WO 02/41544 A2

(19) World Intellectual Property Organization

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

International Bureau

(43) International Publication Date
23 May 2002 (23.05.2002)

(10) International Publication Number

WO 02/41544 A2

(51
@

(22)

25
(206)

(39

)

(71
(72)

International Patent Classification”: H04J
International Application Number: PCT/US01/43113

International Filing Date:
16 November 2001 (16.11.2001)

Filing Language: English
Publication Language: English
Priority Data:

60/249,871 17 November 2000 (17.11.2000) US
09/855,031 15 May 2001 (15.05.2001) US
09/855,038 15 May 2001 (15.05.2001) US
09/855,024 15 May 2001 (15.05.2001) US
09/855,025 15 May 2001 (15.05.2001) US
09/855,015 15 May 2001 (15.05.2001) US
Applicant: FOUNDRY NETWORKS, INC. [US/US];
2100 Gold Street, San Jose, CA 95164-9100 (US).
Applicants and

Inventors: CHANG, Andrew [—/US]; 679 Orange

Avenue, Los Altos, CA 94022 (US). PATEL, Ronak
[US/US]; 275 Old Adobe Road, Los Cralos, CA 95032
(US). WONG, Ming, G. [US/US]; 4170 Pinot Gris Way,
San Jose, CA 95135 (US). LIN, Yu-Mei [—/US]; 1338
Longfellow Way, San Jose, CA 95129 (US).

(74) Agents: RAY, Michael, B. et al.; Sterne, Kessler, Gold-
stein & Fox PL.L.C., Suite 600, 1100 New York Avenue,
N.W., Washington, DC 20005-3934 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU,
ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

[Continued on next page]

(54

Title: HIGH-PERFORMANCE NETWORK SWITCH

102
/ 0

S

SWITCH FABRIC MODULE

106A 1068 1060~ 106D 106E 106F 106G 1064
104A 1048 104¢ 1040 104E 104F 1046 1044
I { s A {
BLADE BLADE BLADE BLADE BLADE BLADE BLADE BLADE
108A 1088 108¢ 106D 108E 108F 1086 108H

(57) Abstract: A backplane interface adapter with error control and redundant fabric for a high-performance network switch. The
redundant fabric transceiver of the backplane interface adapter improves the adapter’s ability to properly and consistently receive
narrow input cells carrying packets of data and output wide striped cells to a switching fabric.

wO 02/41544 A2 |IHID 00RO 0RO A RO

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— without international search report and to be republished ance Notes on Codes and Abbreviations" appearing at the begin-
upon receipt of that report

ning of each regular issue of the PCT Gazette.

WO 02/41544 PCT/US01/43113

HIGH-PERFORMANCE NETWORK SWITCH

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The invention relates generally to network switches.
Related Art
[0002] A network switch is a device that provides a switching function (i.e., it

determines a physical path) in a data communications nietwork. Switching
involves transferring information, such as digital data packets or frames,
among entities of the network. Typically, a switch is a computer having a
plurality of circuit cards coupled to a backplane. In the switching art, the
circuit cards are typically called "blades." The blades are interconnected by a
"switch fabric." Each blade includes a number of physical ports that couple
the switch to the other network entities over various types of media, such as
Ethernet, FDDI (Fiber Distributed Data Interface), or token ring connections.
A network entity includes any device that transmits and/or receives data
packets over such media.

[0003] The switching function provided by the switch typically includes
receiving data at a source port from a network entity and transferring the data
to a destination port. The source and destination ports may be located on the
same or different blades. In the case of “local” switching, the source and
destination ports are on the same blade. Otherwise, the source and destination
ports are on different blades and switching requires that the data be transferred
through the switch fabric from the source blade to the destination blade. In
some case, the data may be provided to a plurality of destination ports of the
switch. This is known as a multicast data transfer.

[0004] Switches operate . by examining the header information that

accompanies data in the data frame. The header information includes the

WO 02/41544 PCT/US01/43113

international standards organization (ISO) 7-layer OSI (open-systems
interconnection model). In the OSI model, switches generally route data
frames based on the lower level protocols such as Layer 2 or Layer 3. In
contrast, routers generally route based on the higher level protocols and by
determining the physical path of a data frame based on table look-ups or other
configured forwarding or management routines to determine the physical path
(i.e., route).

[0005] Ethernet is a widely used lower-layer network protocol that uses
broadcast technology. The Ethernet frame has six fields. These fields include
a preamble, a destination address, source address, type, data and a frame check
sequence. In the case of an Ethernet frame, the digital switch will determine
the physical path of the frame based on the source and destination addresses.
Standard Ethernet operates at a 10 Mbps data rate. Another implementation of
Ethernet known as "Fast Ethernet" (FE) has a data rate of 100 Mbps. Yet

, another implementation of FE operates at 10 Gbps.

[0006] A digital switch will typically have physical ports that are configured
to communicate using different protocols at different data rates. For example,
a blade within a switch may have certain ports that are 10 Mbps, or 100 Mbps |
ports. It may have other ports that conform to optical standards such as
SONET and are capable of such data rates as 10 Gbps.

[0007] A performance of a digital switch is often assessed based on metrics
such as the number of physical ports that are present, and the total bandwidth
or number of bits per second that can be switched without blockiﬂg or slowing
the data traffic. A limiting factor in the bit carrying capacity of many switches
is the switch fabric. For example, one conventional switch fabric was limited
to 8 gigabits per second per blade. In an eight blade example, this equates to
64 gigabits per second of traffic. It is possible to increase the data rate of a
particular blade to greater than 8 gigabits per second. However, the switch
fabric would be unable to handle the increased traffic.

[0008] It is desired to take advantage of new optical technologies and increase

port densities and data rates on blades. However, what is needed is a switch

WO 02/41544 PCT/US01/43113

and a switch fabric capable of handling higher bit rates and providing a
maximum aggregate bit carrying capacity well in excess of conventional

switches.

SUMMARY OF THE INVENTION

[0009] The present invention provides a high-performance network switch.
Serial link téchnology is used in a switching fabric. Serial data streams, rather
than parallel data streams, are switched in a switching fabric. Blades output
serial data streams in serial pipes. A serial pipe can be a number of serial links
coupling a blade to the switching fabric. The serial data streams represent an
aggregation of input serial data streams provided through physical ports to a
respective blade. Each blade outputs serial data streams with in-band control
information in multiple stripes to the switching fabric.

[0010] In one embodiment, the serial data streams carry packets of data in
wide striped cells across multiple stripes. Wide striped cells are encoded. In-
band control information is carried in one or more blocks of a wide cell. For
example, the initial block of a wide cell includes control information and state
information. Further, the control information and state information is carried
in each stripe. In particular, the control information and state information is
carried in each sub-block of the initial block of a wide cell. In this way, the
control information and state information is available in-band in the serial data
streams (also called stripes). Control information is provided in-band to
indicate traffic flow conditions, such as, a start of cell, an end of packet, abort,
or other error conditions.

[0011] A wide cell has one or more blocks. Each block extends across five
stripes. Bach block has a size of twenty bytes made up of five sub-blocks each
having a size of four bytes. In one example, a wide cell has a maximum size
of eight blocks (160 bytes) which can carry 148 bytes of payload data and 12
bytes of in-band control information. Packets of data for full-duplex traffic

can be carried in the wide cells at a 50 Gbps rate in each direction through one-

WO 02/41544 PCT/US01/43113

slot of the digital switch. According to one feature, the choice of maximum
wide cell block size of 160 bytes as determined by the inventors allows a 4 x
10 Gbps Ethernet (also called 4 X 10 GE) line rate to be maintained through
the backplane interface adapter. This line rate is maintained for Ethernet
packets having a range of sizes accepted in the Ethernet standard including,
but not limited to, packet sizes between 84 and 254 bytes.

[0012] In one embodiment, a digital switch has a plurality of blades coupled
to a switching fabric via serial pipes. The switching fabric can be provided on
a backplane and/or one or more blades. Each blade outputs serial data streams
with in-band control information in multiple stripes to the switching fabric.
The switching fabric includes a plurality of cross points corresponding to the
multiple stripes. Each cross point has a plurality of port slices coupled to the
plurality of blades. In one embodiment five stripes and five cross points are
used. Each blade has five serial links coupled to each of the five cross points
respectively. In one example implementation, the serial pipe coupling a blade
to switching fabric is a 50Gbps serial pipe made up of five 10Gbps serial
links. Each of the 10Gbps serial links is coupled to a respective cross point
and carries a serial data stream. The serial data stream includes a data slice of
a wide cell that corresponds to one stripe.

[0013] In one embodiment of the present invention, each blade has a
backplane interface adapter (BIA). The BIA has three traffic processing flow
paths. The first traffic processing flow path extends in traffic flow direction

~ from local packet processors toward a switching fabric. The second traffic
processing flow path extends in traffic flow direction from the switching
fabric toward local packet processors. A third traffic processing flow path
carried local traffic from the first traffic processing flow path. This local
traffic is sorted and routed locally at the BIA without having to go through the
switching fabric.

[0014] The BIA includes one or more receivers, wide cell generators, and
transmitters along the first path. The receivers receive narrow input cells

carrying packets of data. These narrow input cells are output from packet

WO 02/41544 PCT/US01/43113

processor(s) and/or from integrated bus translators (IBTs) coupled to packet
processors. The BIA includes one or more wide cell generators. The wide
cell generators generate wide striped cells carrying the packets of data
received by the BIA in the narrow input cells. The transmitters transmit the
generated wide striped cells in multiple stripes to the switching fabric.

[0015] According to the present invention, the wide cells extend across
multiple stripes and include in-band control information in each stripe. In one
embodiment, each wide cell generator parses each narrow input cell, checks
for control information indicating a start of packet, encodes one or more new
wide striped cells until data from all narrow input cells of the packet is
distributed into the one or more new wide striped cells, and writes the one or
more new wide striped cells into a plurality of send queues.

[0016] In one example, the BIA has four deserializer receivers, 56 wide cell
generators, and five serializer transmitters. The four deserializer receivers
receive narrow input cells output from up to eight originating sources (that is,
up to two IBTs or packet processors per deserializer receiver). The 56 wide
cell generators receive groups of the received narrow input cells sorted based
on destination slot identifier and originating source. The five serializer
transmitters transmit the data slices of the wide cell that corresponds to the
stripes.

[0017] According to a further feature, a BIA can also include a traffic sorter
which sorts received narrow input cells based on a destination slot identifier.
In one example, the traffic sorter comprises both a global/traffic sorter and a
backplane sorter. The global/traffic sorter sorts received narrow input cells
having a destination slot identifier that identifies a local destination slot from
received narrow input cells having destination slot identifier that identifies
global destination slots across the switching fabric. The backplane sorter
further sorts received narrow input cells having destination slot identifiers that
identify global destination slots into groups based on the destination slot

identifier.

WO 02/41544 PCT/US01/43113

[0018] In one embodiment, the BIA also includes a plurality of stripe send
queues and a switching fabric transmit arbitrator. The switching fabric
transmit arbitrator arbitrates the order in which data stored in the stripe send
queues is sent by the transmitters to the switching fabric. In one example, the
arbitration proceeds in a round-robin fashion. Each stripe send queue stores a
respective group of wide striped cells corresponding a respective originating
source packet processor and a destination slot identifier. Each wide striped
cell has one or more blocks across multiple stripes. During a processing cycle, ‘
the switching fabric transmit arbitrator selects a stripe send queue and pushes
the next available cell (or even one or fnore blocks of a cell at time) to the
transmitters. Each stripe of a wide cell is pushed to the respective transmitter
for that stripe.

[0019] The BIA includes one or more receivers, wide/narrow cell translators,
and transmitters along the second path. The receivers receive wide striped
cells in multiple stripes from the switching fabric. The wide striped cells carry
packets of data. The translators translate the received wide striped cells to
narrow input cells carrying the packets of data. The transmitters then transmit
the narrow input cells to corresponding destination packet processors or IBTs.
In one example, the five deserializer receivers receive five sub-blocks of wide
striped cells in multiple stripes. The wide striped cells carrying packets of
data across the multiple stripes -and including destination slot identifier
information.

[0020] In one embodiment, the BIA further includes stripe interfaces and
stripe receive synchronization queues. Each stripe interface sorts received sub-
blocks in each stripe based on originating slot identifier information and stores
the sorted received sub-blocks in the stripe receive synchronization queues.

[0021] The BIA further includes along the second traffic flow processing path
an arbitrator, a striped-based wide cell assembler, and the narrow/wide cell
translator. The arbitrator arbitrates an order in which data stored in the stripe
receive - synchronization queues is sent to the striped-based wide cell

assembler. The striped-based wide cell assembler assembles wide striped cells

WO 02/41544 PCT/US01/43113

based on the received sub-blocks of data. A narrow/wide cell translator then
translates the arbitrated received wide striped cells to narrow input cells
carrying the packets of data.

[0022] A second level of arbitration is also provided according to an
embodiment of the present invention. The BIA further includes destination
queues and a local destination transmit arbitrator in the second path. The
destination queues store narrow cells sent by a local traffic sorter (from the
first path) and the narrow cells translated by the translator (from the second
path. The local destination transmit arbitrator arbitrates an order in which
narrow input cells stored in the destination queues is sent to serializer
transmitters. Finally, the serializer transmitters then that transmits the narrow
input cells to corresponding IBTs and/or source packet processors (and
ultimately out of a blade through physical ports).

[0023] According to a further feature of the present invention, system and
method for encoding wide striped cells is provided. The wide cells extend
across multiple stripes and include in-band control information in each stripe.
State information, reserved information, and payload data may also be
included in each stripe. In one embodiment, a wide cell generator encodes one
or more new wide striped cells.

[0024] The wide cell generator encodes an initial block of a start wide striped
cell with initial cell encoding information. The initial cell encoding
information includes control information (such as, a special KO character) and
state information provided in each sub-block of an initial block of a wide cell.
The wide cell generator further distributes initial bytes of packet data into
available space in the initial block. Refnaining bytes of packet data are
distributed across one or more blocks in of the first wide striped cell (and
subsequent wide cells) until an end of packet condition is reached or a
maximum cell size is reached. Finally, the wide cell generator further encodes
an end wide striped cell with end of packet information that varies depending
upon the degree to which data has filled a wide striped cell. In one encoding

scheme, the end of packet information varies depending upon a set of end of

WO 02/41544 PCT/US01/43113

packet conditions including whether the end of packet occurs at the end of an
initial block, within a subsequent block after the initial block, at a block
boundary, or at a cell boundary.

[0025] According to a further embodiment of the present invention, a method
for interfacing serial pipes carrying packets of data in narrow input cells and a
serial pipe carrying packets of data in wide striped cells includes receiving
narrow input cells, generating wide striped cells, and transmitting blocks of
the wide striped cells across multiple stripes. The method can also include
sorting the received narrow input cells based on a destination slot identifier,
storing the generated wide striped cells in corresponding stripe send queues
based on a destination slot identifier and an originating source packet
processor, and arbitrating the order in which the stored wide striped cells are
selected for transmission.

[0026] In one example, the generating step includes parsing each narrow input
cell, checking for control information that indicates a start of packet, encoding
one or more new wide striped cells until data from all narrow input cells
carrying the packet is distributed into the one or more new wide striped cells,
and writing the one or more new wide striped cells into a plurality of send
queues. The encoding step includes encoding an initial block of a start wide
striped cell with initial cell encoding informati(;n, such as, control information
and state information. Encoding can further include distributing initial bytes
of packet data into available space in an initial block of a first wide striped
cell, adding reserve information to available bytes at the end of the initial
block of the first wide striped cell, distributing remaining bytes of packet data
across one or more blocks in the first wide striped cell until an end of packet
condition is reached or a maximum cell size is reached, and encoding an end
wide striped cell with end of packet information. The end of packet
information varies depending upon a set of end of packet conditions including
whether the end of packet occurs at the end of an initial block, in any block

after the initial block, at a block boundary, or at a cell boundary.

WO 02/41544 PCT/US01/43113

[0027] The method also includes receiving wide striped cells carrying packets
of data in multiple stripes from a switching fabric, translating the received
wide striped cells to narrow input cells carrying the packets of data, and
transmitting the narrow input cells to corresponding source packet processors.
The method further includes sorting the received sub-blocks in each stripe
based on originating slot identifier information, storing the sorted received
sub-blocks in stripe receive synchronization queues, and arbitrating an order in
which data stored in the stripe receive synchronization queues is assembled.
Additional steps are assembling wide striped cells in the order of the
arbitrating step based on the received sub-blocks of data, translating the
arbitrated received wide striped cells to narrow input cells carrying the packets
of data, and storing narrow cells in a plurality of destination queues. In one
embodiment, further arbitration is performed including arbitrating an order in
which data stored in the destination queues is to be transmitted and
transmitting the narrow input cells in the order of the further arbitrating step to
corresponding source packet processors and/or IBTs.

[0028] The present invention further provides error detection and recovery.
Such errors can include stripe synchronization errors. In one embodiment, an
administrative module includes a level monitor, stripe synchronization error
detector, a flow controller, and a control character presence tracker. The level
monitor monitors data received at a receiving blade. The stripe
synchronization error detector detects a stripe synchronization error based on
the amount of data monitored by the level monitor. ~ Example stripe
synchronization errors include an incoming link error, a cross-point failure,
and an outgoing link error. In one example, the data received at a receiving
blade is sorted. based on stripe and source information and stored in a set of
data structures (e.g., FIFOs). The level monitor monitors the levels of data
stored in each data structure. The stripe synchronization error detector detects
at least one of an overflow and underflow condition in the amount of data

received on a respective stripe from a particular source.

WO 02/41544 PCT/US01/43113
10

[0029] The flow controller initiates a recovery routine to re-synchronize data
across the stripes in response to detection of a stripe synchronization error.
The control character presence tracker identifies the presence of a K2
character during the recovery routine.

[0030] The present invention further includes a method for detecting stripe
synchronization error in a network switch, including the steps of: sorting data
received at a receiving slot based on stripe and source information; storing the
sorted data in a set of data structures; ‘moniton'ng the levels of data stored in
each data structure; and detecting at least one of an overflow and underflow
condition in the amount of data received on a respective stripe from a
particular source. The source information can identify a slot that sent the data
across a switching fabric of the network switch, or can identify a source packet
processor that sent the data from a slot across a switching fabric of the
network switch.

[0031] The present invention further includes a method for maintaining
synchronization of striped cell traffic, comprising the steps of: sending a
ccommon character in striped cells in all lanes for a predetermined number of
cycles; evaluating the common control characters received at stripe receive
synchronization queues; and detecting when an in-synch condition is present
that indicates the stripe receive synchronization queues have been cleared.

[0032] The present invention further includes a method for managing out-of-
synchronization traffic flow through a cross-point switch in a switching fabric,
comprising: monitoring the level of stripe-receive-synchronization queues;
determining whether an out-of-synchronization condition exists; and initiating
a re-synchronization routine when said out-of-synchronization condition
exists. The re-synchronization routine can include the steps of: sending a
common character in striped cells in all lanes for a predetermined number of
cycles; evaluating the common control characters received at stripe receive
synchronization queues; and detecting when an in-synch condition is present

that indicates the stripe receive synchronization queues have been cleared.

WO 02/41544 PCT/US01/43113
11

[0033] According to another embodiment of the present invention, a
redundant switching system is provided. The redundant switching syste,
includes two switching blades and at least one ingress/egress blade (or slave
blade). Each switching blade has a plurality of cross points corresponding to
respective stripes of serial data streams. Each ingress/egress blade is coupled
to each switching blade through a backplane connection. Each ingress/egress
blade also includes a plurality of redundant fabric transceivers (RFTs). The
RFTs can switch traffic between the cross points on the two switching blades.
This provides redundancy.

[0034] In one embodiment, a redundant fabric transceiver is coupled to a bus
interface adapter and includes one or more first and second ports, a
multiplexer, a downlink transceiver, and an uplink transceiver. The
multiplexer selects communication data from similar data for transmission.
The downlink transceiver receives, conditions, and transmits the
communication data. The uplink transceiver also receives, conditions, and
transmits communication data. A register module can be used that includes
condition information that indicates operations for at least one of the downlink
transceiver and the uplink transceiver, wherein the condition information
includes configuration and parameter settings for received and transmitted
data.

[0035] Further embodiments, features, and advantages of the present
inventions, as well as the structure and operation of the various embodiments
of the present invention, are described in detail below with reference to the

accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS/FIGURES

[0036] The accompanying drawings, which are incorporated herein and form a
part of the specification, illustrate the present invention and, together with the
description, further serve to explain the principles of the invention and to

enable a person skilled in the pertinent art to make and use the invention.

WO 02/41544 PCT/US01/43113
12

[0037] In the drawings:

[0038] FIG. 1 is a diagram of a high-performance network switch according to
an embodiment of the present invention.

[0039] FIG. 2 is a diagram of a high-performance network switch showing a
switching fabric having cross point switches coupled to blades according to an
embodiment of the present invention.

[0040] FIG. 3A is a diagram of blade used in the high-performance network
switch of FIG. 1 according to an embodiment of the present invention.

[0041] FIG. 3B shows a configuration of blade according another embodiment
of the present invention.

[0042] FIG. 4 is a diagram of the architecture of a cross point switch with port
slices according to an embodiment of the present invention.

[0043] FIG. 5 is a diagram of the architecture of a port slice according to an
embodiment of the present invention. '

[0044] FIG. 6 is a diagram of a backplane interface adapter according to an
embodiment of the present invention.

[0045] FIG. 7 is a diagram showing a traffic processing path for local serial
traffic received at a backplane interface adapter according to an embodiment
of the present invention.

[0046] FIG. 8 is a diagram of an example switching fabric coupled to a
backplane interface adapter according to an embodiment of the present
invention.

[0047] FIG. 9 is a diagram showing a traffic processing path for backplane
serial traffic received at the backplane interface adapter according to an
embodiment of the present invention.

[0048] FIG. 10 is a flowchart of operational steps carried out along a traffic
processing path for local serial traffic received at a backplane interface adapter
according to an embodiment of the present invention.

[0049] FIG. 11 is a flowchart of operational steps carried out along a traffic
processing path for backplane serial traffic received at the backplane interface

adapter according to an embodiment of the present invention.

WO 02/41544 PCT/US01/43113
13

[0050] FIG. 12 is a flowchart of a routine for generating wide striped cells
according to an embodiment of the present invention.

[0051] FIG. 13 is a diagram illustrating a narrow cell and state information
used in the narrow cell according to an embodiment of the present invention.

[0052] FIG. 14 is a flowchart of a routine for encoding wide striped cells
according to-an embodiment of the present invention.

[0053] FIG. 15A is a diagram illustrating encoding in a wide striped cell
according to an embodiment of the present invention.

[0054] FIG. 15B is a diagram illustrating state information used in a wide
striped cell according to an embodiment of the present invention.

[0055] FIG. 15C is a diagram illustrating end of packet encoding information
used in a wide striped cell according to an embodiment of the present
invention.

[0056] FIG. 15D is a diagram illustrating an example of a cell boundary
alignment condition during the transmission of wide striped cells in multiple
stripes according to an embodiment of the present invention.

[0057] FIG. 16 is a diagram illustrating an example of a packet alignment
condition during the transmission of wide striped cells in multiple stripes
according to an embodiment of the present invention.

[0058] FIG. 17 illustrates a block diagram of a bus translator according to one
embodiment of the present invention.

[0059] FIG. 18 illustrates a block diagram of the reception components
according to one embodiment of the present invention.

[0060] FIG. 19 illustrates a block diagram of the transmission components
according to one embodiment of the present invention.

[0061] FIG. 20 illustrates a detailed block diagram of the bus translator
according to one embodiment of the present invention.

[0062] FIG. 21A illustrates a detailed block diagram of the bus translator

according to another embodiment of the present invention.

WO 02/41544 PCT/US01/43113
14

[0063] FIG. 21B shows a functional block diagram of the data paths with
reception components of the bus translator according to one embodiment of
the present invention.

[0064] FIG. 21C shows a functional block diagram of the data paths with
transmission components of the bus translator according to one embodiment of
the present invention.

[0065] FIG. 21D shows a functional block diagram of the data paths with
native mode reception components of the bus translator according to one
embodiment of the present invention.

[0066] FIG. 21E shows a block diagram of a cell format according to one
embodiment of the present invention.

[0067] FIG. 22 illustrates a flow diagram of the encoding process of the bus
translator according to one embodiment of the present invention.

[0068] FIGS. 23A-B illustrates a detailed flow diagram of the encoding
process of the bus translator according to one embodiment of the present
invention.

[0069] FIG. 24 illustrates a flow diagram of the decoding process of the bus
translator according to one embodiment of the present invention.

[0070] FIGS. 25A-B illustrates a detailed flow diagram of the decoding
process of the bus translator according to one embodiment of the present
invention.

[0071] FIG. 26 illustrates a flow diagram of the administrating process of the
bus translator according to one embodiment of the present invention.

[0072] FIGs. 27A-27E show a routine for processing data in port slice based
on wide cell encoding and a flow control condition according to one
embodiment of the present invention.

[0073] FIG. 28A shows a block diagram of an administrative module
according to one embodiment of the present invention.

[0074] FIG. 28B shows a block diagram of the cross point architecture

according to one embodiment of the present invention.

WO 02/41544 PCT/US01/43113
15

[0075] FIG. 29 illustrates a routine for maintaining synchronization of striped
cell traffic according to one embodiment of the present invention.

[0076] FIG. 30 illustrates a routine for detecting out of synchronization traffic
flow through a cross point switch with a backplane switching fabric according
to one embodiment of the present invention.

[0077] FIG. 31 shows an example of how an error condition in an incoming
link is evident in the levels of data present in receiving blade synch queues
sorted by stripe and source according to one embodiment of the present
invention.

[0078] FIGs. 32A-B show block diagrams of example architectures according
to embodiments of the present invention.

[0079] FIG. 33A shows a block diagram of a redundant fabric transceiver
enabled blade module according to one embodiment of the present invention.

[0080] FIG. 33B shows a block diagram of a redundant fabric transceiver
according to one embodiment of the present invention.

[0081] FIG. 34A shows a table showing the cell characters across five stripes
according to one embodiment of the present invention.

[0082] FIG. 34B illustrates a routine for a K2 (special character)
synchronization sequence according to one embodiment of the present
invention.

[0083] FIG. 35 shows a block diagram of a synchronous flow control
implementation of the redundant fabric transceivers according to one
embodiment of the present invention.

[0084] FIG. 36 shows a timing diagram of the time domain multiplexing of a
synchronous flow control implementation according to one embodiment of the
present invention.

[0085] FIG. 37 shows a block diagram of an aéynchronous flow control
implementation of the redundant fabric transceivers according to one
embodiment of the present invention.

[0086] The present invention will now be described with reference to the

accompanying drawings. In the drawings, like reference numbers indicate

WO 02/41544 PCT/US01/43113
16

identical or functionally similar elements. Additionally, the left-most digit(s)
of a reference number identifies the drawing in which the reference number

first appears.
DETAILED DESCRIPTION OF THE INVENTION

Table of Contents
L Overview and Discussion
1L Terminology
III. Digital Switch Architecture
A. Cross Point Architecture
B. Port Slice Operation with Wide Cell Encoding and Flow
Control
Backplane Interface Adapter
Overall Operation of Backplane Interface Adapter
First Traffic Processing Path
Narrow Cell Format
Traffic Sorting
Wide Striped Cell Generation
Encoding Wide Striped Cells
Initial Block Encoding
End of Packet Encoding
Switching Fabric Transmit Arbitration
Cross Point Processing of Stripes
Second Traffic Processing Path
Cell Boundary Alignment
Packet Alignment
Wide Striped Cell Size at Line Rate
IBT and Packet Processing

Narrow Cell and Packet Encoding Processes

HY PO WO ZEZIMNASSEZQ®EUOQ

Administrative Process and Error Control

WO 02/41544 PCT/US01/43113

17
U. Reset and Recovery Procedures
IV. Control Logic
V. Conclusion
L Overview and Discussion
[0087] The present invention is a high-performance digital switch. Blades are

coupled through serial pipes to a switching fabric. Serial link technology is
used in the switching fabric. Serial data streams, rather than parallel data
streams, are switched through a loosely striped switching fabric. Blades
output serial data streams in the serial pipes. A serial pipe can be a number of
serial links coupling a blade to the switching fabric. The serial data streams
represent an aggregation of input serial data streams provided through physical
ports to a respective blade. Each blade outputs serial data streams with in-
band control information in multiple stripes to the switching fabric. In one
embodiment, the serial data streams carry packets of data in wide striped cells
across multiple loosely-coupled stripes. Wide striped cells are encoded. In-
band control information is carried in one or more blocks of a wide striped
cell.

