WO 2005/031569 A1 |00 000 0 000 O O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
7 April 2005 (07.04.2005)

AT O 00 O

(10) International Publication Number

WO 2005/031569 Al

(51) International Patent Classification’: GOOF 9/44
(21) International Application Number:
PCT/US2004/031371

(22) International Filing Date:
27 September 2004 (27.09.2004)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

10/670,802 26 September 2003 (26.09.2003) US

(71) Applicant (for all designated States except US): FINITE
STATE MACHINE LABS, INC. [US/US]; 115-D Abeyta
Avenue, P.O. Box 1822, Socorro, NM 87801 (US).

(72) Inventors; and
(75) Inventors/Applicants (for US only): YODAIKEN, Vic-
tor [US/US]; 914 Paisano Drive, Socorro, NM 87801 (US).

(74)

(81)

(84)

DOUGAN, Cort [US/US]; 115-D Abeyta Avenue, P.O.
Box 1822, Socorro, NM 87801 (US).

Agents: ZOLTICK, Martin, M. et al.; 1425 K Street,
N.W., Suite 800, Washington, DC 20005 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

[Continued on next page]

(54) Title: SYSTEMS AND METHODS FOR DYNAMICALLY LINKING APPLICATION SOFTWARE INTO A RUNNING

OPERATING SYSTEM KERNEL

ENVIRONMENT
LIBRARY 112

INFRASTRUCTURE

LIBRARY 110

BUILD SYSTEM
116

APPLICATION
CODE 102

KERNEL 104

EXECUTION
LIBRARY 114

(57) Abstract: The present invention
provides systems and methods for
dynamically linking modules into
a running operating system kernel.
Systems and methods described herein
have the following advantages: they
permit an application programmer
(101) to write, compile, execute, and
terminate application code (102) that
is to be loaded into a kernel (104) as
if the application code was an ordinary
application program, they allow a
standard programming environment (100)
to be used to encapsulate application
software in a familiar environment, and
they permit automatic cleanup of errors
and freeing of program resources when
the application terminates.

WO 2005/031569 A1 1IN} A08OH0 T 00 0

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, For two-letter codes and other abbreviations, refer to the "Guid-
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, ance Notes on Codes and Abbreviations" appearing at the begin-
SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, ning of each regular issue of the PCT Gazette.

GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

WO 2005/031569

10

i5

20

25

30

SYSTEMS AND METHODS FOR DYNAMICALLY LINKING
APPLICATION SOFTWARE INTO A RUNNING OPERATING SYSTEM
KERNEL

COPYRIGHT NOTICE

[001] A portion of the disclosure of this patent
document contains material which is subject to
copyright protection. The copyright owner has no
objection to the facsimile reproduction by anyone of
the patent document or the patent disclosure, as it
appears in the Patent and Trademark Office patent
files or records, but otherwise reserves all

copyright rights whatsoever.
COMPUTER PROGRAM LISTING APPENDIX

[002] A computer program listing appendix on a
compact disc incorporating features of the present
invention has been submitted with the earlier
national application, U.S. Application S.N.
10/670,802, in which this patent application claims
priority, and is incorporated herein by reference in
its entirety. The files contained on the disc are:
(1) user.c (size = 9406 bytes, creation date =
07/10/2003); (2) Makefile (size = 737 bytes,
creation date = 07/10/2003); (3) rtl_crtl0.c (size =
7151 bytes, creation date = 07/10/2003); (4)
example.c (size = 972 bytes, creation date =
09/24/2003); (5) rtl_mainhelper.h (size = 3847
bytes, creation date = 07/10/2003); and (6)
rtl_mainhelper.c (size = 5438 bytes, creation date =
07/10/2003). The contents of the above files are

attached hereto (see “source code appendix”). The

PCT/US2004/031371

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

computer program listing and the files contained on
the compact discs are subject to copyright
protection and any use thereof, other than as part
of the reproduction of the patent document or the

patent disclosure, is strictly prohibited.

BACKGROUND OF THE INVENTION
1. Field of the Invention

[003] The present invention relates, generally,
to systems and methods for dynamically linking
application software into a running operating system
kernel and, more specifically, to systems, software,
hardware, products, and processes for use by
programmers in creating such application software,
and dynamically loading it into and unloading it

from a running operating system kernel.
2. Discussion of the Background

[004] There are many software applications in
which it is desirable to link the software or one or
more modules of the software into a running
operating system kernel. For example, it is
generally desirable to link device driver software
into the operating system kernel because it enables
the device driver software to access kernel data

space.

[005] Many operating systems offer utilities for
dynamically linking application software (a.k.a,
vapplication code” or “application modules”) into a
running operating system kernel. Typically, these

methods involve copying the application module code

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

and data into kernel memory and then resolving
symbol table references. Conventionally,
application modules that are to be linked into an
operating system kernel include the following
sections of code: (1) a section of operating system
“kernel” code, (2) a section of code to handle
initialization of the module, and (3) a section of
code to handle module cleanup when the module is in

the process of being removed.

[006] These application modules are considered,
essentially, to be dynamically loadable parts of the
operating system kernel. But operating system
kernels provide a very complex and low level
interface to these application software modules,
complicating the process of developing such
application software and requiring the programmer to
directly address and write operating system kernel
code, code to handle initialization/loading of the
application software, and code to handle
unloading/cleanup after termination. Furthermore,
there is generally no defined and stable application
programming interface within an operating system,
and required data structures and interfaces change
especially rapidly in operating systems, such as,
for example, BSD and Linux, further complicating the
programmer’s development and implementation of the
application software. Creating and loading/unloading
the modules is often complex, time consuming, and
requires constant monitoring and updating of the

code to ensure reliable, error-free implementation.

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

[007] What is desired; therefore, are systems
and methods to overcome the above described and
other disadvantages of the conventional system and
methods for dynamically linking modules into a

running operating system kernel.

SUMMARY OF THE INVENTION

[008] The present invention provides systems and
methods for dynamically linking modules into a
running operating system kernel. The systems and
methods of the present invention overcome the above
described and other disadvantages of the
éonventional systems and methods. For example, the
systems and methods specified herein (1) permit an
application programmer to write, compile, execute,
and terminate application code that is to be loaded
into a kernel as if the application code was an
ordinary (i.e., not kernel loadable) application
program, (2) allow a standard programming
environment to be used to encapsulate application
software in a familiar environment, and (3) permit
automatic cleanup of errors and freeing of program
resources when the application terminates. The
present invention preserves the advantages of in-
kernel programming by providing an application
program access to the hardware address space seen by
the kernel, as well as access to kernel data
structures, internal kernel services and to

privileged machine instructions.

[009] Advantageously, the present invention can

be applied to a wide range of application

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

environments (what the application programmer sees)
and kernel environments (the underlying programming
environment). For example, we have implemented the
method for the POSIX threads application environment
and the RTLinux and RTCore BSD kernel environments.
The RTLinux kernel environmentvis described in U.S.
Patent No. 5,995,745, the contents of which are

incorporated herein by reference.

[0010] In one embodiment, the system of the
present invention enables a programmer to
dynamically link application code created by the
programmer into a running operating system kernel ,
wherein the system includes the following
components: (1) an environment library comprising
one or more routines for insulating the application
code from the operating system environment and for
implementing a uniform execution environment; (2) a
build system for constructing a loadable module from
the application code and the environment library;
(3) an execution library comprising one or more
routines for encapsulating the loadable module
within a standard executable program file,
transparently loading the loadable module into the
running operating system kernel, setting up
input/output channels that may be required, passing
arguments to the loadable module, and terminating
and unloading the loadable module after receiving a
termination signal; (4) an infrastructure library
comprising one or more routines that may need to be
executed prior to loading the loadable module into
the running operating system kernel and/or after

unloading the loadable module from the kernel (such

WO 2005/031569 PCT/US2004/031371

10

i5

20

25

30

routines may include routines to allocate stable
memory (memory that will need to be held after the
module completes and is unloaded), routines to
initialize a list of modules that will be managed,
routines to free memory used by the module, and
routines to close files and free semaphores and
other resources used by the module); and (5) a build
system for constructing the executable program from
the loadable module and the execution library,
wherein the executable program may be in several

files or a single file.

[0011] In another aspect, the present invention
includes a computer readable medium, such as, for
example, an optical or magnetic data storage device,
having stored thereon the execution library, the
environment library, the infrastructure library, and

the build system.

[0012] The above and other features and
advantages of the present invention, as well as the
structure and operation of preferred embodiments of
the present invention, are described in detail below

with reference to the accompanying drawings.

BRIEF ﬁESCRIPTION OF THE DRAWINGS

[0013] The accompanying drawings, which are
incorporated herein and form part of the
specification, illustrate various embodiments of the
present invention and, together with the
description, further serve to explain the principles

of the invention and to enable a person skilled in

WO 2005/031569 PCT/US2004/031371

10

15

20

25

the pertinent art to make and use the invention. In
the drawings, like reference numbers indicate
identical or functionally similar elements.
Additionally, the left-most digit(s) of a reference
number identifies the drawing in which the reference

number first appears.

[0014] FIG. 1 is a functional block diagram that
illustrates the components of a system according to

one embodiment of the invention.

[0015] FIG. 2 is a diagram illustrating a first
function of a build system component of the

invention.

[0016] FIG. 3 1is a diagram illustrating a second
function of a bulld system component of the

invention.

[0017] FIG. 4 is a flow chart illustrating a
process 400 that may be performed by build system

component of the invention.

[0018] FIG. 5 is a flow chart illustrating a
process performed by the “main” routine of the

execution library component of the invention.

[0019] FIG. 6 illustrates example pseudo-code of

an example loadable module.

[0020] FIG. 7 illustrates a representative
computer system for implementing the systems and
methods of the present invention for dynamically
linking application software into a running

operating system kernel.

