazolyl, isothiazolyl, tetrazolyl, imidazolyl, triazinyl, furanyl, benzofuryl, and indolyl. "Nitrogen containing heteroaryl" refers to heteroaryl wherein any heteroatoms are N. "Heteroarylene" is a divalent heteroaryl. A "substituted heteroaryl" is a heteroaryl that is independently substituted, unless indicated otherwise, with one or more, preferably 1, 2, 3, 4 or 5, also 1, 2, or 3 substituents, attached at any available atom to produce a stable compound, wherein the substituents are selected from the group consisting of halogen, -OH, -NH₂, -NO₂, -CN.
-C(O)OH, -C(S)OH, -C(O)NH₂, -C(S)NH₂, -S(O)₂NH₂, -NHC(O)NH₂, -NHC(S)NH₂,
-NHS(O)₂NH₂, -C(NH)NH₂, -OR, -SR, -OC(O)R, -OC(S)R, -C(O)R, -C(S)R,
-C(O)OR, -C(S)OR, -S(O)R, -S(O)(C(O)R), -C(O)NHR, -C(S)NHR, -C(O)NR₃R₈,
-C(S)NR₄R₈, -S(O)₂NH₃⁻, -S(O)₂NR₄R₃⁻, -C(NH)NHR₃⁻, -C(NH)NR₄R₈⁻, -NHC(O)R₃⁻,
-NHC(S)R₃⁻, -NR₆C(O)R₄⁻, -NR₆C(S)R₃⁻, -NHS(O)₂R₃⁻, -NHC(O)NHR₃⁻,
-NHC(S)NHR₃⁻, -NR₃C(O)NH₂, -NR₃C(S)NH₂, -NR₃C(O)H₂, -NR₃C(S)H₂, -NHS(O)₂NHR₃⁻,
-NHC(O)NR₃R₃⁻, -NHC(S)NR₃R₃⁻, -NR₃C(O)NR₃R₃⁻, -NR₃C(S)NR₃R₃⁻, -NHS(O)₂NHR₃⁻,
-NR₃S(O)₂NH₂⁻, -NR₃S(O)₂NHR₃⁻, -NHS(O)₂NR₃R₃⁻, -NR₃S(O)₂NR₃R₃⁻, -NHR₃⁻, -NR₃R₃⁻,
-R₄⁻, -R₅⁻, -R₆⁻, and -R₈⁻. "Substituted heteroarylene" is a divalent substituted heteroaryl.

[0090] The variables R₃, R₅, R₆, R₇, and R₈ as used in the description of optional substituents for alkyl, alkyne, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl and heteroaryl are defined as follows:

each R₃, R₅, and R₆ are independently selected from the group consisting of -R₄⁻, -R₅⁻, -R₆⁻, and -R₈⁻, or R₅ and R₆ combine with the nitrogen to which they are attached to form a 5-7 membered heterocycloalkyl or a 5 or 7 membered nitrogen containing heteroaryl, wherein the 5-7 membered heterocycloalkyl or 5 or 7 membered nitrogen containing heteroaryl are optionally substituted with one or more, preferably 1, 2, 3, 4 or 5, also 1, 2, or 3 substituents selected from the group consisting of halogen, -NO₂⁻, -CN⁻, -OH⁻, -NH₂⁻, -OR⁻, -SR⁻, -NHR⁻, -NR₄⁻, -R₆⁻, and -R₇⁻;

each -R₄⁻ is independently lower alkyl, wherein lower alkyl is optionally substituted with one or more, preferably 1, 2, 3, 4 or 5, also 1, 2 or 3 substituents selected from the group consisting of fluoro, -OH⁻, -NH₂⁻, -NO₂⁻, -CN⁻, -C(O)OH⁻, -C(S)OH⁻, -C(O)NH₂⁻, -C(S)NH₂⁻,
-S(O)₂NH₂⁻, -NHC(O)NH₂⁻, -NHC(S)NH₂⁻, -NHS(O)₂NH₂⁻, -C(NH)NH₂⁻, -OR⁻, -SR⁻,
-OC(O)R⁻, -OC(S)R⁻, -C(O)R⁻, -C(S)OR⁻, -C(S)OR⁻, -C(O)OR⁻, -S(O)R⁻, -S(O)₂R⁻,
-C(O)NHR⁻, -C(S)NHR⁻, -C(O)NR₄R₈⁻, -C(S)NR₄R₈⁻, -S(O)₂NHR⁻, -S(O)₂NR₄R₈⁻,
-C(NH)NHR⁻, -C(NH)NR₄R₈⁻, -NHC(O)R₃⁻, -NHC(S)R₃⁻, -NR₆C(O)R₄⁻, -NR₆C(S)R₃⁻,
-NHS(O)₂R₃⁻, -NR₆S(O)₂R₃⁻, -NHS(O)₂NR₃R₃⁻, -NR₆S(O)₂NR₃R₃⁻, -NHR₃⁻, -NR₆R₃⁻,
-R₄⁻, -R₅⁻, -R₆⁻, and -R₈⁻.
each - R e is independently lower alkenyl, wherein lower alkenyl is optionally substituted
with one or more, preferably 1, 2, 3, 4 or 5, also 1, 2 or 3 substituents selected from the
group consisting of fluoro, -OH, -NH2, -NO2, -CN, -C(O)OH, -C(S)OH, -C(O)NH 2,
-C(S)NH 2, -S(O)2NH2, -NHC(O)NH2, -NHC(S)NH 2, -NHS(O)2NH2, -C(NH)NH2, -ORk,
-SRk, -OC(O)R k, -OC(S)Rk, -C(O)Rk, -C(S)R k, -C(O)ORk, -C(S)ORk, -S(O)Rk, -S(O)2Rk,
-C(O)NHR k, -C(S)NHRk, -C(0)NR kRk, -C(S)NR kRk, -S(O)2NHR k, -S(O)2NRkRk,
-C(NH)NHR k, -C(NH)NRmRn, -NHC(O)R k, -NHC(S)R k, -NRkC(0)R k, -NRkC(S)Rk,
-NHS(O) 2Rk, -NRkS(O)2Rk, -NHC(O)NHR k, -NHC(S)NHR k, -NRkC(0)NH 2,
-NRkC(S)NH2, -NRkC(0)NHR k, -NRkC(S)NHR k, -NHC(0)NR kRk, -NHC(S)NRkRk,
-NRkC(0)NR kRk, -NRkC(S)NRkRk, -NHS(O) 2NHR k, -NRkS(O)2NH2, -NRkS(O)2NHR k,
-NHS(O) 2NRkRk, -NRkS(0) 2NRkRk, -NHR k, -NRkRk, -Rh, and -Rj ;
each -Rf is independently lower alkynyl, wherein lower alkynyl is optionally substituted
with one or more, preferably 1, 2, 3, 4 or 5, also 1, 2 or 3 substituents selected from the
group consisting of fluoro, -OH, -NH2, -NO2, -CN, -C(O)OH, -C(S)OH, -C(O)NH 2,
-C(S)NH 2, -S(O)2NH2, -NHC(O)NH2, -NHC(S)NH 2, -NHS(O)2NH2, -C(NH)NH2, -ORk,
-SR k, -OC(O)Rk, -OC(S)Rk, -C(O)Rk, -C(S)R k, -C(O)ORk, -C(S)ORk, -S(O)Rk, -S(O)2Rk,
-C(O)NHR k, -C(S)NHRk, -C(O)NRkRk, -C(S)NR kRk, -S(O)2NHR k, -S(O)2NRkRk,
-C(NH)NHR k, -C(NH)NRmRn, -NHC(0)R k, -NHC(S)R k, -NRkC(O)Rk, -NRkC(S)Rk,
-NHS(O) 2Rk, -NRkS(O)2Rk, -NHC(O)NHR k, -NHC(S)NHR k, -NRkC(0)NH 2,
-NRkC(S)NH2, -NRkC(0)NHR k, -NRkC(S)NHR k, -NHC(0)NR kRk, -NHC(S)NRkRk,
-NRkC(O)NR kRk, -NRkC(S)NRkRk, -NHS(0) 2NHR k -NRkS(O)2NH2, -NRkS(O)2NHR k,
-NHS(O) 2NRkRk, -NRkS(O)2NRkRk, -NHR k, -NRkRk, -Rh, and-R j ;
each - R g is independently selected from the group consisting of cycloalkyl,
heterocycloalkyl, aryl, and heteroaryl, wherein cycloalkyl, heterocycloalkyl, aryl, and
heteroaryl are optionally substituted with one or more, preferably 1, 2, 3, 4 or 5, also 1, 2
or 3 substituents selected from the group consisting of halogen, -OH, -NH2, -NO2, -CN,
-C(O)OH, -C(S)OH, -C(O)NH2, -C(S)NH 2, -S(O) 2NH2, -NHC(O)NH2, -NHC(S)NH 2,
-NHS(O) 2NH2, -C(NH)NH2, -0R k, -SRk, -OC(O)Rk, -OC(S)Rk, -C(O)Rk, -C(S)Rk,
-C(O)OR k, -C(S)ORk, -S(O)Rk, -S(O)2Rk, -C(0)NHR k, -C(S)NHRk, -C(O)NRkRk,
-C(S)NR kRk, -S(O)2NHRk, -S(O)2NRkR k, -C(NH)NHR k, -C(NH)NRmRn, -NHC(O)R k,
-NHC(S)R k, -NRkC(0)R k, -NRkC(S)Rk, -NHS(O)2Rk, -NRkS(O)2Rk, -NHC(0)NHR k,
-NHC(S)NHR k, -NRkC(O)NH2, -NRkC(S)NH2, -NRkC(0)NHR k, -NRkC(S)NHRk,


-NHC(O)NR \(k \) R \(k \), -NHC(S)NR \(k \) R \(k \), -NR\(^k\)C(O)NR \(k \) R \(k \), -NR\(^k\)C(S)NR \(k \) R \(k \), -NHS(O) \(2 \) NHR \(k \), -NR\(^k\)S(O)\(_2\)NH \(2 \), -NR\(^k\)S(O)\(_2\)NHR \(k \), -NHS(O) \(2 \) NR\(^k\)R \(k \), -NR\(^k\)S(O)\(_2\)NR\(^k\)R \(k \), -NHR \(k \), -NR\(^k\)R \(k \), -R\(^h\), -R\(^i\), and -R\(^j\);

wherein R \(k \), R \(m \), and R \(n \) at each occurrence are independently selected from the group consisting of -R\(^h\), -R\(^i\), and -R\(^j\), or R \(m \) and R \(n \) combine with the nitrogen to which they are attached form a 5-7 membered heterocycloalkyl or a 5 or 7 membered nitrogen containing heteroaryl, wherein the 5-7 membered heterocycloalkyl or 5 or 7 membered nitrogen containing heteroaryl are optionally substituted with one or more, preferably 1, 2, 3, 4 or 5, also 1, 2, or 3 substituents selected from the group consisting of halogen, -NO\(_2\), -CN, -OH, -NH\(_2\), OR\(^U\), -SR\(^U\), -NHR\(^U\), -NR\(^U\)R\(^U\), -R\(^x\), and -R\(^y\);

wherein each - R\(^h\) is independently lower alkylo optionally substituted with one or more, preferably 1, 2, 3, 4 or 5, also 1, 2, or 3 substituents selected from the group consisting of fluoro, -OH, -NH\(_2\), -NO\(_2\), -CN, -C(O)OH, -C(S)OH, -C(O)NH\(_2\), -C(S)NH\(_2\), -S(O)\(_2\)NH\(_2\), -NHC(O)NH\(_2\), -NHC(S)NH\(_2\), -NH(S(O)\(_2\)NH\(_2\), -C(NH)NH\(_2\), -OR\(^R\), -SR\(^R\), -OC(O)R\(^R\), -OC(S)R\(^R\), -C(O)R\(^R\), -C(S)R\(^R\), -C(O)OR\(^R\), -C(S)OR\(^R\), -S(O)R\(^R\), -S(O)\(_2\)R\(^R\), -C(0)NHR \(R \), -C(S)NHR \(R \), -C(O)NR \(R \), -C(S)NR \(R \), -S(O)\(_2\)NHR \(R \), -S(O)\(_2\)NR\(^R\)R \(R \), -C(NH)NHR \(R \), -C(NH)NR\(^R\)R \(R \), -NHC(O)R \(R \), -NHC(S)R \(R \), -NR\(^R\)C(O)R \(R \), -NR\(^R\)C(S)R \(R \), -NHS(O)\(_2\)R \(R \), -NR\(^R\)S(O)\(_2\)R \(R \), -NH(C(O)NH\(_2\)), -NH(C(S)NH\(_2\)), -NR\(^R\)C(O)NR \(R \), -NR\(^R\)C(S)NR \(R \), -NHS(O)\(_2\)NR\(^R\)R \(R \), -NR\(^R\)S(O)\(_2\)NH\(_2\), -NR\(^R\)S(O)\(_2\)NHR \(R \), -NR\(^R\)S(O)\(_2\)NR\(^R\)R \(R \), -NR\(^R\)S(O)\(_2\)NR\(^R\)R \(R \), -NHR \(R \), -NR\(^R\)R \(R \), -R\(^h\) and -R\(^i\);

wherein each - R\(^i\) is independently selected from the group consisting of lower alkenyl and lower alkynyl, wherein lower alkenyl or lower alkynyl are optionally substituted with one or more, preferably 1, 2, 3, 4 or 5, also 1, 2 or 3 substituents selected from the group consisting of fluoro, -OH, -NH\(_2\), -NO\(_2\), -CN, -C(O)OH, -C(S)OH, -C(O)NH\(_2\), -C(S)NH\(_2\), -S(O)\(_2\)NH\(_2\), -NHC(O)NH\(_2\), -NHC(S)NH\(_2\), -NH(S(O)\(_2\)NH\(_2\), -C(NH)NH\(_2\), -OR\(^R\), -SR\(^R\), -OC(O)R\(^R\), -OC(S)R\(^R\), -C(O)R\(^R\), -C(S)R\(^R\), -C(O)OR\(^R\), -C(S)OR\(^R\), -S(O)R\(^R\), -S(O)\(_2\)R\(^R\), -C(0)NHR \(R \), -C(S)NHR \(R \), -C(O)NR \(R \), -C(S)NR \(R \), -S(O)\(_2\)NHR \(R \), -S(O)\(_2\)NR\(^R\)R \(R \), -C(NH)NHR \(R \), -C(NH)NR\(^R\)R \(R \), -NHC(O)R \(R \), -NHC(S)R \(R \), -NR\(^R\)C(O)R \(R \), -NR\(^R\)C(S)R \(R \), -NHS(O)\(_2\)R \(R \), -NR\(^R\)S(O)\(_2\)R \(R \), -NH(C(O)NH\(_2\)), -NH(C(S)NH\(_2\)), -NR\(^R\)C(O)NR \(R \), -NR\(^R\)C(S)NR \(R \), -NHS(O)\(_2\)NR\(^R\)R \(R \), -NR\(^R\)S(O)\(_2\)NH\(_2\), -NR\(^R\)S(O)\(_2\)NHR \(R \), -NR\(^R\)S(O)\(_2\)NR\(^R\)R \(R \), -NR\(^R\)S(O)\(_2\)NR\(^R\)R \(R \), -NHR \(R \), -NR\(^R\)R \(R \), -R\(^h\) and -R\(^i\);
-NHC(S)NR\(^{R_j}\), -NR\(^{C}(S)NR\(^{R_j}\), -NHS(O)\(_2\)NHR\(^{R_j}\), -NR\(^{S}(S)O\(_2\)NH\(_2\),
-NR\(^{S}(O)\(_2\)NHR\(^{R_j}\), -NHS(O)\(_2\)NHR\(^{R_j}\), -NR\(^{S}(O)\(_2\)NR\(^{R_j}\), -NHR\(^{R_j}\), -NR\(^{R_j}\), and-R \(^{J}\);

wherein each-R \(^{J}\) is independently selected from the group consisting of cycloalkyl, heterocycloalkyl, aryl, and heteroaryl, wherein cycloalkyl, heterocycloalkyl, aryl, and heteroaryl are optionally substituted with one or more, preferably 1, 2, 3, 4 or 5, also 1, 2 or 3 substituents selected from the group consisting of halogen, -OH, -NH\(_2\), -NO\(_2\), -CN, -C(O)OH, -C(S)OH, -C(O)NH\(_2\), -C(S)NH\(_2\), -S(O)\(_2\)NH\(_2\), -NHC(O)NH\(_2\),
-NHC(S)NH\(_2\), -NHS(O)\(_2\)NH\(_2\), -C(NH)NH\(_2\), -OR \(^{R_j}\), -SR \(^{R_j}\), -OC(O)R \(^{R_j}\), -OC(S)R \(^{R_j}\), -C(0)R \(^{J}\),
-C(0)OR \(^{J}\), -C(S)OR \(^{J}\), -S(O)\(_2\)R \(^{J}\), -S(O)\(_2\)R \(^{J}\),
-C(0)NR \(^{R_j}\), -C(S)NR\(^{R_j}\), -S(O)\(_2\)NHR\(^{R_j}\), -S(O)\(_2\)NHR\(^{R_j}\), -C(NH)NHR\(^{J}\), -C(NH)NR\(^{R_j}\),
-NHC(0)R \(^{J}\), -NHC(S)R \(^{J}\), -NR\(^{C}(C)R\(^{J}\), -NR\(^{C}(S)R\(^{J}\), -NHS(O)\(_2\)R \(^{J}\), -NR\(^{S}(S)\(_2\)R \(^{J}\),
-NHC(O)NHR\(^{J}\), -NHC(S)NHR\(^{J}\), -NR\(^{C}(C)O)NH\(_2\), -NR\(^{C}(S)NH\(_2\), -NR\(^{C}(C)O)NHR\(^{J}\),
-NR\(^{C}(S)NHR\(^{J}\), -NHC(O)NR\(^{R_j}\), -NHC(S)NR\(^{R_j}\), -NR\(^{C}(O)NR\(^{R_j}\), -NR\(^{C}(S)NR\(^{R_j}\),
-NHS(O)\(_2\)NHR\(^{J}\), -NR\(^{S}(O)\(_2\)NH\(_2\), -NR\(^{S}(S)\(_2\)NH\(_2\), -NR\(^{R_j}\), -NR\(^{R_j}\), cycloalkylamino, and-R \(^{x}\);

wherein each \(R_j\), \(R_s\), and \(R^1\) at each occurrence are independently selected from the group consisting of lower alkyl, C\(_{3-6}\) alkenyl, C\(_{3-6}\) alkynyl, cycloalkyl, heterocycloalkyl, aryl and heteroaryl, wherein lower alkyl is optionally substituted with one or more, preferably 1, 2, 3, 4 or 5, also 1, 2, or 3 substituents selected from the group consisting of-R \(^{y}\), fluoro, -OH, -NH\(_2\), lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro substituted lower alkylthio, monoalkylamino, di-alkylamino, and cycloalkylamino, provided that any substitution of the lower alkyl carbon bound to any -0-, -S-, or -N-, of -OR \(^{R_j}\), -SR \(^{R_j}\), -C(O)OR \(^{R_j}\), -C(S)OR \(^{R_j}\), -C(O)NHR \(^{R_j}\), -C(S)NHR \(^{R_j}\), -C(O)NR\(^{R_j}\), -C(S)NR\(^{R_j}\), -S(O)\(_2\)NHR \(^{J}\),
-S(O)\(_2\)NR\(^{R_j}\), -C(NH)NHR \(^{J}\), -NR\(^{C}(C)R\(^{J}\), -NR\(^{C}(S)R\(^{J}\), -NR\(^{S}(S)O\(_2\)R \(^{J}\),
-NHC(0)NR\(^{R_j}\), -NHC(S)NR\(^{R_j}\), -NR\(^{C}(C)R\(^{J}\), -NR\(^{C}(S)R\(^{J}\),
-NRC(S)NHR\(^{J}\), -NHC(0)NR\(^{R_j}\), -NHC(S)NR\(^{R_j}\), -NR\(^{C}(C)R\(^{J}\), -NR\(^{C}(S)R\(^{J}\),
-NRC(S)NR\(^{R_j}\), -NHS(O)\(_2\)NHR\(^{J}\), -NR\(^{S}(O)\(_2\)NH\(_2\), -NR\(^{S}(S)\(_2\)NH\(_2\), -NR\(^{R_j}\), -NR\(^{R_j}\), is selected from the group consisting of fluoro and -R \(^{y}\), and wherein C\(_{3-6}\) alkenyl or C\(_{3-6}\) alkynyl are optionally substituted with one or more, preferably 1, 2, 3, 4 or 5, also 1, 2, or 3 substituents selected from the group consisting of-R \(^{y}\), fluoro, lower alkyl, fluoro
substituted lower alkyl, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro substituted lower alkylthio, mono-alkylamino, di-alkylamino, and cycloalkylamino, provided that any substitution of the C$_{3-6}$ alkenyl or C$_{3-6}$ alkynyl carbon bound to any -O-, -S-, or -N-, of -OR', -SR', -C(O)OR', -C(S)OR', -C(O)NHR', -C(S)NHR', -C(O)NR'R', -C(S)NR'R', -S(O)$_2$NHR', -S(O)$_2$NR'R', -C(NH)NHR', -NHS(O)R', -NHC(O)NR', -C(O)NHR', -NHS(O)NHC(O)NHR', -NHS(O)NHR', -NHS(O)$_2$NHR', -NR'S(O)$_2$NH$_2$, -NR'S(O)$_2$NHR', -NHS(O)$_2$NR'R', -NR'S(O)$_2$NR'R', -NHR', or -NR'R' is selected from the group consisting of fluoro, lower alkyl, fluoro substituted lower alkyl, or -R'$_y$, and wherein cycloalkyl, heterocycloalkyl, aryl, and heteroaryl are optionally substituted with one or more, preferably 1, 2, 3, 4 or 5, also 1, 2, or 3 substituents selected from the group consisting of halogen, -OH, -NH$_2$, -NO$_2$, -CN, lower alkyl, fluoro substituted lower alkyl, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro substituted lower alkylthio, mono-alkyl amino, di-alkyl amino, and cycloalkylamino, or R'$_s$ and R'$_t$ combine with the nitrogen to which they are attached form a 5-7 membered heterocycloalkyl or a 5 or 7 membered nitrogen containing heteroaryl, wherein the 5-7 membered heterocycloalkyl or 5 or 7 membered nitrogen containing heteroaryl are optionally substituted with one or more, preferably 1, 2, 3, 4 or 5, also 1, 2, or 3 substituents selected from the group consisting of halogen, -NO$_2$, -CN, -OH, -NH$_2$, OR'$_u$, -SR'$_u$, -NHR'$_u$, -NR'R'$_u$, -R'$_s$, and -R'$_t$; wherein each R'$_u$ is independently selected from the group consisting of lower alkyl, C$_{3-6}$ alkenyl, C$_{3-6}$ alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl, wherein lower alkyl is optionally substituted with one or more, preferably 1, 2, 3, 4 or 5, also 1, 2, or 3 substituents selected from the group consisting of R'$_y$, fluoro, -OH, -NH$_2$, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro substituted lower alkylthio, mono-alkylamino, di-alkylamino, and cycloalkylamino, provided that any substitution of the lower alkyl carbon bound to the -O- of -OR'$_u$, -S- of -SR'$_u$, or -N- of-NHR'$_u$ is fluoro or -R'$_s$, and wherein C$_{3-6}$ alkenyl or C$_{3-6}$ alkynyl are optionally substituted with one or more, preferably 1, 2,
3, 4 or 5, also 1, 2, or 3 substituents selected from the group consisting of -Rᵢ, fluoro, -OH, -NH₂, lower alkyl, fluoro substituted lower alkyl, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro substituted lower alkylthio, mono-alkylamino, di-alkylamino, and cycloalkylamino, provided that any substitution of the C₃₋₆ alkenyl or C₃₋₆ alkynyl carbon bound to the the -O- of -OR, -S- of-SR, or -N- of -NHR is fluoro, lower alkyl, fluoro substituted lower alkyl, or - Rᵢ, and wherein cycloalkyl, heterocycloalkyl, aryl, and heteroaryl are optionally substituted with one or more, preferably 1, 2, 3, 4 or 5, also 1, 2, or 3 substituents selected from the group consisting of halogen, -OH, -NH₂, -NO₂, -CN, lower alkyl, fluoro substituted lower alkyl, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro substituted lower alkylthio, mono-alkyl amino, di-alkyl amino, and cycloalkylamino;

wherein each - Rᵢ is selected from the group consisting of lower alkyl, lower alkenyl and lower alkynyl, wherein lower alkyl is optionally substituted with one or more, preferably 1, 2, 3, 4 or 5, also 1, 2, or 3 substituents selected from the group consisting of -R, fluoro, -OH, -NH₂, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro substituted lower alkylthio, mono-alkyl amino, di-alkyl amino, and cycloalkylamino, and wherein lower alkenyl or lower alkynyl are optionally substituted with one or more, preferably 1, 2, 3, 4 or 5, also 1, 2, or 3 substituents selected from the group consisting of -R, fluoro, -OH, -NH₂, lower alkyl, fluoro substituted lower alkyl, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro substituted lower alkylthio, mono-alkyl amino, di-alkyl amino, and cycloalkylamino;

wherein each -Rᵢ is selected from the group consisting of cycloalkyl, heterocycloalkyl, aryl, and heteroaryl, wherein cycloalkyl, heterocycloalkyl, aryl, and heteroaryl are optionally substituted with one or more, preferably 1, 2, 3, 4 or 5, also 1, 2, or 3 substituents selected from the group consisting of halogen, -OH, -NH₂, -NO₂, -CN, lower alkyl, fluoro substituted lower alkyl, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro substituted lower alkylthio, mono-alkyl amino, di-alkyl amino, and cycloalkylamino.
"Lower alkoxy" denotes the group -OR, where R is lower alkyl. "Substituted lower alkoxy" denotes lower alkoxy in which R is lower alkyl substituted with one or more substituents as indicated herein, for example, in the description of compounds of Formula I (including Formulae Ia, Ib, Ig and all sub-embodiments thereof), including descriptions of substituted cycloalkyl, cycloheteroalkyl, aryl and heteroaryl, attached at any available atom to produce a stable compound. Preferably, substitution of lower alkoxy is with 1, 2, 3, 4, or 5 substituents, also 1, 2, or 3 substituents. For example "fluoro substituted lower alkoxy" denotes lower alkoxy in which the lower alkyl is substituted with one or more fluoro atoms, where preferably the lower alkoxy is substituted with 1, 2, 3, 4 or 5 fluoro atoms, also 1, 2, or 3 fluoro atoms. While it is understood that substitutions on alkoxy are attached at any available atom to produce a stable compound, substitution of alkoxy is such that -O-, -S-, or -N- (except where N is a heteroaryl ring atom), are not bound to the alkyl carbon bound to the alkoxy -O-. Further, where alkoxy is described as a substituent of another moiety, the alkoxy oxygen is not bound to a carbon atom that is bound to an -O-, -S-, or -N- of the other moiety (except where N is a heteroaryl ring atom), or to an alkene or alkyne carbon of the other moiety.

"Lower alkylthio" denotes the group -SR, where R is lower alkyl. "Substituted lower alkylthio" denotes lower alkylthio in which R is lower alkyl substituted with one or more substituents as indicated herein, for example, in the description of compounds of Formula I (including Formulae Ia, Ib, Ig and all sub-embodiments thereof), including descriptions of substituted cycloalkyl, cycloheteroalkyl, aryl and heteroaryl, attached at any available atom to produce a stable compound. Preferably, substitution of lower alkylthio is with 1, 2, 3, 4, or 5 substituents, also 1, 2, or 3 substituents. For example "fluoro substituted lower alkylthio" denotes lower alkylthio in which the lower alkyl is substituted with one or more fluoro atoms, where preferably the lower alkylthio is substituted with 1, 2, 3, 4 or 5 fluoro atoms, also 1, 2, or 3 fluoro atoms. While it is understood that substitutions on alkylthio are attached at any available atom to produce a stable compound, substitution of alkylthio is such that -O-, -S-, or -N- (except where N is a heteroaryl ring atom), are not bound to the alkyl carbon bound to the alkylthio -S-. Further, where alkylthio is described as a substituent of another moiety, the alkylthio sulfur is not bound to a carbon atom that is bound to an -O-, -S-, or -N- of the

49
other moiety (except where N is a heteroaryl ring atom), or to an alkene or alkyne carbon of the other moiety.

[0093] "Amino" or "amine" denotes the group -NH₂. "Mono-alkylamino" denotes the group -NHR where R is lower alkyl. "Di-alkylamino" denotes the group -NR where R and R' are independently lower alkyl. "Cycloalkylamino" denotes the group -NR where R and R' combine with the nitrogen to form a 5-7 membered heterocycloalkyl, where the heterocycloalkyl may contain an additional heteroatom within the ring, such as -O-, -N-, or -S-, and may also be further substituted with lower alkyl. Examples of 5-7 membered heterocycloalkyl include, but are not limited to, piperidine, piperazine, 4-methylpiperazine, morpholine, and thiomorpholine. While it is understood that when mono-alkylamino, di-alkylamino, or cycloalkylamino are substituents on other moieties that are attached at any available atom to produce a stable compound, the nitrogen of mono-alkylamino, di-alkylamino, or cycloalkylamino as substituents is not bound to a carbon atom that is bound to an -O-, -S-, or -N- of the other moiety.

[0094] As used herein, the term c-kit-mediated disease or condition refers to a disease or condition in which the biological function of c-kit affects the development and/or course of the disease or condition, and/or in which modulation of c-kit alters the development, course, and/or symptoms. For example, mutations in the c-kit gene such as the W42, Wv, and W41 mutations reported by Herbst et al (J. Biol. Chem., 1992, 267: 13210-13216) confer severe, intermediate, and mild phenotypic characteristics, respectively. These mutations attenuate the intrinsic tyrosine kinase activity of the receptor to different degrees and are models for the effect of modulation of c-kit activity. A c-kit mediated disease or condition includes a disease or condition for which c-kit inhibition provides a therapeutic benefit, e.g. wherein treatment with c-kit inhibitors, including compounds described herein, provides a therapeutic benefit to the subject suffering from or at risk of the disease or condition.

[0095] As used herein, the term c-fms-mediated disease or condition refers to a disease or condition in which the biological function of c-fms affects the development and/or course of the disease or condition, and/or in which modulation of c-fms alters the development, course, and/or symptoms. For example, the Csfr/Csfl mutant mouse of Dai et al (Blood, 2002, 99: 111-120) which lacks c-fms is an animal model for diseases or
conditions wherein c-fins activity has been abolished. A c-fins mediated disease or condition includes a disease or condition for which c-fins inhibition provides a therapeutic benefit, e.g. wherein treatment with c-fins inhibitors, including compounds described herein, provides a therapeutic benefit to the subject suffering from or at risk of the disease or condition.

[0096] As used herein, the term "composition" refers to a formulation suitable for administration to an intended animal subject for therapeutic purposes that contains at least one pharmaceutically active compound and at least one pharmaceutically acceptable carrier or excipient.

[0097] The term "pharmaceutically acceptable" indicates that the indicated material does not have properties that would cause a reasonably prudent medical practitioner to avoid administration of the material to a patient, taking into consideration the disease or conditions to be treated and the respective route of administration. For example, it is commonly required that such a material be essentially sterile, e.g., for injectibles.

[0098] In the present context, the terms "therapeutically effective" and "effective amount" indicate that the materials or amount of material is effective to prevent, alleviate, or ameliorate one or more symptoms of a disease or medical condition, and/or to prolong the survival of the subject being treated.

[0099] Reference to particular amino acid residues in human c-kit polypeptide is defined by the numbering corresponding to the Kit sequence in GenBank NP_000213 (SEQ ID NO: 1). Reference to particular nucleotide positions in a nucleotide sequence encoding all or a portion of c-kit is defined by the numbering corresponding to the sequence provided in GenBank NM_000222 (SEQ ID NO:2). Reference to particular amino acid residues in human c-fms polypeptide is defined by the numbering corresponding to the FMS precursor sequence in GenBank NP 005202 (SEQ ID NO:3). Reference to particular nucleotide positions in a nucleotide sequence encoding all or a portion of c-fms is defined by the numbering corresponding to the sequence provided in GenBank NM 00521 1 (SEQ ID NO:4).

[0100] The terms "kit", "c-kit", and "c-Kit" mean an enzymatically active kinase that contains a portion with greater than 90% amino acid sequence identity to amino acid
residues including the ATP binding site of full-length c-kit (e.g., human c-kit, e.g., the sequence NP_000213, SEQ ID NO:1), for a maximal alignment over an equal length segment; or that contains a portion with greater than 90% amino acid sequence identity to at least 200 contiguous amino acids of native c-kit and retains kinase activity. Preferably the sequence identity is at least 95, 97, 98, 99, or even 100%. Preferably the specified level of sequence identity is over a sequence at least 100-500, at least 200-400, or at least 300 contiguous amino acid residues in length. Unless indicated to the contrary, the term includes reference to wild-type c-kit, allelic variants, and mutated forms (e.g., having activating mutations).

[0101] The terms "fins", "c-fms", "FMS", and "c-Fms" mean an enzymatically active kinase that contains a portion with greater than 90% amino acid sequence identity to amino acid residues including the ATP binding site of full-length c-fms (e.g. human c-fms, e.g. residues 20-972 of GenBank sequence NP 005202, SEQ ID NO:3), for a maximal alignment over an equal length segment; or that contains a portion with greater than 90% amino acid sequence identity to at least 200 contiguous amino acids of native c-fms and retains kinase activity. Preferably the sequence identity is at least 95, 97, 98, 99, or 100%. Preferably the specified level of sequence identity is over a sequence at least 100-150, at least 200-400, or at least 300 contiguous amino acid residues in length. Unless indicated to the contrary, the term includes wild-type c-fms, allelic variants, and mutated forms (e.g. having activating mutations). The term "pFMS" refers to phosphorylated c-fms. The term "c-fms activity" refers to a biological activity of c-fms, particularly including kinase activity. The abbreviation "M-CSF" refers to the ligand for the c-fms RPTK, and the abbreviation "SCF" refers to the ligand for the c-Kit RPTK.

[0102] The term "c-kit kinase domain" refers to a reduced length c-kit (i.e., shorter than a full-length c-kit by at least 100 amino acids) that includes the kinase catalytic region in c-kit. The term "c-fms kinase domain" refers to a c-fms of reduced length (i.e., shorter than a full-length c-fms by at least 100 amino acids) that includes the kinase catalytic region of c-fms. Highly preferably for use in this invention, the kinase domain retains kinase activity, preferably at least 60, 70, 80, 90, or 100% of the native c-fms kinase activity. The term "the kinase" or terms of similar import relate to either c-kit or c-fms.
As used herein, the terms "ligand" and "modulator" are used equivalently to refer to a compound that changes (i.e., increases or decreases) the activity of a target biomolecule, *e.g.*, an enzyme such as a kinase or kinase. Generally a ligand or modulator will be a small molecule, where "small molecule" refers to a compound with a molecular weight of 1500 daltons or less, or preferably 1000 daltons or less, 800 daltons or less, or 600 daltons or less.

The term "binds" in connection with the interaction between a target and a potential binding compound indicates that the potential binding compound associates with the target to a statistically significant degree as compared to association with proteins generally (i.e., non-specific binding). Thus, the term "binding compound" refers to a compound that has a statistically significant association with a target molecule. Preferably a binding compound interacts with a specified target with a dissociation constant (K_d) of 1 mM or less. A binding compound can bind with "low affinity", "very low affinity", "extremely low affinity", "moderate affinity", "moderately high affinity", or "high affinity" as described herein.

In the context of compounds binding to a target, the term "greater affinity" indicates that the compound binds more tightly than a reference compound, or than the same compound in a reference condition, *i.e.*, with a lower dissociation constant. In particular embodiments, the greater affinity is at least 2, 3, 4, 5, 8, 10, 50, 100, 200, 400, 500, 1000, or 10,000-fold greater affinity.

Also in the context of compounds binding to a biomolecular target, the term "greater specificity" indicates that a compound binds to a specified target to a greater extent than to another biomolecule or biomolecules that may be present under relevant binding conditions, where binding to such other biomolecules produces a different biological activity than binding to the specified target. Typically, the specificity is with reference to a limited set of other biomolecules, *e.g.*, in the case of c-kit or c-frns, other tyrosine kinases or even other type of enzymes. In particular embodiments, the greater specificity is at least 2, 3, 4, 5, 8, 10, 50, 100, 200, 400, 500, or 1000-fold greater specificity.

As used herein in connection with binding compounds or ligands, the term "specific for c-kit kinase", "specific for c-kit", and terms of like import mean that a
particular compound binds to c-kit to a statistically greater extent than to other kinases that may be present in a particular sample. Also, where biological activity other than binding is indicated, the term "specific for c-kit" indicates that a particular compound has greater biological effect associated with binding c-kit than to other tyrosine kinases, e.g., kinase activity inhibition. Preferably, the specificity is also with respect to other biomolecules (not limited to tyrosine kinases) that may be present in a particular sample. The term "specific for c-fms kinase", "specific for c-fms", and terms of like import mean that a particular compound binds to c-fms to a statistically greater extent than to other kinases that may be present in a particular sample. Also, where biological activity other than binding is indicated, the term "specific for c-fms" indicates that a particular compound has greater biological effect associated with binding c-fms than to other tyrosine kinases, e.g., kinase activity inhibition. Preferably, the specificity is also with respect to other biomolecules (not limited to tyrosine kinases) that may be present in a particular sample.

[0108] As used herein in connection with test compounds, binding compounds, and modulators (ligands), the term "synthesizing" and like terms means chemical synthesis from one or more precursor materials.

[0109] By "assaying" is meant the creation of experimental conditions and the gathering of data regarding a particular result of the experimental conditions. For example, enzymes can be assayed based on their ability to act upon a detectable substrate. A compound or ligand can be assayed based on its ability to bind to a particular target molecule or molecules.

[0110] As used herein, the term "modulating" or "modulate" refers to an effect of altering a biological activity, especially a biological activity associated with a particular biomolecule such as c-kit or c-fms. For example, an agonist or antagonist of a particular biomolecule modulates the activity of that biomolecule, e.g., an enzyme.

[0111] The term "c-kit activity" refers to a biological activity of c-kit, particularly including kinase activity. The term "c-fms activity" refers to a biological activity of c-fms, particularly including kinase activity.

[0112] In the context of the use, testing, or screening of compounds that are or may be modulators, the term "contacting" means that the compound(s) are caused to be in
sufficient proximity to a particular molecule, complex, cell, tissue, organism, or other specified material that potential binding interactions and/or chemical reaction between the compound and other specified material can occur.

[0113] As used herein in connection with amino acid or nucleic acid sequence, the term "isolate" indicates that the sequence is separated from at least a portion of the amino acid and/or nucleic acid sequences with which it would normally be associated.

[0114] In connection with amino acid or nucleic acid sequences, the term "purified" indicates that the particular molecule constitutes a significantly greater proportion of the biomolecules in a composition than in a prior composition, e.g., in a cell culture. The greater proportion can be 2-fold, 5-fold, 10-fold or more greater.

I. General

[0115] In one aspect, the present invention concerns compounds of Formula I, Formula Ia, Formula Ib, or Formula Ig and all sub-embodiments thereof, that are inhibitors of c-kit, c-fms, or both c-kit and c-fms, and the use of the compounds in treating diseases that are mediated by c-kit, c-fms, or both c-kit and c-fms.

[0116] Exemplary compounds of Formula I, Formula Ia, Formula Ib or Formula Ig prepared following methods described in the Examples herein are as follows: Benzyl-[5-(lH-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-amine (P-0001), (6-Benzylamino-pyridin-3-yl)-(lH-pyrrolo[2,3-b]pyridin-3-yl)-methanone (P-0002), [5-(lH-Pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-(4trifluoromethyl-benzyl)-amine (P-0003), (4-Methoxy-benzyl)-[5-(lH-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-amine (P-0004), (4-Chloro-benzyl)-[5-(lH-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-amine (P-0005), (4-Fluoro-benzyl)-[5-(lH-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-amine (P-0006), (4-Methyl-benzyl)-[5-(lH-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-amine (P-0007),
[5-(m-Pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-thiophen-2-ylmetliyl-amine (P-0008),
(4-Chloro-benzyl)-[5-(4-chloro-lH-pyrrolo[2 3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-amine (P-0009),
(4-Chloro-benzyl)-[5-(4-methoxy-lH-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-amine (P-OO10),
[5-(4-Methoxy-lH-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-(4-trifluoromethyl-benzyl)-amine (P-O011),
[6-Methoxy-5-(lH-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-(4-trifluoromethyl-benzyl)-amine (P-OO 12),
[6-Methyl-5-(lH-pyrrolo[2,3-b]pyridin-3-ylniethyl)-pyridin-2-yl]-(4-trifluoromethyl-benzyl)-amine (P-O013),
(4-Chloro-benzyl)-[6-methyl-5-(lH-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-amine (P-OO14),
[6-(4-Fluoro-benzylamino)-pyridin-3-yl]-(lH-pyrrolo[2,3-b]pyridin-3-yl)-methanone (P-OO15),
[6-(3-Fluoro-benzylamino)-pyridin-3-yl]-(lH-pyrrolo[2,3-b]pyridin-3-yl)-methanone (P-0016),
(lH-Pyrrolo[2,3-b]pyridin-3-yl)-[6-(4-trifluoromethyl-benzylamino)-pyridin-3-yl]-methanone (P-OO17),
(lH-Pyrrolo[2,3-b]pyridin-3-yl)-{6-[(thiophen-2-ylmethyl)-amino]-pyridin-3-yl}-methanone (P-OO18),
3-(6-Iso propyl- pyridin-3-ylmethyl)-lH-pyrrolo[2,3-b]pyridine (P-0019),
3-(6-tert-Butoxy-pyridin-3-yl πethyl)-lH- pyrrolo[2,3-b]pyridine (P-0020),
Dimethyl-[5-(lH- ρyrrolo[2,3-b]pyridin-3-ylmethyl)- pyridin-2-yl]-amine (P-0021),
3-(6-Methoxy- pyridin-3-ylmethyl)-4-tmophen-3-yl-lH- ρyrrolo[2 3-b]pyridine (P-0022),
(6-Phenylatnino-pyridin-3 -yl)-(lH-pyrrolo[2,3 -b]pyridin-3 -yl)-methanone (P-0023),
(6-Isopropylammo-pyridin-3-yl)-(lH-pyrrolo[2,3-b]pyridin-3-yl)-methanone (P-0024),
(6-Isobutylamino-pyridin-3-yl)-(lH-pyrrolo[2,3-b]pyridin-3-yl)-methanone (P-0025),
[6-(3-Benzyloxy-phenylammo)-pyridin-3-yl]-((lH-pyrrolo[2,3-b]pyridin-3-yl)-methanone (P-0026),
[6-(3-Hydroxy-phenylammo)-pyridin-3-yl]-(lH-py πOlo[2,3-b]pyridin-3-yl)-methanone (P-0027),
Isobutyl-\([5-(\text{IH-pyrrolo}[2,3-b]pyridin-3-ylmethyl)-\text{pyridin-2-yl}]\)-amine (P-0028),
(6-Isobutylamino-pyridin-3-yl)-(\text{IH-pyrrolo}[2,3-b]pyridin-3-yl)-methanol (P-0029),
[6-(Cyclopropylmethyl-amino)-pyridin-3-yl]-(\text{IH-pyrrolo}[2,3-b]pyridin-3-yl)-methanone (P-0030),
[6-(Cyclohexylmethyl-amino)-pyridin-3-yl]-(\text{IH-pyrrolo}[2,3-b]pyridin-3-yl)-methanone (P-0031),
Cyclopropylmethyl-[5-(\text{IH-pyrrolo}[2,3-b]pyridin-3-ylmethyl)-\text{pyridin-2-yl}]\)-amine (P-0032),
Cyclohexylmethyl-[5-(\text{IH-pyrrolo}[2,3-b]pyridin-3-ylmethyl)-\text{pyridin-2-yl}]\)-amine (P-0033),
[6-(Cyclopropylmethyl-amino)-pyridin-3-yl]-(\text{IH-pyrrolo}[2,3-b]pyridin-3-yl)-methanol (P-0034),
[6-(Cyclohexylmethyl-amino)-pyridin-3-yl]-(\text{IH-pyrrolo}[2,3-b]pyridin-3-yl)-methanol (P-0035),
(\text{IH-Pyrrolo}[2,3-b]pyridin-3-yl)-[6-(4-trifluoromethyl-benzylamino)-pyridin-3-yl]-methanol (P-0036),
[6-(4-Chloro-benzylamino)-pyridin-3-yl]-(\text{IH-pyrrolo}[2,3-b]pyridm-3-yl)-metrianol (P-0037),
[5-(5-Bromo-\text{IH-pyrrolo}[2,3-b]pyridin-3-ylmethyl)-\text{pyridin-2-yl}]-(4-chloro-benzyl)-amine (P-0038),
(4-Chloro-benzyl)-(5-[methoxy-(\text{IH-pyrrolo}[2,3-b]pyridin-3-yl]-methyl]-\text{pyridin-2-yl}]\)-amine (P-0039),
(4-Chloro-3-trifluoromethyl-benzyl)-(5-[methoxy-(\text{IH-pyrrolo}[2,3-b]pyridin-3-yl]-methyl)-\text{pyridin-2-yl}]\)-amine (P-0040),
(4-Chloro-benzyl)-(5-[methoxy-(5-pyridin-3-yl-\text{IH-pyrrolo}[2,3-b]pyridin-3-yl]-methyl]-\text{pyridin-2-yl}]\)-amine (P-0041),
(4-Chloro-benzyl)-(5-\{[5-(3-methanesulfonyl-prienyl)-\text{IH-pyrrolo}[2,3-b]pyridin-3-yl]-methoxy-methyl\} \text{-pyridin-2-yl}\}-amine (P-0042),
\{5-[Methoxy-(\text{IH-pyrrolo}[2,3-b]pyridin-3-yl]-methyl\}-(4-trifluorometliyl-benzyl)-amine (P-0043),
[6-(4-Chloro-benzylamino)-2-methyl-pyridin-3-yl]-(\text{IH-pyrrolo}[2,3-b]pyridin-3-yl)-methanol (P-0046),
[2-Chloro-6-(4-chloro-benzylamino)-pyridin-3-yl]-(1H-pyrrolo[2,3-b]pyridin-3-yl)-methanone (P-0048),
[2,6-Bis-(4-chloro-benzylamino)-pyridin-3-yl]-(1H-pyrrolo[2,3-b]pyridin-3-yl)-methanone (P-0049),
[2-Chloro-6-(4-chloro-benzylamino)-pyridin-3-yl]-(1H-pyrrolo[2,3-b]pyridin-3-yl)-methanol (P-0050),
6-(4-Chloro-benzylamino)-3-(1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-ol (P-0051),
3-(2-Ethylsulfanyl-4,6-dimethyl-pyrimidin-5-ylmethyl)-1H-pyrrolo[2,3-b]pyridine (P-0052),
[5-(5-Methoxy-1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-(4-trifluoromethyl-ylbenzyl)-amine (P-0053),
[5-(5-Chloro-1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-(4-trifluoromethylbenzyl)-amine (P-0054),
3-[6-(3-Chloro-benzyloxy)-pyridin-3-ylmethyl]-1H-pyrrolo[2,3-b]pyridine (P-0055),
3-[6-(4-Chloro-benzyloxy)-pyridin-3-ylmethyl]-1H-pyrrolo[2,3-b]pyridine (P-0056),
3-[6-(3-Trifluoromethyl-benzyloxy)-pyridin-3-ylmethyl]-1H-pyrrolo[2,3-b]pyridine (P-0057),
(4-Chloro-benzyl)-[5-(5-methoxy-1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-amine (P-0058),
(4-Chloro-benzyl)-[5-(5-chloro-1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-amine (P-0059),
{5-[5-(2-Diethylamino-ethoxy)-1H-pyrrolo[2,3-b]pyridin-3-ylmethyl]-pyridin-2-yl]-(4-trifluoromethyl-benzyl)-amine (P-0060),
3-[6-(4-Trifluoromethyl-benzyloxy)-pyridin-3-ylmethyl]-1H-pyrrolo[2,3-b]pyridin-5-ol (P-0061),
3-[6-(4-Chloro-benzyloxy)-pyridin-3-ylmethyl]-1H-pyrrolo[2,3-b]pyridin-5-ol (P-0062),
(4-Chloro-benzyl)-{5-[5-(2-Morpholin-4-yl-ethoxy)-1H-pyrrolo[2,3-b]pyridin-3-ylmethyl]-pyridin-2-yl]–amine (P-0063),
{5-[5-(2-Pyrrolidin-1-yl-ethoxy)-1H-pyrrolo[2,3-b]pyridin-3-ylmethyl]-pyridin-2-yl]–(4-trifluoromethyl-benzyl)-amine (P-0064),
{5-[5-(2-Morpholin-4-yl-ethoxy)-lH-pyrrolo[2,3-b]pyridin-3-ylmethyl]-pyridin-2-yl}-(4-trifluoromethyl-benzyl)-amine (P-0065),
{5-[5-(3-Diethylamino-propoxy)-lH-pyrrolo[2,3-b]pyridin-3-ylmethyl]-pyridin-2-yl}-(4-trifluoromethyl-benzyl)-amine (P-0066),
N-[5-(lH-Pyrrolo[2,3-b]pyridine-3-carbonyl)-pyridin-2-yl]-4-trifluoromethyl-benzamide (P-0067),
N-[5-(lH-Pyrrolo[2,3-b]pyridine-3-carbonyl)-pyridin-2-yl]-4-trifluoromethyl-benzenesulfonamide (P-0068),
(4-Chloro-benzyl)-{5-[5-(3-diethylamino-propoxy)-lH-pyrrolo[2,3-b]pyridin-3-ylmethyl]-pyridin-2-yl]-amine (P-0069),
[6-(4-Chloro-benzylamino)-2-trifluoromethyl-pyridin-3-yl]-{(lH-pyrrolo[2,3-b]pyridin-3-yl)-methanone (P-0070),
N-[5-(lH-Pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-4-trifluoromethyl-benzenesulfonamide (P-0071),
N-[5-(lH-Pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-4-trifluoromethyl-benzamide (P-0072),
4-Fluoro-N-[5-(lH-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-benzamide (P-0073),
4-Chloro-N-[5-(lH-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-benzamide (P-0074),
[(S)-l-(4-Chloro-phenyl)-ethyl]-{5-(lH-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-amine (P-0075),
5-(lH-Pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridine-2-carboxylic acid (4-chloro-phenyl)-amide (P-0076),
[2-(4-Chloro-benzylamino)-thiazol-5-yl]-{(lH-pyrrolo[2,3-b]pyridin-3-yl)-methanone (P-0077),
(4-Chloro-phenyl)-{5-(lH-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-ylmethyl]-amine (P-0078),
3-[(5-Chloro-3-methyl-l-phenyl-lH-pyrazol-4-yl)-methoxy-methyl]-lH-pyrrolo[2,3-bjpyridine (P-0079),
3-(5-Chloro-3-methyl-l-phenyl-lH-pyrazol-4-ylmethyl)-lH-pyrrolo[2,3-b]pyridine (P-0080),
(4-Chloro-benzyl)-[6-methoxy-5-((lH-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-amine (P-0081),
(4-CUoro-benzyl)-[6-fluoro-5-(lH-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-ainine (P-0082), and
(4-Chloro-benzyl)-[4-chloro-5-(lH-pyrrolo/ 2,3-Z?/pyridin-3-ylmetliyl)-thiazol-2-yl]-amine (P-0083),
3,5-Dimethyl-4-(lH-pyrrolo[2,3-b]pyridin-3-y1methyl)-pyrazole-1-carboxylic acid benzylamide (P-0084),
3,5-Dimethyl-4-(lH-pyrrolo[2,3-b]pyridin-3-y1methyl)-pyrazole-1-carboxylic acid phenylamide (P-0085),
[3,5-Dimethyl-4-(lH-pyrrolo[2,3-b]pyridin-3-y1methyl)-pyrazol-l-yl]-phenyl-metlianone (P-0086),
l-[3,5-Dimethyl-4-(lH-pyrrolo[2,3-b]pyridin-3-y1methyl)-pyrazol-l-yl]-3-phenyl-propan-1-one (P-0087),
3-(3,5-Dimethyl-1-phenylmethanesulfonyl- IH-pyrazol-4-y1methyl)- IH-pyrrolo[2,3-b]pyridine (P-0088),
3-[1-(Butane-l-sulfonyl)-3,5-dimethyl-IH-pyrazol-4-y1methyl]-IH-pyrrolo[2,3-b]pyridme (P-0089), and
3,5-Dimethyl-1-(IH-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyrazole-l-carboxylic acid butylamide (P-0090).

Exemplary Diseases Associated with c-Kit.

[0117] The compounds described herein are useful for treating disorders related to c-kit e.g., diseases related to unregulated kinase signal transduction, including cell proliferative disorders, fibrotic disorders and metabolic disorders, among others. As described in more detail below and in Lipson et al., U.S. 20040002534 (U.S. application 10/600, 868, filed June 23, 2003) which is incorporated herein by reference in its entirety, cell proliferative disorders which can be treated by the present invention include cancers, and mast cell proliferative disorders.

[0118] The presence of c-kit has also been associated with a number of different types of cancers, as described below. In addition, the association between abnormalities in c-kit and disease are not restricted to cancer. As such, c-kit has been associated with malignancies, including mast cell tumors, small cell lung cancer, testicular cancer, gastrointestinal stromal tumors (GISTs), glioblastoma, astrocytoma, neuroblastoma,
carcinomas of the female genital tract, sarcomas of neuroectodermal origin, colorectal carcinoma, carcinoma in situ, Schwann cell neoplasia associated with neurofibromatosis, acute myelocytic leukemia, acute lymphocytic leukemia, chronic myelogenous leukemia, mastocytosis, melanoma, and canine mast cell tumors, and inflammatory diseases, including asthma, rheumatoid arthritis, allergic rhinitis, multiple sclerosis, inflammatory bowel syndrome, transplant rejection, and hypereosinophilia.

Exemplary malignant diseases associated with c-kit

[0119] Aberrant expression and/or activation of c-kit has been implicated in a variety of cancers. Evidence for a contribution of c-kit to neoplastic pathology includes its association with leukemias and mast cell tumors, small cell lung cancer, testicular cancer, and some cancers of the gastrointestinal tract and central nervous system. In addition, c-kit has been implicated in playing a role in carcinogenesis of the female genital tract (Inoue, et al., 1994, Cancer Res. 54(11):3049-3053), sarcomas of neuroectodermal origin (Ricotti, et al., 1998, Blood 91:2397-2405), and Schwann cell neoplasia associated with neurofibromatosis (Ryan, et al., 1994, J. Neuro. Res. 37:415-432). It was found that mast cells are involved in modifying the tumor microenvironment and enhancing tumor growth (Yang et al., 2003, J Clin Invest. 112:1851-1861; Viskochil, 2003, J Clin Invest. 112:1791-1793). Thus, c-kit is a useful target in treating neurofibromatosis as well as malignant tumors.

[0120] Small cell lung carcinoma: c-kit kinase receptor has been found to be aberrantly expressed in many cases of small cell lung carcinoma (SCLC) cells (Hibi, et al., 1991, Oncogene 6:2291-2296). Thus, as an example, inhibition of c-kit kinase can be beneficial in treatment of SCLC, e.g., to improve the long term survival of patients with SCLC.

[0121] Leukemias: SCF binding to the c-kit protects hematopoietic stem and progenitor cells from apoptosis (Lee, et al., 1997, J. Immunol. 159:3211-3219), thereby contributing to colony formation and hematopoiesis. Expression of c-kit is frequently observed in acute myelocytic leukemia (AML), and in some cases of acute lymphocytic leukemia (ALL) (for reviews, see Sperling, et al., 1997, Haemat 82:617-621; Escribano, et al., 1998, Leuk. Lymph. 30:459-466). Although c-kit is expressed in the majority of AML cells, its expression does not appear to be prognostic of disease progression (Sperling, et al, 1997, Haemat 82:617-621). However, SCF protected AML cells from apoptosis induced by
chemotherapeutic agents (Hassan, et al., 1996, Acta. Hem. 95:257-262). Inhibition of c-kit by the present invention will enhance the efficacy of these agents and can induce apoptosis of AML cells.

[0122] The clonal growth of cells from patients with myelodysplastic syndrome (Sawada, et al., 1996, Blood 88:319-327) or chronic myelogenous leukemia (CML) (Sawai, et al., 1996, Exp. Hem. 2:1 16-122) was found to be significantly enhanced by SCF in combination with other cytokines. CML is characterized by expansion of Philadelphia chromosome positive cells of the marrow (Verfaillie, et al., Leuk. 1998, 12:136-138), which appears to primarily result from inhibition of apoptotic death (Jones, Curr. Opin. One. 1997, 9:3-7). The product of the Philadelphia chromosome, p210B^{CR/ABL}, has been reported to mediate inhibition of apoptosis (Bedi, et al., Blood 1995, 86:1 148-1 158). Since p210B^{CR/ABL} and c-kit both inhibit apoptosis and p62^{dok} has been suggested as a substrate (Carpino, et al., Cell 1997, 88:197-204), clonal expansion mediated by these kinases may occur through a common signaling pathway. However, c-kit has also been reported to interact directly with p210B^{CR/ABL} (Hallek, et al., Brit. J Haem. 1996, 94:5-16), which suggests that c-kit has a more causative role in CML pathology. Therefore, inhibition of c-kit will be useful in the treatment of the above disorders.

[0124] SCF/c-kit autocrine loops have been observed in gastric carcinoma cell lines (Turner, et al., 1992, Blood 80:374-381; Hassan, et al., 1998, Digest. Dis. Science 43:8-14), and constitutive c-kit activation also appears to be important for gastrointestinal stromal tumors (GISTs). GISTs are the most common mesenchymal tumor of the digestive

62
system. More than 90% of GISTs express c-kit, which is consistent with the putative origin of these tumor cells from interstitial cells of Cajal (ICCs) (Hirota, et al., 1998, Science 279:577-580). ICCs are thought to regulate contraction of the gastrointestinal tract, and patients lacking c-kit in their ICCs exhibited a myopathic form of chronic idiopathic intestinal pseudo-obstruction (Isozaki, et al., 1997, Amer. J. of Gast. 9 332-334). The c-kit expressed in GISTs from several different patients was observed to have mutations in the intracellular juxtamembrane domain leading to constitutive activation of c-kit (Hirota, et al., 1998, Science 279:577-580). Hence, inhibition of c-kit kinase will be an efficacious means for the treatment of these cancers.

[0125] Testicular cancers: Male germ cell tumors have been histologically categorized into seminomas, which retain germ cell characteristics, and nonseminomas which can display characteristics of embryonal differentiation. Both seminomas and nonseminomas are thought to initiate from a preinvasive stage designated carcinoma in situ (CIS) (Murty, et al., 1998, Sem. Oncol. 25:133-144). Both c-kit and SCF have been reported to be essential for normal gonadal development during embryogenesis (Loveland, et al., 1997, J. Endocrinol 153:337-344). Loss of either the receptor or the ligand resulted in animals devoid of germ cells. In postnatal testes, c-kit has been found to be expressed in Leydig cells and spermatogonia, while SCF was expressed in Sertoli cells (Loveland, et al., 1997, J. Endocrinol 153:337-344). Testicular tumors develop from Leydig cells with high frequency in transgenic mice expressing human papilloma virus 16 (HPV16) E6 and E7 oncogenes (Kondoh, et al., 1991, J. Virol. 65:3335-3339; Kondoh, et al., 1994, J. Urol. 152:2151-2154). These tumors express both c-kit and SCF, and an autocrine loop may contribute to the tumorigenesis (Kondoh, et al., 1995, Oncogene 10:341-347) associated with cellular loss of functional p53 and the retinoblastoma gene product by association with E6 and E7 (Dyson, et al., 1989, Science 243:934-937; Werness, et al., 1990, Science 248:76-79; Scheffher, et al., 1990, Cell 63:1129-1136). Defective signaling mutants of SCF (Kondoh, et al., 1995, Oncogene 10:341-347) or c-kit (Li, et al., 1996, Cane. Res. 56:4343-4346) inhibited formation of testicular tumors in mice expressing HPV16 E6 and E7. The c-kit kinase activation is pivotal to tumorigenesis in these animals and thus modulation of the c-kit kinase pathway by the present invention will prevent or treat such disorders.