[0088] In one implementation, each blade of the switch is capable of sending
and receiving 50 gigabit per second full-duplex traffic across the backplane. .
This is done to assure line rate, wire speed and non-blocking across all packet
sizes.

[0089] The high-performance switch according to the present invention can be
used in any switching environment, including but not limited to, the Internet,
an enterprise system, Internet service provider, and any protocol layer
switching (such as, Layer 2, Layer 3, or Layers 4-7 switching).

[0090] The present invention is described in terms of this example 4
environment. Description in these terms is provided for convenience only. It
is not intended that the invention be limited to application in these example

environments. In fact, after reading the following description, it will become

WO 02/41544 PCT/US01/43113
18

apparent to a person skilled in the relevant art how to implement the invention

in alternative environments known now or developed in the future.

IL. Terminology

[0091] To more clearly delineate the present invention, an effort is made
throughout the specification to adhere to the following term definitions as
consistently as possible.

[0092] The terms "switch fabric" or "switching fabric" refer to a switchable
interconnection between blades. The switch fabric can be located on a
backplane, a blade, more than one blade, a separate unit from the blades, or on
any combination thereof.

[0093] The term "packet processor" refers to any type of packet processor,
including but not limited to, an Ethernet packet processor. A packet processor
parses and determines where to send packets.

[0094] The term "serial pipe" refers to one or more serial links. In one
embodiment, not intended to limit the invention, a serial pipe is a 10 Gbps
serial pipe and includes four 2.5 Gbps serial links.

[0095] The term "serial link" refers to a data link or bus carrying digital data
serially between points. A serial link at a relatively high bit rate can also be
made of a combination of lower bit rate serial links.

[0096] The term "stripe" refers to one data slice of a wide cell. The term
"loosely-coupled" stripes refers to the data flow in stripes which is
autonomous with respect to other stripes. Data flow is not limited to being
fully synchronized in each of the stripes, rather, data flow proceeds
independently in each of the stripes and can be skewed relative to other

stripes.

OI. Digital Switch Architecture

[0097] An overview of the architecture of the switch 100 of the invention is

illustrated in Fig. 1. Switch 100 includes a switch fabric 102 (also called a

WO 02/41544 PCT/US01/43113
19

switching fabric or switching fabric module) and a plurality of blades 104. In
one embodiment of the invention, switch 100 includes 8 blades 104a-104h.
Each blade 104 communicates with switch fabric 102 via serial pipe 106.
Each blade 104 further includes a plurality of physical ports 108 for receiving
various types of digital data from one or more network connections.

[0098] In a preferred embodiment of the invention, switch 100 having 8
blades is capable of switching of 400 gigabits per second (Gbps) full-duplex
traffic. As used herein, all data rates are full-duplex unless indicated
otherwise. Each blade 104 communicates data at a rate of 50 Gbps over serial
pipe 106.

[0099] ' Switch 100 is shown in further detail in FIG. 2. As illustrated, switch
fabric 102 comprises five cross points 202. Data sent and received between
each blade and switch fabric 102 is striped across the five cross point chips
202A-202E. Each cross point 202A-202E then receives one stripe or 1/5 of
the data passing through switch fabric 102. As depicted in Fig. 2, each serial
pipe 106 of a blade 104 is made up of five serial links 204. The five serial
links 204 of each blade 104 are coupled to the five corresponding cross points
202. In one example, each of the serial links 204 is a 10G serial link, such as, a
10G serial link made up of 4 - 2.5 Gbps serial links. In this way, serial link
technology is used to send data across the backplane 102.

[00100] Each cross point 202A-202E is an 8-port cross point. In one example,
each cross point 2202A-E receives eight 10G streams of data. Each stream of
data corresponds to a particular stripe. The stripe has data in a wide-cell
format which includes, among other things, a destination port number (also
called a destination slot number) and special in-band control information. The
in-band control information includes special K characters, such as, a KO
character and K1 character. The KO character delimits a start of new cell
within a stripe. The K1 character delimits an end of a packet within the stripe.
Such encoding within each stripe, allows each cross point 202A-202E to
operate autonomously or independently of other cross points. In this way, the

cross points 202A-202E and their associated stripes are loosely-coupled.

WO 02/41544 PCT/US01/43113
20

[00101] In each cross point 202, there are a set of data structures, such as data
FIFOs (First in First out data structures). The data structures store data based
on the source port and the destination port. In one embodiment, for an 8-port
cross point, 56 data FIFOs are used. Each data FIFO stores data associated
with a respective source port and destination port. Packets coming to each
source port are written to the data FIFOs which correspond to a source port
and a destination port associated with the packets. The source port is
associated with the port (and port slice) on which the packets are received.
The destination port is associated with a destination port or slot number which
is found in-band in data sent in a stripe to a port.

[00102] In embodiments of the present invention, {he switch size is defined as
one cell and the cell size is defined to be either 8, 28, 48, 68, 88, 108, 128, or
148 bytes. Each port (or port slice) receives and sends serial data at a rate of
10 Gbps from respective serial links. Each cross point 202A-202E has a 160
Gbps switching capacity (160 Gbps = 10Gbps * 8 ports * 2 directions full-
duplex). Such cell sizes, serial link data rate, and switching capacity are
illustrative and not necessarily intended to limit the present invention. Cross-
point architecture and operation is described further below.

[00103] In attempting to increase the throughput of switches, conventional
wisdom has been to increase the width of data buses to increase the "parallel
processing" capabilities of the switch and to increase clock rates. Both
approaches, however, have met with diminishing returns. For example, very
wide data buses are constrained by the physical limitations of circuit boards.
Similarly, very high clock rates are limited by characteristics of printed circuit
boards. Going against conventional wisdom, the inventors have discovered
that significant increases in switching bandwidth could be obtained using
serial link technology in the backplane.

[00104] In the preferred embodiment, each serial pipe 106 is capable of
carrying full-duplex traffic at 50 Gbps, and each serial link 204 is capable of
carrying full-duplex traffic at 10 Gbps. The result of this architecture is that

each of the five cross points 202 combines five 10 gigabit per second serial

WO 02/41544 PCT/US01/43113
21

links to achieve a total data rate of 50 gigabits per second for each serial pipe
106. Thus, the total switching capacity across backplane 102 for eight blades
is 50 gigabits per second times eight times two (for duplex) or 800 gigabits per
second. Such switching capacities have not been possible with conventional
technology using synched parallel data buses in a switching fabric.

[00105] An advantage of such a switch having a 50 Gbps serial pipe to
backplane 102 from a blade 104 is that each blade 104 can support across a
range of packet sizes four 10 Gbps Ethernet packet processors at line rate, four
Optical Channel OC-192C at line rate, or support one OC-768C at line rate.
The invention is not limited to these examples. Other configurations and types
of packet processofs and can be used with the switch of the present invention
as would be apparent to a person skilled in the art given this description.

[00106] Referring now to FIG. 3A, the architecture of a blade 104 is shown in
further detail. Blade 104 comprises a backplane interface adapter (BIA) 302
(also referred to as a "super backplane interface adapter” or SBIA), a plurality
of Integrated Bus Translators (IBT) 304 and a plurality of packet processors
306. BIA 302 is responsible for striping the data across the five cross points
202 of backplane 102. In a preferred embodiment, BIA 302 is implemented as
an application-specific circuit (ASIC). BIA 302 receives data from packet
processors 306 through IBTs 304 (or directly from compatible packet
processors). BIA 302 may pass the data to backplane 102 or may perform
local switching between the local ports on blade 104. In a preferred
embodiment, BIA 302 is coupled to four serial links 308. Each serial link 308
is coupled to an IBT 304.

[00107] Each packet processor 306 includes one or more physical ports. Each
packet processor 306 receives inbound packets from the one or more physical
ports, determines a destination of the inbound packet based on control
information, provides local switching for local packets destined for a physical
port to which the packet processor is connected, formats packets destined for a
remote port to produce parallel data and switches the parallel data to an IBT
304. Each IBT 304 receives the parallel data from each packet processor 306.

WO 02/41544 PCT/US01/43113
22

IBT 304 then converts the parallel data to at least one serial bit streams. IBT
304 provides the serial bit stream to BIA 302 via a pipe 308, described herein
as one or more serial links. In a preferred embodiment, each pipe 308 is a 10
Gb/s XAUI interface.

[00108] In the example illustrated in FIG. 3A, packet processors 306C and
306D comprise 24 - ten or 100 megabit per second Ethernet ports, and two
1000 megabit per second or 1 Gbps Ethernet ports. Before the data is
converted, the input data packets are converted to 32-bit parallel data clock
data 133 MHz to achieve a four Gbps data rate. The data is placed in cells
(also called "narrow cells") and each cell includes a header which merges
control signals in-band with the data stream. Packets are interleaved to
different destination slots every 32 by cell boundary.

[00109] Also in the example of FIG. 3A, IBT 304C is connected to packet
processors 306C and 306D. In this example, IBT 304A is connected to a
packet processor 306A. This may be, for example, a ten gigabit per second
OC-192 packet processor. In these examples, each IBT 304 will receive as its
input a 64-bit wide data stream clocked at 156.25 MHz. Each IBT 304 will
then output a 10 gigabit per second serial data stream to BIA 302. According
to one narrow cell format, each cell includes a 4 byte header followed by 32
bytes of data. The 4 byte header takes one cycle on the four XAUI lanes.
Each data byte is serialized onto one XAUI lane.

[00110] BIA 302 receives the output of IBTs 304A-304D. Thus, BIA 302
receives 4 times 10 Gbps of data. Or alternatively, 8 times 5 gigabit per
second of data. BIA 302 runs at a clock speed of 156.25 MHz. With the
addition of management overhead and striping, BIA 302 outputs 5 times 10
gigabit per second data streams to the five cross points 202 in backplane 102.

[00111] BIA 302 receives the serial bit streams from IBTs 304, determines a
destination of each inbound packet based on packet header information,
provides local switching between local IBTs 304, formats data destined for a

remote port, aggregates the serial bit streams from IBTs 304 and produces an

WO 02/41544 PCT/US01/43113
23

aggregate bit stream. The aggregated bit stream is then striped across the five
cross points 202A-202E.

[00112] FIG. 3B shows a configuration of blade 104 according another
embodiment of the present invention. In this configuration, BIA 302 receives
output on serial links from a 10 Gbps packet processor 316A, IBT 304C, and
an Optical Channel OC-192C packet processor 316B. IBT 304 is further
coupled to packet processors 306C, 306D as described above. 10 Gbps packet
processor 316A outputs a serial data stream of narrow input cells carrying
packets of data to BIA 302 over serial link 318A. IBT 304C outputs a serial
data stream of narrow input cells carrying packets of data to BIA 302 over
serial link 308C. Optical Channel OC-192C packet processor 316B outputs
two serial data streams of narrow input cells carrying packets of data to BIA
302 over two serial links 318B, 318C.

A. Cross Point Architecture

[00113] FIG. 4 illustrates the architecture of a cross point 202. Cross point 202
includes eight ports 401A-401H coupled to eight port slices 402A-402H. As
illustrated, each port slice 402 is connected by a wire 404 (or other connective
media) to each of the other seven port slices 402. Each port slice 402 is also
coupled to through a port 401 a respective blade 104. To illustrate this, FIG. 4
shows connections for port 401F and port slice 402F (also referred to as
port_slice 5). For example, port 401F is coupled via serial link 410 to blade
104F. Serial link 410 can be a 10G full-duplex serial link.

[00114] Port slice 402F is coupled to each of the seven other port slices 402A-
402E and 402G-402H through links 420-426. Links 420-426 route data
received in the other port slices 402A-402E and 402G-402H which has a
destination port number (also called a destination slot number) associated with
a port of port slice 402F (i.e. destination port number 5). Finally, port slice
402F includes a link 430 that couples the port associated with port slice 402F
to the other seven port slices. Link 430 allows data received at the port of port

WO 02/41544 PCT/US01/43113
24

slice 402F to be sent to the other seven port slices. In one embodiment, each
of the links 420-426 and 430 between the port slices are buses to carry data in
parallel within the cross point 202. Similar connections (not shown in the
interest of clarity) are also provided for each of the other port slices 402A-
402E, 402G and 402H.

[00115] FIG. 5 illustrates the architecture of port 401F and port slice 402F in
further detail. -The architecture of the other ports 401A-401E, 401G, and
401H and port slices 402A-402E, 402G and 402H is similar to port 401F and
port slice 402F. Accordingly, only port 401F and port slice 402F need be
described in detail. Port 401F includes one or more deéerializer receiver(s)
510 and serializer transmitter(s) 580. In one embodiment, deserializer
receiver(s) 510 and serializer transmitter(s) 580 are implemented as
serializer/deserializer circuits (SERDES) that convert data between serial and
parallel data streams. In embodiments of the invention, port 401F can be part
of port slice 402F on a common chip, or on separate chips, or in separate units.

[00116] Port slice 402F includes a receive synch FIFO module 515 coupled
between deserializer receiver(s) 510 and accumulator 520. Receive synch
FIFO module 515 stores data output from deserializer receivers 510
corresponding to port slice 402F. Accumulator 520 writes data to an
appropriate data FIFO (not shown) in the other port slices 402A-402E, 402G,
and 402H based on a destination slot or port number in a header of the
received data.

[00117] Port slice 402F also receives data from other port slices 402A-402E,
402G, and 402H. This data corresponds to the data received at the other seven
ports of port slices 402A-402E, 402G, and 402H which has a destination slot
number corresponding to port slj,ce 402F. Port slice 402F includes seven data
FIFOs 530 to store data from corresponding port slices 402A-402E, 402G, and
402H. Accumulators (not shown) in the seven port slices 402A-402E, 402G,
and 402H extract the destination slot number associated with port slice 402F
and write corresponding data to respective ones of seven data FIFOs 530 for

port slice 402F. As shown in FIG. 5, each data FIFO 530 includes a FIFO

WO 02/41544 PCT/US01/43113
25

controller and FIFO random access memory (RAM). The FIFO controllers are
coupled to a FIFO read arbitrator 540. FIFO RAMs are coupled to a
multiplexer 550. FIFO read arbitrator 540 is further coupled to multiplexer
550. Multiplexer 550 has an output coupled to dispatcher 560. Dispatch 560
has an output coupled to transmit synch FIFO module 570. Transmit synch
FIFO module 570 has an output coupled to serializer transmitter(s) 580.

[00118] During operation, the FIFO RAMs accumulate data. After a data FIFO
RAM has accumulated one cell of data, its corresponding FIFO controller
generates a read request to FIFO read arbitrator 540. FIFO read arbitrator 540
processes read requests from the different FIFO controllers in a desired order,
such as a round-robin order. After one cell of data is read from one FIFO
RAM, FIFO read arbitrator 540 will move on to process the next requesting
FIFO controller. In this way, arbitration proceeds to serve different requesting
FIFO controllers and distribute the forwarding of data received at different
source ports. This helps maintain a relatively even but loosely coupled flow of
data through cross points 202.

[00119] To process a read request, FIFO read arbitrator 540 switches
multiplexer 550 to forward a cell of data from the data FIFO RAM associated
with the read request to dispatcher 560. Dispatcher 560 outputs the data to
transmit synch FIFO 570. Transmit synch FIFO 570 stores the data until sent

in a serial data stream by serializer transmitter(s) 580 to blade 104F.

B. Port Slice Operation with Wide Cell Encoding and Flow Control

[00120] According to a further embodiment, a port slice operates with respect
to wide cell encoding and a flow control condition. FIGs. 27A-27E show a
routine 2700 for processing data in port slice based on wide cell encoding and
a flow control condition (steps 2710-2790). In the interest of brevity, routine

2700 is described with respect to an example implementation of cross point

WO 02/41544 PCT/US01/43113
26

202 and an example port slice 402F. The oberation of the other port slices
402A-402E, 402G and 402H is similar.

[00121] In step 2710, entries in receive synch FIFO 515 are managed. In one
example, receive synch FIFO module 515 is an 8-entry FIFO with write
pointer and read pointer initialized to be 3 entries apart. Receive synch FIFO
module 515 writes 64-bit data from a SERDES deserialize receiver 510, reads
64-bit data from a FIFO with a clock signal and delivers data to accumulator
520, and maintains a three entry separation between read/write pointers by
adjusting the read pointer when the separation becomes less than or equal to 1.

[00122] In step 2720, accumulator 520 receives two chunks of 32-bit data are
received from receive synch FIFO 515. Accumulator 520 detects a special
character KO in the first bytes of first chunk and second chunk (step 2722).
Accumulator 520 then extracts a destination slot number from the state field in
the header if KO is detected (step 2724).

[00123] As shown in FIG. 27B, accumulator 520 further determines whether
the cell header is low-aligned or high-aligned (step 2726). Accumulator 520
writes 64-bit data to the data FIFO corresponding to the destination slot if cell
header is either low-aligned or high-aligned, but not both (step 2728). In step
2730, accumulator 520 writes 2 64-bit data to 2 data FIFOs corresponding to
the two destination slots (or ports) if cell headers appear in the first chunk and
the second chunk of data(low-aligned and high-aligned). Accumulator 520
then fill the second chunk of 32-bit data with idle characters when a cell does
not terminate at the 64-bit boundary and the subsequent cell is destined for a
different slot (step 2732). Accumulator 520 performs an early termination of a
cell if an error condition is detected by inserting KO and ABORT state
information in the data (step 2734). When accumulator 520 detects a Kl
character in the first byte of data_l(first chunk) and data_h(second chunk)
(step 2736), and accumulator 520 writes subsequent 64-bit data to all
destination data FIFOs (step 2738).

[00124] As shown in FIG. 27C, in step 2740, if two 32-bit chunks of data are
valid, then they are written to data FIFO RAM in one of data FIFOs 530. In

WO 02/41544 PCT/US01/43113
27

step 2742, if only one of the. 32-bit chunks is valid, it is saved in a temporary
register if FIFO depth has not dropped below a predetermined level. The
saved 32-bit data and the subsequent valid 32-bit data are combined and
written to the FIFO RAM. If only one of the 32-bit chunks is valid and the
FIFO depth has dropped below 4 entries, the valid 32-bit chunk is combined
with 32-bit idle data and written to the FIFO RAM (step 2744).

[00125] In step 2746, a respective FIFO controller indicates to FIFO read’
arbitrator 540 if KO has been read or FIFO RAM is empty. This indication is a
read request for arbitration. In step 2748, a respective FIFO controller
indicates to FIFO read arbitrator 540 whether KO is aligned to the first 32-bit
chunk or the second 32-bit chunk. When flow control from an output port is
detected (such as when a predetermined flow control sequence of one or more
characters is detected), FIFO controller stops requesting the FIFO read
arbitrator 540 after the current cell is completely read from the FIFO RAM
(step 2750).

[00126] As shown in FIG. 27D, in step 2760, FIFO read arbitrator 540
arbitrates among 7 requests from 7 FIFO controllers and switches at a cell
(K0) boundary. If end of the current cell is 64-bit aligned, then FIFO read
arbitrator 540 switches to the next requestor and delivers 64-bit data from
FIFO RAM of the requesting FIFO controller to the dispatcher 560 (step
2762). If end of current cell is 32-bit aligned, then FIFO read arbitrator 540
combines the lower 32-bit of the current data with the lower 32-bit of the data
from the next requesting FIFO controller, and delivers the combined 64-bit
data to the dispatcher 560 (step 2764). Further, in step 2766, FIFO read
arbitrator 540 indicates to the dispatcher 560 when all 7 FIFO RAMs are
empty.

[00127] As shown in FIG. 27E, in step 2770, dispatcher 560 delivers 64-bit
data to the SERDES synch FIFO module 570 and in turn to serializer
transmitter(s) 580, if non-idle data is received from the FIFO read arbitrator
540. Dispatcher 560 injects a first alignment sequence to be transmitted to the

SERDES synch FIFO module 570 and in turn to transmitter 580 when FIFO

WO 02/41544 PCT/US01/43113
28

read arbitrator indicates that all 7 FIFO RAMs are empty (step 2772).
Dispatcher 560 injects a second alignment sequence to be transmitted to the
SERDES synch FIFO module 570 and in turn to transmitter 580 when the
programmable timer expires and the previous cell has been completely
transmitted (step 2774). Dispatcher 560 indicates to the FIFO read arbitrator
540 to temporarily stop serving any requestor until the current pre-scheduled
alignment sequence has been completely transmitted (step 2776). Control
ends (step 2790).

C. Backplane Interface Adapter

[00128] To describe the structure and operation of the backplane interface
adapter reference is made to components shown in FIGs. 6-9. FIG. 6 is a
diagram of a backplane interface adapter (BIA) 600 according to an
embodiment of the present invention. BIA 600 includes two traffic processing
paths 603, 604. FIG. 7 is a diagram showing a first traffic processing path 603
for local serial traffic received at BIA 600 according to an embodiment of the
present invention. FIG. 8 is a diagram showing in more detail an example
switching fabric 645 according to an embodiment of the present invention.
FIG. 9 is a diagram showing a second traffic processing path 604 for
backplane serial traffic received at BIA 600 according to an embodiment of
the present invention. For convenience, BIA 600 of FIG. 6 will also be
described with reference to a more detailed embodiment of elements along
paths 603, 604 as shown in FIGs. 7 and 9, and the example switching fabric
645 shown in FIG. 8. The operation of a backplane interface adapter will be
further described with respect to routines and example diagrams related to a

wide striped cell encoding scheme as shown in FIGs 11-16.

D. Overall Operation of Backplane Interface Adapter

WO 02/41544 PCT/US01/43113
29

[00129] FIG. 10 is a flowchart of a routine 1000 interfacing serial pipes
carrying packets of data in narrow input cells and a serial pipe carrying
packets of data in wide striped cells (steps 1010-1060). Routine 1000 includes
receiving narrow input cells (step 1010), sorting the received input cells based
on a destination slot identifier(1020), generating wide striped cells (step 1030),
storing the generated wide striped cells in corresponding stripe send queues
based on a destination slot identifier and an originating source packet
processor (step 1040), arbitrating the order in which the stored wide striped
cells are selected for transmission (step 1050) and transmitting data slices
representing blocks of wide cells across multiple stripes (step 1060). For
brevity, each of these steps is described further with respect to the operation of
the first traffic processing path in BIA 600 in embodiments of FIGs. 6 and 7
below.

[00130] FIG. 11 is a flowchart of a routine 1100 interfacing serial pipes
carrying packets of data in wide striped cells to serial pipes carrying packets of
data in narrow input cells (steps 1110-1180). Routine 1100 includes receiving
wide striped cells carrying packets of data in multiple stripes from a switching
fabric (step 1110), sorting the received sub-blocks in each stripe based on
source packet processor identifier and originating slot identifier information
(step 1120), storing the sorted received sub-blocks in stripe receive
synchronization queues (step 1130), assembling wide striped cells in the order
of the arbitrating step based on the received sub-blocks of data (step 1140),
translating the received wide striped cells to narrow input cells carrying the
packets of data (step 1150), storing narrow cells in a plurality of destination
queues (step 1160), arbitrating an order in which data stored in the stripe
receive synchronization queues is assembled (1170), and transmitting the
narrow output cells to corresponding source packet processors (step 1180). In
one additional embodiment, further arbitration is performed including
arbitrating an order in which data stored in the destination queues is to be
transmitted and transmitting the narrow input cells in the order of the further

arbitrating step to corresponding source packet processors and/or IBTs. For

WO 02/41544 PCT/US01/43113
30

brevity, each of these steps is described further with respect to the operation of
the second traffic processing path in BIA 600 in embodiments-of FIGs. 6 and
7 below.

[00131] As shown in FIG. 6, traffic processing flow path 603 extends in traffic
flow direction from local packet processors toward a switching fabric 645.
Traffic processing flow path 604 extends in traffic flow direction from the
switching fabric 645 toward local packet processors. BIA 600 includes
deserializer receiver(s) 602, traffic sorter 610, wide cell generator(s) 620,
stripe send queues 625, switching fabric transmit arbitrator 630 and sterilizer
transmitter(s) 640 coupled along path 603. BIA 600 includes deserializer
receiver(s) 650, stripe interface module(s) 660, stripe receive synchronization
queues 685, controller 670 (including arbitrator 672, striped-based wide cell
assemblers 674, and administrative module 676), wide/cell translator 680,
destination queues 615, local destination transmit arbitrator 690, and sterilizer

transmitter(s) 692 coupled along path 604.

E. First Traffic Processing Path

[00138] Deserializer receiver(s) 602 receive narrow input cells carrying packets
of data. These narrow input cells are output to deserializer receiver(s) 602
from packet processors and/or from integrated bus translators (IBTs) coupled
to packet processors. In one example, four deserializer receivers 602 are
coupled to four serial links (such as, links 308A-D, 318A-C described above
in FIGs. 3A-3B). As shown in the example of FIG. 7, each deserialize
receiver 602 includes a deserializer receiver 702 coupled to a cross-clock
domain synchronizer 703. For example, each deserializer receiver 702
coupled to a cross-clock domain synchronizer 703 can be in turn a set of four
SERDES deserializer receivers and domain synchronizers carrying the bytes
of data in the four lanes of the narrow input cells. In one embodiment, each
deserializer receiver 702 can receive interleaved streams of data from two

serial links coupled to two sources. FIG. 7 shows one example where four

WO 02/41544 PCT/US01/43113
31

deserializer receivers 702 (q=4) are coupled to two sources (j=2) of a total of
eight serial links (k=8). In one example, each deserializer receiver 702

receives a capacity of 10 Gb/s of serial data.

F. Narrow Cell Format

[00139] FIG. 13 shows the format of an example narrow cell 1300 used to carry
packets of data in the narrow input cells. Such a format can include, but is not
limited to, a data cell format received from a XAUI interface. Narrow cell
1300 includes four lanes (lanes 0-3). Each lane 0-3 carries a byte of data on a
serial link. The beginning of a cell includes a header followed by payload
data. The header includes one byte in lane O of control information, and one
byte in lane 1 of state information. One byte is reserved in each of lanes 2'and
3. Table 1310 shows example state information which can be used. This state
information can include any combination of state information including one or
more of the following: a slot number, a payload state, and a source or
destination packet processor identifier. The slot number is an encoded
number, such as, 00, 01, etc. or“ other identifier (e.g., alphanumeric or ASCII
values) that identifies the blade (also called a slot) towards which the narrow
cell is being sent. The payload state can be any encoded number or other
identifier that indicates a particular state of data in the cell being sent, such as,
reserved (meaning a reserved cell with no data), SOP (meaning a start of
packet cell), data (meaning a cell carrying payload data of a packet), and abort

(meaning a packet transfer is being aborted).

G. Traffic Sorting

[00140] Traffic sorter 610 sorts received narrow input cells based on a
destination slot identifier. Traffic sorter 610 routes narrow cells destined for
the same blade as BIA 600 (also called local traffic) to destination queues 615.
Narrow cells destined for other blades in a switch across the switching fabric

(also called global traffic) are routed to wide cell generators 620.