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

DETAILED DESCRIPTION OF THE PREFERRED EMBODMENT

[0021] In the following description, for purposes
of explanation and not limitation, specific details
are set forth, such as particular systems,
computers, devices, components, techniques, computer
languages, storage techniques, software products and
systems, operating systems, interfaces, hardware,
etc. in order to provide a thorough understanding of
the present invention. However, it will be apparent
to one skilled in the art that the present invention
may be practiced in other embodiments that depart
from these specific details. Detailed descriptions
of well-known systems, computers, devices,
components, techniques, computer languages, storage
techniques, software products and systems, operating
systems, interfaces, and hardware are omitted so as
not to obscure the description of the present

invention.

[0022] FIG. 1 is a functional block diagram that
illustrates the components of a system 100,
according to one embodiment of the invention, for
dynamically linking application code 102 into a
running operating system kernel 104. Application
code 102 is code written by a user 101 of system
100. In one embodiment, the code is written as a
standard “C” program and includes the “main”
function. Example application code that can be used
with system 100 is provided in the file “example.c”,
which is included in the above referenced computer

program listing appendix.

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

[0023] As shown in FIG. 1, system 100 includes an
infrastructure library 110, an environment library
112, an execution library 114, and a build system
116. As used herein, the term “library” means: “a
set of one or more routines,” and the term “routine”
means: “a set of one or more program instructions
that can be executed.” Preferably, each library
112, 114, and 116 is stored in a separate file, but
this need not be the case. The libraries could all
be stored in one file, in multiple files, or in any

other suitable storage architecture or arrangement.

[0024] Build system 116 is configured to
construct a “loadable module” 202 from application
code 102 and environment library 112, as is
illustrated in FIG. 2. As used herein the term
“loadable module” means “object code produced from
the application code and environment library.” In
one embodiment, the build system 116 includes one or
more makefiles. As further illustrated in FIG. 3,
build system 116 is configured to construct an
executable program 302 from loadable module 202 and

execution library 114.

i

[0025] FIG. 4 is a flow chart illustrating a
process 400 that may be performed by build system
116 to create loadable module 202 and executable
program 302. Process 400 can be used when, for
example, the C programming language is used in
implementing the invention or with any other
comparable programming language. Process 400 begins
in step 402, where build system 116 compiles
application code 102 into object code. Next (step

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

404), build system 116 links the object code with
the environment library 112 object code to produce a
linked object module. Next (step 406), build system
116 converts the linked object module into a C code
array. This C code array is the “loadable module.”
Next (step 408), build system 116 compiles the C
code array produced in step 406 to produce an object
file. Next (step 410), system 116 links the object
file produced in step 408 with execution library 112

object code to produce the executable program 302.

[0026] In one embodiment, when user 101 executes
program 302, a routine from the execution library
114 sets up an input channel and an output channel
by connecting the standard output and standard input
of the original process to the standard output and
input of the process that will insert the module,
and to the fifos that connect user space to kernel
space. Setting up the input/output channels is
optional if application code 102 does not use
input/output channels. Also, when program 302 is
executed a routine from execution library 114
inserts loadable module 202 into the operating
system address space. Once loadable module 202 is
inserted into the operating system address space,

loadable module 202 begins to execute.

[0027] If application code 102, which is included
in loadable module 202, uses input/output channels,
then a routine from execution library 114 waits for
loadable module 202 to connect via kernel/user
channels, which are implemented as RT-fifos in this

embodiment, and then connects those kernel/user

10

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

channels to the input/output channels mentioned

above.

[0028] After loadable module 202 begins to
execute, a routine from environment library 112
creates kernel/user channels, creates a thread to
execute application code 102, and then waits for the
thread to complete. Creating the kernel/user
channels is optional. When the thread completes, a
routine from environment library 112 frees resources
and unloads loadable module 202. The routines from
environment library 112 may need to call routines
from infrastructure library 110 for carrying out
their work. TFor example, environment library 112
may delegate some cleanup operations to
infrastructure library 110 so that cleanup can take

place after loadable module 202 has been unloaded.
EXAMPLE CODE FOR IMPLEMENTING THE INVENTION

[00291] The following examples of code are for the
Linux, RTLinux, and/or RTCore BSD operating systems.
However, the present invention is not limited to
operating only within the Linux operating system.
The present invention can, for example, work with
other operating systems, including: Net BSD and Free
BSD, Apple 0S X, other UNIX type operating systems,
WindRiver's VxWorks system, and Microsoft's XP and

NT operating systems.

[0030] Example code for implementing execution
library 114 is provided in the file “user.c”, which
is included in the above referenced computer program
listing appendix. This code is merely an example

and should not be used to limit the invention.

11

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

[0031] The example code for implementing
execution library 114 is written in the C language
and includes a “main” routine. This main routine is
the first routine that is executed after user 101
executes executable program 302. FIG. 5 is a flow
chart illustrating the process 500 performed by the
main routine. As shown in FIG. 5, the main routine
collects the arguments to be passed to loadable
module 202 (step 502). Next (step 504), the main
routine sets up the input and output channels. Next
(step 506), main routine creates a child process by
executing the fork() routine. The child process
immediately replaces its process image with the
insmod process image. The child process does this

by executing the execl() routine.

[0032] Next (step 508), the main routine pipes
loadable module 202 to the insmod process. This
causes the insmod process to put loadable module 202
with arguments in kernel address space. When the
application code within loadable module 202 begins
running in kernel space, a routine within loadable
module 202 will create kernel/user channels (e.g.,
RTCore “fifos”) that move data between kernel and

user space.

[0033] The main routine waits until it can open
these kernel/user channels (step 510). Once it can
open the channels it does and then uses the channels
to transfer data back and forth so that data coming
from loadable module 202 is sent to the standard
output of executable program 302 and data coming

into the standard input of executable program 302 is

12

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

transmitted via the kernel/user channel to loadable

module 202 (step 512).

[0034] Example code for implementing environment
library 112 is provided in the file “rtl_crt0.c”,
which is included in the above referenced computer
program listing appendix. This code is merely an
example and should not be used to limit the

invention.

[0035] As discussed above, environment library
112 includes one or more routines for insulating
application code 102 from the operating system
environment and implementing a uniform execution
environment. That is, instead of depending on a
changeable and specialized operating system
interface, the program can use standard “C”
interfaces - or alternatively, any standard
application programming interface. For example, in
the current embodiment of the invention, instead of
using a Linux kernel “sys_open” operation applied to
some terminal device so that the program can output
data, the program can simply use the standard
“printf” routine. Instead of using some OS dependent
routine for generating a thread, the program can use

vpthread_create” - a POSIX standard function.

[0036] As shown in the example code, environment
library 112 includes an initialization routine
called “init_module()” for performing the functions
of insulating application code 102 from the
operating system environment and implementing a
uniform execution environment. The init_module

routine is executed as soon as the module is loaded

13

WO 2005/031569

10

15

20

25

30

into the kernel address space and is executed in the
context of the process that invokes the insert/load
operation. The init_module performs the following
steps: (1) copies in arguments that have been
passed to it by the execution library and that were
passed to the execution library by the user ox
program that invoked the process, (2) creates the
kernel/user channels that connect loadable module
202 to the executable program 302, (3) requests a
block of memory from the operating system and stores
a “task” structure that describes the application in
the module to the infrastructure library, (4) puts
the data describing application code 102 on a “task”
list that ig used by the infrastructure library to
control all the modules that it manages, and (5)
creates a Linux kernel thread to run a ‘
vstartup_thread” routine, which is included in the
infrastructure library 110 and which is describe

below.

[0037] As further shown, environment library 112
may also include a cleanup routine. The cleanup
routine included in the example environment library
is called “cleanup_module.” The cleanup_module
routine performs the following task: (1) removes
from the task list the task (i.e., the data
describing application code 102; (2) waits for the
kernel thread to terminate; (3) closes the channels

created by the init_module; (4) cleans up state by

. freeing memory, closing files, and releasing

semaphores and possibly other resources; and (5)
frees the block of memory that was used to store the

task structure.

14

PCT/US2004/031371

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

[0038] Example code for implementing
infrastructure library 110 is provided in the files
“mainhelper.c” and “mainhelper.h”, which are
included in the above referenced computer program
listing appendix. This code is merely an example

and should not be used to limit the invention.

[0039] The example infrastructure library 110
includes the “startup_thread” routine. As discussed
above, the init_module routine creates a Linux
kernel thread to run the startup_thread routine. As
is illustrated from the example code, the
startup_thread routine does some operating system
specific setup by detaching the kernel process from
any terminals (“daemonize” in Linux), and filling in
information in the task structure such as the
identity of the current kernel thread, and then
executes application code 102 by calling the “task”
function. After executing application code 102, the
startup_thread routine waits for application code
102 to terminate. When application code 102
terminates, the startup_thread routine sends the
application code 102 return value down the output
channel, signals completion, and exits. By
signaling completion, the startup_thread routine

causes the cleanup_module routine to execute.

[0040] The example infrastructure module 110
further includes a routine called “rtl_main_wait.”
This routine implements the function to wait for the
application kernel thread to complete. The function
“rtl _main _wait” is called in the application after

threads are started so that the “main” routine can

15

WO 2005/031569 PCT/US2004/031371

10

15

20

25

safely be suspended until the subsidiary threads are

completed. :

[0041] Example code for implementing build system
116 is provided in the file “Makefile”, which is
included in the above referenced computer program
listing appendix. This code is merely an example

and should not be used to limit the invention.
[0042] EXAMPLE APPLICATIONS OF THE INVENTION

[0043] In general, all of the modules described
below require the addition of application code to a
running or booting operating system - the basic
functionality provided by loadable kernel modules.
Utilizing the present invention, the modules are all
(1) simpler to develop and debug, (2) simpler to
connect to other components to make a useful
software system, and (3) more reliable. Since
development time and software reusability
(connection to existing software applications)
dominate the costs of producing software, the
invention provides a significant economic value. In
addition, the present invention provides the
programmer with a familiar, less complicated
development environment, and does not require the
programmer to handle complicated kernel-related
initialization/loading and unloading/cleanup
functions. The invention, thus, facilitates more

reliable, error-free application code.

