wo 2015/050726 A1 [N I 000 OO0 O O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

9 April 2015 (09.04.2015)

(10) International Publication Number

WO 2015/050726 A1

WIPOIPCT

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

International Patent Classification:
GO6F 12/10 (2006.01)

International Application Number:
PCT/US2014/056664

International Filing Date:
19 September 2014 (19.09.2014)

Filing Language: English
Publication Language: English
Priority Data:

14/046,341 4 October 2013 (04.10.2013) US

Applicant: QUALCOMM INCORPORATED [US/US];
ATTN: International IP Administration, 5775 Morehouse
Drive, San Diego, California 92121-1714 (US).

Inventors: SHEN, Jian;, 5775 Morehouse Drive, San
Diego, California 92121-1714 (US). CHUA-EQAN, Lew,
Go; 5775 Morehouse Drive, San Diego, California 92121-
1714 (US).

Agents: HANSEN, Robert ct al; The Marbury Law
Group, PLLC, 11800 Sunrise Valley Drive, 15th Floor,
Reston, Virginia 20191 (US).

(84)

(81) Designated States (uniess otherwise indicated, for every

kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
Bz, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

[Continued on next page]

(54) Title: MULTI-CORE HETEROGENEOUS SYSTEM TRANSLATION LOOKASIDE BUFFER COHERENCY

. 500

-
210° .
20 =
g
Ay
V)I
x
« 201 Y
= Mask—‘
Apply
T 270
(202 201} —260)
CAM Masks_1_n |s > "\ { RAM
[=% = \)
............................... T 2} = »1 controller
—210 =< - 240
s 502 ™\
265 RAM
206 - . 203 ~—m
Mask_1| VA_1 PFN 1}
. 212
207 ~mask_2| VA_2 [~204 PEN 1-PFN n PFN_2|"
214 -
213
208 “|Mask_n| vA_n | 205 PFN_n}"
\. J \ 7
g
FIG. 2

(57) Abstract: Methods, devices, and instructions for per-
forming a reverse translation lookaside butfer (TLB) look-up
using a physical address input, including obtaining with a
first processor the physical address input, wherein the phys-
ical address input indicates a physical address corresponding
to a shared memory, obtaining a first mask associated with a
first virtual address from a first TLB entry within a TLB as-
sociated with the first processor, wherein the obtained first
mask is a bit pattern, obtaining from the first TLB entry a
first page frame number associated with the shared memory,
applying the obtained first mask to the obtained first page
frame number to generate a first value, applying the obtained
first mask to the obtained physical address input to generate
a second value, and comparing the first value and the second
value to determine whether the first value and the second
value match.

WO 2015/050726 A1 AT 00N VAT 0T O

Published:
— with international search report (Art. 21(3))

WO 2015/050726 PCT/US2014/056664

TITLE
Multi-core Heterogeneous System Translation Lookaside Buffer Coherency

BACKGROUND

[0001] Computing devices often include numerous processors for executing
various instructions/systems. For example, a smartphone mobile device may
utilize an applications processor for performing routines related to a downloaded
application as well as a digital signal processor for performing signaling
processing operations. Such processors may each be configured to utilize a virtual
memory address scheme so their respective processes may access data using
simplistic memory addresses that map to various physical addresses within system
memory. For example, an applications processor may utilize consecutive virtual
addresses to access arbitrary RAM locations associated with data for an

application.

[0002] Devices are now beginning to utilize various processors of different
architectures. Such a heterogeneous system may increase the potential for
software to benefit from shared memory and may utilize various application
programming interfaces (APIs), such as OpenCL, Renderscript, etc. However,
differences in addressing schemes may require inefficient mechanisms using
conventional approaches. For example, heterogeneous system devices, such as
modern smartphones, may employ both 64-bit and 32-bit processors and/or
processing cores. With different architectures, the various processors may utilize
different virtual memory address schemes to access the same (or shared) system
memory. For example, the same page (or memory block) of RAM may be used by
both a first and second processor; however, that page may be referenced by two
different virtual addresses by the two processors. The processors in such
heterogeneous systems may each utilize a translation lookaside bufter (TLB) that
improves the speed and efficiency for accessing system memory via virtual

addresses, and thus may require robust support for TLB coherency. TLBs may use

WO 2015/050726 PCT/US2014/056664

many-to-one mapping of virtual pages to physical pages in system or common
memory, making the coherent identification of entries expensive in terms of

processing time and power consumption.

