一种脱油脱硫脱酸碱化熔炼工艺

摘要
本发明公开了一种脱油脱硫脱酸碱化熔炼工艺,包括以下步骤:将含硫原料、含油含硫
酸碱原料、焦油、含硫酸碱原料和酸投入到焙式搅拌机中,搅拌均匀后放置24小时,得混合
料A;将混合料A加入到回转窑式熔炼炉中进行熔炼,得熔炼料B;将熔炼料B加热到使有浸取液的浸取
罐中进行浸取操作,过滤、分离后得浸取液C和浸渣D;将所得的浸取液C经湿法净化除杂后提纯,得最终产
品;将浸渣D置于移动床烘干机中,经热废气回收后回收利用。本发明提出的一种脱油脱
硫脱酸碱化熔炼工艺,熔炼一步完成,相对现有技术省时省力,省设备投资,有效的减少了
人员投入,降低了生产成本,充分实现了原料处理过程中充分资源化、减量化、无害化。
权利要求书

1. 一种脱油脱碳脱硫低碱钠化焙烧工艺，其特征在于，包括以下步骤：
 步骤S1，将含硫原料、含油含低钼低钒原料、焦粉、含低钼低钒原料和碱投入到耙式搅拌机中，搅拌均匀后放置24小时，得混料A；
 步骤S2，将步骤S1混料A加入到回转窑式焙烧炉中进行焙烧，焙烧温度为800～1000℃，得焙烧料B；
 步骤S3，将步骤S2中所得的焙烧料B加入到装有滴取液的滴取罐中进行滴取操作，过滤、分离后得混取液C和混渣D；
 步骤S4，将步骤S3中所得的混取液C经磷酸液化除杂后提收，得最终产品；
 步骤S5，将步骤S3中所得的混渣D置于移动床烘干机中，经热废气烘干后回收利用。

2. 根据权利要求1所述的一种脱油脱碳脱硫低碱钠化焙烧工艺，其特征在于，所述步骤S1中碱的加入量为理论值的110%。

3. 根据权利要求1所述的一种脱油脱碳脱硫低碱钠化焙烧工艺，其特征在于，所述步骤S2中的焙烧过程中，当可燃油气热值达不到工艺要求时，需补充天然气。

4. 根据权利要求1所述的一种脱油脱碳脱硫低碱钠化焙烧工艺，其特征在于，所述步骤S3中的混取操作中，可溶性钼酸钠、钒酸钠进入滴取液。

5. 根据权利要求1所述的一种脱油脱碳脱硫低碱钠化焙烧工艺，其特征在于，所述步骤S4中的最终产品为：钼酸钠、钼酸铵、氧化钼、钒酸铵、五氧化二钒。

6. 根据权利要求1所述的一种脱油脱碳脱硫低碱钠化焙烧工艺，其特征在于，所述步骤S5中混渣D经热废气烘干后可用做脱油脱碳脱硫高碱钠化焙烧的主要原料。
说明 书

一种脱油脱碳脱硫低碱钠化熔烧工艺

技术领域
[0001] 本发明涉及熔烧工艺领域，尤其涉及一种脱油脱碳脱硫低碱钠化熔烧工艺。

背景技术
[0002] 随着工业化的发展，熔烧工艺越来越多地得到应用。现有的脱油脱碳脱硫熔烧工艺，添加了石灰石、萤石、硅石、焦粉、硫酸钠等辅料，并在熔烧过程中，原料所含的热值无法满足生产工艺所需要的所有热量，因此，需补充大量的天然气以维持熔烧生产的持续进行，导致了生产过程中投入极大；现有的脱油脱碳脱硫熔烧工艺，对熔烧得到的熔烧料进行浸取操作，将熔烧料经浸取、分离后得到的浸渣，采用高温熔融固化的方法进行处理，包含了合金高温熔融分离净化工艺过程，该工艺过程需要昂贵的设备投资，以及极大的电能消耗量；不仅如此，现有的脱油脱碳脱硫熔烧工艺，操作复杂，人员投入量大，生产成本高，生产过程中，原料转换率不高，原料利用不够充分，造成了严重的资源浪费及环境污染。随着社会环保意识的越来越普及，以及各国社会环保组织对人们生活环境的越来越重视，现有的脱油脱碳脱硫熔烧工艺，已经无法满足当前生产的需要，因此，急需提出一种新的低投入，无公害的脱油脱碳脱硫熔烧工艺。基于上述问题，本发明提出了一种脱油脱碳脱硫低碱钠化熔烧工艺。

发明内容
[0003] 本发明的目的是为了解决现有的脱油脱碳脱硫熔烧工艺中存在的缺点，而提出的脱油脱碳脱硫低碱钠化熔烧工艺。本发明提出的脱油脱碳脱硫低碱钠化熔烧工艺进一步完成，相对现有技术省时省力，节省设备投资，有效的减少了人员投入，降低了生产成本，充分实现了原料处理过程中充分资源化、减量化、无害化。
[0004] 一种脱油脱碳脱硫低碱钠化熔烧工艺，包括以下步骤：
[0005] 步骤S1、将含硫原料、含油含低锌低铝原料、焦粉、含低锌低铝原料和碱投入到耙式搅拌机中，搅拌均匀后放置24小时，得料A；
[0006] 步骤S2、将步骤S1混合料A加入到回转窑式熔烧炉中进行熔烧，熔烧温度为800～1000℃，得熔烧料B；
[0007] 步骤S3、将步骤S2中所得的熔烧料B加入到装有浸取液的浸取罐中进行浸取操作，过滤、分离后得浸取液C和浸渣D；
[0008] 步骤S4、将步骤S3中所得的浸取液C经湿法净化除杂后提纯，得最终产品；
[0009] 步骤S5、将步骤S3中所得的浸渣D置于移动床烘干机中，经热废气烘干后回收利用。
[0010] 优选的，所述步骤S1中碱的加入量为理论值的110%。
[0011] 优选的，所述步骤S2中的熔烧过程中，当可燃油热值达不到工艺要求时，需补充天然气。
[0012] 优选的，所述步骤S3中的浸取操作中，可溶性钡酸钠、钒酸钠进入浸取液。
说明书