WO 02/41544 PCT/US01/43113
32

[00141] FIG. 7 shows a further embodiment where traffic sorter 610 includes a.
global/traffic sorter 712 coupled to a backplane sorter 714. Global/traffic
sorter 712 sorts received narrow input cells based on the destination slot
identifier, Traffic sorter 712 routes narrow cells destined for the same blade as
BIA 600 to destination queues 615. Narrow cells destined for other blades in
a switch across the switching fabric (also called global traffic or backplane
traffic) are routed to backplane traffic sorter 714. Backplane traffic sorter 714
further sorts received narrow input cells having destination slot identifiers that
identify global destination slots into groups based on the destination slot
identifier. In this way, narrow cells are grouped by the blade towards which
they are traveling. Backplane traffic sorter 714 then routes the sorted groups
of narrow input cells of the backplane traffic to corresponding wide cell
generators 720. Each wide cell generator 720 then processes a corresponding
group of narrow input cells. Each group of narrow input cells represents
portions of packets sent from two corresponding interleaved sources (j=2) and
destined for a respective blade. In one example, 56 wide cell generators 720
are coupled to the output of four backplane traffic sorters 714. The total of 56
wide cell generators 720 is given by 56 = q * j * { -1, where j = 2 sources, {=

8 blades, and q = four serial input pipes and four deserializer receivers 702.

H. Wide Striped Cell Generation

[00142] Wide cell generators 620 generate wide striped cells. The wide
striped cells carry the packets of data received by BIA 600 in the narrow input
cells. The wide cells extend across multiple stripes and include in-band
control information in each stripe. In the interest of brevity, the operation of
wide cell generators 620, 720 is further described with respect to a routine
1200 in FIG. 12. Routine 1200 however is not intended to be limited to use in
wide cell generator 620, 720 and may be used in other structure and

applications.

WO 02/41544 PCT/US01/43113
33

[00143] FIG. 12 shows a routine 1200 for generating wide striped cell
generation according to the present invention (steps 1210-1240). In one
embodiment, each wide cell generator(s) 620, 720 perform steps 1210-1240.
In step 1210, wide cell generator 620, 720 parse each narrow input cell to
identify a header. When control information is found in a header, a check is
made to determine whether the control information indicates a start of packet
(step 1220). For example, to carry out steps 1210 and 1220, wide cell
generator 620, 720 can read lane O of narrow cell 1300 to determine control
information indicating a start of packet is present. In one example, this start of
packet control information is a special control character KO.

[00144] For each detected packet (step 1225), steps 1230-1240 are performed.
In step 1230, wide cell generator 620, 720 encodes one or more new wide
striped cells until data from all narrow input cells of the packet is distributed
into the one or more new wide striped cells. This encoding is further
described below with respect to routine 1400 and FIGs. 15A-D, and 16.

[00145] In step 1230, wide cell generator 620 then writes the one or more new
wide striped cells into a plurality of send queues 625. In the example of FIG.
7, a total of 56 wide cell generators 720 are coupled to 56 stripes send queues
725. In this example, the 56 wide cell generators 720 each write newly

generated wide striped cells into respective ones of the 56 stripe send queues
725.

L Encoding Wide Striped Cells

* [00146] According to a further feature of the present invention, system and
method for encoding wide striped cells is provided. In one embodiment, wide
cell generators 620, 720 each generate wide striped cells which are encoded
(step 1230). FIG. 14 is a flowchart of a routine 1400 for encoding wide
striped cells according to an embodiment of the present invention (steps 1410-
1460).

WO 02/41544 PCT/US01/43113
34

J. Initial Block Encoding

[00147] In step 1410, wide cell generator 620, 720 encodes an initial block of a
start wide striped cell with initial cell encoding information. The initial cell
encoding information includes control information (such as, a special KO
character) and state information provided in each sub-block of an initial block
of a wide striped cell. FIG. 15A shows the encoding of an initial block in a
wide striped cell 1500 according to an embodiment of the present invention.
The initial block is labeled as cycle 1. The initial block has twenty bytes that
extend across five stripes 1-5. Each stripe has a sub-block of four bytes. The
four bytes of a sub-block correspond to four one byte lanes. In this way, a
stripe is a data slice of a sub-block of a wide cell. A lane is a data slice of one
byte of the sub-block. In step 1410, then control information (KO) is provided
all each lane O of the stripes 1-5. State information is provided in each in each
lane 1 of the stripes 1-5. Also, two bytes are reserved in lanes 2 and 3 of
stripe 5.

[00148] FIG. 15B is a diagram illustrating state information used in a wide
striped cell according to an embodiment of the present invention. As shown in
FIG. 15B, state information for a wide striped cell can include any
combination of state information including one or more of the following: a slot
number, a payload state, and reserved bits. The slot number is an encoded
number, such as, 00, 01, etc. or other identifier (e.g., alphanumeric or ASCIL
values) that identifies the blade (also called a slot) towards which the wide
striped cell is being sent. The payload state can be any encoded number or
other identifier that indicates a particular state of data in the cell being sent,
such as, reserved (meaning a reserved cell with no data), SOP (meaning a start
of packet cell), data (meaning a cell carrying payload data of a packet), and
abort (meaning a packet transfer is being aborted). Reserved bits are also
provided.

[00149] In step 1420, wide cell generator(s) 620, 720 distribute initial bytes of

packet data into available space in the initial block. In the example wide

WO 02/41544 PCT/US01/43113
35

striped cell 1500 shown in FIG. 15A, two bytes of data D0, D1 are provided in
lanes 2 and 3 of stripe 1, two bytes of data D2, D3 are provided in lanes 2 and
3 of stripe 2, two bytes of data D4, D5 are provided in lanes 2 and 3 of stripe
3, and two bytes of data D6, D7 are provided in lanes 2 and 3 of stripe 4.

[00150] In step 1430, wide cell generator(s) 620, 720 distribute remaining bytes
of packet data across one or more blocks in of the first wide striped cell (and
subsequent wide cells). In the example wide striped cell 1500, maximum size
of a wide striped cell is 160 bytes (8 blocks) which corresponds to a maximum
of 148 bytes of data. In addition to the data bytes DO-D7 in the initial block,
wide striped cell 1500 further has data bytes D8-D147 distributed in seven
blocks (labeled in FIG. 15A as blocks 2-8).

[00151] In general, packet data continues to be distributed until an end of
packet condition is reached or a maximum cell size is reached. Accordingly,
checks are made of whether a maximum cell size is reached (step 1440) and -
whether the end of packet is reached (step 1450). If the maximum cell size is
reached in step 1440 and more packet data needs to be distributed then control
returns to step 1410 to create additional wide striped cells to carry the rest of
the packet data. If the maximum cell size is not reached in step 1440, then an
end of packet check is made (step 1450). If an end of packet is reached then
the current wide striped cell being filled with packet data is the end wide
striped cell. Note for small packets less than 148 bytes, than only one wide
striped cell is needed. Otherwise, more than one wide striped cells are used to
carry a packet of data across multiple stripes. When an end of packet is

reached in step 1450, then control proceeds to step 1460.

K. End of Packet Encoding

[00152] In step 1460, wide cell generator(s) 620, 720 further encode an end
wide striped cell with end of packet information that varies depending upon
the degree to which data has filled a wide striped cell. In one encoding

scheme, the end of packet information varies depending upon a set of end of

WO 02/41544 PCT/US01/43113
36

packet conciitions including whether the end of packet occurs in an initial
cycle or subsequent cycles, at a block boundary, or at a cell boundary.

[00153] FIG. 15C is a diagram illustrating end of packet encoding information ‘
used in an end wide striped cell according to an embodiment of the present
invention. A special character byte K1 is used to indicate end of packet. A set
of four end of packet conditions are shown (items 1-4). The four end of
packet conditions are whether the end of packet occurs during the initial block
(item 1) or during any subsequent block (items 2-4). The end of packet
conditions for subsequent blocks further include whether the end of packet
occurs within a block (item 2), at a block boundary (item 3), or at a cell
boundary (item 4). As shown in item 1 of FIG. 15C, when the end of packet
occurs during the initial block, control and state information (KO, state) and
reserved information are preserved as in any other initial block transmission.
K1 bytes are added as data in remaining data bytes.

[00154] As shown in item 2 of FIG. 15C, when the end of packet occurs during
a subsequent block (and not at a block or cell boundary), K1 bytes are added
as data in remaining data bytes until an end of a block is reached. In FIG.
15C, item 2, an end of packet is reached at data byte D33 (stripe 2, lane 1 in
block of cycle 3). K1 bytes are added for each lane for remainder of block.
When the end of packet occurs at a block boundary of a subsequent block
(item 3), K1 bytes are added as data in an entire subsequent block. In FIG.
15C, item 3, an end of packet is reached at data byte D27 (end of block of
block 2). K1 bytes are added for each lane for entire block (block 3). When
the end of packet occurs during a subsequent block but at a cell boundary
(item 4), one wide striped cell having an initial block with K1 bytes added as
data is generated. In FIG. 15D, item 4, an end of packet is reached at data
byte D147 (end of cell and end of block for block 8). One wide striped cell
consisting of only an initial block with normal control, state and reserved
information and with K1 bytes added as data is generated. As shown in FIG.
15D, such an initial block with K1 bytes consists of stripes 1-5 with bytes as
follows: stripe 1 (KO, state, K1,K1), stripe 2 (KO,state, K1,K1), stripe3

WO 02/41544 PCT/US01/43113
37

(KO,state, K1,K1), stripe 4 (KO,state, K1,K1), stripe 5 (KO,state, reserved,

reserved).

L. Switching Fabric Transmit Arbitration

[00155] In one embodiment, BIA 600 also includes switching fabric transmit
arbitrator 630. Switching fabric transmit arbitrator 630 arbitrates the order in
which data stored in the stripe send queues 625, 725 is sent by transmitters
640, 740 to the switching fabric. Each stripe send queue 625, 725 stores a
respective group of wide s;criped cells corresponding to a respective originating
source packet processor and a destination slot identifier. Each wide striped
cell has one or more blocks across multiple stripes. During operation the
switching fabric transmit arbitrator 630 selects a stripe send queue 625, 725
and pushes the next available cell to the transmitters 640, 740. In this way one
full cell is sent at a time. (Alternatively, a portion of a cell can be sent.) Each
stripe of a wide cell is pushed to the respective transmitter 640, 740 for that
stripe. In one example, during normal operation, a complete packet is sent to
any particular slot or blade from a particular packet processér before a new
packet is sent to that slot from different packet processors. However, the
packets for the different slots are sent during an arbitration cycle. In an
alternative embodiment, other blades or slots are then selected in a round-

robin fashion.

M. Cross Point Processing of Stripes including Wide Cell Encoding

[00156] In on embodiment, switching fabric 645 includes a number n of cross
point switches 202 corresponding to each of the stripes. Each cross point
switch 202 (also referred to herein as a cross point or cross point chip) handles
one data slice of wide cells corresponding to one respective stripe. In one
example, five cross point switches 202A-202E are provided corresponding to |
five stripes. For clarity, FIG. 8 shows only two of five cross point switches

corresponding to stripes 1 and 5. The five cross point switches 202 are

WO 02/41544 PCT/US01/43113
38

coupled between transmitters and receivers of all of the blades of a switch as
described above with respect to FIG. 2. For example, FIG. 8 shows cross
point switches 202 coupled between one set of transmitters 740 for stripes of
one blade and another set of receivers 850 on a different blade.

[00157] The operation of a cross point 202 and in particular a port slice 402F is
now described with respect to an embodiment where stripes further include
wide cell encoding and a flow control indication.

[00158] Port slice 402F also receives data from other port slices 402A-402E,
402G, and 402H. This data corresponds to the data received at the other seven
ports of port slices 402A-402E, 402G, and 402H which has a destination slot
number corresponding to port slice 402F. Port slice 402F includes seven data
FIFOs 530 to store data from corresponding port slices 402A-402E, 402G,
and 402H. Accumulators (not shown) in the seven port slices 402A-402E,
402G, and 402H extract the destination slot number associated with port slice
402F and write corresponding data to respective ones of seven data FIFOs 530
for port slice 402F. As shown in FIG. 5, each data FIFO 530 includes a FIFO
controller and FIFO random access memory (RAM). The FIFO controllers are
coupled to a FIFO read arbitrator 540. FIFO RAMs are coupled to a
multiplexer 550. FIFO read arbitrator 540 is further coupled to multiplexer
550. Multiplexer 550 has an output coupled to dispatcher 560. Dispatch 560
has an output coupled to transmit synch FIFO module 570. Traﬁsmit synch
FIFO module 570 has an output coupled to serializer transmitter(s) 580.

[00159] During operation, the FIFO RAMs accumulate data. After a data FIFO
RAM has accumulated one cell of data, its corresponding FIFO controller
generates a read request to FIFO read arbitrator 540. FIFO read arbitrator 540
processes read requests from the different FIFO controllers in a desired order,
such as a round-robin order. After one cell of data is read from one FIFO
RAM, FIFO read arbitrator 540 will move on to process the next requesting
FIFO controller. In this way, arbitration proceeds to serve different requesting

FIFO controllers and distribute the forwarding of data received at different

WO 02/41544 PCT/US01/43113
39

source ports. This helps maintain a relatively even but loosely coupled flow of
data through c£oss points 202.

[00160] To process a read request, FIFO read arbitrator 540 switches
multiplexer 550 to forward a cell of data from the data FIFO RAM associated
with the read request to dispatcher 560. Dispatcher 560 outputs the data to
transmit synch FIFO 570. Transmit synch FIFO 570 stores the data until sent
in a serial data stream by serializer transmitter(s) 580 to blade 104F.

[00161] Cross point operation according to the present invention is described
further below with respect to a further embodiment involving wide cell

encoding and flow control.

N. Second Traffic Processing Path

[00162] FIG. 6 also shows a traffic processing path for backplane serial traffic
received at backplane interface adapter 600 according to an embodiment of the
present invention. FIG. 9 further shows the second traffic processing path in
even more detail.

[00163] As shown in FIG. 6, BIA 600 includes one or more deserialize
receivers 650, wide/narrow cell translators 680, and serializer transmitters 692
along the second path. Receivers 650 receive wide striped cells in multiple
stripes from the switching fabric 645. The wide striped cells carry packets of
data. In one example, five deserializer receivers 650 receive five sub-blocks
of wide striped cells in multiple stripes. The wide striped cells carrying
packets of data across the multiple stripes and including originating slot
identifier information. In one digital switch embodiment, originating slot
identifier information is written in the wide striped cells as they pass through
cross points in the switching fabric as described above with respect to FIG. 8.

[00164] Translators 680 translate the received wide striped cells to narrow
input cells carrying the packets of data. Serializer transmitters 692 transmit

the narrow input cells to corresponding source packet processors or IBTs.

WO 02/41544 PCT/US01/43113
40

[00165] BIA 600 further includes stripe interfaces 660 (also called stripe
interface modules), stripe receive synchronization queues (685), and controller
670 coupled between deserializer receivers 650 and a controller 670. Each
stripe interface 660 sorts received sub-blocks in each stripe based on source
packet processor identifier and originating slot identifier information and
stores the sorted received sub-blocks in the stripe receive synchronization
queues 685.

[00166] Controller 670 includes an arbitrator 672, a striped-based wide cell
assembler 674, and an administrative module 676. Arbitrator 672 arbitrates an
order in which data stored in stripe receive synchronization queues 685 is sent
to striped-based wide cell assembler 674. Striped-based wide cell assembler
674 assembles wide striped cells based on the received sub-blocks of data. A
narrow/wide cell translator 680 then translates the arbitrated received wide
striped cells to narrow input cells carrying the packets of data. Administrative
module 676 is provided to carry out flow control, queue threshold level
detection, and error detection (such as, stripe synchronization error detection),
or other desired management or administrative functionality.

[00167] A second level of arbitration is also provided according to an
embodiment of the present invention. BIA 600 further includes destination
queues 615 and a local destination transmit arbitrator 690 in the second path.
Destination queues 615 store narrow cells sent by traffic sorter 610 (from the
first path) and the narrow cells translated by the translator 680 (from the
second path). Local destination transmit arbitrator 690 arbitrates an order in
which narrow input cells stored in destination queues 690 is sent to serializer
transmitters 692. Finally, serializer transmitters 692 then transmit the narrow
input cells to corresponding IBTs and/or source packet processors (and
ultimately out of a blade through physical ports).

[00168] FIG. 9 further shows the second traffic processing path in even more
detail. BIA 600 includes five groups of components for processing data slices

from five slices. In FIG. 9 only two groups 900 and 901 are shown for clarity,

WO 02/41544 PCT/US01/43113
41

and only group 900 need be described in detail with respect to one stripe since
the operations of the other groups is similar for the other four stripes.

[00169] In the second traffic path, deserializer receiver 950 is coupled to cross
clock domain synchronizer 952. Deserializer receiver 950 converts serial data
slices of a stripe (e.g., sub-blocks) to parallel data. Cross clock domain
synchronizer 952 synchronizes the parallel data.

[00170] Stripe interface 960 has a decoder 962 and sorter 964 to decode and
sort received sub-blocks in each stripe based on source packet processor
identifier and originating slot identifier information. Sorter 964 then stores the
sorted receivedsub-blocks in stripe receive synchronization queues 965. Five
groups of 56 stripe receive synchronization queues 965 are provided in total.
This allows one queue to be dedicated for each group of sub-blocks received
from a particular source per global blade (up to 8 source packet processors per
blade for seven blades not including the current blade).

[00171] Arbitrator 672 arbitrates an order in which data stored in stripe receive
synchronization queues 685 sent to striped-based wide cell assembler 674.
Striped-based wide cell assembler 674 assembles wide striped cells based on
the received sub-blocks of data. A narrow/wide cell translator 6380 then
translates the arbitrated received wide striped cells to narrow input cells
carrying the packets of data as described above in FIG. 6.

[00172] Destination queues include local destination queues 982 and backplane
traffic queues 984. Local destination queues 982 store narrow cells sent by
local traffic sorter 716. Backplane traffic queues 984 store narrow cells
translated by the translator 680. Local destination transmit arbitrator 690
arbitrates an order in which narrow input cells stored in destination queues
082, 984 is sent to serializer transmitters 992. Finally, serializer transmitters
992 then transmit the narrow input cells to corresponding IBTs and/or source
packet processors (and ultimately out of a blade through physical ports).

/

WO 02/41544 PCT/US01/43113
42

0. Cell Boundary Alignment

[00173] FIG. 15D is a diagram illustrating an example of a cell boundary
alignment condition during the transmission of wide striped cells in multiple
stripes according to an embodiment of the present invention. A KO character
is guaranteed by the encoding and wide striped cell generation to be present
every 8 blocks for any given stripe. Cell boundaries among the stripes
themselves can be out of alignment. This out of alignment however is
compensated for and handled by the second traffic processing flow path in
BIA 600.

P. Packet Alignment

[00174] FIG. 16 is a diagram illustrating an example of a packet alignment
condition during the transmission of wide striped cells in multiple stripes
according to an embodiment of the present invention. Cell can vary between
stripes but all stripes are essentially transmitting the same packet or nearby
packets. Since each cross point arbitrates among its sources independently,
not only can there be a skew in a cell boundary, but there can be as many as
seven cell time units (time to transmit cells) of skew between a transmission of
a packet on one serial link verus its transmission on any other link. This also
means that packets may be interlaced with other packets in the transmission in

multiple stripes over the switching fabric.

Q. Wide Striped Cell Size at Line Rate

[00175] In one example, a wide cell has a maximum size of eight blocks (160
bytes) which can carry 148 bytes of payload data and 12 bytes of in-band
control information. Packets of data for full-duplex traffic can be carried in

the wide cells at a 50 Gbps rate through the digital switch.

WO 02/41544 PCT/US01/43113
43

R. IBT and Packet Processing

[00176] The integrated packet controller (IPC) and integrated giga controller
(IGC) functions are provided with a bus translator, described above as the
IPC/IGC Bus Translator (IBT) 304. In one embodiment, the IBT is an ASIC
that bridges one or more IPC/IC ASIC. In such an embodiment, the IBT
translates two 4/5 gig parallel stream into one 10Gbps serial stream. The
parallel interface can be the backplane interface of the IPC/IGC ASICs. The
one 10Gbps serial stream can be further processed, for example, as described
herein with regard to interface adapters and striping,.

[00177] Additionally, IBT 304 can be configured to operate with other
architectures as would be apparent to one skilled in the relevant art(s) based at
least on the teachings herein. For example, the IBT 304 can be implemented
in packet processors using 10GE and OC-192 configurations. The
functionality of the IBT 304 can be incorporated within existing packet
processors or attached as an add-on component to a system.

[00178] In FIG. 17, a block diagram 1700 illustrates the components of a bus
translator 1702 according to one embodiment of the present invention. The
previously described IBT 304 can be configured as the bus translator 1702 of
FIG. 17. For example, IBT 304 can be implemented to include the
functionality of the bus translator 1702.

[00179] More specifically, the bus translator 1702 translates data 1704 into data
1706 and data 1706 into data 104. The data 1706 is received by transceiver(s)
1710 is forwarded to a translator 1712. The translator 1712 parses and
encodes the data 1706 into a desired format.

[00180] Here, the translator 1712 translates the data 1706 into the format of the
data 1704. The translator 1712 is managed by an administration module 1718.
One or more memory pools 1716 store the information of the data 1706 and
the data 1704. One or more clocks 1714 provide the timing iﬁfonnation to the
translation operations of the translator 1712. Once the translator 1712 finishes

translating the data 1706, it forwards the newly formatted information as the

WO 02/41544 PCT/US01/43113
44

data 1704 to the transceiver(s) 1708. The transceiver(s) 1708 forward the data
1704.

[00181] As one skilled in the relevant art would recognize based on the
teachings described herein, the operational direction of bus translator 1702 can
be reversed and the data 1704 received by the bus translator 1702 and the data
1706 forwarded after translation.

[00182] For ease of illustration, but without limitation, the process of
translating the data 1706 into the data 1704 is herein described as receiving,
reception, and the like. Additionally, for ease of illustration, but without
limitation, the process of translating the data 1704 into the data 1706 is herein
described as transmitting, transmission, and the like.

[00183] In FIG. 18, ablock diagram of the reception components according to
one embodiment of the present invention. In one embodiment, bus translator
1802 receives data in the form of packets from interface connections 1804a-n.
The interface connections 1804a-n couple to one or more receivers 1808 of
bus translator 1802. Receivers 1808 forward the received packets to one or
more packet decoders 1810. In one embodiment, the receiver(s) 1808 includes
one or more physical ports. In an additional embodiment, each of receivers
1808 includes one or more logical ports. In one specific embodiment, the
receiver(s) 1808 consists of four logical ports.

[00184] The packet decoders 1810 receive the packets from the receivers 1808.
The packet decoders 1810 parse the information from the packets. In one
embodiment, as is described below in additional detail, the packet decoders
1810 copy the payload information from each packet as well as the additional
information about the packet, such as time and place of origin, from the start
of packet (SOP) and the end of packet (EOP) sections of the packet. The
packet decoders 1810 forward the parsed information to memory pool(s) 1812.
In one embodiment, the bus translator 1802 includes more than one memory
pool 1812. In an alternative embodiment, alternate memory pool(s) 1818 can
be sent the information. In an additional embodiment, the packet decoder(s)

1810 can forward different types of information, such as payload, time of

WO 02/41544 PCT/US01/43113
45

delivery, origin, and the like, to different memory pools of the pools 1812 and
1818.

[00185] Reference clock 1820 provides timing information to the packet
decoder(s) 1810. In one embodiment, reference clock 1820 is coupled to the
IPC/IGC components sending the packets through the connections 1804a-n.
In another embodiment, the reference clock 1820 provides reference and
timing information to all the parallel components of the bus translator 1802.

[00186] Cell encoder(s) 1814 receives the information from the memory
pool(s) 1812. In an alternative embodiment, the cell encoder(s) 1814 receives
the information from the alternative memory pool(s) 1818. The cell
encoder(s) 1814 formats the information into cells.

[00187] In the description that follows, these cells are also referred to as narrow
cells. Furthermore, the cell encoder(s) 1814 can be configured to format the
information into one or more cell types. In one embodiment, the cell format is

a fixed size. In another embodiment, the cell format is a variable size.

[00188] The cell format is described in detail below with regard to cell
encoding and decoding processes of FIGS. 22, 23A-B, 24, and 25A-B.
[00189] The cell encoder(s) 1814 forwards the cells to transmitter(s) 1816. The

transmitter(s) 1816 receive the cells and transmit the cells through interface
connections 1806a-n.

[00190] Reference clock 1828 provides timing information to the cell
encoder(s) 1814. In one embodiment, reference clock 1828 is coupled to the
interface adapter components receiving the cells through the connections
1806a-n. In another embodiment, the reference clock 1828 provides reference
and timing information to all the serial components of the bus translator 1802.

[00191] Flow controller 1822 measures and controls the incoming packets and
outgoing cells by determining the status of the components of the bus
translator 1802 and the status of the components connected to the bus
translator 1802. Such components are préviously described herein and
additional detail is provided with regard to the interface adapters of the present

invention.

WO 02/41544 PCT/US01/43113
46

[00192] In one embodiment, the flow controller 1822 controls the traffic
through the connection 1806 by asserting a ready signal and de-asserting the
ready signal in the event of an overflow in the bus translator 1802 or the
IPC/IGC components further connected.

[00193] Administration module 1824 provides control features for the bus
translator 1802. In one embodiment, the administration module 1824 provides
error control and power-on and reset functionality for the bus translator 1802.

[00194] FIG. 19 illustrates a block diagram of the transmission components
according to one embodiment of the present invention. In one embodiment,
bus translator 1902 receives data in the form of cells from interface
connections 1904a-n. The interface connections 1904a-n couple to one or
more receivers 1908 of bus translator 1902. In one embodiment, the
receiver(s) 1908 include one or more physical ports. In an additional
embodiment, each of receivers 1908 includes one or more logical ports. In
one specific embodiment, the receiver(s) 1908 consists of four logical ports.
Receivers 1908 forward the received cells to a synchronization module 1910.
In one embodiment, the synchronization module 1910 is a FIFO used t6
synchronize incoming cells to the reference clock 1922. It is noted that
although there is no direct arrow shown in FIG. 19 from reference clock 1922
to synchronization module 1910, the two module can communicate such that
the synchronization module is capable of synchronizing the incoming cells.
The synchronization module 1910 forwards the one or more cell decoders
1912.

[00195] The cell decoders 1912 receive the cells from the synchronization
module 1910. The cell decoders 1912 parse the information from the cells. In
one embodiment, as is described below in additional detail, the cell decoders

1912 copy the payload information from each cell as well as the additional
information about the cell, such as place of origin, from the slot and state
information section of the cell.

[00196] In one embodiment, the cell format can be fixed. In another

embodiment, the cell format can be variable. In yet another embodiment, the

WO 02/41544 PCT/US01/43113
47

cells received by the bus translator 1902 can be of more than one cell format.
The bus translator 1902 can be configured to decode these cell format as one
skilled in the relevant art would recognize based on the teachings herein.

. Further details regarding the cell formats is described below with regard to the
cell encoding processes of the present invention.

[00197] The cell decoders 1912 forward the parsed information to memory
pool(s) 1914. In one embodiment, the bus translator 1902 includes more than
one memory pool 1914. In an alternative embodiment, alternate memory
pool(s) 1916 can be sent the information. In an additional embodiment, the
cell decoder(s) 1912 can forward different types of information, such as
payload, time of delivery, origin, and the like, to different memory pools of
the pools 1914 and 1916. “

[00198] Reference clock 1922 provides timing information to the cell
decoder(s) 1912. In one embodiment, reference clock 1922 is coupled to the
interface adapter components sending the cells through the connections 1904a-
n. In another embodiment, the reference clock 1922 provides reference and
timing information to all the serial components of the bus translator 1902.

[00199] Packet encoder(s) 1918 receive the information from the memory
pool(s) 1914. 1In an alternative embodiment, the packet encoder(é) 1918
receive the information from the alternative memory pool(s) 1916. The packet
encoder(s) 1918 format the information into packets.

[00200] The packet format is determined by the configuration of the IPC/IGC
components and the requirements for the system.

[00201] The packet encoder(s) 1918 forwards the packets to transmitter(s)
1920. The transmitter(s) 1920 receive the packets and transmit the packets
through interface connections 1906a-n.