[0003] Techniques exist for maintaining coherency in a multi-core system. For
example, there are API commands that modify TLB entries using virtual
addresses, such as Linux ARM TLB flush methods flush tlb_all(),

flush tlb_ mm(memory block identifier),

flush tlb range(memory block identifier, start index, end index), and

flush tlb page(virtual address, virtual mask). As another example, some systems
may perform a TLB “shoot-down” technique that utilizes virtual addresses for
look-up and invalidation operations for entries within TLBs. A typical TLB shoot-
down procedure may include a first processor sending an interrupt to a second
processor including a virtual address to be invalidated in the second processor’s

page table.
SUMMARY

[0004] In an aspect, a method for performing a reverse translation lookaside buffer
(TLB) look-up using a physical address input may include obtaining with a first
processor the physical address input, wherein the physical address input indicates a
physical address corresponding to a shared memory, obtaining a first mask
associated with a first virtual address from a first TLB entry within a TLB
associated with the first processor, wherein the obtained first mask is a bit pattern,
obtaining from the first TLB entry a first page frame number associated with the
shared memory, applying the obtained first mask to the obtained first page frame
number to generate a first value, applying the obtained first mask to the obtained
physical address input to generate a second value, and comparing the first value
and the second value to determine whether the first value and the second value
match. In another aspect, the method may further include iteratively obtaining a
second mask and a second page frame number from other TL.B entries within the

TLB in response to determining that the first value and the second value do not

WO 2015/050726 PCT/US2014/056664

match, iteratively applying the obtained second mask to the obtained second page
frame number to generate the first value, and iteratively applying the obtained
second mask to the obtained physical address input to generate the second value,
wherein comparing the first value and the second value to determine whether the
first value and the second value match may include iteratively comparing the first
value and the second value to determine whether the first value and the second
value match. In another aspect, iteratively applying the obtained second mask to
the obtained second page frame number to generate the first value may include
reusing page frame numbers from entries in a system page table without
duplication. In another aspect, the method may further include flushing the first
TLB entry in response to determining that the first value and the second value
match. In another aspect, the method may further include sending a message
indicating TLB actions and the physical address to a second processor, wherein the
TLB actions may include a TLB flush operation. In another aspect, the method
may further include returning an index of the first TLB entry in response to
determining that the first value and the second value match. In another aspect,
obtaining with a first processor the physical address input may include receiving a
message from a second processor including TLB actions and the physical address,
and the method may further include clearing an active flag in response to receiving
the message transmitted by the second processor, performing the TLB actions
indicated in the received message using the returned index of the first TLB entry,

and setting the active flag in response to performing the TLB actions.

[0005] In an aspect, a multi-core heterogeneous computing device may include
means for obtaining with a first processor a physical address input, wherein the
physical address input indicates a physical address corresponding to a shared
memory, means for obtaining a first mask associated with a first virtual address
from a first TLB entry within a TLB associated with the first processor, wherein
the obtained first mask may be a bit pattern, means for obtaining from the first
TLB entry a first page frame number associated with the shared memory, means

tfor applying the obtained first mask to the obtained first page frame number to

WO 2015/050726 PCT/US2014/056664

generate a first value, means for applying the obtained first mask to the obtained
physical address input to generate a second value, and means for comparing the
first value and the second value to determine whether the first value and the second

value match.