[0044] (1) A real-time data acquisition module

under RTLinux:

16

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

[0045] The present invention enables a loadable
kernel data acquisition module to be developed and
tested as if the module were a standard non-kernel
module. To develop a real-time data acquisition
system in RTLinux using the invention all one needs
to do is write a program Ehat runs under the UNIX
operating system. The program should include a main
program and a thread. The thread should be
configured to sample data from the device from which
data is to be acquired (e.g., a voltage sensor) at a
fixed interval and then write the data to standard
output. The program text in pseudo-code 600 is

shown in FIG. 6.

[0046] This program can be tested for logical
correctness under any POSIX compliant standard UNIX.
After testing for logical correctness, the program
can be rebuilt using build system 116 to create an
executable program that can be run under RTLinux or
RTCore BSD, for example. The complexity of launching
the thread into the real-time operating system,
connecting the thread to data streams, and closing
the module on termination is now all hidden to the
application. The module can be tested on a UNIX
command line with the command: % data_acquisition >

test_file.
[0047] (2) A device driver module:

[0048] As noted herein, the invention provides a
means of simplifying and automating module
deployment and testing. Currently, the most common
use for loadable kernel modules is for device

drivers that are not statically linked into the

17

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

operating system. Drivers in loadable kernel module
form allow an operating system to configure itself
on boot - adding drivers for devices it detects -
and allowing users and system administrators to
update systems by, for example, upgrading a disk
drive or a communications device and adding a new
driver without re-booting a system and interrupting

other functions.

[0049] However, driver modules are often very
dependent on specific releases of the operating
system and are notorious for failing to cooperate
with other components. Using the invention, a driver
developer can insulate the driver from non-relevant
operating system internal changes. More importantly,
a system administrator can rely on the automatic
cleanup provided by the invéntion to improve
reliability and rely on the automatic setup of
communication channels to improve reports. In a
Linux system, without the invention, the method for
testing a loadable kernel driver module might
involve the following steps: (1) the administrator
logs in as root to get the correct privileges; (2)
the administrator uses the “insmod” utility to
attempt to load the driver; and (3) if the insmod
utility works, the, system administrator uses a
v“dmesg” utility to print out internal operating
system diagnostic messages and to see if he or she
can find one relevant to the driver. Suppose that
the driver cannot correctly start because, for
example, a prior driver for the device has not been
removed. At this point, the system administrator

must use the “rmmod” tool to try to remove both the

18

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

new driver and the prior one, and then again tries
to install the new driver. The driver writer must
have correctly handled the complex case of

responding to an “rmmod” request.

[0050] With the invention, the method for testing
the loadable kernel driver is much simpler. The
method might include simply the step of running the
executable program that loads the module into the
kernel. If the module needs to be unloaded from the
kernel, the administrator need only execute the kill

command to kill the executable program.
[0051] (3) An encryption module:

[0052] This -example illustrates the value of the |
automatic creation of input/output channels by the
invention. Suppose that we have a generic operating
system module that provides an encryption and

security stamp facility and want to attach it to a
database. The command line for initiating secure
operation of the database in a system utilizing the

invention might be:

% (decrypt_input | my_database | encrypt_output)&

so that the two security modules (i.e.,
sdecrypt_input” and “encrypt_output”) are
automatically loaded and connected to the inputs and
outputs of database module, “my_database”. The

entire system can be terminated and automatically

unloaded with a single signal.
{0053] (4) A security module:

[0054] Loadable kernel moduleg’ are themselves

potentially a security weakness of an operating

19

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

system, since modules traditionally operate within
the address space and with all privileges of the
operating system itself. There is generally only a
check on whether the user loading the module has
sufficient privileges to load a module. However, the
invention makeg it convenient to add more
sophisticated security checking either directly in
the infrastructure libraries or in a root module
that controls all module loads after loading. This
module can validate certificates and even provide

dynamic code check.
[0055] (5) A fault tolerant module:

[0056] The invention provides a means of
dynamically adding a fault tolerance capability to a
running operating system by adding a kernel data
logger. For example, the script % checkpoint_kernel
| netcat 10.0.0.244:45 runs a fault tolerance module
named “checkpoint_kernel” and sends the module’s
output to a standard program (i.e., “netcat”) that
directs output to a named internet site and TCP
port. Using prior methods, the programmer would have
had to hand code creation of an output channel in
the checkpoint_kernel module and then produce
further code to redirect the data to a destination
and to process the destination IP and port as

parameters.

[0057] FIG. 7 is an illustration of a
representative computer system for implemeﬁting the
systems and methods of the present invention for
dynamically linking application software into a

running operating system kernel. With reference to

20

WO 2005/031569

10

15

20

25

30

FIG. 7, the method of the present invention may be
advantageously implemented using one or more
computer programs executing on a computer system 702
having a processor or central processing unit 704,
such as, for example, a workstation, server, or
embedded-single-board computer using, for example,
an Intel-based CPU, such a Centrino, running one of
the operating systems previously described, having a
memory 706, such as, for example, a hard drive, RAUN,
ROM, a compact disc, magneto-optical storage device,
and/or fixed or removable media, having a one or
more user interface devices 708, such as, for
example, computer terminals, personal computers,
laptop computers, and/or handheld devices, with an
input means, such as, for example, a keyboard 710,
mouse, pointing device, and/or microphone. The
computer program is stored in memory 11 along with
other parameters and data necessary to implement the

method of the present invention.

[0058] In addition, the computer system 702 may
include an analog-to-digital converter, sensors, and
various input-output devices, and may be coupled to
a computer network, which may also be
communicatively coupled to the Internet and/or other
computer network to facilitate data transfer and

operator control.

[0059] The systems, processes, and components set
forth in the present description may be implemented
using one or more general purpose computers, |
microprocessors, or the like programmed according to

the teachings of the present specification, as will

21

PCT/US2004/031371

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

be appreciated by those skilled in the relevant
art(s). Appropriate software coding can readily be
prepared by skilled programmers based on the
teachings of the present disclosure, as will be
apparent to those skilled in the relevant art(s).
The present invention thus also includes a computer-
based product which may be hosted on a storage
medium and include instructions that can be used to
program a computer to perform a process in
accordance with the present invention. The storage
medium can include, but is not limited to, any type
of disk including a floppy disk, optical disk,
CDROM, magneto-optical disk, ROMs, RAMs, EPROMs,
EEPROMs, flash memory, magnetic or optical cards, or
any type of media suitable for storing electronic

instructions, either locally or remotely.

[0060] While the processes described herein have
been illustrated as a series or sequence of steps,
the steps need not necessarily be performed in the

order described, unless indicated otherwise.

[0061] The foregoing has described the
principles, embodiments, and modes of operation of
the present invention. However, the invention
should not be construed as being limited to the
particular embodiments described above, as they
should be regarded as being illustrative and not as
restrictive. It should be appreciated that
variations may be made in those embodiments by those
skilled in the art without departing from the scope
of the present invention. Obviously, numerous

modifications and variations of the present

22

WO 2005/031569 PCT/US2004/031371

invention are possible in light of the above
teachings. It is therefore to be understood that
the invention may be practiced otherwise than as

specifically described herein.

5 [0062] Thus, the breadth and scope of the present
invention should not be limited by any of the
above-described exemplary embodiments, but should be
defined only in accordance with the following claims

and their equivalents.

23

WO 2005/031569

10

15

20

25

30

35

40

45

Source Code Appendix:

The following is an example of a loadable kernel

module.

/* Copyright (C) Finite State Machine Labs Inc.,

1995-2003. All rights reserved. */
#include <stdio.h>

#include <pthread.h>

#include <unistd.h>

pthread_t thread;

void *thread_code(void *t) {
struct timespec next;
clock_gettime(CLOCK_REALTIME, &next);
while (1) { :
timespec_add_ns(&next, 1000*1000);
clock_nanosleep(CLOCK_REALTIME,
TIMER_ABSTIME, &next, NULL);
printf("inside thread\n");
}
return NULL;
}

int main(void) {
int ret; \
ret = pthread_create(&thread, NULL,
thread_code, (void *)0);
if (ret) {
printf ("Error on create\n");
return -1;

}

/* wait for the thread to exit or an
asynchronous signal to stop us */
rtl _main_wait();

ret = pthread_cancel(thread);
if (ret) {
printf ("Error on cancel\n");
return -2;
}
ret = pthread_join(thread, NULL);
if (ret) {
printf ("Error on join\n");
return -31;

24

PCT/US2004/031371

WO 2005/031569 PCT/US2004/031371

return 0;

25

WO 2005/031569

10

15

20

25

30

35

40

#
MAKEFILE - _ RTLINUX_COPYRIGHT _
#

include ../rtl.mk
CFLAGS := S{SYSCFLAGS}

ifeq ($(CONFIG_UCLINUX),)

all: rtl_crt0.o array user.o user_nostdout.o copy
else

all: array copy

endif

ifeq (% (CONFIG_RTL_BSD),y)
USER_EXTRA += user_elf.o
endif

copy:

mkdir -p ../libs

—-cp -f rtl_crt0.o user_nostdout.o user.o array
../1libs

user.o: user.c $(USER_EXTRA)
$(CC) $(INCLUDE) -c user.c -o temp.o
$(LD) -r -o user.o temp.o $(USER_EXTRA)
@rm -f temp.o .

user_nostdout.o: user.c $(USER_EXTRA)

$(CC) S$(INCLUDE) -DRTL_NO_STDOUT=1 -c user.c -0
temp.o

$(LD) -r -o user_nostdout.o temp.o
$ (USER_EXTRA)

@rm -f temp.o

array: array.c
$ (HOSTCC) -0 array array.cC

clean:
rm -f *,0 *.rtl array

include ../Rules.make

26

PCT/US2004/031371

WO 2005/031569

10

15

20

25

30

35

40

45

/*

* _ RTLINUX_COPYRIGHT___

*/
#include <rtl_conf.h>
#include <rtl_gpos.h>
#include <rtl_printf.h>
#include <rtl_pthread.h>
#include <rtl_sched.h>
#include <rtl_posixio.h>
#include <rtl_mainhelper.h>
#include <rtl_ unistd.h>
#include <rtl_fifo.h>
#include <sys/mman.h>
#include <stdio.h>