[00202] Reference clock 1928 provides timing information to the packet
encoder(s) 1918. In one embodiment, reference clock 1928 is coupled to the
IPC/IGC components receiving the packets through the connections 1906a-n.
In another embodiment, the reference clock 1928 provides reference and

timing information to all the parallel components of the bus translator 1902.

WO 02/41544 PCT/US01/43113
48

[00203] Flow controller 1926 measures and controls the incoming cells and
outgoing packets by determining the status of the components of the bus
translator 1902 and the status of the components connected to the bus
translator 1902. Such components are previously described herein and
additional detail is provided with regard to the interface adapters of the present
invention. |

[00204] In one embodiment, the flow controller 1926 controls the traffic
through the connection 1906 by asserting a ready signal and de-asserting the
ready signal in the event of an overflow in the bus translator 1902 or the
IPC/IGC components further connected.

[00205] Administration module 1924 provides control features for the bus
translator 1902. In one embodiment, the administration module 1924 provides
error control and power-on and reset functionality for the bus translator 1902.

[00206] In FIG. 20, a detailed block diagram of the bus translator according to
one embodiment, is shown. Bus translator 2002 incorporates the functionality
of bus translators 1802 and 1902.

[00207] In terms of packet processing, packets are received by the bus
translator 2002 by receivers 2012. The packets are processed into cells and
forwarded to a serializer/deserializer (SERDES) 2026. SERDES 2026 acts as
a transceiver for the cells being processed by the bus translator 2002. The
SERDES 2026 transmits the cells via interface connection 2006.

[00208] In terms of cell processing, cells are received by the bus translator
2002 through the interface connection 2008 to the SERDES 2026. The cells
are processed into packets and forwarded to transmitters 2036. The
transmitters 2036 forward the packets to the IPC/IGC components through
interface connections 2010a-n.

[00209] The reference clocks 2040 and 2048 are similar to those previously
described in FIGS. 18 and 19. The reference clock 2040 provides timing
information to the serial components of the bus translator 2002. As shown,
the reference clock 2040 provides timing information to the cell encoder(s)

2020, cell decoder(s) 2030, and the SERDES 2026. The reference clock 2048

WO 02/41544 PCT/US01/43113
49

provides timing information to the parallel components of bus translator 2002.
As shown, the reference clock 2048 provides timing information to the packet
decoder(s) 2016 and packet encoder(s) 2034.

[00210] The above-described separation of serial and parallel operations is a
feature of embodiments of the present invention. In such embodiments, the
parallel format of incoming and leaving packets at ports 2014a-n and 2038a-b,
respectively, is remapped into a serial cell format at the SERDES 2026.

[00211] Furthermore, according to embodiments of the present invention, the
line rates of the ports 2014a-n have a shared utilization limited only by the line
rate of output 2006. Similarly for ports 2038a-n and input 2008.

[00212] The remapping of parallel packets into serial cells is described in
further detail herein, more specifically with regard to FIG. 21E.

[00213] In FIG. 21A, a detailed block diagram of the bus translator, according
to another embodiment of the present invention, is shown. The receivers and
transmitters of FIGS. 18, 19, and 20 are replaced with CMOS I/Os 2112
capable of providing the same functionality as previously described. The
CMOS T/Os 2112 can be configured to accommodate various numbers of
physical and logical ports for the reception and transmission of data.

[00214] Administration module 2140 operates as previously described. As
shown, the administration module 2140 includes an administration control
element and an administration register. The administration control element
monitors the operation of the bus translator 2102 and provides the reset and
power-on functionality as previously described with regard to FIGS. 18, 19,
and 20. The administration register caches operating parameters such that the
state of the bus translator 2102 can be determined based on a cbmparison or
look-up against the cached parameters.

[00215] The reference clocks 2134 and 2136 are similar to those previously
described in FIGS. 18, 19, and 20. The reference clock 2136 provides timing
information to the serial components of the bus translator 2102. As shown,
the reference clock 2136 provides timing information to the cell encoder(s)

2118, cell decoder(s) 2128, and the SERDES 2124. The reference clock 2134

WO 02/41544 PCT/US01/43113
50

provides timing information to the parallel components of bus translator 2102.
As shown, the reference clock 2134 provides timing information to the packet
decoder(s) 2114 and packet encoder(s) 2132.

[00216] As shown in FIG. 21A, memory pool 2116 includes two pairs of
FIFOs. Each FIFO pair with a header queue. The memory pool 2116
performs as previously described memory pools in FIGS. 18 and 20. In one
embodiment, payload or information portions of decoded packets is stored in
one or more FIFOs and the timing, place of origin, destination, and similar
information is stored in the corresponding header queue.

[00217] Additionally, memory pool 2130 includes two pairs of FIFOs. The
memory pool 2130 performs as previously described memory pools in FIGS.
19 and 20. In one embodiment, decoded cell information is stored in one or
more FIFOs along with corresponding timing, place of origin, destination, and
similar information.

[00218] Interface connections 2106 and 2.108‘ connect previously described
interface adapters to the bus translator 2102 through the SERDES 2124. In
one embodiment, the connections 2106 and 2108 are serial links. In another
embodiment, the serial links are divided four lanes.

[00219] In one embodiment, the bus translator 2102 is an IBT 304 that
translates one or more 4 Gbps parallel IPC/IGC components into four 3.125
Gbps serial XAUI interface links or lanes. In one embodiment, the back
planes are the IPC/IGC interface connections. The bus translator 2102 formats
incoming data into one or more cell formats.

[00220] Inone embodiment, the cell format can be a four byte header and a 32
byte data payload. In a further embodiment, each cell is separated by a special
K character into the header. In another embodiment, the last cell of a packet is
indicated by one or more special K1 characters.

[00221] The cell formats can include both fixed length cells and variable length
cells. The 36 bytes (4 byte header plus 32 byte payload) encoding is an

example of a fixed length cell format. In an alternative embodiment, cell

WO 02/41544 PCT/US01/43113
51

formats can be implemented where the cell length exceeds the 36 bytes (4
bytes + 32 bytes) previously described.

[00222] In FIG. 21B, a functional block diagram shows the data paths with
reception components of the bus translator. Packet decoders 2150a-b forward
packet data to the FIFOs and headers in pairs. For example, packet decodex
2150a forwards packet data to FIFO 2152a-b and side-band information to
header 2154. A similar process is followed for packet decoder 2150b. Packet
decoder 2150b forwards packet data to FIFO 2156a-b and side-band
information to header 2158. Cell encoder(s) 2160 receive the data and control
information and produce cells to serializer/deserializer (SERDES) circuits,
shown as their functional components SERDES special character 2162, and
SERDES data 2164a-b. The SERDES special character 2162 contains the
special characters used to indicate the start and end of a cell’s data payload.
The SERDES data 2164a-b contains the data payload for each cell, as well as
the control information for the cell. Cell structure is described in additional
detail below, with respect to FIG. 21E.

[00223] The bus translator 2102 has memory pools 2116 to act as internal data
buffers to handle pipeline latency. For each IPC/IGC component, the bus
translator 2102 has two data FIFOs and one header FIFO, as shown in FIG.
21A as the FIFOs of memory pool 2116 and in FIG. 21B as elements 2152a-b,
2154, 2156a-b, and 2158. In one embodiment, side band information is stored
in each of the headers A or B. 32 bytes of data is stored in one or more of the
two data FIFOs Al, A2, or B1, B2 in a ping-pong fashion. The ping-pong
fashion is well—kﬁown in the relevant art and involves alternating fashion.

[00224] In one embodiment, the cell encoder 2160 merges the data from each
of the packet decoders 2150a-b into one 10Gbps data stream to the interface
adapter. The cell encoder 2160 merges the data by interleaving the data at
each cell boundary. Each cell boundary is determined by the special K
characters.

[00225] According to one embodiment, the received packets are 32 bit aligned,
while the parallel interface of the SERDES elements is 64 bit wide.

WO 02/41544 PCT/US01/43113
52

[00226] In practice it can be difficult to achieve line rate for any packet length.
Line rate means maintaining the same rate of output in cells as the rate at
which packets are being received. Packets can have a four byte header
overhead (SOP) and a four byte tail overhead (EOP). Therefore, the bus
translators 2102 must parse the packets without the delays of typical parsing
and routing components. More specifically, the bus translators 2102 formats
parallel data inot cell format using special K characters, as described in more
detail below, to merge state information and slot information (together, control
information) in band with the data streams. Thus, in one embodiment, each 32
bytes of cell data is accompanied by a four byte header.

100227] FIG. 21C shows a functional block diagram of the data paths with
transmission components of the bus translator according to one embodiment of
the present invention. Cell decoder(s) 2174 receive cells from the SERDES
circuit. The functional components of the SERDES circuit include elements
2170, and 2172a-b. The control information and data are parsed from the cell
and forward to the memory pool(s). In one embodiment, FIFOs are
maintained in pairs, shown as elements 2176a-b and 2176c-d. Each pair
forwards control information and data to packet encoders 2178a-b.

[00228] FIG. 21D shows a functional block diagram of the data paths with
native mode reception components of the bus translator according to one
embodiment of the present invention. In one embodiment, the bus translator
2102 can be configured into native mode. Native mode can include when a
total of 10Gbps connections are maintained at the parallel end (as shown by
CMOS T/Os 2112) of the bus translator 2102. In one embodiment, due to the
increased bandwidth requirement (from 8Gbps to 10Gbps), the cell format
length is no longer fixed at 32 bytes. In embodiments where 10Gbps traffic is
channeled through the bus translator 2102, control information is attached
when the bus translator 2102 receives a SOP from the device(s) on the 10Gbps
link. In an additional embodiment, when the bus translator 2102 first detects a
data transfer and is, therefore, coming to an operational state from idle, it

attaches control information.

WO 02/41544 PCT/US01/43113
53

[00229] In an additional embodiment, as shown in FIG. 21D, two separate data
FIFQOs are used to temporarily buffer the up-linking data; thus avoiding
existing timing paths.

[00230] Although a separate native mode data path is not shown for cell to
packet translation, one skilled in the relevant art would recognize how to
accomplish it based at least on the teachings described herein. For example,
by configuring two FIFOs for dedicated storage of 10Gbps link information.
In one embodiment, however, the bus translator 2102 processes native mode
and non-native mode data paths in a shared operation as shown in FIGS. 19,
20, and 21. Headers and idle bytes are stripped from the data stream by the
cell decoder(s), such as decoder(s) 2103 and 2174. Valid data is parsed and
stored, and forwarded, as previously described, to the parallel interface.

[00231] In an additional embodiment, where there is a zero body cell format
being received by the interface adapter or BIA, the IBT 304 holds one last data
transfer for each source slot. When it receives the EOP with the zero body cell

formaf, the last one or two transfers are released to be transmitted from the

parallel interface.
S. Narrow Cell and Packet Encoding Processes
[00232] FIG. 21E shows a block diagram of a cell format according to one

embodiment of the present invention. FIG. 21E shows both an example
packet and a cell a;:cording to the embodiments described herein. The
example packet shows a start of packet 2190a, payload containing data 2190b,
end of packet 2190c, and inter-packet gap 2190c.

[00233] According to one embodiment of the present invention, the cell
includes a special character KO 2190; a control information 2194; optionally,
one or more reserved 2196a-b; and data 2198a-n. In an alternate embodiment,

data 2198a-n can contain more than D0-D31.

WO 02/41544 PCT/US01/43113
54

[00234] In one embodiment, the four rows or slots indicated in FIG. 21E
illustrate the four lanes of the serial link through which the cells are
transmitted and/or received.

[00235] As previously described herein, the IBT 304 transmits and receives
cells to and from the BIA 302 through the XAUI interface. The IBT 304
transmits and receives packets to and from the IPC/IGC components, as well
as other controller components (i.e., L0GE packet processor) through a parallel
interface. The packets are segmented into cells which consist of a four byte
header followed by 32 bytes of data. The end of packet is signaled by K1
special character on any invalid data bytes within four byte of transfer or four
K1 on all XAUI lanes. In one embodiment, each byte is serialized onto one
XAUI lane. The following table illustrates in a right to left formation a byte
by byte representation of a cell according to one embodiment of the present

invention:

ed red

[00236] The packets are formatted into cells that consist of a header plus a data
payload. The 4 bytes of header takes one cycle or row on four XAUI lanes. It
has KO special character on Lane0 to indicate that current transfer is a header. -
The control information starts on Lanel of a header.

[00237] In one embodiment, the IBT 304 accepts two IPC/IGC back plane

buses and translates them into one 10Gbps serial stream.

WO 02/41544 PCT/US01/43113
55

[00238] In FIG. 22, a flow diagram of the encoding process of the bus
translator according to one embodiment of the present invention is shown.
The process starts at step 2202 and immediately proceeds to step 2204.

[00239] In step 2204, the IBT 304 determines the port types through which it
will be receiving packets. In one embodiment, the ports are configured for
AGbps traffic from IPC/IGC components. The process immediately proceeds
to step 2206.

[00240] In step 2206, the IBT 304 selects a cell format type based on the type
of traffic it will be processing. In one embodiment, the IBT 304 selects the
cell format type based in part on the port type determination of step 2204. The
process immediately proceeds to step 2208.

[00241] In step 2208, the IBT 304 receives one or more packets from through
its ports from the interface connections, as previously described. The rate at
which packets are delivered depends on the components sending the packets.
The process immediately proceeds to step 2210.

'[00242] In step 2210, the IBT 304 parses the one or more packets received in
step 2208 for the information contained therein. In one embodiment, the
packet decoder(s) of the IBT 304 parse the packets for the information
contained within the payload section of the packet, as well as the control or
routing information included with the header for that each given packet. The
process immediately proceeds to step 2212.

[00243] In step 2212, the IBT 304 optionally stores the information parsed in
step 2210. In one embodiment, the memory pool(s) of the IBT 304 are
utilized to store the information. The process immediately proceeds to step
2214.

[00244] In step 2214, the IBT 304 formats the information into one or more
cells. In one embodiment, the cell encoder(s) of the IBT 304 access the
information parsed from the one or more packets. The information includes
the data being trafficked as well as slot and state information (i.e., control

information) about where the data is being sent. As previously described, the

WO 02/41544 PCT/US01/43113
56

cell format includes special characters which are added to the information.
The process immediately proceeds to step 2216.

[00245] In step 2216, the IBT 304 forwards the formatted cells. In 'one
embodiment, the SERDES of the IBT 304 receives the formatted cells and
serializes them for transport to the BIA 302 of the present invention. The
process continues until instructed otherwise.

[00246] In FIGS. 23A-B, a detailed flow diagram shows the encoding process
of the bus translator according to one embodiment of the present invention.
The process of FIGS. 23A-B begins at step 2302 and immediately flows to
step 2304.

[00247] In step 2304, the IBT 304 determines the port types through which it
will be receiving packets. The process immediately proceeds to step 2306.

[00248] In step 2306, the IBT 304 determines if the port type will, either
individually or in combination, exceed the threshold that can be maintained.
In other words, the IBT 304 checks to see if it can match the line rate of
incoming packets without reaching the internal rate maximum. If it can, then
the process proceeds to step 2310. In not, then the process proceeds to step
2308. 4

[00249] In step 2308, given that the IBT 304 has determined that it will be
operating at its highest level, the IBT 304 selects a variable cell size that will
allow it to reduce the number of cells being formatted and forwarded in the
later steps of the process. In one embodiment, the cell format provides for
cells of whole integer multiples of each of the one or more packets received.
In another embodiment, the IBT 304 selects a cell format that provides for a
variable cell size that allows for maximum length cells to be delivered until
the packet is completed. For example, if a given packet is 2.3 cell lengths,
then three cells will be formatted, however, the third cell will be a third that is
the size of the preceding two cells. The process immediately proceeds to step
2312.

[00250] In step 2310, given that the IBT 304 has determined that it will not be
operating at its highest level, the IBT 304 selects a fixed cell size that will

WO 02/41544 PCT/US01/43113
57

allow the IBT 304 to process information with lower processing overhead.
The process immediately proceeds to step 2312.

[00251] In step 2312, the IBT 304 receives one or more packets. The process
immediately proceeds to step 2314.

[00252] In step 2314, the IBT 304 parses the control information from each of
the one or more packets. The process immediately proceedé to step 2316.

[00253] In step 2316, the IBT 304 determines the slot and state information for
each of the one or more packets. In one embodiment, the slot and state
information is determined in part from the control information parsed from
each of the one or more packets. The process immediately proceeds to step
2318.

[00254] In step 2318, the IBT 304 stores the slot and state information. The
process immediately proceeds to step 2320.

[00255] In step 2320, the IBT 304 parses the payload of each of the one or
more packets for the data contained therein. The process immediately
proceeds to step 2322.

[00256] In step 2322, the IBT 304 stores the data parsed from each of the one
or more packets. The process immediately proceeds to step 2324.

[00257] In step 2324, the IBT 304 accesses the control information. In one
embodiment, the cell encoder(s) of the IBT 304 access the memory pool(s) of
the IBT 304 to obtain the control information. The process immediately
proceeds to step 2326.

[00258] In step 2326, the IBT 304 accesses the data parsed from each of the
one or more packets. In one embodiment, the cell encoder(s) of the IBT 304
access the memory pool(s) of the IBT 304 to obtain the data. The process
immediately proceeds to step 2328.

[00259] In step 2328, the IBT 304 constructs each cell by inserting a special
character at the beginning of the cell currently being constructed. In one
embodiment, the special character is KO. The process immediately proceeds
to step 2330.

WO 02/41544 PCT/US01/43113
58

[00260] In step 2330, the IBT 304 inserts the slot information. In one
embodiment, the IBT 304 inserts the slot information into the next lane, such
as space 2194. The process immediately proceeds to step 2332.

[00261] In step 2332, the IBT 304 inserts the state information. In one
embodiment, the IBT 304 inserts the state information into the next lane after
the one used for the slot information, such as reserved 2196a. The process

immediately proceeds to step 2334.

[00262] In step 2334, the IBT 304 inserts the data. The process immediately
proceeds to step 2336.
[00263] In step 2336, the IBT 304 determines if there is additional data to be

formatted. For example, if there is remaining data from a given packet. If so,
then the process loops back to step 2328. If not, then the process immediately
proceeds to step 2338.

[00264] In step 2338, the IBT 304 inserts the special character that indicated
the end of the cell transmission (of one or more cells). In one embodiment,
when the last of a cells is transmitted, the special character is K1. The process
proceeds to step 2340.

[00265] In step 2340, the IBT 304 forwards the cells. The process continues
until instructed otherwise.

[00266] In FIG. 24, a flow diagram illustrates the decoding process of the bus
translator according to one embodiment of the present invention. The process
of FIG. 24 begins at step 2402 and immediately proceeds to step 2404.

[00267] In step 2404, the IBT 304 receives one or more cells. In one
embodiment, the cells are received by the SERDES of the IBT 304 and
forwarded to the cell decoder(s) of the IBT 304. In another embodiment, the
SERDES of the IBT 304 forwards the cells to a synchronization buffer or
queue that temporarily holds the cells so that their proper order can be
maintained. These steps are described below with regard to steps 2406 and
2408. The process immediately proceeds to step 2406.

[00268] In step 2406, the IBT 304 synchronizes the one or more cells into the

proper order. The process immediately proceeds to step 2408.

WO 02/41544 PCT/US01/43113
59

[00269] In step 2408, the IBT 304 optionally checks the one or more cells to
determine if they are in their proper order.

[00270] In one embodiment, steps 2506, 2508, and 2510 are performed by a
synchronization FIFO. The process immediateI;/ proceeds to step 2410.
[00271] In step 2410, the IBT 304 parses the one or more cells into control
information and payload data. The process immediately proceeds to step

2412.

[00272] In step 2412, the IBT 304 stores the control information payload data.
The process immediately proceeds to step 2414.

[00273] In step 2414, the IBT 304 formats the information into one or more
packets. The process immediately proceeds to step 2416.

[00274] In step 2416, the IBT 304 forwards the one or more packets. The
process continues until instructed otherwise.

[00275] In FIGS. 25A-B, a detailed flow diagram of the decoding process of
the bus translator according to one embodiment of the present invention is
shown. The process of FIGS. 25A-B begins at step 2502 and immediately
proceeds to step 2504.

[00276] In step 2504, the IBT 304 receives one or more cells. The process
immediately proceeds to step 2506.

[00277] In step 2506, the IBT 304 optionally queues the one or more cells. The

‘ process immediately proceeds to step 2508.

[00278] In step 2508, the IBT 304 optionally determines if the cells are arriving
in the proper order. If so, then the process immediately proceeds to step 2512.
If not, then the process immediately proceeds to step 2510.

[00279] In step 2510, The IBT 304 holds one or more of the one or more cells
until the proper order is regained. In one embodiment, in the event that cells
are lost, the IBT 304 provides error control functionality, as described herein,
to abort the transfer and/or have the transfer re-initiated. The process
immediately proceeds to step 2514.

[00280] In step 2512, the IBT 304 parses the cell for control information. The

process immediately proceeds to step 2514.

WO 02/41544 PCT/US01/43113

60

[00281] In step 2514, the IBT 304 determines the slot and state information.
The process immediately proceeds to step 2516.

[00282] In step 2516, the IBT 304 stores the slot and state information. The
process immediately proceeds to step 2518.

[00283] In one embodiment, the state and slot information includes

configuration information as shown in the table below:

Field Name Description
State[3:0] Slot Number Destination slot number from IBT to SBIA.
IPC can address 10 slots(7 remote, 3 local)
and IGC can address 14 slots (7 remote and 7 local)
State [5:4] Payload State Encode payload state:
00 - RESERVED
01 - SOP
10-DATA
11 - ABORT
State[6] Source/ Encode source/destination IPC id number:
Destination 0 - to/from TPCO
PC 1 - to/from IPC1
State [7] Reserved Reserved
[00284] In one embodiment, the IBT 304 has configuration registers. They are
used to enable Backplane and IPC/IGC destination slots.
[00285] In step 2518, the IBT 304 parses the cell for data. The process
immediately proceeds to step 2520.
[00286] In step 2520, the IBT 304 stores the data parsed from each of the one
or more cells. The process immediately proceeds to step 2522.
[00287] In step 2522, the IBT 304 accesses the control information. The
process immediately proceeds to step 2524.
[00288] In step 2524, the IBT 304 access the data. The process immediately
proceeds to step 2526.
[00289] In step 2526, the IBT 304 forms one or more packets. The process

immediately proceeds to step 2528.

WO 02/41544 PCT/US01/43113
61

[00290] In step 2528, the IBT 304 forwards the one or more packets. The

process continues until instructed otherwise.

T. Administrative Process and Error Control

[00291] This section describes potential error conditions that might occur in ‘
serial links and cross-point switches in the backplane as well as various error
control embodiments of the present invention. Various recovery and reset
routines of the present invention are also described.

[00292] The routines described herein are generally designed to detect, prevent,
and recover from errors of the following nature:

[00293] 1) Link Error — Link error occurs as a result of a bit error or a byte
alignment problem within a SERDES. Since the clock is recovered from the
data stream, there is a possibility of a byte alignment problem if there isn’t
enough data transition. Bit error can also occur as a result of external noise on
the line. The SERDES can also detect exception conditions such as SOP
characters in lane 1 and can mark them as link errors.

[00294] 2) Lane Synchronization Error — The lane is defined as one serial
link among the four serial links that make up the 10 Gbps SERDES. As
described elsewhere herein, there are four deep FIFOs within the SERDES
core to compensate for any transmission line skew and synchronize the lanes
such as to present a unified 10 Gbps stream to the core logic. There are
possible cases where the FIFOs might overflow or underflow, which can result
in lane synchronization error. There are also scenarios when a lane
synchronization sequence might determine a possible alignment problem.

[00295] 3) Stripe Synchronization Error — Stripe synchronization error
refers to any error in the flow of wide cells of data sent across multiple stripes
through the switching fabric according to the invention. Such stripe
synchronization errors (also referred to as stripe synchronization error
conditions or simply error conditi’ons) can be due to a link error in a serial pipe

leading to or from a cross-point, or to an error in the cross-point itself.

WO 02/41544 PCT/US01/43113
62

[00296] In one embodiment, a receiving BIA contains deep FIFOs (such as 56
or 64 FIFOs) that are sorted according to sending source and stripe. Stripe
synchronization errors can be detected by monitoring the FIFOs and detecting
an overflow and/or underflow of one or more FIFOs within the striped data
paths. In other scenarios, the stripes may become completely out of
synchronization. In one recovery embodiment, some or all of the XPNT
modules would arbitrate independently, as the XPNT modules operate
independently, as described elsewhere herein, to clear the FIFOs affected and
recover from a known state.

[00297] Additional error conditions and combinations of error conditions are
possible, as would be apparent to one skilled in the relevant art(s) based at
least on the teachings herein.

[00298] The routines for detection and prevention of these error conditions are
summarized immediately below and described with respect to detailed
embodiments of the present invention thereafter.

[00299] In general, the present invention can manage the bus translator as
illustrated in FIG. 26. In FIG. 26, a flow diagram shows the administrating
process of the bus translator according to one embodiment of the present
invention. The' process of FIG. 26 begins at step 2602 and immediately
proceeds to step 2604.

[00300] In step 2604, the IBT 304 determines the status of its internal
components. The process immediately proceeds to step 2606.

[00301] In step 2606, the IBT 304 determines the status of its links to external
components. The process immediately proceeds to step 2608.

[00302] In step 2608, the IBT 304 monitors the operations of both the internal
and external components. The process immediately proceeds to step 2610.

[00303] In step 2610, the IBT 304 monitors the registers for administrative
commands. The process immediately proceeds to step 2612.

[00304] In step 2612, the IBT 304 pérforms resets of given components as

instructed. The process immediately proceeds to step 2614.

WO 02/41544 PCT/US01/43113
63

[00305] In step 2614, the IBT 304 configures the operations of given
components. The process continues until instructed otherwise.

[00306] In one embodiment, any errors are detected on the receiving side of the
BIA 302 are treated in a fashion identical to the error control methods
described herein for errors received on the XPNT 202 from the BIA 302. In
operational embodiments where the destination slot cannot be known under

certain conditions by the BIA 302, the following process is carried out by BIA

302:
[00307] a. Send an abort of packet (AOP) to all slots.
[00308] b. Wait for error to go away, that is, when buffers are

cleared or flushed.

[00309] o Once buffers are clear, sync to the first KO token with
SOP to begin accepting data.

[00310] In the event that an error is detected on the receiving side of the IBT
304, it is treated as if the error was seen by the BIA 302 f‘rom IBT 304. The

following process will be used:

[00311] a. Send an AOP to all slots of down stream IPC/IGC to
terminate any packet in progress.

[00312] b. Wait for buffers to fill and clear error causing data.

[00313] c. Sync to KO token after error goes away (after buffers

are flushed) to begin accepting data.
) BIA Administrative Module

[00314] In one embodiment, administrative module 676 of FIG. 6 provides the
monitoring, detection and correction functionality of the present invention. As
Among other things, administrative module 676 handles stripe
synchronization errors. As shown in FIG. 28A, administrative module 676
can include a level monitor 2806, a stripe synchronization error detector 2808,
a control character (K2) presence tracker 2810, and a flow controller 2812.

Level monitor 2806 checks FIFOs and determines the amount of data within

WO 02/41544 PCT/US01/43113
64

each FIFO and/or within a group FIFOs associated with a particular stripe and
source (such as a slot or a particular source packet processor of a slot).

[00315] Stripe synchronization error detector 2808 detects stripe
synchronization errors based on the conditions of the FIFOs monitored by
level monitor 2806. A stripe synchronization error can be any error in the
flow of wide cells of data sent across multiple stripes through the switching
fabric according to the invention. Such stripe synchronization errors can be
due to a link error in a serial pipe leading to or from a cross-point, or to an
error in the cross-point itself. For clarity, a link error in a serial pipe leading
from a sending BIA to a cross-point is referred to as an “incoming link error”,
and a link error in a serial pipe leading from a cross-point to a receiving BIA is
referred to as an “outgoing link error.” When a stripe synchronization error is
detected, stripe synchronization error detector 2808 sends a signal to flow
controller 2812. Flow controller 2812 then initiates an appropriate recovery
routine to re-synchronize data flow across the stripes in the switching fabric.
Among other things, such a recovery routine can involve sending control
characters (such as a special K2 characters) across the stripes in the switching
fabric. Control character (K2) presence tracker 2810 monitors special K2
characters received in the data flow at a BIA. Flow controller 2812 also
provides control logic for the administrative module 676 and the modules
therein. Flow controller 2812 allows the modules of the administrative
module 676 to perform their functions as described herein by the transmitter
and receiving information regarding the status of the various FIFOs, BIAs,
XPNTs, and other components of the present invention. Examples of
detection and recovery from stripe synchronization errors are described further
below with respect to FIG. 28B.