Cohen, et al., 1994, Blood 84:3465-3472 reported that all 14 neuroblastoma cell lines examined contained c-kit/SCF autocrine loops, and expression of both the receptor and ligand were observed in 45% of tumor samples examined. In two cell lines, anti-c-kit antibodies inhibited cell proliferation, suggesting that the SCF/c-kit autocrine loop contributed to growth (will Cohen, et al., 1994, Blood 84:3465-3472). Hence, c-kit kinase inhibitors can be used to treat these cancers.

Exemplary Mast Cell Diseases Involving c-kit

Excessive activation of c-kit is also associated with diseases resulting from an over-abundance of mast cells. Mastocytosis is the term used to describe a heterogeneous group of disorders characterized by excessive mast cell proliferation (Metcalf, 1991, J. Invest. Derm 93:2S-4S; Golkar, et al., 1997, Lancet 349:1379-1385). Elevated c-kit expression was reported on mast cells from patients with aggressive mastocytosis (Nagata, et al., 1998, Leukemia 12:175-181).
Additionally, mast cells and eosinophils represent key cells involved in allergy, inflammation and asthma (Thomas, et al., 1996, Gen. Pharmacol 27:593-597; Metcalfe, et al., 1997, Physiol Rev 77:1033-1079; Naclerio, et al., 1997, JAMA 278:1842-1848; Costa, et al., 1997, JAMA 278:1815-1822). SCF, and hence c-kit, directly and indirectly regulates activation of both mast cells and eosinophils, thereby influencing the primary cells involved in allergy and asthma through multiple mechanisms. Because of this mutual regulation of mast cell and eosinophil function, and the role that SCF can play in this regulation, inhibition of c-kit can be used to treat allergy-associated chronic rhinitis, inflammation and asthma.

Mastocytosis: SCF (also known as mast cell growth factor) stimulation of c-kit has been reported to be essential for the growth and development of mast cells (Hamel, et al., 1997, J. Neuro-Onc. 35:327-333; Kitamura, et al., 1995, Int. Arch. Aller. Immunol. 107:54-56). Mice with mutations of c-kit that attenuate its signaling activity have exhibited significantly fewer mast cells in their skin (Tsujimura, 1996, Pathol Int 46:933-938). Excessive activation of c-kit can be associated with diseases resulting from an over abundance of mast cells.

SCF has been shown to be expressed on stromal cells as a membrane-bound protein, and its expression can be induced by fibrogenic growth factors such as PDGF. It has also been shown to be expressed on keratinocytes as a membrane-bound protein in normal skin. However, in the skin of patients with mastocytosis, an increased amount of soluble SCF has been observed (Longley, et al., 1993, New Engl. J. Med. 328:1302-1307).
Mast cell chymase has been reported to cleave membrane-associated SCF to a soluble and biologically active form. This mast cell-mediated process can generate a feedback loop to enhance mast cell proliferation and function (Longley, et al., 1997, Proc. Natl. Acad. Sci. 94:9017-9021), and maybe important for the etiology of mastocytosis. Transgenic mice overexpressing a form of SCF that could not be proteolytically released from keratinocytes did not develop mastocytosis, while similar animals expressing normal SCF in keratinocytes exhibited a phenotype resembling human cutaneous mastocytosis (Kunisada, et al., 1998, J. Exp. Med. 187:1565-1573). Formation of large amounts of soluble SCF can contribute to the pathology associated with mastocytosis in some patients and the present invention can treat or prevent such disorders by modulating the interaction between SCF and c-kit kinase. Several different mutations of c-kit that resulted in constitutive kinase activity have been found in human and rodent mast cell tumor cell lines (Furitsu, et al., 1993, J. Clin. Invest. 92:1736-1744; Tsujimura, et al., 1994, Blood 9:2619-2626; Tsujimura, et al., 1995, Int. Arch. Aller. Immunol 106:377-385; Tsujimura, 1996, Pathol hit 46:933-938). In addition, activating mutations of the c-kit gene have been observed in peripheral mononuclear cells isolated from patients with mastocytosis and associated hematologic disorders (Nagata, et al., 1998, Mastocytosis Leuk 12:175-181), and in mast cells from a patient with urticaria pigmentosa and aggressive mastocytosis (Longley, et al., 1996, Nat. Gen. 12:312-314). Inhibition of c-kit kinase will therefore prove to have an excellent therapeutic role in the treatment of these disorders.

Some patients, activating mutations of c-kit may be responsible for the pathogenesis of the disease and these patients can be treated, or their diseases prevented, by modulation of the SCF interaction with c-kit kinase. SCF activation of c-kit as been shown to prevent mast cell apoptosis which may be critical for maintaining cutaneous mast cell homeostasis (Iemura, et al., 1994, Amer. J. Pathol 144:321-328; Yee, et al., 1994, J. Exp. Med. 179:1777-1787; Mekori, et al., 1994, J. Immunol 153:2194-2203; Mekori, et al., 1995, Int. Arch. Allergy Immunol. 107:137-138). Inhibition of mast cell apoptosis can lead to the mast cell accumulation associated with mastocytosis. Thus, observation of c-kit activation resulting from overexpression of the receptor, excessive formation of soluble SCF, or mutations of the c-kit gene that constitutively activate its kinase, provides a rationale that inhibition of the kinase activity of c-kit will decrease the number of mast cells and provide benefit for patients with mastocytosis.
For cells with activating c-kit mutations, it was found that inhibitors of c-kit inhibit or even kill the cells (Ma et al., 2000, J Invest Dermatol. 114:392-394), particularly for mutations in the regulatory region (Ma et al., 2002, Blood 99:1741-1744). Ma et al., 2002, also showed that for mutations in the catalytic region, inhibitors STI571 (Gleevec) and SU9529 did not inhibit the cells, such that additional types of c-kit inhibitors are useful. Thus, c-kit inhibitors can be used against both wild-type c-kit as well as c-kit having mutations, e.g., activating mutations in the regulatory region and/or catalytic region.

(Hogaboam, et al., 1998, J. Immunol. 160:6166-6171), and eosinophil infiltration

SCF also directly influences the adhesion of both mast cells (Dastych, et al.,
eosinophils (Yuan, et al., 1997, J. Exp. Med. 186:313-323), which in turn, regulates tissue
infiltration. Thus, SCF can influence the primary cells involved in allergy and asthma
through multiple mechanisms. Currently, corticosteroids are the most effective treatment
for chronic rhinitis and inflammation associated with allergy (Naclerio, et al., 1997,
JAMA 278:1842-1848; Meltzer, 1997, Aller. 52:33-40). These agents work through
multiple mechanisms including reduction of circulating and infiltrating mast cells and
eosinophils, and diminished survival of eosinophils associated with inhibition of cytokine
production (Meltzer, 1997, Aller. 52:33-40). Steroids have also been reported to inhibit the
expression of SCF by fibroblasts and resident connective tissue cells, which leads to
Because of the mutual regulation of mast cell and eosinophil function, and the role that
SCF can play in this regulation, inhibition of c-kit kinase will provide a means to treat
allergy-associated chronic rhinitis, inflammation and asthma.

Inflammatory arthritis (e.g. rheumatoid arthritis): Due to the association of mast
cells with the arthritic process (Lee et al., 2002, Science 297:1689-1692), c-kit provides a
useful target for prevention, delay, and/or treatment of inflammatory arthritis, such as
rheumatoid arthritis.

Multiple sclerosis: Mast cells have been shown to play an extensive role in
autoimmune diseases, as demonstrated in the mouse model of multiple sclerosis (MS),
experimental allergic encephalomyelitis (EAE). Mast cells were indicated to be required
for full manifestation of the disease. Secor et al., 2000, J Exp Med 191:813-821. Thus,
c-kit also provides a useful target for the prevention, delay, and/or treatment of multiple
sclerosis.

Exemplary **diseases associated with c-fms**

The presence of c-fms has been associated with a number of different types of
diseases. As such, c-fms has been associated with immune disorders, including
rheumatoid arthritis, systemic lupus erythematosus (SLE), Wegener's granulomatosis, and transplant rejection, inflammatory diseases including Chronic Obstructive Pulmonary Disease (COPD), emphysema, and atherosclerosis, metabolic disorders, including insulin resistance, hyperglycemia, and lipolysis, disorders of bone structure or mineralization, including osteoporosis, increased risk of fracture, hypercalcemia, and bone metastases, kidney diseases, including nephritis (e.g. glomerulonephritis, interstitial nephritis, Lupus nephritis), tubular necrosis, diabetes-associated renal complications, and hypertrophy and cancers, including multiple myeloma, acute myeloid leukemia, chronic myeloid leukemia (CML), breast cancer, and ovarian cancer.

[0143] Aberrant expression and/or activation of c-fms has been implicated in acute myeloid leukemia, AML (Ridge et al, Proc. Nat. Acad. ScL, 1990, 87:1377-1380). Mutations at codon 301 are believed to lead to neoplastic transformation by ligand independence and constitutive tyrosine kinase activity of the receptor. The tyrosine residue at codon 969 has been shown to be involved in a negative regulatory activity, which is disrupted by amino acid substitutions. Accordingly, c-fms mutations are most prevalent (20%) in chronic myelomonocytic leukemia and AML type M4 (23%), both of which are characterized by monocytic differentiation.

[0144] A condition related to AML is chronic myeloid leukemia (CML). During the myeloid blast crisis (BC) of CML, non-random additional chromosome abnormalities occur in over 80% of patients. However, these cytogenetic changes have been reported to precede the clinical signs of CML-BC by several months to years suggesting that other biological events may participate in the multistep process of acute transformation of CML. The autocrine production of growth factors has been shown to occur in several hematological malignancies and particularly in AML. Specchia et al [Br J Haematol. 1992 Mar; 80(3):310-6] have demonstrated that IL-1 beta gene is expressed in almost all cases of CML in myeloid blast crisis, and that a high proportion of cases showed constitutive expression of the M-CSF gene. Many of the same patients in the Specchia et al study demonstrated simultaneous co-expression of c-fms. After exposure of leukemic cells to phorbol myristate acetate (PMA), release of M-CSF protein was documented in three of five patients studied; however, no significant interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF) or granulocyte colony-stimulating factor (G-CSF), was detected in these patients. This demonstrates that
different patterns of growth factors secretion exist in AML and CML, and that distinct molecular events are likely involved in the control of leukemic proliferation.

[0145] The observation that production of M-CSF, the major macrophage growth factor, is increased in tissues during inflammation (Le Meur et al, J. Leukocyte Biology. 2002;72:530-537) provides a role for c-fms in certain diseases. For example, COPD is characterized by airflow limitation that is not fully reversible. The airflow limitation is usually progressive and associated with an abnormal inflammatory response of the lungs to noxious particles or gases. The chronic inflammation of COPD is observed through the airways, parenchyma, and pulmonary vasculature. The inflammatory cell population consists of neutrophils, macrophages, and T lymphocytes, along with eosinophils in some patients. Macrophages are postulated to play an orchestrating role in COPD inflammation by releasing mediators such as TNF-α, IL-8 and LTB4, which are capable of damaging lung structures and/or sustaining neutrophilic inflammation.

[0146] Further, M-CSF/Fms signaling is critical to osteoclast formation and survival of osteoclast precursors. For example, estrogen loss in menopause results in increased M-CSF and thus increased osteoclast number and bone resorption which leads to increased risk of fracture and osteoporosis. Accordingly, blockage of this signal is a target for the inhibition of bone resorption (Teitelbaum, Science. 2000;289:1504; Rohan, Science. 2000;289:1508.)

[0147] Atherosclerosis, an inflammatory disease of the vessel walls, is associated with significant morbidity and mortality. A effect for c-fms inhibition in the treatment and prevention of atherosclerosis depends on several observations (Libby, Nature. 2002;420: 868-874.) First, monocytes resident in the arterial intima increase expression of scavenger receptors and internalize modified lipoproteins. The resulting lipid-laden macrophages develop into foam cells characteristic of the atherosclerotic lesion. Macrophages in atheroma secrete cytokines and growth factors involved in lesion progression. Additionally, macrophages replicate within the intima. Through c-fms, M-CSF activates the transition from monocyte to lipid-laden macrophage and augments expression of scavenger receptor A. Indeed, atherosclerotic plaques over-express M-CSF which is critical for atherosclerotic progression. Mice deficient in M-CSF have been found to experience less severe atherosclerosis than mice with normal M-CSF

[0148] Wegener's granulomatosis, also known as vasculitis, is characterized by granulomatous inflammation of the blood vessels with necrosis. This inflammation limits blood flow to organs with consequent damage. Although the disease can involve any organ system, Wegener's granulomatosis mainly affects the respiratory tract (i.e., sinuses, nose, trachea, and lungs) and the kidneys. The endothelium plays a central role in the immunopathology of several vascular disorders in many inflammatory conditions such as Wegener's granulomatosis in which use of intravenous immunoglobulin (IV Ig) has been shown to be beneficial (see e.g., Basta et al, J Clin Invest 1994, 94:1729-1735). It has been reported (Xu et al, Am. J. Path. 1998;153:1257-1266) that IV Ig inhibits endothelial cell proliferation in a dose- and time-dependent manner and down-regulates the expression of adhesion molecule mRNA (ICAM-I and VCAM-I), chemokine mRNA (MCP-I, M-CSF, and GM-CSF), and proinflammatory cytokine mRNA (TNF-w, IL-IB, and IL-6) induced by TNF-α or IL-IB. These results may explain, at least in part, the therapeutic effect of rV Ig in vascular and inflammatory disorders. Additionally, these results suggest that inhibition of M-CSF activity at the level of interaction with c-fins is an efficacious treatment strategy.

[0149] The role of M-CSF and c-fins in emphysema appears to involve the regulation of elastin metabolism through control of matrix metalloproteins. M-CSF has a role in the modulation of the accumulation and function of alveolar macrophages (AMs) in vivo (Shibata et al, Blood 2001, 98: pp. 2845-2852). Osteopetrotic (Op/Op) mice have no detectable M-CSF and show variable tissue-specific reductions in macrophage numbers. Accordingly, it was hypothesized that AMs would be decreased in number and have altered function in Op/Op mice because of the absence of M-CSF. Shibata et al found that lung macrophages identified in lung sections were decreased in number in 20-day-old Op/Op mice but not Op/Op mice older than 4 months compared with findings in age-matched littermate controls. The numbers of AMs recovered by bronchoalveolar lavage (BAL) were also reduced in young but not adult Op/Op mice compared with controls. Importantly, AMs of Op/Op mice spontaneously release higher levels of matrix
metalloproteinases (MMPs) than AMs of controls. Consistent with an increased release of MMP, Op/Op mice have abnormal elastin deposition and spontaneously develop emphysema in the absence of molecular or cellular evidence of lung inflammation. Accordingly, the modulation of metalloelastase activity in macrophages by M-CSF may control the degradation of elastin fibers in lungs or blood vessels.

[0151] Macrophage accumulation is a prominent feature in many forms of glomerulonephritis. Local proliferation of macrophages within the kidney has been described in human and experimental glomerulonephritis and may have an important role in augmenting the inflammatory response. Isbel et al (Nephrol Dial Transplant 2001, 16: 1638-1647) examined the relationship between local macrophage proliferation and renal expression of M-CSF. Glomerular and tubulointerstitial M-CSF expression was found to be up-regulated in human glomerulonephritis, being most prominent in proliferative forms of disease. Because this correlates with local macrophage proliferation, it suggests that increased renal M-CSF production plays an important role in regulating local macrophage proliferation in human glomerulonephritis. In a model of renal inflammation (UUO-unilateral ureteric obstruction) anti-c-fms antibody treatment reduced macrophage accumulation (Le Meur et al., J Leukocyte Biology, 2002, 72: 530-537). Accordingly, inhibition of c-fms offers a target for therapeutic intervention in glomerulonephritis.

[0152] Insulin resistance and obesity are hallmark of type II diabetes and there is a strong correlation between insulin resistance and abdominal visceral fat accumulation (Bjorntrop, Diabetes Metab. Res. Rev., 1999, 15: 427-441). Current evidence indicates that macrophages accumulating in adipose tissue release TNF-a and other factors that cause adipocyte changes (hypertrophy, lipolysis, reduced insulin sensitivity) and also promote insulin resistance in surrounding tissues. Therefore, macrophage accumulation in
type 2 diabetes is important for disease progression. Accordingly, inhibition of c-fms has potential in preventing the development of insulin resistance and hyperglycemia.

[0153] Dewar et al. have recently demonstrated that the kinase inhibitor imatinib also specifically targets the macrophage colony stimulating factor receptor, c-fms, at therapeutic concentrations. Although this finding has important implications with regard to potential side effects in patients currently receiving imatinib therapy, these results suggest that imatinib may also be useful in the treatment of diseases where c-fms is implicated. This includes breast and ovarian cancer and inflammatory conditions such as rheumatoid arthritis. Dewar et al. also speculate that imatinib may be used in diseases where bone destruction occurs due to excessive osteoclast activity, such as in the haematologic malignancy, multiple myeloma (Dewar et al., Cell Cycle 2005, 4(7):851-3).

[0154] To determine the importance of M-CSF in driving macrophage proliferation during acute rejection, Jose et al. blocked the M-CSF receptor, c-fms, in a mouse model of acute renal allograft rejection. They observed that the severity of tubulointerstitial rejection was reduced in the treatment group as shown by decreased tubulitis and tubular cell proliferation. Macrophage proliferation during acute allograft rejection is dependent on the interaction of M-CSF with its receptor c-fms. They indicate that this pathway plays a significant and specific role in the accumulation of macrophages within a rejecting renal allograft (Jose et al., Am J Transplant 2003, 3(3):294-300).

[0155] Further, modulators of both c-fms and c-kit function can be used against diseases such as those indicated above, where in some instances, the dual activity of the modulator for both c-fms and c-kit provides distinct advantages in treating such diseases. The complementary activities provided by a single compound would provide added benefits over compounds targeting one or the other activity, or separate compounds targeting these activities. For example, by attenuating release of macrophage chemo-attractants by mast cells or mast cell chemoattractants by macrophages, these anti-inflammatory effects would synergize with the concomitant inhibition of intrinsic cellular function. Limitations in co-administration are absent in a dual inhibitor. Further, the dual activity may result in much lower effective doses for treatment.
II. Production of c-kit and c-fms related Polypeptides

[0156] The native and mutated kinase polypeptides described herein may be chemically synthesized in whole or part using techniques that are well-known in the art (see, e.g., Creighton (1983) Biopolymers 22(l):49-58).

[0157] Alternatively, methods which are well known to those skilled in the art can be used to construct expression vectors containing the native or mutated kinase polypeptide coding sequence and appropriate transcriptional/translational control signals. These methods include in vitro recombinant DNA techniques, synthetic techniques and in vivo recombination/genetic recombination. See, for example, the techniques described in Maniatis, T (1989). Molecular cloning: A laboratory Manual. Cold Spring Harbor Laboratory, New York. Cold Spring Harbor Laboratory Press; and Ausubel, F.M. et al. (1994) Current Protocols in Molecular Biology, John Wiley & Sons, Secaucus, NJ.

[0158] A variety of host-expression vector systems may be utilized to express the kinase coding sequence. These include but are not limited to microorganisms such as bacteria transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing the kinase domain coding sequence; yeast transformed with recombinant yeast expression vectors containing the kinase domain coding sequence; insect cell systems infected with recombinant virus expression vectors (e.g. baculovirus) containing the kinase domain coding sequence; plant cell systems infected with recombinant virus expression vectors (e.g. cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g. Ti plasmid) containing the kinase domain coding sequence; or animal cell systems. The expression elements of these systems vary in their strength and specificities.

[0159] Depending on the host/vector system utilized, any of a number of suitable transcription and translation elements, including constitutive and inducible promoters, may be used in the expression vector. For example, when cloning in bacterial systems, inducible promoters such as pL of bacteriophage λ, plac, ptrp, ptac (ptrp-lac hybrid promoter) and the like may be used; when cloning in insect cell systems, promoters such as the baculovirus polyhedrin promoter may be used; when cloning in plant cell systems, promoters derived from the genome of plant cells (e.g. heat shock promoters; the promoter for the small subunit of RUBISCO; the promoter for the chlorophyll a/b binding protein)
or from plant viruses (e.g. the 35S RNA promoter of CaMV; the coat protein promoter of TMV) may be used; when cloning in mammalian cell systems, promoters derived from the genome of mammalian cells (e.g. metallothionein promoter) or from mammalian viruses (e.g. the adenovirus late promoter; the vaccinia virus 7.5K promoter) may be used; when generating cell lines that contain multiple copies of the kinase domain DNA, SV40-, BPV- and EBV-based vectors may be used with an appropriate selectable marker.

[0160] Exemplary methods describing methods of DNA manipulation, vectors, various types of cells used, methods of incorporating the vectors into the cells, expression techniques, protein purification and isolation methods, and protein concentration methods are disclosed in detail in PCT publication WO 96/18738. This publication is incorporated herein by reference in its entirety, including any drawings. Those skilled in the art will appreciate that such descriptions are applicable to the present invention and can be easily adapted to it.

III. Binding Assays

[0161] The methods of the present invention can involve assays that are able to detect the binding of compounds to a target molecule. Such binding is at a statistically significant level, preferably with a confidence level of at least 90%, more preferably at least 95, 97, 98, 99% or greater confidence level that the assay signal represents binding to the target molecule, i.e., is distinguished from background. Preferably controls are used to distinguish target binding from non-specific binding. A large variety of assays indicative of binding are known for different target types and can be used for this invention.

[0162] Binding compounds can be characterized by their effect on the activity of the target molecule. Thus, a "low activity" compound has an inhibitory concentration (IC50) or effective concentration (EC50) of greater than 1 µM under standard conditions. By "very low activity" is meant an IC50 or EC50 of above 100 µM under standard conditions. By "extremely low activity" is meant an IC50 or EC50 of above 1 mM under standard conditions. By "moderate activity" is meant an IC50 or EC50 of 200 nM to 1 µM under standard conditions. By "moderately high activity" is meant an IC50 or EC50 of 1 nM to 200 nM. By "high activity" is meant an IC50 or EC50 of below 1 nM under standard conditions. The IC50 or EC50 is defined as the concentration of compound at which 50% of the activity of the target molecule (e.g. enzyme or other protein) activity being measured is
lost or gained relative to the range of activity observed when no compound is present. Activity can be measured using methods known to those of ordinary skill in the art, e.g., by measuring any detectable product or signal produced by occurrence of an enzymatic reaction, or other activity by a protein being measured.

[0163] By "background signal" in reference to a binding assay is meant the signal that is recorded under standard conditions for the particular assay in the absence of a test compound, molecular scaffold, or ligand that binds to the target molecule. Persons of ordinary skill in the art will realize that accepted methods exist and are widely available for determining background signal.

[0164] By "standard deviation" is meant the square root of the variance. The variance is a measure of how spread out a distribution is. It is computed as the average squared deviation of each number from its mean. For example, for the numbers 1, 2, and 3, the mean is 2 and the variance is:

$$\sigma^2 = \frac{(1-2)^2 + (2-2)^2 + (3-2)^2}{3} = 0.667 .$$

Surface Plasmon Resonance

[0166] BIAcore® uses the optical properties of surface plasmon resonance (SPR) to detect alterations in protein concentration bound to a dextran matrix lying on the surface of a gold/glass sensor chip interface, a dextran biosensor matrix. In brief, proteins are covalently bound to the dextran matrix at a known concentration and a ligand for the protein is injected through the dextran matrix. Near infrared light, directed onto the opposite side of the sensor chip surface is reflected and also induces an evanescent wave in the gold film, which in turn, causes an intensity dip in the reflected light at a particular angle known as the resonance angle. If the refractive index of the sensor chip surface is altered (e.g. by ligand binding to the bound protein) a shift occurs in the resonance angle. This angle shift can be measured and is expressed as resonance units (RUs) such that 1000 RUs is equivalent to a change in surface protein concentration of 1 ng/mm². These changes are displayed with respect to time along the y-axis of a sensorgram, which depicts the association and dissociation of any biological reaction.

High Throughput Screening (HTS) Assays

[0167] HTS typically uses automated assays to search through large numbers of compounds for a desired activity. Typically HTS assays are used to find new drugs by screening for chemicals that act on a particular enzyme or molecule. For example, if a chemical inactivates an enzyme it might prove to be effective in preventing a process in a cell which causes a disease. High throughput methods enable researchers to assay thousands of different chemicals against each target molecule very quickly using robotic handling systems and automated analysis of results.
[0168] As used herein, "high throughput screening" or "HTS" refers to the rapid in vitro screening of large numbers of compounds (libraries); generally tens to hundreds of thousands of compounds, using robotic screening assays. Ultra high-throughput Screening (uHTS) generally refers to the high-throughput screening accelerated to greater than 100,000 tests per day.

[0169] To achieve high-throughput screening, it is advantageous to house samples on a multicontainer carrier or platform. A multicontainer carrier facilitates measuring reactions of a plurality of candidate compounds simultaneously. Multi-well microplates may be used as the carrier. Such multi-well microplates, and methods for their use in numerous assays, are both known in the art and commercially available.

[0170] Screening assays may include controls for purposes of calibration and confirmation of proper manipulation of the components of the assay. Blank wells that contain all of the reactants but no member of the chemical library are usually included. As another example, a known inhibitor (or activator) of an enzyme for which modulators are sought, can be incubated with one sample of the assay, and the resulting decrease (or increase) in the enzyme activity used as a comparator or control. It will be appreciated that modulators can also be combined with the enzyme activators or inhibitors to find modulators which inhibit the enzyme activation or repression that is otherwise caused by the presence of the known the enzyme modulator.

Measuring Enzymatic and Binding Reactions During Screening Assays

[0171] Techniques for measuring the progression of enzymatic and binding reactions, e.g., in multicontainer carriers, are known in the art and include, but are not limited to, the following.

[0173] Fluorescence spectrometry may be used to monitor the generation of reaction products. Fluorescence methodology is generally more sensitive than the absorption

[0174] In spectrofluorometric methods, enzymes are exposed to substrates that change their intrinsic fluorescence when processed by the target enzyme. Typically, the substrate is nonfluorescent and is converted to a fluorophore through one or more reactions. As a non-limiting example, SMase activity can be detected using the Amplex® Red reagent (Molecular Probes, Eugene, OR). In order to measure sphingomyelinase activity using Amplex® Red, the following reactions occur. First, SMase hydrolyzes sphingomyelin to yield ceramide and phosphorylcholine. Second, alkaline phosphatase hydrolyzes phosphorylcholine to yield choline. Third, choline is oxidized by choline oxidase to betaine. Finally, H₂O₂, in the presence of horseradish peroxidase, reacts with Amplex® Red to produce the fluorescent product, Resorufin, and the signal therefrom is detected using spectrofluorometry.

[0175] Fluorescence polarization (FP) is based on a decrease in the speed of molecular rotation of a fluorophore that occurs upon binding to a larger molecule, such as a receptor protein, allowing for polarized fluorescent emission by the bound ligand. FP is empirically determined by measuring the vertical and horizontal components of fluorophore emission following excitation with plane polarized light. Polarized emission is increased when the molecular rotation of a fluorophore is reduced. A fluorophore produces a larger polarized signal when it is bound to a larger molecule (i.e. a receptor), slowing molecular rotation of the fluorophore. The magnitude of the polarized signal relates quantitatively to the extent of fluorescent ligand binding. Accordingly, polarization of the "bound" signal depends on maintenance of high affinity binding.

[0176] FP is a homogeneous technology and reactions are very rapid, taking seconds to minutes to reach equilibrium. The reagents are stable, and large batches may be prepared, resulting in high reproducibility. Because of these properties, FP has proven to be highly automatable, often performed with a single incubation with a single, premixed, tracer-receptor reagent. For a review, see Owickiet al., (1997), Application of Fluorescence Polarization Assays in High-Throughput Screening, Genetic Engineering News, 17:27.
[0177] FP is particularly desirable since its readout is independent of the emission intensity (Checovich, W. J., et al., (1995) Nature 375:254-256; Dandliker, W. B., et al., (1981) Methods in Enzymology 74:3-28) and is thus insensitive to the presence of colored compounds that quench fluorescence emission. FP and FRET (see below) are well-suited for identifying compounds that block interactions between sphingolipid receptors and their ligands. See, for example, Parker et al., (2000) Development of high throughput screening assays using fluorescence polarization: nuclear receptor-ligand-binding and kinase/phosphatase assays, J Biomol Screen 5:77-88.

[0178] Fluorophores derived from sphingolipids that may be used in FP assays are commercially available. For example, Molecular Probes (Eugene, OR) currently sells sphingomyelin and one ceramide fluorophores. These are, respectively, N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)sphingosyl phosphocholine (BODIPY® FL C5-sphingomyelin); N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-dodecanoyl)sphingosyl phosphocholine (BODIPY® FL C12-sphingomyelin); and N-(4,4-difluoro-5,7-dimethyl-4-bora-3 a,4a-diaza-s-indacene-3-pentanoyl)sphingosine (BODIPY® FL C5-ceramide). U.S. Patent No. 4,150,949, (Immunooassay for gentamicin), discloses fluorescein-labelled gentamicins, including fluoresceinthiocarbanyl gentamicin. Additional fluorophores may be prepared using methods well known to the skilled artisan.

[0179] Exemplary normal-and-polarized fluorescence readers include the POLARION® fluorescence polarization system (Tecan AG, Hombrechtikon, Switzerland). General multiwell plate readers for other assays are available, such as the VERSAMAX® reader and the SPECTRAMAX® multiwell plate spectrophotometer (both from Molecular Devices).

[0180] Fluorescence resonance energy transfer (FRET) is another useful assay for detecting interaction and has been described. See, e.g., Heim et al., (1996) Curr. Biol. 6:178-182; Mitra et al., (1996) Gene 173:13-17; and Selvin et al., (1995) Meth. Enzymol. 246:300-345. FRET detects the transfer of energy between two fluorescent substances in close proximity, having known excitation and emission wavelengths. As an example, a protein can be expressed as a fusion protein with green fluorescent protein (GFP). When two fluorescent proteins are in proximity, such as when a protein specifically interacts with a target molecule, the resonance energy can be transferred from one excited molecule...
to the other. As a result, the emission spectrum of the sample shifts, which can be measured by a fluorometer, such as a fMAX multiwell fluorometer (Molecular Devices, Sunnyvale Calif.).

[0182] The target molecule can be bound to the scintillator plates by a variety of well known means. Scintillator plates are available that are derivatized to bind to fusion proteins such as GST, His6 or Flag fusion proteins. Where the target molecule is a protein complex or a multimer, one protein or subunit can be attached to the plate first, then the other components of the complex added later under binding conditions, resulting in a bound complex.

[0183] In a typical SPA assay, the gene products in the expression pool will have been radiolabeled and added to the wells, and allowed to interact with the solid phase, which is the immobilized target molecule and scintillant coating in the wells. The assay can be measured immediately or allowed to reach equilibrium. Either way, when a radiolabel becomes sufficiently close to the scintillant coating, it produces a signal detectable by a device such as a TOPCOUNT NXT® microplate scintillation counter (Packard BioScience Co., Meriden Conn.). If a radiolabeled expression product binds to the target molecule, the radiolabel remains in proximity to the scintillant long enough to produce a detectable signal.

[0184] In contrast, the labeled proteins that do not bind to the target molecule, or bind only briefly, will not remain near the scintillant long enough to produce a signal above background. Any time spent near the scintillant caused by random Brownian motion will also not result in a significant amount of signal. Likewise, residual unincorporated radiolabel used during the expression step may be present, but will not generate significant signal because it will be in solution rather than interacting with the target molecule. These
non-binding interactions will therefore cause a certain level of background signal that can be mathematically removed. If too many signals are obtained, salt or other modifiers can be added directly to the assay plates until the desired specificity is obtained (Nichols et al., (1998) Anal. Biochem. 257:112-119).

IV. Kinase Activity Assays

[0185] A number of different assays for kinase activity can be utilized for assaying for active modulators and/or determining specificity of a modulator for a particular kinase or group or kinases. In addition to the assay mentioned in the Examples below, one of ordinary skill in the art will know of other assays that can be utilized and can modify an assay for a particular application. For example, numerous papers concerning kinases described assays that can be used.

[0186] Additional alternative assays can employ binding determinations. For example, this sort of assay can be formatted either in a fluorescence resonance energy transfer (FRET) format, or using an AlphaScreen (amplified luminescent proximity homogeneous assay) format by varying the donor and acceptor reagents that are attached to streptavidin or the phospho-specific antibody.

V. Organic Synthetic Techniques

[0187] A wide array of organic synthetic techniques exist in the art to meet the challenge of constructing potential modulators. Many of these organic synthetic methods are described in detail in standard reference sources utilized by those skilled in the art. One example of such a reference is March, 1994, Advanced Organic Chemistry: Reactions, Mechanisms and Structure, New York, McGraw Hill. Thus, the techniques useful to synthesize a potential modulator of kinase function are readily available to those skilled in the art of organic chemical synthesis.

[0188] Regarding the synthetic examples described herein, solvents include polar and non-polar solvents known to those of skill in the art, including polar aprotic and polar protic solvents. Polar solvents include, without limitation, protic solvents such as methanol, ethanol, isopropyl alcohol, t-butanol, n-butanol, acetic acid, formic acid or water, or aprotic solvents such as tetrahydrofuran (THF), acetonitrile, dioxane, methylene chloride, dimethylsulfoxide (DMSO), acetone, N,N-dimethylformamide (DMF), N,N-
dimethylacetamide (DMA), ethyl acetate, 1,2-dimethoxyethane, 1,2-dichloroethane, chloroform, 1,2-dichloroethane, or pyridine. Polar solvents include a mixture of water with any of the above, or a mixture of any two or more of the above. Apolar solvents include, without limitation, toluene, benzene, chlorobenzene, xylenes and hexanes.

[0189] Regarding the synthetic examples described herein, reducing agent includes, without limitation, a reducing agent such as catalytic reducing agents using hydrogen and transition metal catalysts such as palladium, platinum, rhodium, etc. (e.g. Pt/acetic acid/H₂); a mixture of trifluoroacetic acid and triethylsilane, borane tetrahydrofuran complex, diborane, borane dimethylsulfide complex, and a combination of sodium borohydride and boron trifluoride; metals such as reduced iron, zinc powder, magnesium etc.; metal hydrogen complex compounds such as alkali metal borohydrides (for example, potassium borohydride, sodium borohydride, lithium borohydride, zinc borohydride, sodium triacetoxyborohydride, etc.), aluminum lithium hydride, etc.; metal hydrides such as sodium hydride, etc.; organic tin compounds (triphenyltin hydride, etc.); and metal salts such as nickel compounds, zinc compounds, tin compounds (for example tin(II) chloride), and samarium iodide/pivalic acid/hexamethylyphosphoronic triamide.

[0190] Regarding the synthetic examples described herein, oxidizing agent includes, without limitation, an oxidizing agent such as Dess-Martin reagent, TEMPO (2,2,6,6-tetramethylpiperidine-N-oxide), DDQ (2,3-Dichloro-5,6-dicyano-1,4-benzoquinone), PDC (pyridinium dichromate), PCC (pyridinium chlorochromate), Pyridine.SCβ, Chromium trioxide, p-nitroperbenzoic acid, magnesium monoper oxy phthalate, sodium periodate, potassium periodate, hydrogen peroxide, urea peroxide, alkali metal bromates, cumene hydro peroxide, tert-butyl peroxide, peracids such as performic acid, peracetic acid, per trifluoro acetic acid, perbenzoic acid, m-chloroper benzoic acid, o-carboxyperbenzoic acid and the like; sodium metaperiodate, bichromic acid; bichromates such as sodium bichromate, potassium bichromate; permanganic acid; permanganates such as potassium permanganate, sodium permanganate; and lead salts such as lead tetraacetate.
VI. Alternative Compound Forms or Derivatives

(a) Isomers, Prodrugs, and Active Metabolites

[0191] Compounds contemplated herein are described with reference to both generic formulae and specific compounds. In addition, the invention compounds may exist in a number of different forms or derivatives, all within the scope of the present invention. These include, for example, tautomers, stereoisomers, racemic mixtures, regioisomers, salts, prodrugs (e.g. carboxylic acid esters), solvated forms, different crystal forms or polymorphs, and active metabolites.

(b) Tautomers, Stereoisomers, Regioisomers, and Solvated Forms

[0192] It is understood that certain compounds may exhibit tautomerism. In such cases, the formulae provided herein expressly depict only one of the possible tautomeric forms. It is therefore to be understood that the formulae provided herein are intended to represent any tautomeric form of the depicted compounds and are not to be limited merely to the specific tautomeric form depicted by the drawings of the formulae.

[0193] Likewise, some of the compounds according to the present invention may exist as stereoisomers, i.e. they have the same sequence of covalently bonded atoms and differ in the spatial orientation of the atoms. For example, compounds may be optical stereoisomers, which contain one or more chiral centers, and therefore, may exist in two or more stereoisomeric forms (e.g. enantiomers or diastereomers). Thus, such compounds may present as single stereoisomers (i.e., essentially free of other stereoisomers), racemates, and/or mixtures of enantiomers and/or diastereomers. As another example, stereoisomers include geometric isomers, such as cis- or trans- orientation of substituents on adjacent carbons of a double bond. All such single stereoisomers, racemates and mixtures thereof are intended to be within the scope of the present invention. Unless specified to the contrary, all such stereoisomeric forms are included within the formulae provided herein.

[0194] In certain embodiments, a chiral compound of the present invention is in a form that contains at least 80% of a single isomer (60% enantiomeric excess ("e.e.") or diastereomeric excess ("d.e."), or at least 85% (70% e.e. or d.e.), 90% (80% e.e. or d.e.), 95% (90% e.e. or d.e.), 97.5% (95% e.e. or d.e.), or 99% (98% e.e. or d.e.). As generally
understood by those skilled in the art, an optically pure compound having one chiral center is one that consists essentially of one of the two possible enantiomers (i.e., is enantiomerically pure), and an optically pure compound having more than one chiral center is one that is both diastereomerically pure and enantiomerically pure. In certain embodiments, the compound is present in optically pure form.

[0195] For compounds in which synthesis involves addition of a single group at a double bond, particularly a carbon-carbon double bond, the addition may occur at either of the double bond-linked atoms. For such compounds, the present invention includes both such regioisomers.

[0196] Additionally, the formulae are intended to cover solvated as well as unsolvated forms of the identified structures. For example, the indicated structures include both hydrated and non-hydrated forms. Other examples of solvates include the structures in combination with isopropanol, ethanol, methanol, DMSO, ethyl acetate, acetic acid, or ethanolamine.

(c) Prodrugs and Metabolites

[0197] In addition to the present formulae and compounds described herein, the invention also includes prodrugs (generally pharmaceutically acceptable prodrugs), active metabolic derivatives (active metabolites), and their pharmaceutically acceptable salts.

[0198] Prodrugs are compounds or pharmaceutically acceptable salts thereof which, when metabolized under physiological conditions or when converted by solvolysis, yield the desired active compound. Typically, the prodrug is inactive, or less active than the active compound, but may provide advantageous handling, administration, or metabolic properties. For example, some prodrugs are esters of the active compound; during metabololysis, the ester group is cleaved to yield the active drug. Also, some prodrugs are activated enzymatically to yield the active compound, or a compound which, upon further chemical reaction, yields the active compound.

[0199] As described in The Practice of Medicinal Chemistry, Ch. 31-32 (Ed. Wermuth, Academic Press, San Diego, CA, 2001), prodrugs can be conceptually divided into two non-exclusive categories, bioprecursor prodrugs and carrier prodrugs. Generally, bioprecursor prodrugs are compounds that are inactive or have low activity compared to
the corresponding active drug compound, that contain one or more protective groups and are converted to an active form by metabolism or solvolysis. Both the active drug form and any released metabolic products should have acceptably low toxicity. Typically, the formation of active drug compound involves a metabolic process or reaction that is one of the follow types:

[0200] **Oxidative reactions**: Oxidative reactions are exemplified without limitation to reactions such as oxidation of alcohol, carbonyl, and acid functions, hydroxylation of aliphatic carbons, hydroxylation of alicyclic carbon atoms, oxidation of aromatic carbon atoms, oxidation of carbon-carbon double bonds, oxidation of nitrogen-containing functional groups, oxidation of silicon, phosphorus, arsenic, and sulfur, oxidative N-dealkylation, oxidative O- and S-dealkylation, oxidative deamination, as well as other oxidative reactions.

[0201] **Reductive reactions**: Reductive reactions are exemplified without limitation to reactions such as reduction of carbonyl groups, reduction of hydroxyl groups and carbon-carbon double bonds, reduction of nitrogen-containing functions groups, and other reduction reactions.

[0202] **Reactions without change in the oxidation state**: Reactions without change in the state of oxidation are exemplified without limitation to reactions such as hydrolysis of esters and ethers, hydrolytic cleavage of carbon-nitrogen single bonds, hydrolytic cleavage of non-aromatic heterocycles, hydration and dehydration at multiple bonds, new atomic linkages resulting from dehydration reactions, hydrolytic dehalogenation, removal of hydrogen halide molecule, and other such reactions.

[0203] Carrier prodrugs are drug compounds that contain a transport moiety, e.g., that improves uptake and/or localized delivery to a site(s) of action. Desirably for such a carrier prodrug, the linkage between the drug moiety and the transport moiety is a covalent bond, the prodrug is inactive or less active than the drug compound, the prodrug and any release transport moiety are acceptably non-toxic. For prodrugs where the transport moiety is intended to enhance uptake, typically the release of the transport moiety should be rapid. In other cases, it is desirable to utilize a moiety that provides slow release, e.g., certain polymers or other moieties, such as cyclodextrins. (See, e.g., Cheng et al., U.S. Patent Publ. No. 2004/0077595, Ser. No. 10/656,838, incorporated herein by reference.)
Such carrier prodrugs are often advantageous for orally administered drugs. Carrier prodrugs can, for example, be used to improve one or more of the following properties: increased lipophilicity, increased duration of pharmacological effects, increased site-specificity, decreased toxicity and adverse reactions, and/or improvement in drug formulation (e.g. stability, water solubility, suppression of an undesirable organoleptic or physiochemical property). For example, lipophilicity can be increased by esterification of hydroxyl groups with lipophilic carboxylic acids, or of carboxylic acid groups with alcohols, e.g., aliphatic alcohols. Wermuth, The Practice of Medicinal Chemistry, Ch. 31-32, Ed. Wermuth, Academic Press, San Diego, CA, 2001.

Prodrugs may proceed from prodrug form to active form in a single step or may have one or more intermediate forms which may themselves have activity or may be inactive.

Metabolites, e.g., active metabolites, overlap with prodrugs as described above, e.g., bioprecursor prodrugs. Thus, such metabolites are pharmacologically active compounds or compounds that further metabolize to pharmacologically active compounds that are derivatives resulting from metabolic process in the body of a subject or patient. Of these, active metabolites are such pharmacologically active derivative compounds. For prodrugs, the prodrug compounds is generally inactive or of lower activity than the metabolic product. For active metabolites, the parent compound may be either an active compound or may be an inactive prodrug.

(d) Pharmaceutically acceptable salts

Compounds can be formulated as or be in the form of pharmaceutically acceptable salts. Pharmaceutically acceptable salts are non-toxic salts in the amounts and concentrations at which they are administered. The preparation of such salts can facilitate the pharmacological use by altering the physical characteristics of a compound without
preventing it from exerting its physiological effect. Useful alterations in physical properties include lowering the melting point to facilitate transmucosal administration and increasing the solubility to facilitate administering higher concentrations of the drug.

[0208] Pharmaceutically acceptable salts include acid addition salts such as those containing sulfate, chloride, hydrochloride, fumarate, maleate, phosphate, sulfamate, acetate, citrate, lactate, tartrate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluene sulfonate, cyclohexylsulfamate and quinate. Pharmaceutically acceptable salts can be obtained from acids such as hydrochloric acid, maleic acid, sulfuric acid, phosphoric acid, sulfamic acid, acetic acid, citric acid, lactic acid, tartaric acid, malonic acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, cyclohexylsulfamic acid, fumaric acid, and quinic acid.

[0209] Pharmaceutically acceptable salts also include basic addition salts such as those containing benzathine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine, procaine, aluminum, calcium, lithium, magnesium, potassium, sodium, ammonium, alkylamine, and zinc, when acidic functional groups, such as carboxylic acid or phenol are present. For example, see Remington’s Pharmaceutical Sciences, 19th ed., Mack Publishing Co., Easton, PA, Vol. 2, p. 1457, 1995. Such salts can be prepared using the appropriate corresponding bases.

[0210] Pharmaceutically acceptable salts can be prepared by standard techniques. For example, the free-base form of a compound can be dissolved in a suitable solvent, such as an aqueous or aqueous-alcohol solution containing the appropriate acid and then isolated by evaporating the solution, hi another example, a salt can be prepared by reacting the free base and acid in an organic solvent.

[0211] Thus, for example, if the particular compound is a base, the desired pharmaceutically acceptable salt may be prepared by any suitable method available in the art, for example, treatment of the free base with an inorganic acid, such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like, or with an organic acid, such as acetic acid, maleic acid, succinic acid, mandelic acid, fumaric acid, malonic acid, pyruvic acid, oxalic acid, glycolic acid, salicylic acid, a pyranosidyl acid, such as glucuronic acid or galacturonic acid, an alpha-hydroxy acid, such as citric acid or tartaric acid, an amino acid, such as aspartic acid or glutamic acid, an aromatic acid, such
as benzoic acid or cinnamic acid, a sulfonic acid, such as p-toluenesulfonic acid or ethanesulfonic acid, or the like.

[0212] Similarly, if the particular compound is an acid, the desired pharmaceutically acceptable salt may be prepared by any suitable method, for example, treatment of the free acid with an inorganic or organic base, such as an amine (primary, secondary or tertiary), an alkali metal hydroxide or alkaline earth metal hydroxide, or the like. Illustrative examples of suitable salts include organic salts derived from amino acids, such as glycine and arginine, ammonia, primary, secondary, and tertiary amines, and cyclic amines, such as piperidine, morpholine and piperazine, and inorganic salts derived from sodium, calcium, potassium, magnesium, manganese, iron, copper, zinc, aluminum and lithium.

[0213] The pharmaceutically acceptable salt of the different compounds may be present as a complex. Examples of complexes include 8-chlorotheophylline complex (analogous to, e.g., dimenhydrinate: diphenhydramine 8-chlorotheophylline (1:1) complex; Dramamme) and various cyclodextrin inclusion complexes.

[0214] Unless specified to the contrary, specification of a compound herein includes pharmaceutically acceptable salts of such compound.

(e) Polymorphic forms

[0215] In the case of agents that are solids, it is understood by those skilled in the art that the compounds and salts may exist in different crystal or polymorphic forms, all of which are intended to be within the scope of the present invention and specified formulae.

VII. Administration

[0216] The methods and compounds will typically be used in therapy for human patients. However, they may also be used to treat similar or identical diseases in other vertebrates, e.g., mammals such as other primates, animals of commercial significance, e.g., sports animals, farm animals, e.g., bovines, equines, porcines, and ovines, and pets such as dogs and cats.

[0217] Suitable dosage forms, in part, depend upon the use or the route of administration, for example, oral, transdermal, transmucosal, inhalant, or by injection
(parenteral). Such dosage forms should allow the compound to reach target cells. Other factors are well known in the art, and include considerations such as toxicity and dosage forms that retard the compound or composition from exerting its effects. Techniques and formulations generally may be found in Remington: The Science and Practice of Pharmacy, 21st edition, Lippincott, Williams and Wilkins, Philadelphia, PA, 2005 (hereby incorporated by reference herein).

[0218] Compounds of the present invention (i.e. Formula 1, including Formulae 1a, 1b, 1g and all sub-embodiments disclosed herein) can be formulated as pharmaceutically acceptable salts.

[0219] Carriers or excipients can be used to produce compositions. The carriers or excipients can be chosen to facilitate administration of the compound. Examples of carriers include calcium carbonate, calcium phosphate, various sugars such as lactose, glucose, or sucrose, or types of starch, cellulose derivatives, gelatin, vegetable oils, polyethylene glycols and physiologically compatible solvents. Examples of physiologically compatible solvents include sterile solutions of water for injection (WFI), saline solution, and dextrose.

[0220] The compounds can be administered by different routes including intravenous, intraperitoneal, subcutaneous, intramuscular, oral, transmucosal, rectal, transdermal, or inhalant. In some embodiments, oral administration is preferred. For oral administration, for example, the compounds can be formulated into conventional oral dosage forms such as capsules, tablets, and liquid preparations such as syrups, elixirs, and concentrated drops.

[0221] Pharmaceutical preparations for oral use can be obtained, for example, by combining the active compounds with solid excipients, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose (CMC), and/or polyvinylpyrrolidone (PVP: povidone). If desired, disintegrating agents may be added, such as the cross-linked polyvinylpyrrolidone, agar, or alginic acid, or a salt thereof such as sodium alginate.
Dragée cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain, for example, gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol (PEG), and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dye-stuffs or pigments may be added to the tablets or dragée coatings for identification or to characterize different combinations of active compound doses.

Pharmaceutical preparations that can be used orally include push-fit capsules made of gelatin ("gelcaps"), as well as soft, sealed capsules made of gelatin, and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols (PEGs). In addition, stabilizers may be added.

Alternatively, injection (parenteral administration) may be used, e.g., intramuscular, intravenous, intraperitoneal, and/or subcutaneous. For injection, the compounds of the invention are formulated in sterile liquid solutions, preferably in physiologically compatible buffers or solutions, such as saline solution, Hank's solution, or Ringer's solution. In addition, the compounds may be formulated in solid form and redissolved or suspended immediately prior to use. Lyophilized forms can also be produced.

Administration can also be by transmucosal, topical, transdermal, or inhalant means. For transmucosal, topical or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, bile salts and fusidic acid derivatives. In addition, detergents may be used to facilitate permeation. Transmucosal administration, for example, may be through nasal sprays or suppositories (rectal or vaginal).

The topical compositions of this invention are formulated preferably as oils, creams, lotions, ointments, and the like by choice of appropriate carriers known in the art. Suitable carriers include vegetable or mineral oils, white petrolatum (white soft paraffin),
branched chain fats or oils, animal fats and high molecular weight alcohol (greater than C12). The preferred carriers are those in which the active ingredient is soluble. Emulsifiers, stabilizers, humectants and antioxidants may also be included as well as agents imparting color or fragrance, if desired. Creams for topical application are preferably formulated from a mixture of mineral oil, self-emulsifying beeswax and water in which mixture the active ingredient, dissolved in a small amount solvent (e.g. an oil), is admixed. Additionally, administration by transdermal means may comprise a transdermal patch or dressing such as a bandage impregnated with an active ingredient and optionally one or more carriers or diluents known in the art. To be administered in the form of a transdermal delivery system, the dosage administration will, of course, be continuous rather than intermittent throughout the dosage regimen.

[0227] For inhalants, compounds of the invention may be formulated as dry powder or a suitable solution, suspension, or aerosol. Powders and solutions may be formulated with suitable additives known in the art. For example, powders may include a suitable powder base such as lactose or starch, and solutions may comprise propylene glycol, sterile water, ethanol, sodium chloride and other additives, such as acid, alkali and buffer salts. Such solutions or suspensions may be administered by inhaling via spray, pump, atomizer, or nebulizer, and the like. The compounds of the invention may also be used in combination with other inhaled therapies, for example corticosteroids such as fluticasone propionate, beclomethasone dipropionate, triamcinolone acetonide, budesonide, and mometasone furoate; beta agonists such as albuterol, salmeterol, and formoterol; anticholinergic agents such as ipratropium bromide or tiotropium; vasodilators such as treprostinal and iloprost; enzymes such as DNAase; therapeutic proteins; immunoglobulin antibodies; an oligonucleotide, such as single or double stranded DNA or RNA, siRNA; antibiotics such as tobramycin; muscarinic receptor antagonists; leukotriene antagonists; cytokine antagonists; protease inhibitors; cromolyn sodium; nedocriil sodium; and sodium cromoglycate.

[0228] The compounds of the invention may also be used in combination with other therapies for treating the same disease. Such combination use includes administration of the compounds and one or more other therapeutics at different times, or co-administration of the compound and one or more other therapies. In certain embodiments, dosage may be modified for one or more of the compounds of the invention or other therapeutics used in
combination, e.g., reduction in the amount dosed relative to a compound or therapy used alone, by methods well known to those of ordinary skill in the art.

[0229] It is understood that use in combination includes use with other therapies, drugs, medical procedures etc., where the other therapy or procedure may be administered at different times (e.g. within a short time, such as within hours (e.g. 1, 2, 3, 4-24 hours), or within a longer time (e.g. 1-2 days, 2-4 days, 4-7 days, 1-4 weeks)) than a compound of the present invention, or at the same time as a compound of the invention. Use in combination also includes use with a therapy or medical procedure that is administered once or infrequently, such as surgery, along with a compound of the invention administered within a short time or longer time before or after the other therapy or procedure. In certain embodiments, the present invention provides for delivery of compounds of the invention and one or more other drug therapeutics delivered by a different route of administration or by the same route of administration. The use in combination for any route of administration includes delivery of compounds of the invention and one or more other drug therapeutics delivered by the same route of administration together in any formulation, including formulations where the two compounds are chemically linked in such a way that they maintain their therapeutic activity when administered. In one aspect, the other drug therapy may be co-administered with one or more compounds of the invention. Use in combination by co-administration includes administration of co-formulations or formulations of chemically joined compounds, or administration of two or more compounds in separate formulations within a short time of each other (e.g. within an hour, 2 hours, 3 hours, up to 24 hours), administered by the same or different routes. Co-administration of separate formulations includes co-administration by delivery via one device, for example the same inhalant device, the same syringe, etc., or administration from separate devices within a short time of each other. Co-formulations of compounds of the invention and one or more additional drug therapies delivered by the same route includes preparation of the materials together such that they can be administered by one device, including the separate compounds combined in one formulation, or compounds that are modified such that they are chemically joined, yet still maintain their biological activity. Such chemically joined compounds may have a linkage that is substantially maintained in vivo, or the linkage may break down in vivo, separating the two active components.
The amounts of various compound to be administered as an effective amount can be determined by standard procedures taking into account factors such as the compound IC$_{50}$, the biological half-life of the compound, the age, size, and weight of the subject, and the disorder associated with the subject. The importance of these and other factors are well known to those of ordinary skill in the art. Generally, a dose will be between about 0.01 and 50 mg/kg, preferably 0.1 and 20 mg/kg of the subject being treated. Multiple doses may be used.

VIII. Manipulation of c-kit and c-fms

As the full-length coding sequence and amino acid sequence of c-kit and c-fms from various mammals including human is known, cloning, construction of recombinant c-kit and c-fms, production and purification of recombinant protein, introduction of c-kit or c-fms into other organisms, and other molecular biological manipulations of c-kit and c-fms are readily performed.

Nucleic acid sequences can be amplified as necessary for further use using amplification methods, such as PCR, isothermal methods, rolling circle methods, etc., are well known to the skilled artisan. See, e.g., Saiki, "Amplification of Genomic DNA" in PCR Protocols, Innis et al., Eds., Academic Press, San Diego, CA 1990, pp 13-20; Wharam et al., Nucleic Acids Res. 2001 Jun 1;29(11):E54-E54; Hafher et al., Biotechniques 2001 Apr;30(4):852-6, 858, 860 passim; Zhong et al., Biotechniques 2001 Apr;30(4):852-6, 858, 860 passim.

Nucleic acids, vectors, capsids, polypeptides, and the like can be analyzed and quantified by any of a number of general means well known to those of skill in the art.
These include, e.g., analytical biochemical methods such as NMR, spectrophotometry, radiography, electrophoresis, capillary electrophoresis, high performance liquid chromatography (HPLC), thin layer chromatography (TLC), and hyperdiffusion chromatography, various immunological methods, e.g. fluid or gel precipitin reactions, immunodiffusion, immuno-electrophoresis, radioimmunoassays (RIAs), enzyme-linked immunosorbsent assays (ELISAs), immuno-fluorescent assays, Southern analysis, Northern analysis, dot-blot analysis, gel electrophoresis (e.g. SDS-PAGE), nucleic acid or target or signal amplification methods, radiolabelling, scintillation counting, and affinity chromatography.

[0235] Obtaining and manipulating nucleic acids used to practice the methods of the invention can be performed by cloning from genomic samples, and, if desired, screening and re-cloning inserts isolated or amplified from, e.g., genomic clones or cDNA clones. Sources of nucleic acid used in the methods of the invention include genomic or cDNA libraries contained in, e.g., mammalian artificial chromosomes (MACs), see, e.g., U.S. Patent Nos. 5,721,118; 6,025,155; human artificial chromosomes, see, e.g., Rosenfeld (1997) Nat. Genet. 15:333-335; yeast artificial chromosomes (YAC); bacterial artificial chromosomes (BAC); P1 artificial chromosomes, see, e.g., Woon (1998) Genomics 50:306-316; P1-derived vectors (PACs), see, e.g., Kern (1997) Biotechniques 23:120-124; cosmids, recombinant viruses, phages or plasmids.

[0236] The nucleic acids of the invention can be operatively linked to a promoter. A promoter can be one motif or an array of nucleic acid control sequences which direct transcription of a nucleic acid. A promoter can include necessary nucleic acid sequences near the start site of transcription, such as, in the case of a polymerase II type promoter, a TATA element. A promoter also optionally includes distal enhancer or repressor elements which can be located as much as several thousand base pairs from the start site of transcription. A "constitutive" promoter is a promoter which is active under most environmental and developmental conditions. An "inducible" promoter is a promoter which is under environmental or developmental regulation. A "tissue specific" promoter is active in certain tissue types of an organism, but not in other tissue types from the same organism. The term "operably linked" refers to a functional linkage between a nucleic acid expression control sequence (such as a promoter, or array of transcription factor
binding sites) and a second nucleic acid sequence, wherein the expression control sequence directs transcription of the nucleic acid corresponding to the second sequence.

[0237] The nucleic acids of the invention can also be provided in expression vectors and cloning vehicles, e.g., sequences encoding the polypeptides of the invention. Expression vectors and cloning vehicles of the invention can comprise viral particles, baculovirus, phage, plasmids, phagemids, cosmids, fosmids, bacterial artificial chromosomes, viral DNA (e.g. vaccinia, adenovirus, foul pox virus, pseudorabies and derivatives of SV40), P1-based artificial chromosomes, yeast plasmids, yeast artificial chromosomes, and any other vectors specific for specific hosts of interest (such as bacillus, Aspergillus and yeast). Vectors of the invention can include chromosomal, non-chromosomal and synthetic DNA sequences. Large numbers of suitable vectors are known to those of skill in the art, and are commercially available.

[0238] The nucleic acids of the invention can be cloned, if desired, into any of a variety of vectors using routine molecular biological methods; methods for cloning in vitro amplified nucleic acids are disclosed, e.g., U.S. Pat. No. 5,426,039. To facilitate cloning of amplified sequences, restriction enzyme sites can be "built into" a PCR primer pair. Vectors may be introduced into a genome or into the cytoplasm or a nucleus of a cell and expressed by a variety of conventional techniques, well described in the scientific and patent literature. See, e.g., Roberts (1987) Nature 328:731; Schneider (1995) Protein Expr. Purif. 6435:10; Sambrook, Tijssen or Ausubel. The vectors can be isolated from natural sources, obtained from such sources as ATCC or GenBank libraries, or prepared by synthetic or recombinant methods. For example, the nucleic acids of the invention can be expressed in expression cassettes, vectors or viruses which are stably or transiently expressed in cells (e.g. episomal expression systems). Selection markers can be incorporated into expression cassettes and vectors to confer a selectable phenotype on transformed cells and sequences. For example, selection markers can code for episomal maintenance and replication such that integration into the host genome is not required.