#ifdef CONFIG_RTL_NETBSD
#include <sys/kthread.h>
#endif

#ifdef CONFIG_RTL_LINUX
int stdout_fifo = -1;

/* per-task info for RTLinux to keep track of
applications */
extern struct per_task_info *info;

extern int main(int argc, char **);

int argc;

char *argv[RTL_MAIN_MAXARGS];
MODULE_PARM(argv, "1-"

___MODULE_STRING (RTL_MAIN_MAXARGS) "s");
MODULE_PARM{argc, "i");

int init_module (void)
{

struct per task_info *inf;

/* setup our task info */
if (! (inf = (struct per_task_info *)kmalloc
sizeof (struct per_task_info),
GFP_KERNEL)))
return -1;
inf->module = &__ this_module;
inf->mainfunc = main;

/-k

27

PCT/US2004/031371

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

35

40

45

* Tf we're loaded by the user with insmod
instead of
* by the user program with the module built
into it
* then argc/argv may not be set right. Setup
some
* gsafe defaults if so. -- Cort
<cort@fsmlabs.com>
*/
if (large) {
argc = 1;
argv[0] = "this_program";
}
inf->argc argce;
inf->argv = argv;
init_completion(&inf->mainwait);
init_completion(&inf->waitexit);

l

/* create the stdout FIFO */
{

int ret;

char fnam[l6];

inf->stdout_pid = current->pid;
sprintf (fnam, "/dev/stdout.%d", inf-
>stdout_pid) ;

if ((ret = rtl_mkfifo(fnam, 0666))) {

printk("mkfifo() of %s failed\n",
fnam) ;

rtl_perror ("mkfifo()");

} i

/* open the file for read only */
if ((stdout_fifo = rtl_open(fnam,
RTL_O_WRONLY | RTL_O_NONBLOCK)) < 0) {
printk("open() of %s failed\n",
fnam) ;
rtl_perroxr ("open()");
}
inf->stdout_fifo = stdout_£fifo;
}

/* add this to the list */
spin_lock(&per_task lock);
inf->next = info;

info = inf;

spin_unlock(&per_task_lock);

28

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

35

40

45

1f (kernel_thread(startup_thread, (void *)inf,
CLONE_FS | CLONE_FILES | CLONE_SIGNAL |
SIGCHLD) <= 0)
return -1;
else
return 0;

}

void cleanup_module (void)

{

struct per_task_info *inf, *free = NULL;

/* remove entry this from the list */
spin_lock (&per_task_ lock);

if (info && (info->module == &__this_module)) {
free = info;
info = info->next;

} else {
inf = info;

while (inf) {
if (inf->next->module ==
& ____this_module) {
free = inf->next->next;
inf = inf->next;
break;

}
}
spin_unlock(&per_task_ lock);

if (lfree) {
rtl_printf("Did not find task on
list!\n");
return;

}

/* wakeup the GPOS task */
complete (&free->mainwait) ;

/* wailt for the GPOS task to exit */
wait_for_ completion(&free->waitexit);

/* remove the stdout FIFO */
{

char fnam[16];

int ret;

rtl_close(stdout_fifo);

29

WO 2005/031569 PCT/US2004/031371

5

10

15

20

25

30

35

40

45

sprintf (fnam, "/dev/stdout.%d", free-

>stdout_pid);
if ((ret = rtl_unlink(fnam)) < 0) {
printk ("unlink() of %s failed\n",
fnam) ;
rtl_perror ("unlink()");
}
}

/* cleanup any state this module left */
rtl_cleanup_module (free);

/* free the structure now that it's done */
kfree(free);

}

#endif /* CONFIG_RTL_LINUX */

#ifdef CONFIG_RTL_NETBSD

int rtl_main_split_args (const char *cmdline, char
**args) ;
void rtl_main_free_args (char **args);

/* Module management functions */
int rtl_main init_module(struct per_task_info *inf)
{
const unsigned int buf_size = 256;
struct rtl _module *module = inf->module;
struct proc *pptr = curproc->p_pptr;
char *cmdline;
int ret;

cmdline = malloc(buf_size, M_TEMP, M_WAITOK |
M_ZERO) ;
if (cmdline == NULL)
return -ENOMEM;

/* modload is called via a shell script */
inf->stdout_pid = pptr->p_pid;

/* split up the arguments */
inf->argv([0] = NULL;
inf->argc = rtl_main_split_args(inf-
>__rtl main_args, inf->argv);
if (inf->argc < 0) {
ret = -ENOMEM;

30

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

35

40

45

goto out;

}

if (inf->argc == 0) {
/* no arguments, setup sane defaults */
snprintf(inf->argv[0], RTL_MAIN_ARGLEN,
"$s" , module->name) ;
inf->argc = 1;

}

/* initialize completion idents */
init_completion(&inf->mainwait) ;
init_completion(&inf->waitexit);

/* create the stdout FIFO */
sprintf(cmdline, "/dev/stdout.%d", inf-
>stdout_pid);

/*

* attribute this one to the core system,
otherwise our

* refcount will be high, ditto for open

*/
if ((ret = _rtl mkfifo(cmdline, 0666, NULL)))
{
rtl_printf('mkfifo() of %s failed\n®",
cmdl ine) ;
rtl_perror ("mkfifo()");
}

/* open the file for write only */
inf->stdout_fifo = _ _rtl_open(cmdline,
RTQ_O_WRONLY[RTL_O*NONBLOCK, NULL) ;
if (inf->stdout_fifo < 0) {
rtl_printf("open() of %s failed\n",
cmdl ine) ;
rtl_perroxr("open()");

}

/* Add this task to the head of the global list
*/

simple_lock(&per_ task_lock);

SLIST_INSERT_HEAD(&rtl_task_list, inf, list);

simple_unlock (&per_task_ lock) ;

/-k

* finally, fire up our kernel thread, upon
successful exit,

31

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

35

40

45

* inf->tsk has our task struct and we have a
kernel thread

* called module->name.

*/

ret = kthread_createl(startup_thread, inf,
&inf->tsk, "%s",
module->name) ;

out :
free (cmdline, M_TEMP) ;
return ret;

}

int rtl_main_cleanup_module (struct per_task info
*inf)
{

char buf[32];

int ret;

simple_lock (&per_task lock);

SLIST REMOVE (&rtl_task_list, inf,
per_task_info, list);

simple_unlock(&per_task_ lock);

/* wakeup the GPOS task */
complete (&inf->mainwait) ;

/* wait for GPOS task completion */
wait_for_completion(&inf->waitexit);

/*
* remove our stdout fifo, we don't have to
lock anymore because
* we're not in the rtl task_list lock anymore
*/
rtl_close{inf->stdout_fifo);
sprintf (buf, "/dev/stdout.%d", inf-
>stdout_pid);
if ((ret = rtl_unlink(buf)) < 0) {
rtl_printf ("unlink() of %s
failed\n", buf);
rtl_perror ("unlink()");
simple_unlock(&per_task lock);
return ret;
}

/* cleanup any state the module left behind */

32

WO 2005/031569 PCT/US2004/031371

rtl_cleanup_module(inf);

rtl main_free_args(inf->argv);
return 0;
5 }

/'k
* rtl main_split_args - split arguments in @cmdline
into an argv array
10 * @cmdline: the argument list
* @args: the array to store the returned arguments,
the function

* will only allocate the string array.
*/
15 int rtl _main split_args(const char *cmdline, char
**args)
{

const int m_flags = M_WAITOK | M_ZERO;
int i, 3§, idx;
20 char *buf;

buf = malloc (RTL_MAIN MAXARGS *
RTI. MAIN_ARGLEN, M_TEMP, m_flags);
if (!buf)
25 return -ENOMEM;

for (i = 0; i < RTL_MATN_ MAXARGS; i++)
args[i] = buf + (i * RTL_MAIN_ARGLEN) ;

30 i=0, =0, idx = 0;
while (cmdlinelil] && (idx < RTL_MAIN_MAXARGS))
{
if (j >= RTL_MAIN_ARGLEN)
break;
35
args[idx] [j] = cmdlinel[i];
if (isspace(cmdline[i])) {
args[idx] [j] = '\0"';
40 idx++; j = 0;
} else
J++;
i++;
45 }
return idx;
}

33

WO 2005/031569 PCT/US2004/031371

void rtl_main_free_args (char **args)
{

free(args[0], M_TEMP);
T

#endif /* CONFIG_RTL_NETBSD */

34

WO 2005/031569

10

15

20

25

30

35

40

45

/7\‘

* __ RTLINUX_COPYRIGHT_

*/

#include <rtl_gpos.h>
#include <rtl_mainhelper.h>
#include <rtl_printf.h>
#include <rtl_sched.h>
#include <rtl_posixio.h>
#include <rtl_unistd.h>
#include <posix/sys/mman.h>
#include <posix/unistd.h>

#ifdef CONFIG_RTL_NETBSD
#include <sys/signal.h>
#include <sys/kthread.h>

struct simplelock per_task lock =
SIMPLELOCK_INITIALIZER;

struct rtl_task_list_s rtl_task_list =
SLIST_ HEAD INITIALIZER(rtl_task list);
#endif /* CONFIGC_RTL_NETBSD */

#ifdef CONFIG_RTL_LINUX

PCT/US2004/031371

/* pexr-task info for RTLinux to keep track of

applications */

spinlock_t per_task lock = SPIN_LOCK UNLOCKED;

struct per_task_info *info = NULL;
#endif /* CONFIG_RTL_LINUX */

kthread_ret_t startup_thread(void *arg)
{

struct per_task _info *inf = (struct
per_task_info *)arg;
int ret, temp = -1;

#ifdef CONFIG_RTL_LINUX

/* detach this thread from the user/tty */

daemonize() ;

/*

* update some per-process information, inf-

>tgk is already
* set to curproc on NetBSD
*/
inf->tsk = current;
#endif /* CONFIG_RTL_LINUX */

35

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

35

40

45

inf->thread = inf->module;

/* call the task main routine */
ret = inf->mainfunc(inf->argc, inf->argv);

/* we have the return value, send it to the
user-program */

rtl_write(inf->stdout_£fifo, &temp,
sizeof(temp)) ;

rtl _write(inf->stdout_fifo, &ret, sizeof(ret));

/* wake up the cleanup_module() routine if it's
walting on us */
compl ete (&inf->waitexit) ;

/*

* We always return success here. That way,
the module

* loading always appears successful for the
user-progranm

* unless there was an actual load problem
(unresolved references,

* bad file and so on).