[00316] FIG. 28B is a diagram that illustrates a switch 2800B having slots
2852, 2854 coupled through five cross points (SXPNTs) 2856A-E to a slot
2852 according to the present invention. Slot 2852 includes a set of sync-
receive queues or FIFOs 2860. Serial link 2853 couples slot 2852 and cross
point 2856A. Serial link 2857 couples cross point 2856A and slot 2858. Slots

WO 02/41544 PCT/US01/43113
65

2852, 2854 are also réferred to as slot 0 and slot 1, respectively, and slot 2858
is also referred to as slot 2. For clarity, only two slots are shown in this
example; however, additional slots can be added.

[00317] Consider an example where wide cells of data are sent from slots 0 and
1 across stripes 0-4 through respective cross points 2856A-E to slot 2858.
One type of error can occur when link 2853 between the slot0 2852 to xpnt0
2856A is broken. In such an event, xpnt0 2856A will detect a broken link
which will result in it sending an error signal back to the source slot0 2852.
This will cause the slot0 2852 to stop sending traffic and send out a K2
sequence. The xpnt0 2856A can also send an abort cell (AOP) to all the
destinations in order to notify them that an error has occurred. In one
embodiment, this is done as soon as error is detected.

[00318] In other embodiments, there is, momentarily, a situation where xpntl
2856B through xpnt4 2856E are still sending data from slot0 2852 and slotl
2854 to slot2 2858, while xpnt0 2856A is sending data only from slotl 2854
because link 2853 is broken between slot0 2852 and xpnt0 2856A. This can
cause a sync queue in slot2 2858 that corresponds to the stripe0/slotl link to
overflow since it will receive more data from slotl 2854 than the other stripes
and an underflow for the queue in slot2 2858 that corresponds to stripe0/slot0
2852 since that link is broken. FIG. 31 shows an example of how such an
error condition in an incoming link 2853 is evident in the levels of data present
in FIFOs 2862 in slot 2. FIG. 31 shows ten FIFOs 2862 sorted by stripe and
source slot. In this example, five stripes 0-4 and two slot 0 and 1 are shown.
As shown in FIG. 31, the incoming link error causes a sync queue in slot2
2858 that corresponds to the stripe0/slotl link to overflow since it will receive
more data from slotl 2854 than the other stripes and an underflow for the
queue in slot2 2858 that corresponds to stripe0/slot0 2852 since link 2853 is
broken.

[00319] Administrative module 676 can detect this type of strip
synchronization error condition as follows. Level monitor 2806 monitors the

levels of each of the FIFOs 2862. Stripe synchronization error detector 2808

WO 02/41544 PCT/US01/43113
66

then detects the presence of any overflow and/or underflow condition in the
levels of the sorted FIFOs. In this example of an incoming link error, stripe
synchronization error detector 2808 would detect the occurrence of the
underflow condition in the FIFO for stripe0/slot0 and the overflow condition
in the FIFO for stripe0/slotl. Stripe synchronization error detector 2808 sends
a signal to flow controller 2812. Flow controller 2812 then initiates an
appropriate recovery routine to re-synchronize data flow across the stripes in
the switching fabric. Among other things, such a recovery routine can involve
sending control characters (such as a special K2 characters) from slot0 across
the stripes in the switching fabric. Control character (K2) presence tracker
2810 monitors special K2 characters received in the data flow at a BIA.

[00320] In the embodiment described above, when the slot0 2852 is able to, it
sends out a K2 sequence that will allow the queues to sync up. The sync is
done at the first KO character that comes from slot0 2852 with SOP, in other
words, sync to 1st new packet after K2. Since the sync queue corresponding
to slot 1/stripe0 in slot2 2858 can overflow, there will be a flow control event
sent from slot2 2858 to xpnt0 2856A to stop sending data from slotl 2854 thus
allowing the traffic from slot1 2854 not to be effected as a result of the slot0
2852 link failure and maintain synchronization for data from slotl 2854.

[00321] In another example, where the XPNTO 2856A goes down and is no
longer operational. In such a case, the switch shown in FIG. 28B breaks
down. The overall system can still function in the presence of a redundant
switch fabric and the redundant fabric transceiver (RFT) of the present
invention, as described below. In such a case, the RFT can detect the link
failure and follows the steps outlined in the below to switch over to the fabric
of an alternative switch.

[00322] Still another example is when the link 2857 between xpnt0 2856A to
slot2 2858 is broken. In such a case, the BIA at slot2 detects the break. In one
embodiment, a RET of the BIA detects the break, as described below with
respect to embodiments of the present invention. Flow controller 2812 of the

BIA sends a flow control event/signal back to the xpnt0 2856A which will get

WO 02/41544 PCT/US01/43113
67

propagated back to slot0 2852, slotl 2854, and any slots present in the system.
This can cause the source slots to stop sending traffic to slot2 2858. These
slots can still send traffic to other destination slots, similar to slot2 2858. In
the meantime, the BIA will abort any partial packets that it has received and
wait for the K2 sequence to recover the link. As described herein, it will sync
to the first SOP following a K2. The presence of a first SOP following a K2
can be detected by control character presence tracker 2810.

[00323] The functionality of the administrative module 676 is further described
with respect to FIG. 29. In FIG. 29, a flow diagram illustrating a routine for
maintaining synchronization of striped cell traffic is described.

[00324] In step 2902, module 676 sends a common control character in striped
cells in all the lanes for a predetermined number of cycles. In one
embodiment, a number of the common control characters are sent through the
system.

[00325] In ;c,tep 2904, module 676 evaluates the common control characters
received in stripe receive synchronization queues. The module 676 evaluates
the received common control characters to determine whether the system is re-
synchronized.

[00326] In step 2906, the module 676 determines the re-synchronization
condition. If the system is re-synchronized, then the routine proceeds to step
2910. If not, then the system proceeds to step 2908. In one embodiment, the
module 676 determines if the FIFOs are all empty or cleared at the same time.
In another embodiment, the module 676 is checks the state bits for each of the
FIFOs.

[00327] In step 2908, the module 676 generates an error messages or other
administrative signal. In one embodiment, the module 676 generates an error
message such that the other components of the system begin recovery
measures anew.

[00328] In step 2910, the module 676 returns to step 2902 and awaits reception

of an error condition or other administrative command to begin routine 2900.

WO 02/41544 PCT/US01/43113
68

[00329] Another routine of the module 676 is illustrated in FIG. 30. In FIG.
30, a flow diagram (routine) 3000 shows a routine for detecting out of
synchronization traffic flow through a cross point switch in a backplane
switching fabric. In one embodiment, the routine 3000 allows the module 676
to determine when routine 2900 is required.

[00330] In step 3002, the module 676 monitors the levels of sﬁipe receive
synchronization queues. In one embodiment, level monitor 2806 performs this
function within the module 676.

[00331] In step 3004, the module 676 determines whether an out of
synchronization queue threshold, such as, an overflow and/or underflow
condition, is detected. In one embodiment, stripe synchronization error
detector 2808 performs this function within the module 676. If so, then the
process proceeds to step 3006. If not, then the process proceeds to step 3002.
In one embodiment, the module 676 transmits a no error message or signal
that can be received by other systems and logged for future reference.

[00332] In step 3006, the module 676 generates an out of synchronization
message or other administrative signal that alerts the other components of the
present invention that synchronization has been lost. In one embodiment, flow
controller 2812 sends a signal back to the transmitting SXPNT which is
further sent back to the RFT, which can then instantiate the K2 sequence of
the present invention, as described elsewhere herein.

[00333] In step 3008, the module 676 initiates a re-synchronization routine for
striped cell traffic across all lanes. In one embodiment, the module 676
initiates the routine of FIG. 29.

[00334] Administrative module 676, and any of a level monitor 2806, a stripe
synchronization error detector 2808, a control character (K2) presence tracker
2810, and a flow controller 2812, can be implemented in software, firmware,
hardware or any combination thereof. Further, the functionality carried out in
administrative module 676, and each of level monitor 2806, stripe
synchronization error detector 2808, control character (K2) presence tracker

2810, and flow controller 2812, is described for convenience with respect to

WO 02/41544 PCT/US01/43113
69

modules or blocks; however, the boundaries of such modules and distribution
of functionality there between is illustrative and not intended to limit the
present invention. Indeed, the functionality of administrative module 676, and
each of level monitor 2806, stripe synchronization error detector 2808, control
character (K2) presence tracker 2810, and flow controller 2812, can be

combined into one module or distributed across any combination of modules.

(2) Redundant Fabric Transceivers

[00335] Additional detailed embodiments of the present invention are described
immediately herein with respect to the implementation of one or more
redundant fabric transceivers (RFTs) that implement the features of module
676.

[00336] According to embodiments of the present invention, RFT ASICs are a
bridge between one SBIA ASIC and two switching fabric modules (SFMs) in
order to provide switching redundancy in the switching system described
herein.

[00337] FIGs. 32A-B show the basic connections of a switch fabric. In FIG.
32A, a diagram 3200A shows a non-redundant switching system. The blade A
3202 communicates with blade B 3206 through switch A 3204. Both blades A
and B handle ingress and egress traffic. In FIG. 32B, a diagram 3200B shows
a redundant switching system. The blade A 3202 communicates with blade B
3206 through two switches, A & B, 3204 and 3205 respectively. Multiplexer
(MUX) 3208 selects between the two signals from switches 3204 and 3205.

[00338] In the redundant switching case of FIG. 32B, the fabric active 3210
provides a signal to all the slave modules (ingress and egress). In one
embodiment, point-to-point serial links are used on the backplane. This
redundant approach uses twice the serial links as a non-redundant approach.
Thus, the ingress module 3202 sends incoming traffic to the active SFM and
sends idle traffic patterns to the standby SFM. In an embodiment, the active

SFM would be switch 3204 and the standby SFM would be switch 3205. The

WO 02/41544 PCT/US01/43113
70

egress blade 3206 would receive two data paths of traffic from these SFMs.
The egress blade 3206 would be able to select the active signals as instructed
by the fabric active 3210.

[00339] Thus, the RFT of the present invention provides redundant switching
and is capable of performing the following tasks: 1) operations as a
multiplexer and de-multiplexer; ii) sorting of traffic based on encoded
source/destination slot information in order to handle flow control; iii) flow
control generation; iv) SERDES; and v) etror handling. As such, the RFT is
an implementation of the present invention that performs the previously
detailed features described herein with regard to the module 676.

[00340] FIG. 33A shows a detailed diagram 3300A showing one embodiment
where the RFT is implemented in a redundant system. As shown, switching
blade (SFM-A) 3302 and switching blade (SFM-B) 3304 are coupled to
backplane 3306, which is in turn coupled to Ingress/Egress Blade (Slave
Module) 3308. Each of blades 3302 and 3304 include SXPNTs for
transmitting and receiving data through data paths. As shown in FIG. 33A,
blade 3302 includes SXPNTs 3310A-E, and blade 3304 includes SXPNTs
3312A-E. Each of the groups of SXPNTs 3310A-E and 3312A-E are coupled,
respectively, to data paths 3311A-E and 3313A-E through the backplane
connection 3306 to one or more RFTs 3316A-E within the blade 3308.

[00341] Within the blade 3308, in one embodiment, there is one RFT for each
stripe received. The RFTs 3316A-E forward the received data to a SBIA
3320. In an alternative embodiment, one RFT provides a bridge for the XAUI
links (e.g., 15 links, 10 links from the two switching blades, and 5 links the
SBIA). Such an implementation would likely require several dozen SERDES,
since one reliable embodiment calls for four SERDES for each XAUI link).
Furthermore, using a single RFT may introduce vulnerability to the system as
the one RFT would handle all traffic. Therefore, the illustrated embodiment of
five RFT modules provides a logical division of the processing workload.

[00342] FIG. 33B shows a diagram 3300B of a RFT, according to one
embodiment of the present invention. In FIG. 33B, RFT 3300B is shown

WO 02/41544 PCT/US01/43113
71

implemented as RFT 3316A would be implemented, with respect to stripeO
traffic from SXPNTs 3310A and 3312A. As described elsewhere herein, the
SERDES 3350 and 3352 provide the data interface and route traffic to
SYNCHQ FIFOs 3354 and 3356, respectively, as shown in FIG. 33B.

[00343] In one embodiment, the received serial data is converted to parallel
data by the SERDES, as described elsewhere herein. Along with the data, a
clock can be recovered from the incoming data stream. Thus, each SERDES
will generate a clock recovered from the data. In one embodiment, the FIFOs
3354 and 3356 provide clock compensation for transmit and receiving data by
adding and/or removing idle characters to/from the FIFO data stream. Both
FIFOs 3354 and 3356 feed into MUX 3358. MUX 3358 combines the
incoming traffic and splits the outgoing traffic and provides both data/control
signals and flow control signals for redundant stripes.

[00344] In one embodiment, all traffic is routed into a symmetric architecture
for uplink/downlink logic. This architecture is shown in FIG. 33B by
cdmponents 3360, 3362, and 3364, and also by 3366, 3368, and 3370. Both
BIA_RX 3370 and BP_RX 3360 receive de-serialized and synchronized
packet data from FIFOs. SYNCQ FIFO 3372 performs the same functions as
FIFOs 3354 and 3356 described above, but with respect to SERDES 3374,
BIA_RX 3370 sorts the data into seven logic data queues in the
UPLINK_RAM 3368 based on the encoded destination slot number (e.g., the
seven queues are used to sort packets with different destinations). Similarly,
BP_RX sorts data into DOWNLINK_RAM 3362 based on encoded source
slot number.

[00345] In one embodiment, any latency in the SERDES 3350, 3352, and 3374
is compensated for by throttling the traffic at the seven logic data queues
described above.

[00346] Both BIA_TX 3364 and BP_TX 3366 modules arbitrate the read
operation from the downlink/uplink ram, 3362 and 3368, respec[tively, and

compose data for transmission.

WO 02/41544 PCT/US01/43113
72

[00347] RFT registers 3376 provides access to internal registers that can be
managed from module 676. The operations of the modules of RFT 3300B
depend on the parameters set in the registers of module 3376. In one
embodiment, the module 3376 provides the module 676 with information
about the status of the modules of the RFT 3300B.

[00348] As described above with respect to FIG. 33A, the backplane provides
the connection between switching fabric modules and the slave modules. In
one embodiment, this connection can include of the following signals: i) Serial
TX and RX pairs; ii) flow control data and sync; iii) control signals, such as,
but not limited to cross point error signal, intercept signal, and fabric active
signal; and iv) clock distribution.

[00349] The packet-encoding scheme is described in detail with respect to
sections I and J above, and the striping scheme is illustrated with respect to
FIG. 15A. With particular attention to the RFT, the processes of FIGs. 26, 29,
and 30 are described with respect to the RFT of the present invention.

[00350] In one embodiment, the maximum size of a payload for transfer in the
backplane is 160 bytes (148 bytes of data max, 10 bytes of “Start of Cell”
(SOC) control information, and 2 bytes reserved. A complete 160-byte
transfer, in this embodiment, is referred to as a “cell,” as described elsewhere
herein cells are not limited by this embodiment. Thus, a cycle is a single 3.2ns
clock pulse (i.e. 312.5 MHZ). The cell transfer can accomplished (as shown
in FIG. 15A) in 20 byte “blocks,” in 8 consecutive cycles.

[00351] The “state” byte can be assigned as shown in the following table:
Field Name Description
State [3:0] SlotNumber Destination slot number for sBIA to sXPNT

and Source Slot Number for sXPNT to sBIA.
sBIA will send IDLE packets to slot 7

State [5:4] PayloadState Encode payload state:
' 00 —RESERVED

01-SOP

10 -DATA

11 - ABORT
State [7] Reserved Reserved

WO 02/41544 PCT/US01/43113
73

[00352] It is noted that the information in this table is similar to the previously
described with respect to FIGs. 25A-B above, with respect to IBT to BIA.
Here is a discussion of BIA to XPNT. In embodiments, there can be reserved
three special K characters for the encoding scheme: KO (SOC); K1 (EOP); and
K2 (stripe sync).

[00353] KO indicates “start of cell” that is the first block of a cell across all five
stripes.

[00354] K1 indicates “end of packet” that can appear in any block of a cell. It is
transparent to RFT and SXPNT.

[00355] K2 is used to encode the stripe synchronization sequence. Stripe
synchronization requires a K2 character to be sent across all lanes and all
stripes. In one embodiment, the special character is sent 112 times. After that,
all stripes of the sync queues are marked as “in sync.” The number 112 is
chosen because it matches, in this embodiment, the depth of the sync queues,
thus, if there is any data left in the queue after the final K2 character is
detected, this can be considered a stripe synchronization error. The present
invention is not limited by this embodiment, and the sync queues can be of a
different depth.

[00356] As one skilled in the relevant art would recognize based on the
teachings described herein, the feature for implementing the special characters
is to fill/flush the sync queues. In the one embodiment, the SBIA will send
out 112 times the pattern shown in FIG. 34A.

[00357] In one embodiment, the state field is encoded with the source slot
number as well as 1 bit used to tell whether the cell is toward the beginning or
end of the sequence. For example, the state field can be encoded with the
source slot number as well as 1 bit used to tell whether the cell is within the
first 96 (of 112) transfers of the stripe sequence or whether this is the last 16
(of 112) K 2 transfer after which valid data follows.

[00358] A routine for K2 sequence synchronization is illustrated in flow chart

3450 in FIG. 34B. In order to synchronize the five stripes in the SBIA, the K2

WO 02/41544 PCT/US01/43113
74

sequence needs to arrive in the consecutive cycles. To guarantee this, the
following routine is initiated.

[00359] In step 3452, the source SBIA checks the RFT/SXPNT for a ready
state.

[00360] In step 3454, the RFT/SXPNT returns its state. If it is ready, then the
routine proceeds to step 3456. If it is not ready, then the routine returns to
prior to step 3452. In one embodiment, the source SBIA can re-check after a
predetermined period of time.

[00361] In step 3456, the source SBIA sends Idle characters to the
RFT/SXPNT. In one embodiment, the source SBIA sends enough idle
characters to give the destination SBIA enough time to drain any remaining
data from its buffers. In an embodiment, the source SBIA sends 768x2 words
of idle characters.

[00362] In step 3458, the source SBIA sends special characters (K2) to the
RFT/SXPNT. In one embodiment, the FIFOs in the RFT/SXPNT for the
source slot should be empty by the time the K2s are sent. When it receives the
K2 sequence, if the FIFO is not empty, then it will treat the sequence as an
error in the SBIA received data. Once the RFT receives the data successfully,
it checks to see if the SXPNT is ready to receive the data before sending the
K2 sequence. In one embodiment, once the K2 sequence is sent from the RFT
to the SXPNT, it won’t stop until the whole sequence is sent. In one

embodiment, 112 words of K2 characters are sent.

[00363] Steps 3460, 3462, and 3464 illustrate the above-mentioned
contingency.
[00364] In step 3466, the source SBIA sends more idle characters to the

RFT/SXPNT in order to clear any remaining K2 characters from the buffers.

In one embodiment, the source SBIA sends 512x2 words of idle characters.
[00365] In one embodiment, the routine 3450 is executed by the module 676

periodically in order to clear the FIFOs and re-synchronize the systems of the

present invention.

WO 02/41544 PCT/US01/43113
75

[00366] The discussion of FIG. 34B highlights the importance of the clock for
the SXPNT and SBIA, because it should maintain stringent jitter and rising
time requirements to properly execute the routine 3450. Additionally, the
striped nature of the RFTs and SXPNTs requires that synchronization be
maintained at all times. Therefore, the routines described herein, and the
various embodiments thereof for error detection and recovery are particularly
important.

[00367] In embodiments of the present invention, both synchronous and
asynchronous systems can be implemented. In a synchronous system, all the
blades including fabric use the same clock source. The clock source can sit on
the fabric and be distributed to the slave modules across the backplane so that
the backplane will serve as a purely passive component.

[00368] In one embodiment of the redundant switch fabric system, two system
clocks can be fed into one slave module from two switch fabric modules. The
circuitry on the slave module would serve as the master clock. If the master
clock fails in a fail-over event, then the other clock will become the master
clock and the switching should be transparent for the components on the slave
module.

[00369] In an asynchronous system, the system de-couples the clock domain
between blades, which means every blade now has its own clock source. The
motivation to design an asynchronous system is to eliminate the stringent jitter
requirement imposed by a MUX delivered clock signal. However, it creates a
new problem with respect to re-synchronization of the interface signals on
both ends (at the slave modules). |

[00370] For the SERDES signals, as previously described above, there is some
built-in capability to do RX clock compensation when TX and RX are using
different clock sources. However, enabling the RX compensation can increase
the latency inside the SERDES.

[00371] In terms of the flow control signals mentioned above, the system

implements control logic on the fabric to decode a time-division multiplexed

WO 02/41544 PCT/US01/43113
76

(TDM) signal to pafallel signal to eliminate the need of a central ready
synchronization signal. A detailed embodiment is described below.

[00372] For a synchronous flow control implementation, the flow control
information that passes between the SXPNT and RFT is TDM and requires a
common sync signal to define the start of the time slot. A central
synchronization signal that tracks the clock distribution increases the
robustness of the system.

[00373] FIG. 35 illustrates a block diagram 3500 of a synchronous flow control
embodiment that includes RFTs. Blade module 3502 includes five SXPNTs
3508A-E. Flow controller module 3506 generates various signals as described
herein. In one embodiment, the module 3506 provides a clock signal to the
components of the system. Blade module 3504 receives signals across the
backplane connection to the RFTs 3510A-E. The RFTs send and receive
signals to/from the SBIA 3512. The flow controller module 3504 is connected
across the backplane to each of the RFTs 3510A-E and the SBIA 3512.

[00374] In one embodiment, there are two sets of flow control signals across
back plane. In other embodiments, more than two signals used for flow
control. In the former embodiment, the following ready signals can be
implemented:

[00375] a) Receive Ready: each SBIA 3512 has a dedicated 1-bit ready signal
for each RFT 3510A-E to stop a particular stripe from sending packets from
each of the specific slots. Each RFT 3510A-E also sends a dedicated 1-bit
ready signal to control the receiving of packets from the specific source
SXPNT 3508A-E based on the available space in the internal receive FIFO
(e.g., downlink ram); and V

[00376] b) Transmit Ready: each SXPNT has a dedicated 2-bit ready signal
for each RFT 3510A-E to notify the congestion situation at destination slots.
Every SBIA 3512 also receives 2-bit ready signal from each RFT 3510A-E to
stop the traffic for the destination slots.

[00377] In one embodiment, a common synchronization signal is used to

synchronize all of the transmit and receive ready signals between RFT/SXPNT

WO 02/41544 PCT/US01/43113
77

and RFT/SBIA. For example, and not by way of limitation, the transmit ready
signal uses 2-bit to encode 7 states in four slots (8 cycles) and receive ready
uses only one bit to encode 7 states in 7 slots (14 cycles). The common
synchronization can be a synchronization pulse at every 56 cycles that is the
minimum common multiple of 8 and 14. Of course, the present invention is
not limited to these cycle counts, as one skilled in the relevant art(s) would
recognize that different durations can be implemented.

[00378] In one embodiment, the time slot for each state can be set at
78.125MHz if that frequency is half of the core frequency, i.e., if the core
frequency is at 156.25MHz. The motivation to use a two-cycle approach for
the time slot unit is that it gives a 2 cycle margin to the wire/cell delay
between SBIA and SXPNT ready registers.

[00379] FIG. 36 shows a time flow diagram of how an SBIA can interpret the
ready signal from the SXPNT. The sync pulse is used to reset the internal
counter in both SBIA and SXPNT. When the counter has the value of 55 or 0,
as indicated for example purposes in FIG. 36, the SXPNT will send out the
ready state corresponding to slots 1 and 0 internally. When counter is equal to
1 or 2, the SXPNT will encode the slot 2 and 3 ready signals and so on. The
pattern repeats itself every 8 cycles. In other words, every slot is encoded 7
times between two sync pulses

[00380] In a detailed embodiment, three cycles later the ready state shows
across the backplane. Then the SBIA adds another two cycles of latency to the
ready signal. Thus the ready signal is latched inside the SBIA when the count
is equal to 5. This will ensure that the path is a true multi-cycle path from
SXPNT to SBIA.

[00381] When the RFT is placed between the SBIA and the SXPNT, the flow
control operation remains the same. However, the latency of SBIA/RFT and
SXPNT/RFT is programmable to leave additional margins in the hardware
trace. Thus, in embodiments of the present invention, offset can be introduced
to predetermine the latency levels of the system and thus better predict the

operating parameters of the system.

WO 02/41544 PCT/US01/43113
78

[00382] Similar to FIG. 35, FIG. 37 illustrates the switching system of the
present invention with asynchronous flow control. System 3700 includes
blade module 3702 with SXPNTs 3708 A-E and blade module 3704 with RFTs
3714A-E. In one embodiment, as in FIG. 35, flow controller modules 3706
and 3707 are able to provide clock signals to the components of the system.

[00383] The flow control between SXPNTs 3708 A-E and RFTs 3714A-E can
be changed to asynchronous via control logic modules 3710 in blade 3702 and
module 3712 in blade 3704. In one embodiment, the control logic module
3710 sits on the fabric and interfaces with the SXPNTs 3708A-E for the
synchronous flow control interface. The control logic module 3710 can
receive, interpret, and transmit various signals. In one embodiment, the
module 3710 performs the following operations:

[00384] a) Decode a 2-bit transmit ready signal into 7-bit ready signal from
each SXPNT 3708A-E and combine them to generate a 7-bit transmit slot
ready signal to each RFT 3714A-E.

[00385] By “combine” is meant that if any SXPNT is not ready for a specific
slot, no RFT is allowed to send packets for that slot. This is different than the
synchronous system that has independent flow contro] between stripes; and

[00386] b) Receive the 7-bit receive slot ready from the REFT that is also a
combined ready signal from the 5 stripes and encoded to a 1-bit receive ready
signal for the 5 SXPNT.

[00387] With respect to the RFT embodiments described herein, the error
conditions that might occur with serial links and in the backplane, as well as
preventive and recovery measures are described. Additionally, embodiments
for fail-ov‘er procedures to change from one switch blade to another are
described.

[00388] The RFT module of the present invention can be on the receiving end
of the errors described above. The type of errors that can be detected by the
RFT chips includes:

WO 02/41544 PCT/US01/43113
79

[00389] a) Link error: -This can be the result of a bit error or byte alignment
error. In one embodiment, the SERDES should send an “/E” special character
(error notification character) on the parallel data path to indicate the link error.

[00390] b) Lane synchronization error: This is a result of a synchronization
FIFO overflow/underflow. In one embodiment, the SERDES should send a
“GLINK” signal to indicate the receiving lane sync etror.

[00391] c) Format error: This is a result of incorrect formatted cell. In one
embodiment, a “/K0” special character that appears in lanes other than lane0
would indicate the format error.

[00392] d) XPNT error. This is a wire or signal from the five SXPNT chips.
In one embodiment, it indicates that SXPNT has an error or problems with

receiving data.

[00393] The RFT error-handling routines are consistent with the routines
previously described (e.g., the routines of FIGs. 29, 30, and 34B).
[00394] In one embodiment, from SBIA to RFT: the RFT detects an error in

the received data from the SBIA. The errors can include link error, lane
synchronization error and format error. Once the error is detected, the
following procedure (steps 1-4) can be applied to recover from the error.