[0239] In one aspect, the nucleic acids of the invention are administered in vivo for in situ expression of the peptides or polypeptides of the invention. The nucleic acids can be administered as "naked DNA" (see, e.g., U.S. Patent No. 5,580,859) or in the form of an expression vector, e.g., a recombinant virus. The nucleic acids can be administered by any
route, including peri- or intra-tumorally, as described below. Vectors administered in vivo can be derived from viral genomes, including recombinant\(^*\) modified enveloped or non-enveloped DNA and RNA viruses, preferably selected from baculoviridiae, parvoviridiae, picornoviridiae, herpesviridiae, poxviridiae, adenoviridiae, or picornnaviridiae. Chimeric vectors may also be employed which exploit advantageous merits of each of the parent vector properties (See e.g., Feng (1997) Nature Biotechnology 15:866-870). Such viral genomes may be modified by recombinant DNA techniques to include the nucleic acids of the invention; and may be further engineered to be replication deficient, conditionally replicating or replication competent. In alternative aspects, vectors are derived from the adenoviral (e.g. replication incompetent vectors derived from the human adenovirus genome, see, e.g., U.S. Patent Nos. 6,096,718; 6,110,458; 6,113,913; 5,631,236); adeno-associated viral and retroviral genomes. Retroviral vectors can include those based upon murine leukemia virus (MuLV), gibbon ape leukemia virus (GaLV), Simian immuno deficiency virus (SIV), human immuno deficiency virus (HIV), and combinations thereof; see, e.g., U.S. Patent Nos. 6,117,681; 6,107,478; 5,658,775; 5,449,614; Buchscher (1992) J. Virol. 66:2731-2739; Johann (1992) J. Virol. 66:1635-1640). Adeno-associated virus (AAV)-based vectors can be used to transduce cells with target nucleic acids, e.g., in the in vitro production of nucleic acids and peptides, and in in vivo and ex vivo gene therapy procedures; see, e.g., U.S. Patent Nos. 6,110,456; 5,474,935; Okada (1996) Gene Ther. 3:957-964.

[0240] The present invention also relates to fusion proteins, and nucleic acids encoding them. A polypeptide of the invention can be fused to a heterologous peptide or polypeptide, such as N-terminal identification peptides which impart desired characteristics, such as increased stability or simplified purification. Peptides and polypeptides of the invention can also be synthesized and expressed as fusion proteins with one or more additional domains linked thereto for, e.g., producing a more immunogenic peptide, to more readily isolate a recombinantly synthesized peptide, to identify and isolate antibodies and antibody-expressing B cells, and the like. Detection and purification facilitating domains include, e.g., metal chelating peptides such as polyhistidine tracts and histidine-tryptophan modules that allow purification on immobilized metals, protein A domains that allow purification on immobilized immunoglobulin, and the domain utilized in the FLAGS extension/affinity purification
system (Immunex Corp, Seattle WA). The inclusion of a cleavable linker sequences such as Factor Xa or enterokinase (Invitrogen, San Diego CA) between a purification domain and the motif-comprising peptide or polypeptide to facilitate purification. For example, an expression vector can include an epitope-encoding nucleic acid sequence linked to six histidine residues followed by a thioredoxin and an enterokinase cleavage site (see e.g., Williams (1995) Biochemistry 34:1787-1797; Dobeli (1998) Protein Expr. Purif. 12:404-414). The histidine residues facilitate detection and purification while the enterokinase cleavage site provides a means for purifying the epitope from the remainder of the fusion protein. In one aspect, a nucleic acid encoding a polypeptide of the invention is assembled in appropriate phase with a leader sequence capable of directing secretion of the translated polypeptide or fragment thereof. Technology pertaining to vectors encoding fusion proteins and application of fusion proteins are well disclosed in the scientific and patent literature, see e.g., Kroll (1993) DNA Cell. Biol. 12:441-53.

[0241] The nucleic acids and polypeptides of the invention can be bound to a solid support, e.g., for use in screening and diagnostic methods. Solid supports can include, e.g., membranes (e.g. nitrocellulose or nylon), a microtiter dish (e.g. PVC, polypropylene, or polystyrene), a test tube (glass or plastic), a dip stick (e.g. glass, PVC, polypropylene, polystyrene, latex and the like), a microfuge tube, or a glass, silica, plastic, metallic or polymer bead or other substrate such as paper. One solid support uses a metal (e.g. cobalt or nickel)-comprising column which binds with specificity to a histidine tag engineered onto a peptide.

[0242] Adhesion of molecules to a solid support can be direct (i.e., the molecule contacts the solid support) or indirect (a "linker" is bound to the support and the molecule of interest binds to this linker). Molecules can be immobilized either covalently (e.g. utilizing single reactive thiol groups of cysteine residues (see, e.g., Colliuod (1993) Bioconjugate Chem. 4:528-536) or non-covalently but specifically (e.g. via immobilized antibodies (see, e.g., Schuhmann (1991) Adv. Mater. 3:388-391; Lu (1995) Anal. Chem. 67:83-87; the biotin/streptavidin system (see, e.g., Iwane (1997) Biophys. Biochem. Res. Comm. 230:76-80); metal chelating, e.g., Langmuir-Blodgett films (see, e.g., Ng (1995) Langmuir 11:4048-55); metal-chelating self-assembled monolayers (see, e.g., Sigal (1996) Anal. Chem. 68:490-497) for binding of polyhistidine fusions.
[0243] Indirect binding can be achieved using a variety of linkers which are commercially available. The reactive ends can be any of a variety of functionalities including, but not limited to: amino reacting ends such as N-hydroxysuccinimide (NHS) active esters, imidoesters, aldehydes, epoxides, sulfonyle halides, isocyanate, isothiocyanate, and nitroaryl halides; and thiol reacting ends such as pyridyl disulfides, maleimides, thiophthalimides, and active halogens. The heterobifunctional crosslinking reagents have two different reactive ends, e.g., an amino-reactive end and a thiol-reactive end, while homobifunctional reagents have two similar reactive ends, e.g., bismaleimidohexane (BMH) which permits the cross-linking of sulfhydryl-containing compounds. The spacer can be of varying length and be aliphatic or aromatic. Examples of commercially available homobifunctional cross-linking reagents include, but are not limited to, the imidoesters such as dimethyl adipimidate dihydrochloride (DMA); dimethyl pimelimidate dihydrochloride (DMP); and dimethyl suberimidate dihydrochloride (DMS). Heterobifunctional reagents include commercially available active halogen-NHS active esters coupling agents such as N-succinimidyl bromoacetate and N-succinimidyl (4-iodoacetyl)aminobenzoate (SIAB) and the sulfo-N-succinimidyl derivatives such as sulfo-N-succinimidyl(4-iodoacetyl)aminobenzoate (sulfo-SIAB) (Pierce).

Another group of coupling agents is the heterobifunctional and thiol cleavable agents such as N-succinimidyl 3-(2-pyridyldithio)propionate (SPDP) (Pierce Chemicals, Rockford, IL).

[0244] Antibodies can also be used for binding polypeptides and peptides of the invention to a solid support. This can be done directly by binding peptide-specific antibodies to the column or it can be done by creating fusion protein chimeras comprising motif-containing peptides linked to, e.g., a known epitope (e.g. a tag (e.g. FLAG, myc) or an appropriate immunoglobulin constant domain sequence (an "immunoadhesin," see, e.g., Capon (1989) Nature 377:525-531 (1989).

[0245] Nucleic acids or polypeptides of the invention can be immobilized to or applied to an array. Arrays can be used to screen for or monitor libraries of compositions (e.g. small molecules, antibodies, nucleic acids, etc.) for their ability to bind to or modulate the activity of a nucleic acid or a polypeptide of the invention. For example, in one aspect of the invention, a monitored parameter is transcript expression of a gene comprising a nucleic acid of the invention. One or more, or, all the transcripts of a cell can be measured
by hybridization of a sample comprising transcripts of the cell, or, nucleic acids representative of or complementary to transcripts of a cell, by hybridization to immobilized nucleic acids on an array, or "biochip." By using an "array" of nucleic acids on a microchip, some or all of the transcripts of a cell can be simultaneously quantified. Alternatively, arrays comprising genomic nucleic acid can also be used to determine the genotype of a newly engineered strain made by the methods of the invention. Polypeptide arrays" can also be used to simultaneously quantify a plurality of proteins.

The terms "array" or "microarray" or "biochip" or "chip" as used herein is a plurality of target elements, each target element comprising a defined amount of one or more polypeptides (including antibodies) or nucleic acids immobilized onto a defined area of a substrate surface. In practicing the methods of the invention, any known array and/or method of making and using arrays can be incorporated in whole or in part, or variations thereof, as disclosed, for example, in U.S. Patent Nos. 6,277,628; 6,277,489; 6,261,776; 6,258,606; 6,054,270; 6,048,695; 6,045,996; 6,022,963; 6,013,440; 5,965,452; 5,959,098; 5,856,174; 5,830,645; 5,770,456; 5,632,957; 5,556,752; 5,143,854; 5,807,522; 5,800,992; 5,744,305; 5,700,637; 5,556,752; 5,434,049; see also, e.g., WO 99/51773; WO 99/09217; WO 97/46313; WO 96/17958; see also, e.g., Johnston (1998) Curr. Biol. 8:R171-R174; Schummer (1997) Biotechniques 23:1087-1092; Kern (1997) Biotechniques 23:120-124; Solinas-Toldo (1997) Genes, Chromosomes & Cancer 20:399-407; Bowtell (1999) Nature Genetics Supp. 21:25-32. See also published U.S. patent applications Nos. 20010018642; 20010019827; 20010016322; 20010014449; 20010014448; 20010012537; 20010008765.

Host Cells and Transformed Cells

The invention also provides a transformed cell comprising a nucleic acid sequence of the invention, e.g., a sequence encoding a polypeptide of the invention, or a vector of the invention. The host cell maybe any of the host cells familiar to those skilled in the art, including prokaryotic cells, eukaryotic cells, such as bacterial cells, fungal cells, yeast cells, mammalian cells, insect cells, or plant cells. Exemplary bacterial cells include *E. coli*, *Streptomyces*, *Bacillus subtilis*, *Salmonella typhimurium* and various species within the genera *Pseudomonas*, *Streptomyces*, and *Staphylococcus*. Exemplary insect cells include *Drosophila* S2 and *Spodoptera* Sf9. Exemplary animal cells include CHO,
COS or Bowes melanoma or any mouse or human cell line. The selection of an appropriate host is within the abilities of those skilled in the art.

[0248] Vectors may be introduced into the host cells using any of a variety of techniques, including transformation, transfection, transduction, viral infection, gene guns, or Ti-mediated gene transfer. Particular methods include calcium phosphate transfection, DEAE-Dextran mediated transfection, lipofection, or electroporation.

[0249] Engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants or amplifying the genes of the invention. Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter may be induced by appropriate means (e.g. temperature shift or chemical induction) and the cells may be cultured for an additional period to allow them to produce the desired polypeptide or fragment thereof.

[0250] Cells can be harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract is retained for further purification. Microbial cells employed for expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents. Such methods are well known to those skilled in the art. The expressed polypeptide or fragment can be recovered and purified from recombinant cell cultures by methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Protein refolding steps can be used, as necessary, in completing configuration of the polypeptide. If desired, high performance liquid chromatography (HPLC) can be employed for final purification steps.

[0251] Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts and other cell lines capable of expressing proteins from a compatible vector, such as the C127, 3T3, CHO, HeLa and BHK cell lines.

[0252] The constructs in host cells can be used in a conventional manner to produce the gene product encoded by the recombinant sequence. Depending upon the host employed
in a recombinant production procedure, the polypeptides produced by host cells containing
the vector may be glycosylated or may be non-glycosylated. Polypeptides of the invention
may or may not also include an initial methionine amino acid residue.

[0253] Cell-free translation systems can also be employed to produce a polypeptide of
the invention. Cell-free translation systems can use mRNAs transcribed from a DNA
construct comprising a promoter operably linked to a nucleic acid encoding the
polypeptide or fragment thereof. In some aspects, the DNA construct may be linearized
prior to conducting an in vitro transcription reaction. The transcribed mRNA is then
incubated with an appropriate cell-free translation extract, such as a rabbit reticulocyte
extract, to produce the desired polypeptide or fragment thereof.

[0254] The expression vectors can contain one or more selectable marker genes to
provide a phenotypic trait for selection of transformed host cells such as dihydrofolate
reductase or neomycin resistance for eukaryotic cell culture, or such as tetracycline or
ampicillin resistance in E. coli.

[0255] For transient expression in mammalian cells, cDNA encoding a polypeptide of
interest may be incorporated into a mammalian expression vector, e.g. pcDNAI, which is
available commercially from Invitrogen Corporation (San Diego, Calif., U.S.A.; catalogue
number V490-20). This is a multifunctional 4.2 kb plasmid vector designed for cDNA
expression in eukaryotic systems, and cDNA analysis in prokaryotes, incorporated on the
vector are the CMV promoter and enhancer, splice segment and polyadenylation signal, an
SV40 and Polyoma virus origin of replication, and M13 origin to rescue single strand
DNA for sequencing and mutagenesis, Sp6 and T7 RNA promoters for the production of
sense and anti-sense RNA transcripts and a Col El-like high copy plasmid origin. A
polylinker is located appropriately downstream of the CMV promoter (and 3' of the T7
promoter).

[0256] The cDNA insert may be first released from the above phagemid incorporated at
appropriate restriction sites in the pcDNAI polylinker. Sequencing across the junctions
may be performed to confirm proper insert orientation in pcDNAI. The resulting plasmid
may then be introduced for transient expression into a selected mammalian cell host, for
example, the monkey-derived, fibroblast like cells of the COS-I lineage (available from
the American Type Culture Collection, Rockville, Md. as ATCC CRL 1650).
[0257] For transient expression of the protein-encoding DNA, for example, COS-I cells may be transfected with approximately 8 µg DNA per 10^6 COS cells, by DEAE-mediated DNA transfection and treated with chloroquine according to the procedures described by Sambrook et al, Molecular Cloning: A Laboratory Manual, 1989, Cold Spring Harbor Laboratory Press, Cold Spring Harbor N.Y, pp. 16.30-16.37. An exemplary method is as follows. Briefly, COS-I cells are plated at a density of 5 x 10^6 cells/dish and then grown for 24 hours in FBS-supplemented DMEM/F12 medium. Medium is then removed and cells are washed in PBS and then in medium. A transfection solution containing DEAE dextran (0.4 mg/ml), 100 µM chloroquine, 10% NuSerum, DNA (0.4 mg/ml) in DMEM/F12 medium is then applied on the cells 10 ml volume. After incubation for 3 hours at 37 ⁰C, cells are washed in PBS and medium as just described and then shocked for 1 minute with 10% DMSO in DMEM/F12 medium. Cells are allowed to grow for 2-3 days in 10% FBS-supplemented medium, and at the end of incubation dishes are placed on ice, washed with ice cold PBS and then removed by scraping. Cells are then harvested by centrifugation at 1000 rpm for 10 minutes and the cellular pellet is frozen in liquid nitrogen, for subsequent use in protein expression. Northern blot analysis of a thawed aliquot of frozen cells may be used to confirm expression of receptor-encoding cDNA in cells under storage.

[0258] In a like manner, stably transfected cell lines can also prepared, for example, using two different cell types as host: CHO K1 and CHO Pro5. To construct these cell lines, cDNA coding for the relevant protein may be incorporated into the mammalian expression vector pRC/CMV (Invitrogen), which enables stable expression. Insertion at this site places the cDNA under the expression control of the cytomegalovirus promoter and upstream of the polyadenylation site and terminator of the bovine growth hormone gene, and into a vector background comprising the neomycin resistance gene (driven by the SV40 early promoter) as selectable marker.

[0259] An exemplary protocol to introduce plasmids constructed as described above is as follows. The host CHO cells are first seeded at a density of 5x10^5 in 10% FBS-supplemented MEM medium. After growth for 24 hours, fresh medium is added to the plates and three hours later, the cells are transfected using the calcium phosphate-DNA co-precipitation procedure (Sambrook et al, supra). Briefly, 3 µg of DNA is mixed and incubated with buffered calcium solution for 10 minutes at room temperature. An equal
volume of buffered phosphate solution is added and the suspension is incubated for 15 minutes at room temperature. Next, the incubated suspension is applied to the cells for 4 hours, removed and cells were shocked with medium containing 15% glycerol. Three minutes later, cells are washed with medium and incubated for 24 hours at normal growth conditions. Cells resistant to neomycin are selected in 10% FBS-supplemented alpha-MEM medium containing G418 (1 mg/ml). Individual colonies of G418-resistant cells are isolated about 2-3 weeks later, clonally selected and then propagated for assay purposes.

EXAMPLES

[0260] A number of examples illustrative of the present invention are described below. In most cases, alternative techniques could also be used. The examples are intended to be illustrative and are not limiting or restrictive to the scope of the invention. Unless specifically noted to the contrary, in cases where a compound number is not preceeded by a "P." (e.g., "P-0001") in the Examples section, compound naming and/or enumeration is not related to naming and/or enumeration employed in other sections of this application. Similarly, structure and substituent naming and enumeration within the Examples are independent of structure and substituent naming and enumeration in above sections of this application unless clearly indicated otherwise.

Example 1: Synthesis of compound of Formula I, where X1, X2, Y1 and Y2 are CH and L1 is -CH2-:

[0261] Compounds of Formula I where X1, X2, Y1 and Y2 are CH and L1 is -CH2- or -CO- may be synthesized from 7-azaindole according to one of the following Schemes 1-3, where R24 is consistent with Ar1, which can be further substituted to provide compounds where R24 is Ar1-L2-R1 as described for Formula I.

Scheme —1

Step 1: Synthesis of compound 2.
Compound 2 is synthesized from commercially available 7-azaindole following the literature procedure (Robinson, *J Am. Chem. Soc.*, 1955, 77, p. 457).

Step -2- Synthesis of compound of Formula II

Compound of Formula II is synthesized by deprotonation using base (e.g. BuLi, NaH) in aprotic solvent like tetrahydrofuran or ether and reacting the anion with a silyl chloride (e.g. TIPS) or an anhydride (e.g. Boc anhydride). The compound is isolated by following standard procedure (quenching with ice-cold brine, work up, and purification by flash silica gel chromatography).

Steps -3 and 4 - Synthesis of compound of Formula 1

Compounds of Formula I, wherein R\(^{24}\) is Ar\(_1\) as defined in Formula I, is synthesized through the reaction of compounds of Formula II with isopropyl chloroformate (or ethyl chloroformate) at room temperature in toluene to give a 3-chloromethyl intermediate. This intermediate is cooled to -78 °C and immediately reacted with an organocopper reagent, which is generated from the reaction between a Grignard reagent (or organolithium reagent) and a solution of copper cyanide and LiCl. The mixture is stirred at -78 °C for one hour and allowed to warm to room temperature. The reaction is quenched with a solution of 4:1 ammonium chloride:ammonium hydroxide. The reaction is worked up in the usual manner and purified by flash silica gel chromatography to give the nitrogen-protected compound. The final compound can be realized through the deprotection of the protecting group (Boc, TIPS) using standard conditions (TFA or NH\(_4\)F) at room temperature.

Scheme - 2

Step - 1 —Synthesis of compound 3

Compound 3 is synthesized by reacting commercially available 7-azaindole, compound 1, with hexamethyltetramine and acetic acid in water with heating to reflux for two hours. After cooling, the desired compound is precipitated and collected by filtration.
Step - 2 ~ Synthesis of compound of Formula III

[0266] Compound of Formula III, where P is a protecting group, is synthesized by reacting compound 3 with an appropriate reagent to introduce a protecting group (e.g. tert-butyloxy carbonyl di anhydride) and a base (e.g. sodium hydride) in an appropriate solvent (e.g. tetrahydrofuran) typically at room temperature for 12-18 hours. The compound can be isolated by conventional means (e.g. extraction).

Step - 3 — Synthesis of compound of Formula IV

[0267] Compound of Formula IV, wherein R24 is Ar1, is synthesized by reacting compound of Formula III in an appropriate solvent (e.g. 1,2-dimethoxyethane) with a Grignard reagent of the formula R24MgCl or R24MgBr (e.g. pyridylin magnesium bromide) or an equivalent nucleophile in an appropriate solvent (e.g. tetrahydrofuran) under inert atmosphere cooled typically to —10 °C. The reaction is typically allowed to warm to room temperature and stirred for 12-18 hours. The desired compound is purified by reverse phase high pressure liquid chromatography.

Steps - 4 and 5 - Synthesis of an intermediate of compound of Formula I

[0268] An intermediate of compound of Formula I is synthesized by reacting compound of Formula IV with a reducing agent (e.g. sodium borohydride) in a polar solvent (e.g. ethanol) typically with heating to 80 °C for 1-4 hours. The reaction is quenched with the addition of methanol and concentrated and purified by reverse phase high performance liquid chromatography. Compound of Formula I where R24 is Ar1 is synthesized by reacting this intermediate with an appropriate reagent to remove the protecting group, P, (e.g. hydrochloric acid) in an apolar solvent (e.g. dioxane). The final compound is isolated by standard procedures (e.g. reverse phase preparative high pressure liquid chromatography).

Scheme - 3
Step 1—Synthesis of compound of Formula I'

[0269] Compound of Formula I' where R^2 is Ar_1, is synthesized by reacting compound 1 with an activating agent (e.g. methyl magnesium bromide and zinc dichloride or anhydrous aluminum chloride) and a heteroaryl acid chloride (e.g. nicotinic acid chloride) in a non-reactive solvent (e.g. dichloromethane), under inert atmosphere (e.g. argon), at room temperature or with heating up to reflux for 18-24 hours. The compound is isolated by standard procedures (e.g. extraction and silica-gel chromatography).

Example 2: Synthesis of intermediate 3-(6-Chloro-pyridin-3-ylmethyl)-1-triisopropylsilanyllH-pyrrolo[2,3-b]pyridine (6) and (3-(6-Bromo-pyridin-3-ylmethyl)-1-triisopropylsilanyllH-pyrrolo[2,3-b]pyridine) (6a)

[0270] Compound 6, an intermediate to compounds of Formula I where X_1, X_2, Y_1 and Y_2 are CH, n is 1, P, Q and T are CH and L^1 is -CH$_2$-, may be synthesized in four steps from 7-azaindole according to the following Scheme 4.

Scheme - 4

Step 1- Synthesis of dimethyl-(lH-pyrrolo[2,3-b]pyridin-3-ylmethyl)-amine (2)

[0271] Into a 3-neck round bottom flask was added Isopropyl alcohol (320.0 mL) followed by the addition of lH-pyrrolo[2,3-b]pyridine 1 (7.10 g, 60.1 mmol), dimethylamine hydrochloride (5.4 g, 0.066 mol), and formaldehyde (2.0 g, 0.066 mol). The reaction mixture was stirred at room temperature for 12 hours, and then refluxed for 30 minutes. The suspension solution was evaporated to dryness in vacuo. To the residue was added water (60.0 mL, 3.33 mol) and concentrated hydrochloric acid (6.0 mL, 0.20 mol). The water layer was extracted with ether and the aqueous layer was neutralized with
potassium carbonate. The aqueous layer was extracted with dichloromethane, dried over sodium sulfate and concentrated to give the compound, which was then further washed with ether and dried to afford compound 2 (7.1 g, yield = 67.4%), as a white solid.

Step -2- Synthesis of dimethyl-(l-triisopropylsilanyl-lH-pyrrolo[2,3-b]pyridin-3-ylmethyl)-amine (4)

[0272] Into a round bottom flask 7-Azagamine 2 (5.38 g, 30.7 mmol), N,N-dimethylformamide (25.0 mL), and sodium hydride (1.35 g, 33.8 mol) were combined. Into the reaction was added triisopropylsilyl chloride (6.8 mL, 0.032 mol). The reaction was stirred at 20 °C for 12 hours. The reaction mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over sodium sulfate, concentrated and purified with biotage to give compound 4 (6.0 g, yield = 58.8%) as a colorless oil.

Step -3- Synthesis of 3-chloromethyl-l-triisopropylsilanyl-lH-pyrrolo[2,3-b]pyridine (5)

[0273] Into a round bottom flask was added compound 4 (500.0 mg, 1.51 mmol) and toluene (5.0 mL, 0.047 mol) under an atmosphere of nitrogen. Into the reaction mixture 1.0 M isopropyl chloroformate in toluene (1.6 mL) was added slowly at room temperature. The reaction mixture was stirred for another 2 hours to give desired compound 5 used for next step without purification.

Step -4- Synthesis of 3-(6-Chloro-pyridin-3-ylmethyl)-l-triisopropylsilanyl-lH-pyrrolo[2,3-b]pyridine (6)

[0274] Into a round bottom flask was added 5-iodo-2-chloro-pyridine (315.0 mg, 1.32 mmol) and tetrahydrofuran (12.0 mL, 0.15 mol) at -40 °C under an atmosphere of nitrogen. Into the reaction 2.0 M of isopropylmagnesium chloride in tetrahydrofuran (0.72 mL, 1.44 mmol) was added. The reaction mixture was stirred for 40 minutes at -40 °C. TLC (hexane/ethyl acetate 2:1) indicated no starting material. Into the reaction mixture 0.6 M of CuCN.2LiCl in tetrahydrofuran (2.4 mL, 1.44 mmol) was added. The reaction mixture was allowed to come to room temperature for 5 minutes and trimethyl phosphite (0.29 mL, 2.4 mmol) was added. After 10 minutes, this solution was added into a round bottom flask containing compound 5 (315.0 mg) and toluene (8.0 mL). The reaction was stirred at 20 °C for 40 hours. The reaction mixture was poured into water and the compound extracted with ethyl acetate. The organic layer was washed with brine, dried
over sodium sulfate, concentrated and purified with biotage (dichloromethane/methanol 1:10) to give compound 6 (230 mg, yield = 59.0%) as a white solid. Compound 6a (3-(6-Bromo-pyridin-3-ylmethyl)-1-triisopropylsilanyl-1H-pyrrolo[2,3-b]pyridine) (MS (ESI) [M+H+] = 288.1, 290.1) was prepared substituting 5-iodo-2-chloro-pyridine with 5-iodo-2-bromo-pyridine in Step 4, with reaction conditions and work up procedure the same as that for the synthesis of compound 6.

Example 3: Synthesis of intermediate (6-Chloro-pyridin-3-yl)-(1H-pyrrolo[2,3-b]pyridin-3-yl)-methanone (7)

[0275] Compound 7, an intermediate to compounds of Formula I where X₁, X₂, Y₁ and Y₂ are CH, n is 1, P, Q and T are CH and L¹ is -CO-, may be synthesized in one step from 7-azaindole according to the following Scheme 5.

Scheme - 5

[0276] Into a round bottom flask was added aluminum trichloride (16.0 g, 0.12 mol) and dichloromethane (100.0 mL) under an atmosphere of nitrogen. Into the reaction mixture 1H-Pyrrolo[2,3-b]pyridine 1 (3.2 g, 0.027 mol) in dichloromethane (20.0 mL) was added. The reaction was stirred at room temperature for 70.0 minutes and 6-Chloropyridine-3-carbonyl chloride 8 (5.4 g, 0.031 mol) in dichloromethane (10.0 mL) was added. The reaction mixture was stirred at room temperature for 3 hours. Methanol (10 mL) was added to the reaction mixture and the solvent was evaporated in vacuo. The residue was poured into water and the precipitated compound was removed by filtration. The aqueous layer was extracted with ethyl acetate and the organic layer was dried and concentrated and combined with the solid isolated by filtration to give 7 (6.2 g, yield = 88.6%) as a white solid. MS (ESI) [M+H+] = 258.
Example 4: Synthesis of benzyl-[5-(1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-amine (P-OOOl)

[0277] Benzyl-[5-(1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-amine (P-OOOl) was prepared in two steps from 3-(6-Chloro-pyridin-3-ylmethyl)-1-triisopropylsilanyl-1H-pyrrolo[2,3-b]pyridine (6) according to Scheme 6.

Scheme - 6

Step -1- Synthesis of benzyl-[5-(1-triisopropylsilanyl-1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-amine (10):

[0278] Into a round bottom flask was added 3-(6-Chloro-pyridin-3-ylmethyl)-1-triisopropylsilanyl-1H-pyrrolo[2,3-b]pyridine 6 (160.0 mg, 0.40 mmol, prepared as described in Example 2), benzylamine (32, 0.1 mL, 0.90 mmol), palladium acetate (17.0 mg, 0.076 mmol), toluene (10.0 mL), potassium tert-butoxide (80.0 mg, 0.71 mmol) and 2-(di-t-butylphosphino)biphenyl (31.4 mg, 0.11 mmol) under an atmosphere of nitrogen. The reaction was stirred under reflux for 3 hours. TLC and MS indicated no starting material. The reaction mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over sodium sulfate, concentrated and purified with biotage (dichloromethane/methanol 1:20) to give compound 10 (110 mg, yield = 58.5%) as a white solid. MS (ESI) [M+H]+ = 471.

Step -2- Synthesis of benzyl-[5-(1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-amine (P-OOOl):

[0279] Into a round bottom flask was added benzyl-[5-(1-triisopropylsilanyl-1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-amine 10 (400.0 mg, 0.85 mmol), tetrahydrofuran (20.0 mL) and tetra-n-butylammonium fluoride (240 mg, 0.93 mmol). The reaction mixture was stirred at 20 °C for 30 minutes. TLC indicated no starting material. The reaction mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over sodium sulfate, concentrated and
purified with biotage (dichloromethane/methanol 1:10) to give compound P-0001 (220 mg, Yield = 82.4%) as a white solid. MS (ESI) [MH-H\(^+\)]\(^+\) = 315.

Additional compounds were prepared following the protocol of Scheme 6, substituting benzyl amine with a suitable amine in Step 1, and using either 3-(6-Chloropyridin-3-ylmethyl)-l-triisopropylsilanyl-lH-pyrrolo[2,3-b]pyridine 6 or 3-(6-Bromo-pyridin-3-ylmethyl)-l-triisopropylsilanyl-lH-pyrrolo[2,3-b]pyridine 6a, in Step 1. The following compounds were made following this procedure:

- Dimethyl-[5-(lH-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-amine (P-0021),
- (4-methoxy-benzyl)-[5-(lH-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-amine (P-0004),
- (4-chloro-benzyl)-[5-(lH-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-amine (P-0005),
- (4-fluoro-benzyl)-[5-(lH-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-amine (P-0006),
- (4-methyl-benzyl)-[5-(lH-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-amine (P-0007), and

The following table indicates the amine used in Step 1 in place of benzyl amine in Column 2, and whether 3-(6-Chloropyridin-3-ylmethyl)-l-triisopropylsilanyl-lH-pyrrolo[2,3-b]pyridine or 3-(6-Bromo-pyridin-3-ylmethyl)-l-triisopropylsilanyl-lH-pyrrolo[2,3-b]pyridine was used in Step 1 in Column 3 (Cl or Br, respectively), with the compound structure in Column 4, experimental mass spectrometry result in Column 5, and compound number in Column 1.

<table>
<thead>
<tr>
<th>Starting azaindole</th>
<th>Amine</th>
<th>Compound</th>
<th>MS(ESI) [M+H(^+)](^+) observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-0021</td>
<td>Cl</td>
<td></td>
<td>253</td>
</tr>
<tr>
<td>P-0004</td>
<td>Br</td>
<td></td>
<td>344.4</td>
</tr>
</tbody>
</table>
Example 5: Synthesis of (6-Benzylamino-pyridin-3-yl)-(1H-pyrrolo[2,3-b]pyridin-3-yl)-methanone (P-0002)

[0281] (6-Benzylamino-pyridin-3-yl)-(1H-pyrrolo[2,3-b]pyridin-3-yl)-methanone (P-0002) was prepared in one step from (6-Chloro-pyridin-3-yl)-(1H-pyrrolo[2,3-b]pyridin-3-yl)-methanone (7) according to Scheme 7.

Scheme - 7

[0282] Into a pressure tube was added (6-Chloro-pyridin-3-yl)-(1H-pyrrolo[2,3-b]pyridin-3-yl)-methanone 7 (270.0 mg, 1.05 mmol, prepared as described in Example 3), and benzylamine (32, 0.7 mL, 0.006 mol) and tetrahydrofuran (25.0 mL) under an atmosphere of nitrogen. The reaction mixture was heated to 185 °C for 60 hours. The reaction mixture was concentrated to remove most of the solvent and the residue was poured into water and extracted with ethyl acetate. The organic layer was dried over
sodium sulfate, concentrated and purified with biotage (dichloromethane/methanol 1:20) to give compound P-0002 (30 mg, yield = 8.7%) as a white solid. MS (ESI) [M+H+] = 329.

[0283] Additional compounds were prepared following the protocol of Scheme 7, replacing benzylamine with a suitable amine. The following compounds were made following this procedure:

- [6-(4-Fluoro-benzylamino)-pyridin-3-yl]-(1H-pyrrolo[2,3-b]pyridin-3-yl)-methanone (P-0015),
- [6-(3-Fluoro-benzylamino)-pyridin-3-yl]-(1H-pyrrolo[2,3-b]pyridin-3-yl)-methanone (P-0016),
- (1H-Pyrrolo [2,3-b]pyridin-3 -yl)-[6-(4-trifluoromethyl-benzylamino)-pyridin-3 -yl]-methanone (P-0017),
- (1H-Pyrrolo [2,3-b]pyridin-3 -yl)- {6-[(thiophen-2-ylmethyl)-amino] -pyridin-3 -yl}-methanone (P-0018),
- (6-Phenylamino-pyridin-3 -yl)-(1H-pyrrolo [2,3-b]pyridin-3 -yl)-methanone (P-0023),
- (6-Isopropylamino-pyridin-3-yl)-(1H-pyrrolo[2,3-b]pyridin-3-yl)-methanone (P-0024),
- (6-Isobutylamino-pyridin-3-yl)-(1H-pyrrolo[2,3-b]pyridin-3-yl)-methanone (P-0025),
- [6-(3-Benzoyloxy-phenylamino)-pyridin-3-yl]-(1H-pyrrolo[2,3-b]pyridin-3-yl)-methanone (P-0026),
- [6-(Cyclopropylmethyl-amino)-pyridin-3-yl]-(1H-pyrrolo[2,3-b]pyridin-3-yl)-methanone (P-0030),
- [6-(Cyclohexylmethyl-amino)-pyridin-3-yl]-(1H-pyrrolo[2,3-b]pyridin-3-yl)-methanone (P-0031),

The following table indicates the amine substituted in place of benzylamine in column 2, to provide these compounds, shown by structure in column 3. Column 1 provides the compound number and column 4 gives the experimental mass spectrometry result.

<table>
<thead>
<tr>
<th>Amine</th>
<th>Compound</th>
<th>MS(ESI) [M+H+]<sup>+</sup> observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-0015</td>
<td></td>
<td>347.0</td>
</tr>
<tr>
<td></td>
<td>Chemical Structure</td>
<td>Molecular Weight</td>
</tr>
<tr>
<td>----</td>
<td>--------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>P-0016</td>
<td></td>
<td>347.1</td>
</tr>
<tr>
<td>P-0017</td>
<td></td>
<td>396.9</td>
</tr>
<tr>
<td>P-0018</td>
<td></td>
<td>335.0</td>
</tr>
<tr>
<td>P-0023</td>
<td></td>
<td>315.1</td>
</tr>
<tr>
<td>P-0024</td>
<td></td>
<td>279 [M-H$^+$]</td>
</tr>
<tr>
<td>P-0025</td>
<td></td>
<td>293 [M-H$^+$]</td>
</tr>
<tr>
<td>P-0026</td>
<td></td>
<td>419 [M-H$^+$]</td>
</tr>
<tr>
<td>P-0030</td>
<td></td>
<td>293.1</td>
</tr>
<tr>
<td>P-0031</td>
<td></td>
<td>335.2</td>
</tr>
</tbody>
</table>
Example 6: Synthesis of Isobutyl-[5-(1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-amine P-0028

[0284] Compound P-0028 was synthesized in 1 step from 6-Isobutylamino-pyridin-3-yl)-(1H-pyrrolo[2,3-b]pyridin-3-yl)-methanone P-0025 as shown in Scheme 8.

Scheme 8

![Scheme 8](image)

Step 1-Synthesis of Isobutyl-[5-(1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-amine (P-0028).

[0285] To (6-Isobutylamino-pyridin-3-yl)-(1H-pyrrolo[2,3-b]pyridin-3-yl)-methanone (P-0025, 60.0 mg, 0.20 mmol, prepared as described in Example 5) in 1,2-ethanediol (5.0 mL) was added hydrazine (1.0 mL, 0.032 mol) and potassium hydroxide (200.0 mg, 3.56 mmol). The reaction mixture was heated to 180 °C overnight. The reaction mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over sodium sulfate, concentrated and purified by silica gel column chromatography eluting with 10% methanol in dichloromethane to give compound (P-0028, 10 mg, 16.7%). MS (ESI) [M+H]⁺ = 281.

[0286] Cyclopropylmethyl-[5-(1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-amine (P-0032)

was prepared following the protocol of Scheme 8, substituting (6-Isobutylamino-pyridin-3-yl)-(1H-pyrrolo[2,3-b]pyridin-3-yl)-methanone P-0025 with [6-(Cyclopropylmethylamino)-pyridin-3-yl)-(1H-pyrrolo[2,3-b]pyridin-3-yl)-methanone P-0030 (prepared as described in Example 5). MS (ESI) [M+H]⁺ = 279.
Cyclohexylmethyl-[5-(1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-amine (P-0033) was prepared following the protocol of Scheme 8, substituting [6-(Isobutylamino-pyridin-3-yl)-(1H-pyrrolo[2,3-b]pyridin-3-yl)-methanone P-0025 with [6-(Cyclohexylmethyl-amino)-pyridin-3-yl]-(1H-pyrrolo[2,3-b]pyridin-3-yl)-methanone P-0031, (prepared as described in Example 5). MS (ESI) [M+H]+ = 321.

Example 7: 3-(6-Isopropyl-pyridin-3-ylmethyl)-1H-pyrrolo[2,3-b]pyridine P-0019

3-(6-Isopropyl-pyridin-3-ylmethyl)-1H-pyrrolo[2,3-b]pyridine P-0019 was synthesized in 2 steps from 3-(6-Chloro-pyridin-3-ylmethyl)-1-triisopropylsilanyl-lH-pyrrolo[2,3-b]pyridine 6 as shown in Scheme 9.

Scheme 9

Step 1-Synthesis of 3-(6-Isopropyl-pyridin-3-ylmethyl)-1-triisopropylsilanyl-lH-pyrrolo[2,3-b]pyridine (39)

To 3-(6-Chloro-pyridin-3-ylmethyl)-1-triisopropylsilanyl-lH-pyrrolo[2,3-b]pyridine (6, 54.0 mg, 0.000135 mol, prepared as described in Example 2) in Tetrahydrofuran (4.0 mL) were added [1,1’-bis(diphenylphosphino)ferrocene]-dichloropalladium(II) (23.0 mg) and Isopropylmagnesium Chloride (0.15 mL, 2.0 M in Tetrahydrofuran). The reaction was stirred at 20 °C under an atmosphere of Nitrogen for 3 hours. The reaction mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over sodium sulfate, concentrated and purified by silica gel column chromatography eluting with 10% methanol in dichloromethane to give compound 39 (38 mg, 70.4%).
Step-2-Synthesis of 3-(6-Isopropyl-pyridin-3-ylmethyl)-1H-pyrrolo[2, 3-b]pyridine (P-0019)

To 3-(6-Isopropyl-pyridin-3-ylmethyl)-1-trisopropylsilyl-1H-pyrrolo[2,3-b]pyridine (39, 35.0 mg, 0.086 mmol) in tetrahydrofuran (3.0 mL) was added tetra-n-butylammonium fluoride (29 mg, 0.11 mmol). The reaction was stirred at 20 °C for 30 minutes. The reaction mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over sodium sulfate, concentrated and purified by silica gel column chromatography eluting with 10% methanol in dichloromethane to give compound (P-0019, 18.0 mg, 81.9%). MS (ESI) [M+H]+ = 252.

Example 8: Synthesis of [5-(1H-Pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-(4-trifluoromethyl-benzyl)-amine (P-0003)

[0291] [5-(1H-Pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-(4-trifluoromethyl-benzyl)-amine (P-0003) was prepared in three steps from (6-Chloro-pyridin-3-yl)-(1H-pyrrolo[2,3-b]pyridin-3-yl)-methanone (7) according to Scheme 10.

Scheme 10

Step-1- Synthesis of 1H-Pyrrolo[2, 3-b]pyridin-3-yl]-6-(4-trifluoromethyl-benzylamino)-pyridin-3-yl]-methanone (P-0017)

Into a pressure flask was added (6-Chloro-pyridin-3-yl)-(1H-pyrrolo[2,3-b]pyridin-3-yl)-methanone (7, 3.5 g, 0.014 mol, prepared as described in Example 3), 4-(trifluoromethyl)benzylamine (30, 9.0 g, 0.051 mol), tetrahydrofuran (30.0 mL, 0.37 mol), palladium acetate (200.0 mg, 0.890 mmol) and 2-(di-t-butylphosphino)biphenyl (200.0 mg, 0.67 mmol). The reaction mixture was stirred at 180 °C overnight, poured into water
and extracted with ethyl acetate. The organic layer was washed with brine, dried over sodium sulfate and concentrated. To the residue was added acetic acid (15.0 mL) and H$_2$O (5.0 mL). The reaction mixture was stirred at 100 °C for 5 hours and concentrated to remove the acetic acid. The residue was then treated with aqueous Na$_2$HCO$_3$ and extracted with ethyl acetate. The organic layer was washed, dried, concentrated and purified to give compound P-0017 (1.0 g, yield = 18.5%) as a light yellow solid. MS (ESI) [M+H$^+$]$^+$ = 397.

Step -2- Synthesis of [lH-Pyrrolo[2,3-b]pyridin-3-yl]-[6-(4-trifluoromethyl-benzylamino)-pyridin-3-yl]-methanol (14)

[0293] Into a round bottom flask was added (lH-Pyrrolo[2,3-b]pyridin-3-yl)-[6-(4-trifluoromethyl-benzylamino)-pyridin-3-yl]-methanone P-0017 (210.0 mg, 0.53 mmol) and sodium tetrahydroborate (80.0 mg, 2.11 mmol), dissolved in N,N-dimethylformamide (5.0 mL) and ethanol (20.0 mL). The reaction was stirred at room temperature overnight, poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over sodium sulfate, concentrated and purified with biotage (dichloromethane/methanol 1:20) to give compound 14 (63 mg, yield = 30%) as a white solid. MS (ESI) [M+H$^+$]$^+$ = 399.

Step -3- Synthesis of [5-(lH-Pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-[4-trifluoromethyl-benzyl]-amine (P-0003)

[0294] Into a round bottom flask was added (lH-Pyrrolo[2,3-b]pyridin-3-yl)-[6-(4-trifluoromethyl-benzylamino)-pyridin-3-yl]-methanol 14 (200.0 mg, 0.50 mmol), trifluoroacetic acid (5.0 mL, 0.065 mol) and triethylsilane (3.0 mL, 0.019 mol). The reaction was stirred at room temperature for 30 min, poured into aqueous sodium bicarbonate, and extracted with ethyl acetate. The organic layer was washed with brine, dried over sodium sulfate, concentrated and purified to give pure compound P-0003 (120.0 mg, yield = 62.8%) as a white solid. MS (ESI) [M+H$^+$]$^+$ = 383.

Example 9. Synthesis of compounds of Formula I where n is 1, P, Q and T are CH X$_1$, X$_2$ and Y$_2$ are CH, Y$_i$ is CR$_4$, L$_1$ is -CH$_2$-, L$_2$ is -NHCH$_2$-, and R$_1$ is 4 substituted phenyl (Formula Ic).
Compounds of Formula Ic, where R^4 is as defined for Formula I and Z is a substituent as defined for optionally substituted aryl, can be synthesized in five steps from 2-amino-5-bromopyridines as shown in the following general Scheme 11.

Scheme 11

![Diagram of synthesis steps](image)

Step 1 - Preparation of compounds of Formula V

To a solution of an appropriately substituted benzaldehyde (e.g. $>\text{-trifluoromethyl benzaldehyde}$) in a non-reactive solvent (e.g. tetrahydrofuran) is added an appropriate 2-amino-5-bromo-pyridine 15, followed by appropriate reagents to effect the reduction (e.g. dibutyltin dichloride and phenylsilane). Typically the reaction is heated (e.g. 50 °C) overnight. The solvent is removed at reduced pressure after heating to 50 °C overnight. Isolation by conventional means (e.g. extraction) affords compounds of Formula V.

Step 2 - Preparation of compounds of Formula VI

Compound of Formula V is dissolved in a non-reactive solvent (e.g. tetrahydrofuran) and typically cooled at -78 °C under an inert atmosphere. To this mixture is added an organo lithium reagent (e.g. methyl lithium). The reaction mixture is typically stirred at -78 °C for several hours. To this mixture is added an organo lithium reagent (e.g. tert-butyl lithium), and the mixture is stirred for several hours. The reaction mixture is maintained at -78 °C, and an appropriate formylating reagent (e.g. 1-piperidine carboxaldehyde) is added. Typically, the reaction is allowed to stir at -78 °C for an
additional several hours and slowly warmed to room temperature. Isolation by conventional means (e.g. extraction) affords compounds of Formula VI.

Step -S—Preparation of compounds of Formula VII
[0298] Compound of Formula VI is dissolved in a non-reactive solvent (e.g. tetrahydrofuran) and stirred under an inert atmosphere. To this solution is added a base (e.g. triethylamine) and typically a catalyst (e.g. 4-dimethylaminopyridine). Typically, the mixture is stirred for a few minutes and then a reagent appropriate for the introduction of a protecting group (e.g. di-tert-butyl dicarbonate) is added. Typically, the reaction is stirred overnight. Isolation by conventional means (e.g. extraction) affords compounds of Formula VII.

Step - 4—Preparation of compounds of Formula VIII and IX
[0299] 4-Substituted 1H-pyrrolo[2,3-b]pyridine XXX is added to a stirring solution of base (e.g. potassium hydroxide) in an appropriate polar protic solvent (e.g. methanol). Compound of Formula VII is added, and the mixture is typically stirred at room temperature for several days. The solvent is evaporated, and 1 M HCl is added to the residue. Isolation by conventional means (e.g. extraction, silica gel chromatography) affords compounds of Formula VIII and IX.

Step —5—Preparation of compounds of Formula Ic
[0300] Typically, compounds of Formula VIII and IX is combined and dissolved in an appropriate polar aprotic solvent (e.g. acetonitrile). Reagents appropriate to effect the reduction (e.g. triethylsilane and trifluoroacetic acid) are added. Typically, the reactions are stirred at room temperature for several days. Isolation by conventional means (e.g. extraction, silica gel chromatography) affords compounds of Formula Ic.
Example 10. Synthesis of [5-(4-Methoxy-1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-{(4-trifluoromethyl-benzyl)-amine (P-0011)

[0301] [5-(4-Methoxy-1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-{(4-trifluoromethyl-benzyl)-amine P-0011 was synthesized as shown in Scheme 12:

Scheme 12

Step 1: Preparation of [5-Bromo-pyridin-2-yl)-(4-trifluoromethyl-benzyl)-amine (17)

[0302] Into a round bottom flask fitted with stirrer and reflux condenser was added 2-amino-5-bromopyridine (15, 1.73 mol, 300 g) and 4-trifluoromethylbenzaldehyde (16, 1.723 mol, 300 g) to a solution of trifluoroacetic acid (400 mL), triethylsilane (825 mL) and acetonitrile (7500 mL). The reaction was heated to reflux overnight (24 hours). Solvents were removed and the residue was poured into aqueous K$_2$CO$_3$ and extracted with ethyl acetate. The organic layer was washed with brine, dried over sodium sulfate, and concentrated. The crude compound was crystallized with diethyl ether/hexane to afford compound 17, 420 g (73.6%) as off white solid. MS (ESI) [M+H$^+$] = 331.1 and 333.1 (1:1 ratio).
Step 2: Preparation of 6-(4-Trifluoromethyl-benzylamino)-pyridine-3-carbaldehyde (18)

Into a 5 L round bottom flask was added compound 17 (0.6 mol, 198.6 g.) and tetrahydrofuran (2.5 L) under an atmosphere of argon at -78 °C. Into the reaction mixture was added 1.7 M tert-butyllithium in pentane (800 mL) over 60 mins. Two hours after the addition of tert-butyllithium, N,N-dimethylformamide (100 mL) was added. The reaction mixture was stirred at -78 °C for 2 hours, then allowed to stand at room temperature for another 1 hour. The reaction mixture was poured into saturated ammonium chloride solution and extracted with ethyl acetate. The organic layer was washed with brine, dried over sodium sulfate, concentrated and triturated with hexane/isopropyl ether (1:1) to give aldehyde compound 18.

Step 3: Preparation of (5-Formyl-pyridin-2-yl)-(4-trifluoromethyl-benzyl)-carbamic acid tert-butyl ester (19)

Into a 2 L round bottom flask was added di-tert-butyldicarbonate (90 g), aldehyde 18 (75 g), diisopropyl ethyl amine (60 g), 4-dimethylaminopyridine (2.0 g) and dichloromethane (1000.0 mL). The reaction was stirred at room temperature overnight (18 hours) and the solvent was evaporated to give compound 19 (94 g).

Steps 4 and 5: Preparation of[5-(4-Methoxy-lH-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-(4-trifluoromethyl-benzyl)-amine (P-OII)

Step 4: Into a solution of methanol (20 mL, 0.5 mol) was added sodium hydroxide (0.62 g, 0.016 mol), followed by 4-methoxy-7-azaindole (20, 600 mg, 4 mmol, prepared as described in Example 12). Once the mixture was homogeneous, compound 19 (1.7 g, 4.46 mmol) was added and the mixture was stirred at room temperature for 48 hours. The solvent was evaporated and dilute HCl was added to the residue. The residue was extracted with ethyl acetate and washed with 10% sodium bicarbonate, followed by brine. The organic layer was dried over MgSO₄, filtered and evaporated to give a mixture of crude compounds 21 and 22, which was used in the next step.

Step 5: The mixture of 21 and 22 from Step 4 (2.36 g, 4.46 mmol) was dissolved in dichloromethane (60 mL, 0.9 mol) to which triethylsilane (3.6 mL, 0.022 mol) and trifluoroacetic Acid (2.1 mL, 0.027 mol) were added. The resulting mixture was stirred for 48 hours at room temperature. The solvent was evaporated and the mixture was extracted with dichloromethane:methanol (3:1). The organic layer was washed with
saturated bicarbonate followed by brine. The organic layer was dried over MgSO₄, filtered and evaporated to give crude compound as a residue. The residue was purified by flash silica gel chromatography to give 1.15 g of solid P-0011 for a 60% yield.

MS (ESI) [M+H⁺]+= 413.24.

[0307] [5-(4-Methoxy-1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl)-(4-chloro-benzyl)-amine P-0010

was prepared following the protocol of Scheme 12, substituting 4-trifluoro-benzylamine with 4-chloro-benzylamine in Step 1. MS (ESI) [M+H⁺]+= 379.2 and 381.2 (3:1 ratio).

[0308] [5-(4-chloro-1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl)-(4-chloro-benzyl)-amine P-0009

was prepared following the protocol of Scheme 12, substituting 4-trifluoro-benzylamine with 4-chloro-benzylamine in Step 1 and 4-methoxy-7-azaindole with 4-chloro-7-azaindole (24, prepared as described in Example 11) in Step 4. MS (ESI) [M+H⁺]+= 381.1 and 383.0.

Example 11: Synthesis of 4-chloro-7-azaindole (24)

[0309] 4-chloro-7-azaindole 24 was synthesized in two Steps from 7-azaindole according to the protocol of Scheme 13.
Step 1 - Synthesis of \textit{1H-Pyrrolo[2,3-\textit{b}]pyridine} 7-oxide (23)

[0310] \textit{1H-Pyrrolo[2,3-\textit{b}]pyridine} 7-oxide 23 was synthesized by reacting commercially available 7-azaindole 1 with an oxidizing agent (e.g. m-CPBA) in a non-reactive solvent (e.g. dimethoxyethane) as described by Schneller, S. W.; Luo, Jiann-Kuan. J. Org. Chem. 1980, 45:4045-4048. The compound was isolated by filtration of the resulting solid that forms upon standing at 5 °C for typically 1-3 h.

Step 2 - Synthesis of 4-chloro-7-azaindole (24)

[0311] 4-chloro-7-azaindole 24 was synthesized by reacting \textit{1H-Pyrrolo[2,3-\textit{b}]pyridine} 7-oxide 23 with a chlorinating agent (e.g. POCl₃) neat as described by Schneller, S. W.; Luo, Jiann-Kuan. J. Org. Chem. 1980, 45:4045-4048. The resulting solution after heating for 3-5 h at elevated temperatures (100-150 °C) was neutralized with a base (e.g. NH₄OH) until a solid precipitated. The solid was isolated by filtration.

Example 12: Synthesis of 4-methoxy-7-azaindole (20)

[0312] 4-methoxy-7-azaindole 20 was synthesized in one Step from 4-chloro-7-azaindole according to the protocol of Scheme 14.

Scheme 14

[0313] 4-methoxy-7-azaindole 20 was prepared by reacting 4-chloro-7-azaindole 24 (prepared as described in Example 9) with sodium hydroxide in methanol as described by Girgis, N. et al., J. Heterocyclic Chem. 1989, 26:317-325.

Example 13: Synthesis of compounds of Formula I where \textit{n} is 1, \textit{P} is CR⁴⁻, Q, T, Xi, X₂, Yi and \textit{Y}₂ are CH, L¹ is -CH2-, L² is -NHCH₂⁻, and \textit{R}¹ is substituted phenyl (Formula Ia).

[0314] Compounds of Formula Ia, where \textit{R}³ is a substituent as defined for optionally substituted heteroarylene (further defined in Scheme 13 below) and \textit{R}⁴ is a substituent as
defined for optionally substituted aryl, can be synthesized in six steps from appropriately substituted 2-halopyridines as shown in the following general Scheme 15.

Scheme 15

Step 1 - Preparation of compounds of Formula XI

To an appropriately substituted 2-halopyridine X (e.g., 2-chloro-6-methoxypyridine), where Y is a halogen, preferably chlorine or bromine, and R³₀ is a group appropriate to direct the following lithiation to the 5-position (e.g., R³₀ = methoxy), in a non-reactive solvent (e.g., tetrahydrofuran) typically cooled in a -78 °C acetone/dry ice bath is added a solution of organolithium reagent (e.g., tert-butyllithium). The reaction is allowed to stir for a period, typically 1 hour. An appropriate formylating agent (e.g., dimethylformamide) is added and the reaction is allowed to stir cooled for a period and then warmed to room temperature for a period, typically 30 minutes. The reaction can be placed back in the dry-ice bath and quenched with 6 N HCl (1.5 mL) followed by water and allowed to warm to room temperature. Isolation by conventional means (e.g., extraction) provides compounds of Formula XI.

Step 2 - Preparation of compounds of Formula XII

To 1H-pyrrolo[2,3-b]pyridine I and a compound of Formula XI is added an appropriate polar solvent (e.g., methanol) followed by an appropriate base (e.g., potassium...
hydroxide). The reaction is typically allowed to stir at room temperature overnight.
Isolation by convention means (e.g. extraction, washing and filtering) affords compounds of Formula XII.

Step 3 - Preparation of compounds of Formula XIII

[0317] To a compound of Formula XII in an appropriate polar solvent (e.g. acetonitrile) is added a reducing agent (e.g. trifluoroacetic acid and triethylsilane). Typically, the reaction is allowed to stir at room temperature overnight. Isolation by conventional means (e.g. extraction and silica gel chromatography) affords compounds of Formula XIII.

Step 4 - Preparation of compounds of Formula XIV

[0318] To a solution of compound of Formula XIII in an appropriate polar solvent (e.g. dimethylformamide) is added a base (e.g. sodium hydride). Typically, the reaction is stirred at room temperature for 30 minutes, and then an appropriate reagent to introduce a protecting group ("P") is added (e.g. trisopropylsilyl chloride). The reaction typically is stirred at room temperature for several hours. Isolation by conventional means (e.g. extraction and silica gel chromatography) affords compounds of Formula XIV.

Step 5 - Preparation of compounds of Formula XVI

[0319] To a compound of Formula XIV, an appropriately substituted benzylamine XV (e.g. 4-(trifluoromethyl)benzylamine), abase (e.g. sodium tert-butoxide), a catalyst (e.g. tris(dibenzylideneacetone)dipalladium(0)), and ligand (e.g. 2,2'-Bis(diphenylphosphino)-l,l'-binaphthyl) are added a non-reactive solvent (e.g. toluene) under an inert atmosphere. Typically, the reaction is heated (e.g. 80 °C) for several hours. Isolation by conventional means (e.g. extraction and silica gel chromatography) affords compounds of Formula XVI.

Step 6—Preparation of compounds of Formula Id

[0320] To compound of Formula XVI is added an appropriate polar solvent (e.g. tetrahydrofuran) followed by an appropriate reagent to remove the protecting group (e.g. tetra-n-butylammonium fluoride). Typically, the reaction is allowed to stir at room temperature for several hours. Isolation by conventional means (e.g. extraction and silica gel chromatography) affords compounds of Formula Id.
Example 14: Synthesis of compounds of Formula I where \(n \) is 1, \(P \) is \(\text{CR}^{32} \), \(Q \), \(T \), \(X_1 \), \(X_2 \), \(Y_1 \) and \(Y_2 \) are \(\text{CH} \), \(L^1 \) is \(-\text{CH}_2-\), \(L^2 \) is \(-\text{NHCH}_2-\), and \(R^1 \) is substituted phenyl (Formula Ie).

[0321] Compounds of Formula Id, where \(R^{32} \) is a substituent as defined for optionally substituted heteroarylene and \(R^{33} \) is a substituent as defined for optionally substituted aryl, can be synthesized in five Steps from appropriately substituted 2-amino-5-bromopyridines as shown in the following general Scheme 16.

Scheme 16

\[
\begin{align*}
\text{Step 1} & \quad \text{Preparation of compounds of Formula XTX} \\
\text{Step 4} & \quad \text{To a solution of an appropriately substituted benzaldehyde \(\text{XVIII} \) (e.g. \(j\)-trifluoromethyl benzaldehyde) in a non-reactive solvent (e.g. tetrahydrofuran) can be added an appropriate 2-amino-5-bromo-pyridine \(\text{XVII} \) (e.g. 2-amino-5-bromo-6-methylpyridine), followed by appropriate reagents to effect the reduction (e.g. dibutyltin dichloride and phenylsilane). Typically the reaction is heated (e.g. 50 0C) overnight. Isolation by conventional means (e.g. extraction) affords compounds of Formula XIX.}
\end{align*}
\]
Step -2- Preparation of compounds of Formula XX

[0323] Compound of Formula XIX is dissolved in a non-reactive solvent (e.g. tetrahydrofuran) and typically cooled at -78 °C under an inert atmosphere. To this mixture is added an organolithium reagent (e.g. methylolithium). The reaction mixture is typically stirred at -78 °C for several hours. To this mixture is added an organolithium reagent (e.g. tert-butyllithium) and the mixture is stirred for several hours. The reaction mixture is maintained at -78 °C, and an appropriate formylating reagent (e.g. 1-piperidine carboxaldehyde) is added. Typically, the reaction is allowed to stir at -78 °C for an additional several hours and slowly warmed to room temperature. Isolation by conventional means (e.g. extraction) affords compounds of Formula XX.

Step -5- Preparation of compounds of Formula XXI

[0324] Compound of Formula XX is dissolved in a non-reactive solvent (e.g. tetrahydrofuran) and stirred under an inert atmosphere. To this solution is added abase (e.g. triethylamine) and typically a catalyst (e.g. 4-dimethylanilinoypyridine). Typically, the mixture is stirred for a few minutes, and then a reagent appropriate for the introduction of a protecting group (e.g. di-tert-butyl dicarbonate) is added. Typically, the reaction is stirred overnight. Isolation by conventional means (e.g. extraction) affords compounds of Formula XXI.

Step -4—Preparation of compounds of Formula XXII and XXIII

[0325] L-H-Pyrrolo[2,3-b]pyridine 1 is added to a stirred solution of base (e.g. potassium hydroxide) in an appropriate polar solvent (e.g. methanol). Compound of Formula XXI is added, and the mixture is typically stirred at room temperature for several days. The solvent is evaporated and 1 M HCl is added to the residue. Isolation by conventional means (e.g. extraction, silica gel chromatography) affords compounds of Formula XXII and XXIII.

Step - 5 - Preparation of compounds of Formula XIV of Scheme 14

[0326] Typically, compounds of Formula XII and XIII are combined and dissolved in an appropriate polar aprotic solvent (e.g. acetonitrile). Reagents appropriate to effect the reduction (e.g. triethylsilane and trifluoroacetic acid) are added. Typically, the reaction is stirred at room temperature for several days. Isolation by conventional means (e.g. extraction, silica gel chromatography) affords compounds of Formula Ie.
Example 15: Synthesis of [6-Methoxy-5-([1H-pyrrolo[2,3-b]pyridin-3-ylmethyl]-pyridin-2-yl)-(4-trifluoromethyl-benzyl)-amine (P-0012)

[0327] [6-Methoxy-5-([1H-pyrrolo[2,3-b]pyridin-3-ylmethyl]-pyridin-2-yl)-(4-trifluoromethyl-benzyl)-amine P-0012 was synthesized in five steps from commercially available 2-chloro-6-methoxypyridine and 7-azaindole as shown in Scheme 17.