*

* When there is an error from main() or any
other operation

* inside the application then we return the
error value above

* through the stdout FIFO.

* -—- Cort <cort@fsmlabs.com>

*/
#ifdef CONFIG_RTL_LINUX

return 0;
#endif

#ifdef CONFIG_RTL_NETBSD
kthread_exit(0);

#endif

}

void _ rtl_main wait(struct rtl_module *module)
{
struct per_task_info *inf = NULL;

#ifdef CONFIG_RTL_LINUX
/* remove entry this from the list */
spin_ lock(&per_task_lock);
inf = info;

36

WO 2005/031569

10

15

20

25

30

35

40

45

while (inf) {

if (inf->module == module)
break;
inf = inf->next;

}
spin_unlock(&per_task_lock);
#endif /* CONFIG_RTL_LINUX */

#ifdef CONFIG_RTL_NETBSD
simple_ lock(&per_task_lock);
SLIST FOREACH (inf, &rtl_task_list, list) {
if (inf->module == module)
break;
}
simple_unlock(&per_task lock):;
#endif /* CONFIG_RTL_NETBSD */

if (1inf) {
rtl_printf("%s:%d4 !inf\n", __FILE__,

. __LINE_) ;

return;

}

/* walit for an rmmod event */
walt__for_completion(&inf->mainwait) ;

}

#ifdef CONFIG_RTL_NETBSD
/* sleep until completion wakeup, the ->done is so
that if a thread
* completes before the waiter the waiter can
proceed
*/
void wait_for_completion(struct completion *ident)
{
simple_lock(&ident->lock) ;
while (ident->done == 0) {
ltsleep (ident, curproc->p_priority |
PCATCH,
_ FUNCTION___, 0, &ident->lock);
}
simple_unlock(&ident->lock);

}

void complete(struct completion *ident)

{
simple_lock(&ident->lock);
ident->done++;

37

PCT/US2004/031371

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

35

40

45

simple_unlock (&ident->lock) ;
wakeup (ident) ;

}
#endif

/*
* Cleanup after a rtlinux module that has exited
*/ .
void rtl_cleanup_module (struct per_task_info *inf)
{

int i;

#if O
rtl _pthread t t;
/* cancel/join all threads for this module */
repeat:
rtl_spin_lock(&sched_data(i)->rtl_tasks_lock
)i
for (i =0; 1 < rtl_num cpus(); i++) {
t = sched_data(i)->rtl_tasks;
while(t != NULL) {
if (t->creator == &__this_module) {
rtl_printf("Canceling thread
%08x\n", t);
rtl_spin_unlock(&sched_data(i)-
>rtl_tasks_lock });
if (rtl_pthread cancel(t))
rtl_printf ("cancel

failed\n") ;
if (rtl_pthread_join(t, NULL)
)
rtl_printf("join
failed\n");
goto repeat;
}
t = t->next;
}

rtl_spin_unlock(&sched_data(i)-
>rtl_tasks_lock);

}
#endif

/* kill any FDs that this task opened */
for (i =0 ; i < CONFIG_RTL_MAX FILES; i++) {
incr_fd_usage(i);
if ((rtl_fds[i].f_op) &&
(rtl_fds[i] .creator == inf->module))
rtl_close(1);

38

WO 2005/031569 PCT/US2004/031371

decr_fd_usage (i) ;

}

/* unregister any devices that this task
5 managed */
for (1 = 0 ; 1 < CONFIG_RTL_MAX DEV; i++) {
int J;

incr_dev_usage (i) ;

10 if ((rtl_inodes[i].valid) &&
(rtl_inodes[i] .creator == inf-
>thread)) {
/* f£ind all FDs that have this file
open */
15 for (§ =0 ; 3 <

CONFIG_RTL_MAX_ FILES; j++) {
incr_ f£d_usage(j);
if ((rtl_f£fds([j]l.f_op) &&
(rtl_£fds[j] .devs_index ==

20 i))
rtl _close(j);
decr_fd_usage(j);
}
if (i >= CONFIG_RTL_MAX LEGACY_DEV) {
25 /* need to unlink

unconditionally */ :
if (rtl_inodes[i] .has_gpos_file)

{
30 rtl_gpos_unlink(rtl_inodes[i] .name) ;
rtl_inodes[i] .has_gpos_£file
:O;
; }
35 /* The user may have pushed

usage to any
amount. Reset and handle now. */

rtl_xchg (&rtl_inodes[i] .use_count,l);

40
/* The GPOS user may still be
out there.
Let them go - they'll clean up.
Otherwise,
45 do it here. (the decr will drop

usage 1 to 0. */
if ('rtl_gpos_devices[i].active)

{

39

WO 2005/031569 PCT/US2004/031371

decr_dev_usage (i) ;

rtl_gpos_unregister_dev(rtl_inodes[i].name);

5 rtl_unregister _dev(rtl_inodes[i] .name) ;
}
}
} else {
decr_dev_usage (i) ;
10 }
}
}

40

WO 2005/031569

10

15

20

25

30

35

40

45

/*

* __ RTLINUX_COPYRIGHT_

*/

#ifndef __ RTL_MAINHELPER___
#define _ RTL_MAINHELPER

#include <rtl_module.h>

#ifndef CONFIG_UCLINUX

/* max # of arguments that can be passed into a

main ()
* program via argc/argv */

#define RTL_MAIN_MAXARGS 5
#define RTL_MAIN_ARGLEN

#ifdef __ _KERNEL_
#ifdef CONFIG_RTL__LINUX

64

extern spinlock_t per_ task_lock;
struct per_task _imfo {
struct rtl_module *module;
struct rtl_module *thread;
struct per_task_info *next;
struct task_struct *tsk;

};

int (*mainfumc) (int,

struct completion mainwait, waitexit;

int argc;
char **argv;

char **);

int stdout_fifo, stdout_pid;

typedef int kthread_ret_t;
#endif /* CONFIC_RTL_LINUX */

#ifdef CONFIG_RTL__NETBSD

#include <sys/queue.h>

struct completion ({
struct simpl elock lock;

}i

unsigned int done;

41

PCT/US2004/031371

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

35

40

45

/* Used to protect rtl_task_list
traversal/insertion/removal */
extern struct simplelock per_task_lock;

struct per_task info {
struct rtl_module *module;
.struct rtl_module *thread;
SLIST_ENTRY (per_task_info) list;
struct proc *tsk;
int (*mainfunc) (int, char **);
struct completion mainwait, waitexit;
int argc;
char *argv [RTL_MAIN_MAXARGS];
char *__rtl_main_args;
int stdout_fifo, stdout_pid;

Yi

typedef void kthread_ret_t;

SLIST HEAD(rtl_task_list_s, per_task_info);

extern struct rtl_task list s rtl task list;

extern void complete(struct completion *);

extern void wait_for completion(struct completion

*);

#define init_completion (x) do { \
simple_lock_init(&(x)->lock); \
(x)->done = 0; \

} while (0)

/**********************’k**’k********************‘k****
* kK
*

* We only include the following in ‘main’
applications
*

KEIKKEKRIAKRIIIAKRIIAX A KNI I T I I AT dd bk hkdkdkddhhdddrdhdrdhds
**/

#ifdef KMOD

#undef RTL_MODULE
#undef RTLINUX_MODULE

/*

* Note the declaration of _ _main,*' there are too
many users of int main(void)

* and this only results in a warning, however
really they should not be using

42

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

35

40

45

* that kind of a declaration for their main
function. The correct definition

* being int main(int, char **) and parameter
passing might have undefined side

* effects on some systems -Zwane

*/

#define RTLINUX_MODULE (modname) MOD_MISC (#modname) \
static char
_ rtl main args[RTI._MAIN_ MAXARGS*RTL_MAIN_ARGLEN] \

__attribute__((section(".rtl.main.args"))); \

static struct rtl_module ___this_module = {.usecount
= 0, .name = #modnamel}; \

extern int rtl_main_ init_module(struct per_task_info
*)io\

extern int rtl_main_cleanup_module (struct
per_task_info *); \
static int _ _main() ;\

static struct per_task_info __inf = { \
mainfunc = _ _main, \
.module = &__ this_module, \
. rtl main args = __rtl main_args \
i\

static int modname##_module_handle (struct lkm_ table
*1lkmtp, int cmd) \

A\
int err = 0;\
\
switch (cmd) {\
case LKM_E_LOAD:\
\
if (lkmexists (lkmtp))\
return -EEXIST;\
\
err = rtl_main init module(&__inf);\
break;\
\
case LKM_E_UNL:OAD:\
\
if (__this_module.usecount > 0) { \
return -EBUSY; \
A
err = rtl_main cleanup_module(&__inf) ;\
break;\
\
default:\

err = -EINVAL;\

43

WO 2005/031569 PCT/US2004/031371

break;\
N
\
return err;\
5 1A
\

int modname##_lkmentry(struct 1lkm_table *1lkmtp, int
cmd, int ver)\

{\
10 DISPATCH (1lkmtp, cmd, ver, modname##_module_handle,

\
modname##_module_handle, lkm nofunc)\

}
15 #define RTL_MODULE (modname) RTLINUX_MODULE (modname)