[00395] 1) Send an RFT error signal to the SBIA. The SBIA will stop sending
data at a cell boundary and repeat lane sync sequence until RFT error is de-
asserted by the RFT. In one embodiment, once de-asserted, stripe
synchronization sequence will be sent out for all slots (e.g., as described with
respect to FIG. 34B).

[00396] 2) Send AOP to all slots and flush uplink RAM. When there is error
detected in received data, the encoded destination slot may be malfunctioning.

Thus, the abort is sent to all the destination slots to discard the packets sent

earlier.
[00397] 3) Wait for buffers to clear, and thus, the error to be clear.
[00398] 4) Wait for Stripe Sync Sequence and SOP to start accepting data.
[00399] In one embodiment, from SXPNT to RFT: The RFT detects the error

in the received data from one of the SXPNTSs to which is it connected. The

WO 02/41544 PCT/US01/43113
80

errors can include link error, lane synchronization error and format error. Once
one or more errors is detected, the following procedure can be applied to

recover from the error(s).

[00400] 1) Stop the SXPNT from receiving any more data at this slot.

[00401] 2) Send AOP to the SBIA for all slots and flush the downlink RAM.
[00402] 3) Wait for buffer to clear, and thus, the error~to be clear.

[00403] 4) Wait for Stripe Sync sequence and SOP to start accepting data.
[00404] In embodiments of the present invention, the RFT error signal notifies

the SBIA that its RFT is under error condition so that the SBIA will stop
packet transmission to RFT. This signal includes the following error
notifications:

[00405] a) Cross point error: This is the wired or result from 5 SXPNT on
the active switching module.

[00406] b) Fabric Active Error: The error occurs when “Fabric Active”
signals are either active or inactive at both sides at the same time.

[00407] ¢) The link error, lane sync etror or format error detected in received
data from SBIA.

[00408] In the event that an error is detected in or considered to be switching
module related, the module 676 has the capability to disable the current
switching module and enable the standby switching module to keep the
system’s processes active.

[00409] In one embodiment, when the RFT detects an error in the received data
from the SXPNT, it can generate an interrupt signal to disrupt the flow control
monitored within module 676. The module 676 then reads the status registers
in the SXPNT and the RFT to determine what kind of error occurred and
which routine to instantiate to correct for it.

[00410] The errors that can generate the interrupt signal can be predetermined
by programming an interrupt mask register within the RFT. These errors can
include, but are not limited to: a) Core to SERDES sync FIFO overflow; b)
SERDES to Core sync FIFO overflow; c) link is down; e) Code error, and/or

format error; and f) XPNT error. Additional errors can be monitored and

WO 02/41544 PCT/US01/43113
81

predetermined as one skilled in the relevant art(s) would recognize based on at
least the teaching described herein.

[00411] The module 676 collects the interrupt signals from all slave modules
and, in one embodiment, the module 676 also collects another 2-bit “Fabric
Present” signal to start its fail-over decision procedure. The “Fabric Present”
signal can indicate that the corresponding switching module is in place. For
example, if a user unplugs one switching module, then the corresponding
“Fabric Present” will get de-asserted.

[00412] The module 676 uses the 2-bit “Fabric Active” to tell all slave modules
which switch module to direct the traffic. In one embodiment, to initiate the
fail-over procedure, the module 676 first resets the standby switch module and
inverts the 2-bit signal.

[00413] In the redundant switching embodiments, the network switch has one
active/working switching blade and one idle/standby switching blade.
According to these embodiments, the RFT can send packets to the active blade
and can send idle characters to the idle blade. When the module 676 detects
the failure of the working switching blade or the working switching blade is
unplugged, the RFT will be notified the fail-over situation by the system using
2-bit “Fabric Active” signal. When the fail-over occurs, the new switching
blade is assumed to Be in the initial state after reset. The module 676 checks
the status of the new switching blade before it issues a fail-over command.

[00414] The RFT always sends the lane sync sequence to the standby switching
blade to maintain a healthy link. Thus, when fail-over occurs, no time is
needed to activate the standby switching blade.

[00415] When fail-over occurs, the fail-over procedure can be performed to
make sure the safe transition to another switching blade. The following are
two example routines detailing specific embodiments of the routines described
herein.

[00416] In one embodiment, the SBIA to RFT: RFT detects the fail-over by

monitoring “Fabric Active” signals:

WO 02/41544 PCT/US01/43113
82

. [00417] 1) Send RFT error signal to SBIA. SBIA will stop sending data at cell
boundary and repeat lane sync sequence until RFT error signal is de-asserted.

Once de-asserted, stripe sync sequence will be sent out for all slots.

[00418] 2) Flush uplink RAM.
[00419] 3) Wait for buffer to clear, and thus, the error to clear.
[00420] 4) Wait for Stripe Sync sequence and SOP to start accepting data.

[00421] In one embodiment, the SXPNT to RFT: RFT detects fail-over by
monitoring “Fabric Active” signals:
[00422] 1) Send AOP to SBIA for all slots and flush downlink RAM. When

SBIA receives AOP, it will discard received data before the stripes sync.

[00423] 2) Wait for buffer to clear, and thus, the error to clear.
[00424] 3) Wait for Stripe Sync sequence and SOP to start accepting data.
[00425] According to a feature of the present invention, a hitless switch-over of

the blades of the system is possible. The word “hitless” means theré in no
packet loss due to fabric change. Under normal conditions, a user might still
want to change the fabric for a better or more robust performance. In this
case, the user would want to avoid any unnecessary packet drops.
Additionally, another reason to use the upgrade procedure is to do fabric
testing. At least two procedures can be used to perform the switch-over:
debug and production.

[00426] In one embodiment, a first procedure allows the module 676 to control
the switch-over event through register programming:

[00427] 1) First, the module 676 sets ‘1’ to “Fabric enable mode” and “Hitless
enable mode” bit in Configuration register. This will allow the module 676 to

enable new fabric and hitless mode through register programming.

[00428] 2) The module 676 sets “Hitless Enable” bit in RFT “Configuration”
register. This will put the RFT in the mode for no loss switch-over.
[00429] 3) Then the module 676 disables the BIA receiver by setting bits in,

for example, the RFT register accordingly. This will throttle the SBIA and

prevent it from sending more cells to the RFT.

WO 02/41544 PCT/US01/43113
83

[00430] 4) After a certain amount of time (long enough to drain all the packets
in SXPNT and RFT buffers, the module 676 can determine the duration, as
described previously herein.), the module 676 selects the new fabric by setting
“Fabric Active” bits in RFT register.

[00431] 5) The module 676 then clears the bits so that the SBIA can continue
(be set to enabled) sending new cells to the RFT. The RFT will forward the

cells to new fabric without dropping any data.

[00432] 6) The module 676 clears “Hitless Enable” bit to put the RFT in fail-
over mode.
[00433] In another embodiment, the following routine is used as second

procedure. In one embodiment, the switch-over timer to drain packets in the
RET/SXPNT buffers is located in the RFT and the SBIA traffic throttling is
done automatically, as described above. In this embodiment, the module 676
does not need to intervene:

[00434] 1) First, in one hardware embodiment of the present invention, a
command input pin can be driven “high” to enable the hitless switch-over. It is
also noted that, in one software embodiment, a “Hitless enable mode” bit
and/or “switch delay enable” bit in Configuration register can also set to
enable the hitless switch-over.

[00435] 2) Prior to any throttling, the module 676 can determine the value of
“Switch Delay Counter” register. This is used to program the switch-over
timer when “Fabric Active” signals toggled.

[00436] 3) The “Fabric Active” input pin is toggled in all the RFTs, each RFT
throttles the SBIA traffic and continues sending packets to the old switching
fabric until the switch-over timer expires.

[00437] 4) After the timer expires, both RFT and SXPNT should have sent all
the packets in the internal buffers. RFT will activate new fabric and start
sending/receiving packets to/from new switching fabric.

[00438] 5) In the above embodiment, the command input pin is driven “low”

to disable hitless switch-over.

WO 02/41544 PCT/US01/43113
84

[00439] It is noted that in both fail-over and switch-over cases, the module 676
is suggested to reset the new fabric first before the change. Because the
SXPNT will generate the AOP for all slots after the reset (because the links go
down), the module 676 can allow enough time before it changes the switch

fabric.

U. Reset and Recovery Procedures

[00440] The following reset procedure will be followed to get the SERDES in
sync. An external reset will be asserted to the SERDES core when a reset is
applied to the core. The duration of the reset pulse for the SERDES need not
be longer than 10 cycles. After reset pulse, the transmitter and the receiver of
the SERDES will sync up to each other through defined procedure. It is
assumed that the SERDES will be in sync once the core comes out of reset.
For this reason, the reset pulse for the core must be considerably greater than
the reset pulse for the SERDES core.

[00441] The core will rely on software interaction to get the core in sync. Once
the BIA 302, 600, IBT 304, and XPNT 202 come out of reset, they will
continuously send lane synchronization sequence. The receiver will set a
software visible bit stating that its lane is in sync. Once software determines
that the lanes are in sync, it will try to get the stripes in sync. This is done
through software which will enable continuously sending of stripe
synchronization sequence. Once agaiﬁ, the receiving side of the BIA 302 will
set a bit stating that it is in sync with a particular source slot. Once software
determines this, it will enable transmit for the BIA 302, XPNT 202 and
IBT 304.

[00442] ' The management software residing on management blade is in charge
of the system maintenance work. According to embodiments of the present
invention, module 676 provides instantiation and access for the management
software. In an additional embodiment, the management blade includes a

dedicated reset signal for each slave module and switching module.

WO 02/41544 PCT/US01/43113

85
[00443] In one embodiment, the following reset procedure can be performed at
system reboot:
[00444] 1) An external reset will be asserted to the SERDES core when a reset

is applied to the core. The duration of the reset pulse for the SERDES needs
to be longer than 32 cycles (for 156MHz clock).

[00445] 2) After reset pulse, the transmitter and the receiver of the SERDES
will sync up to each other through defined procedure. It can be assumed that
the SERDES will be in sync once the core comes out of reset. For this reason,
the reset pulse for the core must be considerably greater than the reset pulse
for the SERDES core.

[00446] 3) The core will rely on the module 676 for interaction to get the core
in sync. Once the BIA, IBT, and XPNT come out of reset, they will

continuously send lane synchronization sequence.

[00447] 4) SERDES makes the lane synchronization status visible to the
module 676.
[00448] 5) Once the module 676 determines that the lanes are in sync, it will

try to get the stripes in sync. This is done through software that will enable
continuously sending of stripe synchronization sequence.

[00449] 6) Once again, the receiving side of the BIA will set a bit stating that it
is in sync with a particular source slot.

[00450] 7) Once the module 676 determines this, it will enable transmit for the
BIA, XPNT and IBT.

[00451] Similar to the SBIA/SXPNT reset procedure, the RFT allows the
module 676 to reset each of its three 10Gbps SERDES individually. When the
SERDES gets reset, the link will go down and the received data from
SERDES will be corrupted. The error recovery process can be the same as the

link error handling described previously.

[00452] To reduce the packet loss due to reset, the following procedure will be
applied:
[00453] a) Stop sending data to the transmitting SERDES at the cell boundary.

[00454] b) Send lane sync sequence during SERDES reset.

WO 02/41544 PCT/US01/43113

86
[00455] c) Start sending data (SERDES is out of reset state).
[00456] The RFT has three SERDES but, in one embodiment, only two

SERDES are forwarding packets with one SERDES in standby mode. If user
only installs one switching fabric in the chassis, the redundant SERDES does
not have its corresponding SERDES Transceiver. Thus, the link for the
redundant SERDES will always be down. If the user does not plan to put the
switching fabric in the chassis, the user can power down the redundant
SERDES to save energy, cycles, and processing overhead. To do this, the
module 676 can access the “Power Control” register within the registers of the
RFT.

IV. Control Logic

[00457] Functionality described above with respect to the operation of switch
100 can be implemented in control logic. Such control logic can be

implemented in software, firmware, hardware or any combination thereof.

V. Conclusion

[00458] ~ While specific embodiments of the present invention have been
described above, it should be understood that they have been presented by way
of example only, and not lirrﬁtation. 1t will be understood by those skilled in
the art that various changes in form and details may be made therein without
departing from the spirit and scope of the invention as defined in the appended
claims. Thus, the breadth and scope of the present invention should not be
limited by any of the above-described exemplary embodiments, but should be

defined only in accordance with the following claims and their equivalents.

WO 02/41544 PCT/US01/43113
87

WHAT IS CLAIMED IS:

1. A digital switch comprising:
a switching fabric; and
a plurality of blades coupled to said switching fabric via serial
pipes;
wherein each blade outputs serial data streams with in-band

control information in multiple stripes to said switching fabric.

2. The digital switch of claim 1, wherein said switching fabric

includes a plurality of cross points corresponding to the multiple stripes.

3. The digital switch of claim 2, wherein each cross point includes

a plurality of port slices coupled to the plurality of blades.

4. The digital switch of claim 2, wherein said multiple stripes
comprise five stripes, and said serial data streams with in-band control
information comprises five serial data streams of wide striped cells carrying
packets of data, the wide striped cells including the in-band control

information.

5. The digital switch of claim 4, wherein said plurality of cross
points comprises five cross points, and each blade has five serial links coupled

to respective ones of said five cross points.

6. The digital switch of claim 1, wherein each blade generates
wide striped cells having blocks across the multiple stripes, each block
consisting of a numbér of sub-blocks corresponding to the respective multiple
stripes, and said serial data streams with in-band control information comprise

said sub-blocks corresponding to the respective multiple stripes.

WO 02/41544 PCT/US01/43113
88

7. The digital switch of claim 6, wherein wide striped cells have a
size no greater than 160 bytes and carry a payload of data no greater than 148
bytes.

8. The digital switch of claim 1, wherein each blade comprises a

backplane interface adapter and at least one packet processor.

9. The digital switch of claim 1, wherein each blade comprises a
backplane interface adapter, an integrated bus translator, and at least one

packet processor.

10. The digital switch of claim 1, wherein the serial data streams
output by each blade represent an aggregation of the input serial data streams

provided through physical ports to a respective blade.

11. A digital switch comprising:

a switching fabric; and

a plurality of blades coupled to said switching fabric via serial
pipes;

wherein each blade outputs serial data streams with in-band
control information in multiple stripes, the serial data streams representing an
aggregation of input serial data streams provided through ports to a respective
blade, and

wherein said switching fabric switches the output aggregated

serial data in multiple stripes.

12. A backplane interface adapter comprising:

at least one receiver that receives narrow input cells carrying

packets of data;

WO 02/41544 PCT/US01/43113
89

at least one wide cell generator that generates wide striped cells
which include the packets of data from the narrow input cells; and
at least one transmitter that transmits the generated wide striped

cells in multiple stripes to a switching fabric.

13. The backplane interface adapter of claim 12, wherein each
narrow input cell includes a destination slot identifier that identifies a slot of
the switching fabric towards which the respective narrow input cell is being
sent, and further comprising:

a traffic sorter coupled between said at least one receiver and
said at least one wide cell generator, wherein said traffic sorter sorts said

received narrow input cells based on said destination slot identifier.

14. The backplane interface adapter of claim 13, wherein said
traffic sorter comprises a global/traffic sorter which sorts said received narrow
input cells having a destination slot identifier that identifies a local destination
slot from said received narrow.input cells having destination slot identifiers

that identify global destination slots across the switching fabric.

15. The backplane interface adapter of claim 14, wherein said
traffic sorter further comprises a backplane sorter coupled to said global/traffic
sorter, wherein said backplane sorter sorts said received narrow input cells
having destination slot identifiers that identify global destination slots into

groups based on the destination slot identifier.

16. The backplane interface adapter of claim 12, further
comprising:
a plurality of stripe send queues coupled between said at least
one wide cell generator and said at least one transmitter, wherein said at least
one wide cell generator stores said generated wide striped cells in said

plurality of stripe send queues.

WO 02/41544 PCT/US01/43113
920

17. The backplane interface adapter of claim 16, further
comprising:
a switching fabric transmit arbitrator that arbitrates the order in
which data stored in said stripe send queues is sent by the at least one

transmitter to the switching fabric.

18. The backplane interface adapter of claim 17, wherein each
stripe send queue stores a respective group of wide striped cells corresponding
a respective originating source packet processor and a destination slot

identifier.

19. The backplane interface adapter of claim 18, wherein each wide
striped cell has one or more blocks across multiple stripes, and wherein during
a cycle, said switching fabric transmit arbitrator selects a stripe send queue

and pushes the next available block to said at least one transmitter.

20. The backplane interface adapter of claim 18, wherein each wide
striped cell has one or more blocks across multiple stripes, and wherein during
a cycle, said switching fabric transmit arbitrator selects a stripe send queue

and pushes the next available block to said at least one transmitter.

21. The backplane interface adapter of claim 12, wherein:

said at least one receiver comprises four deserializer receivers
receiving said narrow input cells carrying packets of data in four serial data
streams from four corresponding input serial pipes,

said multiple stripes comprise five stripes,

said at least one transmitter comprises five serializer
transmitters, and ‘

each serializer transmitter transmits one respective stripe of
data of blocks of the generated wide striped cells over an backplane serial pipe

to a respective cross-point switch in the switching fabric.

WO 02/41544 PCT/US01/43113
91

22. The backplane interface adapter of claim 21, wherein each of
said input serial pipes comprises a 10 gigabit/second serial pipe and said

backplane serial pipe comprises a 50 gigabit/second serial pipe.

23. The backplane interface adapter of claim 12, wherein each wide
cell generator parses each narrow input cell, checks for control information
indicating a start of packet, encodes one or more new wide striped cells until
data from all narrow input cells of the packet is distributed into the one or
more new wide striped cells, and writes the one or more new wide striped cells

into a plurality of send queues.

24. The backplane interface adapter of claim 12, wherein each wide

cell generator encodes one or more new wide striped cells.

25. The backplane interface adapter of claim 12, wherein each wide
cell generator encodes an initial block of a start wide striped cell with initial

cell encoding information.

26. The backplane interface adapter of claim 25, wherein said
initial cell encoding information includes control information and state
information, and said initial block of a start wide striped cell comprises five
sub-blocks corresponding five stripes, and same wherein each sub-block

includes identical control information and identical state information.

27. The backplane interface adapter of claim 25, wherein each wide
cell generator further distributes initial bytes of packet data into available

space in said initial block of a first wide striped cell.

28. The backplane interface adapter of claim 27, wherein each wide

cell generator distributes remaining bytes of packet data across one or more

WO 02/41544 PCT/US01/43113
92

blocks in said first wide striped cell until an end of packet condition is reached

or a maximum cell size is reached.

29. The backplane interface adapter of claim 28, wherein each wide
cell generator further encodes an end wide striped cell with end of packet
information that varies depending upon a set of end of packet conditions
including whether the end of packet occurs at the end of an initial block, at the
end of the initial block, within a subsequent block, at a block boundary, or at a

cell boundary.

30. The backplane interface adapter of claim 12, wherein at the
start of a packet, each wide cell generator encodes an initial twenty byte block
of a start wide striped cell having twenty bytes of data distributed across five

stripes as follows:

Block Stripe 1 [Stripe2 | Stripe3 | Stripe4 | Stripe 5

1 KO KO KO KO KO
STATE | STATE STATE STATE STATE
DATAO | DATA2 DATA4 DATA6 RES
DATA1 |DATA3 DATAS DATA7 RES

where, KO is one byte fepresenting a special control character indicative of a
cell start, STATE is one byte of state information, DATAO-DATAT represent
eight bytes of payload data, and RES is one reserved byte.

31. The backplane interface adapter of claim 12, wherein each wide
cell generator further encodes an end wide striped cell with end of packet
information that varies depending upon the degree to which data has filled a

wide striped cell as set forth in FIG. 15C.

WO 02/41544 PCT/US01/43113
93

32. The backplane interface adapter of claim 12, wherein each wide
cell generator generates wide striped cells carrying no more than 148 bytes of

payload data.

33. The backplane interface adapter of claim 12, further
comprising:
at least one receiver that receives wide striped cells in multiple
stripes from a switching fabric, the wide striped cells carrying packets of data;
a translator that translates said received wide striped cells to
narrow input cells carrying the packets of data; and
at least one transmitter that transmits said narrow input cells to

corresponding source packet processors.

34. The backplane interface adapter of claim 12, further

comprising:

at least one wide striped cell receiver that receives sub-blocks
of wide striped cells in multiple stripes from a switching fabric, the wide
striped cells carrying packets of data across the multiple stripes and including
source packet processor identifier and originating slot identifier information;

a stripe interface coupled to said at least one wide striped cel]
receiver;

a plurality of stripe receive synchronization queues coupled to
said stripe interface, wherein said stripe interface sorts said received sub-
blocks in each stripe based on originating slot identifier information and stores

said sorted received sub-blocks in said stripe receive synchronization queues.

35. The backplane interface adapter of claim 34, further
comprising:
an arbitrator;
a striped-based wide cell assembler, coupled to said arbitrator,

wherein said arbitrator arbitrates an order in which data stored in said stripe

WO 02/41544 PCT/US01/43113
94

receive synchronization queues is sent to said striped-based wide cell
assembler and said striped-based wide cell assembler assembles wide striped
cells based on said received sub-blocks of data;

a translator, coupled to said striped-based wide cell assembler,
wherein said translator translates the arbitrated received wide striped cells to
narrow input cells carrying the packets of data;

a plurality of destination queues that store narrow cells sent by
a local traffic sorter and said narrow cells translated by said translator;

a local destination transmit arbitrator that arbitrates an order in
which data stored in said plurality of destination queues is sent to said at least
one transmitter and

at least one transmitter that transmits said narrow input cells to

corresponding source packet processors.

36. The backplane interface adapter of claim 12, wherein said at
least one receiver comprises at least one deserializer receiver; and said at least

one transmitter comprises at least one serializer transmitter.

37. A backplane interface adapter comprising:

at least one receiver that receives sub-blocks of wide striped
cells in multiple stripes from a switching fabric, the wide striped cells carrying
packets of data across the multiple stripes and including source packet
processor identifier and originating slot identifier information;

a stripe interface coupled to said at least one receiver;

a plurality of stripe receive synchronization queues coupled to
said stripe interface, wherein said stripe interface sorts said received sub-
blocks in each stripe based on source packet processor identifier and
originating slot identifier information and stores said sorted received sub-

blocks in said stripe receive synchronization queues.

WO 02/41544 PCT/US01/43113
95

38. The backplane interface adapter of claim 37, further
comprising:
an arbitrator; and
a striped-based wide cell assembler, coupled to said arbitrator,
wherein said arbitrator arbitrates an order in which data stored in said stripe
receive synchronization queues is sent to said striped-based wide cell
assembler and said striped-based wide cell assembler assembles wide striped

cells based on said received sub-blocks of data.

39. The backplane interface adapter of claim 38, further
comprising:

a translator, coupled to said striped-based wide cell assembler,
wherein said translator translates the arbitrated received wide striped cells to
narrow input cells carrying the packets of data; and

at least one transmitter that transmits said narrow input cells to

corresponding source packet processors.

40. The backplane interface adapter of claim 39, further
comprising:
a plurality of destination queues that store narrow cells sent by
a local traffic sorter and said narrow cells translated by said translator; and
a local destination transmit arbitrator that arbitrates an order in
which data stored in said plurality of destination queues is sent to said at least

one transmitter.
41. The backplane interface adapter of claim 37, wherein said at
least one receiver comprises at least one deserializer receiver; and said at least

one transmitter comprises at least one serializer transmitter.

42. A backplane interface adapter comprising:

WO 02/41544 PCT/US01/43113
9

at least one deserializer receiver that receives narrow input cells
carrying packets of data;

at least one wide cell generator that generates wide striped-cells
which include the packets of data from the narrow input cells;

at least one serializer transmitter that transmits the generated
wide striped cells in multiple stripes to a switching fabric;

at least one deserializer receiver that receives wide striped cells
in multiple stripes from a switching fabric, the wide striped cells carrying
packets of data;

a translator that translates received wide striped cells to narrow
cells carrying the packets of data; and

at least one narrow cell serializer transmitter that transmits

narrow cells to corresponding source packet processors.

43. A method for interfacing serial pipes carrying packets of data in
narrow input cells and a serial pipe carrying packets of data in wide striped
cells, comprising:

receiving narrow input cells;
generating wide striped cells; and
transmitting blocks of the wide striped cells across multiple

stripes.

44. The method of claim 43, further comprising, prior to said
generating step, sorting the received narrow input cells based on a destination

slot identifier.
45. The method of claim 43, further comprising storing the
generated wide striped cells in corresponding stripe send queues based on a

destination slot identifier and an originating source packet processor.

46. The method of claim 45, further comprising:

WO 02/41544 PCT/US01/43113
97

arbitrating the order in which the stored wide striped cells are

selected for transmission in said transmitting step.

47. The method of claim 43, wherein the multiple stripes comprise
five stripes, and wherein:
said receiving step receives the narrow input cells carrying
packets of data in four serial data streams from four corresponding input serial
pipes, and
said transmitter step transmits blocks of the generated wide

striped cells in the five stripes over a backplane serial pipe.

48. The method of claim 43, wherein said generating step

comprises:

parsing each narrow input cell;

checking for control information that indicates a start of packet;

encoding one or more new wide striped cells until data from all
narrow input cells carrying the packet is distributed into the one or more new
wide striped cells; and

writing the one or more new wide striped cells into a plurality

of send queues.

49. The method of claim 48, wherein said encoding step comprises
encoding an initial block of a start wide striped cell with initial cell encoding

information.

50. The method of claim 49, wherein said initial cell encoding
information includes control information and state information, and said initial
block of a start wide striped cell comprises five sub-blocks corresponding to
five stripes, and wherein each sub-block includes identical control information

and identical state information.

WO 02/41544 PCT/US01/43113
98

51. The method of claim 49, wherein said encoding step comprises
distributing initial bytes of packet data into available space in the initial block
of a first wide striped cell, and adding reserve information to available bytes at

the end of the initial block of the first wide striped cell.

52. The method of claim 51, wherein said encoding step comprises
distributing remaining bytes of packet data across one or more blocks in the
first wide striped cell until an end of packet condition is reached or a

maximum cell size is reached.

53. The method of claim 52, wherein said encoding step further
comprises encoding an end wide striped cell with end of packet information,
the end of packet information varying depending upon a set of end of packet
conditions including whether the end of packet occurs at the end of an initial
block, at the end of the initial block, within a subsequent block, at a block

boundary, or at a cell boundary.

54. The method of claim 53, wherein at the start of a packet, said
encoding step encodes an initial twenty byte block of a start wide striped cell

having twenty bytes of data distributed across five stripes as follows:

Block Stripe 1 | Stripe 2 Stripe 3 Stripe 4 Stripe 5

1 KO KO KO KO KO
STATE | STATE STATE STATE STATE
DATAQ | DATA2 DATA4 DATAG6 RES
DATA1 | DATA3 DATAS DATAT7 RES

where, KO is one byte representing a special control character indicative of a
cell start, STATE is one byte of state information, DATAQ-DATA7 represent
éight bytes of payload data, and RES is one reserved byte.

WO 02/41544 PCT/US01/43113
929

55. The method of claim 53, wherein at the start of a packet, said
encoding step encodes an end wide striped cell with end of packet information
that varies depending upon the degree to which data has filled a wide striped

cell.

56. The method of claim 43, further comprising:
receiving wide striped cells in multiple stripes from a switching
fabric, the wide striped cells carrying packets of data;
translating translates the received wide striped cells to narrow
input cells carrying the packets of data; and
transmitting the narrow input cells to corresponding source

packet processors.

57. The method of claim 56, further comprising:
receiving subblocks of wide striped cells in multiple stripes
from a switching fabric, the wide striped cells carrying packets of data across
the multiple stripes and including destination slot identifier information;
sorting the received subblocks in each stripe based on
destination slot identifier information; and
storing the sorted received subblocks in stripe receive

synchronization queues.

58. The method of claim 57, further comprising:
arbitrating an order in which data stored in the stripe receive
synchronization queues is assembled;
assembling wide striped cells in the order of the arbitrating step
based on the received subblocks of data; and
translating the arbitrated received wide striped cells to narrow

input cells carrying the packets of data.