Scheme 17

Step 1 - Preparation of 6-chloro-1-methoxypyridine S-carbaldehyde (26)

[0328] To 2-Chloro-6-methoxypyridine (25, 0.511 g, 3.56 mmol) in tetrahydrofuran (10 mL) cooled in a -78 °C acetone/dry ice bath was added tert-butyllithium (1.7 M in pentane, 5.0 mL, 7.66 mmol). The reaction was allowed to stir for 1 hour. Dimethylformamide (0.673 mL, 17.4 mmol) was added and the reaction was allowed to continue for an additional 30 minutes at -78 °C, then stirred for 30 minutes outside of the dry-ice bath. The reaction was placed back in the dry-ice bath and quenched with 6 N HCl (1.5 mL) followed by water and allowed to warm to room temperature. The reaction was extracted with diethyl ether and aqueous (IM) sodium bicarbonate. The organic layer was separated, dried with anhydrous magnesium sulfate, filtered and volatiles removed by rotary evaporation, and the resulting yellow solid was dried under vacuum to provide 561 mg of compound 26 (3.27 mmol, 92% yield). MS(ESI) [M+H]$^+$ = 172.0.
Step 2 - Preparation of (6-chloro-2-methoxypyrindin-3-yl)(1H-pyrrolo[2,3-b]pyridin-3-yl)methanol (27)

To 1H-Pyrrolo[2,3-b]pyridine (1, 0.455 g, 3.85 mmol) and 6-chloro-2-methoxypyrindine-3-carbaldehyde (26, 0.661 g, 3.85 mmol) was added methanol (10 mL) followed by potassium hydroxide (0.310 g, 5.52 mmol). The reaction was allowed to stir at room temperature overnight. The reaction was extracted with diethyl ether/ethyl acetate and water. The organic layer was separated, dried over anhydrous magnesium sulfate, filtered and volatiles were removed by rotary evaporation to provide a solid that was treated with dichloromethane and stored in a freezer overnight. The white solid was collected by vacuum filtration and dried in vacuo to give 613 mg of compound 27 (2.12 mmol, 55%). MS(ESI) [M+H]+ = 290.1.

Step 3 - Preparation 3-(6-chloro-2-methoxypyrindin-3-ylmethyl)-1H-pyrrolo[2,3-b]pyridine (28)

To (6-chloro-2-methoxypyrindin-3-yl)(1H-pyrrolo[2,3-b]pyridm-3-yl)methanol (27, 0.613 g, 2.12 mmol) in acetonitrile (10 mL) was added trifluoroacetic acid (0.82 mL, 10.0 mmol) followed by triethylsilane (1.69 mL, 10.6 mmol). The reaction was allowed to stir at room temperature for 2 days, then 60 ºC for 4 hours. The reaction was extracted with diethyl ether and aqueous sodium bicarbonate. The organic layer was dried over anhydrous magnesium sulfate and filtered. The desired material was isolated from the filtrate by silica gel column chromatography eluting with 1% methanol in dichloromethane to give 516 mg of a white solid compound 28 (1.88 mmol, 89%). MS(ESI) [M+H]+ = 274.1.

Step 4 - Preparation 3-(6-chloro-2-methoxypyrindin-3-ylmethyl)-l-(triisopropylsilyl)-1H-pyrrolo[2,3-b]pyridine (29)

To a clear solution of 3-(6-chloro-2-methoxypyrindin-3-ylmethyl)-1H-pyrrolo[2,3-b]pyridine (28, 0.516 g, 1.88 mmol) in dimethylformamide (10 mL) was added sodium hydride (60% dispersion, 0.113 g, 2.82 mmol). After stirring at room temperature for 30 minutes, triisopropylsilyle chloride (600 µL, 2.83 mmol) was added. The reaction was stirred at room temperature for 2 hours, then poured into aqueous (IM) sodium bicarbonate and extracted with ethyl acetate. The organic layer was separated, dried (magnesium sulfate), filtered and volatiles were removed by rotary evaporation to give a crude solid. The compound was purified by silica gel column chromatography eluting
with 2% ethyl acetate in hexanes. This provided 732 mg of the desired compound as a white, crystalline solid (29, 1.70 mmol, 90%). MS(ESI) [M+H+] = 430.2.

Step 5—Preparation of [6-Methoxy-5-(1-triisopropylsilyl-1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-(4-trifluoromethyl-benzyl)-amine (3)

(0332) 3-(6-chloro-2-methoxypyridin-3-ylmethyl)-1-(triisopropylsilyl)-1H-pyrrolo[2,3-b]pyridine (29, 0.104 g, 0.242 mmol), 4-(Trifluoromethyl)benzylamine (30, 0.047 g, 0.266 mmol), sodium tert-butoxide (0.0325 g, 0.338 mmol), Tris(dibenzylideneacetone)-dipalladium (0) (0.00062 g, 0.0006 mmol), and 2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl (0.0011 g, 0.0018 mmol) were added to toluene (2 mL) under nitrogen. The reaction vial was placed in an oil bath at 80 °C for 3 hours. The reaction was poured into water and extracted with ethyl acetate. The organic layer was dried (magnesium sulfate), filtered, and volatiles were removed by rotary evaporation. The residue was purified by silica gel column chromatography eluting with 2% ethyl acetate in hexanes. This provided 34 mg of the desired compound 31 (0.060 mmol, 25%). MS(ESI) [M+H+] = 569.3.

Step 6—Preparation of [6-Methoxy-5-(1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-(4-trifluoromethyl-benzyl)-amine (P-0012)

(0333) To [6-Methoxy-5-(1-triisopropylsilyl-1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-(4-trifluoromethyl-benzyl)-amine (31, 0.0340 g, 0.0598 mmol) was added tetrahydrofuran (5 mL) followed by tetra-n-butylammonium fluoride (1M solution in tetrahydrofuran, 66 µL, 0.0658 mmol). The reaction was allowed to stir at room temperature for 2 hours, then poured into 1:1 water:saturated sodium bicarbonate and extracted with ethyl acetate. The organic layer was separated, dried over magnesium sulfate, filtered and the volatiles were removed by rotary evaporation. The resulting residue was purified by silica gel column chromatography, eluting with dichloromethane followed by 1% methanol in dichloromethane and finally 3% methanol in dichloromethane. This provided 20 mg of the desired compound as a white solid (P-0012, 0.048 mmol, 81%). MS(ESI) [M+H+] = 413.2.
Example 16: Synthesis of [6-Methyl-5-(1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-(4-trifluoromethyl-benzyl)-amine (P-0013)

[0334] [6-Methyl-5-(1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-(4-trifluoromethyl-benzyl)-amine (P-0013) was synthesized in five steps from commercially available 2-amino-5-bromo-6-methylpyridine and 7-azaindole as shown in Scheme 18.

Scheme 18

Step - 1 —Preparation of [5-Bromo-6-methyl-pyridin-2-yl]-(4-trifluoromethyl-benzyl)-amine (34)

[0335] To a solution of p-trifluoromethylbenzaldehyde (16, 1.00 g, 5.74 mmol) in tetrahydrofuran (9 mL) was added 2-amino-5-bromo-6-methylpyridine (33, 1.08 g, 5.77 mmol), followed by dibutyltin dichloride (40 mg, 0.13 mmol). The mixture was stirred for 5 minutes at 25 °C and phenylsilane (0.69 g, 6.4 mmol) was added. The reaction was heated at 50 °C overnight, then the solvent was removed at reduced pressure. Ethyl acetate was added to the resulting solid which was washed with saturated sodium carbonate, dried over magnesium sulfate and filtered. Concentration under reduced pressure afforded a light yellow solid (34, 1.7 g, 4.93 mmol). MS(ESI) [M + H+] = 345.1.
Step -2- Preparation of2-Methyl-6-(4-triβuoromethyl-benzylamino)-pyridine-3-carbaldehyde (35)

(5-Bromo-6-methyl-pyridin-2-yl)-(4-trifluoromethyl-benzyl)-amine (34, 1.7 g, 4.93 mmol) was dissolved in tetrahydrofuran (40 mL) and cooled at -78 °C under a nitrogen atmosphere. To this mixture was added methyllithium (1.6 M in diethyl ether, 5.91 mmol) dropwise over 20 minutes. After the addition of methyllithium was completed, the reaction mixture was stirred at -78 °C for 2 hours. To this mixture was added tert-butyllithium (1.7 M in pentane, 10.85 mmol) and the mixture was stirred for 4 hours. The reaction mixture was maintained at -78 °C, and 1-piperidinecarboxaldehyde (0.60 mL, 5.42 mmol) was added dropwise. The reaction was allowed to stir at -78 °C for an additional 2 hours and warming to 25 °C was achieved from the slow evaporation of the dry ice/acetone cooling bath. The reaction was quenched with ice cold saturated sodium chloride and the resulting mixture was extracted with ethyl acetate. The organic layer was dried over magnesium sulfate and filtered. Concentration under reduced pressure afforded an orange oil (35, 1.4 g, 4.93 mmol). MS(ESI) [M + H+]⁺ = 295.1.

Step -3- Preparation of(5-Formyl-6-methyl-pyridin-2-yl)-(4-trifluoromethyl-benzyl)-carbamic acid tert-butyl ester (36)

2-Methyl-6-(4-trifluoromethyl-benzylamino)-pyridine-3-carbaldehyde (35, 1.4 g, 4.9 mmol) was dissolved in tetrahydrofuran (22 mL) and was stirred under an atmosphere of nitrogen. To this solution was added 4-dimethylaminopyridine (150 mg, 1.23 mmol) and triethylamine (0.66 mL, 4.9 mmol). The mixture was stirred for 5 minutes before solid di-tert-butyl dicarbonate (1.0 g, 4.9 mmol) was added directly to the reaction mixture. The mixture was stirred overnight at 25 °C and was diluted with ethyl acetate and washed with sodium bicarbonate, followed by washing with saturated sodium chloride. The resulting organic layer was dried over magnesium sulfate, filtered and evaporated to give a beige solid (36, 1.8 g, 4.6 mmol). MS(ESI) [M + H+]⁺ = 395.2.

Step - 4 - Preparation of{5-[Hydroxy-(1H-pyrrolo[2,3-b]pyridin-3-yl)-methyl]-6-methyl-pyridin-2-yl}-(4-trifluoromethyl-benzyl)-carbamic acid tert-butyl ester (37) and {5-[Methoxy-(1H-pyrrolo[2,3-b]pyridin-3-yl)-methyl]-6-methyl-pyridin-2-yl}-(4-triβuoromethyl-benzyl)-carbamic acid tert-butyl ester (38)

IH-Pyrrolo[2,3-b]pyridine (1, 540 mg, 4.57 mmol) was added to a stirring solution of potassium hydroxide (868 mg, 10.08 mmol) in methanol (33 mL). Once the
mixture was homogeneous, (5-formyl-6-methyl-pyridin-2-yl)-(4-trifluoromethyl-benzyl)-
carbamic acid tert-butyl ester (36, 1.8 g, 4.6 mmol) was added and the mixture was stirred
at 25 °C for 72 hours. The solvent was evaporated and 1 M HCl was added to the residue.
The organic material was extracted with ethyl acetate and washed with 10% sodium
bicarbonate, followed by washing with saturated sodium chloride. The organic layer was
dried over magnesium sulfate. Concentration under reduced pressure afforded the crude
material, which was purified by silica gel column chromatography (0 - 5% methanol in
dichloromethane) to yield the desired compounds as a light yellow solid (37 and 38 as a
mixture, 294 mg; 13% yield). MS(ESI) [M + H+] = 511.2 for 37 and MS(ESI) [M + H+] = 525.2 for 38.

Step - 5 Preparation of[6-Methyl-5-(1H-pyrrolo[2,3-b]bipyridin-3-ylmethyl)-pyridin-2-
yl]-(4-trifluoromethyl-benzyl)-amine (P-0013)

The combined materials of {5-[Hydroxy-(1H-pyrrolo[2,3-b]pyridin-3-yl)-
methyl]-6-methyl-pyridin-2-yl}-(4-trifluoromethyl-benzyl)-carbamic acid tert-butyl ester
(37) and {5-[Methoxy-(1H-pyrrolo[2,3-b]pyridin-3-yl)-methyl]-6-methyl-pyridin-2-yl}-(4-trifluoromethyl-benzyl)-carbamic acid tert-butyl ester (38) (194 mg, 0.378 mmol) were
dissolved in acetonitrile (3 mL) and triethylsilane (0.30 mL, 1.9 mmol) and trifluoroacetic
acid (0.17 mL, 2.3 mmol) were added. After stirring at 25 °C for overnight, TLC analysis
indicated that the reaction was about 50% complete. To the reaction mixture was added
triethylsilane (0.30 mL, 1.9 mmol), and trifluoroacetic acid (0.17 mL, 2.3 mmol). The
mixture was allowed to stir for another 48 hours at 25 °C and the solvent, excess
triethylsilane and trifluoroacetic acid were removed by evaporation. Ethyl acetate was
added and washed with saturated sodium bicarbonate. The organic layer was dried over
magnesium sulfate, filtered and concentrated at reduced pressure to afford a brown oil.
Purification of 80 mg of the crude material was carried out using preparatory
chromatography (50% ethyl acetate in hexanes) to afford the compound as an off-white
solid (P-0013, 10 mg, 0.025 mmol). MS(ESI) [M + H+] = 397.2.
(4-Chloro-benzyl)-[6-methyl-5-(lH-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-amine P-0014

was prepared following the protocol of Scheme 18, substituting 4-trifluoromethyl benzaldehyde with 4-chlorobenzaldehyde (40) in Step 1. MS(ESI) [M + H+] = 363.1.

Example 17: Synthesis of [5-(5-Bromo-lH-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-(4-chloro-benzyl)-amine (P-0038)

Scheme 19

Step 1- Synthesis of (5-Bromo-pyridin-2-yl)-(4-chloro-benzyl)-amine (41)

To 2-Amino-5-bromopyridine (15, 6.10 g, 0.0352 mol) in toluene (90.0 mL) were added 4-chlorobenzaldehyde (40, 5.00 g, 0.0356 mol), trifluoroacetic acid (8.0 mL, 0.10 mol) and triethylsilane (16.5 mL, 0.103 mol). The reaction was heated to reflux for 48 hours. The reaction was concentrated, poured into aqueous potassium carbonate and extracted with ethyl acetate. The organic layer was washed with brine, dried over sodium
sulfate and concentrated. The crude residue was crystallized with ethyl acetate to give compound (41, 6.8 g, 65.4%).

Step 2 — Synthesis of 6-(4-Chloro-benzylamino)-pyridine-3-carbaldehyde (42)

To (5-Bromo-pyridin-2-yl)-(4-chloro-benzyl)-amine (41, 10.00 g, 0.03360 mol) in tetrahydrofuran (400.0 mL) under an atmosphere of nitrogen at -78 °C was added n-butyllithium (17.5 mL, 2.00 M in cyclohexane). After 90 minutes, tert-butyllithium (42.00 mL, 1.70 M in hexane) was added to the reaction. After 80 minutes, N,N-dimethylformamide (6.9 mL, 0.089 mol) was added to the reaction. The reaction mixture was stirred at -78 °C for 2 hours, then allowed to warm to room temperature for 1 hour. The reaction mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over sodium sulfate and concentrated to give the crude compound, which was crystallized from tert-butoxyl methyl ether to provide compound (42, 7.66 g, 92.2%).

Step 3 — Synthesis of (4-Chloro-benzyl)-(5-formyl-pyridin-2-yl)-carbamic acid tert-butyl ester (43)

To 6-(4-Chloro-benzylamino)-pyridine-3-carbaldehyde (42, 2.00 g, 8.11 mmol) in dichloromethane (20.0 mL) were added triethylamine (1.70 mL, 12.2 mmol), di-tert-butyl dicarbonate (2.00 g, 9.16 mmol) and 4-dimethylaminopyridine (52.3 mg, 0.43 mmol). The reaction was stirred at room temperature for 48 hours. The reaction mixture was concentrated and purified by silica gel column chromatography eluting with 20% ethyl acetate in hexane to give compound (43, 2.50 g, 89.3%).

Step 4 — Synthesis of 5-[(5-Bromo-lH-pyrrolo[2,3-b]pyridin-3-yl)-hydroxy-methyl]-pyridin-2-yl)-(4-chloro-benzyl)-carbamic acid tert-butyl ester (45)

To 5-bromo-7-azaindole (44, 198.0 mg, 1.01 mmol) in methanol (30.0 mL, 0.741 mol) were added (4-Chloro-benzyl)-(5-formyl-pyridin-2-yl)-carbamic acid tert-butyl ester (43, 355.0 mg, 1.02 mmol) and potassium hydroxide (80.0 mg, 1.42 mmol). The reaction was stirred at room temperature 48 hours. The reaction mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over sodium sulfate, concentrated and purified by silica gel column chromatography eluting with 8% methanol in dichloromethane to give compound (45, 200.0 mg, 36.8%).
Step 5 - Synthesis of [5-(5-Bromo-1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-(4-chloro-benzyl)-amine (P-0038)

To

\[
\text{5-[(5-Bromo-1H-pyrrolo[2,3-b]pyridin-3-yl)-hydroxy-methyl]-pyridin-2-yl}-(4-chloro-benzyl)-\text{carbamic acid tert-butyl ester (45, 180.0 mg, 0.33 mmol)}
\]

in acetonitrile (30.0 mL) were added trifluoroacetic acid (2.0 mL, 0.026 mol) and triethylsilane (4.0 mL, 0.025 mol). The reaction was heated to reflux for 4 hours. The reaction mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over sodium sulfate, concentrated and purified by silica gel column chromatography eluting with 10% methanol in dichloromethane to give compound (P-0038, 120 mg, 85.2%). MS(ESI)[M+H\(^+\)]\(=\) 427.2, 429.2.

Example 18: Synthesis of 1-triisopropylsilanyl-1H-pyrrolo[2,3-b]pyridine-3-carbaldehyde 47.

Compound 47 was synthesized in 2 steps from 7-azaindole 1 as described in Scheme 20.

Scheme 20

\[
\begin{array}{c}
\text{1} \\
\text{O} \\
\text{H} \\
\text{Step 1} \\
\text{46} \\
\text{O} \\
\text{H} \\
\text{Step 2} \\
\text{47} \\
\text{TIPS}
\end{array}
\]

Step 1 - Preparation of 1H-pyrrolo[2,3-b]pyridine-3-carbaldehyde (46):

To 1H-Pyrrolo[2,3-b]pyridine (1, 16.0 g, 135 mmol) in water (110 mL), were added hexamethylenetetramine (26.0 g, 185 mmol), and acetic acid (55.0 mL, 967 mmol). The reaction was refluxed for 12 hours. Water (329 mL) was added and the reaction was cooled to room temperature. The reaction was filtered and washed with water to give compound (46, 15.0 g, 76%). MS(ESI)[M+H\(^+\)]\(=\) 147.

Step 2 - Preparation of 1-triisopropylsilanyl-1H-pyrrolo[2,3-b]pyridine-3-carbaldehyde (47):

To 1H-Pyrrolo[2,3-b]pyridine-3-carbaldehyde (46, 4.05 g, 27.71 mmol) in tetrahydrofuran (30.0 mL) were added sodium hydride (60% in mineral oil, 1.5 g, 38 mmol) and triisopropylsilyl chloride (8.0 mL, 38 mmol) under an atmosphere of nitrogen.
The reaction was stirred for 2 hours at room temperature. The reaction was poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated and purified by silica gel column chromatography eluting with 10% ethyl acetate in hexane to give compound (47, 3.0 g, 36%). MS(ESI)[M+H]+ = 303.

[0350] l-(tert-Butyl-dimethyl-silanyl)-3-iodo-lH-pyrrolo[2,3-b]pyridine

![Chemical Structure]

was prepared following the protocol of Scheme 20 Step 2, substituting 1H-Pyrrolo[2,3-b]pyridine-3-carbaldehyde 46 with 3-iodo-lH-pyrrolo[2,3-b]pyridine and triisopropylsilyl chloride with tert-Butyl-dimethyl-silyl chloride.

[0351] l-benzenesulfonyl-lH-pyrrolo[2,3-b]pyridine-3-carbaldehyde

![Chemical Structure]

was prepared following the protocol of Scheme 20, substituting triisopropylsilyl chloride with benzenesulfonyl chloride in Step 2.

Example 19: Synthesis of N-[5-(lH-Pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-4-trifluoromethyl-benzenesulfonamide (P-0071)

[0352] N-[5-(lH-Pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridm-2-yl]-4-trifluoromethyl-benzenesulfonamide P-0071 was synthesized in 3 steps from 2-Amino-5-bromopyridine 15 as shown in Scheme 21.
Scheme 21

Step 1 - Synthesis of N-(5-Bromo-pyridin-2-yl)-4-trifluoromethyl-benzenesulfonamide (49):

To 2-Amino-5-bromopyridine (15, 1.50 g, 8.67 mmol) in acetonitrile (20.0 mL) were added pyridine (6.0 mL, 0.074 mol), 4-dimethylaminopyridine (0.10 g, 0.82 mmol) and 4-trifluoromethyl-benzenesulfonyl chloride (48, 2.14 g, 8.75 mmol). The reaction mixture was stirred at room temperature overnight. The reaction was concentrated, poured into water, acidified with 1N HCl to pH = 2, and extracted with ethyl acetate. The organic layer was washed with brine, dried over anhydrous sodium sulfate and concentrated. The residue was washed with ethyl acetate to give a white solid as desired compound (49, 2.80 g, 84.8%). MS (ESI) [M+H+] = 381.0, 383.0.

Step 2 - Synthesis of N-5-[Hydroxy-(1-trisopropylsilanyl-1H-pyrrolo[2,3-b]pyridin-3-yl)-methyl]-pyridin-2-yl-4-trifluoromethyl-benzenesulfonamide (50):

To N-(5-Bromo-pyridin-2-yl)-4-trifluoromethyl-benzenesulfonamide (49, 0.96 g, 2.5 mmol) in tetrahydrofuran (50.0 mL) under an atmosphere of nitrogen at -78 °C, tert-butyllithium (4.62 mL, 1.70 M in hexane) was added slowly. After 15 minutes, 1-triisopropylsilanyl-1H-pyrrolo[2,3-b]pyridine-3-carbaldehyde (47, 0.30 g, 0.99 mmol, prepared as described in Example 18) in tetrahydrofuran (15.0 mL) was added to the reaction. After 30 minutes, the reaction was allowed to come to room temperature for 10 minutes. The reaction was poured into water, acidified with 1N HCl to pH around 2, and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated and purified by silica gel column.
chromatography eluting with 20% ethyl acetate in hexane to give a white solid compound (SO, 0.55 g, 90.1%). MS (ESI) [M+H]^+ = 605.3.

Step 3 - Synthesis of N-[5-(1H-Pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-4-trifluoromethyl-benzenesulfonylamide (P-0071):

To N-5-[Hydroxy-(1-trisopropylsilanyl-1H-pyrrolo[2,3-b]pyridin-3-yl)-methyl]-pyridin-2-yl-4-trifluoromethyl-benzenesulfonylamide (50, 0.27 g, 0.45 mmol) in acetonitrile (15.0 mL) were added trifluoroacetic acid (1.0 mL, 0.013 mol) and triethylsilane (2.0 mL, 0.012 mol). The reaction was heated to 85 °C for 1 hour. The reaction was concentrated, poured into water and extracted with ethyl acetate. The organic layer was purified with silica gel column chromatography eluting with 50% ethyl acetate in hexane to give a white solid compound (P-0071, 28.5 mg, 14.7%). MS (ESI) [M+H]^f = 433.2.

[0356] 4-Chloro-N-[5-(1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-benzamide P-0074

was prepared following the protocol of Scheme 21, substituting 4-trifluoromethylbenzenesulfonyl chloride 48 with 4-chloro-benzoyl chloride in step 1. MS (ESI) [M+H]^+ = 363.2.

Example 20: Synthesis of N-[5-(1H-Pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-4-trifluoromethyl-benzenamide (P-0072)

N-[5-(1H-Pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-4-trifluoromethyl-benzenamide **P-0072** was synthesized in one step from (3-(6-Bromo-pyridin-3-ylmethyl)-1-trisopropylsilanyl-1H-pyrrolo[2,3-b]pyridine 6a as shown in Scheme 22.

Scheme 22
Step 1 - Synthesis of N-[5-((1H-Pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-4-
trifluoromethyl-benzamide (P-0072):

To 3-(6-Bromo-pyridin-3-ylmethyl)-1H-pyrrolo[2,3-b]pyridine (6a, 50.0 mg, 0.000174 mol, prepared as described in Example 2) in 1,4-dioxane (4.0 mL) were added 4-trifluoromethyl-benzamide (51, 70.0 mg, 0.37 mmol), Xanthphos (15.0 mg, 0.026 mmol), cesium carbonate (130.0 mg, 0.40 mmol) and Tris(dibenzylideneacetone)-dipalladium(O) (25.0 mg, 0.024 mmol) under an atmosphere of nitrogen. The reaction was heated to 120 °C for 10 minutes in a CEM Discover microwave instrument. The reaction was poured into water and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated and purified by silica gel column chromatography eluting with 50% ethyl acetate in hexane to give a white solid (P-0072, 4.7 mg, 6.8%). MS (ESI) [M+H+] = 397.2.

4-Fluoro-N-[5-((1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-benzamide P-0073

was prepared following the protocol of Scheme 22, substituting 4-trifluoromethyl-benzamide with 4-fluoromethyl-benzamide. MS (ESI) [M+H+] = 347.2.

Example 21: Synthesis of (4-Chloro-phenyl)-[5-((1H-pyrrolo[2,3-b]pyridin-3-
ylmethyl)-pyridin-2-ylmethyl]-amine (P-0078)

(4-Chloro-phenyl)-[5-((1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-
ylmethyl]-amine P-0078 was synthesized in 3 steps from 5-Bromo-pyridine-2-
carbaldehyde 52 as shown in Scheme 23.
Scheme 23

Step 1 - Synthesis of (5-Bromo-pyridin-2-ylmethyl)-(4-chloro-phenyl)-amine (54):

[0361] To 5-Bromo-pyridine-2-carbaldehyde (52, 1.00 g, 5.38 mmol) in acetonitrile (50.0 mL) were added p-chloroaniline (53, 0.686 g, 5.38 mmol), triethylsilane (6.00 mL, 0.0376 mol) and trifluoroacetic acid (3.00 mL, 0.0389 mol). The reaction was heated to reflux for 3 hours. The reaction was concentrated, poured into water and then extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated and purified by silica gel column chromatography eluting with 20% ethyl acetate in hexane to give a white solid (54, 0.75 g, 47.0%).

Step 2 - Synthesis of (l-Benzenesulfonyl-lH-pyrrolo[2,3-b]pyridin-3-yl)-6-[(4-chloro-phenylamino)-methyl]-pyridin-3-yl-methanol (56):

[0362] To (5-Bromo-pyridin-2-ylmethyl)-(4-chloro-phenyl)-amine (54, 0.380 g, 1.28 mmol) in tetrahydrofuran (15.0 mL) under an atmosphere of nitrogen at -78 °C was added n-butyllithium (0.850 mL, 1.60 M in hexane). After 10 minutes, 1,2-bis-(chloro-dimethyl-silanyl)-ethane (0.135 g, 0.627 mmol) in tetrahydrofuran (5.0 mL) was added to the reaction. The reaction was allowed to warm to room temperature for 40 minutes. The reaction was cooled to -78 °C, followed by addition of 1.70 M tert-butyllithium in hexane (1.58 mL). After 30 minutes, l-benzenesulfonyl-lH-pyrrolo[2,3-b]pyridine-3-carbaldehyde (55, 0.380 g, 1.33 mmol, prepared as described in Example 18) in tetrahydrofuran (10.0 mL) was added to the reaction. After 20 minutes, the reaction was allowed to warm to room temperature. The reaction was poured into water and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and
filtered. The filtrate was concentrated and purified by silica gel column chromatography eluting with 50% ethyl acetate in hexane to give compound (56, 0.30 g, 46.0%). MS (ESI) [M+H+] = 505.3.

Step 3- (4-Chloro-phenyl)-5-{methoxy-(1H-pyrrolo[2,3-b]pyridin-3-yl)-methyl}-pyridin-2-ylmethyl-amine (57):

To (l-Benzenesulfonyl-lH-pyrrolo[2,3-b]pyridin-3-yl)-6-[(4-chloro-phenylamino)-methyl]-pyridin-3-yl-methanol (56, 120.0 mg, 0.24 mmol) in methanol (20.0 mL) were added potassium hydroxide (0.400 g, 7.13 mmol) and water (5.0 mL, 0.28 mmol). The reaction was heated to 50 °C for 10 hours. The reaction was poured into water and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated and purified by silica gel column chromatography eluting with 20% ethyl acetate in hexane to give compound (57, 30 mg, 33.0%). MS (ESI) [M+H+] = 379.4.

Step 4- Synthesis of (4-Chloro-phenyl)-5-{(1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)}-pyridin-2-ylmethyl-amine (P-0078):

To (4-Chloro-phenyl)-5-{methoxy-((1H-pyrrolo[2,3-b]pyridin-3-yl)-methyl)}-pyridin-2-ylmethyl-amine (57, 20.8 mg, 0.055 mmol) in acetonitrile (10.0 mL) were added trifluoroacetic acid (0.50 mL, 6.5 mmol) and triethylsilane (1.00 mL, 6.26 mmol). The reaction was heated to reflux for 3 hours, then poured into water and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated and purified by silica gel column chromatography eluting with 10% methanol in dichloromethane to give compound (P-0078, 6.1 mg, 32.0%). MS (ESI) [M+H+] = 349.4.

Example 22: Synthesis of (4-Chloro-benzyl)-[6-fluoro-5-(1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)]-pyridin-2-yl]-amine (P-0082)

(4-Chloro-benzyl)-[6-fluoro-5-(1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)]-pyridin-2-yl]-amine P-0082 was synthesized in 8 steps from 2,6-Difluoropyridine 58 as shown in Scheme 24.
Scheme 24

Step 1 — Synthesis of 2,6-Difluoro-nicotinic acid (59):

To 2,6-difluoropyridine (58, 7.10 g, 0.0617 mol) in tetrahydrofuran (150.0 mL) under an atmosphere of nitrogen at -78 °C, n-butyllithium (26.0 mL, 2.50 M in hexane) was added slowly. After 30 minutes, dry ice (3.0 g) was added to the reaction. After 1 hour, the reaction was allowed to warm to room temperature, then poured into water and extracted with ethyl acetate. The aqueous layer was acidified with 1 N HCl to pH = 4-5 and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated to give the crude compound as a light yellow solid (59, 5.6 g, 57.0%).

Step 2 — Synthesis of 2,6-Difluoro-nicotinic acid methyl ester (60):

To 2,6-difluoro-nicotinic acid (59, 5.60 g, 0.0352 mol) in methanol (60.0 mL) was added concentrated sulfuric acid (1.0 mL, 0.019 mol). The reaction was heated to reflux overnight, then poured into water, basified with IM potassium carbonate to pH around 9, and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and concentrated to give a yellow oil (60, 3.5 g, 57.0%).
Step 3 - Synthesis of 6-(4-Chloro-benzylamino)-2-fluoro-nicotinic acid methyl ester (62):

To 2,6-difluoro-nicotinic acid methyl ester (60, 2.00 g, 0.01 16 mol) in N,N-dimethylformamide (20.0 mL), under an atmosphere of nitrogen at -40 °C, was added p-chlorobenzylamine (61, 2.60 mL, 0.0214 mol). The reaction was stirred at -40 °C to -20 °C for 2 hours, then poured into water and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated and purified by silica gel column chromatography eluting with 25% ethyl acetate in hexane to give compound (62, 2.0 g, 58.7%).

Step 4 - Synthesis of 6-(4-Chloro-benzylamino)-2-fluoro-pyridin-3-yl]-methanol (63):

To 6-(4-Chloro-benzylamino)-2-fluoro-nicotinic acid methyl ester (62, 2.00 g, 6.79 mmol) in tetrahydrofuran (100.0 mL) was added lithium tetrahydroaluminate (13.6 mL, 1.00 M in Tetrahydrofuran) under an atmosphere of nitrogen. The reaction was stirred at room temperature overnight. To the reaction was added an excessive amount of NaSO₄·10H₂O, and then stirred for 1 hour. Filtration, concentration and purification with silica gel column chromatography eluting with 30% ethyl acetate in hexane provided compound (63, 1.0 g, 55.0%).

Step 5 —Synthesis of 6-(4-Chloro-benzylamino)-2-fluoro-pyridine-3-carbaldehyde (64):

To [6-(4-Chloro-benzylamino)-2-fluoro-pyridin-3-yl]-methanol (63, 1.0 g, 3.7 mmol) in tetrahydrofuran (50.0 mL) was added Dess-Martin periodinane (1.75 g, 4.12 mmol). The reaction was stirred at room temperature for 10 minutes, then poured into water and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated and purified by silica gel column chromatography eluting with 20% ethyl acetate in hexane to give a white solid (64, 0.67 g, 68.0%).

Step 6 —Synthesis of 4-Chloro-benzyl)-(6-fluoro-5-formyl-pyridin-2-yl)-carbamic acid tert-butyl ester (65):

To 6-(4-Chloro-benzylamino)-2-fluoro-pyridine-3-carbaldehyde (64, 670.0 mg, 2.53 mmol) in dichloromethane (16.2 mL) were added di-tert-butyl dicarbonate (1.23 g, 5.65 mmol) and 4-dimethylaminopyridine (16.2 mg, 0.133 mmol). The reaction was stirred at room temperature overnight. The reaction was concentrated and purified by silica gel column chromatography eluting with 30% ethyl acetate in hexane to give a white solid (65, 0.63 g, 68.0%).
Step 7 - Synthesis of 5-[[1-(tert-Butyl-dimethyl-silanyl)-1H-pyrrolo[2,3-b]pyridin-3-yl]-hydroxy-methyl-6-fluoro-pyridin-2-yl)-(4-chloro-benzyl)-carbamic acid tert-butyl ester (67):

[0372] To 1-(tert-butyl-dimethyl-silanyl)-3-iodo-1H-pyrrolo[2,3-b]pyridine (66, 0.53 g, 0.0015 mol) and tetrahydrofuran (15.0 mL), under an atmosphere of nitrogen at -20 °C, was added isopropylmagnesium chloride (0.78 mL, 2.0 M in tetrahydrofuran). The reaction was allowed to warm to 0 °C (around 80 minutes), then cooled to -20 °C, followed by addition of (4-Chloro-benzyl)-(6-fluoro-5-formyl-pyridin-2-yl)-carbamic acid tert-butyl ester (65, 0.200 g, 0.55 mmol) in tetrahydrofuran (6.0 mL). The reaction was allowed to warm to room temperature in 1 hour, then poured into water and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated and purified by silica gel column chromatography eluting with 20% ethyl acetate in hexane to give a yellow solid (67, 0.20 g, 61.1%). MS (ESI) [M+H]+ = 597.4.

Step 8 - Synthesis of 4-Chloro-benzyl)-[6-fluoro-5-(1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-amine (P-0082):

[0373] To (5-[[1-(tert-Butyl-dimethyl-silanyl)-1H-pyrrolo[2,3-b]pyridin-3-yl]-hydroxy-methyl-6-fluoro-pyridin-2-yl])-(4-chloro-benzyl)-carbamic acid tert-butyl ester (67, 0.10 g, 0.17 mmol) in acetonitrile (10.0 mL) were added triethylsilane (1.00 mL, 6.26 mmol) and trifluoroacetic acid (0.50 mL, 6.5 mmol). The reaction was heated to reflux for 2 hours, then poured into aqueous potassium carbonate, and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated and purified by silica gel column chromatography eluting with 30% ethyl acetate in hexane to give a white solid (P-0082, 43.2 mg, 70.0%). MS (ESI) [M+H]+ = 367.4.

Example 23: Synthesis of (4-Chloro-benzyl)-[6-methoxy-5-(1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-amine (P-0081).

[0374] (4-Chloro-benzyl)-[6-methoxy-5-(1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-amine P-0081 was synthesized in 2 steps from (4-Chloro-benzyl)-(6-fluoro-5-foraiyl-pyridin-2-yl)-carbamic acid tert-butyl ester 65 as shown in Scheme 25.
Scheme 25

Step 1 - Synthesis of (4-Chloro-benzyl)-5-[hydroxy-(lH-pyrrolo[2,3-b]pyridin-3-yl)-methyl]-6-methoxy-pyridin-2-yl-carbamic acid tert-butyl ester (68):

To lH-Pyrrolo[2,3-b]pyridine (1, 90.0 mg, 0.76 mmol) in methanol (30.0 mL) were added (4-chloro-benzyl)-(6-fluoro-5-formyl-pyridin-2-yl)-carbamic acid tert-butyl ester (65, 300.0 mg, 0.82 mmol) and potassium hydroxide (720.0 mg, 12.83 mmol) under an atmosphere of nitrogen. The reaction was stirred at room temperature for 2 hours, then poured into water and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated and purified by silica gel column chromatography eluting with 20% ethyl acetate in hexane to give the compound (68, 60 mg, 15.9%). MS (ESI) [M+H]+ = 495.3.

Step 2 — Synthesis of (4-Chloro-benzyl)-[6-methoxy-5-(lH-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-amine (P-0081).

To (4-Chloro-benzyl)-5-[hydroxy-(lH-pyrrolo[2,3-b]pyridin-3-yl)-methyl]-6-methoxy-pyridin-2-yl-carbamic acid tert-butyl ester (68, 40.0 mg, 0.081 mmol) in acetonitrile (10.0 mL) were added trifluoroacetic acid (0.30 mL, 0.0039 mol) and triethylsilane (0.60 mL, 0.0038 mol). The reaction was heated to reflux for 3 hours. The reaction was concentrated to remove the solvents, then purified with silica gel column chromatography eluting with 40% ethyl acetate in hexane to give compound (P-0081, 10 mg, 32.7%). MS (ESI) [M+H]+ = 379.4.

Example 24: Synthesis of 5-(lH-Pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridine-2-carboxylic acid (4-chloro-phenyl)-amide (P-0076)

[0377] 5-(lH-Pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridine-2-carboxylic acid (4-chloro-phenyl)-amide P-0076 was synthesized in 3 Steps from 5-Bromo-pyridine-2-carbonyl chloride 69 as shown in Scheme 26.
Step 1 — Synthesis of S-Bromo-pyridine-carboxylic acid (4-chloro-phenyl)-amide (70):

To 5-Bromo-pyridine-2-carbonyl chloride (69, 0.76 g, 3.4 mmol) in acetonitrile (29.0 mL) were added p-chloroaniline (53, 0.702 g, 5.50 mmol), 4-dimethylamino-pyridine (0.12 g, 0.96 mmol) and pyridine (2.9 mL, 0.036 mol). The reaction was stirred at 68 °C overnight, then poured into water, acidified with 1 N HCl to pH around 1 and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated and purified by silica gel column chromatography eluting with dichloromethane to give a white solid (70, 0.75 g, 70.0%).

Step 2 — Synthesis of 5-[Hydroxy-(1-triisopropylsilanyl-1H-pyrrolo[2,3-b]pyridin-3-yl)-methyl]-pyridine-2-carboxylic acid (4-chloro-phenyl)-amide (71):

To 5-Bromo-pyridine-2-carboxylic acid (4-chloro-phenyl)-amide (70, 0.50 g, 1.60 mmol) in tetrahydrofuran (20.0 mL), under an atmosphere of nitrogen at -78 °C, tert-butyllithium (3.02 mL, 1.70 M in Hexane) was added. After 20 minutes, 1-triisopropylsilanyl-1H-pyrrolo[2,3-b]pyridine-3-carbaldehyde (47, 0.39 g, 1.3 mmol, prepared as described in Example 18) in tetrahydrofuran (10.0 mL) was added to the reaction. The reaction was stirred at -78 °C for 1 hour, then allowed to warm to room temperature for 10 minutes. The reaction was poured into water and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated and purified by silica gel column chromatography eluting with 20% ethyl acetate in hexane to give the compound as colorless oil (71, 100 mg, 14%). MS (ESI) [M+H+] = 535.3.
Step 3 - Synthesis of 5-(1H-Pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridine-2-carboxylic acid (4-chloro-phenyl)-amide (P-0076).

[0380] To 5-[Hydroxy-(1-triisopropylsilanyl-1H-pyrrolo[2,3-b]pyridin-3-yl)-methyl]-pyridine-2-carboxylic acid (4-chloro-phenyl)-amide (71, 100.0 mg, 0.19 mmol) in acetonitrile (10.0 mL) were added trifluoroacetic acid (0.20 mL, 2.6 mmol) and triethylsilane (0.40 mL, 2.5 mmol). The reaction was stirred at 80 °C for 2 hours. The reaction was concentrated and purified by silica gel column chromatography eluting with 20% ethyl acetate in hexane to give a yellow solid compound (P-0076, 5.5 mg, 8.1%). MS (ESI) [M-H+] = 361.1.

Example 25: Synthesis of 6-(3-Hydroxy-phenylamino)-pyridin-3-yl]-1H-pyrrolo[2,3-b]pyridin-3-yl) methanone (P-0027)

[0381] 6-(3-Hydroxy-phenylamino)-pyridin-3-yl]-1H-pyrrolo[2,3-b]pyridin-3-yl) methanone P-0027 was synthesized in 1 Step from 6-(3-Benzylxy-phenylamino)-pyridin-3-yl]-1H-pyrrolo[2,3-b]pyridin-3-yl) methanone P-0026 as shown in Scheme 27.

Scheme 27

[0382] To 6-(3-Benzylxy-phenylamino)-pyridin-3-yl]-1H-pyrrolo[2,3-b]pyridin-3-yl) methanone (P-0026, 12.0 mg, 0.0285 mmol) in methanol (5.0 mL) was added 20% palladium hydroxide on carbon (10.0 mg) under an atmosphere of hydrogen. The reaction was stirred at room temperature for 5 hours. Filtration and concentration gave compound (P-0027, 3.5 mg, 37%). MS (ESI) [M+H+] = 331.

Example 26: Synthesis of 3-[6-(3-Trifluoromethyl-benzyloxy)-pyridin-3-ylmethyl]-1H-pyrrolo[2,3-b]pyridine (P-0057)

[0383] 3-[6-(3-Trifluoromethyl-benzyloxy)-pyridin-3-ylmethyl]-1H-pyrrolo[2,3-b]pyridine P-0057 was synthesized in 4 steps from commercially available 7-azaindole as shown in Scheme 28.
Scheme 28

Step 1 - Preparation of (6-Chloro-pyridin-3-yl)-(1H-pyrrolo[2,3-b]pyridin-3-yl)-methanone (7):

[0384] To 7-azaindole 1 in dichloromethane was added 6-chloronicotinoyl chloride 8, followed by aluminum chloride, under an atmosphere of nitrogen at -10 °C. The reaction was stirred and allowed to warm to room temperature overnight. The reaction was quenched with 3 N hydrochloric acid and concentrated hydrochloric acid was added until all solids dissolved. The mixture was extracted with dichloromethane and the combined organic portions were dried with magnesium sulfate, filtered, and the filtrate was concentrated. The resulting solid material was recrystallized from chloroform/hexane to provide (6-Chloro-pyridin-3-yl)-(1H-pyrrolo[2,3-b]pyridin-3-yl)-methanone 7 and used in the next step without further purification.

Step 2 - Preparation of (1H-pyrrolo[2,3-b]pyridin-3-yl)-[6-(3-trifluoromethyl-benzyloxy)-pyridin-3-yl]-methanone (73):

[0385] To (6-Chloro-pyridin-3-yl)-(1H-pyrrolo[2,3-b]pyridin-3-yl)-methanone 7 in DMSO was added (3-trifluoromethyl-phenyl)-methanol 72. Sodium hydride was added and the reaction was heated to 60 °C for two hours. The reaction was quenched with water and extracted with ethyl acetate. The organic portion was dried with magnesium sulfate and concentrated to provide (1H-pyrrolo[2,3-b]pyridin-3-yl)-[6-(3-trifluoromethyl-benzyloxy)-pyridin-3-yl]-methanone 73, which was used in the next step without additional purification.

Step 3 - Preparation (1H-Pyrrolo[2,3-b]pyridin-3-yl)-[6-(3-trifluoromethyl-benzyloxy)-pyridin-3-yl]-methanol (74):
To (1H-pyrrolo[2,3-b]pyridin-3-yl)-(6-(3-trifluoromethyl-benzyloxy)-pyridin-3-yl)-methanone 73 in ethanol was added sodium borohydride. After one hour, the reaction was quenched with water and extracted with ethyl acetate. The organic portion was dried with magnesium sulfate and concentrated to provide (1H-Pyrrolo[2,3-b]pyridin-3-yl)-(6-(3-trifluoromethyl-benzyloxy)-pyridin-3-yl)-methanol 74, which was used in the next step without additional purification.

Step 4 - Preparation of 3-[6-(3-Trifluoromethyl-benzyloxy)-pyridin-3-ylmethyl]-1H-pyrrolo[2,3-b]pyridine, P-0057

(1H-Pyrrolo[2,3-b]pyridin-3-yl)-(6-(3-trifluoromethyl-benzyloxy)-pyridin-3-yl)-methanol 74 was dissolved in 9:1 trifluoroacetic acid: triethylsilane. The reaction was stirred at room temperature for 15 hours. The reaction was diluted with water and extracted with ethyl acetate and concentrated. The crude material was purified by reverse phase HPLC to provide 3-[6-(3-Trifluoromethyl-benzyloxy)-pyridin-3-ylmethyl]-1H-pyrrolo[2,3-b]pyridine P-0057. MS (ESI) [M+H⁺]⁺=384.3.

Additional compounds may be prepared using steps 2-4 of Scheme 28, replacing (3-trifluoromethyl-phenyl)-methanol with an appropriate benzyl alcohol. The following compounds were made following this procedure:

3-[6-(4-Chloro-benzyloxy)-pyridin-3-ylmethyl]-1H-pyrrolo[2,3-b] pyridine (P-0056)
3-[6-(3-Chloro-benzyloxy)-pyridin-3-ylmethyl]-1H-pyrrolo[2,3-b]pyridine (P-0055)

The benzyl alcohols used in step 2 of this procedure are indicated in column 2 of the following table, with the compound structure indicated in column 3. Column 1 provides the compound number and Column for the measured mass spectrometry result.

<table>
<thead>
<tr>
<th>Benzyl alcohol</th>
<th>Compound</th>
<th>MS(ESI) [M+H⁺]⁺ observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-0056</td>
<td></td>
<td>350.3</td>
</tr>
<tr>
<td>P-0055</td>
<td></td>
<td>350.3</td>
</tr>
</tbody>
</table>
Example 27: Synthesis of [2-Chloro-6-(4-chloro-benzylamino)-pyridin-3-yl]-(1H-pyrrolo[2,3-b]pyridin-3-yl)-methanone P-0048

[0389] [2-Chloro-6-(4-chloro-benzylamino)-pyridin-3-yl]-(1H-pyrrolo[2,3-b]pyridin-3-yl)-methanone P-0048 was synthesized in 3 steps from commercially available 2,6-dichloropyridine-3-carboxylic acid 75 as shown in Scheme 29.

Scheme 29

Step 1 – Preparation of 2,6-dichloropyridine-3-carbonyl chloride (76):

[0390] To 2,6-dichloropyridine-3-carboxylic acid (75, 1.00 g, 0.00521 mol) in dichloromethane (75 mL) was added 2 M Oxalyl chloride (2.61 mL, 0.727 g, 0.00573 mol). The solution began to show vigorous gas evolution, which slowed but continued for about 2 hours. The reaction was allowed to continue at room temperature for an additional 3 hours. The reaction was concentrated to give the compound as a brown oil that crystallized on standing (76, 1.09 g, 99%).

Step 2 – Preparation of (2,6-dichloropyridin-3-yl)(1H-pyrrolo[2,3-b]pyridin-3-yl)methanone (77):

[0391] To Aluminum trichloride (4.18 g, 0.0314 mol) and dichloromethane (97.5 mL, 1.52 mol) under an atmosphere of nitrogen was added 1H-Pyrrolo[2,3-b]pyridine (15, 828.5 mg, 0.0070 mol) in dichloromethane (5.0 mL). The reaction was stirred at room temperature for 60 minutes, then added 2,6-dichloropyridine-3-carbonyl chloride (76, 1.09 g, 0.00523 mol) in dichloromethane (6.0 mL). The reaction was stirred at room temperature for 2 hours. A precipitate formed, and nitromethane was added in ~1 mL portions until almost all solid dissolved (8 mL). After an additional 60 minutes at room
temperature, the reaction was slowly poured into water and extracted with ethyl acetate. The organic layer was dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated to give 1.54 g of solid, which turned dark purple on sitting overnight. The solid was treated with dichloromethane, and the insoluble material was collected by vacuum filtration to give compound (77, 863 mg, 57%). MS (ESI) [M+H]⁺ = 292.2.

Step 3 - Preparation of [2-Chloro-6-(4-chlorobenzylamino)-pyridin-3-yl](1H-pyrrolo[2,3-b]pyridin-3-yl)-methanone (P-0048):

To (2,6-dichloropyridin-3-yl)(1H-pyrrolo[2,3-b]pyridin-3-yl)methanone (77, 0.0570 g, 0.195 mmol) was added 2-propanol (1.5 mL) followed by p-chlorobenzylamine (61, 49.8 µL, 0.410 mmol). The reaction was microwaved at 300 watts, 100 °C for 10 minutes, at 120 °C for 10 minutes, and finally at 150 °C for 10 minutes. Additional p-chlorobenzylamine (50 µL, 0.410 mmol) was added and the reaction continued at 150 °C for 20 minutes. The reaction was extracted with ethyl acetate and 1 M sodium bicarbonate. The organic layer was dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated and purified by silica gel column chromatography eluting with dichloromethane followed by 1% methanol to give compound (P-0048, 47 mg, 61%). MS (ESI) [M+H⁺]+ = 397.3.

Additional compounds may be prepared according to Scheme 29, replacing 2,6-dichloropyridine-3-carboxylic acid with an appropriate carboxylic acid. (6-(4-chlorobenzylamino)-2-(trifluoromethyl)pyridin-3-yl)(1H-pyrrolo[2,3-b]pyridin-3-yl)methanone P-0070 was made following this protocol, using 6-Chloro-2-trifluoromethyl-nicotinic acid as the carboxylic acid (prepared in two steps from commercially available 2-chloro-6-(trifluoromethyl)pyridine according to Cottet, F. and Schlosser, M. Eur. J. Org. Chem. 2004, 3793-3798). MS (ESI) [M+H+] = 431.2.
Example 28: Synthesis of 3-((1H-pyrrolo[2,3-b]pyridin-3-yl)methyl)-6-(4-chlorobenzylamino)pyridin-2-ol P-0051

[0394] 3-((1H-pyrrolo[2,3-b]pyridin-3-yl)methyl)-6-(4-chlorobenzylamino)pyridin-2-ol P-0051 was synthesized in 2 steps from [2-Chloro-6-(4-chloro-benzylamino)-pyridin-3-yl]-((1H-pyrrolo[2,3-b]pyridin-3-yl)-methanone P-0048 as shown in Scheme 30.

Scheme 30

Step 1—Preparation of(6-(4-chlorobenzylamino)-2-chloropyridin-3-yl)(1H-pyrrolo[2,3-b]pyridin-3-yl)methanol (P-0050):

[0395] To [2-Chloro-6-(4-chloro-benzylamino)-pyridin-3-yl]-((1H-pyrrolo[2,3-b]pyridin-3-yl)-methanone (P-0048, 0.045 g, 0.0001 mol, prepared as described in Example 27) was added methanol (10 mL) and sodium borohydride (0.00428 g, 0.0001 mol). The reaction was allowed to stir at 50 °C overnight. The volatiles were removed from the reaction, and the resulting material was extracted with ethyl acetate and 1M aqueous sodium bicarbonate. The organic layer was dried over magnesium sulfate and filtered. The filtrate was concentrated and purified by silica gel column chromatography eluting with dichloromethane followed by 1% methanol in dichloromethane to give the compound (P-0050, 31 mg, 68%). MS (ESI) [M+H]+ = 399.2.

Step 2—Preparation of3-((1H-pyrrolo[2,3-b]pyridin-3-yl)methyl)-6-(4-chlorobenzylamino)pyridin-2-ol (P-0051):

[0396] To (6-(4-chlorobenzylamino)-2-chloropyridin-3 -yl)(1H-pyrrolo[2,3-b]pyridin-3-yl)methanol (P-0050, 0.028 g, 0.000070 mol) dissolved in acetonitrile (1 mL) was added triethylsilane (42.6 uL, 0.000266 mol) and trifluoroacetic acid (28.4 uL, 0.000368 mol). The reaction was heated at 85 °C overnight. The reaction was extracted with ethyl acetate and saturated sodium bicarbonate. The organic layer was separated, dried over magnesium sulfate and filtered. The filtrate was concentrated and purified by silica gel column chromatography eluting with dichloromethane, 3%, 5% and finally 10% methanol
in dichloromethane to give the compound as a white solid (P-0051, 20 mg, 78%). MS (ESI) [M+H+]⁺ = 365.3.

Example 29: Synthesis of 5 substituted 7-azaindole intermediates

[0397] 5-(2-Morpholin-4-yl-ethoxy)-1H-pyrrolo[2,3-b]pyridine 79 was synthesized in 1 Step from commercially available 5-bromo-7-azaindole as shown in Scheme 31.

Scheme 31

![Scheme 31](image)

Step 1 — 5-(2-Morpholin-4-yl-ethoxy)-1H-pyrrolo[2,3-b]pyridine (79):

[0398] To 4-morpholineethanol (30 mL, 0.2 mol) in N,N-dimethylformamide (30 mL) was slowly added sodium hydride (7 g, 60% dispersion in mineral oil, 0.2 mol). After the solution turned clear, a solution of 5-bromo-7-azaindole (44, 1.0 g, 0.0051 mol) in N,N-dimethylformamide (5 mL) and copper(I) bromide (1.4 g, 0.0098 mol) were added. The reaction mixture was stirred at 120 °C under nitrogen for 2 hours. The reaction mixture was concentrated and the residue was dissolved in ethyl acetate and water. The organic layer was collected, washed with a solution of ammonium chloride and ammonium hydroxide (4:1), brine, and dried over magnesium sulfate. After removal of solvent, the residue was purified by silica gel column chromatography eluting with ethyl acetate in hexane to provide the compound as an off-white solid (79, 0.62 g, 50%). MS (ESI) [M+H+]⁺ = 248.25.

[0399] Additional 5-substituted 7-azaindoles were prepared following the protocol of Scheme 31, replacing 4-morpholineethanol with either 2-diethylamino-ethanol, 3-diethylamino-propan-l-ol, 2-piperidin-l-yl-ethanol, or 2-pyrrolidin-l-yl-ethanol to provide diethyl-[2-(1H-pyrrolo[2,3-b]pyridin-5-yloxy)-ethyl]-amine, Diethyl-[3-(1H-pyrrolo[2,3-b]pyridin-5-yloxy)-propyl]-amine, 5-(2-piperidin-l-yl-ethoxy)-1H-pyrrolo[2,3-b]pyridine, and 5-(2-pyrrolidin-l-yl-ethoxy)-1H-pyrrolo[2,3-b]pyridine, respectively.
Example 30: Synthesis of \([5-[5-(2-Morpholin-4-yl-ethoxy)-1H-pyrrolo[2,3-b]pyridin-2-ylmethyl]-pyridin-2-yl]-(4-trifluoromethyl-benzyl)-amine\) P-0065:

\[\text{P-0065} \] was synthesized in 4 steps from (5-bromo-pyridin-2-yl)-(4-trifluoromethyl-benzyl)-amine 17 as shown in Scheme 32.

Scheme 32

Step 1 - Preparation of 6-(4-Trifluoromethyl-benzylamino)-pyridine-3-carbaldehyde (18):

[0401] To a solution of (5-bromo-pyridin-2-yl)-(4-trifluoromethyl-benzyl)-amine (17, 3.55 g, 0.0107 mol, commercially available, or prepared as described in Example 10) in tetrahydrofuran (150 mL) was added tert-butyllithium (13.2 mL, 1.70 M in pentane, 0.0224 mol) slowly under an atmosphere of nitrogen at -78 °C over 10 minutes. The reaction mixture was stirred at -78 °C for 90 minutes. N,N-Dimethylformamide (2.2 mL, 0.028 mol) was added slowly into the reaction mixture. The reaction mixture was stirred at -78 °C for 2 hours, then allowed to warm to room temperature. After stirring at room temperature for 2 hours, the reaction mixture was poured into ice water and extracted with ethyl acetate. The organic phase was washed with saturated sodium bicarbonate, brine, and dried over magnesium sulfate. After removal of solvent, the residue was purified by silica gel column chromatography eluting with ethyl acetate in hexane to provide the compound as a light yellow solid (18, 1.67 g, 56%).
Step 2 - Preparation of (5-Formyl-pyridin-2-yl)-(4-trifluoromethyl-benzyl)-carbamic acid tert-butyl ester (19):

To a solution of 6-(4-trifluoromethyl-benzylamino)-pyridine-3-carbaldehyde (18, 3.7 g, 0.013 mol) and di-tert-butyl dicarbonate (3.4 g, 0.016 mol) in dichloromethane (100 mL) was added N,N-diisopropylethylamine (4.6 mL, 0.026 mol) and 4-diethylaminopyridine (0.2 g, 0.002 mol). The reaction mixture was stirred at room temperature overnight. The reaction mixture was concentrated and then dissolved in ethyl acetate. The solution was washed with hydrochloric acid (10%), saturated sodium bicarbonate, brine, and dried over magnesium sulfate. After removal of solvent, the residue was purified by silica gel column chromatography eluting with ethyl acetate in hexane to provide the compound as a white solid (19, 4.38 g, 87%).

Step 4 - Preparation of (5-{Hydroxy-[5-(2-morpholin-4-yl-ethoxy)-1H-pyrrolo[2,3-b]pyridin-3-yl]-methyl}-pyridin-2-yl)-(4-trifluoromethyl-benzyl)-carbamic acid tert-butyl ester (80):

A mixture of (5-Formyl-pyridin-2-yl)-(4-trifluoromethyl-benzyl)-carbamic acid tert-butyl ester (19, 315 mg, 0.828 mmol), 5-(2-morpholin-4-yl-ethoxy)-1H-pyrrolo[2,3-b]pyridine (79, 205 mg, 0.829 mmol, prepared as described in Example 29), and potassium hydroxide (70 mg, 1 mmol) in methanol (25 mL) was stirred at room temperature overnight. The reaction mixture was poured into ice water, extracted with ethyl acetate, washed with brine, and dried over sodium sulfate. After removal of solvent, the residue was purified by silica gel column chromatography eluting with methanol in dichloromethane to provide the compound as a yellow solid (80, 0.2 g, 40%). MS (ESI) [M+H+] = 628.42.

Step 5 - Preparation of (5-{5-(2-Morpholin-4-yl-ethoxy)-1H-pyrrolo[2,3-b]pyridin-3-ylmethyl}-pyridin-2-yl)-(4-trifluoromethyl ethyl-benzyl)-amine (P-0065):

A mixture of (5-{Hydroxy-[5-(2-morpholin-4-yl-ethoxy)-1H-pyrrolo[2,3-b]pyridin-3-ylmethyl]-pyridin-2-yl)-(4-Mfluoromethyl-benzyl)-carbamic acid tert-butyl ester (80, 0.2 g, 0.3 mmol), triethylsilane (4 mL, 0.02 mol), and trifluoroacetic acid (2 mL, 0.02 mol) in acetonitrile (30 mL) was refluxed for 2 hours. After removal of solvent, the residue was dissolved in ethyl acetate, washed with saturated sodium bicarbonate, brine, and dried over magnesium sulfate. After removal of solvent, the residue was purified by silica gel column chromatography eluting with methanol in dichloromethane to provide
the compound as a light yellow solid (P-0065, 17 mg, 10%). MS (ESI) [M+H+] = 512.42.