[0006] In an aspect, a multi-core heterogeneous computing device may include a
first processor, a second processor, and a shared memory, wherein the first
processor may be configured with processor-executable instructions to perform
operations that may include obtaining with the first processor a physical address
input, wherein the physical address input indicates a physical address
corresponding to the shared memory, obtaining a first mask associated with a first
virtual address from a first TLB entry within a TLB associated with the first
processor, wherein the obtained first mask may be a bit pattern, obtaining from the
first TLB entry a first page frame number associated with the shared memory,
applying the obtained first mask to the obtained first page frame number to
generate a first value, applying the obtained first mask to the obtained physical
address input to generate a second value, and comparing the first value and the

second value to determine whether the first value and the second value match.

[0007] In an aspect, a non-transitory processor-readable storage medium having
stored thereon processor-executable software instructions configured to cause a
first processor to perform operations that may include obtaining with the first
processor a physical address input, wherein the physical address input indicates a
physical address corresponding to a shared memory, obtaining a first mask
associated with a first virtual address from a first TLB entry within a TLB
associated with the first processor, wherein the obtained first mask may be a bit
pattern, obtaining from the first TLB entry a first page frame number associated
with the shared memory, applying the obtained first mask to the obtained first page
frame number to generate a first value, applying the obtained first mask to the

obtained physical address input to generate a second value, and comparing the first

WO 2015/050726 PCT/US2014/056664

value and the second value to determine whether the first value and the second

value match.
BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The accompanying drawings, which are incorporated herein and constitute
part of this specification, illustrate exemplary aspects of the invention, and
together with the general description given above and the detailed description

given below, serve to explain the features of the invention.

[0009] FIG. 1 is a component block diagram of a multi-core heterogeneous
computing device that includes a first processor of a first type and a second

processor of a second type.

[0010] FIG. 2 is a component block diagram of aspect logic circuitry configured
for utilizing a physical address associated with a shared system memory to perform

reverse TLB look-up operations.

[0011] FIGS. 3A-3B are process tflow diagrams illustrating aspect methods for a
multi-core heterogeneous computing device to utilize a physical address associated

with a shared system memory to perform reverse TLB look-up operations.

[0012] FIG. 4 is a process tflow diagram illustrating aspect methods using reverse
TLB look-up operations performed by a first processor and a second processor

within a multi-core heterogeneous computing device.

[0013] FIG. 5 is a component block diagram of a multi-core heterogeneous

computing device suitable for use in various aspects.

DETAILED DESCRIPTION

[0014] The various aspects will be described in detail with reference to the
accompanying drawings. Wherever possible, the same reference numbers will be
used throughout the drawings to refer to the same or like parts. References made
to particular examples and implementations are for illustrative purposes, and are

not intended to limit the scope of the invention or the claims.

WO 2015/050726 PCT/US2014/056664

[0015] The word “exemplary” is used herein to mean ““serving as an example,
instance, or illustration.” Any implementation described herein as “exemplary” is
not necessarily to be construed as preferred or advantageous over other

implementations.

[0016] The terms “computing device” and “multi-core heterogeneous computing
device” are used herein to refer to any one or all of cellular telephones,
smartphones (e.g., iPhone), web-pads, tablet computers, Internet enabled cellular
telephones, WiFi enabled electronic devices, personal data assistants (PDA’s),
laptop computers, desktop computers, personal computers, and similar electronic
devices equipped with at least a first processor (or first processing unit) and a
second processor (or second processing unit), where the architecture or technology
of the first processor is different from that of the second processor. For example, a
multi-core heterogeneous computing device may include a 64-bit applications
processor and a 32-bit auxiliary processor. In various aspects, such devices may
be configured with a network transceiver to establish a wide area network (WAN)
or local area network (LAN) connection (e.g., an LTE, 3G or 4G wireless wide

area network transceiver, a wired connection to the Internet, or WiFi).

[0017] Currently, circuitry, hardware, instructions, software, and/or commands for
maintaining coherency in multi-core systems are inadequate for heterogeneous
systems that use multiple-to-one virtual address schemes. For example, existing
API commands that utilize virtual addresses do not function for a heterogeneous
system, as these commands assume parity between the virtual addresses used by
processors within the system. As another example, known shoot-down techniques
for maintaining coherency may involve virtual addresses and/or sequentially
reading each entry within the TLB of a processor to identify the entry that has the
matching physical frame, requiring many cycles (e.g., a processor may iteratively
examine each TLB entry to identify the entries that are related to a certain physical

memory address within system memory).