59. The method of claim 58, further comprising:

WO 02/41544 PCT/US01/43113
100

storing narrow cells in a plurality of destination queues;

further arbitrating an order in which data stored in the plurality
of destination queues is to be transmitted; and

transmitting the narrow input cells in the order of the further

arbitrating step to corresponding source packet processors.

60. The method of claim 53, wherein each receiving step includes

deserializing data, and each transmitting step comprises serializing data.

61. A method for encoding wide striped cells that carry packets of
data across stripes, comprising:
(a) encoding an initial block of a first wide striped cell with
initial cell encoding information; and
(b) distributing initial bytes of packet data into available space
in the initial block of the first wide striped cell.

62. The method of claim 61, wherein said initial cell encoding
information includes control infoqnation and state information, and said initial
block of the first wide striped cell comprises five subblocks corresponding to
five stripes, and wherein each subblock includes identical control information

and identical state information.

63. The method of claim 61, further comprising adding reserve
information to available bytes at the end of the initial block of the first wide

striped cell.

64. The method of claim 61, further comprising distributing
remaining bytes of packet data across one or more blocks in the first wide
striped cell until an end of packet condition is reached or a maximum cell size

is reached.

WO 02/41544 PCT/US01/43113
101

65. The method of claim 61, further comprising:

(c) encoding the first wide striped cell or another wide striped
cell with end of packet information, the end of packet information varying
depending upon a set of end of packet conditions including whether the end of
packet occurs at the end of an initial block, at the end of the intial block,

within a subsequent block, at a block boundary, or at a cell boundary.

66. The method of claim 61, wherein said initial block encoding
step (a), at the start of a packet, encodes an initial twenty byte block of a start

wide striped cell having twenty bytes of data distributed across five stripes as

follows:
Block Stripe 1 | Stripe 2 Stripe 3 Stripe 4 Stripe 5
1 KO KO KO KO KO

STATE | STATE STATE STATE STATE
DATAO |DATA2 DATA4 DATAG6 RES
DATA1 |DATA3 DATAS DATA7 RES

where, KO is one byte representing a special control character indicative of a
cell start, STATE is one byte of state information, DATA0-DATA7 represent
eight bytes of payload data, and RES is one reserved byte.

67. The method of claim 61, wherein said encoding step (c)
encodes the first wide striped cell or another wide striped cell with end of
packet information that varies depending upon the degree to which data has

filled a wide striped cell.

68. A system for encoding wide striped cells that carry packets of
data across stripes, comprising:
(2) means for encoding an initial block of a first wide striped

cell with initial cell encoding information; and

WO 02/41544 PCT/US01/43113
102

(b) means for distributing initial bytes of packet data into

available space in the initial block of the first wide striped cell.

69. The system of claim 68, wherein said initial cell encoding
information includes control information and state information, and said initial
block of the first wide striped cell comprises five subblocks corresponding to
five stripes, and wherein each sub-block includes identical control information

and identical state information.

70. The system of claim 68, further comprising means for adding
reserve information to available bytes at the end of the initial block of the first

wide striped cell.

71. The system of claim 68, further comprising means for
distributing remaining bytes of packet data across one or more blocks in the
first wide striped cell until an end of packet condition is reached or a

maximum cell size is reached.

72. The system of claim 68, further comprising:

(c) means for encoding the first wide striped cell or another
wide striped cell with end of packet information, the end of packet information
varying depending upon a set of end of packet conditions including whether
the end of packet occurs at the end of an initial block, at the end of the intial

block, within a subsequent block, at a block boundary, or at a cell boundary.

73. The system of claim 68, wherein said initial block encoding
means (a), at the start of a packet, encodes an initial twenty byte block of a
start wide striped cell having twenty bytes of data distributed across five

stripes as follows:

Block IStripel |hStripe2 'Stripe3 |Stripe4 |Stn'pe5

WO 02/41544 PCT/US01/43113
103

STATE |[STATE STATE STATE STATE
DATAO |DATA2 DATA4 DATAG6 RES
DATA1 | DATA3 DATAS DATA7 RES

where, KO is one byte representing a special control character indicative of a
cell start, STATE is one byte of state information, DATAO-DATA7 represent
cight bytes of payload data, and RES is one reserved byte.

74. The system of claim 68, wherein said encoding means (c)
encodes the first wide striped cell or another wide striped cell with end of
packet information that varies depending upon the degree to which data has

filled a wide striped cell.

75. A system for translating packets comprising:
a translator that parses packets into narrow cells;
a first group of one or more transceivers; and \
a second group of one or more transceivers, wherein said
translator is coupled to said first group of one or more transceivers and said

second group of one or more transceivers.

76. The system of claim 75, wherein said translator further parses

narrow cells into packets.

77. The system of claim 75, further comprising:
one or more memory pools that store one or more packets and
narrow cells; and
one or more reference clocks that synchronize one or more

operations of said translator.

78. The system of claim 75, further comprising:

WO 02/41544 PCT/US01/43113
104

an administration module that provides a user with control over

said one or more operations of said translator.

79. The system of claim 75, wherein said translator comprises:
one or more packet decoders that parse one or more packets
into information fields; and
one or more cell encoders that construct one or more narrow

cells from said information fields.

80. The system of claim 75, wherein said translator comprises:
one or more cell decoders that parse one or more narrow cells
into information fields; and
one or more packet encoders that construct one or more packets

from said information fields.

81. The system of claim 75, wherein said translator operates with

packets in a parallel configuration and narrow cells in a serial configuration.

82. A narrow cell format comprising:
a header that includes a special character and control
information; and

a payload that includes data.

83. The narrow cell format of claim 82, wherein said control

information includes routing addresses for said payload.

84. The narrow cell format of claim 82, wherein said header is four

bytes and said payload is thirty-two bytes.

85. The cell format of claim 82, wherein said header reserves one

or more bytes for additional information.

WO 02/41544 PCT/US01/43113
105

86. In a bus translator, a cell format comprising:
a special character that indicates the start of a cell;
control information that includes slot information and state
information of said cell; and

a payload that includes data.

87. A method for translating packets into cells, comprising:
determining a port type wherein said port type includes the
configuration of packer processing components;
selecting a cell format, wherein said cell format is dependent on
said port type; ;
receiving one or more packets from a port;
parsing one or more packets into information;
formatting said information into one or more cells; and

forwarding said one or more cells to an interface.

88. The method of claim 87, further comprising:

storing said information prior to said formatting step.

89. The method of claim 87, wherein said receiving step involves

packets in a parallel configuration.

90. The method of claim 87, wherein said forwarding step involves

cells in a serial configuration.

91. A method for translating cells into packets, comprising;
receiving one or more cells;
parsing said one or more cells into information;
storing said information into one or more packets; and

forwarding said one or more packets.

WO 02/41544

92.

PCT/US01/43113
106

The method of claim 91, further comprising:
queuing said one or more cells; and

synchronizing said one or more cells, wherein said queuing step

and said synchronizing step occur prior to said parsing step.

93.

The method of claim 91, wherein said receiving step involves

cells in a serial configuration.

94.

The method of claim 91, wherein said forwarding step involves

packets in a parallel configuration.

95.

data; and

96.

A switching fabric comprising:

a plurality of cross points that process multiple stripes of serial
wherein each cross point includes a plurality of port slices.

The switching fabric of claim 95, wherein said plurality of

cross points comprise five cross points.

97.

comprises:

98.

comprises:

and

The switching fabric of claim 95, wherein each cross point

a plurality of ports; and

a plurality of port slices coupled respectively to said ports.

The switching fabric of claim 95, wherein each port slice

a plurality of FIFOs coupled to other ones of said port slices;

a FIFO read arbitrator coupled to each FIFO, wherein said

FIFO read arbitrator arbitrates read requests sent by said FIFOs.

WO 02/41544 PCT/US01/43113
107

99. The switching fabric of claim 98, wherein each port slice
further comprises:
a multiplexer coupled to said FIFOs and to said FIFO read
arbitrator;

and a dispatcher coupled to an output of said multiplexer.

100. The switching fabric of claim 95, wherein each port slice
comprises:
an accumulator that writes received data to an appropriate FIFO

in a different port slice.

101. The switching fabric of claim 95, wherein each cross point

comprises eight ports and eight port slices.

102. A cross point that processes a stripe of serial data, comprising:
a plurality of ports; and

a plurality of port slices coupled respectively to said ports.

103. The cross point of claim 102, wherein each port slice
comprises:
a plurality of FIFOs coupled to other ones of said port slices;
and
a FIFO read arbitrator coupled to each FIFO, wherein said
FIFO read arbitrator arbitrates read requests sent by said FIFOs.

104. The cross point of claim 103, wherein each port slice further
comprises:
a multiplexer coupled to said FIFOs and to said FIFO read

arbitrator;

and a dispatcher coupled to an output of said multiplexer.

WO 02/41544 PCT/US01/43113
108

105. The cross point of claim 103, wherein each port slice
comprises:
an accumulator that writes received data to an appropriate FIFO

in a different port slice.

106. The cross point of claim 102, wherein each cross point

comprises eight ports and eight port slices.

107. A method for processing a stripe of data at a cross point,
comprising, at one port slice:
storing data received from other port slices in a plurality of
FIFOs; and
arbitrating the reading of the stored data.

108. The method of claim 107, further comprising:
writing data received from a port at the one port slice to an

appropriate FIFO in a different port slice.

109. A method for processing data in port slice based on wide cell

encoding and an external flow control command, comprising:

managing 64-bit entries in a receive synch FIFO;

receiving two chunks of 32-bit data from the receive synch
FIFO;

detecting a KO in a first byte of the received two chunks of 32-
bit data; and

extracting a destination slot from a state field in a cell header

when KO is detected.

110. The method of claim 109, further comprising:’

WO 02/41544 PCT/US01/43113
109

determining whether the cell header is low-aligned or high-
aligned;

writing 64-bit data to a data FIFO corresponding to the
destination slot when the cell header is either low-aligned or high-ali gned;

writing two 64-bit data to two data FIFOs corresponding to the
two destination slots when the cell header is low-aligned and high-aligned,
and

filling the second chunk of 32-bit data with idle characters
‘when a cell does not terminate at the 64-bit boundary and a subsequent cell is

destined for a different slot.

111. The method of claim 110, further comprising:
performing an early terminate to a cell that inserts KO and

ABORT state information in the data when an error condition is detected.

112. The method of claim 110, further comprising:
stopping requests to a FIFO read arbitrator after a current cell is

completely read from a FIFO RAM when a flow control condition is detected.

113. The method of claim 110, further comprising:

delivering 64-bit data to a SERDES synch FIFO module and
transmitter when non-idle data is received from a FIFO read arbitrator;

injecting a first alignment sequence to be transmitted to the
SERDES synch FIFO module and transmitter when the FIFO read arbitrator
indicates that a plurality of FIFO RAMs are empty

injecting a second alignment sequence to be transmitted to the
SERDES transmitter when a programmable timer expires and a previous cell
has been completely transmitted; and

indicating to the FIFO read arbitrator to temporarily stop
serving any requestor until a current pre-scheduled ali gnment sequence has

been completely transmitted.

WO 02/41544 PCT/US01/43113

110

114. An administrative module for use in a digital switch, wherein the
digital switch includes a plurality of blades coupled to a switching fabric, and
wherein each blade outputs serial data streams with in-band control
information in multiple stripes to said switching fabric, said administrative
module comprising:

a level monitor that monitors the data received at a receiving blade;
and

a stripe synchronization error detector that detects a stripe
synchronization error based on the amount of data monitored by said level

monitor.

115. The administrative module of claim 114, wherein the data
received at a receiving blade is sorted based on stripe and source information
and stored in a set of data structures, and wherein:

said level monitor monitors the levels of data stored in each data
structure receiving blade, and

said stripe synchronization error detector detects at least one of an
overflow and underflow condition in the amount of data received on a

respective stripe from a particular source.

116. The administrative module of claim 114, further comprising:
a flow controller that initiates a recovery routine to re-synchronize
data across the stripes in response to detection of a stripe synchronization

€110r1.

117. The administrative module of claim 116, wherein said recovery

routine includes throttling back the data flowing to one or more of said stripes.

WO 02/41544 PCT/US01/43113
111

118. The administrative module of claim 114, further comprising: a
control character presence tracker that identifies the presence of a K2 character
during the recovery routine.

119. The administrative module of claim 114, wherein said stripe
synchronization error detector detects a stripe synchronization error in
response to any one or more of the following error conditions: an incoming

link error, a cross-point failure, and an outgoing link error.

120. A method for detecting stripe synchronization error in a
network switch, comprising:
(a) sorting data received at a receiving slot based on stripe and source
information;
(b) storing the sorted data in a set of data structures;
() monitoring the levels of data stored in each data structure; and
(d) detecting at least one of an overflow and underflow condition in the

amount of data received on a respective stripe from a particular source.

121. The method of claim 120, wherein the source information
identifies a slot that sent the data across a switching fabric of the network

switch.

122. The method of claim 120, wherein the source information
identifies a source packet processor that sent the data from a slot across a

switching fabric of the network switch.

123. A method for maintaining synchronization of striped cell
traffic, comprising the steps of:
(a) sending a common character in striped cells in all lanes for a
predetermined number of cycles;
(b) evaluating the common control characters received at stripe receive

synchronization queues; and

WO 02/41544 PCT/US01/43113

112

(c) detecting when an in-synch condition is present that indicates the stripe

receive synchronization queues have been cleared.

124. A method for managing out-of-synchronization traffic flow
through a cross-point switch in a switching fabric, comprising:
(@ monitoring the level of stripe receive synchronization queues;
(b) determining whether an out-of-synchronization condition exists; and
(c) initiating a re-synchronization routine when said out-of-

synchronization condition exists.

125. The method of claim 124, further comprising, after said
initiating step (c), the steps of:
(d) sending a common character in striped cells in all lanes for a
predetermined number of cycles;
(e evaluating the common control characters received at stripe receive
synchronization queues; and
® detecting when an in-synch condition is present that indicates the

stripe receive synchronization queues have been cleared.

126. A redundant switching system, comprising:
two switching blades, each switching blade having a plurality of cross
points corresponding to respective stripes of serial data streams; and
at least one blade coupled to each switching blade through a backplane
connection, wherein said at least one blade includes a plurality of redundant
fabric transceivers which can switch traffic between the cross points on the

two switching blades.

127. A redundant fabric transceiver coupled to a bus interface

adapter comprising:

WO 02/41544 PCT/US01/43113

113

one or more first ports that communicate similar data in a
substantially simultaneous fashion, wherein each of said one or more first
ports is coupled to at least one switching fabric module;

a multiplexer that selects communication data from said similar -
data for transmission, for transmission wherein said similar data can include
more than one version of said communication data;

a downlink transceiver that receives, conditions, and transmits
said communication data; and

one or more second ports that receives said communication
data once transmitted from said multiplexer, wherein said one or more second

ports forwards said communication data to a bus interface adapter.

128. The redundant fabric transceiver of claim 127, further

comprising:

an uplink transceiver that receives, conditions, and transmits
said communication data, wherein said one or more second ports receives said
communication data from said bus interface adapter, wherein said one or more .
second ports forwards said communications data to said uplink transceiver,
wherein said uplink transceiver conditions and forwards said communication
data to said multiplexer, wherein said multiplexer generates one or more

similar data for forwarding to said one or more first ports.

129. The redundant fabric transceiver of claim 128, further
comprising:
one or more first queues for buffering data, wherein said one or

more queues are coupled to said multiplexer.

130. The redundant fabric transéeiver of claim 128, further

comprising:

WO 02/41544 PCT/US01/43113
114

one or more second queues for buffering data, wherein said one
or more second queues are coupled to at least one of said downlink transceiver

and said uplink transceiver.

131. The redundant fabric transceiver of claim 128, further
comprising:
a register module that includes condition information that
indicates operations for at least one of said downlink transceiver and said
uplink transceiver, wherein said condition information includes configuration

and parameter settings for received and transmitted data.

132. " The redundant fabric transceiver of claim 128, wherein said one’'

or more first ports are serializer/deserializers.

133. The redundant fabric transceiver of claim 128, wherein said one

or more second ports are serializer/deserializers.

134. The redundant fabric transceiver of claim 128, wherein said
downlink transceiver includes a receiver, a random access memory module,

and a transmitter.

135. The redundant fabric transceiver of claim 128, wherein said
uplink transceiver includes a receiver, a random access memory module, and a

transmitter.

136. The redundant fabric transceiver of claim 128, wherein said one
or more first ports are able to be individually inactivated in the event of an

error condition affecting said one or more first ports.

137. The redundant fabric transceiver of claim 128, wherein said one |

or more first ports are able to be switched to without loss of data.

PCT/US01/43113

WO 02/41544

1/50

HB0T 9807 1007 3007 aa07 9801 g0y va07
aﬁﬁﬂ -* H~“~ uﬁwu ““““ -ﬁ~ -- ﬁnhﬁ
018 08 30718 20718 g 018 e 20778
{ (! { | / /
HvO1 901 01 3101 oot o1 gy ol
H01 o0r (N0 3907 a0y r |60 e
7 7 3
TINGOH J168¥4 HOLIAS
0o 2

T "9Id

PCT/US01/43113

WO 02/41544

2/50

{ 41 1414 ERER
H307 3907 4907 3307
b 1 b
ERR KRR IR Y vy 1YY ¥
K Ngge] M e MK Pgaz| MK gge| o M Povere
* 4 [HE R NN 143 i *)
® ¢ ¢ 9 ¢ ' T } ¢ ¢ ¢ L 3K J 3
\ |
¢t
= 402
b J_ 3
. W vy asor Y 1 3907 "EREK 4307 EEINK] V307
007 |

¢ 914

WO 02/41544 PCT/US01/43113
3/50
FIG. 3A
SWITCH FABRIC |~ 102
@ 104
SBIA _~302
303‘\\1 304A 30934 3048 3080\1 304C 309“\1 3040
/ i / {
IBT BT IBT 187
I 306A I 3068 t 306E
{ { /
PACKET PACKET PACKET
PROCESSOR PROCESSOR — PROCESSOR
[\
1 1 PACKET PACKET :
PROCESSOR | | PROCESSOR
FIG. 3B
50 6
ﬂ(SERIAL) |
SBIA 302
106 106 106 106
319“\1 (SERTAL) 3039\1 (SERTAL) 3193\1 (SERTAL) 3130\‘ (SERTAL)
3460~ | 106 PACKET
e 3040; BT 0C-192C PACKET PROCESSOR |- 3168
415 6 415 6
(PARALLEL) (PARALLEL)
3060 IPC 0C-3C 1 306D
0C- 12
N K 0-48C

WO 02/41544

PCT/US01/43113

4/50
FIG. 4
AT poaT poT |08 o
402A~{ port_slice0 port_slice1 |~ 4028
4(}1}1 40{2H oL 4(}20 4(}1c
o0~ ponT sttces /\ g
PORT| port_slice? 430 port_slice? | PORT
121
PORT port_sliceb ””””,jzf’,,a—f" port_sliced | PORT
\ \ > \ \
4016 4026 40 . 402D 401D
|_~425
Y
HERN port_sliced porleice4/ 02
] pomT porT__ 0%

410

TO/FROM BLADE 104F

WO 02/41544

PCT/US01/43113

5/50
FIG. 5
PORT
o FROM SEVEN OTHER
™ PORT SLICES 0-4,6.7
30 |FIFo|Fro| |Fueo|iro| |Firo|Farol |FurolFaro| |Firo|rrro| |Firo|Faro |FrolFaro
oTC | R | LeTe [maw | [T [A | | cTe | e | |'ere |aaw | 1ere | man | {'CTe |
“‘
1
S~ FIFO READ o MLTIPLEKER |-550
ARBITRATOR (M0
70 SEVEN OTHER
PORT SLICES 0-4.6.7
t— ACCUMULATOR |-520 DISPATCHER P00
A5~] RECEIVE SYNCH TRANSMIT SYNCH | _-570
FIF0 NODULE FIFO MODULE
porT) 5i0~] DESERIALIZER SERTALIZER
A0TF RECELVER () I

WO 02/41544

6/50

FIG. 6

PCT/US01/43113

SWITCHING

|

FABRIC

ééégééggé%iiilly “(,—-600

LOCAL PACKET

PROCESSORS

SERTALTZER TRANSMITTERS |64 ol | DESERIALIZER RECEIVERS [~ 630
BACKPLANE TRANSMIT ARBITRATOR b 630 STRIPE INTERFACE MODULE |~ 660
) ' 7
. STRIPE RECETVE | g
STRIPE SEND QUEUES | 625 SYNCHRONTZATION
(SOURCE BASED! | QUEUES
! ' 570
CONTROLLER -~
. 672
WIDE CELL GENERATORS |~620 ARBLTRATOR -
' 610
L/ STAIPED || ADNINISTRATIVE
TRAFFIC SORTER BASED MODULE
WIDE CALL
[ASSEMBLER 0
676
\
674 -
{ | I
ADMINISTRATIVE
6BO~{ WIDE/NARROW CELL TRANSLATOR || STENALS
603\‘ (COMMANDS,
‘ MESSAGES)
DESTINATION QUEUES: 615
LOCAL DE!TINATION £90 }/ bt
o * TRANSHIT ARBITRATOR [~ |
/ !
DESERTALIZER RECEIVERS SERTALIZER TRANSHITTERS [~ 632

WO 02/41544 PCT/US01/43113
" 7/50
f FIG. 7 f
A~ SERTALTZER SERIALIZER }~740n
TRANSHITTER TRANSMITTER
t 630 T
{
SWITCH FABRIC TRANSMIT ARBITRATOR
(WY
STRIPE SEND T
<< QUEUES =
725
= _‘
720 = =
WIDE CELL || WIDE CELL |
GENERATOR GENERATOR
THST BACKPLANE TRAFFIC SORTER BACKPLANE TRAFFIC SORTER
SORT BY SLOT 1 1
N 12~ cLomaL/Loca | GLOBAL/LOCAL | 701
TRAFFIC SORTER TRAFFIC SORTER
e :
L L L | o
CROSS-CLOCK CROSS-CLOCK -
OB GAN B SORTER A SORTER
SYNCHRONTZER 7\15 SYNCHRONTZER
1PARALLEL T
10~ DESERTALTZER RECEIVER DESERTALIZER RECFIVER
SERTAL g
SOURCE 6 SOURCE 7

SOURCE 0 SOURCE 1

~

j

WO 02/41544 PCT/US01/43113

8/50
FIG. 8
850~ | DESERIALIZER L DESERIALIZER | -850n
RECETVER RECETVER
) I
545

11-1 ‘/ 11-1

STRIPE 1 STRIPE §
2020~ 202

CROSSPOINT L. CROSSPOINT
SWITCH . SWITCH
740~ SERIALIZER SERIALIZER | -740n

TRANSMITTER TRANSMITTER

WO 02/41544 PCT/US01/43113
9/50
B0~ pesepraLizer| f;112', f? DESERTALTZER |_~950n
RECETVER RECETVER
900 PARALLEL
352~ CROSS-CLOCK CROSS-CLOCK 901
DOMAIN DOMAIN
SYNCHRONIZER SYNCHRONTZER
' (LOCK |
P P
360~ STRIPE INTERFACE STRIPE INTERFACE
WIDE CELL WIDE CELL
%o~ econe DECODER
364~ SORTER B SORTER | |
- ! STRIPE RECEIVE o Pix
b 1 SYNCH QUEUES “\\\\\\
\?{1\’ , l !
o2 LEVELS: SOURCE PACKET PROCESSOR,
ARBITRATOR ™ ™" RTGINATING SLOT NUMBER
LOCAL ! A
TRAEFIC STRIPEBASED WIDE CALL ASSEMBLER L-674
1
LOCAL WIDE /NARROW CELL TRANSLATOR |~660
TRAFFIC
SORTER
T LOCAL
LOCAL
982\\w§ﬂﬁ5ﬂ§f gﬁé 0R MORE BACKPLANE
TRAFFIC QUEUES
630~ L ocaL DESTINATION TRANSMIT ARBITRATOR
392~ SERIALTZER SERIALIZER |~ 3329
TRANSMITTER TRANSHITTER

WO 02/41544 PCT/US01/43113

10/50

FIG. 10

e m

RECEIVE NARROW TNPUT CeLLs | 1010

|

SORT RECEIVED INPUT cELLs |~ 1020

!
GENERATE WIDE STRIPED CELLs | 0%

STORE GENERATED WIDE |~ 1040
STRIPED CELLS

|

ARBITRATE THE TRANSMISSION OF |~ 1050
STORED WIDE STRIPED CELLS

L

TRANSHIT BLOCKS OF CELL DATA |~ 1080
ACROSS MULTIPLE STRIPES

WO 02/41544 PCT/US01/43113

11/50

FIG. 11

RECEIVE BLOCKS OF CELL DATA |~ 1110
TRANSMITTED ACROSS MULTIPLE STRIPES

l

SORT RECEIVED BLOCKS OF CELL DATA

l

STORE SORTED BLOCKS OF CELL DATA

l

ASSEMBLE WIDE STRIPED CELLS BASED |~ 1140
ON ARBITRATION CRITERIA

l

TRANSLATE WIDE STRIPED CELLS TO |~ 1130
NARROW OUTPUT CELLS

l

STORE NARROW OUTPUT CELLS

l

ARBITRATE THE TRANSHISSION OF STORED |~ 1170
NARROW OUTPUT CELLS

l

TRANSMIT NARROW QUTPUT CELLS

1120

1130

|_~1160

1180

WO 02/41544 PCT/US01/43113

12/50

' FIG. 12

ROUTINE FOR
GENERATING WIDE
STRIPED CELLS

PARSE EACH NARROW CELL | ~1210

1

CHECK FOR CONTROL INFORMATION IN NARROW |~ 1220
CELL INDICATING START OF PACKET

AT START OF
'EACH PACKET

ENCODE NEW WIDE STRIPED CELLS L~ 1230
HAVING BLOCKS EXTENDING ACROSS
MULTIPLE STRIPES UNTIL DATA FROM
ALL NARROW CELLS OF A RESPECTIVE
PACKET IS DISTRIBUTED INTO ONE OR
MORE ENCODED WIDE STRIPED CELLS

1

WRITE WIDE STRIPED CELLS TO AN |~ 1240
APPROPRIATE STRIPE SEND QUEUE

1225

WO 02/41544 PCT/US01/43113
13/50
FIG. 13
/\
LANE 0 LANE 1 LANE 2 LANE 3
CONTROL STATE
INFORMATION | INFORMATION | RESERVED | RESERVED
1300 Do D1 D2 D3
D4 05 DG 07
DA D3 D10 D14
D12 D13 D14 DI5
D28 029 D30 D31 .
1310-.\\-

STATE INFORMATION

NAME

DESCRIPTION

SLOT NUMBER

DESTINATION SLOT NUMBER
WHERE CELL DATA BEING SENT

PAYLOAD STATE

RESERVED, SOP. DATA, ABORT

SOURCE OR

DESTINATION PACKET
PROCESSOR IDENTIFIER

ENCODED NUMBER

IDENTIFYING A SOURCE OR
DESTINATION PACKET PROCESSOR

RESERVED

RESERVED

WO 02/41544 PCT/US01/43113

14/50

FIG. 14

ROUTINE FOR
ENCODING WIDE
STRIPED CELLS

ENCODE AN INTTIAL BLOCK OF A START L1410
WIDE STRIPED CELL WITH INITIAL CELL
ENCODING INFORMATION

'

DISTRIBUTE INITIAL BYTES OF PACKET |~ 1420
DATA INTO AVAILABLE SPACE IN THE
CREATED INITIAL BLOCK

-t

CONTINUE TO DISTRIBUTE REMAINING |~ 1430
BYTES OF PACKET DATA ACROSS NEW
BLOCKS IN THE WIDE STRIPED CELL

1440

WIDE STRIPED
CELL REACH A
MAXIHUM
SIZE?

YES

1450

END OF
PACKET
 REACHED?