[0405] Additional compounds may be prepared using steps 3 and 4 of Scheme 32, using (5-Formyl-pyridin-2-yl)-(4-trifluoromethyl-benzyl)-carbamic acid tert-butyl ester 19 or replacing it with (5-Formyl-pyridin-2-yl)-(4-chloro-benzyl)-carbamic acid tert-butyl ester (43, prepared as described in Example 17) and replacing 5-(2-Morpholin-4-yl-ethoxy)-lH-pyrrolo[2,3-b]pyridine 79 with an appropriate azaindole, prepared as in Example 29 or 5-methoxy-7-azaindole (prepared as described in Example 31) or with commercially available 5-chloro-7-azaindole. The following compounds were made following this procedure:

- [5-(5-Methoxy-lH-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-(4-trifluoromethyl-benzyl)-amine (P-0053),
- [5-(5-Chloro-lH-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-(4-trifluoromethyl-benzyl)-amine (P-0054),
- (4-Chloro-benzyl)-[5-(5-methoxy-lH-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-amine (P-0058),
- (4-Chloro-benzyl)-[5-(5-chloro-lH-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-amine (P-0059),
- [5-(2-Diethylamino-ethoxy)-lH-pyrrolo[2,3-b]pyridin-3-ylmethyl]-pyridin-2-yl]-(4-trifluoromethyl-benzyl)-amine (P-0060),
- (4-Chloro-benzyl)-[5-(2-morpholin-4-yl-ethoxy)-lH-pyrrolo[2,3-b]pyridin-3-ylmethyl]-pyridin-2-yl]-amine (P-0063),
- [5-(2-Pyrrolidin-1-yl-ethoxy)-lH-pyrrolo[2,3-b]pyridin-3-ylmethyl]-pyridin-2-yl]-amine (P-0064),
- [5-(3-Diethylamino-propoxy)-lH-pyrrolo[2,3-b]pyridin-3-ylmethyl]-pyridin-2-yl]-amine (P-0066),

The aldehyde and azaindole used in step 4 of this procedure are indicated in columns 2 and 3 of the following table, respectively, with the compound structure indicated in column 4. Column 1 provides the compound reference number and Column 5 the experimental mass spectrometry result.
<table>
<thead>
<tr>
<th></th>
<th>Aldehyde</th>
<th>Azaindole</th>
<th>Compound</th>
<th>MS(ESI) [M+H]^+ observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-0053</td>
<td></td>
<td></td>
<td></td>
<td>413.2</td>
</tr>
<tr>
<td>P-0054</td>
<td></td>
<td></td>
<td></td>
<td>417.2</td>
</tr>
<tr>
<td>P-0058</td>
<td></td>
<td></td>
<td></td>
<td>379.2</td>
</tr>
<tr>
<td>P-0059</td>
<td></td>
<td></td>
<td></td>
<td>383.2</td>
</tr>
<tr>
<td>P-0060</td>
<td></td>
<td></td>
<td></td>
<td>498.4</td>
</tr>
<tr>
<td>P-0063</td>
<td></td>
<td></td>
<td></td>
<td>478.3</td>
</tr>
<tr>
<td>P-0064</td>
<td></td>
<td></td>
<td></td>
<td>496.3</td>
</tr>
</tbody>
</table>
Example 31: Synthesis of 3-[6-(4-Trifluoromethyl-benzylamino)-pyridin-3-ylmethyl]-1H-pyrrolo[2,3-b]pyridin-5-ol P-0061:

3-[6-(4-Trifluoromethyl-benzylamino)-pyridin-3-ylmethyl]-1H-pyrrolo[2,3-b]pyridin-5-ol P-0061 was synthesized in 6 steps from 5-bromo-7-azaindole 44 as described in Scheme 33.

Scheme 33

Step 1 - Preparation of 5-Methoxy-1H-pyrrolo[2,3-b]pyridine (81):

To a mixture of 5-bromo-7-azaindole (1 g, 0.005 mol) in N,N-Dimethylformamide (20 mL) and methanol (20 mL) were added sodium methoxide (13 g, 0.24 mol) and Copper (I) bromide (0.7 g, 0.0048 mol) at room temperature. The reaction
mixture was stirred at 120 °C under nitrogen for 3 hours. The reaction mixture was concentrated and the residue was dissolved in ethyl acetate and water. The organic layer was collected, washed with a solution of ammonium chloride and ammonium hydroxide (4:1), brine, and dried over magnesium sulfate. After removal of solvent, the residue was purified by silica gel column chromatography eluting with ethyl acetate in hexane to provide the compound as a white solid (81, 0.4 g, 50%). MS (ESI) [M+H+] = 149.09.

Step 2 - Preparation of lH-Pyrrolo[2,3-b]pyridin-5-ol (82):

To a solution of 5-methoxy-lH-pyrrolo[2,3-Z]pyridine (81, 0.5 g, 3 mmol) in tetrahydrofuran (20 mL) was added boron tribromide (1.5 g, 6.0 mmol) at 0 °C. The reaction mixture was allowed to warm to room temperature, then stirred at room temperature for 3 hours. The reaction mixture was quenched by methanol. After repeated addition of methanol and removal of solvent, the concentrated reaction mixture was dissolved in ethyl acetate and water. The organic layer was collected, washed with brine, and dried over magnesium sulfate. After removal of solvent, the residue was purified by silica gel column chromatography eluting with ethyl acetate in hexane to provide the compound as an off-white solid (82, 0.18 g, 40%).

Step 3—Preparation of 5-Triisopropylsilanyloxy-lH-pyrrolo[2,3-b]pyridine (83):

To a solution of lH-Pyrrolo[2,3- b]pyridin-5-ol (0.5 g, 0.004 mol) and IH-imidazole (0.98 g, 0.014 mol) in N,N-dimethylformamide (5 mL) was added triisopropylsilyl chloride (1 mL, 0.005 mol). The reaction mixture was stirred at room temperature overnight. Dichloromethane (10 mL) was added and the solution was washed with brine and dried over sodium sulfate. After removal of solvent, the residue was purified by silica gel column chromatography eluting with ethyl acetate in hexane to provide the compound as a viscous liquid (83, 0.4 g, 40%).

Step 4 - Preparation of[5-[Hydroxy-(5-triisopropylsilanyloxy-lH-pyrrolo[2,3-b]pyridin-3-yl)-methyl]-pyridin-2-yl]-(4-trifluoromethyl-benzyl)-carbamic acid tert-butyl ester (84):

A mixture of (5-Formyl-pyridin-2-yl)-(4-trifluoromethyl-benzyl)-carbamic acid tert-butyl ester (19, 41 mg, 0.1 1 mmol, prepared as described in Example 30), 5-triisopropylsilanyloxy-lH-pyrrolo[2,3-b]pyridine (83, 34 mg, 0.12 mmol) and potassium hydroxide (9.8 mg, 0.17 mmol) in methanol (10 mL) was stirred at room temperature overnight. The reaction mixture was poured into water, extracted with ethyl acetate,
washed with brine and dried over sodium sulfate. After removal of solvent, the residue was purified by silica gel column chromatography eluting with ethyl acetate in hexane to provide the compound as a viscous liquid (84, 0.05 g, 70%). MS (ESI) [M+H+] = 671.38.

Step 5 - Preparation of (4-Trifluoromethyl-benzyl)-[5-(5-triisopropylsilanyloxy-lH-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-amine (85):

A mixture of [5-[hydroxy-(5-triisopropylsilanyloxy-lH-pyrrolo[2,3-b]pyridin-3-ylmethyl]-pyridin-2-yl]-(4-trifluoromethyl-benzyl)-carbamic acid tert-butyl ester (84, 0.05 g, 0.07 mmol), trifluoroacetic acid (0.5 mL, 0.006 mol), and triethylsilane (1 mL, 0.006 mol) in acetonitrile (10 mL) was refluxed for 2 hours. The reaction mixture was poured into ice water, extracted with ethyl acetate, washed with saturated sodium bicarbonate, brine, and dried over sodium sulfate. After removal of solvent, the residue was purified by silica gel column chromatography eluting with ethyl acetate in hexane to provide the compound as a viscous liquid (85, 0.04 g, 97%). MS (ESI) [M+H+] = 555.38.

Step 6 — Preparation of 3-[6-(4-Trifluoromethyl-benzylamino)-pyridin-3-ylmethyl]-lH-pyrrolo[2,3-b]pyridin-5-ol (P-0061):

To (4-Trifluoromethyl-benzyl)-[5-(5-triisopropylsilanyloxy-lH-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyridin-2-yl]-amine (85, 0.13 g, 0.23 mmol) in tetrahydrofuran (10 mL) was added tetrabutylammonium fluoride (3 mL, 1.0 M in tetrahydrofuran, 3 mmol). The reaction mixture was stirred at room temperature overnight, and then was stirred at 65 °C for 48 hours. The reaction mixture was concentrated and purified by silica gel column chromatography eluting with ethyl acetate in hexane to provide the compound as a viscous liquid (P-0061, 0.062 g, 66%). MS (ESI) [M+H+] = 399.19.

3-[6-(4-Chloro-benzylamino)-pyridin-3-ylmethyl]-lH-pyrrolo[2,3-b]pyridin-5-ol P-0062

was prepared following the protocol of Scheme 33, replacing (5-Formyl-pyridin-2-yl)-(4-trifluoromethyl-benzyl)-carbamic acid tert-butyl ester 19 with (5-Formyl-pyridin-2-yl)-(4-
chloro-benzyty-carbamic acid tert-butyl ester (43, prepared as described in Example 17).

MS (ESI) [M+H+] = 365.2.

Example 32: Synthesis of N-[5-(1H-Pyrrolo[2,3-b]pyridine-3-carbonyl)-pyridin-2-yl]-4-trifluoromethyl-benzamide P-0067

\[\text{N-[5-(1H-Pyrrolo[2,3-b]pyridine-3-carbonyl)-pyridin-2-yl]-4-trifluoromethyl-benzamide P-0067} \]

was synthesized in 2 steps from 7-azaindole 1 as described in Scheme 34.

Scheme 34

\[\text{Step 1 - Preparation of (6-Bromo-pyridin-3-yl)-(1H-pyrrolo[2,3-b]pyridin-3-yl)-methanone (87):} \]

\[\text{[0415] To a solution of 1H-Pyrrolo[2,3-b]pyridine (1, 1.2 g, 0.010 mol) in} \]

dichloromethane (50 mL) was added 6-bromo-nicotinoyl chloride (86, 2.6 g, 0.012 mol) at

\[\text{-10 °C. After the solution turned clear, aluminum trichloride (10.2 g, 0.0765 mol) was} \]

added in one portion with vigorous stirring. The reaction mixture was stirred at -10 °C for

\[\text{30 minutes, then was allowed to warm to room temperature and stirred at room} \]

temperature overnight. The reaction was quenched with ice water and neutralized with

\[\text{sodium bicarbonate. The solution was extracted with dichloromethane, washed with} \]

brine, and dried over sodium sulfate. After removal of solvent, the residue was purified by

\[\text{silica gel column chromatography eluting with methanol in dichloromethane to provide} \]

the compound as a white solid (87, 0.35 g, 11%).}
Step 2 - Preparation of N-[5-(1H-Pyrrolo[2,3-b]pyridine-3-carbonyl)-pyridin-2-yl]-4-trifluoromethyl-benzamide (P-0067):

[0416] A mixture of (6-bromo-pyridin-3-yl)-(1H-pyrrolo[2,3-b]pyridin-3-yl)-inetlianone (87, 160 mg, 0.53 mmol), 4-trifluoromethyl benzamide (51, 130 mg, 0.69 mmol), xanthphos (9 mg, 0.02 mmol), cesium carbonate (245 mg, 0.752 mmol), and tris(dibenzylideneacetone)dipalladium (0) (5 mg, 0.005 mmol) in toluene (2 mL) in a sealed tube was stirred at 110 °C for 1 hour. The reaction was quenched with water and extracted with dichloromethane. The organic layer was collected, washed with brine and dried over sodium sulfate. After removal of the solvent, the residue was purified with silica gel column chromatography eluting with ethyl acetate in hexane to provide the compound as an off-white solid (P-0067, 0.42 mg, 19%). MS (ESI) [M+H]+ = 411.17.

[0417] N-[5-(1H-Pyrrolo[2,3-b]pyridine-3-carbonyl)-pyridin-2-yl]-4-trifluoromethyl-benzenesulfonamide P-0068

was prepared following the protocol of Scheme 34, replacing 4-trifluoromethyl benzamide 51 with 4-trifluoromethyl-benzenesulfonamide in Step 2. MS (ESI) [M+ET]+ = 445.1.

Example 33: Synthesis of [(S)-1-(4-Chloro-phenyl)-ethyl]-[5-(1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)1-pyridin-2-yl]-amine P-0075

[0418] [(S)-1-(4-Chloro-phenyl)-ethyl]-[5-(1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)1-pyridin-2-yl]-amine P-0075 was synthesized in 3 Steps from 7-azaindole 1 as described in Scheme 35.
Scheme 35

Step 1 — Preparation of (6-Bromo-pyridin-3-yl)-(1H-pyrrolo[2,3-b]pyridin-3-yl)-methanol (89):

[0419] A mixture of 1H-Pyrrolo[2,3- b]pyridine (1, 1.2 g, 0.010 mol), 6-bromo-pyridine-3-carbaldehyde (88, 1.8 g, 0.0097 mol), and potassium hydroxide (1.8 g, 0.032 mol) in methanol (25 mL) was stirred at room temperature overnight. The reaction mixture was poured into ice water, extracted with ethyl acetate, washed with brine, and dried over sodium sulfate. After removal of solvent, the residue was purified by silica gel column chromatography eluting with methanol in dichloromethane to provide the compound as a white solid (89, 1.4 g, 45%), or may be used as mixture of 89 and 90 in Step 2.

Step 2 - Preparation of 3-(6-Bromo-pyridin-3-ylmethyl)-1H-pyrrolo[2,3-b]pyridine (91):

[0420] A mixture of (6-bromo-pyridin-3-yl)-(1H-pyrrolo[2,3-b]pyridin-3-yl)-methanol (89, 1 g, 0.003 mol) and 3-[(6-bromo-pyridin-3-yl)-methoxy-methyl]-1H- pyrrolo[2,3-b]pyridine (90, 2 g, 0.006 mol), triethylsilane (1 mL, 0.006 mol), and trifluoroacetic acid (0.5 mL, 0.006 mol) in acetonitrile (25 mL) was refluxed for 2 hours. The reaction mixture was concentrated and the residue was dissolved in ethyl acetate and water. The organic layer was collected, washed with saturated sodium bicarbonate, brine, and dried over sodium sulfate. After removal of the solvent, the residue was purified with silica gel column chromatography eluting with ethyl acetate in hexane to provide the compound as an off-white solid (91, 0.75 g, 60%). MS (ESI) [M+H]+ = 288.06, 290.00.
Step 3 - Preparation of [(S)-l-(4-Chloro-phenyl)-ethyl]-[5-(1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)pyridin-2-yl]-amine P-0075:

A mixture of 3-(6-bromo-pyridin-3-ylmethyl)-1H-pyrrolo[2,3-b]pyridine (91, 100 mg, 0.0003 mol) and (S)-l-(4-chloro-phenyl)-ethylamine (92, 0.5 g, 0.003 mol) in N-methylpyrrolidin (3 mL) was stirred at 150 °C in microwave for 100 minutes. The reaction mixture was concentrated under vacuum and the residue was purified with silica gel column chromatography eluting with ethyl acetate in hexane to provide the compound as a white solid (P-0075, 0.03 g, 20%). MS (ESI) [M+H]^+ = 363.18.

Example 34: Synthesis of (4-Chloro-benzyl)-[4-chloro-5-(1H-pyrrolo/2,3-b/pyridin-3-ylmethyl)-thiazol-2-yl]-amine P-0083

(4-Chloro-benzyl)-[4-chloro-5-(1H-pyrrolo/2,3-b/pyridin-3-ylmethyl)-thiazol-2-yl]-amine P-0083 was synthesized in 4 steps from 2,4-Dichloro-thiazole-5-carbaldehyde 93 as described in Scheme 36.

Scheme 36

Step 1 - Preparation of 4-Chloro-l^-chloro-benzylamino-thiazole-S-carbaldehyde (94):

To a solution of p-chlorobenzylamine (61, 283 mg, 2.00 mmol) and N,N-Diisopropylethylamine (0.697 mL) in tetrahydrofuran (20mL) was slowly added 2,4-Dichloro-thiazole-5-carbaldehyde (93, 364 mg, 2.00 mmol) in tetrahydrofuran (10mL) at room temperature. The reaction was stirred at room temperature overnight. The reaction mixture was poured into iced water, extracted with ethyl acetate, washed with brine, and
dried over sodium sulfate. After removal of solvent, the residue was purified by silica gel column chromatography eluting with ethyl acetate in hexane to provide the compound as a yellow solid (94, 0.3 g, 50%). MS (ESI) [M-H+] = 286.97.

Step 2 - Preparation of (4-Chloro-benzyl)-(4-chloro-5-formyl-thiazol-2-yl)-carbamic acid tert-butyl ester (95):

To a solution of 4-Chloro-2-(4-chloro-benzylamino)-thiazole-5-carbaldehyde (94, 0.32 g, 0.001 mol) in dichloromethane (20 mL) was slowly added N,N-diisopropylethylamine (0.4 mL, 0.002 mol), 4-dimethylaminopyridine (27 mg, 0.22 mmol), and a solution of di-tert-Butyldicarbonate (290 mg, 0.0013 mol) in dichloromethane (5 mL) at room temperature. The reaction mixture was stirred at room temperature overnight, then poured into iced water, extracted with dichloromethane, washed with brine, and dried over sodium sulfate. After removal of solvent, the residue was purified by silica gel column chromatography eluting with ethyl acetate in hexane to provide the compound as a light brown solid (95, 0.32 g, 74%). MS (ESI) [M+H+] = 387.26.

Step 3 - Preparation of (4-Chloro-benzyl)-{4-chloro-5-[hydroxy-(l-triisopropylsilanyl-1H-pyrrolo[2,3-b]pyridin-3-yl)-methyl]-thiazol-2-yl}-carbamic acid tert-butyl ester (97):

To a solution of 3-Iodo-l-triisopropylsilanyl-1H-pyrrolo[2,3-b]pyridine (96, 99 mg, 0.25 mmol) in tetrahydrofuran (5 ml) at -20 °C under nitrogen was added 2.0 M solution isopropylmagnesium chloride in tetrahydrofuran (0.2 ml, 0.31 mmol). The reaction mixture was stirred for 1.5 hours, then allowed to warm to 5 °C. After the reaction mixture was cooled down to -20 °C, a solution of (4-Chloro-benzyl)-(4-chloro-5-formyl-thiazol-2-yl)-carbamic acid tert-butyl ester (95, 80 mg, 0.2 mmol) in tetrahydrofuran (5 mL) was slowly added. The reaction mixture was stirred for 2.5 hrs, then allowed to warm to 5 °C. The reaction mixture was poured into iced water, extracted with ethyl acetate, washed with brine, and dried over magnesium sulfate. After removal of solvent, the residue was purified by silica gel column chromatography eluting with ethyl acetate in hexane to provide the compound as an off-white solid (97, 76 mg, 50%). MS (ESI) [M+H+] = 661.32, 663.32.
Step 4 - Preparation of (4-Chloro-benzyl)-(4-chloro-5-(lH-pyrrolo[2,3-b]pyridin-3-ylmethyl)-thiazol-2-yl)-amine (P-0083):

[0426] A mixture of (4-Chloro-benzyl)-(4-chloro-5-[hydroxy-(1-triisopropylsilanyl-lH-pyrrolo[2,3-b]pyridin-3-yl)-methyl]-thiazol-2-yl)-carbamic acid tert-butyl ester (97, 16 mg, 0.11 mmol), triethylsilane (0.5 mL, 3 mmol), and trifluoroacetic acid (0.25 mL, 3.2 mmol) in acetonitrile (5 mL) was refluxed for 3 hours. The reaction mixture was poured into iced water, extracted with ethyl acetate, washed with sodium bicarbonate, brine, and dried over sodium sulfate. After removal of solvent, the residue was purified by silica gel column chromatography eluting with ethyl acetate in hexane to provide the compound as a yellow solid (P-0083, 5.6 mg, 14%). MS (ESI) [M+H+] = 389.35, 390.36.

Example 35: Synthesis of [2-(4-Chloro-benzylamino)-thiazol-5-yl)-(lH-pyrrolo[2,3-b]pyridin-3-yl)-methanone P-0077:

[0427] [2-(4-Chloro-benzylamino)-thiazol-5-yl)-(lH-pyrrolo[2,3-b]pyridin-3-yl)-methanone P-0077 was synthesized in 2 steps from 2-Bromo-thiazole-5-carboxylic acid 98 and lH-pyrrolo/2,3-/pyridine 1 as shown in Scheme 37.

Scheme 37

![Scheme 37](image)

Step 1 - Preparation of [2-Bromo-thiazol-5-yl)-(lH-pyrrolo[2,3-b]pyridin-3-yl)-methanone (99):

[0428] A suspension of 2-Bromo-thiazole-5-carboxylic acid (98, 0.5 g, 0.002 mol) in oxalyl chloride (3 mL) was stirred at room temperature until it turned into a clear solution. Solvent was removed and the residue was dried over vacuum. A light yellow solid was obtained and was dissolved in dichloromethane (10 mL) and slowly added to a solution of lH-Pyrrolo[2,3-b]pyridine (1, 0.34 g, 0.0029 mol) in dichloromethane (30 mL) at -10 °C. To the mixture was then added aluminum trichloride (2.6 g, 0.019 mol) in one portion with vigorous stirring. The reaction was held at -10 °C for 30 minutes, then allowed to warm to room temperature. The reaction mixture was stirred at ambient temperature...
overnight. The reaction was quenched with ice-water and acidified with hydrochloric acid (10%) to pH 4. The solution was then extracted with dichloromethane. The organic layer was collected, washed with brine, and dried over magnesium sulfate. After removal of solvent, the residue was purified by silica gel column chromatography eluting with ethyl acetate in hexane to provide the compound as a white solid (99, 12 mg, 2%). MS (ESI) [M-H+] = 369.09.

Step 2 - Preparation of [2-(4-Chloro-benzylamino)-thiazol-5-yl]-(lH-pyrrolo[2,3-b]pyridin-3-yl)-methanone (P-0077):

A mixture of (2-Bromo-thiazol-5-yl)-(lH-pyrrolo[2,3-b]pyridin-3-yl)-methanone (99, 5 mg, 0.02 mmol), p-chlorobenzylamine (61, 10 mg, 0.08 mmol), and N,N-Diisopropylethylamine (10 µL, 0.08 mmol) in tetrahydrfuran (10 mL), in a sealed reaction vessel, was stirred room temperature overnight. The reaction mixture was poured into iced water, extracted with ethyl acetate, washed with brine, and dried over magnesium sulfate. After removal of solvent, the residue was purified by silica gel column chromatography eluting with ethyl acetate in hexane to provide the compound as a light yellow solid (P-0077, 2 mg, 30%). MS (ESI) [M+H+] = 305.90, 307.88.

Example 36: Synthesis of 3-((5-chloro-3-methyl-l-phenyl-lH-pyrazol-4-yl)methyl)-lH-pyrrolo[2,3-b]pyridine P-0080

[0430] 3-((5-chloro-3-methyl-l-phenyl-lH-pyrazol-4-yl)methyl)-lH-pyrrolo[2,3-b]pyridine P-0080 was synthesized in 2 steps from 5-chloro-3-methyl-l-phenyl-lH-pyrazole-4-carbaldehyde 100 and 7-azaindole 1 as shown in Scheme 38.

Scheme 38

![Scheme 38](image)

Step 1 - Preparation of 3-((5-chloro-3-methyl-l-phenyl-lH-pyrazol-4-yl)(methoxy)methyl)-lH-pyrrolo[2,3-b]pyridine (P-0079):

[0431] To lH-Pyrrolo[2,3-b]pyridine (1, 0.100 g, 0.846 mmol) and 5-chloro-3-methyl-l-phenyl-lH-pyrazole-4-carbaldehyde (100, 0.205 g, 0.931 mmol) was added 2 mL of
methanol to give a solution. Potassium hydroxide (0.0475 g, 0.846 mmol) was added and the reaction was allowed to stir at room temperature for 48 hours. The reaction was extracted with ethyl acetate and water. The organic layer was dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated and purified by silica gel column chromatography eluting with a gradient of 0-5% methanol in dichloromethane to give the compound (P-0079, 32 mg, 11%). MS (ESI) [M+H]+ = 353.2.

Step 2 - Preparation of 3-((5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)methyl)-1H-pyrrolo[2,3-b]pyridine (P-0080):

[0432] To 3-((5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)(methoxy)methyl)-1H-pyrrolo[2,3-b]pyridine (P-0079, 0.030 g, 0.085 mmol) was added acetonitrile (10 mL, 0.2 mol). Trifluoroacetic acid (500 uL, 0.006 mol) and triethylsilane (500 uL, 0.003 mol) were added and the reaction allowed to stir at room temperature for 16 hours. The reaction was extracted with ethyl acetate and water. The organic layer was dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated and purified by silica gel column chromatography eluting with dichloromethane followed 5% methanol in dichloromethane to give the compound as a yellowish foam (P-0080, 29 mg, 98%). MS (ESI) [M+H]+ = 323.2.

Example 37: cKit Kinase Domain and Construction of c-Kit sequences

[0433] c-Kit cDNA sequence is available from NCBI, e.g., as GenBank accession number NM_000222. Using this sequence, c-kit DNA sequences can be cloned from commercially available libraries (e.g. cDNA libraries) or can be synthesized by conventional cloning methods.

[0434] Using conventional cloning methods, constructs encoding three c-kit polypeptides were prepared, and used to express c-kit kinase domain polypeptides. One such active c-kit kinase domain sequence included residues P551-S948, with the deletion of residues Q694-T753.

Example 38: Expression and Purification of c-Kit kinase domain

[0435] Purified c-kit kinase domain can be obtained using conventional expression and purification methods. Exemplary methods are described, for example, in Lipson et al.,
Example 39: Binding Assays

[0436] Binding assays can be performed in a variety of ways, including a variety of ways known in the art. For example, as indicated above, binding assays can be performed using fluorescence resonance energy transfer (FRET) format, or using an AlphaScreen

[0437] Alternatively, any method which can measure binding of a ligand to the ATP-binding site can be used. For example, a fluorescent ligand can be used. When bound to c-kit, the emitted fluorescence is polarized. Once displaced by inhibitor binding, the polarization decreases.

[0438] Determination of ICs0 for compounds by competitive binding assays. (Note that Ki is the dissociation constant for inhibitor binding; KD is the dissociation constant for substrate binding.) For this system, the IC50, inhibitor binding constant and substrate binding constant can be interrelated according to the following Formula:

\[K_1 = \frac{IC50}{1 + [L^*]/K_D} \]

[0440] the IC50 ~ K1 when there is a small amount of labeled substrate.

Example 40: Cell-based assays of c-fms kinase activity or c-kit kinase activity.

[0441] M-CSF dependent RAW264.7 cells were seeded on a 12 well plate, 2.5x10^5 cells/well and the cells were allowed to attach overnight at 37 °C, 5% CO2. The cells were then starved in serum-free medium overnight at 37 °C, 5% CO2. The cells were treated with compound for 1 hour in serum-free media (1% DMSO final concentration); and then stimulated with 20 ng/ml M-CSF for 5 minutes. After stimulation, the cells were lysed on ice, and the lysates were centrifuged at 13,000 rpm for 1 minute. The amount of protein in the sample was quantitated, sample buffer was added, and the samples were boiled at 95 °C for 10 minutes. The samples were then centrifuged at 13,000 rpm for 1 minute. The
samples (15-20 µg/lane) were loaded and run on 4-12% tris-glycine gel at 75V, and then transferred onto a PVDF membrane. The membrane was blocked for 1 hour with 5% BSA in PBS/1% Tween-20 (PBST); or 5% milk, depending on the primary antibody used. Then the blots were incubated with primary antibody overnight at 4 degrees with gentle shaking. After incubation with the capture antibody, the membranes were washed 3 x 10 minutes with PBST; then incubated with detection antibody Goat Anti-Rabbit-HRP for 1 hour, with gentle shaking. The membranes were washed again 3 x 10 minutes with PBST. ECL Plus substrate was then added to the blots, the image captured with chemiluminescence camera, and the bands quantitated for pFMS and FMS levels.

[0442] The Fms inhibitors may also be assessed using M-NFS-60 mouse myelogenous leukemia cell line (ATCC catalog #CRL-1838). This cell line proliferation is stimulated by M-CSF, which binds and activates the fms tyrosine kinase receptor. Inhibitors of fms kinase activity reduce or eliminate the M-CSF stimulated kinase activity, resulting in reduced cell proliferation. This inhibition is measured as a function of compound concentration to assess IC₅₀ values. M-NFS-60 cells were seeded at 5 x 10⁴ cells per well of a 96 well cell culture plate in 50 µl of cell culture medium of RPMI 1640 (CellGro Mediatech catalog #10-040-CV) supplemented with 10 % FBS (HyClone catalog #SH30071.03). Compounds were dissolved in DMSO at a concentration of 1 mM and were serially diluted 1:3 for a total of eight points and added to the cells to final concentrations of 10, 3.3, 1.1, 0.37, 0.12, 0.041, 0.014 and 0.0046 µM in 100 µl cell culture medium (final concentration 0.2% DMSO). Cells were also treated with staurosporine as a positive control. The cells were stimulated by adding 20 µl of 372 ng/ml M-CSF to a final concentration of 62 ng/ml (R&D Systems catalog #216-MC). The cells were incubated at 37 °C, 5% CO₂ for three days. CellTiter-Glo Buffer (Promega Cell Viability Assay catalog #G7573) and substrate were equilibrated to room temperature, and enzyme/substrate Recombinant Firefly Luciferase/Beetle Luciferin was reconstituted. The cell plates were equilibrated to room temperature for 30 minutes, then lysed by addition of an equivalent volume of the Celltiter-Glo Reagent. The plate was mixed for 2 minutes on a plate shaker to lyse the cells, then incubated for 10 minutes at room temperature. The plates were read on a Victor Wallac II using Luminescence protocol modified to read 0.1s per well. The luminescence reading assesses the ATP
content, which correlates directly with cell number such that the reading as a function of compound concentration was used to determine the IC$_{50}$ value.

[0443] The c-Kit inhibitors were assessed using M-07e cell line (DSMZ catalog #ACC 104). The M-07e proliferation is stimulated by SCF (Stem Cell Factor), which binds and activates c-Kit tyrosine kinase receptor. Inhibitors of c-Kit kinase reduce or eliminate the SCF mediated kinase activation, resulting in reduced cell proliferation of SCF stimulated cells. This inhibition is measured by the effect of compound concentration on cell growth to assess IC50 values. M-07e cells were seeded at 5 x 104 cells per well of a 96 well cell culture plate in 50 µl of cell culture medium of Iscove’s Medium 1X (MOD, CellGro Mediatech catalog #15-01 6-CV) supplemented with 10% FBS (HyClone catalog #SH30071.03). Compounds were dissolved in DMSO at a concentration of 0.1 mM and were serially diluted 1:3 for a total of eight points and added to the cells to final concentrations of 1, 0.33, 0.11, 0.037, 0.012, 0.0041, 0.0014 and 0.00046 µM in 100 µl cell culture medium (final concentration 0.2% DMSO). Cells were also treated with staurosporine as a positive control. Cells were stimulated by adding 20 µl of 600 ng/ml SCF to a final concentration of 100 ng/ml (Biosource International SCF kit ligand catalog #PHC21 15) in cell culture medium. The cells were incubated at 37 °C, 5% CO$_2$ for three days. CellTiter-Glo Buffer (Promega Cell Viability Assay catalog #G7573) and substrate were equilibrated to room temperature, and enzyme/substrate Recombinant Firefly Luciferase/Beetle Luciferin was reconstituted. The cell plates were equilibrated to room temperature for 30 minutes, then lysed by addition of an equivalent volume of the CellTiter-Glo Reagent. The plate was mixed for 2 minutes on a plate shaker to lyse the cells, then incubated for 10 minutes at room temperature. The plates were read on a Victor Wallac II using Luminescence protocol modified to read 0.1s per well. The luminescence reading assesses the ATP content, which correlates directly with cell number such that the reading as a function of compound concentration is used to determine the IC$_{50}$ value.

[0444] This cell based assay was also used to assess phosphorylation. Samples were prepared with compounds as described for the growth inhibition assay only M-07e cells were seeded at 2 x 105 cells per well in a 96 well filter plate. Cells were incubated for 1 hour at 37 °C with the compounds as described above, and then stimulated by adding SCF to a final concentration of 50 ng/ml and incubated for 10 minutes at 37 °C. The culture
medium was removed by centrifugation and the cells were lysed by addition of 30 µl lysis buffer (25 mM Tris HCl pH 7.5, 150 mM NaCl, 5 mM EDTA, 1% Triton X-100, 5 mM NaF, 1 mM NaVanadate, 10 mM Beta-glycerophosphate, no EDTA (Boehringer-Roche catalog #1873580) and placed on ice for 30 minutes. A 15 µl aliquot of the lysate was taken and assayed according to Biosource Immunoassay Kit: Human c-Kit [pY823] (Catalog # KHO0401) by diluting the aliquot with 85 µl dilution buffer in the assay plate, incubating for 2 hours at room temperature and washing the plate 4 times with wash buffer. Detection antibody (100 µl) was added to the plate and samples incubated for 1 hour at room temperature, then washed 4 times with wash buffer. HRP anti-rabbit antibody (100 µl) was added and samples incubated for 30 minutes at room temperature, then washed 4 times with wash buffer. Stabilized chromogen (100 µl) was added and samples incubated for 15-25 minutes at room temperature, then washed 4 times with wash buffer. Stop solution (100 µl) was added and the samples read on a Wallac Victor reader at 450 nm. The absorbance was plotted against the compound concentration and the IC₅₀ concentration was determined.

Example 41: c-Kit and c-Fms Activity Assays

[0445] The effect of potential modulators of kinase activity of c-kit and other kinases can be measured in a variety of different assays known in the art, e.g., biochemical assays, cell-based assays, and in vitro testing (e.g. model system testing). Such in vitro and/or in vivo assays and tests can be used in the present invention. As an exemplary kinase assay, the kinase activity of c-kit or Fms is measured in AlphaScreen (Packard BioScience).

Exemplary c-kit biochemical assay

[0446] The c-kit (or kinase domain thereof) is an active kinase in AlphaScreen. IC₅₀ values are determined with respect to inhibition of c-Kit kinase activity, where inhibition of phosphorylation of a peptide substrate is measured as a function of compound concentration. Compounds to be tested were dissolved in DMSO to a concentration of 20 mM. These were diluted 30 µl into 120 µl of DMSO (4 mM) and 1 µl was added to an assay plate. These were then serially diluted 1:3 (50 µl to 100 µl DMSO) for a total of 8 points. Plates were prepared such that each kinase reaction is 20 µl in 1x kinase buffer (50 mM HEPES, pH 7.2, 5 mM MgCl₂, 5 mM MnCl₂, 0.01% NP-40, 0.2% BSA), 5% DMSO
and 10 µM ATP. Substrate was 100 nM biotin-(E4Y)3 (Open Source Biotech, Inc.). C-kit kinase was at 0.1 ng per sample. After incubation of the kinase reaction for 1 hour at room temperature, 5 µl of donor beads (Streptavidin coated beads (Perkin Elmer Life Science) final concentration 1 µg/ml) in stop buffer (50mM EDTA in 1x kinase buffer) was added, the sample was mixed and incubated for 20 minutes at room temperature before adding 5 µl of acceptor beads (PY20 coated beads (Perkin Elmer Life Science) final concentration 1 µg/ml) in stop buffer. The samples were incubated for 60 minutes at room temperature and the signal per well was read on AlphaQuest reader. Phosphorylated substrate results in binding of the PY20 antibody and association of the donor and acceptor beads such that signal correlates with kinase activity. The signal vs. compound concentration was used to determine the IC₅₀.

[0447] Compounds were also tested using a similar assay with a 10-fold higher ATP concentration. For these samples, compounds to be tested were dissolved in DMSO to a concentration of 20 mM. These were diluted 30 µl into 120 µl of DMSO (4 mM) and 1 µl was added to an assay plate. These were then serially diluted 1:3 (50 µl to 100 µl DMSO) for a total of 8 points. Plates were prepared such that each kinase reaction is 20 µl in 1x kinase buffer (8 mM MOPS pH 7.0, 1 mM MgCl₂, 2 mM MnCl₂, 0.01% Tween-20, 1 mM DTT, and 0.001% BSA), 5% DMSO and 100 µM ATP. Substrate was 30 nM biotin-(E4Y)10 (Upstate Biotech, Cat# 12-440). C-kit kinase was at 1 ng per sample. After incubation of the kinase reaction for 1 hour at room temperature, 5 µl of donor beads (Streptavidin coated beads (Perkin Elmer Life Science) final concentration 10 µg/ml) in stop buffer (8 mM MOPS pH 7.0, 100 mM EDTA, 0.3% BSA) was added, the sample was mixed and incubated for 20 minutes at room temperature before adding 5 µl of acceptor beads (PY20 coated beads (Perkin Elmer Life Science) final concentration 10 µg/ml) in stop buffer. The samples were incubated for 60 minutes at room temperature and the signal per well was read on AlphaQuest reader. Phosphorylated substrate results in binding of the PY20 antibody and association of the donor and acceptor beads such that signal correlates with kinase activity. The signal vs. compound concentration was used to determine the IC₅₀.

[0448] The c-kit enzyme used in the above assay was either obtained from Cell Signaling Technology (Cat. #7754) or was prepared as follows: A plasmid encoding kit
(DNA and encoded protein sequences shown below) was engineered using common polymerase chain reaction (PCR) methods. Complementary DNA cloned from various human tissues were purchased from Invitrogen, and these were used as substrates in the PCR reactions. Specific custom synthetic oligonucleotide primers were designed to initiate the PCR product, and also to provide the appropriate restriction enzyme cleavage sites for ligation with the plasmids. The entire sequence encoding the enzyme was made through a gene synthesis procedure, using custom synthetic oligonucleotides covering the entire coding sequence (Invitrogen, see below).

[0449] The plasmid used for ligation with the kinase-encoding inserts was derivative of pET (Novagen) for expression using E. coli. The Kit kinase was engineered to include a Histidine tag for purification using metal affinity chromatography. The kinase-encoding plasmid was engineered as bicistronic mRNA to co-express a second protein that modifies the kinase protein during its expression in the host cell. Protein tyrosine phosphatase IB (PTP), was co-expressed for dephosphorylation of the phospho-Tyrosines.

[0450] For protein expression, the plasmid containing the Kit gene was transformed into E.coli strains BL21(DE3)RIL and transformants selected for growth on LB agar plates containing appropriate antibiotics. Single colonies were grown overnight at 37°C in 200ml TB (Terrific broth) media. 16x1L of fresh TB media in 2.8L flasks were inoculated with 10ml of overnight culture and grown with constant shaking at 37°C. Once cultures reached an absorbance of 1.0 at 600nm, IPTG was added and cultures were allowed to grow for a further 12 to 18hrs at temperatures ranging from 12-30°C. Cells were harvested by centrifugation and pellets frozen at -80 °C until ready for lysis.

[0451] For protein Purification; frozen E.coli cell pellets were resuspended in lysis buffer and lysed using standard mechanical methods. Protein was purified via poly-Histidine tags using immobilized metal affinity purification IMAC. The Kit kinase was purified using a 3 step purification process utilizing; IMAC, size exclusion chromatography and ion exchange chromatography. The poly-Histidine tag was removed using Thrombin (Calbiochem).

[0452] Compounds were assayed using a similar assay to that described above, using in a final reaction volume of 25 µl: c-Kit (h) (5-10 mU) in 8mM MOPS pH 7.0, 0.2 mM
EDTA₃ 10 nM MnCl₂, 0.1 mg/ml poly (Glu, Tyr) 4:1, 10 mM MgAcetate and γ-³³P-ATP (approximately 500 cpm/pmol), with appropriate concentrations of compound. Incubated for 40 minutes at room temperature and stopped by addition of 5 µl of 3% phosphoric acid. Spotted 10 µl of each sample onto Filtermat A and washed 3x with 75 mM phosphoric acid, once with methanol, dried and measured on scintillation counter (performed at Upstate USA, Charlottesville, VA).

[0453] Compounds P-0001, P-0002, P-0003, P-0004, P-0005, P-0006, P-0007, P-0008, P-0009, P-0010, P-0011, P-0012, P-0013, P-0014, P-0015, P-0016, P-0017, P-0018, P-0020, P-0022, P-0024, P-0025, P-0026, P-0027, P-0028, P-0030, P-0031, P-0032, P-0033, P-0038, P-0053, P-0054, P-0055, P-0056, P-0057, P-0058, P-0059, P-0060, P-0061, P-0062, P-0063, P-0064, P-0065, P-0066, P-0069, P-0071, P-0072, P-0073, P-0074, P-0075, P-0078, and P-0082 had IC₅₀ of less than 1 µM in at least one of the c-kit assays described above in Examples 40 and 41.

Kit

PCR primers

<table>
<thead>
<tr>
<th>KIT</th>
<th>Primer Sequence</th>
<th>SEQ ID NO.</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>8K1A</td>
<td>ATGTACGAAGTTCACTGGAAAGTTGATGAAATCAAGGS</td>
<td>1776</td>
<td></td>
</tr>
<tr>
<td>8K2A</td>
<td>AACAACTACGTTCATACGACCGACGCCGACCTGGTCGCCGAC</td>
<td>1779</td>
<td></td>
</tr>
<tr>
<td>8K2B</td>
<td>GTTACGCGGGAACCTCCCATTTGATTCGTCGACCGACCTGGTC</td>
<td>1781</td>
<td></td>
</tr>
<tr>
<td>8K3A</td>
<td>AAGAGGTGTTTACCCGGGCGAAGCTGCTTTGATGAAATCAGGAC</td>
<td>1782</td>
<td></td>
</tr>
<tr>
<td>8K3B</td>
<td>ACCGACCGCCCGACCGGTTTACCCGGGACGAC</td>
<td>1783</td>
<td></td>
</tr>
</tbody>
</table>
| 8K4A | GG
<table>
<thead>
<tr>
<th>8K5B</th>
<th>GTCAAGGTGCACAGACGTTTTACGCACTTTTATCGGCAACGAGCTCA</th>
<th>1787</th>
</tr>
</thead>
<tbody>
<tr>
<td>8K5A</td>
<td>AAACGGTCGCGCACCCGACCAGGAAGGCTGATTCGGCCTG</td>
<td>1788</td>
</tr>
<tr>
<td></td>
<td>(SEQ ID NO:___)</td>
<td></td>
</tr>
<tr>
<td>8K6B</td>
<td>CCAAGTTAGACAGAACTTTTCAGTTCCAGACACATCGGCTCTGTG</td>
<td>1789</td>
</tr>
<tr>
<td></td>
<td>(SEQ ID NO:___)</td>
<td></td>
</tr>
<tr>
<td>8K7A</td>
<td>CTTGAACTTTCTCTTTACCTGGTTAAACCACTGAACATGTTTAA</td>
<td>1791</td>
</tr>
<tr>
<td></td>
<td>(SEQ ID NO:___)</td>
<td></td>
</tr>
<tr>
<td>8K7B</td>
<td>GGGTCACGACCCGACCAGGAAGGTTAACGATGTTGATCTG</td>
<td>1792</td>
</tr>
<tr>
<td></td>
<td>(SEQ ID NO:___)</td>
<td></td>
</tr>
<tr>
<td>8K8A</td>
<td>CTGGCTGGTGCGTGCCAGACCCTGACGATGGTCCGACCTGGTTTAC</td>
<td>1793</td>
</tr>
<tr>
<td></td>
<td>(SEQ ID NO:___)</td>
<td></td>
</tr>
<tr>
<td>8K8B</td>
<td>GTCAAGGTGCACAGACGTTTTACGCACTTTTATCGGCAACGAGCA</td>
<td>1794</td>
</tr>
<tr>
<td></td>
<td>(SEQ ID NO:___)</td>
<td></td>
</tr>
<tr>
<td>8K9A</td>
<td>GAAACTGGCTGCTGATGGACCAGCTGGAGACTCTCTGCCTGCTGA</td>
<td>1795</td>
</tr>
<tr>
<td></td>
<td>(SEQ ID NO:___)</td>
<td></td>
</tr>
<tr>
<td>8K9B</td>
<td>AGACCGATGAAAAGAGTCAGTTTACGACCGAGGAAGGGCTCACGC</td>
<td>1796</td>
</tr>
<tr>
<td></td>
<td>(SEQ ID NO:___)</td>
<td></td>
</tr>
<tr>
<td>8K10A</td>
<td>CTTGACCTTTTCTCTTTCTTAACAGGAAGCACCACGGGGAAG</td>
<td>1797</td>
</tr>
<tr>
<td></td>
<td>(SEQ ID NO:___)</td>
<td></td>
</tr>
<tr>
<td>8K10B</td>
<td>CAGGCAGTTTTTGTACAGCCCGCTTTCCGGGGTGCTCTTGT</td>
<td>1798</td>
</tr>
<tr>
<td></td>
<td>(SEQ ID NO:___)</td>
<td></td>
</tr>
<tr>
<td>8K11A</td>
<td>GGGCTGATCAAACCTGCCTGCACCTCTAAAGAATCTTCTTGCTC</td>
<td>1799</td>
</tr>
<tr>
<td></td>
<td>(SEQ ID NO:___)</td>
<td></td>
</tr>
<tr>
<td>8K11B</td>
<td>CGGTGTATGTTGGTGGTGAGTGCAAGCGGAAGGATCTTTAGAGT</td>
<td>1811</td>
</tr>
<tr>
<td></td>
<td>(SEQ ID NO:___)</td>
<td></td>
</tr>
<tr>
<td>8K11A</td>
<td>GACTCTACCAAGATACATGGACATGAAACCACGGGTGTCTTTTA</td>
<td>1812</td>
</tr>
<tr>
<td></td>
<td>(SEQ ID NO:___)</td>
<td></td>
</tr>
<tr>
<td>8K11B</td>
<td>TCCGCTTTGTCGGAACACGTAAGAAACACCGGTTCTCATGT</td>
<td>1813</td>
</tr>
<tr>
<td></td>
<td>(SEQ ID NO:___)</td>
<td></td>
</tr>
<tr>
<td>8K12A</td>
<td>GGGTGCTCAGCCCAGGACCCACACAACGTCGTTCTCTGCATGTC</td>
<td>1814</td>
</tr>
<tr>
<td></td>
<td>(SEQ ID NO:___)</td>
<td></td>
</tr>
<tr>
<td>8K12B</td>
<td>TAACGTACGTCGTCAGTAAGACCGATACGAAACAGACGTTT</td>
<td>1815</td>
</tr>
<tr>
<td></td>
<td>(SEQ ID NO:___)</td>
<td></td>
</tr>
<tr>
<td>8K13A</td>
<td>TCCTTACATGAAACGTGGTTACCCGCACGATGGAAGACG</td>
<td>1816</td>
</tr>
<tr>
<td></td>
<td>(SEQ ID NO:___)</td>
<td></td>
</tr>
<tr>
<td>8K13B</td>
<td>CCAGGTCCACGCCCGACATTTCGTGCCTTCGACATGATAGCCGCG</td>
<td>1817</td>
</tr>
<tr>
<td>8K14A</td>
<td>GAACTGGCCGTGGAACCTGGAAAGACCTGGTGTCTTTCTTTACC</td>
<td>1818</td>
</tr>
<tr>
<td>8K14B</td>
<td>GAAAGCCATACCTTCTGGACACCTGGTAAAGAAGAAGACAGGCTT</td>
<td>1819</td>
</tr>
<tr>
<td>8K15A</td>
<td>GTTCGAAAGGTATGCGGTCTTCTGGGCTCTAAAACACTGATCCA</td>
<td>1821</td>
</tr>
<tr>
<td>8K15B</td>
<td>CGCCGCGCCACGCGCTCGGCTGATCAGTTTTTGTAGCGCC</td>
<td>1822</td>
</tr>
<tr>
<td>8K16A</td>
<td>CGTGACCTGCGCCGCCTACATCTGGCTGACCCACCGGTGGTG</td>
<td>1823</td>
</tr>
<tr>
<td>8K16B</td>
<td>ACCGAAGTCCGCAAGATTCTGGTATGACCGGGCCTGCGGCTCAGGAGG</td>
<td>1824</td>
</tr>
<tr>
<td>8K17A</td>
<td>ACCAAATCTGGCTCTGCGGCTTGGGCCTACCTACAAAAACG</td>
<td>1825</td>
</tr>
<tr>
<td>8K17B</td>
<td>GTTACCTTCAACAGCTACTAGTACGTTGATTTTGTAGATTGCTACGGCGCC</td>
<td>1826</td>
</tr>
<tr>
<td>8K18A</td>
<td>TCTAAGTACCTGTTAAAGGTAACCGGCCTGGCTGCTGGTAAATTG</td>
<td>1827</td>
</tr>
<tr>
<td>8K18B</td>
<td>GAAGATAGATATTCCGGCGCCATCCATTAAACGCGCAAGACGCGC</td>
<td>1829</td>
</tr>
<tr>
<td>8K19A</td>
<td>ATGGGGCCGGAATCTCTCTACTGCACTTTACCTTCTGACAATC</td>
<td>1831</td>
</tr>
<tr>
<td>8K19B</td>
<td>GAAGCGTAAGACAAAGCTACGGAGTGGTAACAAACGCG</td>
<td>1832</td>
</tr>
<tr>
<td>8K20A</td>
<td>GAAGTTCGTCCTAACGTCATCTCTCTGCTGGTCCTACTCGTACCCGG</td>
<td>1833</td>
</tr>
<tr>
<td>8K20B</td>
<td>CCGTGGGAACGTGCTCTTCTGCTCCGTACCACCGG</td>
<td>1834</td>
</tr>
<tr>
<td>8K21A</td>
<td>GCTTCTCTCTGGCTACCGCGGTATGCCGTCGTACCTCAAAATCTGT</td>
<td>1835</td>
</tr>
<tr>
<td>8K21B</td>
<td>CGGAACCTTCTTTGATGATTTTGTAGAATTAGAGTCTACGCGGC</td>
<td>1836</td>
</tr>
<tr>
<td>8K22A</td>
<td>AAAATGATCAAAGAAGGTTTCCGTATGCTTCCTCCGAACCG</td>
<td>1837</td>
</tr>
<tr>
<td></td>
<td>Sequence</td>
<td>(SEQ ID NO:</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>8K22B</td>
<td>ATGTCGTAATTTCCCGCGGGCGTGTTCGGAGACGACCAT</td>
<td>1838</td>
</tr>
<tr>
<td>8K23A</td>
<td>CCGGCGGAAAGTAGACCACATCTAGAAAAAACCCTGTGGCAGCGG</td>
<td>1839</td>
</tr>
<tr>
<td>8K23B</td>
<td>AAGGTGGAGGCTTTTACCCGTCGCGCTCCAGCAAGTTTTC</td>
<td>1841</td>
</tr>
<tr>
<td>8K24A</td>
<td>CGGCTGAAACGCCTCGACCTCCAAACCAGATGTCACTGTTCGTG</td>
<td>1842</td>
</tr>
<tr>
<td>8K24B</td>
<td>TGGTGAATCAGAGACTCTGGTTTTCGATCGAGACGATCTGT</td>
<td>1843</td>
</tr>
<tr>
<td>8K25A</td>
<td>AAACAGATCTCGCTCCACCACATCTACTCTAACCCTG</td>
<td>1844</td>
</tr>
<tr>
<td>8K25B</td>
<td>TGGACGGTTCCGAGAGACAGTTGGCCAGGTTAGTAGATGTGG</td>
<td>1845</td>
</tr>
<tr>
<td>8K26A</td>
<td>AACTCTCTCCCAGAGCGTTAGTTGCAGCACCACCTG</td>
<td>1846</td>
</tr>
<tr>
<td>8K26B</td>
<td>GTGAACCAAGAGTGGATACGGAGAAGAAGCTGACTGG</td>
<td>1847</td>
</tr>
<tr>
<td>8K27A</td>
<td>CGGATCATCTGCTTGTTCTATTGATCGCAGCGGTTCCTCTTGAGCCG</td>
<td>1848</td>
</tr>
<tr>
<td>8K27B</td>
<td>AAGGTGGTGCTGATGACCCAGCGGCTGAGAAGAAGACGCC</td>
<td>1849</td>
</tr>
<tr>
<td>8K-F</td>
<td>GTGTTTTCTAGTATCAGATAGTGAGAAG</td>
<td>1851</td>
</tr>
<tr>
<td>8K-R</td>
<td>GTGTTTTGACTAAACGTGCTGAGACCAGCA</td>
<td>1852</td>
</tr>
<tr>
<td>KIT COD-K948X</td>
<td>GTCCTGTGACTAttttgtcaggtctggagagc</td>
<td>3411</td>
</tr>
</tbody>
</table>
P1332.N6 BI PTP KIT M552-K948-X COD

(Nucleic Acid SEQ ID NO:) (Protein SEQ ID NO:)
taatagcactcactataaqggagataaaatcctctctgagaataaat

tgtaacttttaagaagggagatataaccctggctacccacctcactcgattagaa

M G H H H H H Y E
gttcagttggaagattttgtgagcggataaaatcctctgagaataaat

taaccctggctacccacctcactcgattagaa

V Q W K V V E I N G N Y N Y I D P T
cagcggctgaacgaccacaataatggagtctccgccgtaacccgtctgcttttcggtaaaacc

Q L P Y D H K W E F P R N R L S F G K T
cctgggtggtgggtgctgtaaagttgttggaagccgaccggtcaggtctgatcactaatct

L G A G A F G K V V E A T A Y G L I K S
gacgcggcgatgaccgttgcggttaaaatgctgaaaccgtctgcgcacctgaccgacgt

daamtvavkmklkpahltetragcgtgatgtctgaactgaaagttgtcttacctggtaaccacatgacactgtt
eaalmseklvstlgnhmiv

aacctgtctgggtgctgacaccatcggttgctccgacctggttaacctcgaataactgtgc

n l l g a c t i g g p t l v i t e y c c
tacggtgacccgtctgaacctctgctgtaaacgtgactctttcatctgctcttaaaacag

y g d l n f l r r r k d s f i c s k q
gaaagacacgagcggagccgctgctacaaaaaccgctgtcactctctaaagatctttgc
e d h a e a a l y k n n l h s k e s s c
tctgaactctacaagaatcagcgaacttgacacetgcttcggctagtcggtcttttctttact

a i m e d d d e l a d d e d l l s f s y
caggtgtggaagatgggtctgctgctgtaaacgtgactctttcatctgctcttaaaacag

q v a k g m a f l a s k n c i h r d l a
ggcgtgaaacatctctgtgccaccacaggctgattacaaaaatctgcacccggtctcgtgac

a r n i l l t h g r i t k i c d f g l a
cgtg'iacatcacaagacacgactctacaactagggttaacgcgtctccgaccta

r d i k n c d s n y v v k g n a r l p v k
tgtagcgcggcggaattcatcttcaacctgcgttacacctctgccgacacgatcttttggtct

w m a p e s i f n c v y t f e s d v w s

tacggtatcttcctggaacctgttctctcttcgattacctcggtcttcgggtc

y g i f l w e l f s l g s s p y p g m p
gttgactctaaattctacaaaatagctaaagaggtttcccgtatatcgtctccggaacac

v d s k f y k m i k e g f r m l s p e h
ggcgcggcggagaatgtcagcactatgaaacactcttgagcgcggcgcgtgaacgct

a p a e m y d i m k t c w d a d p l k r
cgcgtcactacaacgcagcttcgcgtgctccggaacagatctctgatcactctaccacac

p t f k q i v q l i e k qi s e s t n h
aticccttaacctggcaacactgtcttcggacaccgtcagaataagtctagactgaaagaga

i y s n l a n c s p n r q k -

agagt

Additional biochemical and cell-based assays
In general, any protein kinase assay can be adapted for use with c-kit. For example, assays (e.g. biochemical and cell-based assays) as described in Lipson et al., U.S. Patent Publ. 20040002534 (incorporated herein by reference in its entirety) can be used in the present invention.

In vivo model system testing

For *in vivo* testing, a suitable animal model system can be selected for use. For example, for multiple sclerosis, the rodent experimental allergic encephalomyelitis (EAE) is commonly used. This system is well-known, and is described, for example, in Steinman, 1996, Cell 85:299-302 and Secor et al., 2000, J Exp. Med 5:813-821, which are incorporated herein by reference in their entireties.

Similarly, other model systems can be selected and used in the present invention.

Exemplary Fms biochemical assay

IC$_{50}$ values were determined with respect to inhibition of Fms kinase activity, where inhibition of phosphorylation of a peptide substrate is measured as a function of compound concentration. Compounds to be tested, dissolved in DMSO (1 µL), were added to a white 384-well plate (Costar #3705). Working stocks of Fms kinase (Upstate Biotech, #14-551), biotin-(E4Y)$_{10}$ substrate (Upstate Biotech, Cat# 12-440), and ATP (Sigma, Cat#A-3377) were prepared in 8 mM MOPS pH 7.4, 2 mM MgCl$_2$, 8 mM MnCl$_2$, 2 mM DTT, and 0.01% Tween-20. AU components were added to the 384-well plate for a final concentration of 0.5 ng/well Fms, 30 nM biotin-(E4Y)$_{10}$ (Upstate Biotechnology) and 10 µM ATP in a volume of 20 µL. Each sample was at 5% DMSO. The plate was then incubated for 60 minutes at room temperature. Just before use, working stocks of donor and acceptor beads from the AlphaScreen PY20 Detection Kit (PerkinElmer, Cat#676601M) were prepared in 8 mM MOPS, pH 7.4, 100 mM EDTA, 0.3% BSA. To stop the reaction, the plate was uncovered in the dark and 5 µl of Donor Beads solution (Streptavidin beads) was added to each well. The plate was incubated at room temperature for 20 minutes. Five microliters of Acceptor Beads solution (PY20 coated beads) were then added to each well. The final concentration of each bead was 20 µg/mL. The plates were incubated at room temperature for 60 minutes. Fluorescence signal was recorded on the Fusion Alpha reader or AlphaQuest reader. Phosphorylated substrate results in binding of the PY20 antibody and association of the donor and acceptor beads such that
signal correlates with kinase activity. The signal vs. compound concentration was used to determine the IC$_{50}$.

[0458] Compounds were also tested using a similar assay with a 10-fold higher ATP concentration. Compounds to be tested, dissolved in DMSO (1 µL), were added to a white 384-well plate (Costar #3705). Working stocks of Fms kinase (Upstate Biotech, #14-551), biotin-(E4Y)$_{10}$ substrate (Upstate Biotech, Cat# 12-440), and ATP (Sigma, Cat#A-3377) were prepared in 8 mM MOPS pH 7.0, 2 mM MgCl$_2$, 8 mM MnCl$_2$, 2 mM DTT, 50 mM NaCl, 0.01% BSA, and 0.01% Tween-20. AU components were added to the 384-well plate for a final concentration of 0.5 ng/well Fms, 30 nM biotin-(E4Y)$_{10}$ (Upstate Biotechnology) and 100 µM ATP in a volume of 20 µL. Each sample was at 5% DMSO. The plate was then incubated for 20 minutes at 30°C. Just before use, working stocks of donor and acceptor beads from the AlphaScreen PY20 Detection Kit (PerkinElmer, Cat#676601M) were prepared in 8 mM MOPS, pH 7.0, 100 mM EDTA, 0.01% BSA. To stop the reaction, the plate was uncovered in the dark and 5 µl of Donor Beads solution (Streptavidin beads) was added to each well. The plate was incubated at room temperature for 20 minutes. Five microliters of Acceptor Beads solution (PY20 coated beads) were then added to each well. The final concentration of each bead was 10 µg/mL. The plates were incubated at room temperature for 60 minutes. Fluorescence signal was recorded on the Fusion Alpha reader or AlphaQuest reader. Phosphorylated substrate results in binding of the PY20 antibody and association of the donor and acceptor beads such that signal correlates with kinase activity. The signal vs. compound concentration was used to determine the IC$_{50}$.