WO 2015/050726 PCT/US2014/056664

[0018] The various aspects provide devices, instructions, and methods for utilizing
translation lookaside buffers (TLBs) in a multi-core heterogeneous computing
device. In various aspects, a processor of the multi-core heterogeneous computing
device may be configured to perform a TLB look-up using a physical address on
an associated TLB (i.e., a “reverse TLB look-up™). Such reverse TLB look-up
operations may be performed by any processor or processor core within the multi-
core heterogeneous computing device that is associated with a TLB (and thus
utilizes a virtual address scheme). For example, an applications processor and a
DSP within the multi-core heterogeneous computing device may simultaneously or
separately perform TLB look-up operations related to their respective TLBs. For
simplicity of description, the aspect operations are described below with reference
to a “first processor” and a “second processor” within the multi-core
heterogeneous computing device. However, such general references are not

intended to require or imply a particular order, priority or type of processor.

[0019] Performing an aspect method for reverse TLB look-up, a first processor
within the multi-core heterogeneous computing device may receive a physical
address (or physical address input), such as a system memory location associated
with a page that is to be modified based on a context switch by the first processor.
The received physical address may be a parameter in a system call (e.g., an API
command) or an instruction (e.g., a lower-level instruction within a reduced
instruction set). The first processor may obtain a mask corresponding to a virtual
address within a first entry of the TLB associated with the first processor. The first
processor may also obtain a page frame number associated with the virtual

address, such as a page frame number related to the system memory and stored
along with the virtual address in the TLB entry. The first processor may generate a
first value by applying the obtained mask to the obtained page frame number. In
parallel, the first processor may generate a second value by applying the mask to
the received physical address. The first processor may then compare the first and
second values to determine whether there is a match. If a match is found, the first

processor may store the index of the TLB entry associated with the mask (and its

WO 2015/050726 PCT/US2014/056664

corresponding virtual address) in a hit vector used to indicate which TLB entries
have the physical addresses, factoring the page size information. Such a “hit” TLB
entry may be used by the first processor device to invalidate or flush the entry to
promote coherency. In an aspect, multiple hits may be stored in the hit vector (i.e.,

more than one TLB entry may correspond to the received physical address).

[0020] When no match is determined based on comparing the first and second
values, the first processor may continue to generate new first and second values
using new masks and page frame numbers stored in association with virtual
addresses in other TLB entries. In other words, the first processor may iteratively
apply masks represented in the TLB to determine whether there is a match with the
second value. The first processor may continue this iteratively for all virtual
addresses of the various TLB entries. In an aspect, the TLB may be a content-

addressable memory (CAM).

[0021] In an aspect, a second processor within the multi-core heterogeneous
computing device may utilize a lower abstraction, instruction-level functionality
for performing reverse TLB-look-ups. In particular, the first processor may utilize
a reverse TLB probe instruction that copies a physical address into a control
register (e.g., one of the control registers in an ARM processor), applies masks
associated with virtual addresses of TLB entries to the physical address, and
returns TLB entry (entries) indices when matches are found between the physical
address with the masks and page frame numbers (PFN) with the masks. With this
instruction-level functionality, the second processor may perform TLB look-up
operations in a fast, non-serial manner. An aspect hardware implementation of this

instruction-level functionality is shown below in FIG. 2.