/* This is defined dAuring build to evaluate to
RTL_MODULE (module) */

KMOD
20
/* The real main entry point */
#define main static _ _main
#define stdout_fifo (__inf.stdout_£fifo)
25 #endif /* KMOD */
#endif /* CONFIG_RTL_NETBSD */

extern void rtl_cleanup_module(struct per_task_info
*);
30 extern kthread_ret_t startup_thread(void *);
#endif /* _ KERNEL__ _ */
#endif /* CONFIG_UCLINUX */

#endif /* ___RTL_MAINHELPER_ __ */

44

WO 2005/031569

10

15

20

25

30

35

40

45

/'k

PCT/US2004/031371

* _ _RTLINUX_COPYRIGHT

*/

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<stdio.h>
<stdarg.h>
<fentl.h>
<signal.h>
<unistd.h>
<errno.h>
<sys/types.h>
<sys/stat.h>
<sys/select.h>
<sys/wait.h>
<sys/utsname .h>
<termios.h>
<rtl_conf.h>
<rtl_mainhelper.h>

char filename[255];

char *paths[] = {

"/opt/rtldk-2.0/bin/",

"/opt/rtldk-1.2/bin/",

char *program =

u /Sbin/] ,
NULL;

“/bin", "/usr/bin/", NULL };

void setup_signals(void);
void do_printf_read(void);

/* stdout FD from the module */

int £;

/* return value from the module */

int retval = 0,

have_retval = 0;

#ifdef CONFIG_RTL_NETBSD
int loading_rtcore = 0;

#endif

int platform_ exec (char *cmd,

*args)

{

char *module_argc, char

#if defined (CONFIG_RTL_LINUX)

return execl (cmd,

cmd, filename,
module_argc, args,

"-o", program,
NULL) ;

#elif defined(CONFIG_RTL_NETBSD)

return execl (cmd,

#endif
}

cmd, filename, NULL);

45

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

35

40

45

voild prepare_arguments(int argc, char **argv, char
* argc, char *_ argv)
{

int i;

__argv[0] = 0;

#if defined (CONFIG_RTIL_LINUX)
/* setup args for the module itself */
sprintf(___argc, "arge=%d", argce);

sprintf(__argv, "argv=\"%s\"", argv[0]);
for (1 = 1; 1 < arge; i++)
sprintf(__argv, "%s,\"%s\"", __argv,
argv[il);

#elif defined(CONFIG_RTL_NETBSD)
/* we take the arguments as-is under BSD */

sprintf(__argv, "%s ", program); /* argv[0]
*/
for (1 = 1; i < arge; i++) {
strcat(_argv, argviil]);
strcat(_argv, " ");
}
#endif
}

void handler(int signal)
{
char command[256];
int 1i;
struct stat buf;

/* f£ind the right path */

for (i =0 ; paths[i] != 0; i++) {
sprintf (command, "%srmmod", paths[il]);
if (!stat(command, &buf))
break;
}

/* error if we could not find rmmod */

if ('paths[i]) {
fprintf (stderr, " Could not find rmmod\n");
exit(-1);

}

sprintf (command, "%s %s", command, program);
1 = system(command);

ifE (1 t=0) {

46

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

35

40

45

fprintf (stderr, "%$s: received signal but
removal of module failed.\n", program);

fprintf (stderr, "There may be other
programs running that require this module.\n");

setup_signals() ;
return;

3

#ifndef RTL_NO_STDOUT
/* if we don't have the retval set, get one */
while ('have_retval) {
do_printf_read () ;
}
#endif /* RTL_NO_STDOUT * /

close(f);
exit (retval);

}

volid setup_signals(void)

{

struct sigaction act;

/* setup to catch any signals that this process
receives */

act.sa_handler = handler;

act.sa_flags = SA_RESETHAND;

sigaction(SIGINT, &act, NULL);

sigaction(SIGQUIT, &act, NULL);

sigaction (SIGTERM, &act, NULL);
}

char cmd[256], args[256], module_argc[l6];

#ifndef RTL_NO_STDOUT
void do_printf_read(void)
{ ,
/* for reading stdout data from the module */
char *fmt = NULL, *string = NULL;

int fmtlen = 0;

int argtype, argsize;

int i;

/* read the size of the fmt string */
1if (read(f, &i, sizeof(i)) <= 0) {
fprintf (stderr, "%s: read of string length
failed\n", program);

47

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

35

40

45

perror("read()");
exit(-1);
}

/*
* gpecial case for when the main() routine in
the kernel exits on
* i1ts own
*/
if (1 == -1) {
/* read the return value */
if (read(f, &retval, sizeof(retval)) <= 0
) |
fprintf (stderr, "%s: read of
retval\n", :
program) ;
perror (“"read()") ;
exit (-1);
}
have_retval = 1;
return;

}

/* read the size of the arg */
if (read(f, &argsize, sizeof (argsize)) <= 0)
{
fprintf (stderr, "%s: xread of arg length
failed\n", program);
perroxr ("read()");
exit(-1);

}

/* get the arg type */
if ((read(f, &argtype, sizeof (argtype))) <
sizeof (argtype)) {
fprintf(stderr, "%s: xead of arg type
failed\n", program);
perroxr ("read()");

exit(-1);
}
/* 1f the string is too laxge, get more memory
*/
if (i+l > fmtlen) {
if (fmt)
free(fmt);

fmtlen = i+1;

48

WO 2005/031569

10

15

20

25

30

35

40

45

if ((fmt = (char *)malloc(fmtlen)) <= 0)
{
fprintf (stderr, "Cannot allocate
memory for larger format string\n");
perror ("malloc () ") ;
}
}

/* read the format string */
if ((read(f, fmt, i)) < 1) {
fprintf (stderr, "%s: read of fmt string
failed\n", program) ;
perror ("read()");
exit(~1);
}
fmt[i] = 0;

/* if there is no arg, just print the string
and continue */ '

if (argsize ==) {
printf (fmt) ;
fflush(stdout) ;
return;

}

/* read the argument */
switch((char)argtype) {
int d;
char *s;
unsigned long 1;
double dl;
case 'f':
if ((read(f, &d1l, argsize)) < argsize) {
fprintf(stderr, "%s: read of 'f' type
failed\n", program) ;
perror ("read() ") ;
exit(-1); -
}
printf(fmt, dl);
fflush(stdout) ;
break;
case 'p':
if ((read(f, &1, argsize)) < argsize) {
fprintf(stderr, "%s: read of 'p' type
failed\n", program);
perror ("read() ") ;
exit(-1);

49

PCT/US2004/031371

WO 2005/031569 PCT/US2004/031371

printf (fmt, 1);
fflush(stdout) ;

break;
case 'd':
5 case 'i':
case 'o':
case 'u':
case 'x':
case 'X':
10 if ((read(f, &4, argsize)) < argsize) {

fprintf(stderr, "%s: read of 'd' type
failed\n", program) ;

perroxr ("read() ") ;
exit (-1);
15 }
printf(fmt, d);
fflush(stdout);
break;
case 'c¢':
20 if ((read(f, &4, argsize)) < argsize) {

fprintf (stderr, "%$s: read of 'c' type
failed\n", program);
perror ("read() ") ;
exit (-1);
25 }
printf (fmt, (char)d);
fflush(stdout) ;
break;
case 's':
30 /* get space for the string */
if ((string = (char *)malloc(argsize+l))

fprintf (stderr,
"Cannot allocate memory for
35 string arg\n");
perror ("malloc () ") ;

}

if ((read(f, string, argsize)) < argsize
40) {
fprintf (stderr, "%s: read of 's' type
failed\n", program);
perror ("read()");

exit(-1);
45 }
stringl[argsize] = 0;
printf(fmt, string);
fflush(stdout);

50

WO 2005/031569
free(string);
break;
}
}
5 #endif /* RTL_NO_STDOUT */

10

15

20

25

30

35

40

45

int main(int argc, char **argv)

PCT/US2004/031371

{
extern char __ module_datal];
extern unsigned long __ module_size;
int sysret, child, status, i;
struct stat buf;
fd_set readfds, writefds, exceptfds;
mode_t old_umask;
char *tmp_dir;
/*
* strip off the extension, Linux doesn't care
but
* BSD modload(8) uses it to determine the
module
* entry point
*/
program = (char *)basename(argv[0]);

strtok (program, ".");

setup_signals();

#ifdef CONFIG_RTL_NETBSD
/* check whether we're loading rtcore */

#endif

if (!strncmp(program, "rtcore",6))
loading_rtcore = 1;
program = "rtl";
}
tmp_dir = (char *)getenv("TMP");
sprintf (filename, "%s/%s.o", tmp_dir °?

"/tmp", program);

arguments\n",

if (argc > RTL_MAIN_MAXARGS+1) {

fprintf (stderr, "Cannot pass more than %d

.

RTL_MAIN MAXARGS):;
return -1;

}

0ld_umask = umask(0600);

51

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

35

40

45

if ((f = open(filename, O_CREAT | O_WRONLY |
O_TRUNC)) < 0) {
perror("open()");
return -1;

}

umask (old_umask) ;

prepare_arguments (argce, argv, module_argc,

args) ;
#ifdef CONFIG_RTL_NETBSD

copy_module_args(_ module_data, args);
#endif

/* write the module data to the file */
if (write(f, __module_data, __ module_size)
l= ___ _module_size) {
perroxr ("write()");
close(£f);
unlink(filename) ;
return -1;

}

close(£f);

/* find the right path */
for (1 = 0 ; paths[i] != 0; i++) {
sprintf(cmd, "%$sinsmod", paths[i]);
if (!stat(cmd, &buf))
break;

}

/* error if we could not find insmod */
if (!paths[i]) {
fprintf (stderr, "Could not find
insmod\n") ;
unlink(filename) ;
return -1;

}

/* We do a fork and exec here so we get the PID
of the insmod process

* so we are able to open the proper
/dev/stdout.* file. Also, we

* need to be careful since system/setuid and
certain versions of bash

* do not cooporate well. -— Cort
<cort@fsmlabs.com>
*/

52

WO 2005/031569 PCT/US2004/031371

if ((child = fork()) > 0) {
/* parent */

} else {
/* child */
5
/* exec the insmod */
platform exec(cmd, module_axgc, args):;
/* we got here, things aren 't looking good
10 */
perror ("execl");
exit (1) ;
}
15 /* wait for the module load to be done, remove
the file */
walt (&status);
unlink (filename) ;
20 if (WEXITSTATUS (status) == 0) {

#ifndef RTL_NO_STDOUT
/* Try to open the stdout. We don't check
* for errors since
* gome modules (rtcore, ckit and so on)
25 will not produce a stdout
* FIFO -- Cort <cort@fsmlals.com>
*/
sprintf (cmd, "/dev/stdout.%d", child):;
if ((£ = open{(cmd, O_RDONLY)) < 0) {
30 fprintf (stderr, "%$s: unable to open
stdout FIFO\n", cmd);
perror ("open()");

}

35 /* setup select arguments */
if (£ >=0) {

FD_ZERO (&readfds) ;

FD_ZERO (&writefds) ;

FD_ZERO (&exceptfds);

40 FD_SET(f, &readfds)

}

!