[0459] Compounds were assayed using a similar assay to that described above, using in a final reaction volume of 25 µl: Fms (h) (5-10 mU) in 8mM MOPS pH 7.0, 0.2 mM EDTA, 250 mM KKKSPGEYVNIEFG (SEQ ID NO:____), 10 mM MgAcetate and γ-33P-ATP (approximately 500 cpm/pmole), with appropriate concentrations of compound. Samples were incubated for 40 minutes at room temperature and stopped by addition of 5 µl of 3% phosphoric acid. 10 µl of each sample is spotted onto a P30 filtermat and washed 3x with 75 mM phosphoric acid, once with methanol, dried and measured on scintillation counter (Upstate USA, Charlottesville, VA).
Compounds P-0001, P-0002, P-0003, P-0004, P-0005, P-0006, P-0007, P-0008, P-0009, P-0010, P-0011, ..., to end-to-end ligation of the PCR-generated product containing the incorporated mutations in one or both PCR primers.

Example 42: Site-directed Mutagenesis of c-Kit, c-Fms and other Kinases

Mutagenesis of c-kit and other kinases (as well as other sequences of interest) can be carried out according to the following procedure as described in Molecular Biology: Current Innovations and Future Trends. Eds. A.M. Griffin and H.G. Griffin. (1995) ISBN 1-898486-01-8, Horizon Scientific Press, PO Box 1, Wymondham, Norfolk, U.K., among others.

In vitro site-directed mutagenesis is an invaluable technique for studying protein structure-function relationships, gene expression and vector modification. Several methods have appeared in the literature, but many of these methods require single-stranded DNA as the template. The reason for this, historically, has been the need for separating the complementary strands to prevent reannealing. Use of PCR in site-directed mutagenesis accomplishes strand separation by using a denaturing step to separate the complementing strands and allowing efficient polymerization of the PCR primers. PCR site-directed methods thus allow site-specific mutations to be incorporated in virtually any double-stranded plasmid; eliminating the need for M13-based vectors or single-stranded rescue.

It is often desirable to reduce the number of cycles during PCR when performing PCR-based site-directed mutagenesis to prevent clonal expansion of any (undesired) second-site mutations. Limited cycling which would result in reduced product yield, is offset by increasing the starting template concentration. A selection is used to reduce the number of parental molecules coming through the reaction. Also, in order to use a single PCR primer set, it is desirable to optimize the long PCR method. Further, because of the extendase activity of some thermostable polymerases it is often necessary to incorporate an end-polishing step into the procedure prior to end-to-end ligation of the PCR-generated product containing the incorporated mutations in one or both PCR primers.
The following protocol provides a facile method for site-directed mutagenesis and accomplishes the above desired features by the incorporation of the following steps: (i) increasing template concentration approximately 1000-fold over conventional PCR conditions; (ii) reducing the number of cycles from 25-30 to 5-10; (iii) adding the restriction endonuclease DpnI (recognition target sequence: 5-Gm6ATC-3, where the A residue is methylated) to select against parental DNA (note: DNA isolated from almost all common strains of E. coli is Dam-methylated at the sequence 5-GATC-3); (iv) using Taq Extender in the PCR mix for increased reliability for PCR to 10 kb; (v) using Pfu DNA polymerase to polish the ends of the PCR product, and (vi) efficient intramolecular ligation in the presence of T4 DNA ligase.

Plasmid template DNA (approximately 0.5 pmole) is added to a PCR cocktail containing, in 25 ul of Ix mutagenesis buffer: (20 mM Tris HCl, pH 7.5; 8 mM MgCl2; 40 ug/ml BSA); 12-20 pmole of each primer (one of which must contain a 5-prime phosphate), 250 uM each dNTP, 2.5 U Taq DNA polymerase, 2.5 U of Taq Extender (Stratagene).

The PCR cycling parameters are 1 cycle of: 4 min at 94°C, 2 min at 50°C and 2 min at 72°C; followed by 5-10 cycles of 1 min at 94°C, 2 min at 54°C and 1 min at 72°C (step 1).

The parental template DNA and the linear, mutagenesis-primer incorporating newly synthesized DNA are treated with DpnI (10 U) and Pfu DNA polymerase (2.5 U). This results in the DpnI digestion of the in vivo methylated parental template and hybrid DNA and the removal, by Pfu DNA polymerase, of the Taq DNA polymerase-extended base(s) on the linear PCR product.

The reaction is incubated at 37°C for 30 min and then transferred to 72°C for an additional 30 min (step 2).

Mutagenesis buffer (Ix, 115 ul, containing 0.5 mM ATP) is added to the DpnI-digested, Pfu DNA polymerase-polished PCR products.

The solution is mixed and 10 ul is removed to a new microfuge tube and T4 DNA ligase (2-4 U) added.
[0471] The ligation is incubated for greater than 60 min at 37°C (step 3).

[0472] The treated solution is transformed into competent E. coli (step 4).

[0473] In addition to the PCR-based site-directed mutagenesis described above, other methods are available. Examples include those described in Kunkel (1985) Proc. Natl. Acad. Sci. 82:488-492; Eckstein et al. (1985) Nucl. Acids Res. 13:8764-8785; and using the GeneEditor™ Site-Directed Mutagenesis System from Promega.

[0474] In the following Examples, as well as in Examples 1-36 above, it is understood that the solvents and reagents used or suggested are not limiting, and can be substituted appropriately with solvents and reagents known to those of skill in the art. Reaction products may be isolated by means known in the art, such as extraction with a suitable solvent, precipitation from a suitable solvent, chromatography using a suitable solvent system, including silica gel column chromatography, HPLC, preparative TLC, and the like.

[0475] Synthetic routes available to Formula I

\[
\begin{align*}
\text{Formula I} \\
\text{wherein } X_1, X_2, Y_1, Y_2, L_1, Ar_1, L_2 \text{ and } R^1 \text{ are as defined in Formula I of } [0012] \text{ or} \\
\text{Formula Ib}
\end{align*}
\]
wherein U, V, W, Z, R, R1, R15, R16, R17, A, M, E, G, J, K, F and n are as defined in Formula Ib of [0025] are described in the schemes and examples below. While the methods described below are shown in terms of Formula Ib, it would be clear to one skilled in the art that the methods may be used to prepare compounds of either Formula I or Formula Ib. With reference to the schemes and examples below, unless clearly specified to the contrary, Formula and compound enumeration are defined for each scheme or example independently of such enumeration in the specification above, although general reference to Formula I and Ib indicate the Formulae above described in [0012] and [0026], respectively.

[0476] Compounds of Formula Ib can be prepared from compounds of Formula III and Formula X as described in Scheme 39.

Scheme 39:

[0477] Compound of Formula III, where R is either hydrogen or a protecting group P (e.g. phenylsulfone, t-butyloxycarbonyl, triisopropylsilyl) and R is either hydrogen or a functional group appropriate for the coupling (e.g. Br, SH, OH, CHO etc.) is reacted with compound of Formula X where R is a functional group appropriately chosen, based on R, to form the linkage A using standard coupling conditions known to one skilled in the art to provide a compound of Formula Ib.

[0478] Compounds of Formula Ib can be prepared from compounds of Formula III and Formula Xa where R is a functional group appropriate for introduction of M-R1, is described in Scheme 40.
Scheme 40:

[0479] Compound of Formula III, where R_{41} is either hydrogen or a protecting group P (e.g. phenylsulfone, α-butyloxy carbonyl, triisopropylsilyl) and R_{40} is either hydrogen or a functional group appropriate for the coupling (e.g. Br, SH, OH, CHO etc.) is reacted with compound of Formula Xa where R_{42} is a functional group appropriately chosen, based on R_{40}, and R_{43} is a functional group appropriate to introduce $M-R_1$, to form the linkage A using standard coupling conditions known to one skilled in the art to provide compound of Formula II. Compound of Formula II is further functionalized to introduce $M-R_1$ using conditions known to one skilled in the art to provide compound of Formula Ib.

[0480] Steps 1 and 2 of Scheme 40 may be reversed such that compounds of Formula X are prepared from compounds of Formula Xa by methods of Step 2, followed by coupling of the resulting compounds of Formula X with compounds of Formula III following the methods of Step 1.

[0481] Many compounds of Formula X or Xa of Scheme 39 or 40 are commercially available or may be prepared in many different routes known in the literature, depending upon the specific ring system and substitution pattern that is desired, including substitution of nitrogen containing heterocycles, as well as de novo synthesis of the aromatic heterocycle.
[0482] General synthesis of compound of Formula III of Scheme 39 or 40 where R⁴⁰ is H or a functional group appropriate for coupling to compounds of Formula X or Xa (e.g. aldehyde, carboxylic acid, amine) is described in Scheme 41.

Scheme 41:

[0483] Compounds of Formula IIia, where U or Z is C-Br, C-Cl, C-NO₂ or C-NH₂, can be generally prepared from commercially available appropriate single heterocyclic ring or fused two ring heterocyclic compounds using methods known to one skilled in the art. Compound of Formula IIia is further subjected to modification to provide appropriately substituted compounds of Formula III, where U or Z is C-Br, C-Cl, C-NO₂ or C-NH₂, and R⁴¹ is H or protecting group P, using methods known to one skilled in the art.

[0484] General synthesis of compound of Formula III of Scheme 39 or 40 from compound of Formula HIb, where R⁴⁰ is H, is described in Scheme 42.

Scheme 42:

[0485] Compounds of Formula III, where R⁴¹ is either hydrogen or a protecting group P and R⁴⁰ is appropriate for coupling to compounds of Formula X or Xa of Scheme 39 or 40 (e.g. aldehyde, carboxylic acid, amine) or appropriate for modification to such substituents (e.g. ester, nitro) may also be prepared from compounds of Formula HIb (here R⁴⁰ is H) using synthetic methods known to one skilled in the art, for example as described by Merour and Joseph in Curr. Org. Chem. 2001, 5:471-506.
In addition to these schemes, the reactions shown in the following Examples may be combined in different sequences to provide compounds of Formula Ib. The transformations shown in Schemes 39-42 and the following Schemes and Examples as a single step should be considered to represent the general overall transformation, as some specific cases may require more than one reaction step to realize the desired compound.

In the preparation of compounds of Formula Ib, Formula II and Formula III it may frequently be advantageous to substitute the hydrogen of the N-H in the 7-azaindole or its analog with a protecting group as exemplified in Scheme 43, Step 1. The protecting group can then be removed when appropriate to reveal the N-H according to Step 2.

Scheme 43:

Step 1—Preparation of Formula IIIc where \(R^{41} \) is a protecting group \(P \)

Compound of Formula IIIc where \(R^{41} \) is a protecting group \(P \) may be prepared by dissolving compound of Formula IIia where \(R^{41} \) is hydrogen in a non-reactive solvent (e.g. dimethylformamide, tetrahydrofuran) and adding a base (e.g. aqueous sodium hydroxide, sodium hydride) and possibly a catalyst (e.g. tetrabutylammonium hydrogen sulfate). A reagent appropriate for the introduction of the protecting group (e.g. phenylsulfonyl chloride, triisopropylsilyl chloride, Boc anhydride) is then added and the reaction is allowed to stir for one to several hours. Isolation and purification by conventional means (e.g. extraction, silica gel chromatography) provides compounds of Formula IIIc where \(R^{43} \) is a protecting group.

Step 2—Preparation of Formula IIia where \(R^{41} \) is hydrogen

Compound of Formula IIia where \(R^{41} \) is hydrogen may be prepared by dissolving compound of Formula IIIc where \(R^{41} \) is a protecting group \(P \) in a suitable solvent (e.g. ethanol, tetrahydrofuran, dichloromethane) and adding a reagent appropriate for the removal of the protecting group (e.g. potassium hydroxide, tetrabutylammonium fluoride, trifluoroacetic acid). The reaction is allowed to stir for 30 minutes to several hours with
heating. Isolation and purification by conventional means (e.g. extraction, silica gel chromatography) provides compounds of Formula Ilia where \(R^{43} \) is hydrogen.

[0490] Compounds of Formula II above are similar to compounds of Formula Ib as shown, where \(R^{43} \) is defined as \(M-R^1 \) or a substituent appropriate for further substitution to provide \(M-R^1 \), and \(R^{44} \) is hydrogen or a protecting group \(P \).

![Formula II](image)

[0491] Compounds of Formula II where \(U, V, W, Z, J, E, F, G, K \) are C and \(n \) is 1 form compounds of Formula Ha below.

![Formula Ha](image)

[0492] The examples provided for the synthesis of compounds of Formula Ha are also applicable to many compounds meeting other definitions of Formula Ib and Formula II. For example, 7-azaindole, Compound 1, may be replaced in these syntheses by compounds where \(U, V, W, \) and \(Z \) are other than C-H.
Example 43: Synthesis of compounds of Formula Ha, where A is CH₂ or C(O)

Compounds of Formula Ha, where A is CH₂ or C(O) may be synthesized from compounds of Formula Xb (Formula Xa wherein R₄² is C(O)H, J, E, F, G and K are C and n is 1) and compound I in two Steps according to Scheme 100.

Scheme 100

![Scheme 100 Diagram](image)

Step 1 - Preparation of Formula XI where R⁴⁴ is hydrogen or methyl

To 7-azaindole I and a compound of Formula Xb is added an appropriate solvent (e.g. polar solvents such as methanol, tetrahydrofuran, and acetonitrile, or apolar solvents such as toluene) followed by an appropriate hydroxide or alkoxide base (e.g. potassium hydroxide, sodium methoxide). The reaction is typically allowed to stir at room temperature overnight. Isolation by conventional means (e.g. extraction and silica gel chromatography) provides compounds of Formula XI where R⁴⁴ is hydrogen or compounds of Formula XI where R⁴⁴ is methyl when methanol is used as a solvent, or a mixture of compounds of Formula XI where R⁴⁴ is hydrogen or methyl when methanol is used as a solvent. A resulting mixture may be separated by chromatography or used as a mixture in Step 2.
Step 2a - Preparation of Formula Ha where A is CH₂

To a compound of Formula XI where R⁴⁴ is hydrogen or methyl, in an appropriate polar solvent, (e.g. acetonitrile) is added a reducing agent (e.g. trifluoroacetic acid and triethylsilane). Typically, the reaction is allowed to stir at room temperature overnight. Isolation by conventional means (e.g. extraction and silica gel chromatography) provides compounds of Formula Ha where A is CH₂ and R⁴¹ is H.

Step 2b - Preparation of Formula Ha where A is C(O)

Compound of Formula Ha where A is C(O) is prepared by oxidizing a compound of Formula XI where R⁴⁴ is hydrogen with an appropriate oxidizing agent (e.g. Dess-Martin reagent, TEMPO) in a non-reactive solvent (e.g. tetrahydrofuran). Isolation by conventional means (e.g. extraction and silica gel chromatography) provides compound of Formula Ha where A is C(O) and R⁴¹ is H.

The reaction of Scheme 100 may be applied generally to compounds of Formula Xa, and also by replacing 7-azaindole 1, with 7-azaindoles substituted at the 4, 5, or 6 positions, preferable the 4 or 5 positions, to provide compounds of Formula I wherein X₁ is CH and X₂, Y₁ and Y₂ are CR⁶, CR⁴ and CR⁵, respectively, or Formula Ib wherein V and W are CH and U and Z are independently CR¹⁸. The compound of Formula Xa may be commercially available, or may be synthesized following the protocols of Examples herein. As such, a compound of Formula Ha where A is CH₂ (or analogous Formula I, Formula Ib) is prepared by reacting a 7-azaindole compound, optionally substituted at the 4, 5 or 6 position, with a suitable heteroaryl aldehyde (Formula Xa wherein R⁴² is C(O)H) in an appropriate solvent (e.g. methanol, tetrahydrofuran, acetonitrile, toluene) with a hydroxide or alkoxide base (e.g. potassium hydroxide, sodium methoxide). The resulting compound is reacted in a polar solvent (e.g. acetonitrile) under reducing conditions to provide the desired compound. A compound of Formula Ha where A is C(O) (or analogous Formula I, Formula Ib) is prepared by reacting a 7-azaindole compound, optionally substituted at the 4, 5 or 6 position, with a suitable heteroaryl aldehyde (Formula Xa wherein R⁴² is C(O)H) in an appropriate solvent (e.g. methanol, tetrahydrofuran, acetonitrile, toluene) with a hydroxide or alkoxide base (e.g. potassium hydroxide, sodium methoxide). From the resulting compound, the alcohol intermediate (e.g. Formula XI where R⁴⁴ is OH) is isolated and reacted in a non-reactive solvent (e.g. tetrahydrofuran) under oxidizing conditions to provide the desired compound.
Example 44: Synthesis of compounds of Formula Ha, where A is CH₂ or C(O)

[0498] Compounds of Formula Ha, where A is CH₂ or C(O) may also be synthesized from compounds of Formula Xc (Formula Xa wherein J, E, F, G and K are C, n is 1, and R⁴₂ is an organometallic substituent T) and compound HId (Formula III wherein U, V, W and Z are CH, R⁴₀ is C(O)H and R¹¹ is P) in four Steps according to Scheme 101.

Scheme 101

Step 1 - Preparation of Formula UId
[0499] 7-azaindole 1 is treated with hexamethyltetramine and acetic acid in water with heating to reflux for a few hours to introduce an aldehyde at the 3-position. This intermediate is isolated by concentration and extraction. A protecting group P is added to the N-I position of the intermediate as described in Scheme 43, Step 1 to provide compound of Formula IHd.

Step 2 - Preparation of Formula Xc -where R⁴₂ is T
[0500] Compound of Formula Xc where R⁴₂ is an organometallic substituent T (e.g. lithium, MgBr) is obtained by treating compound of Formula Xc, where R⁴₂ is bromine,
with an organolithium reagent (e.g. butyllithium) or magnesium, or via ortholithiation with an organolithium reagent (e.g. butyllithium) when R^42 is hydrogen, in a non-reactive solvent (e.g. tetrahydrofuran), typically at reduced temperature (e.g. -78 °C) and used in Step 3 without isolation.

Step 3 — Preparation of Formula XIa

[0501] Compound of Formula Xc where R^42 is T is added to compound of Formula H1c in a non-reactive solvent (e.g. tetrahydrofuran) at reduced temperature (e.g. -78 °C) and stirred for several hours. After warming to room temperature, isolation by conventional means (e.g. extraction and silica gel chromatography) provides compound of Formula XIa.

Step 4a — Preparation of Formula Ha where A is CH$_2$

[0502] To a compound of Formula XIa, in an appropriate polar solvent, (e.g. acetonitrile) is added a reducing agent (e.g. trifluoroacetic acid and triethylsilane). Typically, the reaction is allowed to stir at room temperature overnight. Isolation by conventional means (e.g. extraction and silica gel chromatography), followed by deprotection of the N-P according to Scheme 43, Step 2 provides compounds of Formula Ha where A is CH$_2$ and R^41 is H.

Step 4b — Preparation of Formula Ha where A is C(O)

[0503] Compound of Formula Ha where A is C(O) is prepared from compound of Formula XIa following the protocol of Example 43, Step 2b, followed by deprotection according to Scheme 43, Step 2 to provide compound where R^41 is H.

Example 45: Synthesis of compounds of Formula Ha, where A is C(O) or CH$_2$

[0504] Compounds of Formula Ha, where A is C(O) or CH$_2$, may be synthesized from compounds of Formula Xd (Formula Xa wherein J, E, F, G and K are C, n is 1, and R^42 is C(O)Cl) and compound 1 in one and two Steps, respectively, according to Scheme 102.
Scheme 102

Step 1 - Preparation of Formula Ha where A is C=O

[0505] Compound of Formula Ha where A is a carbonyl is prepared by reacting compound 1 with an acid chloride of Formula Xd in the presence of a Lewis acid (e.g. aluminum trichloride) in a non-reactive solvent (e.g. dichloromethane) with stirring at room temperature for several hours. The reaction may be quenched with methanol and isolation by conventional means (e.g. extraction and silica gel chromatography) provides compound of Formula Ha where A is C=O and R^4 is H.

Step 2 — Preparation of Formula Ua where A is CH₂

[0506] Compound of Formula Ha where A is CH₂ may be prepared by reacting compound Ha where A is C(O) with a reducing agent (e.g. lithium aluminum hydride) in a non-reactive solvent (e.g. tetrahydrofuran) for several hours. Isolation by conventional means (e.g. extraction and silica gel chromatography) provides compound of Formula Ha where A is CH₂ and R^4 is H.

Example 46: Synthesis of compounds of Formula Ha, where A is CH₂

[0507] Compounds of Formula Ha, where A is CH₂ may be synthesized from compound 1 in two Steps according to Scheme 103.
Scheme 103

Step 1 - Preparation of Formula IHe

[0508] Compound of Formula IHe (Formula III where U, V, W and Z are CH, R^{41} is P and R^{40} is CH_{2}N(CH_{3})_{2}) is synthesized from compound 1 following the literature procedure (Robinson, J. Am. Chem. Soc, 1955, 77, p. 457), followed by protection of the N-H according to Scheme 43, Step 1.

Step 2 — Preparation of Formula Ua where A is CH_{2}

[0509] Compounds of Formula Ha where A is CH_{2} is synthesized through the reaction of compounds of Formula IHe with isopropyl chloroformate (or ethyl chloroformate) at room temperature in toluene to give a 3-chloromethyl intermediate. This intermediate, cooled to -78 °C, is reacted with an organocopper reagent of Formula Xc where R^{42} is the metal (prepared as described in Example 44, step 2) and a solution of copper cyanide and lithium chloride. The reaction may be stirred at -78 °C for one hour then allowed to warm to room temperature and quenched with a solution of 4:1 ammonium chloride: ammonium hydroxide. Isolation by conventional means (e.g. extraction and silica gel chromatography) provides compound of Formula Ha where A is CH_{2} and R^{41} is P, which can be removed according to Scheme 43 Step 2 to provide the compound where R^{41} is H.

Example 47: Synthesis of compounds of Formula Ha, where A is O

[0510] Compounds of Formula Ha, where A is O may be synthesized from compound 1 in two Steps according to Scheme 104.
Scheme 104

Step 1 - Preparation of Compound 400

[0511] 3-bromo-7-azaindole 400 may be prepared by dissolving 7-azaindole 1 in chloroform and slowly adding Br₂ in carbon tetrachloride at 0 °C. After stirring for 1-2 hours, the reaction may be quenched in aqueous hydrochloric acid. Isolation by conventional means (e.g. extraction and silica gel chromatography) provides compound 400.

Step 2 - Preparation of Formula Ua where A is O

[0512] Compound of Formula Ha where A is O is prepared by reacting 3-bromo-7-azaindole 400, protected at N-H according to Scheme 43, Step 1, with compound of Formula Xe (Formula Xa wherein J, E, F, G and K are C, n is 1, and R₄₂ is OH) in the presence of a base (e.g. sodium hydride) and a copper catalyst (e.g. copper bromide) in a non-reactive solvent (e.g. dimethylformamide) with heating (e.g. 120 °C) for several hours. Isolation by conventional means (e.g. extraction and silica gel chromatography), followed by removal of the protecting group according to Scheme 43, Step 2 provides compounds of Formula Ha where A is O and R₄¹ is H.

Example 48: Synthesis of intermediate l-(3-Hydroxy-pyrrolo[2,3-b]pyridin-1-yl)-ethanone (503)

[0513] l-(3-Hydroxy-pyrrolo[2,3-b]pyridin-1-yl)-ethanone 503 may be synthesized in three Steps from 2-Amino-nicotinic acid 500 as described in Scheme 105. The compound is an exemplary compound of Formula III wherein U, V, W and Z are CH, R₄₀ is OH and R₄¹ is P (e.g. acetyl).
Scheme 105

Step 1 - Preparation of 2-(Carboxymethyl-amino)-nicotinic acid (501)
[0514] 2-(Carboxymethyl-amino)-nicotinic acid 501 is prepared by reacting commercially available 2-Amino-nicotinic acid 500 with 2-chloroacetic acid in the presence of base (e.g. sodium carbonate) typically at room temperature for 1-4 hours followed by purification and isolation by conventional means (e.g. acid base extraction and recrystallization).

Step 2 - Preparation of Acetic acid l-acetyl-lH-pyrrolo[2,3-b]pyridin-3-yl ester (502)
[0515] Acetic acid l-acetyl-lH-pyrrolo[2,3-b]pyridin-3-yl ester 502 is prepared by reacting 2-(Carboxymethyl-amino)-nicotinic acid 501 with sodium acetate in refluxing acetic anhydride for several hours, followed by purification and isolation by conventional means (e.g. recrystallization) (Su & Tsou; J. Am. Chem. Soc., 82, 1960, 1187).

Step 3 - Preparation of 1-(3-Hydroxy-pyrrolo[2,3-b]pyridin-1-yl)-ethanone (503)
[0516] 1-(3-Hydroxy-pyrrolo[2,3-b]pyridin-1-yl)-ethanone 503 is prepared from acetic acid l-acetyl-lH-pyrrolo[2,3-b]pyridin-3-yl ester 502 by selective removal of the acetate at the 3-position by reaction with sodium in methanol at room temperature typically for 30 minutes to one hour, followed by purification and isolation by conventional means (e.g. extraction and recrystallization).

Example 49: Synthesis of compounds of Formula Ha, where A is O

[0517] Compounds of Formula Ha, where A is O may be synthesized from compound of Formula IHf (Formula III where U, V, W and Z are CH, R^{41} is P and R^{40} is OH) and compound of Formula Xf (Formula Xa wherein J, E, F, G and K are C, n is 1, and R^{42} is leaving group L) in one Step according to Scheme 106.
Scheme 106

Step 1 - Preparation of Formula Ua where A is O

[0518] Formula Ha where A is O is prepared by dissolving compound of Formula Xf, where L is a leaving group (e.g. halogen or triflate), in a non-reactive solvent (e.g. dimethylformamide) in the presence of a base (e.g. sodium hydride). Compound of Formula IHf is added in the presence of a copper catalyst (e.g. copper bromide) with heating for several hours. Removal of the protecting group according to Scheme 43, Step 2 followed by isolation by conventional means (e.g. extraction and silica gel chromatography) provides compounds of Formula Ha where A is O and R41 is H.

Example 50: Synthesis of compounds of Formula Ha, when A is NH or N-R45

[0519] Compounds of Formula Ha, where A is NH or NR45 (R45 consistent with definition of A for compounds of Formula Ib or L1 for compounds of Formula I) may be synthesized from 3-bromo-7-azaindole 400 and a compound of Formula Xg (Formula Xa wherein J, E, F, G and K are C, n is 1, and R42 is NH\textsubscript{2}) in two Steps according to Scheme 107.

Scheme 107
Step 1 - Preparation of Formula Ha where A is NH

[0520] Compound of Formula Ha where A is NH is prepared by reacting 3-bromo-7-azaindole 400 with neat compound of Formula Xg with heating for several hours (e.g. 150 °C). Alternatively, 400 may be reacted with compound of Formula Xg using palladium catalyzed Buchwald-Hartwig conditions (i.e. a palladium catalyst (e.g. Tris(dibenzylideneacetone)dipalladium(0)), a ligand (e.g. tri- t-butylyphosphine), and a base (e.g. sodium t-butoxide) in a non-reactive solvent (e.g. toluene) with heating (e.g. 80 °C) for several hours). Isolation by conventional means (e.g. extraction and silica gel chromatography) provides compound of Formula Ha where A is NH and R⁴¹ is P. Removal of the protecting group according to Scheme 43, Step 2 provides compounds of Formula Ha where A is NH and R⁴¹ is H.

Step 2 - Preparation of Formula Ha where A is N-R⁴⁵

[0521] Compound of Formula Ha where A is N-R⁴⁵ is prepared by reacting compound of Formula Ha, where R⁴¹ is P and A is NH, with an appropriate reagent with a leaving group (e.g. methyl iodide, acetyl chloride) in the presence of a base (e.g. potassium carbonate, diisopropylethylamine) in a non-reactive solvent (e.g. dimethylformamide) for several hours at room temperature. Removal of the protecting group according to Scheme 43, Step 2 and isolation by conventional means (e.g. extraction and silica gel chromatography) provides compound of Formula Ha where A is N-R⁴⁵ and R⁴¹ is H.

Example 51: Synthesis of intermediate of Formula IHh where R⁴⁰ is NH₂

[0522] Compounds of Formula IHh (Formula III where U, V, W and Z are CH, R⁴¹ is H and R⁴⁰ is NH₂) may be synthesized from 7-azaindole 1 in three Steps according to Scheme 108.

Scheme 108

![Scheme 108](image_url)
Step 1 - Preparation of 3-nitro-7-azaindole (504)

3-nitro-7-azaindole 504 is prepared by adding 7-azaindole 1 to fuming nitric acid while cooling (e.g. 0 °C). After stirring for one to several hours, water is carefully added and the mixture neutralized with saturated sodium bicarbonate. The solids are collected by filtration and dried to provide 3-nitro-7-azaindole 504.

Step 2 - Preparation of Formula IIIg

Compound of IIIg (Formula III where U, V, W and Z are CH, R^{41} is H and R^{40} is NH₂) is prepared from 3-nitro-7-azaindole 504 according to Scheme 43, Step 1.

Step 3 - Preparation of Formula IIIh

Compound of Formula IIIh is prepared from compound of Formula IIIg by reduction of the nitro group (e.g. hydrogen gas and palladium on carbon in methanol). The mixture is filtered and concentrated to provide compound of Formula IIIh.

Example 52: Synthesis of compounds of Formula Ha where A is NH or NR^{45}

Compounds of Formula Ha where A is NH or NR^{45} (R^{45} consistent with definition of A for compounds of Formula Ib or L₁ for compounds of Formula I) may be synthesized from a compound of Formula IIIh and a compound of Formula Xh (Formula Xa wherein J, E, F, G and K are C, n is 1, and R^{42} is Br) in two Steps as described in Scheme 109.

Scheme 109

Step 1 - Preparation of Formula Ua where A is NH

Compound of Formula Ha where A is NH is prepared by reacting compound of Formula Xh with compound of Formula IIIh (prepared as described in Example 51) with heating for several hours (e.g. 100 °C). Alternatively, compound of Formula IIIh is
reacted with compound of Formula Xh using palladium catalyzed Buchwald-Hartwig conditions (i.e. a palladium catalyst (e.g. Tris(dibenzylideneacetone)dipalladium(0)), a ligand (e.g. tri-t-butylphosphine), and a base (e.g. sodium t-butoxide) in a non-reactive solvent (e.g. toluene) with heating (e.g. 80 °C) for several hours). Isolation by conventional means (e.g. extraction and silica gel chromatography) provides compound of Formula Ha where A is NH and R^{41} is P. Removal of the protecting group according to Scheme 43, Step 2 provides compounds of Formula Ha where A is NH and R^{41} is H.

Step 2 - Preparation of Formula IIa where A is N-R^{45}

[0528] Compound of Formula Ha where A is N-R^{45} is prepared as described in Example 50, Step 2.

Example 53: Synthesis of compounds of Formula Ha where A is S

[0529] Compounds of Formula Ha where A is S may be synthesized from 7-azaindole 1 and a compound of Formula Xi (Formula Xa wherein J, E, F, G and K are C, n is 1, and R^{42} is an aryl disulfide) in one Step as described in Scheme 110.

Scheme 110

Step 1 - Preparation of Formula Ha where A is S

[0530] Compound of Formula Ha where A is S is prepared by dissolving 7-azaindole 1 in an appropriate solvent (e.g. dimethylformamide) with a base (e.g. sodium hydride), followed by the addition of a symmetrical aryl disulfide of Formula Xi. After stirring at room temperature for several hours, the reaction is quenched with water, followed by isolation by conventional means (e.g. extraction and silica gel chromatography) to provide compounds of Formula Ha where A is S and R^{41} is H.
Example 54: Synthesis of compounds of Formula Hₐ where A is S

[0531] Compounds of Formula Hₐ where A is S may be synthesized from 3-bromo-7-azaindole 400 and a compound of Formula Xₗ (Formula Xₐ wherein J, E, F, G and K are C, n is 1, and R₄₂ is an SH) in one Step as described in Scheme 111.

Scheme 111

Step 1 - Preparation of Formula Hₐ where A is S

[0532] Compound of Formula Hₐ where A is S is prepared by reacting 3-bromo-7-azaindole 400 with compound of Formula Xₗ in the presence of a base (e.g. sodium hydride) in an appropriate solvent (e.g. dimethylformamide) with heating for several hours (e.g. 100°C). Isolation by conventional means (e.g. extraction and silica gel chromatography) provides compound of Formula Hₐ where A is S and R₄₁ is H.

Example 55: Synthesis of compounds of Formula Hₐ, where A is S(O)₂

[0533] Compounds of Formula Hₐ where A is S(O)₂ may be synthesized from a compound of Formula Hₐ where A is S and R₄₁ is H in one Step as described in Scheme 112.

Scheme 112
Step 1 - Preparation of Formula Ha where A is S(O)₂

[0534] Compound of Formula Ha where A is S(O)₂ is prepared by reacting a compound of Formula Ha where A is S (prepared as described in Example 53 or 54) with an oxidizing agent (e.g. meta-chloro-peroxybenzoic acid, hydrogen peroxide) in an appropriate aprotic solvent (e.g. dichloromethane). Isolation by conventional means (e.g. extraction and silica gel chromatography) provides compound of Formula Ha where A is S(O)₂ and R₄¹ is H.

Example 56: Synthesis of compounds of Formula Ha where A is S(O)₂

[0535] Compounds of Formula Ha where A is S(O)₂ may be synthesized from 7-azaindole 1 and a compound of Formula Xk (Formula Xa wherein J, E, F, G and K are C, n is 1, and R₄² is an S(O)₂Cl) in one Step as described in Scheme 113.

Scheme 113

Step 1 - Preparation of Formula Ua where A is S(O)₂

[0536] Compound of Formula Ha where A is S(O)₂ is prepared by reacting 7-azaindole 1 with a sulfonyl chloride of Formula Xk dissolved in trifluoroacetic acid, in the presence of a catalyst (e.g. indium trichloride) and trifluorosulfonic acid with heating (e.g. 70 °C) for a few hours. Neutralization with sodium hydroxide and isolation by conventional means (e.g. extraction and silica gel chromatography) provides compound of Formula Ha where A is S(O)₂ and R₄¹ is H (Garzya et al., Tetrahedron Lett. 2004, 45:1499-1501).

Example 57: Synthesis of compounds of Formula Ha where A is CF₂

[0537] Compounds of Formula Ha where A is CF₂ may be synthesized from a compound of Formula Ha where A is C(O) and R₄¹ is P in one Step as described in Scheme 114.
Scheme 114

Step 1 - Preparation of Formula Ua where A is CF₂

[0538] Compound of Formula Ha where A is CF₂ is prepared by reacting a compound of Formula Ha where A is C(O) and R⁴¹ is P (prepared as described in Example 44) with a fluorinating agent (e.g. (diethylamino)sulfur trifluoride) with heating for several hours. Isolation by conventional means (e.g. extraction and silica gel chromatography) provides compound of Formula Ha where A is CF₂ and R⁴¹ is H.

Example 58: Synthesis of compounds of Formula IIa where A is C(S)

[0539] Compounds of Formula Ha where A is C(S) may be synthesized from a compound of Formula Ha where A is C(O) and R⁴¹ is H in one Step as described in Scheme 115.

Scheme 115

Step 1 - Preparation of Formula IIa where A is C(S)

[0540] Compound of Formula IIa where A is C(S) is prepared by reacting a compound of Formula IIa where A is C(O) and R⁴¹ is H (prepared as described in Example 43, 44 or 45) with Lawesson's reagent, (1,3,2,4-dithiadiphosphetane-2,3-disulfide), in an
appropriate solvent (e.g. tetrahydrofuran) with heating for several hours. Isolation by conventional means (e.g. extraction and silica gel chromatography) provides compound of Formula Ha where A is C(S) and R^41 is H.

Example 59: Synthesis of compounds of Formula Ha where A is S(O)

[0541] Compounds of Formula Ha where A is S(O) may be synthesized from a compound of Formula Ha where A is S and R^41 is H in one Step as described in Scheme 116.

Scheme 116

![Formula IIa where A is S](image)

Step 1 - Preparation of Formula Ha where A is S(O)

[0542] Compound of Formula Ha where A is S(O) is prepared by reacting compound of Formula Ha where A is S and R^41 is H (prepared as described in Example 53 or 54) with one equivalent of an oxidizing agent (e.g. meta-chloro-peroxybenzoic acid, hydrogen peroxide, oxone) in an appropriate aprotic solvent (e.g. dichloromethane). Isolation by conventional means (e.g. extraction and silica gel chromatography) provides compound of Formula Ha where A is S(O) and R^41 is H.

[0543] Compounds of Formula III may be used in the preparation of compounds of Formula Ib or Ha as described in Examples 43-59 by substituting the 7-azaindole or analog shown in the example with a compound of Formula III. R^40 is the substituent at the 3-position used in the example appropriate for coupling to compounds of Formula X (e.g. hydrogen, C(O)H_5CH_2N(CH_3)_2, C(O)Cl, bromo, amino, hydroxy, thio) and R^41 is hydrogen or protecting group P.
Compounds of Formula IHi, i.e. Formula III where V and W are CH, at least one of U and Z are CR\textsubscript{46}, preferably one of U and Z is CR\textsubscript{46} and the other of U and Z is CH, where R\textsubscript{46} is as defined for R18, excluding hydrogen, in Formula Ib of [0025], may be used in the synthesis of compounds of Formula Ib and Ha as described for compounds for Formula III.

The examples provided for the synthesis of compounds of Formula IHi are also applicable to many compounds meeting other definitions of Formula III or compounds of Formula IHi can be further substituted, particularly at the 3-position, to provide compounds of Formula III, or related compounds that may be used to synthesize compounds of Formula I.

Additionally, the techniques used for preparation of compounds of Formula III and IHi may be applied to compounds of Formula Ib where R\textsubscript{5} is bromo, chloro, or amino, to provide other compounds of Formula Ib.

Example 60: Synthesis of Intermediate of Formula IVa

Compounds of Formula IVa may be synthesized from 3-methyl-5-nitro-pyridin-2-ylamine \textbf{505} in three Steps as described in Scheme 117.
Scheme 117

Step 1 - Preparation of 5-Nitro-1H-pyrrolo[2,3-b]pyridine (506)

5-Nitro-1H-pyrrolo[2,3-b]pyridine 506 is prepared by reacting 3-methyl-5-nitro-pyridin-2-ylamine 505 with t-butyloxycarbonyl anhydride in an appropriate solvent (e.g. ethyl acetate and hexanes). Concentration and extraction provides a Boc-protected intermediate that is then reacted with 2 equivalents of butyllithium in an appropriate polar solvent (e.g. tetrahydrofuran) with cooling (e.g. 0 °C), followed by the addition of dimethylformamide and stirring for 30 minutes to one hour, followed by addition of 5.5 M HCl. Isolation by conventional means (e.g. extraction and silica gel chromatography) provides 506. (Hands et al., Synthesis 1996, 877-882.)

Step 2 - Preparation of Formula XLII

Compound of Formula XIII is prepared by reacting 5-Nitro-1H-pyrrolo[2,3-b]pyridine 506 as described in Scheme 43, Step 1.

Step 3 - Preparation of Formula IVa

Compound of Formula IVa is prepared from compound of Formula XIII by reduction of the nitro group (e.g. hydrogen gas and palladium on carbon in methanol). The mixture is filtered and concentrated to provide compound of Formula IVa.

Example 61: Synthesis of Intermediate of Formula IVb

Compounds of Formula IVa may be synthesized from 7-azaindole 1 in four Steps as described in Scheme 118.
Scheme 118

Step 1 - Preparation of 1H-Pyrrolo[2,3-b]pyridine 7-oxide (507)
[0552] 1H-Pyrrolo[2,3-b]pyridine 7-oxide 507 is prepared by reacting 7-azaindole 1 with an oxidizing agent (e.g. m-chloro-peroxybenzoic acid) in an appropriate solvent (e.g. dichloromethane). After stirring at room temperature for 30 minutes to one hour, compound 507 is collected by filtration. (Schneller et. al., J. Org. Chem. 1980, 45:4045)

Step 2 - Preparation of 4-Nitro-1H-pyrrolo[2,3-b]pyridine 7-oxide (508)
[0553] 4-Nitro-1H-pyrrolo[2,3-b]pyridine 7-oxide 508 is prepared by dissolving 1H-Pyrrolo[2,3-b]pyridine 7-oxide 507 in nitric acid, followed by the addition of sulfuric acid. Heating (e.g. 70 °C) for one hour, followed by pouring into water provides compound 508, which is isolated by filtration. (Schneller et. al., J. Org. Chem. 1980, 45:4045)

Step 3 - Preparation of compound of Formula XIV
[0554] Compound of Formula XIV is prepared from 4-Nitro-1H-pyrrolo[2,3-b]pyridine 7-oxide 508 by addition of phosphorous trichloride in an appropriate solvent (e.g. ethyl acetate) and heating (e.g. 80 °C) for several minutes. Neutralization with base (e.g. potassium carbonate) followed by extraction affords the intermediate that can then be protected at the N-I hydrogen according to Scheme 43, Step 1, to provide compound of Formula XIV.

Step 4 - Preparation of Formula IVb
[0555] Compound of IVb is prepared from compound of Formula XIV by reduction of the nitro group (e.g. hydrogen gas and palladium on carbon in methanol). The mixture can be filtered and concentrated to provide compound of Formula IVb.
Example 62: Synthesis of compounds of Formula IHi where R^{46} is NHR^{47} and R^{40} is H

[0556] Compounds of Formula IHi where R^{46} is NHR^{47} and R^{40} is H may be synthesized from a compound of Formula IVa or IVb in one Step as described in Scheme 119.

Scheme 119

```
H₂N

\[\text{Formula IVa or IVb}\]

Step 1

\[
\text{HN}
\]

\[\text{Formula iiii where } R^{46} \text{ is } NHR^{47} \text{ and } R^{40} \text{ is H}\]
```

Step 1 - Preparation of compound of Formula IIIi where R^{46} is NHR^{47} and R^{40} is H

[0557] Compound of Formula IIIi where R^{46} is NHR^{47} and R^{40} is H (R^{47} is optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl or optionally substituted heteroaryl) is prepared from intermediate Formula FVa (Example 60) or IVb (Example 61) by reaction with R^{47}-X, where X is a leaving group, (e.g. alkylating agent such as methyl iodide) in the presence of a base (e.g. potassium carbonate) in an appropriate solvent (e.g. dimethylformamide) for several hours at room temperature. Isolation by conventional means (e.g. extraction and silica gel chromatography) provides compounds of Formula IIIi where R^{46} is NHR^{47}, R^{40} is H and R^{41} is P.

Example 63: Synthesis of compounds of Formula Hii where R^{46} is $NHCH₂R^{48}$ and R^{40} is H

[0558] Compounds of Formula Hii where R^{46} is $NHCH₂R^{48}$ and R^{40} is H may be synthesized from a compound of Formula IVa or IVb in one Step as described in Scheme 120.
Step 1 - Preparation of compound of Formula IHc where \(R^{46} \) is NHCH\(_2\)R\(_{48}^8\) and \(R^{40} \) is H

[0559] Compound of Formula IH\(_i\) where \(R^{46} \) is NHCH\(_2\)R\(_{48}^8\) and \(R^{40} \) is H (\(R^{48} \) is consistent with optionally substituted lower alkyl) is prepared from intermediate Formula rVa (Example 60) or IVb (Example 61) by reductive amination using an aldehyde of the formula \(R^{48}-\text{C(O)H} \) in the presence of a catalytic amount of acid (e.g. acetic acid) and a reducing agent (e.g. sodium triacetoxylborohydride) in a non-reactive solvent (e.g. dichloroethane). After stirring for several hours, isolation by conventional means (e.g. extraction and silica gel chromatography) provides compounds of Formula IH\(_i\) where \(R^{46} \) is NHCH\(_2\)R\(_{48}^8\), \(R^{40} \) is H and \(R^{41} \) is P.

Example 64: Synthesis of compounds of Formula IH\(_i\) where \(R^{46} \) is NHC(O)R\(_{49}^9\) and \(R^{40} \) is H

[0560] Compounds of Formula IH\(_i\) where \(R^{46} \) is NHC(O)R\(_{49}^9\) and \(R^{40} \) is H may be synthesized from a compound of Formula IVa or IVb in one Step as described in Scheme 121.

Scheme 121
Step 1 - Preparation of compound of Formula IIi where R^{46} is NHC(O)R^{49} and R^{40} is H

Compound of Formula IIi where R^{46} is NHC(O)R^{49} and R^{40} is H (R^{49} is optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl or optionally substituted heteroaryl) is prepared from intermediate Formula IVa (Example 60) or IVb (Example 61) by reaction with an activated carboxylic acid of the formula R^{49}-C(O)X where X is a leaving group such as chloro (e.g. benzoyl chloride) in the presence of a base (e.g. N,N-diisopropylethylamine (DIEA)) in a non-reactive solvent (e.g. dichloromethane). After stirring for several hours, isolation by conventional means (e.g. extraction and silica gel chromatography) provides compounds of Formula IIi where R^{46} is NHC(O)R^{49}, R^{40} is H and R^{41} is P.

Example 65: Synthesis of compounds of Formula IIi where R^{46} is NHC(O)NHR^{50} and R^{40} is H

Compounds of Formula IIi where R^{16} is NHC(O)NHR^{50} and R^{40} is H may be synthesized from a compound of Formula IVa or IVb in one Step as described in Scheme 122.

Scheme 122

Step 1 - Preparation of compound of Formula IIi where R^{46} is NHC(O)NHR^{50} and R^{40} is H

Compound of Formula IIi where R^{46} is NHC(O)NHR^{50} and R^{40} is H (R^{50} is optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl or optionally substituted heteroaryl) is
prepared from intermediate Formula IVa (Example 60) or IVb (Example 61) by reaction with an isocyanate of the formula R^{50}-NCO (e.g. propylisocyanate) in the presence of a base (e.g. DIEA) in a non-reactive solvent (e.g. dichloromethane). After stirring for several hours, isolation by conventional means (e.g. extraction and silica gel chromatography) provides compounds of Formula IHi where R^{46} is NHC(O)NHR50, R^{40} is H and R^{41} is P.

Example 66: Synthesis of compounds of Formula IHi where R^{46} is NHC(S)NHR51 and R^{40} is H

[0564] Compounds of Formula IHi where R^{46} is NHC(S)NHR51 and R^{40} is H may be synthesized from a compound of Formula IVa or IVb in one Step as described in Scheme 123.

Scheme 123

![Scheme 123 Diagram]

Step 1 - Preparation of compound of Formula IHi where R^{46} is NHC(S)NHR51 and R^{40} is H

[0565] Compound of IHi where R^{46} is NHC(S)NHR51 and R^{40} is H (R^{51} is optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl or optionally substituted heteroaryl) is prepared from intermediate Formula IVa (Example 60) or IVb (Example 61) by reaction with an isothiocyanate of the formula R^{51}-NCS (e.g. propylisothiocyanate) in the presence of a base (e.g. DIEA) in a non-reactive solvent (e.g. dichloromethane). After stirring for several hours, isolation by conventional means (e.g. extraction and silica gel chromatography) provides compounds of Formula IHi where R^{46} is NHC(S)NHR51, R^{40} is H and R^{41} is P.
Example 67: Synthesis of compounds of Formula IHi where R^{46} \text{ is } \text{NHS(O)}_{2}R^{52} \text{ and } R^{40} \text{ is } H

Compounds of Formula IHi where \(R^{46} \text{ is } \text{NHS(O)}_{2}R^{52} \text{ and } R^{40} \text{ is } H \) may be synthesized from a compound of Formula IVa or IVb in one Step as described in Scheme 124.

Scheme 124

\[
\text{H}_2\text{N} \quad \xrightarrow{\text{Step } 1} \quad \text{O=S-R}^{52} \\
\text{Formula IVa or IVb} \quad \text{Formula III where } R^{46} \text{ is } \text{NHS(O)}_{2}R^{52} \text{ and } R^{40} \text{ is } H
\]

Step 1 - Preparation of compound of Formula IUi where R^{46} \text{ is } \text{NHS(O)}_{2}R^{52} \text{ and } R^{40} \text{ is } H

Compound Formula IHi where \(R^{46} \text{ is } \text{NHS(O)}_{2}R^{52} \text{ and } R^{40} \text{ is } H \) (\(R^{52} \text{ is optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl or optionally substituted heteroaryl} \) is prepared from intermediate Formula IVa (Example 60) or IVb (Example 61) by reaction with a sulfonyl chloride of the formula \(R^{52}-\text{S(O)}_{2}\text{Cl} \) (e.g. propylsulfonyl chloride) in the presence of a base (e.g. DIEA, pyridine) in a non-reactive solvent (e.g. dichloromethane). After stirring for several hours, isolation by conventional means (e.g. extraction and silica gel chromatography) provides compounds of Formula IHi where \(R^{46} \text{ is } \text{NHS(O)}_{2}R^{52}, \) \(R^{40} \text{ is } H \) and \(R^{41} \text{ is } P \).

Example 68: Synthesis of Intermediate of Formula Va

Compounds of Formula Va may be synthesized from 7-azaindole 1 in two Steps as described in Scheme 125.
Scheme 125

Step 1 - Preparation of 5-bromo-7-azaindole (44)

5-bromo-7-azaindole 44 is prepared from 7-azaindole 1 as described in Mazeas et. al., Heterocycles 1999, 50:1065-1080.

Step 2 - Preparation of intermediate of Formula Va

Intermediate of Formula Va is prepared by protecting 5-bromo-7-azaindol 44 as described in Scheme 43, Step 1.

Example 69: Synthesis of Intermediate of Formula Vb

Compounds of Formula Vb may be synthesized from lH-Pyrrolo[2,3-b]pyridine 7-oxide 507 in two Steps as described in Scheme 126.

Scheme 126

Step 1 - Preparation of 4-bromo-7-azaindole (509)

4-bromo-7-azaindole 509 is prepared from lH-Pyrrolo[2,3-b]pyridine 7-oxide 507 (prepared as described in Example 61) as described in Thibault et. al., Org. Lett. 2003, 5:5023-5025.

Step 2 - Preparation of intermediate of Formula Vb

Intermediate of Formula Vb is prepared by protecting 4-bromo-7-azaindole 509 as described in Scheme 43, Step 1.
Example 70: Synthesis of Compounds of Formula IHi where R^{46} is a halogen and R^{40} is H

[0574] Compounds of Formula IHi where R^{46} is a halogen and R^{40} is H may be synthesized from a compound of Formula Va or Vb in one Step as described in Scheme 127.

Scheme 127

![Scheme 127 Diagram]

Step 1 - Preparation of compound of Formula IUi where R^{46} is F or Cl and R^{40} is H

[0575] Compound of Formula IHi where R^{46} is halogen R^{53} (preferably fluoro or chloro) and R^{40} is hydrogen is prepared by dissolving the corresponding bromo intermediates of Formula Va (Example 68) or Vb (Example 69) in an appropriate solvent (e.g. tetrahydrofuran) with cooling (e.g. -78 °C) and reacting with an organolithium reagent to effect the lithium-halogen exchange of the bromo (e.g. t-butyllithium), followed by addition of a source of flourine (e.g. iV-fluorobenzenesulfimide) or chlorine (e.g. hexachloroethane), similar to that described by Thibault et al., Org. Lett. 2003, 5:5023-5025. Isolation by conventional means (e.g. extraction and silica gel chromatography) provides compounds of Formula IHi where R^{46} is F or Cl, R^{40} is H and R^{51} is P.

Example 71: Synthesis of compounds of Formula IHi where R^{46} is NHR^{47} and R^{40} is H

[0576] Compounds of Formula IHi where R^{46} is NHR^{47} and R^{40} is H may be synthesized from a compound of Formula Va or Vb in one Step as described in Scheme 128.
Scheme 128

Step 1 - Preparation of compound of Formula IH[i] where R^{46} is NHR^{47} and R^{40} is H

[0577] Compound of Formula IH[i] where R^{46} is NHR^{47} and R^{40} is H (as defined in Example 62) is prepared by reacting intermediate Formula Va (Example 68) or Vb (Example 69) with an amine of Formula R^{47}.NH$_2$ using palladium catalyzed Buchwald-Hartwig conditions (i.e. a palladium catalyst (e.g. palladium(II) acetate), a ligand (e.g. dicyclohexyl(o-biphenyl)phosphine), and a base (e.g. sodium t-butoxide) in a non-reactive solvent (e.g. 1,4-dioxane) with heating (e.g. 100 °C) for several hours). Isolation by conventional means (e.g. extraction and silica gel chromatography) provides compound of Formula IH[i] where R^{46} is NHR^{47}, R^{40} is H and R^{41} is P.

Example 72: Synthesis of Compounds of Formula IH[i] where R^{46} is OR^{54} and R^{40} is H

[0578] Compounds of Formula IH[i] where R^{46} is OR^{54} and R^{40} is H may be synthesized from a compound of Formula Va or Vb in one Step as described in Scheme 129.

Scheme 129

Step 1 - Preparation of compound of Formula IH[i] where R^{46} is OR^{54} and R^{40} is H

[0579] Compound of Formula IH[i] where R^{46} is OR^{54} and R^{40} is H (R^{54} is optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl,
optionally substituted aryl or optionally substituted heteroaryl) is prepared by reacting intermediate Formula Va (Example 68) or Vb (Example 69) with an alcohol of Formula R^{54}-OH in the presence of a base (e.g. sodium hydride) and a copper catalyst (e.g. copper bromide) in a non-reactive solvent (e.g. dimethylformamide) with heating (e.g. 120 °C) for several hours. Isolation by conventional means (e.g. extraction and silica gel chromatography), provides compounds of Formula IHi where R^{46} is OR^{54}, R^{40} is H and R^{41} is P.

Example 73: Synthesis of Compounds of Formula IIIi where R^{46} is optionally substituted lower alkyl and R^{40} is H

[0580] Compounds of Formula IHi where R^{46} is optionally substituted lower alkyl and R^{40} is H maybe synthesized from a compound of Formula Va or Vb in one Step as described in Scheme 130.

Scheme 130

Step 1 - Preparation of compound of Formula IHi where R^{46} is optionally substituted lower alkyl and R^{40} is H

[0581] Compound of Formula IIIi where R^{46} is optionally substituted lower alkyl R^{55} and R^{40} is H is prepared by dissolving intermediate Formula Va (Example 68) or Vb (Example 69) in an appropriate solvent (e.g. toluene) followed by the addition of a palladium catalyst (e.g. [l,r-Bis(diphenylphosphino)ferrocene] dichloropalladium(II), complex with dichloromethane (1:1)). After several minutes, a Grignard reagent of the Formula R^{55}-MgBr may be added and the reaction heated (e.g. 90 °C) for one to several hours. After filtration through Celite, isolation by conventional means (e.g. extraction and silica gel chromatography), provides compounds of Formula IHc where R^{46} is optionally substituted lower alkyl, R^{40} is H and R^{41} is P.
Example 74: Synthesis of Compounds of Formula HII where R46 is optionally substituted aryl or optionally substituted heteroaryl and R40 is H.

[0582] Compound of Formula HII where R46 is optionally substituted aryl or optionally substituted heteroaryl and R40 is H may be synthesized from a compound of Formula Va or Vb in one Step as described in Scheme 131.

Scheme 131

Step 1 - Preparation of compound of Formula UII where R46 is optionally substituted aryl or optionally substituted heteroaryl and R40 is H.

[0583] Compound of Formula HII where R46 is optionally substituted aryl or optionally substituted heteroaryl R56 and R40 is H is prepared by reacting intermediate Formula Va (Example 68) or Vb (Example 69) with a boronic acid of the Formula R56-B(OH)2 or boronic ester of the Formula R56-B(OR)2 under Suzuki coupling conditions (Muyaura and Suzuki, Chem. Rev. 1995, 95:2457), such as in the presence of a palladium catalyst (e.g. Tetrakis(triphenylphosphine)palladium(0)) and a base (e.g. aqueous potassium carbonate) in an appropriate solvent (e.g. tetrahydrofuran, acetonitrile) with heating thermally (e.g. 80 °C) for one to several hours or heating with a microwave instrument (e.g. 120 °C for 10 minutes). Isolation by conventional means (e.g. extraction and silica gel chromatography) provides compounds of Formula HII where R46 is optionally substituted aryl or optionally substituted heteroaryl, R40 is H and R41 is P.

[0584] Compounds of Formula Ib where V, W, U, and Z are CH, J, E, F, G, and K are C, n is 1, and R15, R16, and R17 are hydrogen form compounds of Formula VI.
The examples provided for the synthesis of compounds of Formula VI are also applicable to many compounds meeting other definitions of Formula I or Formula Ib.

Example 75: Synthesis of Compounds of Formula VI where M is NR57 or O and R1 is optionally substituted aryl or optionally substituted heteroaryl

Compound of Formula Via (Formula VI where M is NR57 or O (R57 consistent with definition of M for compounds of Formula Ib or L2 for compounds of Formula I) and R1 is optionally substituted aryl or optionally substituted heteroaryl) may be synthesized from a compound of Formula lib in two Steps as described in Scheme 132.

Scheme 132

Step 1 - Preparation of compound of Formula He

Compound of Formula He (Formula Ha where R15, R16 and R17 are H, R41 is P, R43 is M1R58, where M1 is O or NR57 and R58 is optionally substituted aryl or optionally substituted heteroaryl) is prepared by reacting compound of Formula lib (Formula Ha where R15, R16 and R17 are H, R41 is P, R43 is M1H, where M1 is O or NR57) with a compound of Formula R58-X, where X is an appropriate leaving group such as a halogen or triflate, in the presence of a base (e.g. sodium hydride) in an appropriate solvent (e.g. dimethylformamide) with heating (e.g. 80 °C) for several hours. Alternatively, the reaction may be catalyzed by a metal (e.g. palladium acetate and tri-\textit{t}-butylphosphine...
when \(M^1 \) is \(NR^{57} \), copper bromide when \(M^1 \) is \(O \). Isolation by conventional means (e.g.
extraction and silica gel chromatography) provides compounds of Formula lie.

*Step 2 - Preparation of compound of Formula VI where \(M \) is \(NR^{57} \) or \(O \) and \(R^1 \) is
optionally substituted aryl or optionally substituted heteroaryl*

[0588] Compound of Formula Via (Formula VI where \(M \) is \(NR^{57} \) or \(O \) (\(M^1 \)), \(R^1 \) is
optionally substituted aryl or optionally substituted heteroaryl (\(R^{58} \)) is prepared from
compound of Formula Hc by removal of the N-I protecting group according to Scheme 43, Step 2.

*Example 76: Synthesis of Compounds of Formula VI where \(M \) is \(NR^{57} \) or \(O \) and \(R^1 \) is
optionally substituted aryl or optionally substituted heteroaryl*

[0589] Compound of Formula Via (Formula VI where \(M \) is \(NR^{57} \) or \(O \) (\(M^1 \) consistent
with definition of \(M \) for compounds of Formula Ib or \(L^2 \) for compounds of Formula I) and
\(R^1 \) is optionally substituted aryl or optionally substituted heteroaryl) may be synthesized
from a compound of Formula Hd in two Steps as described in Scheme 133.

Scheme 133

Step 1 - Preparation of compound of Formula lie

[0590] Compound of Formula Hc (Formula Ha where \(R^{15}, R^{16} \) and \(R^{17} \) are \(H \), \(R^{11} \) is \(P \),
\(R^{43} \) is \(M^1 R^{58} \), where \(M^1 \) is \(O \) or \(NR^{57} \) and \(R^{58} \) is optionally substituted aryl or
optionally substituted heteroaryl) is prepared by reacting compound of Formula Hd (Formula Ha
where \(R^{15}, R^{16} \) and \(R^{17} \) are \(H \), \(R^{11} \) is \(P \), and \(R^{43} \) is a halogen, \(R^{59} \), e.g. chloro) with a
compound of Formula \(R^{58}-OH \) or of Formula \(R^{58}-NR^{57} \) in the presence of a base (e.g.
sodium hydride) in an appropriate solvent (e.g. dimethylformamide) with heating (e.g. 80
\(^0\)C) for several hours. Alternatively, the reaction may be catalyzed by a metal (e.g.
palladium acetate and tri-\(t \)-butylphosphine when \(M^1 \) is \(NR^{57} \), copper bromide when \(M^1 \) is
Isolation by conventional means (e.g. extraction and silica gel chromatography) provides compounds of Formula Hc.