优选的，所述步骤S4中的最终产品为：钼酸钠、钼酸铵、氧化钼、钒酸钠、五氧化二钒。

优选的，所述步骤S5中浸渣D经热废气烘干后可用做脱油脱碳脱硫高碱钠化焙烧的主要原料。

本发明一种脱油脱碳脱硫低碱钠化焙烧工艺，充分利用原科自身所含的热值来满足生产工艺所需要的热量，每吨原料可节省200m³～300m³天然气，本发明对烘干浸渣不再采用高温熔融固化处理，减少了合金高温熔融分离精制工艺过程，有效的节省了电能，每吨原料可节省电能1000度～1500度电，在烟气余热的利用上都采用余热锅炉回收热能，回收热能相当；减少了辅料品种，减少了辅料用量，本发明不再使用石灰石、萤石和硅石、焦炭、天然气用量大幅减少，每吨原料节省石灰石150kg～200kg、萤石40kg～60kg、硅石50kg～80kg、焦炭50kg～60kg、天然气200m³～300m³，每吨原料减少固体废弃物排放不少于174kg，可减少二氧化碳气体排放不小于605kg（150kg石灰石66kg、40kg焦炭146kg、200m³天然气392kg），有效的减少了废弃物排放总量和二氧化碳气体排放量；本发明提出的脱油脱碳脱硫低碱钠化焙烧工艺，工艺符合环保、节能、安全、高效、投资少、效益好的特点，降低了生产成本，充分实现了原料处理过程中充分资源化、减量化、无害化。

具体实施方式

下述结合具体实施例对本发明作进一步说明。

实施例

本发明提出的一种脱油脱碳脱硫低碱钠化焙烧工艺，包括以下步骤：

1. 混料：将含硫原料、含油低钠低钒原料、焦炭、含低钠低钒原料和碱投入到箱式搅拌机中，碱的加入量为理论值的110%混拌均匀得混料，放置24小时后使用；
2. 焙烧：将混料投入回转窑式焙烧炉中进行焙烧，焙烧温度为800～1000℃，得焙烧料，原料中的硫可充分氧化为二氧化硫，其中20%～30%的二氧化硫转化为可溶性的硫酸钠进入固相，70%～80%的二氧化硫进入气相最终在烟气处理过程中转化为硫酸钠固相回收利用，原料中的钼钒经氧化后转化为可溶性的钼酸钠和钒酸钠，可燃油气热值达不到工艺要求时，需补充天然气，以保证焙烧温度，正常生产情况下不用补充天然气，原料自身的热值可以达到工艺的要求，原料的热值可得到充分利用，进一步完成二个工艺过程，省工省时省能源，原料中的钼钒转化为可溶性物转化率90%以上；
3. 浸取：将焙烧料投入浸取罐中进行浸取操作，得浸取液和浸渣，固相中有可溶性硫酸钠进入浸取液，增加浸取液的含盐量，降低了浸取液中钼钒浓度，使浸取液体积增加10%，焙烧料中有可溶性钼酸钠和钒酸钠进入浸取液中，浸取率可达到98%以上，原料中的钼钒综合转化率与浸取率达到98%以上；
4. 湿法净化除杂提纯，生产废水处理：采用搅拌罐和板框过滤机，以及废水处理设备，将浸取液经湿法净化除杂后提纯，生产废水处理，根据产品市场需求生产最终产品为：钼酸钠、钼酸铵、氧化钼、钒酸钠、五氧化二钒等，钼钒综合收率97%以上；
5. 浸渣烘干：将浸渣置于移动床烘干机中，经热废气烘干后回收利用，可用做脱油脱碳脱硫高碱钠化焙烧的主要原料。

本发明一种脱油脱碳脱硫低碱钠化焙烧工艺，充分利用原料自身所含的热值来满
足生产工艺所需要的热量，每吨原料可节省200m³～300m³天然气，本发明对烘干浸渣不再采用高温熔融固化处理，减少了合金高温熔融分离净化工艺过程，有效的节省了电能。每吨原料可节省电能1000度～1500度。在烟气余热的利用上都采用余热锅炉回收热能，回收热能相当。减少了辅料品种，减少辅料用量，本发明不再使用石灰石、萤石和硅石，焦粉、天然气用量大幅减少，每吨原料节省石灰石150kg～200kg、萤石40kg～60kg、硅石50kg～80kg、焦粉40kg～60kg，天然气200m³～300m³，每吨原料可减少固体废弃物排放不少于174kg，可减少二氧化碳气体排放不少于605kg（150kg石灰石66kg、40kg焦粉146kg、200m³天然气392kg），有效的减少了废弃物排放总量和二氧化碳气体排放量。本发明提出的脱油脱碳脱硫低碳化焙烧一步完成，相对现有技术省时省力，省设备投资，有效的减少了人员投入，降低了生产成本，充分实现了原料处理过程中充分资源化、减量化、无害化。

【0025】以上所述，仅为本发明较佳的具体实施方式，但本发明的保护范围并不局限于此。任何熟悉本技术领域的技术人员在本发明揭露的技术范围内，根据本发明的技术方案及其发明构思加以等同替换或改变，都应涵盖在本发明的保护范围之内。