#else
£f=-1;
#endif /* RTIL_NO_STDOUT */
45
while(1) {
#ifndef RTL_NO_STDOUT
if (£ >= 0) {

53

WO 2005/031569 PCT/US2004/031371

10

15

20

25

select(f+l1, &readfds,
&writefds, &exceptfds, NULL);
/* loop through here, printing
when necessary */
do_printf_read();
/* 1if the last read gave us a
retval, we're done */
if (have_retwval)
handler(0);
}
else
#endif /* RTL_NO_STDOUT */
sleep(300);

}
} else {
/* the 'insmod' failed for some reason */
fprintf (stderr, "$s: Problem loading
module\n", program) ;
exit(-1);
}

handler (0);

return 0;

54

WO 2005/031569

10

15

20

25

30

What is claimed is:

1. A system for dynamically linking
appiication code created by a programmer into a
running operating system kernel, comprising:

an environment library comprising one or more
routines for insulating the application code from
the operating system environment and for
implementing a uniform execution environment; and

a build system for constructing a loadable
module from the application code and the
environment library and for constructing a
standard executable program from the loadable
module and an execution library, wherein

the execution library comprises one or more
routines for transparently loading the loadable
module into the running operating system kernel,
passing arguments to the loadable module, and
terminating and unloading the loadable module

after receiving a termination signal.

2. The system of claim 1, further comprising
an infrastructure library comprising one or more
routines executed prior to loading the loadable
module into the running operating system kernel
and/or after unloading the loadable module from the

kernel.

3. The system of claim 1, wherein the
execution library includes one or more routines for
setting up

input/output channels.

55

PCT/US2004/031371

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

4, The system of claim 1, wherein the
standard executable program may be in several files

or a single file.

5. The system of claim 1, wherein one of the
one or more routines of the execution library
includes code for executing a utility for installing
the loadable module into the running operating

system kernel.

6. The system of claim 5, wherein the
utility for installing the loadable module into the
running operating system kernel is the insmod

program.

7. The system of claim 1, wherein the build
system includes instructions for compiling the

application code into object code.

8. The system of claim 7, wherein the build
system further includes instructions for linking
said object code with object code from the
environment library to produce a linked object

module.

\
t

9. The system of claim 8, wherein the build
system further includes instructions for converting

the linked object module into a C code array.

10. The system of claim 8, wherxein the build

system further includes instructions for compiling

56

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

the C code array to produce an object file and fbr
linking said object file with object code from the
execution library to produce the standard executable

program.

11. The system of claim 1, wherein the
environment library includes one or more routines to

create kernel/user channels.

12. The system of claim 1, wherein the
environment library includes one or more routines to

create a thread to execute the application code.

13. The system of claim 12, wherein the
environment library includes one or more routines
for freeing resources and unloading the loadable

module when the thread completes.

14, The system of claim 1, wherein the
environment library includes one or more routines
for (a) copying in arguments; (b) creating
communication channels that connect the loadable
module to the executable program; (c) requesting a
block of memory from the operating system and
storing a structure therein that describes the
application code; and (d) putting data describing

the application code on a task list.

15, The system of claim 14, wherein the
environment library further includes one or more
routines for (a) removing said data describing the

application code from the task list; (b) closing

57

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

sald communication channels that connect the
loadable module to the executable program; and (c)
freeing the block of memory that was requested from

the operating system.

16. A method, comprising:

creating a loadable module;

creating an executable program; and

executing the executable program, wherein the
executable program performs a method comprising the
steps of:

setting up input/output channels ;

inserting the loadable module into an operating
system address space, wherein, once the loadable the
module is inserteci into the operating system address
space, the loadable module begins to execute; and

waiting for the loadable module to connect via
kernel/user channels and then connecting those

kernel/user channels to the input/output channels.

17. The method of claim 16, wherein after the
loadable module is inserted into the operating
system address space the loadable module performs a
method comprising the steps of:

creating kernel/user channels;

creating a thread to execute application code;
and

wailting for the thread to complete.

18. The method of claim 17, wherein the

method performed by the loadable module further

58

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

includes the step of freeing resources after the

thread completes.

19. A computer readable medium having
computer instructions stored thereon, the computer
instructions comprising:

a first set of computer instructions for
insulating application code from an operating
system environment;

a second set of computer instructions for
constructing a loadable module from the
application code and the first set of
computer instructions; and

a third set of computer instructions for
constructing an executable program from the
loadable module and a fourth set of computer
instructions; wherein

the fourth set of computer instructions
includes computer instructions for
transparently loading the loadable module
into a running operating system kernel,
passing arguments to the loadable module, and
terminating and unloading the loadable module
from the running operating system kernel

after receiving a termination signal.

20. The computer readable medium of claim 19,
wherein the computer instructions for loading the
loadable module into the running operating system
kernel include computer instructionsg for executing a
utility for installing the loadable module into the

running operating system kernel.

59

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

21. The computer readable medium of claim 20,
wherein the utility for installing the loadable
module into the running operating system kernel is

the insmod program.

22, The computer readable medium of claim 19,
wherein the second set of computer instructions
includes instructions for compiling the application

code into object code.

23. The computer readable medium of claim 22,
wherein the second set of computer instructions
further includes instructions for linking said
object code with object code from the environment

library to produce a linked object module.

24. The computer readable medium of claim 23,
wherein the third set of computer instructions
includes instructions for converting the linked

object module into a C code array.

25. The computer readable medium of claim 24,
wherein the third set computer instructions of
further includes instructions for compiling the C
code array to produce an object file and for linking
said object file with object code f£rom a library to

produce the executable program.

26. The computer readable medium of claim 19,

wherein the first set of computer instructions

60

WO 2005/031569

10

15

20

25

30

includes instructions for creating kernel/user

channels.

27, The computer readable medium of claim 19,
wherein the first set of computer instructions
includes instructions for creating a thread to

execute the application code.

28. The computer readable medium of claim 27,
wherein the first set of computer instructions
includes instructions for freeing resources and
unloading the loadable module when the thread

completes.

29. The computer readable medium of claim 19,
wherein the first set of computer instructions
includes instructions for (a) creating communication
channels that connect the loadable module to the
executable program; (b) requesting a block of memory
from the operating system and storing a structure
therein that describes the application code; and (c)
putting data describing the application code on a

task list.

30. The computer readable medium of claim 29,
wherein the first set of computer instructions
further includes instructions for (a) removing said
data describing the application code from the task
list; (b) closing said communication channels that
connect the loadable module to the executable
program; and (c) freeing the block of memory that

was requested from the operating svystem.

61

PCT/US2004/031371

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

31. The computer readable medium of claim 19,
wherein the executable program may be in several

files or a single file.

32. A computer system, comprising:

first means for insulating application code
from an operating system environment;

second means for constructing a loadabkle module
from the application code and the first
means; ‘

third means for constructing an executable
program from the loadable module; and

fourth means for transparently loading the
loadable module into a running operating
system kernel, passing arguments to the
loadable module, and terminating and
unloading the loadable module from the
running operating system kernel after

receiving a termination signal.

33. The computer system of claim 32, wherein
means for loading the loadable module into the
running operating system kermnel include means for
executing a utility for installing the loadable

module into the running operating system kernel.

34. The computer system of claim 33, wherein
the utility for installing the loadable module into
the running operating system kernel is the insmod

program.

62

WO 2005/031569

10

15

20

25

30

35. The computer system of claim 32, wherein
the second means includes means for compiling the

application code into object code.

36. The computer system of claim 35, wherein
the second means furthex includes means for linking
said object code with object code from the
environment library to produce a linked object

module.

37. The computer system of claim 36, wherein
the third means includes means for converting the

linked object module into a C code array.

38. The computer system of claim 37, wherein
the third means further includes instructions for
compiling the C code arxray to produce an object file
and for linking said object file with object code

from a library to produce the executable program.

39. The computer system of claim 32, wherein
the first means includes means for creating

kernel/user channels.

40. The computer system of claim 32, wherein
the first means includes means for creating a thread

to execute the application code.

41. The computer system of claim 40, wherein
the first means includes means for freeing resources
and unloading the loadal>le module when the thread

completes.

63

PCT/US2004/031371

WO 2005/031569 PCT/US2004/031371

42, The computer system of claim 32, wherein
the first means includes means for (a) creating
communication channels that connect the loadable

5 module to the executable program; (b) requesting a
block of memory from the operating system and
storing a stxucture therein that describes the
application code; and (c¢) putting data describing
the application code on a task list.

10

43, The computer system of claim 42, wherein
the first means further includes means for (a)
removing said data describing the application code
from the task list; (b) closing said communication

15 channels that connect the loadable module to the
executable program; and (c¢) freeing the block of

memory that was reguested from the operating system.

44. The computer system of claim 32, wherein
20 the executable program may be in several files or a

single file.