Step 2 - Preparation of compound of Formula VI where M is NR57 or O and R\textsubscript{1} is optionally substituted aryl or optionally substituted heteroaryl

[0591] Compound of Formula Via (Formula VI where M is NR57 or O (M1), R\textsubscript{1} is optionally substituted aryl or optionally substituted heteroaryl (R57)) is prepared from a compound of Formula Hc by removal of the N-I protecting group according to Scheme 43, Step 2.

Example 77: Synthesis of Compounds of Formula VI where M is -O-alk- or -NR57-alk-

[0592] Compound of Formula VIb (Formula VI where M is -O-alk- or -NR57-alk- (R57 consistent with definition of M for compounds of Formula Ib or L2 for compounds of Formula I)) may be synthesized from a compound of Formula Hc in two Steps as described in Scheme 134.

Scheme 134

\[
\begin{align*}
\text{Formula Hb} & \quad \text{Step 1} \quad \text{Formula lie} & \quad \text{Step 2} \quad \text{Formula VIb}
\end{align*}
\]

Step 1 - Preparation of compound of Formula lie

[0593] Compound of Formula He (Formula Ha where R15, R16 and R17 are H, R41 is P, R43 is M1(CH\textsubscript{2})\textsubscript{1,3}R1 where M1 is O or NR57) is prepared by reacting compound of Formula Hb (Formula Ha where R15, R16 and R17 are H, R41 is P, R43 is M1H, where M1 is O or NR57) with a compound of Formula R1-((CH\textsubscript{2})\textsubscript{1,3})\textsubscript{-X} where X is a leaving group (e.g. halogen, mesylate) in the presence of a base (e.g. sodium hydride, potassium carbonate) in an appropriate solvent (e.g. dimethylformamide, acetonitrile) with heating (e.g. 80 °C) for one to several hours. Isolation by conventional means (e.g. extraction and silica gel chromatography), provides compounds of Formula He.
Step 2 - Preparation of compound of Formula VI where M is $M^1(CH_2)_i$ and M^1 is O or NR^{57}

[0594] Compound of Formula VIb (Formula VI where M is $O(CH_2)_{1-3}$ or $NR^{57}(CH_2)_{1-3}$) is prepared from compound of Formula I by removal of the N-I protecting group according to Scheme 43, Step 2.

Example 78: Synthesis of Compounds of Formula VI where M is -O-alk- or -NR57-alk-

[0595] Compound of Formula VIb (Formula VI where M is -O-alk- or -NR57-alk- (R^{57} consistent with definition of M for compounds of Formula Ib or L^2 for compounds of Formula I)) may be synthesized from a compound of Formula Hd in two Steps as described in Scheme 135.

Scheme 135

Step 1 - Preparation of Compound of Formula He

[0596] Compound of Formula He (Formula Ha where R^{15}, R^{16} and R^{17} are H, R^{41} is P, R^{13} is $M^1(CH_2)_{1-3}R^1$ where M^1 is O or NR^{57}) is prepared by reacting compound of Formula Hd (Formula Ha where R^{15}, R^{16} and R^{17} are H, R^{41} is P, and R^{43} is a halogen, R^{59}, e.g. chloro) with a compound of Formula $R^1(CH_2)_{1-3}$-OH or $R^1(CH_2)_{1-3}$-NR57 in the presence of a base (e.g. sodium hydride, potassium carbonate) in an appropriate solvent (e.g. dimethylformamide, acetonitrile) with heating (e.g. $80^\circ C$) for one to several hours. Isolation by conventional means (e.g. extraction and silica gel chromatography), provides compound of Formula He.
Step 2 - Preparation of compound of Formula Vl where M is \(\text{Me}^{1} \text{(CH}_2\text{)}^{i-3} \) and \(\text{Me}^{1} \) is \(\text{O} \) or \(\text{NR}^{57} \)

[0597] Compound of Formula VIb (Formula VI where M is O(CH\(_2\))\(_{1-3}\) or NR\(^{57}\)(CH\(_2\))\(_{1-3}\)) is prepared from compound of Formula He by removal of the N-I protecting group according to Scheme 43, Step 2.

Example 79: Synthesis of Compounds of Formula VI where M is NH-alk-.

[0598] Compound of Formula VIc (Formula VI where M is -NH-alk-) may be synthesized from a compound of Formula Hf in two Steps as described in Scheme 136.

Scheme 136

\[\text{Formula Hf} \xrightarrow{\text{Step 1}} \text{Formula Ug} \xrightarrow{\text{Step 2}} \text{Formula VIc} \]

Step 1 - Preparation of compound of Formula Hg

[0599] Compound of Formula Hg (Formula Ha where \(\text{R}^{15} \), \(\text{R}^{16} \) and \(\text{R}^{17} \) are \(\text{H} \) \(\text{R}^{41} \) is \(\text{P} \), \(\text{R}^{43} \) is \(\text{NH} \text{(CH}_2\text{)}^{1-3} \text{R}^{1} \)) is prepared from compound of Formula Hf (Formula Ha where \(\text{R}^{15} \), \(\text{R}^{16} \) and \(\text{R}^{17} \) are \(\text{H} \) \(\text{R}^{41} \) is \(\text{P} \), \(\text{R}^{43} \) is \(\text{NH}_2 \)) by reductive amination using an aldehyde of the formula \(\text{R}^{1-}(\text{CH}_2\text{)}^{0-2}\text{CHO} \) in the presence of a catalytic amount of acid (e.g. acetic acid) and a reducing agent (e.g. sodium triacetoxyborohydride) in a non-reactive solvent (e.g. dichloroethane). After stirring for several hours, isolation by conventional means (e.g. extraction and silica gel chromatography) provides compounds of Formula Hg.

Step 2 - Preparation of compound of Formula VI where M is NH(CH\(^{1-3}\))

[0600] Compound of Formula Vic (Formula VI where M is NH(CH\(_2\))\(_{1-3}\)) is prepared from compound of Formula Hg by removal of the N-I protecting group according to Scheme 43, Step 2.
Example 80: Synthesis of Compounds of Formula VI where \(M\) is \(\text{NR}^{57}\text{C}(O)\) or \(\text{OC}(O)\)

[0601] Compound of Formula VId (Formula VI where \(M\) is \(\text{NR}^{57}\text{C}(O)\) or \(\text{OC}(O)\) where \(R^{57}\) is consistent with definition of \(M\) for compounds of Formula Ib or \(L^2\) for compounds of Formula I) may be synthesized from a compound of Formula Ib in two Steps as described in Scheme 137.

Scheme 137

Formula Ib \[\rightarrow\] Formula II \[\rightarrow\] Formula VId

Step 1 - Preparation of compound of Formula IIh

[0602] Compound of Formula IIh (Formula Ha where \(R^{15}, R^{16}\) and \(R^{17}\) are \(H\), \(R^{41}\) is \(P\), \(R^{43}\) is \(M^{4}\text{C}(O)R^1\) where \(M^{1}\) is \(O\) or \(\text{NR}^{57}\)) is prepared by reacting compound of Formula Iib (Formula Ha where \(R^{15}, R^{16}\) and \(R^{17}\) are \(H\), \(R^{41}\) is \(P\), \(R^{43}\) is \(M^{1}H\), where \(M^{1}\) is \(O\) or \(\text{NR}^{57}\)) with an activated carboxylic acid of Formula \(R^1\text{-COX}\) where \(X\) is a leaving group such as chloro (e.g. benzoyl chloride) in the presence of a base (e.g. DIEA) in a non-reactive solvent (e.g. dichloromethane). After stirring for several hours, isolation by conventional means (e.g. extraction and silica gel chromatography) provides compound of Formula IIh.

Step 2 - Preparation of compound of Formula VI where \(M\) is \(\text{OC}(O)\) or \(\text{NR}^{57}\text{C}(O)\)

[0603] Compounds of Formula VId (Formula VI where \(M\) is \(\text{OC}(O)\) or \(\text{NR}^{57}\text{C}(O)\)) is prepared from compound of Formula IIh by removal of the N-I protecting group according to Scheme 43, Step 2.

Example 81: Synthesis of Compounds of Formula VI where \(M\) is \(\text{NR}^{57}\text{S}(O)_{2}\)

[0604] Compound of Formula VIe (Formula VI where \(M\) is \(\text{NR}^{57}\text{S}(O)_{2}\) where \(R^{57}\) is consistent with definition of \(M\) for compounds of Formula Ib or \(L^2\) for compounds of
Formula I) may be synthesized from a compound of Formula II in two Steps as described in Scheme 138.

Scheme 138

Step 1 - Preparation of compound of Formula IU

[0605] Compound of Formula II (Formula Ha where R15, R16 and R17 are H, R41 is P, R43 is NR57S(O)\textsubscript{2}R3) is prepared by reacting compound of Formula II (Formula Ha where R15, R16 and R17 are H, R41 is P, and R43 is NR57H) by reaction with a sulfonyl chloride of the formula R1-SO\textsubscript{2}Cl (e.g. phenylsulfonyl chloride) in the presence of a base (e.g. DIEA, pyridine) in a non-reactive solvent (e.g. dichloromethane). After stirring for several hours, isolation by conventional means (e.g. extraction and silica gel chromatography) provides compounds of Formula II.

Step 2 - Preparation of compound of Formula VI where M is NR57S(O)\textsubscript{2}

[0606] Compound of Formula VI (Formula VI where M is NR57S(O)\textsubscript{2}) is prepared from compound of Formula II by removal of the N-I protecting group according to Scheme 43, Step 2.

Example 82: Synthesis of Compounds of Formula VI where M is

NR57C(O)NH(CH\textsubscript{2})\textsubscript{1-3} or NR57C(S)NH(CH\textsubscript{2})\textsubscript{1-3}

[0607] Compound of Formula VI (Formula VI where M is NR57C(O)NH(CH\textsubscript{2})\textsubscript{1-3} or NR57C(S)NH(CH\textsubscript{2})\textsubscript{1-3}, where R57 is consistent with definition of M for compounds of Formula Ib or L\textsubscript{2} for compounds of Formula I) may be synthesized from a compound of Formula II in two Steps as described in Scheme 139.
Scheme 139

![Diagram of Scheme 139]

Step 1 - Preparation of compound of Formula Hj

[0608] Compound of Formula Hj (Formula Ha where R15, R16 and R17 are H, R41 is P, R43 is NR57C(L)NH(CH\textsubscript{2})\textsubscript{1-3}R1, where L is O or S) is prepared by reacting compound of Formula IIIh (Formula Ha where R15, R16 and R17 are H, R41 is P, and R43 is NR57H) with a compound of the formula R1-(CH\textsubscript{2})\textsubscript{1-3}NCL where L is either O to form an isocyanate (e.g. phenyl isocyanate) or L is S to form a thioisocyanate (e.g. phenyl isothiocyanate) in the presence of a base (e.g. DIEA) in a non-reactive solvent (e.g. dichloromethane). After stirring for several hours, isolation by conventional means (e.g. extraction and silica gel chromatography) provides compounds of Formula Hj.

Step 2 - Preparation of compound of Formula VI where B is NR and D is C(=L)NH(CHn)\textsubscript{q}

[0609] Compound of Formula VI (Formula VI where M is NR57C(O)NH(CH\textsubscript{2})\textsubscript{1-3} or NR57C(S)NH(CH\textsubscript{2})\textsubscript{1-3}) is prepared from compound of Formula U\textsubscript{j} by removal of the N-I protecting group according to Scheme 43, Step 2.

Example 83: Synthesis of Compounds of Formula VI where M is

NR57S(O)\textsubscript{2}NH(CH\textsubscript{2})\textsubscript{1-3}

[0610] Compound of Formula VIg (Formula VI where M is NR57S(O)\textsubscript{2}NH(CH\textsubscript{2})\textsubscript{1-3}, where R57 is consistent with definition of M for compounds of Formula Ib or L2 for compounds of Formula I) may be synthesized from a compound of Formula ID\textsubscript{i} in three Steps as described in Scheme 140.
Step 1 - Preparation of compound of Formula Ilk

[0611] Compound of Formula Ilk (Formula Ha where R^{15}, R^{16} and R^{17} are H, R^{41} is P, R^{43} is NR^{57}S(O)_{2}Cl) is prepared by reacting compound of Formula IDi (Formula Ha where R^{15}, R^{16} and R^{17} are H, R^{41} is P, and R^{43} is NR^{57}H) with sulfuryl chloride in a non-reactive solvent (e.g. dichloromethane) possibly with heating (e.g. 60°C). After stirring for several hours, the reaction can be concentrated to provide compound of Formula Ilk that is used without further purification.

Step 2 - Preparation of compound of Formula Hm

[0612] Compound of Formula Hm (Formula Ha where R^{15}, R^{16} and R^{17} are H, R^{41} is P, R^{43} is NR^{57}S(O)_{2}NH(CH_{2})_{1-3}R^{1}) is prepared from compound of Formula Ilk by reaction with an amine of the formula NH_{2}(CH_{2})_{1-3}R^{1} in the presence of a base (e.g. DIEA) in a non-reactive solvent (e.g. dichloromethane). After stirring for several hours, isolation by conventional means (e.g. extraction and silica gel chromatography) provides compounds of Formula Ilm.
Step 3 - Preparation of compound of Formula VI where M is NR$_5^7$S(O)$_2$NH(CH$_2$)$_{1-3}$

Compound of Formula VIg (Formula VI where M is NR$_5^7$S(O)$_2$NH(CH$_2$)$_{1-3}$) is prepared from compound of Formula IIm by removal of the N-I protecting group according to Scheme 43, Step 2.

Example 84: Synthesis of Compounds of Formula VI where M is S(O)$_2$(CH$_2$)$_{0-3}$ or S(CH$_2$)$_{0-3}$

Compound of Formula VIh (Formula VI where M is S(O)$_2$(CH$_2$)$_{0-3}$ or S(CH$_2$)$_{0-3}$) may be synthesized from a compound of Formula Hd in two Steps as described in Scheme 141.

Scheme 141

Step 1 - Preparation of compound of Formula Hn

Compound of Formula Hn (Formula Ha where R$_{15}$, R$_{16}$ and R$_{17}$ are H, R$_{41}$ is P, R$_{43}$ is S(CH$_2$)$_{0-3}$, R$_1$) is prepared by reacting compound of Formula Hd (Formula Ha where R$_{15}$, R$_{16}$ and R$_{17}$ are H, R$_{41}$ is P, and R$_{43}$ is a halogen, R$_{59}$, e.g. chloro) with a compound of Formula R$_1$-(CH$_2$)$_{0-3}$-SH in the presence of a base (e.g. sodium hydride, potassium carbonate) in an appropriate solvent (e.g. dimethylformamide, acetonitrile) with heating (e.g. 80 °C) for one to several hours. Isolation by conventional means (e.g. extraction and silica gel chromatography) provides compound of Formula Hn. This can be taken to the next step, or the N-I protecting group P can be removed according to Scheme 43, Step 2 to provide compound of Formula VI where M is S(CH$_2$)$_{0-3}$.

Step 2 - Preparation of compound of Formula VI where M is S0$_2$(CH$_2$)$_{0-3}$

Compounds of Formula VIh (Formula VI where M is S0$_2$(CH$_2$)$_{0-3}$) is prepared from compound of Formula Hn by reacting with an oxidizing agent (e.g. meta-chloroperoxybenzoic acid, hydrogen peroxide) in an appropriate aprotic solvent (e.g.
dichloromethane). Isolation by conventional means (e.g. extraction and silica gel chromatography) followed by removal of the N-I protecting group according to Scheme 43, Step 2 provides compound of Formula VIIh.

Example 85: Synthesis of Compounds of Formula VI where M is C(0)(CH₂)₀⁻³

[0617] Compound of Formula VIIi (Formula VI where M is C(O)(CH₂)₀⁻³) may be synthesized from a compound of Formula Hd in three Steps as described in Scheme 142.

Scheme 142

Step 1 - Preparation of compound of Formula Ho

[0618] Compound of Formula Ho (Formula Ha where R¹⁵, R¹⁶ and R¹⁷ are H, R⁴¹ is P, R⁴³ is C(OH)(CH₂)₀⁻³R¹) is prepared by reacting compound of Formula Hd (Formula Ha where R¹⁵, R¹⁶ and R¹⁷ are H, R⁴¹ is P, and R⁴³ is a halogen, R⁵⁹, e.g. chloro) with an organolithium reagent (e.g. butyllithium) to effect the lithium-halogen exchange at reduced temperature (e.g. -78 °C) in an appropriate solvent (e.g. tetrahydrofuran) followed by addition of an aldehyde of Formula R¹⁻³(CH₂)₀⁻³-C(O)H. After stirring for several hours and warming to room temperature, isolation by conventional means (e.g. extraction and silica gel chromatography) provides compound of Formula Ho.
Step 2 - Preparation of compound of Formula lip

Compound of Formula Up (Formula Ha where R₁₁, R₁₆ and R₁₇ are H, R₄₁ is P, R₄₃ is C(O)(CH₂)₃,R₄) is prepared by reacting compound of Formula Hq with an oxidizing agent (e.g. Dess-Martin periodinane), in an appropriate solvent (e.g. tetrahydrofuran).

After stirring for one to several hours, isolation by conventional means (e.g. extraction and silica gel chromatography) provides compound of Formula Up.

Step 3 - Preparation of compound of Formula VI where B is C-O and D is (CH₂)₇

Compound of Formula VIi (Formula VI where M is C(O)(CH₂)₆₃) is prepared from compound of Formula Up by removal of the N-I protecting group according to Scheme 43, Step 2.

Example 86: Synthesis of Compounds of Formula Hr

Compound of Formula Hr ((Formula Ha where R₁₁, R₁₆ and R₁₇ are H, R₄₁ is P, and R₄₃ is S(O)₂Cl) may be synthesized from a compound of Formula Hf in two Steps as described in Scheme 143.

Scheme 143

Step 1 - Preparation of compound of Formula Hq

Compound of Formula Hq ((Formula Ha where R₁₁, R₁₆ and R₁₇ are H, R₄₁ is P, and R₄₃ is N₂⁺) is prepared by reacting compound of Formula Hf (Formula Ha where R₁₁, R₁₆ and R₁₇ are H, R₄₁ is P, and R₄₃ is NH₃) with aqueous hydrochloric acid and aqueous sodium nitrite. Addition of water and salt results in precipitation of the compound and filtration affords the chloride salt of the diazonium of Formula Hq.

Step 2 - Preparation of compound of Formula Ur

Compound of Formula Hr (Formula Ha where R₁₁, R₁₆ and R₁₇ are H, R₄₁ is P, and R₄₃ is S(O)₂Cl) is prepared by reacting compound of Formula Hq (Formula Ha where
R15, R16 and R17 are H, R41 is P, and R43 is N\textsubscript{2+}) with a mixture of cuprous chloride in acetic acid saturated with sulfur dioxide, while cooling (e.g. 10 °C). After stirring for 30 minutes to one hour, the mixture is poured into water and the compound is isolated by extraction and concentration of the dried organic portions to provide compound of Formula H\textsubscript{r}. (Organic Syntheses, Coll. Vol. 7, p.508; Vol. 60, p.121).

Example 87: Synthesis of Compounds of Formula H\textsubscript{t}

[0624] Compound of Formula lit ((Formula Ha where R15, R16 and R17 are H, R41 is P, and R43 is COOH) may be synthesized from a compound of Formula Hs in one Step as described in Scheme 144.

Scheme 144

\[
\begin{align*}
\text{MgBr} & \quad \text{Step 1} \\
\text{Formula Hs} & \quad \text{Formula Ht}
\end{align*}
\]

Step 1 - Preparation of compound of Formula lit

[0625] Compound of Formula lit (Formula Ha where R15, R16 and R17 are H, R41 is P, and R43 is COOH) is prepared by reacting compound of Formula Hs (Formula Ha where R15, R16 and R17 are H, R41 is P, and R43 is MgBr) dissolved in an appropriate solvent (e.g. tetrahydrofuran) with dry ice. Addition of water and acid-base extraction of the compound provides compound of Formula lit.

Example 88: Synthesis of Compounds of Formula VI where M is C(O)NR57(CH\textsubscript{2})\textsubscript{0-3} or S(0)\textsubscript{2}NR57(CH\textsubscript{2})\textsubscript{0-3}

[0626] Compound of Formula VIj (Formula VI where M is C(O)NR57(CH\textsubscript{2})\textsubscript{0-3} or S(0)\textsubscript{2}NR57(CH\textsubscript{2})\textsubscript{0-3}, where R57 is consistent with definition of M for compounds of Formula Ib or L\textsubscript{2} for compounds of Formula I) may be synthesized from a compound of Formula H\textsubscript{u} in three Steps as described in Scheme 145.
Scheme 145

Step 1 - Preparation of compound of Formula Hv

[0627] Compound of Formula Hv (Formula Ha where R^{15}, R^{16} and R^{17} are H, R^{41} is P, and R^{43} is M^2Cl, where M^2 is C(O) or S(O)$_2$) is prepared by reacting compound of Formula Hu (Formula Ha where R^{15}, R^{16} and R^{17} are H, R^{41} is P, and R^{43} is M^2OH, where M^2 is C(O) or S(O)$_2$) with an appropriate reagent to effect the formation of the acid chloride or sulfonyl chloride (e.g. thionyl chloride) with heating (e.g. 80 °C) for several hours, possibly in a solvent (e.g. toluene). Concentration of the reaction mixture provides compound of Formula Hv that is used without further purification.

Step 2 - Preparation of compound of Formula Hw

[0628] Compound of Formula Hw (Formula Ha where R^{15}, R^{16} and R^{17} are H, R^{41} is P, and R^{43} is $M^2NR^7(CH_2)_3R^1$, where M^2 is C(O) or S(O)$_2$) is prepared by reacting compound of Formula Hv with an amine of the formula NR57H(CH$_2$)$_{0.5}$R1 in the presence of a base (e.g. DIEA) in an appropriate aprotic solvent (e.g. dimethylformamide, dichloromethane). After stirring for one to several hours, isolation by conventional means (e.g. extraction and silica gel chromatography) provides compounds of Formula Hw.
Step 3 - Preparation of compound of Formula V where M is C(O)NR_5(CH_2)_{0-3} or S(O)_2NR_5(CH_2)O-S

[0629] Compounds of Formula VIj (Formula VI where M is C(O)NR_5(CH_2)_{0-3} or S(O)_2NR_5(CH_2)O-S) is prepared from compound of Formula Hw by removal of the N-I protecting group according to Scheme 43, Step 2.

[0630] Compounds of Formula X or Xa, where R^{43} is a substituent appropriate for further substitution to provide M-R^1 (e.g. chloro, NH_2, NHR_5^7, OH, MgBr, C(O)OH, S(O)_2OH; as described in Examples 78-88), and R^{42} is a functionality appropriate for coupling to the 7-azaindole ring or its analog to form A or L^1, are useful in the synthesis of compounds of Formula I or Ib or compounds of Formula II as described in Examples 43-59.

[0631] Many compounds of Formula X or Xa are commercially available; for example, many 5- and 6-membered nitrogen-containing heterocycles where R^{43} is chloro or amino and R^{42} is a carboxylic acid or aldehyde are commercially available or may be prepared using known methods.

[0632] Compounds of Formula Xa where E, F, G, K, L are C and n is 1 form compounds of Formula X_{10}. Examples for the synthesis of compounds of Formula X_{10} and their use in the synthesis of compounds of Formula I, Ib, and II may also be applied to other compounds fitting the definition of Formula X.
Compounds of Formula Xa, where R_{42} is a hydrogen or halogen (R_{60}), and R_{15}, R_{16} and R_{17} are either as defined for Formula Xa or are appropriate substituents for further modification to provide compounds of Formula X_{10}, form compounds of Formula X_{20}, which are useful in the synthesis of compounds of Formula Xa.

Use of compounds of Formula X_{10} or X_{20} are exemplified in the following examples as representative examples of reactions that may also be useful in the analogous reactions using compounds of Formula X or Xa.

Example 89: Synthesis of Compounds of Formula Xio where R_{42} is C(O)H

Compound of Formula X_{10} (Formula X_{10} where R_{42} is C(O)H) may be synthesized from a compound of Formula X_{20} in one Step as described in Scheme 146.

Scheme 146

Step 1 - Preparation of compound of Formula X_{20}h

Compound of Formula X_{10} (Formula X_{10} where R_{42} is C(O)H) is prepared by reacting compound of Formula X_{20} (Formula X_{20} where R_{60} is Br) with an organolithium reagent (e.g. butyllithium) to effect the lithium-halogen exchange at reduced temperature (e.g. -78 °C) in an appropriate solvent (e.g. tetrahydrofuran) followed by addition of a formylating reagent (e.g. dimethylformamide). After stirring for several hours and warming to room temperature, isolation by conventional means (e.g. extraction and silica
gel chromatography), provides compounds of Formula X_{10}a. Preferred compounds of X_{20}a for this reaction have R^{15} as optionally substituted lower alkyl, trifluoromethyl, CH$_2$CF$_3$, OR, or SR, wherein R is optionally substituted lower alkyl.

Example 90: Synthesis of Compounds of Formula X_{10} where R^{42} is C(O)OH

[0637] Compound of Formula X_{10}b (Formula X_{10} where R^{42} is C(O)OH) may be synthesized from a compound of Formula X_{20}a in one Step as described in Scheme 147.

Scheme 147

```
\begin{center}
\begin{align*}
\text{Step 1} & \\
\text{Formula } X_{20}a & \rightarrow \text{Formula } X_{10}b
\end{align*}
\end{center}
```

Step 1 - Preparation of compound of Formula X_{10}b

[0638] Compound of Formula X_{10}b (Formula X_{10} where R^{42} is C(O)OH) is prepared by reacting compound of Formula X_{20}a (Formula X_{20} where R^{60} is Br) with solid magnesium in an appropriate solvent (e.g. tetrahydrofuran) possibly with a catalyst (e.g. iodine) and with heating (e.g. 80 °C) to afford the corresponding Grignard reagent. Dry ice is then added to the reaction to quench the Grignard and form the carboxylic acid at R^{42}. Isolation by evaporation and acid-base extraction provides compound of Formula X_{10}b.

Example 91: Synthesis of Compounds of Formula X_{10} where R^{15} is optionally substituted lower alkyl and R^{42} is C(O)H

[0639] Compound of Formula X_{10}C(Formula X_{10} where R^{42} is C(O)H and R^{15} is optionally substituted lower alkyl) may be synthesized from a compound of Formula X_{20}b in two Steps as described in Scheme 148.

Scheme 148

```
\begin{center}
\begin{align*}
\text{Step 1} & \\
\text{Formula } X_{20}b & \rightarrow \text{Formula } X_{20}c & \rightarrow \text{Formula } X_{10}c
\end{align*}
\end{center}
```
Step 1 - Preparation of compound of Formula X₂₀C

Compound of Formula X₂₀C (Formula X₂₀ where R₆₀ is H and R¹⁵ is optionally substituted lower alkyl) is prepared by dissolving compound of Formula X₂₀b (Formula X₂₀ where R₆₀ is H and R¹⁵ is Br) in an appropriate solvent (e.g. toluene), followed by the addition of a palladium catalyst (e.g. [1,1'-Bis(diphenylphosphino)ferrocene] dichloropalladium(II), complex with dichloromethane (1:1)). After several minutes, a Grignard reagent of the formula R₆₁-MgBr (where R₆₁ is optionally substituted lower alkyl) may be added and the reaction heated (e.g. 90°C) for one to several hours. After filtration through Celite, isolation by conventional means (e.g. extraction and silica gel chromatography) provides compound of Formula X₂₀C.

Step 2 - Preparation of compound of Formula X₁₀C

Compound of Formula X₁₀C (Formula X₁₀ where R⁴₂ is C(O)H and R¹⁵ is optionally substituted lower alkyl) is prepared by reacting compound of Formula X₂₀C with an organolithium reagent (e.g. lithium disopropylamine) to effect the lithiation at the R⁴² position at reduced temperature (e.g. -78°C) in an appropriate solvent (e.g. tetrahydrofuran) followed by addition of a formylating reagent (e.g. dimethylformamide). After stirring for several hours and warming to room temperature, isolation by conventional means (e.g. extraction and silica gel chromatography) provides compound of Formula X₁₀C.

Example 92: Synthesis of Compounds of Formula Xi₀d where R¹⁵ is OR₆² or SR₆² and R⁴² is C(O)H

Compound of Formula X₁₀d (Formula X₁₀ where R⁴² is C(O)H and R¹⁵ is OR₆² or SR₆², where R₆² is optionally substituted lower alkyl) may be synthesized from a compound of Formula X₂₀d in two Steps as described in Scheme 149.
Step 1 - Preparation of compound of Formula X_{20e}

[0643] Compound of Formula X_{20e} (Formula X_{20} where R^{60} is H and R^{15} is LR^{62}, where L is O or S and R^{62} is optionally substituted lower alkyl) is prepared by reacting compound of Formula X_{20d} (Formula X_{20} where R^{60} is H and R^{15} is Cl) with a compound of Formula R^{62}-OH or R^{62}-SH in the presence of a base (e.g. sodium hydride) in an appropriate solvent (e.g. dimethylformamide, tetrahydrofuran) with heating (e.g. 80 °C). After stirring for several hours, isolation by conventional means (e.g. extraction and silica gel chromatography) provides compound of Formula X_{20e}.

Step 2 - Preparation of compound of Formula X_{10d}

[0644] Compound of Formula X_{10d} (Formula X_{10} where R^{42} is C(O)H and R^{15} is LR^{62}, where L is O or S and R^{62} is optionally substituted lower alkyl) is prepared by reacting compound of Formula X_{20e} with an organolithium reagent (e.g. lithium diisopropylamine) to effect the ortholithiation at the R^{42} position at reduced temperature (e.g. -78 °C) in an appropriate solvent (e.g. tetrahydrofuran) followed by addition of a formylating reagent (e.g. dimethylformamide). After stirring for several hours and warming to room temperature, isolation by conventional means (e.g. extraction and silica gel chromatography) provides compound of Formula X_{10d}.

Example 93: Synthesis of Compounds of Formula X_{10} where R^{15} is halogen and R^{42} is C(O)H

[0645] Compound of Formula X_{10e} (Formula X_{10} where R^{42} is C(O)H and R^{15} is halogen) may be synthesized from a compound of Formula X_{20f} in two Steps as described in Scheme 150.

Scheme 150

![Scheme 150](image)

Step 1 - Preparation of compound of Formula X_{20f}

Step 2 - Preparation of compound of Formula X_{10e}
[0646] Compound of Formula \(X_{20} \) (Formula \(X_{20} \) where \(R^{15} \) is H and \(R^{60} \) is chloro or bromo (halogen \(R^{63} \)) is prepared by reacting compound of Formula \(X_{20} \) where \(R^{60} \) is H and \(R^{15} \) is \(\text{NH}_2 \)) in glacial acetic acid with sodium nitrite in acid (e.g. hydrochloric acid, sulfuric acid) to afford the diazonium intermediate. To form the compounds where \(R^{63} \) is chloro or bromo, the diazonium salt is added to cuprous chloride or cuprous bromide, respectively, in hydrochloric acid with heating (e.g. 80 °C) for 30 minutes to one hour. Upon addition of the reaction to water, followed by isolation by conventional means (e.g. extraction and silica gel chromatography), compound of Formula \(X_{20} \) where \(R^{63} \) is chloro or bromo are obtained.

[0647] Compound of Formula \(X_{20} \) (Formula \(X_{20} \) where \(R^{60} \) is H and \(R^{15} \) is fluoro (halogen \(R^{63} \)) is prepared by reacting compound of Formula \(X_{20} \) in an appropriate aprotic solvent (e.g. tetrahydrofuran or dichloromethane) with boron trifluoride etherate. Subsequently, tert-butyl nitrite is added while the reaction is cooled (e.g. -15 °C) to afford the diazonium tetrafluoroborate intermediate as a precipitate that can be collected by filtration. To form the compound where \(R^{63} \) is fluoro, the diazonium salt is heated dry with a burner to initiate the evolution boron trifluoride which subsequently proceeds spontaneously. After isolation by conventional means (e.g. extraction and silica gel chromatography) compound of Formula \(X_{20} \) where \(R^{63} \) is fluoro are obtained. (Doyle and Bryker, J. Org. Chem. 1979, 44:1572; Schiemann and Winkelmiiller, Org. Syn. Coll. Vol. 2:299).

Step 2 - Preparation of compound of Formula \(X_{10} \)

[0648] Compound of Formula \(X_{10} \) (Formula \(X_{10} \) where \(R^{42} \) is \(\text{C(O)H} \) and \(R^{15} \) is halogen \(R^{63} \)) is prepared by reacting compound of Formula \(X_{20} \) with an organolithium reagent (e.g. lithium diisopropylamine) to effect the ortholithiation at the \(R^{42} \) position at reduced temperature (e.g. -78 °C) in an appropriate solvent (e.g. tetrahydrofuran) followed by addition of a forniylating reagent (e.g. dimethylformamide). After stirring for several hours and warming to room temperature, isolation by conventional means (e.g. extraction and silica gel chromatography) provides compound of Formula \(X_{10} \).
Example 94: Synthesis of Compounds of Formula X\textsubscript{10} where R\textsubscript{16} is optionally substituted lower alkyl and R\textsubscript{42} is C(O)H

[0649] Compound of Formula X\textsubscript{10}, (Formula X\textsubscript{10} where R\textsubscript{42} is C(O)H and R\textsubscript{16} is optionally substituted lower alkyl) may be synthesized from a compound of Formula X\textsubscript{20}, in two steps as described in Scheme 151.

Scheme 151

\begin{align*}
\text{Step 1 - Preparation of compound of Formula X}_{20} & \rightarrow \\
\text{Step 2 - Preparation of compound of Formula X}_{10} & \rightarrow \\
\end{align*}

[0650] Compound of Formula X\textsubscript{20}, (Formula X\textsubscript{20} where R\textsubscript{60} is H and R\textsubscript{16} is optionally substituted lower alkyl R\textsubscript{64}) is prepared by dissolving compound of Formula X\textsubscript{9} in an appropriate solvent (e.g. toluene), followed by the addition of a palladium catalyst (e.g. [L,L'-Bis(diphenylphosphino)-ferrocene] dichloropalladium(II) complex with dichloromethane (1:1)). After several minutes, a Grignard reagent of the Formula R\textsubscript{64}-MgBr (R\textsubscript{64} is optionally substituted lower alkyl) is added and the reaction heated (e.g. 90 °C) for one to several hours. After filtration through Celite, isolation by conventional means (e.g. extraction and silica gel chromatography) provides compound of Formula X\textsubscript{20}.

[0651] Compound of Formula X\textsubscript{10}, (Formula X\textsubscript{10} where R\textsubscript{42} is C(O)H and R\textsubscript{16} is optionally substituted lower alkyl R\textsubscript{64}) is prepared by reacting compound of Formula X\textsubscript{20} with an organolithium reagent (e.g. lithium diisopropylamine) to effect the lithiation at the R\textsubscript{42} position at reduced temperature (e.g. -78 °C) in an appropriate solvent (e.g. tetrahydrofuran) followed by addition of a formylating reagent (e.g. dimethylformamide). After stirring for several hours and warming to room temperature, isolation by conventional means (e.g. extraction and silica gel chromatography) provides compound of Formula X\textsubscript{10}.
Example 95: Synthesis of Compounds of Formula X_{10} where R^{16} is halogen and R^{42} is C(O)H

[0652] Compound of Formula X_{10}g (Formula X_{10} where R^{42} is C(O)H and R^{16} is halogen) may be synthesized from a compound of Formula X_{20}J in two Steps as described in Scheme 152.

Scheme 152

Step 1 - Preparation of compound of Formula $X_{20}k$

[0653] Compound of Formula $X_{20}k$ (Formula X_{20} where R^{60} is H and R^{16} is chloro or bromo (halogen R^{65})) is prepared by reacting compound of Formula $X_{20}l$ (Formula X_{20} where R^{60} is H and R^{16} is NH$_2$) in glacial acetic acid with sodium nitrite in acid (e.g. hydrochloric acid, sulfuric acid) to afford the diazonium intermediate. To form the compound where R^{65} is chloro or bromo, the diazonium salt is added to cuprous chloride or cuprous bromide, respectively, in hydrochloric acid with heating (e.g. 80 °C) for 30 minutes to one hour. Upon addition of the reaction to water, followed by isolation by conventional means (e.g. extraction and silica gel chromatography) compound of Formula $X_{20}k$ where R^{65} is bromo or chloro are obtained.

[0654] Compound of Formula $X_{20}k$ (Formula X_{20} where R^{60} is H and R^{16} is fluoro (halogen R^{65})) is prepared by reacting compound of Formula $X_{20}J$ in an appropriate aprotic solvent (e.g. tetrahydrofuran or dichloromethane) with boron trifluoride etherate. Subsequently, tert-butyl nitrite maybe added while the reaction is cooled (e.g. -15 °C) to afford the diazonium tetrafluoroborate intermediate as a precipitate that may becollected by filtration. To form the compounds where R^{65} is fluoro, the diazonium salt is heated dry with a burner to initiate the evolution boron trifluoride which subsequently proceeds spontaneously. After isolation by conventional means (e.g. extraction and silica gel chromatography), compound of Formula $X_{20}k$ where R15 is H and R^{65} is fluoro are obtained. (Doyle and Bryker, J. Org. Chem. 1979, 44:157; Schiemann and Winkelmüller, Org. Syn. Coll. Vol. 2:299.)
Step 2 - Preparation of compound of Formula Xioh

Compound of Formula Xioh (Formula Xio where R42 is C(O)H and R16 is halogen R65) is prepared by reacting compound of Formula Xio with an organolithium reagent (e.g. lithium diisopropylamine) to effect the lithiation at the R42 position at reduced temperature (e.g. -78 °C) in an appropriate solvent (e.g. tetrahydrofuran) followed by addition of a formylating reagent (e.g. dimethylformamide). After stirring for several hours and warming to room temperature, isolation by conventional means (e.g. extraction and silica gel chromatography) provides compounds of Formula Xioh.

Example 96: Synthesis of Compounds of Formula Xio where R16 is OR66 and R42 is C(O)H

Compound of Formula Xioh (Formula Xio where R42 is C(O)H and R16 is OR66, where R66 is optionally substituted lower alkyl) may be synthesized from a compound of Formula Xio in two Steps as described in Scheme 153.

Scheme 153

Step 1 - Preparation of compound of Formula Xio

Compound of Formula Xio (Formula Xio where R60 is H and R16 is OR66, where R66 is optionally substituted lower alkyl) is prepared by reacting compound of Formula Xio with compound of the Formula R66-OH (R66 is optionally substituted lower alkyl) in the presence of base (e.g sodium hydride) and a copper catalyst (e.g. copper bromide) in a non-reactive solvent (e.g. dimethylformamide) with heating (e.g. 120 °C) for several hours. Isolation by conventional means (e.g. extraction and silica gel chromatography) provides compound of Formula Xio.

Step 2 - Preparation of compound of Formula Xioh
Compound of Formula $X\text{_{10i}}$ (Formula $X\text{_{10}}$ where R^{42} is C(O)H and R^{16} is OR66, where R66 is optionally substituted lower alkyl) is prepared by reacting compound of Formula $X\text{_{20m}}$ with an organolithium reagent (e.g. lithium diisopropylamime) to effect the ortholithiation at the R^{42} position at reduced temperature (e.g. -78 $^\circ$C) in an appropriate solvent (e.g. tetrahydrofuran) followed by addition of a formylating reagent (e.g. dimethylformamide). After stirring for several hours and warming to room temperature, isolation by conventional means (e.g. extraction and silica gel chromatography) provides compound of Formula $X\text{_{10h}}$.

Example 97: Synthesis of Compounds of Formula $X\text{_{10}}$ where R^{17} is halogen and R^{42} is C(O)H

Compound of Formula $X\text{_{10i}}$ (Formula $X\text{_{10}}$ where R^{42} is C(O)H and R^{17} is halogen) may be synthesized from a compound of Formula $X\text{_{20n}}$ in two Steps as described in Scheme 154.

Scheme 154

Step 1 - Preparation of compound of Formula $X\text{_{20}}$

Compound of Formula $X\text{_{20o}}$ (Formula $X\text{_{20}}$ where R^{60} is H and R^{17} is chloro or bromo (halogen R67)) is prepared by reacting compound of Formula $X\text{_{20n}}$ (Formula $X\text{_{20}}$ where R^{60} is H and R^{17} is NH$_2$) in glacial-acetic acid with sodium nitrite in acid (e.g. hydrochloric acid, sulfuric acid) to afford the diazonium intermediate. To form the compounds where R^{67} is chloro or bromo, the diazonium salt is added to cuprous chloride or cuprous bromide, respectively, in hydrochloric acid with heating (e.g. 80 $^\circ$C) for 30 minutes to one hour. Upon addition of the reaction to water, followed by isolation by conventional means (e.g. extraction and silica gel chromatography) compound of Formula $X\text{_{20o}}$ where R^{67} is bromo or chloro are obtained.

Compound of Formula $X\text{_{20o}}$ (Formula $X\text{_{20}}$ where R^{60} is H and R^{17} is fluoro (halogen R67)) is prepared by reacting compound of Formula $X\text{_{20i}}$ in an appropriate
aprotic solvent (e.g. tetrahydrofuran or dichloromethane) with boron trifluoride etherate. Subsequently, tert-butyl nitrite may be added while the reaction is cooled (e.g. -15 °C) to afford the diazonium tetrafluoroborate intermediate as a precipitate that can be collected by filtration. To form the compounds where R^67 is fluoro, the diazonium salt is heated dry with a burner to initiate the evolution boron trifluoride which subsequently proceeds spontaneously. After isolation by conventional means (e.g. extraction and silica gel chromatography) compounds of Formula X_{20}O where R^67 is fluoro are obtained. (Doyle and Bryker, J. Org. Chem. 1979, 44:1572. Schiemann and Winkelmüller, Org. Syn. Coll. Vol. 2:299).

Step 2 - Preparation of compound of Formula [0662]

Compound of Formula X_{10}i (Formula X_{10} where R^42 is C(O)H and R^17 is halogen R^67) is prepared by reacting compound of Formula X_{20}O with an organolithium reagent (e.g. lithium diisopropylamine) to effect the lithiation at the R^42 position at reduced temperature (e.g. -78 °C) in an appropriate solvent (e.g. tetrahydrofuran) followed by addition of a formylating reagent (e.g. dimethylformamide). After stirring for several hours and warming to room temperature, isolation by conventional means (e.g. extraction and silica gel chromatography) provides compounds of Formula X_{10}i.

Example 98: Synthesis of Compounds of Formula X_{10} where R^17 is OR^68 and R^42 is C(O)H

Compound of Formula X_{10}J (Formula X_{10} where R^42 is C(O)H and R^17 is OR^68, where R^68 is optionally substituted lower alkyl) may be synthesized from a compound of Formula X_{20}P in two Steps as described in Scheme 155.

Scheme 155
Step 1 - Preparation of compound of Formula \(X_{20q}\)

[0664] Compound of Formula \(X_{20q}\) (Formula \(X_{20}\) where \(R^{68}\) is \(H\) and \(R^{17}\) is \(OR^{68}\), where \(R^{68}\) is optionally substituted lower alkyl) is prepared by reacting compound of Formula \(X_{20q}\) (Formula \(X_{20}\) where \(R^{68}\) is \(H\) and \(R^{17}\) is \(Br\)) with compound of the Formula \(R^{68}\)-OH (\(R^{68}\) is optionally substituted lower alkyl) in the presence of a base (e.g. sodium hydride) and a copper catalyst (e.g. copper bromide) in a non-reactive solvent (e.g. dimethylformamide) with heating (e.g. 120 °C) for several hours. Isolation by conventional means (e.g. extraction and silica gel chromatography) provides compound of Formula \(X_{20q}\).

Step 2 - Preparation of compound of Formula \(X_{10l}\)

[0665] Compound of Formula \(X_{10l}\) (Formula \(X_{10}\) where \(R^{42}\) is \(C(O)H\) and \(R^{17}\) is \(OR^{68}\), where \(R^{68}\) is optionally substituted lower alkyl) is prepared by reacting compound of Formula \(X_{20q}\) with an organolithium reagent (e.g. lithium diisopropylamine) to effect the lithiation at the \(R^{42}\) position at reduced temperature (e.g. -78 °C) in an appropriate solvent (e.g. tetrahydrofuran) followed by addition of a formylating reagent (e.g. dimethylformamide). After stirring for several hours and warming to room temperature, isolation by conventional means (e.g. extraction and silica gel chromatography) provides compounds of Formula \(X_{10l}\).

Example 99: Synthesis of Compounds of Formula X where \(n=1\); \(G\) is \(N\); \(K, J, F\) and \(E\) are \(C\); \(R_{15}\) and \(R_{16}\) are optionally substituted lower alkyl; \(M\) is \(NH-D\) and \(R^{42}\) is \(C(O)H\)

[0666] Compounds of Formula X where \(n=1\) and \(G\) is \(N\) are pyrimidine derivatives that may be prepared through many routes known in the literature and used in reactions analogous to those described for compounds of Formula Xa, such as in Examples 89-98. \(M\) is \(NH-D\), where \(D\) is consistent with the definition of \(M\). The synthesis of one such compound is exemplified in Scheme 156 as follows.
\textit{Step 1} - \textit{Preparation of compound of Formula X}_{30}

[0667] Compound of Formula X\textsubscript{30} (Formula X\textsubscript{a} where n=l, \(G\) is N, K, J, F and E are C, \(R^{15}\) and \(R^{16}\) are optionally substituted lower alkyl (\(R^{69}\) and \(R^{70}\), respectively), \(R^{13}\) is S-Me and \(R^{42}\) is H) is prepared by reacting thiourea \textbf{510} with compound of Formula XVII (\(R^{69}\) and \(R^{70}\) are independently optionally substituted lower alkyl) in the presence of a base (e.g. sodium hydroxide) in a non-reactive solvent (e.g. ethanol) for several hours. Subsequently, the addition of methyl iodide with heating (e.g. 60 °C) for several hours, followed by isolation by conventional means (e.g. extraction and silica gel chromatography) provides compound of Formula X\textsubscript{30}.

\textit{Step 2} - \textit{Preparation of compound of Formula X}_{40}

[0668] Compounds of Formula X\textsubscript{40} (Formula X where n=l, \(G\) is N, K, J, F and E are C, \(R^{15}\) and \(R^{16}\) are optionally substituted lower alkyl (\(R^{69}\) and \(R^{70}\), respectively), \(M\) is NH-D- (D is consistent with definition of M of Formula Ib or L\textsubscript{2} or Formula I) and \(R^{42}\) is H) is prepared by reacting compound of Formula X\textsubscript{30} with compound of Formula NH\textsubscript{2}-D-R\textsubscript{1} (e.g. benzyl amine or other suitable nucleophile) in the presence of abase (e.g. sodium hydride) in a non-reactive solvent (e.g. dimethylformamide) for several hours. Isolation by conventional means (e.g. extraction and silica gel chromatography) provides compounds of Formula X\textsubscript{40}.

\textit{Step 3} - \textit{Preparation of compound of Formula X}_{50}

[0669] Compounds of Formula X\textsubscript{50} (Formula X where n=l, \(G\) is N, K, J, F and E are C, \(R^{15}\) and \(R^{16}\) are optionally substituted lower alkyl (\(R^{69}\) and \(R^{70}\), respectively), \(M\) is NH-D-
(D is consistent with definition of M of Formula Ib or L₂ or Formula I) and R₄₂ is C(O)H) is prepared by reacting compound of Formula X₄₀ with an organolithium reagent (e.g. lithium diisopropylamine) to effect the lithiation at the R₄₂ position at reduced temperature (e.g. -78°C) in an appropriate solvent (e.g. tetrahydrofuran) followed by addition of a formylating reagent (e.g. dimethylformamide). After stirring for several hours and warming to room temperature, isolation by conventional means (e.g. extraction and silica gel chromatography) provides compounds of Formula X₅₀, which may be used in the synthesis of compound of Formula II, which may be used in the synthesis of compound of Formula Iₚ.

Example 100: Synthesis of Compounds of Formula Xₐ where n=0; K is S; J, E, and F are C; R₄₃ is NHP; R₁₅ is optionally substituted lower alkyl or optionally substituted lower alkoxy and R₄₂ is COOH.

[0670] Compounds of Formula X where n=0 are 5-membered heterocycles that may be prepared through many routes known in the literature and used in reactions analogous to those described for compounds of Formula Xₐ, such as in Examples 89-98. The synthesis of one such compound is exemplified in Scheme 157 as follows.

Scheme 157

Step 1 - Preparation of compound of Formula X₆₀

[0671] Compound of Formula X₆₀ (Formula Xₐ where n=0, K is S, J, E, and F are C, R₄₃ is NH₂, R₁₅ is R₇₁ (R₇₁ is optionally substituted lower alkyl or O-R₇₂, where R₇₂ is optionally substituted lower alkyl) and R₄₂ is CO₂R, where R is lower alkyl) is prepared by
reacting thiourea 510 with compound of Formula XVI where R_{71} is optionally substituted lower alkyl or O-R_{72} (R_{72} is optionally substituted lower alkyl) and R is lower alkyl in a non-reactive solvent (e.g. dimethylformamide, ethanol) with heating (e.g. 60 °C) for several hours. Isolation by conventional means (e.g. extraction and silica gel chromatography) provides compound of Formula X_{60}.

Step 2 - Preparation of compound of Formula X_{70}

[0672] Compound of Formula X_{70} (Formula Xa where n=0, K is S, J, E, and F are C, R^{43} is NHP, where P is a protecting group [e.g. triisopropylsilyl, t-butyloxycarbonyl]), R^{15} is R_{71} and R^{42} is CO_2R, where R is lower alkyl) is prepared by reacting compound of Formula X_{60} with a reagent appropriate to introduce the protecting group (e.g. triisopropylsilyl chloride, Boc anhydride) in the presence of a base (e.g. sodium hydride, diisopropylethylamine) in a non-reactive solvent (e.g. dimethylformamide) for several hours. Isolation by conventional means (e.g. extraction and silica gel chromatography) provides compound of Formula X_{70}.

Step 3 - Preparation of compound of Formula X_{80}

[0673] Compound of Formula X_{80} (Formula Xa where n=0, K is S, J, E, and F are C, R^{43} is NHP, R^{15} is R_{71} and R^{42} is CO_2H) is prepared by reacting compound of Formula X_{70} with a base (e.g. lithium hydroxide) in an appropriate solvent (e.g. tetrahydrofuran and water) for several hours. Isolation by conventional means (e.g. acid-base extraction) provides compound of X_{80}, which maybe used in the synthesis of compound of Formula II where R^{43} is NHP, which may be used to make compound of Formula Ib.

Example 101 Synthesis of 3,5-Dimethyl-4-(1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyrazole-1-carboxylic acid benzylamide P-0084

[0674] 3,5-Dimethyl-4-(1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyrazole-1-carboxylic acid benzylamide P-0084 was synthesized in 6 steps from dimethyl-(1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-amine 2 as shown in scheme 158.
Step 1: Preparation of 3-Dimethylaminomethyl-pyrrolo[2,3-b]pyridine-l-carboxylic acid tert-butyl ester (511)

To dimethyl-(IH-pyrrolo[2,3-b]pyridin-3-ylmethyl)-amine (2, 2.50 g, 14.3 mmol, prepared as described in Example 2, Scheme 4, Step 1) in tetrahydrofuran (200.0 mL) was added sodium hydride (0.685 g, 60% in mineral oil, 17.1 mmol). After 10 minutes, di-tert-butyldicarbonate (3.74 g, 17.1 mmol) was added to the reaction. The reaction was stirred at room temperature overnight. The reaction was poured into water and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated and purified by silica gel column chromatography eluting with 30% ethyl acetate in hexane to give a white solid (511, 3.80 g, 96.7%).

Step 2: Preparation of 3-Chloromethyl-pyrrolo[2,3-b]pyridine-l-carboxylic acid tert-butyl ester (512)

To 3-dimethylaminomethyl-pyrrolo[2,3-b]pyridin-l-carboxylic acid tert-butyl ester (511, 2.60 g, 9.44 mmol) in toluene (50.00 mL) was added isopropyl chloroformate (11.3 mL, 1.0 M in toluene) under an atmosphere of nitrogen. The reaction was stirred at room temperature for 3 hours. The reaction was poured into water and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated and purified by silica gel column chromatography eluting with 20% ethyl acetate in hexane to give a white solid (512, 2.0 g, 79.4%).
Step 3 - Preparation of 3-(2-Acetyl-3-oxo-butyl)-pyrrolo[2,3-b]pyridine-1-carboxylic acid tert-butyl ester (513):

[0677] To acetylacetone (0.563 g, 5.62 mmol) in dimethyl sulfoxide (29.0 mL) was added sodium hydride (0.225 g, 60% in mineral oil, 5.62 mmol). After 20 minutes, 3-chloromethyl-pyrrolo[2,3-b]pyridine-1-carboxylic acid tert-butyl ester (512, 1.00 g, 3.75 mmol) was added to the reaction. The reaction was stirred at room temperature for 2 hours. The reaction was poured into water and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated and purified by silica gel column chromatography eluting with 40% ethyl acetate in hexane to give a colorless oil (513, 0.59 g, 48.0%). MS (ESI) [M+H+]⁺ = 331.4.

Step 4—Preparation of β-(3,5-Dimethyl-1H-pyrazol-4-ylmethyl)-pyrrolo[2,3-b]pyridine-1-carboxylic acid tert-butyl ester (514)

[0678] To 3-(2-acetyl-3-oxo-butyl)-pyrrolo[2,3-b]pyridine-1-carboxylic acid tert-butyl ester (513, 1.20 g, 3.63 mmol) in methanol (15.0 mL), cooled to -20 °C under an atmosphere of nitrogen, was added hydrazine (0.128 g, 4.00 mmol) in dichloromethane (6.0 mL). The reaction was stirred for 2 hours. The reaction was concentrated to remove the solvents, and the residue was poured into water and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated and purified by silica gel column chromatography eluting with 60% ethyl acetate in hexane to give a white solid (514, 1.0 g, 84.4%). MS (ESI) [M+H+]⁺ = 327.4.

Step 5 - Preparation of 3-(1-Benzylcarbamoyl-3,5-dimethyl-1H-pyrazol-4-ylmethyl)-pyrrolo[2,3-b]pyridine-1-carboxylic acid tert-butyl ester (515)

[0679] To 3-(3,5-dimethyl-1H-pyrazol-4-ylmethyl)-pyrrolo[2,3-b]pyridine-1-carboxylic acid tert-butyl ester (514, 60.0 mg, 0.18 mmol) in dichloromethane (6.0 mL) were added 1,8-diazabicyclo[5.4.0]undec-7-ene (0.033 mL, 0.220 mmol) and benzyl isocyanate (29.4 mg, 0.220 mmol) under an atmosphere of nitrogen. The reaction was stirred at room temperature for 2 hours. The reaction was concentrated and purified by silica gel column chromatography eluting with 30% ethyl acetate in hexane to give crude compound (515, approx. 50 mg) that was used in the next step directly. MS (ESI) [M+H+]⁺ = 460.5.
Step 6 - 3,5-Dimethyl-4-(1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyrazole-1-carboxylic acid benzylamide (P-0084)

[0680] To 3-(1-benzylcarbamoyl-3,5-dimethyl-1H-pyrazol-4-ylmethyl)-pyrrolo[2,3-b]pyridine-1-carboxylic acid tert-butyl ester (515, 50.0 mg, 0.11 mmol) in dichloromethane (6.0 mL) was added trifluoroacetic acid (0.20 mL, 2.6 mmol) under an atmosphere of nitrogen. The reaction was stirred at room temperature for 20 minutes. The reaction was poured into aqueous potassium carbonate and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated and purified by silica gel column chromatography eluting with 30% ethyl acetate in hexane to give a white solid (P-0084, 11.0 mg, 28.1%). MS (ESI) [M+H]+ = 360.5.

[0681] Additional compounds were prepared following the protocol of Scheme 158, replacing benzyl isocyanate with an appropriate electrophile in Step 5. The following compounds were made following this procedure:

- 3,5-Dimethyl-4-(1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyrazole-1-carboxylic acid phenylamide (P-0085),
- [3,5-Dimethyl-4-(1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyrazol-yl]-phenyl-methanone (P-0086),
- l-[3,5-Dimethyl-4-(1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyrazol-yl]-3-phenyl-propan-1-one (P-0087),
- 3-(3,5-Dimethyl-1-phenylmethanesulfonyl-1H-pyrazol-4-ylmethyl)-1H-pyrrolo[2,3-b]pyridine (P-0088),
- 3-[1-(Butane-1-sulfonyl)-3,5-dimethyl-1H-pyrazol-4-ylmethyl]-1H-pyrrolo[2,3-b]pyridine (P-0089),
- 3,5-Dimethyl-4-(1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyrazole-1-carboxylic acid butylamide (P-0090), and
- 3,5-Dimethyl-4-(1H-pyrrolo[2,3-b]pyridin-3-ylmethyl)-pyrazole-1-carboxylic acid phenethyl-amide (P-0091).

[0682] The electrophile used in place of benzyl isocyanate in Step 5 is indicated in Column 2 of the following table, with the compound structure given in Column 3. Column 1 provides the compound number and Column 4 the experimental mass spectrometry result.
<table>
<thead>
<tr>
<th>Electrophile</th>
<th>Compound</th>
<th>MS(ESI) [M+H]+ observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-0085</td>
<td></td>
<td>346.4</td>
</tr>
<tr>
<td>P-0086</td>
<td></td>
<td>331.2</td>
</tr>
<tr>
<td>P-0087</td>
<td></td>
<td>359.2</td>
</tr>
<tr>
<td>P-0088</td>
<td></td>
<td>381.2</td>
</tr>
<tr>
<td>P-0089</td>
<td></td>
<td>347.2</td>
</tr>
<tr>
<td>P-0090</td>
<td></td>
<td>326.2</td>
</tr>
<tr>
<td>P-0091</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0683] All patents and other references cited in the specification are indicative of the level of skill of those skilled in the art to which the invention pertains, and are
incorporated by reference in their entireties, including any tables and figures, to the same extent as if each reference had been incorporated by reference in its entirety individually.

[0684] One skilled in the art would readily appreciate that the present invention is well adapted to obtain the ends and advantages mentioned, as well as those inherent therein. The methods, variances, and compositions described herein as presently representative of preferred embodiments are exemplary and are not intended as limitations on the scope of the invention. Changes therein and other uses will occur to those skilled in the art, which are encompassed within the spirit of the invention, are defined by the scope of the claims.

[0685] It will be readily apparent to one skilled in the art that varying substitutions and modifications may be made to the invention disclosed herein without departing from the scope and spirit of the invention. For example, variations can be made to provide additional compounds of Formula I and/or various methods of administration can be used. Thus, such additional embodiments are within the scope of the present invention and the following claims.

[0686] The invention illustratively described herein suitably may be practiced in the absence of any element or elements, limitation or limitations which is not specifically disclosed herein. The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention that in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed. Thus, it should be understood that although the present invention has been specifically disclosed by preferred embodiments and optional features, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention as defined by the appended claims.

[0687] In addition, where features or aspects of the invention are described in terms of Markush groups or other grouping of alternatives, those skilled in the art will recognize that the invention is also thereby described in terms of any individual member or subgroup of members of the Markush group or other group.
Also, unless indicated to the contrary, where various numerical values are provided for embodiments, additional embodiments are described by taking any 2 different values as the endpoints of a range. Such ranges are also within the scope of the described invention.