ENCODE THE LAST BLOCK OF THE END |~ 1460
WIDE STRIPED CELL WITH END OF
PACKET INFORMATION

WO 02/41544

PCT/US01/43113
15/50
FIG. 15A
TS T N | v S |
T T T B0 0 DO 0 D O0 0 oo ool
L0 TS0 110 SAET 05110 [ATET4 4[4 S5 7] 10 AT
2 i
3 (023 T
iz 0%
5 D58 07
& (068 Tl
7 (018 D]
8 (029 Dit7
0—"
FIG. 15B
STATE INFORMATION
NAYE DESCRIPTION
SLOT NUMBER DESTINATION SLOT NUMBER FOR
BIA T0 CROSSPOINT SWITCH
DIRECTION ,
SOURCE SLOT NUMBER FOR
CROSSPOINT SWITCH TO BIA DIRECTION
PAYLOAD ENCODED PAYLOAD STATE INFORMATION
STATE (RESERVED, SOA, DATA, ABORT)
RESERVED RESERVED

PCT/US01/43113

WO 02/41544

16/50

[S3uTs3n]31e1s] o[TI ToIRTeIS] O] TAI TAI=3e3s] oMl ™I Tx=3e1s] oy]] 7l 7a[31e3s] X7 |

A1 8210|8
£e1d 80T}/
£070 88d[9

AJepunog 1739 3e 403 ¥

"y 3dTHIS 40 € INVT NI ST ViVO H04 AHVONNOR
2078 L "0=U HOd4 "HIATMOH "G IJTHIS £ INVT NI ST VIVQ HO4 AHVONNOE X079 FHL "0<U N3HM LVHL 310N

DULDUT T POIX[IIALOXE TX [OA L TAL AL B [DAL I T B J O | DAL AL B | TIE
L0 84|c
S3H[S3u[=1e1s] o [£a] 9af3ie1s] 0y|[G| va[aiLIsS| X[EQ| ¢ajeteis| OX{[TQi 0Q[3184S| OX(T

(8=iU) U 31040 ONIHNG AHVONNOE %3078 LV 403 €

DU D [O] TX [OXPE O DI O § DX TXL T EEd {2Ed 820{€
120 Ba|¢
S[SIH[1e18] 0Mf| £0] 90133e1s] OX)| 50f ¥OI°3e3S| Of} EQ) 20[31e4S| ON}| 70} 00)31€1S| MY

(0=iU) U 37IAJ ONIHNA d03 "¢

Y1V0 SV G3LV3HL ST HALIVHVHD
T JHL "NOTSSIWNVHL T J10A0 H3IHIO ANV NI SV ‘Q3AH3SIHd 17V 34 S3LA8 0IAYISId ONV “ILVIS "OX FHL IVHL 310N

[SaaTS3aTaretST oM T T _Tx[3eets] ox[T THl Tafe1e3s] o[eaf eafa#eas] on[] vaf oafeaeas] oy |
(NOLLYWHONT 3L¥LS 40 NOISSIWSNVHL SNTHNG "3T) T 310AD SNIHNG d03 7

NOTLVWHOINT ONIGOINT L13H0vd 40 ON3

Jd5T "9Id

WO 02/41544 PCT/US01/43113

17/50
FIG. 15D
SMIPES || SWIPE? || SRIPE3 || STRIPE4 T[] STRIPES

CYCLE[L0 11 t2 137110 L1 12 L3(jL0 L4 12 L3)/L0 L4 L2 (3 [L0 L4 12 I3

11 KO {P1[DOJDL

2|08 - D11

31028 D31 |K0 | P1]D2 {03

41048 D51 }|D12 D15 KO | P1 D6 D7

5 | D68 071 ||D32 035 020 D23

6 {088 091 ||D32 D35 {1KO | P1 | D4 (D5 {|D40 1043

71108 D1t} {D72 075 || D16 D13 | | DGO D63 | (KO | P4 |RES|RES

8 10128 D131]092 D35 | D36 D33 DB D3 {] D4 027

WO 02/41544 PCT/US01/43113

18/50
FIG. 16
STRIFE 1 | SWiPE2 || SWRIPEd |l SIIPE4 [I _ SIRIPES
OeEl U 2 B 0 O U1 ow U ool U3
1 [k 51 J00 oY A 1Ko T 536 [pistintse SSA D45 A KON TN %6’87‘
2 F 41} (D161 D162 [D13[KL | [Dfb 19 | {026 TN
3.{D7f D31 (K0 175524 02403 A D3~ D38| 1048, ENYIEE
4 D4 D511 D12 D5 | (D56 59 934 06 [DR_|
5 [Dgf 71 1|03 g{m 1k |10 023N |03
'B/% -g E;fv 55 o N353 NN | (DA m\ﬂ & L
{ N ER N
8 DY I @&&% D3, 3% TN KI\B%
9 [K0\ [S54 D8 { K0 1355 [DA5ADI54] (K071 357 1 DR (07| [
10198 RN KT [KL | KLIKL | {020 023
11 D3N EN ' K 3000307 |DAT D43 | K0 VSSY | BESRE:
2 (" 1551 p?] A T 1063 ik 17
- 131068 NP2V A0) B33 K ALK) %
H 557/ 10255107871 (D32 035 | 03521 K0 [556 |D155{D456 | (b4
15 D5 055 } I3 U RUTKETKE | [087
1 LSSY L6 AD7 | (DA]
7 eI 5 %ﬁ\\\sss\\% 1 ig/a“ 023" | 7 0127
18 (D364 A3 (D412 Dit}@ 043" | (DA DIAT
[k Ik D1 D435) 063 | {00\ [NS3 BES at%
20 (K0 1556 D4a[D150 | (Kb 17557 10P%8 DN [AN);
21 [D57 D150 Ky~ VSsK L 04D 160 T ISR AN TN
2w s%/ﬁ/ (Y 1] (46 D43) (D42 0123) kT /552 JHES JRES
23 [0 553 NINIDS 1 036 DA 0143 | D 027
7] DiL VAT 056 Y BAvZ0363] [0 b7
VAV AL T DN R [N

GREEN YELLOW ORANGE BLUE RED RUST PINK

WO 02/41544 PCT/US01/43113
19/50
FIG. 17 t/17o4 g A0
/
TRANSCEIVER(S) |~ 1708
’ 171 1714
1716 . ([
/ a—— CLOCKIS)
oL [TRARLATOR ADHINISTRATION
=" U MODULE
\
1718
TRasceTver(s) |0
’/1705
FIG. 18 1eosa\t t,iBOEn 1302 =0
| * TRANSHITTER(S) |- 1846
== CELL ENCODER(S) pe——1 REFERENCE CLOCK |~ 1628
/
1814 e [omusmroy | -2
ALTERNATE . MODULE
1818~{ MEMORY MEMORY POOL (S) ,
POOL (S)
T 1810 FLOW CONTROLLER |~ 1822
I (
1 PACKET DECODER(S) f—— REFERENCE cLoCK |~ 1620
RECEIVER(S) |~ 1608

1904a\T

1/'1804n

Rx A ‘ HXN

WO 02/41544 PCT/US01/43113

20/50
FIG. 19
1300
1904a\i 1/1904" 1902
/
RECEIVER(S) 1308
l 1910
/
SYNCHRONIZATION MODULE
1912
| I
1922~1 REFERENCE CLOCK CELL ENCODER(S) fetmm——p
1914
L jamwe)
e
— = MEMORY POOLIS) POOLLS)
1924~ ADMINISTRATION
MODULE Y M
PACKET ENCODER(S) festm————ri
1926~ FLOW CONTROLLER '
l 1920
1928~} REFERENCE CLOCK
TRANSMITTER(S)

1905a\‘
Tx A

PCT/US01/43113

WO 02/41544

21/50

Zx._. <N 1 me <xm
ugToz U ez sgm\. ./s.gm
uggoe-{ 1 180d _ ot _ 140d T,mmmcm A wv&m . Egmw_ 140d _ tUe _ 140d _./mﬁom
3e0C oo s | e
1 JOVHIINT TITIVHYd Y Y
veoz—] (S)4300003 13N (= E\Egaa 13Hvd —
HETIOHNY A $i0e 220z . 100d AHOWM
L 7 H30Y3H J00W JATLWN
A (8)700d AHOWIH 0 ($1700d AHOKEW ‘
2602 9702
ommm aﬂ_m
‘ 079 JNH
($)4300030 T13) jee—ro Lt (S)43000M3 T1H) | 7004 AUOWM
()30 } VAN WIHS : = 3004 IALLWN
: 3&@ 0202 /
TINOH "M a0 §202
! |
92021 H3ZT VIHASIQ/HIZT VILAS
/ _ N
s 202 8002 § e
: Xy x|

02 ‘9Id

PCT/US01/43113

WO 02/41544

22/50

Y00T¢

)
0712 i/gﬁ -} N0 e
aiel “ (S)0/T SOK) '
i § ,
vere—1 (S)43000N3 1AV ! 712
2e72—1 (S163000N3 13Xvd HITIOHINGD (S)8300030 13Hvd
/. A N
| 10 AR g | |8 v || W mwm%_: T00d
0414 | 0414 | | 0414 | 04 HIOV3H | 0414 | 0dId | H3QVAH | 044 | 044 I
J00H
\/ \ [/ 7 \// \ [/ ~ ~ cmm IALLWN
smm 02 9172
4317934 {S)4300330 1130 812 (S)H3009NT 7139
| NIHOV_ | / 7
TOHINOI X010 Biie e
AN
NINQY | | 0d1d NOTLYZINOHHONAS - WIHS | ™-3eFe
V2121 _ (S)YIZI VIHISIO/ (S)HIZT WIHIS
\ [
2072 8072 9072

vic "9Id

WO 02/41544

PCT/US01/43113
23/50
FIG. 21B
2162 2164a 2164b 21008
((i T

SER/DES SPECIAL

CHARACTER

SER/DES DATA

SER/DES DATA

!

!

I . 2%§0

CELL ENCODER(S|

21522 1 1f2152b 1/2154 21583\1 1f2158b 1/2158

FIFO
AL

FIF0 HEADER
A2 A

]

PACKET DECODER

FIFO | FIFO HEADER
BL | B2 B

|

PACKET DECODER

) 3

2150a 2150

FIG. 21C

2170 2172 2472 2400¢

/ /)
SER/DES SPECTAL
CHARACTER SEHIDES DATA SER/DES DATA
l 1 1 2174
{

CELL DECODER(S)

217§a-\; l l4),-é175b

FIFO | FIFO
1| G

1|

217Bc\ l l [2158d

FIFO | FIFO

[

PACKET ENCODER

PACKET ENCODER

\
¢4/8a

)
24780

WO 02/41544

PCT/US01/43113
24/50
FIG. 21D
21000
CELL ENCODER | 2186
FIFO 2182 | HEADER
NATIVE d nrme 2t

I

PACKET DECODER 2180

PCT/US01/43113

WO 02/41544

25/50

180 G0 [10 | 40 | £0 | ASH Pggrz |
0EQ 710 | 010 | 90 | 20 [ASH [eggrz | |

Sl e | 1Dovd ‘ 1349V
620 G0 | 60 | S0 | 10 | MOy, | [DovdEmT] oo | OO0 MO g
820 0| 80 | ¥0 | 00 | O 7) 7 7
7 T) A 3 A7 90672 2072
UgETZ PBET 98672 98672 BB 2612 |

T ! 13NVd T1dWK3
e 914

WO 02/41544 PCT/US01/43113

26/50
FIG. 22
START |20
DETERMINE PORT TYPE | ~220
! 2208
SELECT CELL FORMAT TYPE -
! 2208
RECELVE ONE OR HORE PACKETS L~
PARSE ONE OR MORE PACKETS INTO INFORMATION |~22%0
1 (OPTIONAL)
STORE INFORMATION |22
- ‘ 14
FORMAT INFORMATION INTO ONE OR MORE CELLS |~
1
P

FORWARD ONE OR MORE CELLS

WO 02/41544 PCT/US01/43113

27/50
FIG. 23A
START 2302
DETERMINE PORT TYPE | ~2304

‘2306 9308
(

IS PORT
TYPE BELOW
THRESHOLD?

SELECT VARIABLE
CELL SIZE FORMAT

SELECT FIXED CELL SIZE FORHAT L ~2310
—

RECEIVE ONE OR MORE PACKETS | -2312
PARSE CONTROL INFOﬁMATION FROK pAckET |2
DETERMINE SLOT AN[? sTATE neoRmrIon |

STORE SLOT AND S‘TATE INFORMATION |38
PARSE PAYLOAﬁ FROM PACKET | 2320
smm—:l DATA | -2322

l

10 2324

WO 02/41544 PCT/US01/43113

28/50

FIG. 23B
FRON 2322

1

ACCESS CONTROL INFORMATION | ~2324
ACCESS DATA BASE ON PACKET 2328
l 2328
INSERT KO SPECTAL CHARARCTERS <
'
INSERT SLOT INFORMATION | ~2330
Y
INSERT STATE INFORMATION | ~2332
INSERT DATA BASED ON CELL FORMAT TYPE |2
233
IS
THERE RENAINING o -
DATA?
INSERT K1 SPECTAL CHARACTER | ~2338
2340

FORWARD ONE OR MORE CELLS

WO 02/41544 PCT/US01/43113

29/50

FIG. 24

START e

RECEIVE ONE OR MORE CELLS | ~2404
l (OPTIONAL)

QUEUE ONE OR MORE CELLS | ~2406
1 (OPTIONAL)

SYNCHRONLZE ONE OR MORE CELLs . | 2/08

1

PARSE ONE OR MORE CELLS INTO CONTROL p~2410
INFORMATION AND DATA'PAYLOAD

l

STORE CONTROL INFORMATION AND DATA PAvLosp |~24%2

|
FORMAT INFORMATION INTO ONE OR MORE PACKETS

1

FORWARD ONE OR MORE PACKETS |24

|_-2414

WO 02/41544

PCT/US01/43113

30/50
FIG. 25A
START 2l
RECEIVE ONE OR MORE cELLS o0
b ormow
SYNCHRONIZING ONE OR MORE CELLS | 2206
(OPTIONAL) 2508 (OPTIONAL)
AFE CELLS HOLD ONE OR

ARRIVING IN
ORDER?

MORE CELLS UNTIL.

|_~2510

ORDER REGAINED

)/-2512

PARSE CELL FOR CONTROL INFORMATION -

!

~ DETERMINE SLOT AND STATE INFORMATION

| ~2014

J

STORE SLOT AND STATE INFORMATION

|_~2516

!

PARSE CELL FOR DATA

2518

'

STORE DATA

| ~2520

!

ACCESS CONTROL INFORMATION

| ~2322

l

T0 2524

WO 02/41544 PCT/US01/43113

31/50
FIG. 25B
FROM 2522
l
ACCESS DATA | -2524
FORM ONE OR lMoms PACKETS | ~25ch
FORWARD ONE oﬁ MORE PACKETS | 2528
FIG. 26 |
START 2602
DETERMINE smu‘s OF COMPONENTS | ~2604
DETERMINE ST!\TUS OF LINKS | ~2606
MONITOR 0PEHATIOlNS OF COMPONENTS | 2608
l |
MONITOR COUNTERS FOR ADMINISTRATIVE commatos | %520
l
PERFORM RESETS OF COMPONENTS | ~2612
CONFIGURE COMPOLNENT OPERATIONS | ~26H4

WO 02/41544 PCT/US01/43113

32/50

FIG. 27A

ROUTINE FOR PROCESSING DATA |~2700
IN PORT SLICE BASED ON WIDE
CELL ENCODING AND A
FLOW CONTROL CONDITION

1

MANAGE 64-BIT ENTRIES IN 2710
RECEIVE SYNCH FIFO

1

RECEIVE 2 CHUNKS OF 32-BIT |~ 2720
DATA FROM RECEIVE SYNCH FIFO

l

DETECT KO IN THE FIRST BYTES 272
OF FIRST CHUNK AND SECOND CHUNK

l

EXTRACT DESTINATION SLOT 2124
FROM THE STATE FIELD IN
THE HEADER IF KO IS DETECTED

WO 02/41544 PCT/US01/43113

33/50

FIG. 278B

(e step 2724)
‘ |

DETERMINE WHETHER THE CELL HEADER L2726
IS LOW-ALTGNED OR HIGH-ALTGNED

!

WRITE B4-BIT DATA TO THE DATA FIF0 |~2728
CORRESPONDING TO THE DESTINATION
SLOT IF CELL HEADER IS ETTHER
LOW-ALIGNED OR HIGH-ALIGNED, BUT NOT BOTH

!

WRITE 2 64-BIT DATA T0O 2 DATA _~2730
FIFOs CORRESPONDING 70 THE TWO
DESTINATION SLOTS IF CELL HEADERS APPEAR
IN THE FIRST CHUNK AND THE SECOND CHUNK
OF DATA (LOW-ALIGNED AND HIGH-ALIGNED)

'

FILL THE SECOND CHUNK OF 32-BIT DATA | ~2732
WITH IDLE CHARACTERS WHEN A CELL DOES
NOT TERMINATE AT THE 64-BIT BOUNDARY
AND THE SUBSEQUENT CELL IS
DESTINED FOR A DIFFERENT SLOT

!

EARLY TERMINATE A CELL IF ERROR 2134
CONDITION IS DETECTED BY INSERTING
KO AND ABORT STATE IN THE DATA

!

DETECT K1 CHARACTER IN THE FIRST 2736
BYTE OF DATA_L(FIRST CHUNK) AND '
DATA_H(SECOND CHUNK)

WRITE SUBSEQUENT 64-BIT 2738

DATA TO ALL DESTINATION
DATA FIFOs

WO 02/41544 PCT/US01/43113

34/50

FIG. 27C

(Fron STEP 2738)

IF BOTH 32-BIT CHUNKS OF 2140
DATA ARE VALID, WRITE THEM
T0 THE DATA FIFO RAM

!

IF ONLY ONE OF THE 32-BIT CHUNKS IS |~ 2142
VALID, SAVE IT IN A TEMPORARY REGISTER
TF FIFO DEPTH HAS NOT DROPPED BELOW
A PREDETERMINED LEVEL. COMBINE THE SAVED
32-BIT DATA AND THE SUBSEQUENT VALID 32-BIT"
DATA AND WRITE THEM TO THE FIFO RAM

!

IF ONLY ONE OF THE 32-BIT CHUNKS IS |~ 2744
VALID AND THE FIFO DEPTH HAS DROPPED
BELOW 4 ENTRIES, WRITE THE VALID
32-BIT CHUNK COMBINED WITH A 32-BIT
IDLE DATA TO THE FIFO RAM

1

INDICATE T0 FIFO READ ARBITRATOR IF |_~2746
KO HAS BEEN READ OR FIFO RAM
IS EMPTY T0 REQUEST FOR ARBITRATION

l

INDICATE T0 THE FIFO READ ARBITRATOR ~2748
WHETHER KO IS ALIGNED TO THE FIRST 32-BIT
CHUNK OR THE SECOND 32-BIT CHUNK

!

WHEN FLOW CONTROL CONDITION IS DETECTED, ~ {~27%0
STOP REQUESTING T0 THE FIFO READ ARBITRATOR
AFTER THE CURRENT CELL IS COMPLETELY
READ FROM THE FIFO RAM

WO 02/41544 PCT/US01/43113

35/50

FIG. 27D

(Faow sTep 2750),

ARBITRATE AMONG 7 REQUESTS |~ 2760
FROM 7 FIFO CONTROLLERS AND
SWITCH AT CELL (K0} BOUNDARY

TF END OF THE CURRENT CELL IS 4-BIT ALIGNED, | 2762
THEN SWITCH TO THE NEXT REQUESTOR AND DELIVER

64-BIT DATA FROM THE REQUESTING FIFO
CONTROLLER TO THE DISPATCHER

l

IF END OF CURRENT CELL IS 32-BIT 2764
ALIGNED, THEN COMBINE THE LOWER 32-BIT
OF THE CURRENT DATA WITH THE LOWER
32-BIT OF THE DATA FROM THE NEXT REQUESTING
FIFO CONTROLLER, AND DELIVER THE COMBINED
64-BIT DATA TO THE DISPATCHER

l

INDICATE TO THE DISPATCHER WHEN ~ |-2766
ALL 7 FIFO RAMs ARE EMPTY

WO 02/41544 PCT/US01/43113

36/50

FIG. 27E

(" Frot STeP 2786)

DELIVER 64-BIT DATA T0 THE SERDES SYNCH FIFO |-2770
MODULE AND TRANSMITTER IF NON-IDLE DATA IS
RECEIVED FROM THE FIFO READ ARBITRATOR

INJECT FIRST ALIGNMENT SEQUENCE TO 272
BE_TRANSMITTED TO THE SERDES SYNCH
FIFO MODULE AND TRANSMITTER WHEN

FIFO READ ARBITRATOR INDICATES THAT
ALL 7 FIFO RAMs ARE EMPTY -

|

INJECT SECOND ALIGNMENT SEQUENCE TO BE |~ 2774
TRANSMITTED TO THE SERDES SYNCH FIFO
MODULE AND TRANSMITTER WHEN THE
PROGRAMMABLE TIMER EXPIRES AND THE
PREVIOUS CELL HAS BEEN COMPLETELY TRANSMITTED

l

INDICATE TO THE FIFO READ ARBITRATOR 2176
70 TEMPORARILY STOP SERVING ANY REQUESTOR
UNTIL THE CURRENT PRESCHEDULED
ALIGNMENT SEQUENCE HAS BEEN
COMPLETELY TRANSMITTED

l |
(oo j:),,—2790

WO 02/41544 PCT/US01/43113

37/50

ADMINISTRATIVE MODULE 676
/\/
2806 2808
STRIPE
MLOEN\I/'II'ECI)-R SYNCHRONIZATION
ERROR DETECTOR
2810 2812
CONTROL
CHARACTER (K2) FLOW CONTROLLER
PRESENCE TRACKER

FIG. 28A

WO 02/41544 PCT/US01/43113

2800B
38/50

2856A Link 2857 2858
—~

sXPNT
7 0

2860

Link 2858 .~

e

28568

e
-
-~
"
-
-
-

| sxPNT FIFOs

1

2856C

\\\\\\\\\\\\\\ SXPNT Slot

FIG. 28B

WO 02/41544 PCT/US01/43113

39/50

2900
Routine for Maintaining Synchronization
of Striped Cell Traffic
Y 2902

Send a Common Control Character in Striped Cells in |[,—"
all Lanes for a Predetermined Number of Cycles

v 2904
Evaluate Common Control Characters Received | —"

in Stripe Receive Synchronization Queues

2906

In-Synch
Condition Detected
?

No

l 2908
—~

Generate Error
Message or Other
Administrative Signal

Yes

2910

Return to Step 2902 (Either
Periodically or in Response to
Administrative Control Command

 FIG. 29

WO 02/41544 PCT/US01/43113

40/50

3000

Routine for Detecting Out of Synch Traffic Flow
through a Cross Point Switch in a Backplane
Switching Fabric

-t

v 3002
Monitor Levels of Stripe Receive Synch

Queues

3004

of Synch Queue No

Threshold Detected
-

3006

Generate an Out of Synch Message
or Other Administrative Signal

Y 3008

Initiate a Resynchronization Routine of
Striped Cell Traffic across all Lanes (Flush,
Send Common Control Characters)

FIG. 30

WO 02/41544 PCT/US01/43113

41/50

2862

overflow

level
Slot 1
<\normal

Siot0 - level

” |

underflow 0 1 o 3 4 \norma

level I level
STRIPES

Link 2853 Error Condition

FIG. 31

WO 02/41544

PCT/US01/43113

42/50
3200A
3202
Blade A
3204
Switch A
3206
Blade B

FIG. 32A

WO 02/41544

PCT/US01/43113
43/50
3200B
3202
Blade A J
'\ /\
3204 3205 o
Y v Fabric Active 3210
Switch A Switch B
A A
v 3206
j308
- v—lj/
AN l e
Blade B

FIG. 32B

WO 02/41544 PCT/US01/43113
44/50
3300A
3302 3304

Switching Blade (SFM-A) Switching Blade (SFM-B)

SXPNT | sXPNT | sXPNT | sXPNT | sXPNT SXPNT | sXPNT [sXPNT { sXPNT | sXPNT
3310A | 33108 | 3310C | 33100 | 3310E 3312A | 33128 | 3312C | 3312D | 3312E
asf1B \ astic\ 1P

3313
3311E

\ba?zéé&ec n otio/

3313B/ 3313C 3313E

10Gbp 3306

3308

\ /N /

\ /

\ /

\ /

RFT
3316A

RFT
3316B

RFT
3316C

RFT
3316D

RFT
3316E

10Gbps
/stripe0

J

3318A

10Gbps
Istripet

|

3318B

10Gbps
Istripe2

L)

10Gbps
/stripe3

3318C

L

10Gbps
[striped

3318D

3318E

sBIA

Ingress/Egress Blade

(Slave Module)

3320

FIG. 33A

WO 02/41544 PCT/US01/43113

45/50
33008
sXPNTO SXPNTO
in SFM-A in SFM-B
SERDES SERDES [—
3352
3354 | b;;%o ! 3356
Syneq Syneq 3358
Y Y
MUX
3360 ‘ 3366
3362 bp_rx bp.ix 3368
downiink_ram uplink_ram [
3364 3370
bia_tx bia_rx (
A
RFT
Registers 3375 '
N\ P
3376 Synoa
V3374
SERDES

sBIA Stripe0

FIG. 33B

WO 02/41544 PCT/US01/43113

46/50

3400A

Stripe 1 Stripe 2 Stripe 3 Stripe 4 Stripe 5 .

cycle]L.O (Lt [L2 {L3 {jLO (L1 (L2 |L3 ffLO L1 {L2 {L3 (JLO L1 [L2 (L8 |[LO (L1 [L2 (L3

1]K2 |State|k2 |K2 |}|K2 |State]k2 |K2]]K2 |[Statelk2 |K2 ||K2 |[StatejK2 |K2 [{K2 [state|k2 |Kk2

FIG. 34A

WO 02/41544 PCT/US01/43113

47/50 3450

(KZ Sequence Synchronization Routine

L

Y 3452
Source SBIA checks RFT/SXPNT for

ready state

3454

Is
RFT/SXPNT
Ready?

No

Yes 3456

Source SBIA Sends Idle Characters

3458

Y
Source SBIA Sends Special Characters (K2)

A

3462

Treat K2 Sequence as
Error in SBIA Received
Data

Is
RFT Ready?

3466

Source SBIA Sends ldie Characters

FIG. 34B

WO 02/41544

PCT/US01/43113
48/50
3500
3506 | 3502
ready_sync
SXPNT SXPNT SXPNT SXPNT SXPNT
3508A 35088 3508C 3508D 3508E
| | i | | 3504
sync sync sync sync sync ~
Flow Flow Flow Flow Fiow
Ctrl Ctrl T Ctr Ctr
RFT RFT RFT RFT RFT
3510A "1 3510B 3510C 3510D 3510E
A A A A A
9@ 9 Eﬁ g T 3512
A 4 A 4 Y \; v~
SBIA

FIG. 35

WO 02/41544

49/50

PCT/US01/43113

Clock ﬂ_/

Sync Signal |

LT

1T

Internal Counter (5%

xpnt_ready[1:0]

2 XCOXXCEED

XD

_sloto,1” M slot23 >

 slot4s X slot6

<
<

>

5 cycle delay

FIG. 36

WO 02/41544 PCT/US01/43113

50/50
3700
3702
~
: ready_sync
i | sxeNT SXPNT SXPNT SXPNT SXPNT
i | 3708A 37088 3708C 3708D 3708E
§ A A A y 3710
g Y Y A4 Y Y~
te Control Logic
N
3707 i 3712 + 3704
_J ~J T ~/
{ | Control Logic ']
|
Y
R AT] LR C R
3714A 3714B 3714C 3714D 3714E
A A i yy A
sync. sync sync sync sync
Flow Flow Flow Flow Flow
cil ctl ctd cul ci 3506
A 4) 4 A4 4 Yy
> SBIA

FIG. 37

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