45. A computer system for dynamically linking
application code created by a programmer into a
25 running operating system kernel, comprising:
means for creating a loadable module; and
means for creating an executable program that
is configured to performs a method comprising the
steps of:
30 setting up input/output channels;
inserting the loadable module into address

space of the running operating system kernel,

64

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

wherein, once the loadable the module is inserted
into the address space, the loadable module begins
to execute; and

waiting for the loadable module to connect wvia
kernel/user channels and then connecting those

kernel/user channels to the input/output channels.

46. The computer system of claim 45, wherein
the loadable module is configured to perform a
method after the loadable module is inserted into
the operating system address space, wherein said
method comprises the steps of:

creating kernel/user channels;

creating a thread to execute the application
code; and

waiting for the thread to complete.

47. The computer system of claim 46, wherein
the method performed by the loadable module further
includes the step of freeing resources after the

thread completes.

48. The computer system of claim 45, wherein
the step of inserting the loadable module into an
operating system address space includes the step of
creating a child process, wherein the child process

replaces its image with the insmod process image.
49. The computer system of claim 48, wherein

the step of inserting the loadable module into an

operating system address space further includes the

65

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

step of piping the loadable module to the insmod

process.

50. A method for dynamically linking
application code created by a user into a running
operating system kernel, comprising:

‘constructing a loadable module from application
source code written by a user;

creating an executable program, wherein the
executable program is configured to transparently
load the loadable module into the running operating
system kernel;

executing the executable program, thereby
loading the loadable module into the running '
operating system kernel; and

unloading the loadable module from the running
operating system kernel by sending a termination

signal to the executable program.

51. The method of claim 50, wherein the
application source code is an ordinary application

program.

52, The method of claim 50, wherein the step
of constructing the loadable module from the
application source code consists essentially of

executing a pre-defined makefile.
53, The method of claim 50, further comprising

the step of providing a makefile to the user,

wherein the user performs the step of constructing

66

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

the loadable module by executing the makefile after

the user has created the application code.

54. The method of claim 50, further comprising
the step of providing the user with a library
comprising object code, whereih the step of
constructing the loadable module from the
application source code comprises the steps of
compiling the application source code into object
code; linking the object code with object code from
the library to produce a linked object module; and

converting the linked object module into a C code

array.

55. The method of claim 54, wherein the step
of constructing the loadable module further
comprises the step of compiling the C code array to

produce an object file.

56. The method of claim 55, further comprising
the step of providing the user with a second library
comprising object code, wherein the step of
constructing the executable program comprises the
steps of linking the object file with object code

from the second library.
57. The method of claim 54, wherein the

library includes one or more routines to create

kernel/user channels.

677

WO 2005/031569 PCT/US2004/031371

10

15

20

25

30

58. The method of claim 54, wherein the
library includes one or more routines tb create a

thread to execute the application code.

59. The method of claim 58, wherein the
library includes one or more routines for freeing
regources and unloading the loadable module when the

thread completes.

60. The method of claim 54, wherein the
library includes one or more routines for (a)
copying in arguments; (b) creating communication
channels that connect the loadable module to the
executable program; (c¢) requesting a block of memory
from the operating system and storing a structure
therein that describes the application code; and (4)
putting data describing the application code on a

task list.

61. The method of claim 60, wherein the
environment library further includes one or more
routines for (a) removing said data describing the
application code from the task list; (b) closing
said communication channels that connect the
loadable module to the executable program; and (c)
freeing the block of memory that was requested from

the operating system.
62. The method of claim 50, wherein the

executable program is configured to set up

input/output channels.

68

WO 2005/031569 PCT/US2004/031371

10

15

20

63. The method of claim 50, wherein the
executable program is configured to execute a
utility for installing the loadable module into the

running operating system kernel.

64. The method of claim 63, wherein the
utility for installing the loadable module into the
running operating system kernel is the insmod

prodgram.

65. The method of claim 63, wherein the step
of inserting the loadable module into an operating
system address space includes the step of creating a
child process, wherein the child process replaces

its image with the insmod process image.

66. The method of claim 65, wherein the step
of inserting the loadable module into an operating
system address space further includes the step of

piping the loadable module to the insmod process.

69

WO 2005/031569 PCT/US2004/031371

1/6

--

INFRASTRUCTURE ENVIRONMENT EXECUTION
LIBRARY 110 LIBRARY 112 ‘ LIBRARY 114
BUILD SYSTEM
116

Mo v e e e e S R e e e D e et e P B W R R T e N B A e e e U e e A M SR S B S S e e e e e e R e e e e B M M e e e e

e) =K APPLCATION)
101 K CODE 102

KERNEL 104

FIG. 1

SUBSTITUTE SHEET (RULE 26)

WO 2005/031569

APPLICATION
CODE 102

26

PCT/US2004/031371

)/

BUILD
SYSTEM
116

—C

LOADABLE
MODULE 202

2L

ENVIRONMENT
LIBRARY 112

LOADABLE
MODULE 202

FIG. 2

BUILD
SYSTEM
116

—(

PROGRAM

EXECUTABLE
302

N

EXECUTION
LIBRARY 114

FIG. 3

SUBSTITUTE SHEET (RULE 26)

WO 2005/031569

3/6

PCT/US2004/031371

402

COMPILE THE APPLICATION CODE INTO OBJECT CODE

\

4

404,
/

LINK THE OBJECT CODE WITH THE ENVIRONMENT LIBRARY OBJECT *
CODE TO PRODUGE A LINKED OBJECT MODULE

\

/

406
/

CONVERT THE LINKED OBJECT MODULE INTO AC CODE ARRAY

A

y

408

/

COMPILE THE C CODE ARRAY TO PRODUCE AN OBJECT FILE

J

' v

410

/_

LINK THE OBJECT FILE PRODUCED IN STEP 408 WITH EXECUTION
LIBRARY OBJECT CODE TO PRODUCE THE EXECUTABLE PROGRAM

FIG. 4

SUBSTITUTE SHEET (RULE 26)

WO 2005/031569 PCT/US2004/031371

4/6
502

/

COLLECT THE ARGUMENTS TO BE PASSED TO LOADABLE MODULE

904

A

SET UP INPUT AND QUTPUT CHANNELS

506

v

CREATE A CHILD PROCESS, WHEREIN THE CHILD PﬁOCESS REPLACES
ITSELF WITH THE INSMOD PROGRAM

508

Y

PIPE THE LOADABLE MODULE TO THE INSMOD PROGRAM

>

Y

OPN
KERNELUSER NO

CHAN)NELS

510

YES
512

QOPEN THE CHANNELS AND USE THE CHANNELS TO TRANSFER DATA
TO AND RECEIVE DATA FROM THE APPLICATION CODE

FIG. 5

SUBSTITUTE SHEET (RULE 26)

WO 2005/031569 PCT/US2004/031371

5/6

600

\

\

void * acquisition_thread ...

next = read_current_fime;
while(done())
{

add_period_lo(next);
clock_nanosleep(next);

collect data from device;
write(1,buffer,number_of_collected_bytes);

}

}

main()

L
inttialize;
pthread_create(acquisition_thread ...}
ri_main_wait();

} printf("Data acquisition has stoppedin’);

FIG. 6

SUBSTITUTE SHEET (RULE 26)

WO 2005/031569 PCT/US2004/031371

6/6
702
\ 704
—_— |:] [
=)
=
(|
. INTERNET
706 /A =
/ [
. 104

, (
AD- | T4 704 | SENSOR ()

SUBSTITUTE SHEET (RULE 26)

International application No.

INTERNATIONAL SEARCH REPORT

PCT/US04/31371
A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) ¢ GO6F 9/44
USCL : 717/106-113,140,162-166

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 717/106-113,140,162-166

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
Please See Continuation Sheet

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevamt to claim No.

X US 5,136,709 A (SHIRAKABE et al.) 04 August 1992 (04.08.1992), entire reference. 1-66

X BOS et al, Safe Kernel Programming in the OKE, IEEE, pages 141-152, entire reference, 1, 16, 19, 32, 45, 50
especially Fig. 1, Fig.4, and Fig. 6.

X US 2003/0101290 A1 (LIN et al) 29 May 2003 (29.05.2003), entire reference, especially 1,16, 19, 32, 45, 50
Figure 1 and Figure 2.

A DORAN, Interfacing Low-Level C Device Drivers with Ada 95, ACM, 1999, pages 133- 1-66
143, entire reference.

A US 6,292,843 B1 (ROMANO) 18 September 2001 (18.09.2001), entire reference. 1-66

A US 6,463,583 B1 (HAMMOND) 08 October 2002 (08.10.2002), entire reference. 1-66

D Further documents are listed in the continuation of Box C. I:I See patent family annex.

* Special categories of cited documents: “T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
“A” document defining the general state of the art which is not considered to be principle or theory underlying the invention
of particular relevance
ux document of particular relevance; the claimed invention cannot be
“E" earlier application or patent published on or after the international filing date considered novel or cannot be considered to involve an inventive step

when the document is taken alone
“L"” document which may throw doubts on priority claim(s) or which is cited to

establish the publication date of another citation or other special reason (as “yr document of particular relevance; the claimed invention cannot be
specified) considered to involve an inventive step when the document is
combined with one or more other such documents., such combination
“0" document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art
“P" document published prior to the international filing date but later than the “& document member of the same patent family
priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
08 December 2004 (08.12.2004) 0 4 JA N 2005
Name and mailing address of the ISA/US Authorized officer
Mail Stop PCT, Attn: ISA/US X ~ 4! /’7 PO a—
Commissioner for Patents Ted T. Vo WS, 5[1: / A R
P.O. Box 1450 ’
Alexandria, Virginia 22313-1450 Telephone No. (571) 272-3706
Facsimile No. (703) 305-3230

Form PCT/ISA/210 (second sheet) (January 2004)

International application No.

INTERNATI_ONAL SEARCH REPORT PCT/US04/31371

Continuation of B. FIELDS SEARCHED Item 3:
WEST, ACM, IEEE, CITESEER, GOOGLE
search terms: link, linking, load, loading, operating system kernel, programming environment

Form PCT/ISA/210 (extra sheet) (January 2004)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