Thus, additional embodiments are within the scope of the invention and within the following claims.
SEQUENCE LISTING

SEQ ID NO: 1 Sequence NP_0002 13

Met Arg Gly Ala Arg Gly Ala Trp Asp Phe Leu Cys Val Leu Leu Leu Leu
Arg Val Gin Thr Gly Ser Ser Gin Pro Ser Val Ser Pro Gly Glu Pro Ser Pro
Pro Ser ile His Pro Gly Lys Ser Asp Leu H e Val Arg Val Gly Asp Glu H e
Arg Leu Leu Cys Thr Asp Pro Gly Phe Val Lys Trp Thr Phe Glu H e Leu Asp
Glu Thr Asn Glu Asn Lys Gin Asn Glu Trp H e Thr Glu Lys Ala Glu Ala Thr
Asn Thr Gly Lys Tyr Thr Cys Thr Asn Lys His Glu Leu Ser Asn Ser H e Tyr
Val Phe Val Arg Asp Pro Ala Lys Leu Phe Leu Val Asp Arg Ser Leu Tyr Gly
Lys Glu Asp Gin Arg Thr Leu Val Asp Pro Leu Thr Asp Pro Glu Val Thr
Asn Tyr Ser Leu Lys Gly Cys Gin Gly Lys Pro Leu Pro Lys Asp Leu Arg Phe
H e Pro Arg Asp Pro Lys Ala Glu H e Met H e Lys Ser Val Lys Arg Ala Tyr His
Arg Leu Cys Leu His Cys Ser Val Asp Gin Glu Gly Lys Ser Val Leu Ser Glu
Lys Phe H e Leu Lys Val Arg Pro Ala Phe Lys Ala Val Pro Val Ser Val
Ser Lys Ala Ser Tyr Leu Leu Arg Glu Gly Glu Glu Phe Thr Val Thr Cys Thr
H e Lys Gin Asp Val Ser Ser Ser Val Tyr Ser Thr Trp Lys Arg Glu Asn Ser Gin
Thr Lys Leu Gin Glu Lys Tyr Asn Ser Trp His His Gly Asp Phe Asn Tyr Glu
Arg Gin Ala Thr Leu Thr H e Ser Ser Ala Arg Val Asn Asp Ser Gly Val Phe
Met Cys Tyr Ala Asn Asn Thr Phe Glu Ser Ala Asn Val Thr Thr Thr Leu Glu
Val Val Asp Lys Gly Phe H e Asn H e Phe Pro Met H e Asn Thr Thr Val Phe
Val Asn Asp Gly Glu Asn Val Asp Leu H e Val Glu Tyr Glu Ala Phe Pro Lys
Pro Glu His Gin Gin Trp H e Tyr Met Asn Arg Thr Phe Thr Asp Lys Trp Glu
Asp Tyr Pro Lys Ser Glu Asn Glu Ser Asn H e Arg Tyr Val Ser Glu Leu His
Leu Thr Arg Leu Lys Gly Thr Glu Gly Gly Thr Tyr Thr Phe Leu Val Ser Asn
Ser Asp Val Asn Ala Ala H e Ala Phe Asn Val Tyr Val Asn Thr Lys Pro Glu
H e Leu Thr Tyr Asp Arg Leu Val Asn Glu Met Leu Gin Cys Val Ala Ala Gly
Phe Pro Glu Pro Thr H e Asp Trp Tyr Phe Cys Pro Glu Thr Glu Gin Arg Cys
Ser Ala Ser Val Leu Pro Val Asp Val Gin Thr Leu Asn Ser Ser Gly Pro Pro
Phe Glu Lys Leu Val Val Gin Ser Ser H e Asp Ser Ser Ala Phe Lys His Asn
Gly Thr Val Glu Cys Lys Ala Tyr Asn Asp Val Asp Gly Lys Thr Ser Ala Tyr Phe
Asn Phe Ala Phe Lys Gin Asn Lys Glu Gin H e His Pro His Thr Leu Phe
Thr Pro Leu Leu H e Glu Phe Val H e Val Ala Gly Met Met Cys H e H e Val
Met H e Leu Thr Tyr Lys Tyr Leu Gin Lys Pro Met Tyr Glu Val Gin Trp Lys
Val Val Glu Glu H e Asn Gly Asn Asn Tyr Val Tyr H e Asp Pro Thr Gin Leu
Pro Tyr Asp His Lys Trp Glu Phe Pro Arg Asn Arg Leu Ser Phe Gly Lys Thr
Leu Gly Ala Glu Ala Phe Gly Lys Val Val Glu Ala Thr Ala Tyr Gly Leu H e
Lys Ser Asp Ala Ala Met Thr Val Ala Val Lys Met Leu Lys Pro Ser Ala His
Leu Thr Glu Arg Glu Ala Leu Met Ser Glu Leu Lys Val Leu Ser Tyr Leu Glu

256
Asn His Met Asn lie VaI Asn Leu Leu GIy Ala Cys Thr lie GIy GIy Pro Thr
Leu VaI H e Thr GIu Tyr Cys Tyr GIy Asp Leu Leu Asn Phe Leu Arg Arg
Lys Arg Asp Ser Phe H e Cys Ser Lys GIu GIu Asp His Ala GIu Ala Ala Leu
Tyr Lys Asn Leu Leu His Ser Lys GIu Ser Ser Cys Ser Asp Ser Thr Asn GIu
Tyr Met Asp Met Lys Pro GIy VaI Ser Tyr VaI VaI Pro Thr Lys Ala Asp Lys
Arg Arg Ser VaI Arg H e GIy Ser Tyr H e GIu Arg Asp VaI Thr Pro Ala H e
Met GIu Asp Asp GIu Leu Ala Leu Asp Leu GIu Asp Leu Ser Phe Ser Tyr
GIu VaI Ala Lys GIy Met Ala Phe Leu Ala Ser Lys Asn Cys H e His Arg Asp
Leu Ala Ala Arg Asn H e Cys Thr His GIy Arg H e Thr Lys H e Cys Asp
Phe GIy Leu Ala Arg Asp H e Lys Asn Asp Ser Asn Tyr VaI VaI Lys GIy Asn
Ala Arg Leu Pro VaI Lys Trp Met Ala Pro GIu Ser H e Phe Asn Cys VaI Tyr
Thr Phe GIu Ser Asp VaI Thr Ser Tyr GIy H e Phe Leu Trp GIu Leu Phe Ser
Leu GIy Ser Ser Pro Tyr Pro GIy Met Pro VaI Asp Ser Lys Phe Tyr Lys Met
H e Lys GIu GIy Phe Arg Met Leu Ser Pro GIu His Ala Pro Ala GIu Met Tyr
Asp H e Met Lys Thr Cys Trp Asp Ala Asp Pro Leu Lys Arg Pro Thr Phe Lys
GIN H e VaI GIN Leu H e GIu Lys GIN H e Ser GIu Ser Thr Asn His H e Tyr
Ser Asn Leu Ala Asn Cys Ser Pro Asn Arg GIn Lys Pro VaI VaI Asp His Ser
VAI Arg H e Asn Ser VaI GIy Ser Thr Ala Ser Ser Ser GIN Pro Leu Leu VaI
His Asp Asp VaI

SEQ D NO:2 Sequence NM_000222

1 gatcccatcg cagctaggcg gatgagaggc gttcgggccc cctgggattt tctctgcgtt
61 ctgctctcac tggctcgcgt ccagacaggc ttctctcaac catttggtgac tcagggaga
121 cccgatctcc cattcatcag tccagggaga ttctgatctt aacgccttcg tgcgaagaga
181 atagggtctg tattcaccga tccgggcttt gcctaatggg cttggagtgt cctgatgaa
241 acgaatgaga taagcacaga gaggaagata cggagaaggg cggagaagga ccagccgccc
301 aaataacagtt gcaccaacaa acagcctta acgaatcaca ttatagttgt tgttagagat
361 cccgaccaag ttttccctgt ttgccgctcc cgcttgaggg cagcagctcg
421 tcgctcgctc atctccagga cccgaatgtg accaatattt cccataagg gcgcaggg
481 aagctctcttc ccaaggttgaag gggtttattt tcttgccccc acggagggct gctgacagc
541 agtgtagaac ggctctacca tggctctcct cttgtgttgt gtctggacca gggaggca
601 tcaagtgtctg cggaaaaatt cacacgagag cttgagggct cttgcaagc ttgcacgtct
661 gtgtcgtcgtg ccaagccgaa tcatctctct aagggaggg cggcagagc cagatacgag
721 aacataaaaag aatgtgctac ttcctggtgt taacagcttg aaagagaaaa cagatcagc
781 aaactcaagg agaaataata tagctggcat caacgggtact tcaattatga acgctcgcag
841 agtggacta tcaagctcag gtagggtaag gattgctggg tgttcatgtg ttagcgcaat
901 aatacttttg gatcagcaca tgcacagcag acctctgaga atgttagata cagtatcagg
961 aatactttcc ccatgaaaa cactacgata tttgtaaccg atggagaaaa ttgtagatgg
1021 attgttagaat atgaagcatt ccccaacct gcacccagac agtggatcta tatgacagaa

257
1081 accttcactg ataaatggga agattacccct aagtctgaga atgaaagtaa tatcagatac
1141 gtaaagtgaaac ttcatctcata gagaacttaaa ggcaccgaaac gaggacacat cacatcctcata
1201 gtgtccaugt tcagctgctcata gcttcagtaatt ggcataaattc aatgtgtgcag agcaggttaac
cnttcactg gtaagtgaac ttcatctcata gagaaaat cagctgtcag aagcaggttaac
cnttcactg gtaagtcataa ttttaattag tttatgtgaa tacaagacac
cnttcactg gagaaaat cagctgtcag aagcaggttaac
cnttcactg gtaagtcataa ttttaattag tttatgtgaa tacaagacac
cnttcactg gagaaaat cagctgtcag aagcaggttaac
cnttcactg gtaagtcataa ttttaattag tttatgtgaa tacaagacac
cnttcactg gagaaaat cagctgtcag aagcaggttaac
cnttcactg gtaagtcataa ttttaattag tttatgtgaa tacaagacac
cnttcactg gagaaaat cagctgtcag aagcaggttaac
cnttcactg gtaagtcataa ttttaattag tttatgtgaa tacaagacac
cnttcactg gagaaaat cagctgtcag aagcaggttaac
cnttcactg gtaagtcataa ttttaattag tttatgtgaa tacaagacac
SEQ ID NO: 3 Sequence NP_5202

Met GIy Pro GIy VaI Leu Leu Leu Leu Leu VaI Ala Thr Ala Trp His GIy GIy
GIy lie Pro VaI lie GIu Pro Ser VaI Pro GIu Leu VaI VaI Lys Pro GIy Ala
Thr VaI Thr Leu Arg Cys VaI GIy Asn GIy Ser VaI GIu Trp Asp GIy Pro Pro
Ser Pro His Trp Thr Leu Tyr Ser Asp GIy Ser Ser Ser lie Leu Ser Thr Asn
Asn Ala Thr Phe Gin Asn Thr GIy Thr Tyr Arg Cys Thr GIu Pro GIy Asp Pro
Leu GIy GIy Ser Ala Ala H e His Leu Tyr VaI Lys Asp Pro Ala Arg Pro Trp
Asn VaI Leu Ala GIu VaI VaI VaI Phe GIu Asp GIu Asp Ala Leu Leu Pro
Cys Leu Leu Thr Asp Pro VaI Leu GIu Ala GIy VaI Ser Leu VaI Arg VaI Arg
GIy Arg Pro Leu Met Arg His Thr Asn Tyr Ser Phe Ser Pro Trp His GIy Phe
Thr H e His Arg Ala Lys Phe H e GIu Ser GIu Ser GIu Asp Tyr GIu Cys Ser Ala Leu

259
Pro Thr Phe Gin Gin lie Cys Ser Phe Leu Gin GIu Gin Ala Gin GIu GIu Asp Arg
Arg GIu Arg Asp Tyr Thr Asn Leu Pro Ser Ser Ser Arg Ser GIy GIy Ser GIy
Ser Ser Ser Ser GIu Leu GIu GIu GIu Ser Ser Ser GIu His Leu Thr Cys Cys
GIu GIu GIy Asp lie Ala GIu Pro Leu Leu GIu Pro Asn Asn Tyr Gin Phe Cys

SEQ ID NO: 4 Sequence NM_005211

1 gaagggcaga cagagtggtcc aaaaagctgta gacgcaagga gtaggagaag gtagggagaaga
gagaagagg gaaggggagg gcagcggagactgcggca gaagtaaaggg
gatagggcag caggggagg gcagcggagactgcggca gaagtaaaggg
agagggcag cagagtggtcc aaaaagctgta gacgcaagga gtaggagaag gtagggagaaga
gagaagagg gaaggggagg gcagcggagactgcggca gaagtaaaggg
gggcaagtg gaagggcag cagagtggtcc aaaaagctgta gacgcaagga gtaggagaag gtagggagaaga
gagaagagg gaaggggagg gcagcggagactgcggca gaagtaaaggg
gggcaagtg gaagggcag cagagtggtcc aaaaagctgta gacgcaagga gtaggagaag gtagggagaaga
gagaagagg gaaggggagg gcagcggagactgcggca gaagtaaaggg
gggcaagtg gaagggcag cagagtggtcc aaaaagctgta gacgcaagga gtaggagaag gtagggagaaga
gagaagagg gaaggggagg gcagcggagactgcggca gaagtaaaggg
gggcaagtg gaagggcag cagagtggtcc aaaaagctgta gacgcaagga gtaggagaag gtagggagaaga
gagaagagg gaaggggagg gcagcggagactgcggca gaagtaaaggg
gggcaagtg gaagggcag cagagtggtcc aaaaagctgta gacgcaagga gtaggagaag gtagggagaaga
gagaagagg gaaggggagg gcagcggagactgcggca gaagtaaaggg
gggcaagtg gaagggcag cagagtggtcc aaaaagctgta gacgcaagga gtaggagaag gtagggagaaga
gagaagagg gaaggggagg gcagcggagactgcggca gaagtaaaggg
gggcaagtg gaagggcag cagagtggtcc aaaaagctgta gacgcaagga gtaggagaag gtagggagaaga
gagaagagg gaaggggagg gcagcggagactgcggca gaagtaaaggg
gggcaagtg gaagggcag cagagtggtcc aaaaagctgta gacgcaagga gtaggagaag gtagggagaaga
gagaagagg gaaggggagg gcagcggagactgcggca gaagtaaaggg
gggcaagtg gaagggcag cagagtggtcc aaaaagctgta gacgcaagga gtaggagaag gtagggagaaga
gagaagagg gaaggggagg gcagcggagactgcggca gaagtaaaggg
gggcaagtg gaagggcag cagagtggtcc aaaaagctgta gacgcaagga gtaggagaag gtagggagaaga
gagaagagg gaaggggagg gcagcggagactgcggca gaagtaaaggg
gggcaagtg gaagggcag cagagtggtcc aaaaagctgta gacgcaagga gtaggagaag gtagggagaaga
gagaagagg gaaggggagg gcagcggagactgcggca gaagtaaaggg
gggcaagtg gaagggcag cagagtggtcc aaaaagctgta gacgcaagga gtaggagaag gtagggagaaga
gagaagagg gaaggggagg gcagcggagactgcggca gaagtaaaggg
gggcaagtg gaagggcag cagagtggtcc aaaaagctgta gacgcaagga gtaggagaag gtagggagaaga
gagaagagg gaaggggagg gcagcggagactgcggca gaagtaaaggg
gggcaagtg gaagggcag cagagtggtcc aaaaagctgta gacgcaagga gtaggagaag gtagggagaaga
gagaagagg gaaggggagg gcagcggagactgcggca gaagtaaaggg
gggcaagtg gaagggcag cagagtggtcc aaaaagctgta gacgcaagga gtaggagaag gtagggagaaga
gagaagagg gaaggggagg gcagcggagactgcggca gaagtaaaggg
gggcaagtg gaagggcag cagagtggtcc aaaaagctgta gacgcaagga gtaggagaag gtagggagaaga
gagaagagg gaaggggagg gcagcggagactgcggca gaagtaaaggg
gggcaagtg gaagggcag cagagtggtcc aaaaagctgta gacgcaagga gtaggagaag gtagggagaaga
gagaagagg gaaggggagg gcagcggagactgcggca gaagtaaaggg
gggcaagtg gaagggcag cagagtggtcc aaaaagctgta gacgcaagga gtaggagaag gtagggagaaga
gagaagagg gaaggggagg gcagcggagactgcggca gaagtaaaggg
gggcaagtg gaagggcag cagagtggtcc aaaaagctgta gacgcaagga gtaggagaag gtagggagaaga
gagaagagg gaaggggagg gcagcggagactgcggca gaagtaaaggg
gggcaagtg gaagggcag cagagtggtcc aaaaagctgta gacgcaagga gtaggagaag gtagggagaaga
gagaagagg gaaggggagg gcagcggagactgcggca gaagtaaaggg
gggcaagtg gaagggcag cagagtggtcc aaaaagctgta gacgcaagga gtaggagaag gtagggagaaga
gagaagagg gaaggggagg gcagcggagactgcggca gaagtaaaggg
gggcaagtg gaagggcag cagagtggtcc aaaaagctgta gacgcaagga gtaggagaag gtagggagaaga
gagaagagg gaaggggagg gcagcggagactgcggca gaagtaaaggg
<table>
<thead>
<tr>
<th></th>
<th>DNA Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981</td>
<td>catcgacccc acgcagctgc cttacaacga gaagtgggag ttcccccgga acaacctgca</td>
</tr>
<tr>
<td>2041</td>
<td>gtttggtaag accctcggag ctggagcctt tgggaaggtg ctggaggcca gttcccgttg</td>
</tr>
<tr>
<td>2101</td>
<td>tctgagcttg ccactctcga tggagctgg gatggctgga atggctgact ccacggccc</td>
</tr>
<tr>
<td>2161</td>
<td>tcagcagatc ctggtctccc tggagctgg gatggctgga atggctgact ccacggccc</td>
</tr>
<tr>
<td>2221</td>
<td>ggaggagagc gcctctccc tggagctgg gatggctgga atggctgact ccacggccc</td>
</tr>
<tr>
<td>2281</td>
<td>gttttggag tccttttctcc tggagctgg gatggctgga atggctgact ccacggccc</td>
</tr>
<tr>
<td>2341</td>
<td>gttttggag tccttttctcc tggagctgg gatggctgga atggctgact ccacggccc</td>
</tr>
<tr>
<td>2401</td>
<td>gttttggag tccttttctcc tggagctgg gatggctgga atggctgact ccacggccc</td>
</tr>
<tr>
<td>2461</td>
<td>gttttggag tccttttctcc tggagctgg gatggctgga atggctgact ccacggccc</td>
</tr>
<tr>
<td>2521</td>
<td>gttttggag tccttttctcc tggagctgg gatggctgga atggctgact ccacggccc</td>
</tr>
<tr>
<td>2581</td>
<td>gttttggag tccttttctcc tggagctgg gatggctgga atggctgact ccacggccc</td>
</tr>
<tr>
<td>2641</td>
<td>gttttggag tccttttctcc tggagctgg gatggctgga atggctgact ccacggccc</td>
</tr>
<tr>
<td>2701</td>
<td>gttttggag tccttttctcc tggagctgg gatggctgga atggctgact ccacggccc</td>
</tr>
<tr>
<td>2761</td>
<td>gttttggag tccttttctcc tggagctgg gatggctgga atggctgact ccacggccc</td>
</tr>
<tr>
<td>2821</td>
<td>gttttggag tccttttctcc tggagctgg gatggctgga atggctgact ccacggccc</td>
</tr>
<tr>
<td>2881</td>
<td>gttttggag tccttttctcc tggagctgg gatggctgga atggctgact ccacggccc</td>
</tr>
<tr>
<td>2941</td>
<td>gttttggag tccttttctcc tggagctgg gatggctgga atggctgact ccacggccc</td>
</tr>
<tr>
<td>3001</td>
<td>gttttggag tccttttctcc tggagctgg gatggctgga atggctgact ccacggccc</td>
</tr>
<tr>
<td>3061</td>
<td>gttttggag tccttttctcc tggagctgg gatggctgga atggctgact ccacggccc</td>
</tr>
<tr>
<td>3121</td>
<td>gttttggag tccttttctcc tggagctgg gatggctgga atggctgact ccacggccc</td>
</tr>
<tr>
<td>3181</td>
<td>gttttggag tccttttctcc tggagctgg gatggctgga atggctgact ccacggccc</td>
</tr>
<tr>
<td>3241</td>
<td>gttttggag tccttttctcc tggagctgg gatggctgga atggctgact ccacggccc</td>
</tr>
<tr>
<td>3301</td>
<td>gttttggag tccttttctcc tggagctgg gatggctgga atggctgact ccacggccc</td>
</tr>
<tr>
<td>3361</td>
<td>gttttggag tccttttctcc tggagctgg gatggctgga atggctgact ccacggccc</td>
</tr>
<tr>
<td>3421</td>
<td>gttttggag tccttttctcc tggagctgg gatggctgga atggctgact ccacggccc</td>
</tr>
<tr>
<td>3481</td>
<td>gttttggag tccttttctcc tggagctgg gatggctgga atggctgact ccacggccc</td>
</tr>
<tr>
<td>3541</td>
<td>gttttggag tccttttctcc tggagctgg gatggctgga atggctgact ccacggccc</td>
</tr>
<tr>
<td>3601</td>
<td>gttttggag tccttttctcc tggagctgg gatggctgga atggctgact ccacggccc</td>
</tr>
<tr>
<td>3661</td>
<td>gttttggag tccttttctcc tggagctgg gatggctgga atggctgact ccacggccc</td>
</tr>
<tr>
<td>3721</td>
<td>gttttggag tccttttctcc tggagctgg gatggctgga atggctgact ccacggccc</td>
</tr>
<tr>
<td>3781</td>
<td>gttttggag tccttttctcc tggagctgg gatggctgga atggctgact ccacggccc</td>
</tr>
<tr>
<td>3841</td>
<td>gttttggag tccttttctcc tggagctgg gatggctgga atggctgact ccacggccc</td>
</tr>
<tr>
<td>3901</td>
<td>gttttggag tccttttctcc tggagctgg gatggctgga atggctgact ccacggccc</td>
</tr>
<tr>
<td>3961</td>
<td>gttttggag tccttttctcc tggagctgg gatggctgga atggctgact ccacggccc</td>
</tr>
</tbody>
</table>

Total Sequences: 262
CLAIMS

What is claimed is:

1. A compound having the chemical structure

![Chemical Structure](image)

together with all salts, prodrugs, tautomers, and isomers thereof,

wherein:

- X_1 is N or CR$_2$, X_2 is N or CR$_6$, Y_1 is N or CR$_4$, and Y_2 is N or CR$_5$, provided, however, that not more than one of X_2, Y_1 and Y_2 is N;
- L^1 is selected from the group consisting of optionally substituted lower alkylene, -S-, -O-, -C(O)-, -C(S)-, -S(O)$_2$-, and -NR$_7$-;
- L^2 is selected from the group consisting of a bond, optionally substituted lower alkylene, -(alk)$_a$ -S-(alk)$_b$-, -(alk)$_a$ -O-(alk)$_b$-, -(alk)$_a$ -OC(O)-(alk)$_b$-, -(alk)$_a$ -C(O)(alk)$_b$-, -(alk)$_a$ -O-(alk)$_b$-, -(alk)$_a$ -OC(S)-(alk)$_b$-, -(alk)$_a$ -C(S)(alk)$_b$-, -(alk)$_a$ -C(S)-alk)$_b$-, -(alk)$_a$ -C(S)NR$_9$-(alk)$_b$-, -(alk)$_a$ -OC(O)NR$_9$-(alk)$_b$-, -(alk)$_a$ -OC(S)NR$_9$-(alk)$_b$-, -(alk)$_a$ -S(O)(alk)$_b$-, -(alk)$_a$ -S(O)$_2$-(alk)$_b$-, -(alk)$_a$ -S(O)$_2$NR$_9$-(alk)$_b$-, -(alk)$_a$ -NR$_9$-(alk)$_b$-, -(alk)$_a$ -NR$_9$-alk)$_b$-, -(alk)$_a$ -NR$_9$C(O)-alk)$_b$-, -(alk)$_a$ -NR$_9$C(O)NR$_9$-(alk)$_b$-, -(alk)$_a$ -NR$_9$C(S)-alk)$_b$-, -(alk)$_a$ -NR$_9$C(S)NR$_9$-(alk)$_b$-, -(alk)$_a$ -NR$_9$C(S)NR$_9$-(alk)$_b$-, -(alk)$_a$ -NR$_9$C(O)O-(alk)$_b$-, -(alk)$_a$ -NR$_9$C(S)(alk)$_b$-, -(alk)$_a$ -NR$_9$S(alk)$_b$-, and -(alk)$_a$ -NR$_9$S(O)$_2$NR$_9$-(alk)$_b$- where alk is optionally substituted C$_1$-3

R^1 is selected from the group consisting of optionally substituted lower alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl;

R^2, R^3, R^5 and R^6 are independently selected from the group consisting of hydrogen, halogen, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally...
substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally
substituted aryl, optionally substituted heteroaryl, -OH, -NH₂, -NO₂, -CN, -
C(O)OH, -C(S)OH, -C(O)NH₂, -C(S)NH₂, -S(O)₂NH₂, -NHC(O)NH₂, -
NHC(S)NH₂, -NHS(O)₂NH₂, -NR³R¹, -NHR³, -OR³, -SR³, -C(O)R³,
-C(S)R³, -S(O)R³, -S(O)₂R³, -C(O)OR³, -C(S)OR³, -C(O)NHR³,
-C(O)NR³R³, -C(S)NHR³, -C(S)NR³R³, -S(O)₂NHR³, -S(O)₂NR³R³,
-NHC(O)R³, -NR³C(O)R³, -NHC(S)R³, -NR³C(S)R³, -NHS(O)₂R³,
-NR³S(O)₂R³, -NHC(O)OR³, -NR³C(O)OH, -NR³C(O)OR³, -NHC(S)OR³,
-NR³C(S)OH, -NR³C(S)OR³, -NHC(O)NHR³, -NHC(O)NR³R³,
-NR³C(O)NH₂, -NR³C(O)NHR³, -NR³C(O)NR³R³, -NHC(S)NHR³,
-NHC(S)NR³R³, -NR³C(S)NH₂, -NR³C(S)NHR³, -NR³C(S)NR³R³,
-NHS(O)₂NHR³, -NHS(O)₂NR³R³, -NR³S(O)₂NH₂, -NR³S(O)₂NHR³, and
-NR³S(O)₂NR³R³;

Ar₁ is a 5 or 6 membered optionally substituted heteroarylene having the
structure

\[
\begin{array}{c}
 \text{P} \\
 \text{N} \\
 \text{Q} \\
 \text{T} \\
 \text{J}
\end{array}
\]

wherein \(N \) indicates the point of attachment of \(L_1 \) and \(N \) indicates
the point of attachment of \(L_2 \), and wherein the indicated \(N \) is either =N- or
-N=;
n is O or 1;
F and J are both C or one of F and J is C and the other of F and J is N;
P and Q are independently selected from CR, N, NR, O or S;
T is selected from CR or N;

wherein,
when \(n \) is 1, F and J are C, and P, T and Q are CR, or any one of P, T and Q
is N and the other two of P, T and Q are CR,
when \(n \) is O and F and J are both C, then one of P and Q are CR, N or NR
and the other of P and Q is C, N, NR, O or S, provided both P and Q are
not CR,
when \(n \) is 0, one of \(F \) and \(J \) is \(N \) and the other of \(F \) and \(J \) is \(C \), then one of \(P \) and \(Q \) is \(N \) and the other of \(P \) and \(Q \) is \(C \) or both \(P \) and \(Q \) are \(C \), and \(R \) is hydrogen or a substituent of substituted heteroarylene;

\(R^3 \) at each occurrence is independently selected from the group consisting of optionally substituted lower alkyl, optionally substituted lower alkenyl, provided, however, that no alkene carbon thereof is bound to any -C(O)-, -C(S)-, -S(O)_, -S(O)_2-, -O-, -S-, or -N- of any of -OR^3-, -SR^3-, -C(O)R^3-, -C(S)R^3-, -S(O)R^3-, -C(S)OR^3-, -C(O)NHR^3-, -C(O)NR^3-, -S(O)NR^3R^3-, -S(O)_2NR^3R^3-, -NHR^3-, -NHC(O)R^3-, -NR^3C(O)R^3-, -NHC(S)R^3-, -NR^3C(S)R^3-, -NHS(O) NR^3R^3-, -NR^3S(O) NR^3R^3-, -NR^3S(O)_2NR^3R^3-, -NR^3S(O) NR^3R^3-, or -NR^3S(O)_2NR^3R^3-, optionally substituted lower alkynyl, provided, however, that no alkyne carbon thereof is bound to any -C(O)-, -C(S)-, -S(O)_2-, -O-, -S-, or -N- of any of -OR^3-, -SR^3-, -C(O)R^3-, -S(O)R^3-, -C(S)OR^3-, -C(O)NHR^3-, -C(O)NR^3R^3-, -C(S)NHR^3-, -C(S)NR^3R^3-, -S(O)NR^3R^3-, -S(O)_2NR^3R^3-, -S(O)NR^3R^3-, -NHC(O)R^3-, -NHC(S)R^3-, -NR^3C(O)R^3-, -NR^3C(S)R^3-, -NHS(O)NR^3R^3-, -NR^3S(O) NR^3R^3-, -NHC(O)OR^3-, -NR^3C(O)OR^3-, -NHC(S)OR^3-, -NR^3C(S)OH-, -NR^3C(S)OR^3-, -NHC(O)NR^3R^3-, -NHC(O)NR^3R^3-, -NR^3C(O)NH^2-, -NR^3C(O)NR^3R^3-, -NHC(S)NR^3R^3-, -NHC(S)NR^3R^3-, -NR^3C(S)NH^2-, -NR^3C(S)NR^3R^3-, -NHC(S)NR^3R^3-, -NHC(S)NR^3R^3-, -NHC(S)NR^3R^3-, -NHC(S)NR^3R^3-, -NHC(S)NR^3R^3-, -NR^3C(S)NH^2-, -NR^3C(S)NR^3R^3-, -NHC(S)NR^3R^3-, -NHC(S)NR^3R^3-, -NR^3C(S)NH^2-, -NR^3C(S)NR^3R^3-, -NHC(S)NR^3R^3-, -NHC(S)NR^3R^3-, -NR^3C(S)NH^2-, -NR^3C(S)NR^3R^3-, -NHC(S)NR^3R^3-, -NHC(S)NR^3R^3-, -NHC(S)NR^3R^3-, -NHC(S)NR^3R^3-, -NR^3C(S)NH^2-, -NR^3C(S)NR^3R^3-, -NHC(S)NR^3R^3-, -NHC(S)NR^3R^3-, -NR^3C(S)NH^2-, -NR^3C(S)NR^3R^3-,

\(R^7 \) is selected from the group consisting of hydrogen, optionally substituted lower alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, -C(O)R^8, and -S(O)_2R^8;
R8 is selected from the group consisting of optionally substituted lower alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl and optionally substituted heteroaryl;

R9 at each occurrence is independently selected from the group consisting of hydrogen, lower alkyl, and lower alkyl substituted with one or more substituents selected from the group consisting of fluoro, -OH, -NH\textsubscript{2}, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro substituted lower alkylthio, mono-alkylamino, fluoro substituted mono-alkylamino, di-alkylamino, fluoro substituted di-alkylamino, and -NR12R13, provided, however, that when R9 is substituted lower alkyl, any substitution on the alkyl carbon bound to the -N- of -NR 9 is fluoro;

R10 and R11 at each occurrence are independently selected from the group consisting of optionally substituted lower alkyl, optionally substituted lower alkenyl, provided, however, that no alkene carbon thereof is bound to the nitrogen of NR10R11, optionally substituted lower alkynyl, provided, however, that no alkyne carbon thereof is bound to the nitrogen of NR10R11, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl; or

R10 and R11 together with the nitrogen to which they are attached form a monocyclic 5-7 membered optionally substituted heterocycloalkyl or a monocyclic 5 or 7 membered optionally substituted nitrogen containing heteroaryl; and

R12 and R13 combine with the nitrogen to which they are attached to form a 5-7 membered heterocycloalkyl or 5-7 membered heterocycloalkyl substituted with one or more substituents selected from the group consisting of fluoro, -OH, -NH\textsubscript{2}, lower alkyl, fluoro substituted lower alkyl, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, and fluoro substituted lower alkylthio;

provided, however that when compounds have the structure
and L^{1a} is $-\text{CH}_2-$, $-\text{CH(OH)}-$, or $-\text{C(O)}-$, then R^{1a} is not phenyl, 4-trifluoromethyl-phenyl, 4-methoxy-phenyl, 4-chloro-phenyl, 4-fluoro-phenyl, 4-methyl-phenyl, 3-fluoro-phenyl or thiophen-2-yl and compounds do not have the structure

2. The compound according to Claim 1, wherein X_1 and X_2 are CH.
3. The compound according to Claim 2, wherein Y_1 is N or CH and Y_2 is CR$_5$.
4. The compound according to Claim 3, wherein Y_1 is CH and R^5 is other than hydrogen.
5. The compound according to Claim 4, wherein L_1 is $-\text{CH}_2-$ or C(O)-
6. The compound according to Claim 3, wherein Y_1 is CH and R^5 is hydrogen.
7. The compound according to Claim 6, wherein L_1 is $-\text{CH}_2-$ or C(O)-
8. The compound according to Claim 2, wherein Y_2 is N or CH and Y_1 is CR$_4$.
9. The compound according to Claim 8, wherein Y_2 is CH and R^4 is other than hydrogen.
10. The compound according to Claim 9, wherein L_1 is $-\text{CH}_2-$ or C(O)-
11. The compound according to Claim 8, wherein Y_2 is CH and R^4 is hydrogen.
12. The compound according to Claim 11, wherein L_1 is $-\text{CH}_2-$ or $-\text{C(O)}$-.
13. The compound according to Claim 1 having the chemical structure

![Chemical Structure](image)

all salts, prodrugs, tautomers, and isomers thereof,

wherein:

V and W are independently selected from the group consisting of N and CH;
U and Z are independently selected from the group consisting of N and CR18,
provided, however, that not more than one of W, U and Z is N;
A is selected from the group consisting Of-CR19R20, -C(O)-, -C(S)-, -S-,
-S(O)-, -S(O)\textsubscript{2}-, -NR\textsubscript{21}, and -O-;
n is O or 1;
F and J are both C or one of F and J is C and the other of F and J is N;
E and K are selected from C, N, O or S;
G is selected from C or N;

wherein,

when n is 1, F and J are C, and E, G and K are C, or any one of E, G and K is N and the other two of E, G and K are C, provided that when E, G or K is N, R15, R17 and R16, respectively, are absent,
when n is O and F and J are both C, then one of E and K is C or N and the other of E and K is C, N, O or S, provided both E and K are not C, and provided that when both E and K are N, one of R15 and R16 is absent, and provided that when one of E and K are N and the other is O or S, R15 and R16 are absent,
when n is O, one of F and J is N and the other of F and J is C, then one of E and K is N and the other of E and K is C, or both E and K are C, provided that when E is N, R15 is absent and when K is N, R16 is absent;
R1 is selected from the group consisting of optionally substituted lower alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl and optionally substituted heteroaryl;

R15 is selected from the group consisting of hydrogen, optionally substituted lower alkyl, -OR22, -SR22 and halogen when E is C, is absent when E is O or S or when n=1 and E is N, and is absent or selected from the group consisting of hydrogen and optionally substituted lower alkyl when n=0 and E is N;

R16 is selected from the group consisting of hydrogen, optionally substituted lower alkyl, -OR22, -SR22 and halogen when K is C, is absent when K is O or S or when n=1 and K is N, and is absent or selected from the group consisting of hydrogen and optionally substituted lower alkyl when n=0 and K is N;

R17 is selected from the group consisting of hydrogen, optionally substituted lower alkyl, -OR22, -SR22 and halogen when G is C, or is absent when G is N;

R18 is selected from the group consisting of hydrogen, halogen, optionally substituted lower alkyl, optionally substituted aryl, optionally substituted heteroaryl, -OH, -NH\textsubscript{2}, -NO\textsubscript{2}, -CN, -NHC(O)NH\textsubscript{2}, -NHC(S)NH\textsubscript{2}, -NHS(O)\textsubscript{2}NH\textsubscript{2}, -NR24R25, -NHR23, -OR23, -SR23, -NHC(O)R23, -NR23C(O)R23, -NHC(S)R23, -NR23C(S)R23, -NHS(O)\textsubscript{2}R23, -NR23S(O)\textsubscript{2}R23, -NHC(O)NR23, -NR23C(O)NH\textsubscript{2}, -NR23C(O)NHR23, -NHC(O)NR23R23, -NR23C(O)NR23R23, -NHC(S)NR23R23, -NR23C(S)NR23R23, -NHS(O)\textsubscript{2}NR23R23, -NR23S(O)\textsubscript{2}NR23R23, and -NR23S(O)\textsubscript{2}NR23R23;

M is selected from the group consisting of a bond, -(CR19R20)\textsubscript{11}, -(CR19R20)\textsubscript{1}C(O)-(CR19R20)\textsubscript{5}, -(CR19R20)\textsubscript{1}C(S)-(CR19R20)\textsubscript{5}, -(CR19R20)\textsubscript{1}R2C(O)-(CR19R20)\textsubscript{5}, -(CR19R20)\textsubscript{1}R2C(S)-(CR19R20)\textsubscript{5}, -(CR19R20)\textsubscript{1}R2C(O)O-(CR19R20)\textsubscript{5}, -(CR19R20)\textsubscript{1}R2C(S)O-(CR19R20)\textsubscript{5}, -(CR19R20)\textsubscript{1}R2C(O)S-(CR19R20)\textsubscript{5}, -(CR19R20)\textsubscript{1}R2C(S)S-(CR19R20)\textsubscript{5}, -(CR19R20)\textsubscript{1}R2C(O)NR26-(CR19R20)\textsubscript{5}, -(CR19R20)\textsubscript{1}R2C(S)NR26-(CR19R20)\textsubscript{5}, -(CR19R20)\textsubscript{1}R2OC(O)-(CR19R20)\textsubscript{5}, -(CR19R20)\textsubscript{1}R2OC(S)-(CR19R20)\textsubscript{5}, -(CR19R20)\textsubscript{1}R2OC(O)NR26-(CR19R20)\textsubscript{5}, -(CR19R20)\textsubscript{1}R2OC(S)NR26-(CR19R20)\textsubscript{5}, -(CR19R20)\textsubscript{1}R2OC(O)NR26-(CR19R20)\textsubscript{5}, -(CR19R20)\textsubscript{1}R2OC(S)NR26-(CR19R20)\textsubscript{5}. 269
(-CR^{19}R^{2} Vs-(CR^{19}R^{2})_s , -(CR^{19}R^{20})_t-NR^{26}-(CR^{19}R^{20})_s ,
-(CR^{19}R^{20})_t-NR^{26}C(O)-(CR^{19}R^{20})_s , -(CR^{19}R^{20})_t-NR^{26}C(S)-(CR^{19}R^{20})_s ,
-(CR^{19}R^{20})_t-NR^{26}C(O)O-(CR^{19}R^{20})_s , -(CR^{19}R^{20})_t-NR^{26}C(S)O-(CR^{19}R^{20})_s ,
-(CR^{19}R^{20})_t-NR^{26}C(O)NR^{26}-(CR^{19}R^{20})_s ,
-(CR^{19}R^{20})_t-NR^{26}C(S)NR^{26}-(CR^{19}R^{20})_s ,
-(CR^{19}R^{20})_t-NR^{26}S(O)_{1-2}-(CR^{19}R^{20})_s ,
-(CR^{19}R^{20})_t-NR^{26}S(O)_{2}NR^{26}-(CR^{19}R^{20})_s ;

wherein R^{19} and R^{20} at each occurrence are independently selected from the
group consisting of hydrogen, fluoro, -OH, -NH_{2}, lower alkyl, lower
alkoxy, lower alklythio, mono-alkylamino, di-alkylamino, and -NR^{27}R^{28},
wherein the alkyl chain(s) of lower alkyl, lower alkoxy, lower alklythio,
mono-alkylamino, or di-alkylamino are optionally substituted with one or
more substituents selected from the group consisting of fluoro, -OH, -NH_{2},
lower alkoxy, fluoro substituted lower alkoxy, lower alklythio, fluoro
substituted lower alklythio, mono-alkylamino, di-alkylamino, and
cycloalkylamino; or
any two of R^{19} and R^{20} on the same or different carbons combine to form a 3-7
membered monocyclic cycloalkyl or 5-7 membered monocyclic
heterocycloalkyl and any others of R^{19} and R^{20} are independently selected
from the group consisting of hydrogen, fluoro, -OH, -NH_{2}, lower alkyl,
lower alkoxy, lower alklythio, mono-alkylamino, di-alkylamino, and
-NR^{27}R^{28}, wherein the alkyl chain(s) of lower alkyl, lower alkoxy, lower
alklythio, mono-alkylamino, or di-alkylamino are optionally substituted
with one or more substituents selected from the group consisting of fluoro,
-OH, -NH_{2}, lower alkoxy, fluoro substituted lower alkoxy, lower alklythio,
fluoro substituted lower alklythio, mono-alkylamino, di-alkylamino, and
cycloalkylamino, and wherein the monocyclic cycloalkyl or monocyclic
heterocycloalkyl are optionally substituted with one or more substituents
selected from the group consisting of halogen, -OH, -NH_{2}, lower alkyl,
fluoro substituted lower alkyl, lower alkoxy, fluoro substituted lower
alkoxy, lower alklythio, fluoro substituted lower alklythio, mono-alkylamino,
di-alkylamino, and cycloalkylamino;
R^{21} and R^{22} at each occurrence are independently hydrogen or optionally substituted lower alkyl;

R^{23} at each occurrence is independently selected from the group consisting of optionally substituted lower alkyl, optionally substituted lower alkenyl, provided, however, that no alkene carbon thereof is bound to any -C(O)-, -C(S)-, -S(O)_2-,-O-, -S-, or -N- of any of -NHR^{23}, -OR^{23}, -SR^{23}, -NHC(O)R^{23}, -NHC(S)R^{23}, -NR^{23}C(S)R^{23}, -NHS(O)R^{23}, -NR^{23}S(O)R^{23}, -NHC(O)NHR^{23}, -NR^{23}C(O)NH_2, -NR^{23}C(O)NHR^{23}, -NHC(S)NH_2, -NR^{23}C(S)NH_2, -NHC(S)NHR^{23}, -NHC(S)NR^{23}R^{23}, -NR^{23}C(S)NR^{23}R^{23}, -NHS(O)NR^{23}R^{23}, -NR^{23}S(O)NR^{23}R^{23} or -NR^{23}S(O)NR^{23}R^{23}, optionally substituted lower alkynyl, provided, however, that no alkyne carbon thereof is bound to any -C(O)-, -C(S)-, -S(O)_2-,-O-, -S-, or -N- of any of -NHR^{23}, -OR^{23}, -SR^{23}, -NHC(O)R^{23}, -NHC(S)R^{23}, -NR^{23}C(S)R^{23}, -NHS(O)R^{23}, -NR^{23}S(O)R^{23}, -NHC(O)NHR^{23}, -NR^{23}C(O)NH_2, -NR^{23}C(S)NH_2, -NHC(S)NH_2, -NR^{23}C(S)NH_2, -NHC(S)NHR^{23}, -NHC(S)NR^{23}R^{23}, -NR^{23}C(S)NR^{23}R^{23}, -NHS(O)NR^{23}R^{23}, -NR^{23}S(O)NR^{23}R^{23} or -NR^{23}S(O)NR^{23}R^{23}, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl;

R^{24} and R^{25} at each occurrence are independently selected from the group consisting of optionally substituted lower alkyl, optionally substituted lower alkenyl, provided, however, that no alkene carbon thereof is bound to the nitrogen of -NR^{24}R^{25}, optionally substituted lower alkynyl, provided, however, that no alkyne carbon thereof is bound to the nitrogen of -NR^{24}R^{25}, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl; or

R^{24} and R^{25} together with the nitrogen to which they are attached form a monocyclic 5-7 membered optionally substituted heterocycloalkyl or a
monocyclic 5 or 7 membered optionally substituted nitrogen containing heteroaryl;

R at each occurrence is independently selected from the group consisting of hydrogen, lower alkyl, and lower alkyl substituted with one or more substituents selected from the group consisting of fluoro, -OH, -NH₂, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro substituted lower alkylthio, mono-alkylamino, fluoro substituted mono-alkylamino, di-alkylamino, fluoro substituted di-alkylamino, and -NR²⁷R²⁸, provided, however, that when R₂⁶ is substituted lower alkyl, any substitution on the lower alkyl carbon bound to the -N- of -NR₂⁶ is fluoro;

R²⁷ and R²⁶ combine with the nitrogen to which they are attached to form a 5-7 membered heterocycloalkyl or 5-7 membered heterocycloalkyl substituted with one or more substituents selected from the group consisting of fluoro, -OH, -NH₂, lower alkyl, fluoro substituted lower alkyl, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, and fluoro substituted lower alkylthio;

u is 1-6;

t is 0-3; and

s is 0-3;

provided that

when V, W, U and Z are CH, n=1, E, F, G, J, and K are C, R¹⁵, R¹⁶ and R¹⁷ are H, A is -CH₂-, -CH(OH)-, or -C(O)-, and M is -NHCH₂-, then R¹ is not phenyl, 4-trifluoromethyl-phenyl, 4-methoxy-phenyl, 4-chloro-phenyl, 4-fluoro-phenyl, 4-methyl-phenyl or thiophen-2-yl,

when V, W, U and Z are CH, n=1, E, F, G, J, and K are C, R¹⁵, R¹⁶ and R¹⁷ are H, and A is -CH₂-, then M-R¹ is not -NHCH₂CH(CH₃)₂,

when V, W, and U are CH, n=1, E, F, G, J, and K are C, R¹⁵, R¹⁶ and R¹⁷ are H, A is -CH₂-, M-R¹ is -OCH₃, and Z is CR¹⁸, then R¹⁸ is not thiophen-3-yl, and

when V, W, and U are CH, n=0, F, J, and K are C, E is N, R¹⁵ is CH₃, R¹⁶ is H, A is -C(O)-, M-R¹ is -CH(CH₃)₃, and Z is CR¹⁸, then R¹⁸ is not 3-((E)-2-carboxy-vinyl)phenyl.

14. A compound of Claim 13, wherein V and W are CH.
15. A compound of Claim 14, wherein U and Z are independently CR\(^{18}\).
16. A compound of Claim 15, wherein n is 1.
17. A compound of Claim 16, wherein G and K are C.
18. A compound of Claim 17, wherein E is N.
19. A compound of Claim 17, wherein E is C.
20. A compound of Claim 1 having the structure

![Chemical structure diagram](image)

all salts, prodrugs, tautomers, and isomers thereof,

wherein:

- Z\(_1\) is selected from the group consisting of N and CR\(^{34}\);
- U\(_1\) is selected from the group consisting of N and CR\(^{35}\);
- A\(_1\) is selected from the group consisting of -CH\(_2\)- and -C(O)-;
- M\(_3\) is selected from the group consisting of a bond, -NR\(^{39}\)-, -S-, -O-, -NR\(^{39}\)CH\(_2\)-, -NR\(^{39}\)CH(R\(^{40}\))- , -SCH\(_2\)-, -OCH\(_2\)-, -C(O)NR\(^{39}\)-, -S(O)\(_2\)NR\(^{39}\)-, -CH\(_2\)NR\(^{39}\)-, -CH(R\(^{40}\))NR\(^{39}\)-, -NR\(^{39}\)C(O)-, and -NR\(^{39}\)S(O)\(_2\)-;
- n is Oor 1;
- v is 0, 1, 2 or 3;
- F\(_1\) and J\(_1\) are both C or one OfF\(_1\) and J\(_1\) is C and the other OfF\(_1\) and J\(_1\) is N;
- E\(_1\) and K\(_1\) are selected from C, N, O or S;
- G\(_1\) is selected from C or N;

wherein,

when n is 1, F\(_1\) and J\(_1\) are C, and E\(_1\), G\(_1\) and K\(_1\) are C, or any one OfE\(_1\), G\(_1\) and K\(_1\) is N and the other two OfE\(_1\), G\(_1\) and K\(_1\) are C, provided that when E\(_1\), G\(_1\) or K\(_1\) is N, R\(^{36}\), R\(^{37}\) and R\(^{38}\), respectively, are absent,
when n is O and F\(_1\) and J\(_1\) are both C, then one OfE\(_1\) and K\(_1\) is C or N and the other OfE\(_1\) and K\(_1\) is C, N, O or S, provided both E\(_1\) and K\(_1\) are not C, and provided that when both E\(_1\) and K\(_1\) are N, one of R\(^{36}\)
and R^{37} is absent, and provided that when one OfE_1 and K_1 are N and the other is O or S, R^{36} and R^{37} are absent, when n is 0, one OfF_1 and J_1 is N and the other OfF_1 and J_1 is C, then one OfE_1 and K_1 is N and the other OfE_1 and K_1 is C, or both E_1 and K_1 are C, provided that when E_1 is N, R^{36} is absent and when K_1 is N, R^{37} is absent;

Cy is selected from the group consisting of cycloalkyl, heterocycloalkyl, aryl and heteroaryl;

R^{34} and R^{35} are independently selected from the group consisting of hydrogen, -OR^{41}, -SR^{41}, -NHR^{41}, $\text{-NR}^{41}\text{R}^{41}$, $\text{-NR}^{39}\text{C(O)R}^{41}$, $\text{-NR}^{39}\text{S(O)R}^{41}$, halogen, lower alkyl, cycloalkyl, heterocycloalkyl, aryl and heteroaryl, wherein lower alkyl is optionally substituted with one or more substituents selected from the group consisting of fluoro, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro substituted lower alkylthio, mono-alkylamino, di-alkylamino, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl, wherein cycloalkyl, heterocycloalkyl, aryl, and heteroaryl as R^{34} or R^{35}, or as substituents of lower alkyl are optionally substituted with one or more substituents consisting of -OH, -NH_2, -CN, -NO_2, -S(O)NH_2, -C(O)NH_2, -OR^{42}, -SR^{42}, -NHR^{42}, $\text{-NR}^{42}\text{R}^{42}$, $\text{-NR}^{39}\text{C(O)R}^{42}$, $\text{-NR}^{39}\text{S(O)R}^{42}$, -S(O)R^{42}, halogen, lower alkyl, fluoro substituted lower alkyl, and cycloalkylamino;

R^{45} at each occurrence is independently selected from the group consisting of -OR^{41}, -SR^{41}, -NHR^{41}, $\text{-NR}^{41}\text{R}^{41}$, $\text{-NR}^{39}\text{C(O)R}^{41}$, $\text{-NR}^{39}\text{S(O)R}^{41}$, halogen, lower alkyl, cycloalkyl, heterocycloalkyl, aryl and heteroaryl, wherein lower alkyl is optionally substituted with one or more substituents selected from the group consisting of fluoro, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro substituted lower alkylthio, mono-alkylamino, di-alkylamino, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl, wherein cycloalkyl, heterocycloalkyl, aryl, and heteroaryl as R^{45}, or as substituents of lower alkyl are optionally substituted with one or more substituents selected from the group consisting of -OH, -NH_2, -CN, -NO_2, -S(O)NH_2, -C(O)NH_2, -OR^{42}, -SR^{42}, -NHR^{42}, $\text{-NR}^{42}\text{R}^{42}$,
-NR^{39}C(O)R^{42}, -NR^{39}S(O)_{2}R^{42}, -S(O)_{2}R^{42}, halogen, lower alkyl, fluoro substituted lower alkyl, and cycloalkylamino;

R^{36} is selected from the group consisting of hydrogen, halogen, lower alkyl, fluoro substituted lower alkyl, lower alkoxy, and fluoro substituted lower alkoxy when E_{1} is C, is absent when E_{1} is O or S or when n=1 and E_{1} is N, and is absent or selected from the group consisting of hydrogen, lower alkyl, and fluoro substituted lower alkyl when n=0 and E_{1} is N;

R^{37} is selected from the group consisting of hydrogen, halogen, lower alkyl, fluoro substituted lower alkyl, lower alkoxy, and fluoro substituted lower alkoxy when K_{1} is C, is absent when K_{1} is O or S or when n=1 and K_{1} is N, and is absent or selected from the group consisting of hydrogen, lower alkyl, and fluoro substituted lower alkyl when n=0 and K_{1} is N;

R^{38} is selected from the group consisting of hydrogen, halogen, lower alkyl, fluoro substituted lower alkyl, lower alkoxy, and fluoro substituted lower alkoxy when G_{1} is C, or is absent when G_{1} is N;

R^{39} at each occurrence is independently selected from the group consisting of hydrogen and lower alkyl;

R^{40} is selected from the group consisting of lower alkyl, and fluoro substituted lower alkyl;

R^{41} is selected from the group consisting of lower alkyl, cycloalkyl, heterocycloalkyl, aryl and heteroaryl, wherein lower alkyl is optionally substituted with one or more substituents selected from the group consisting of fluoro, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro substituted lower alkylthio, mono-alkylamino, di-alkylamino, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl, wherein cycloalkyl, heterocycloalkyl, aryl, and heteroaryl as R^{41} or as substituents of lower alkyl are are optionally substituted with one or more substituents selected from the group consisting of -OH, -NH_{2}, -CN, -NO_{2}, -S(O)_{2}NH_{2}, -C(O)NH_{2}, -OR^{42}, -SR^{42}, -NHR^{42}, -NR^{42}R^{42}, -NR^{39}C(O)R^{42}, -NR^{39}S(O)_{2}R^{42}, -S(O)_{2}R^{42}, halogen, lower alkyl, fluoro substituted lower alkyl, and cycloalkylamino; and

R^{42} at each occurrence is independently selected from the group consisting of lower alkyl, heterocycloalkyl and heteroaryl, wherein lower alkyl is
optionally substituted with one or more substituents selected from the
group consisting of fluoro, lower alkoxy, fluoro substituted lower alkoxy,
lower alkylthio, fluoro substituted lower alkylthio, mono-alkylamino, di-
alkylamino, and cycloalkylamino.
21. The compound of Claim 20,
wherein
each R45 is selected from the group consisting of -OH, -NH\textsubscript{2}, -CN, -NO\textsubscript{2},
halogen, lower alkyl, fluoro substituted lower alkyl, lower alkoxy, fluoro
substituted lower alkoxy, lower thioalkyl, fluoro substituted lower
thioalkyl, mono-alkylamino, di-alkylamino and cycloalkylamino,
Z\textsubscript{1} is CR3 and U\textsubscript{1} is CR5, and
R3 and R5 are independently selected from the group consisting of hydrogen,
-OR41, halogen, lower alkyl, cycloalkyl, heterocycloalkyl, aryl and
heteroaryl,
wherein cycloalkyl, heterocycloalkyl, aryl and heteroaryl are optionally
substituted with one or more substituents selected from the group
consisting of -OH, -NH\textsubscript{2}, -CN, -NO\textsubscript{2}, -S(O)\textsubscript{2}NH\textsubscript{2}, -C(O)NH\textsubscript{2}, -OR42,
-SR42, -NHR42, -NR42R\superscript{42}, -NR39C(O)R42, -NR39S(O)\textsubscript{2}R42, -S(O)\textsubscript{2}R42,
halogen, lower alkyl, fluoro substituted lower alkyl, and
cycloalkylamino, and
wherein lower alkyl is optionally substituted with one or more substituents
selected from the group consisting of fluoro, lower alkoxy, fluoro
substituted lower alkoxy, lower alkylthio, fluoro substituted lower
alkylthio, mono-alkylamino, di-alkylamino, and cycloalkylamino.
22. The compound of Claim 21 wherein v is 0, 1, or 2.
23. The compound of Claim 22, wherein n is 1, and G\textsubscript{1} and K\textsubscript{1} are C.
24 The compound of Claim 23, wherein E\textsubscript{1} is N.
25. The compound of Claim 23, wherein E\textsubscript{1} is C.
26. The compound of Claim 25, wherein M\textsubscript{4} is selected from the group
consisting of -NR39, -0-, -NR39CH\textsubscript{2}-, -NR39CH(R40)-, -SCH\textsubscript{2}-, -OCH\textsubscript{2}-,
-CH\textsubscript{2}NR39, -NR39C(O)-, and -NR39S(O)\textsubscript{2}-.
27. The compound of Claim 26, wherein M\textsubscript{4} is selected from the group
consisting Of-NR39CH\textsubscript{2}-, -NR39CH(R40)-, -SCH\textsubscript{2}-, -OCH\textsubscript{2}-, and -CH\textsubscript{2}NR39-.
276
28. The compound of Claim 27, wherein both of R34 and R35 are hydrogen.

29. The compound of Claim 27, wherein one of R34 and R35 is hydrogen, and the other of R34 and R35 is selected from the group consisting of halogen, lower alkyl, lower alkoxy, aryl and heteroaryl, wherein aryl and heteroaryl are optionally substituted with one or more substituents selected from the group consisting of -OH, -NH\textsubscript{2}, -CN, -NO\textsubscript{2}, -S(O)\textsubscript{2}NH\textsubscript{2}, -C(O)NH\textsubscript{2}, -OR42, -SR42, -NHR42, -NR42R42, -NR39C(O)R42, -NR39S(O)\textsubscript{2}R42, -S(O)\textsubscript{2}R42, halogen, lower alkyl, fluoro substituted lower alkyl, and cycloalkylamino, and wherein lower alkyl and lower alkoxy are optionally substituted with one or more substituents selected from the group consisting of fluoro, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro substituted lower alkylthio, mono-alkylamino, di-alkylamino, and cycloalkylamino.

30. The compound according to Claim 29, wherein R34 is hydrogen.

31. The compound according to Claim 29, wherein one of R34 and R35 is hydrogen, and the other of R34 and R35 is selected from the group consisting of halogen, lower alkyl, and lower alkoxy, wherein lower alkyl and lower alkoxy are optionally substituted with one or more substituents selected from the group consisting of fluoro, lower alkoxy, fluoro substituted lower alkoxy, lower alkylthio, fluoro substituted lower alkylthio, mono-alkylamino, di-alkylamino, and cycloalkylamino.

32. The compound of Claim 31, wherein R34 is hydrogen.

33. A composition comprising:

a pharmaceutically acceptable carrier; and

a compound according to Claim 1.
34. A composition comprising:
a pharmaceutically acceptable carrier; and
a compound of Claim 13.
35. A composition comprising:
a pharmaceutically acceptable carrier; and
a compound of Claim 20.
36. A method for treating a subject suffering from or at risk of a c-kit or c-fms mediated disease or condition, comprising administering to the subject an effective amount of a compound of Claim 1.
37. A method for treating a subject suffering from or at risk of a c-kit or c-fms mediated disease or condition, comprising administering to the subject an effective amount of a compound of Claim 13.
38. A method for treating a subject suffering from or at risk of a c-kit or c-fms mediated disease or condition, comprising administering to the subject an effective amount of a compound of Claim 20.
39. The method of any of Claims 36-38, wherein the compound is approved for administration to a human.
40. The method of Claim 39, wherein the disease or condition is selected from the group consisting of mast cell tumors, small cell lung cancer, testicular cancer, gastrointestinal stromal tumors, glioblastoma, astrocytoma, neuroblastoma, carcinomas of the female genital tract, sarcomas of neuroectodermal origin, colorectal carcinoma, carcinoma in situ, Schwann cell neoplasia associated with neurofibromatosis, acute myeloid leukemia, acute lymphocytic leukemia, chronic myelogenous leukemia, multiple myeloma, mastocytosis, melanoma, breast cancer, ovarian cancer, canine mast cell tumors, hypertrophy, asthma, rheumatoid arthritis, allergic rhinitis, multiple sclerosis, inflammatory bowel syndrome, transplant rejection, systemic lupus erythematosus, Wegener's granulomatosis, Chronic Obstructive Pulmonary Disease, emphysema, atherosclerosis, insulin resistance, hyperglycemia, lipolysis, hypereosinophilia, osteoporosis, increased risk of fracture, hypercalcemia, bone metastases, glomerulonephritis, interstitial nephritis, Lupus nephritis, tubular necrosis, and diabetes-associated renal complications.
41. A kit comprising a composition according to any of Claims 33-35.
42. The kit of Claim 41, wherein the composition is approved for a medical
indication selected from the group consisting of mast cell tumors, small cell lung cancer,
testicular cancer, gastrointestinal stromal tumors, glioblastoma, astrocytoma,
neuroblastoma, carcinomas of the female genital tract, sarcomas of neuroectodermal
origin, colorectal carcinoma, carcinoma in situ, Schwann cell neoplasia associated with
neurofibromatosis, acute myeloid leukemia, acute lymphocytic leukemia, chronic
myelogenous leukemia, multiple myeloma, mastocytosis, melanoma, breast cancer,
ovarian cancer, canine mast cell tumors, hypertrophy, asthma, rheumatoid arthritis,
allergic rhinitis, multiple sclerosis, inflammatory bowel syndrome, transplant rejection,
systemic lupus erythematosis, Wegener's granulomatosis, Chronic Obstructive Pulmonary
Disease, emphysema, atherosclerosis, insulin resistance, hyperglycemia, lipolysis,
hypereosinophilia, osteoporosis, increased risk of fracture, hypercalcemia, bone
metastases, glomerulonephritis, interstitial nephritis, Lupus nephritis, tubular necrosis, and
diabetes-associated renal complications.