[0022] In various aspects, processors within the multi-core heterogeneous
computing device may be configured to utilize API commands that use physical
addresses as input values for various TLB operations, such as inputs indicating
which TLB entries to invalidate or flush. The API commands may cause the

multi-core heterogeneous computing device to utilize software or hardware

WO 2015/050726 PCT/US2014/056664

implementations of a reverse TLB look-up. For example, processors within the
multi-core heterogeneous computing device may use an API command (e.g.,
flush tlb_range(memory_ block identifier, start PA, end PA) that may cause the
execution of a method that invalidates TLB entries of a first processor that
coincide with physical addresses within a range for a certain memory block. As
another example, processors within the multi-core heterogeneous computing
device may use another API command that may cause the use of a hardware or
circuitry that flushes TLB entries of a first processor that coincide with a certain
physical address (e.g., flush tlb page(physical address, memory block identifier)
). Such API commands may be valuable for providing processors a convenient
manner to implement a physical address space protocol for implementing TLB
actions. In an aspect, processors within the multi-core heterogeneous computing
device may be configured to utilize API commands to perform batch invalidation

of a plurality of TLB entries.

[0023] In another aspect, processors within the multi-core heterogeneous
computing device may be configured to perform an enhanced TLB shoot-down
method or (or shoot-down protocol) in which a processor may utilize physical
addresses as input, as opposed to virtual addresses, to identify the TLB entries that
should be invalidated. In such a method, the multi-core heterogeneous computing
device may utilize hardware, instructions, API calls, or software methods to
perform reverse TLB look-up operations as described below. For example, in
response to detecting that translation information related to a virtual address of a
page within a first TLB needs to be modified, a first processor within the multi-
core heterogeneous computing device may disable inter-processor interrupts, clear
an active flag associated with the first TLB (and first processor), lock the system
page table, perform a look-up on a first processor’s TLB using the physical address
using a reverse TLB instruction or circuitry, flush TLB entries related to the
physical address, and send a message indicating that a second processor within the
multi-core heterogeneous computing device should perform an invalidation

operation on entries corresponding to the physical address in the second

WO 2015/050726 PCT/US2014/056664

processor’s TLB. Using a method as described above, the second processor may
also perform a TLB look-up operation on the second TLB using the physical
address, such as via a reverse TLB look-up instruction or circuitry, and may flush

any matching TLB entry.

[0024] In another aspect, a system or device configured to utilize Distributed
Virtual Memory (DVM), such as devices utilizing an ARM architecture, may be
configured to utilize the various methods and/or instructions of this disclosure.
Multi-cluster coherent CPU systems sharing a coherent set of memory
management unit (MMU) page tables in memory may require TLB coherency.
For example, when a TLB is a cache of memory management unit (MMU) page
tables in memory, such a system may perform invalidations of TLB entries that
may contain a stale copy of a MMU page table entry when a master updates page
tables. Distributed Virtual Memory support in cache coherency protocols may
consist of broadcasting invalidation messages, using physical addresses. DVM
messages may support TLB invalidation, branch predictor, virtual or physical
instruction cache invalidation (for when a processor has written code to memory)
and synchronization, which waits for all previous DVM commands to complete.
DVM messages may be sent on a read channel using snoop signaling. A system
MMU (SMMU) may make use of the TLB invalidation messages that use physical

addresses to ensure its entries are up-to-date.

[0025] FIG. 1 illustrates a multi-core heterogeneous computing device 500 that
includes a first processor 501 of a first type and a second processor 531 of a
second type. For example, the first processor S01 may be an applications
processor having a 64-bit architecture and the second processor 531 may be a co-
processor (e.g., graphics processing unit, digital signal processor, etc.) having a
32-bit architecture. The first processor S01 and/or the second processor 531 may
be included in a system-on-chip. The first processor S01 may be associated with a
first page table 120 (referred to in FIG. 1 as “Page Table A”) and the second
processor 531 may be associated with a second page table 140 (referred to in FIG.

1 as “Page Table B”), each page table 120, 140 including stored data linking

10

WO 2015/050726 PCT/US2014/056664

virtual addresses to physical addresses of a shared system memory 502, such as
indexed blocks or pages within a random access memory (RAM) that store
portions of application data. In an aspect, the system memory 502 may be

associated with a system page table (not shown in FIG. 1).

[0026] For illustration purposes, the first page table 120 may include a first data
record 122 that links a first virtual address (i.e., address ‘1’ corresponding to the
first processor 501) to a first physical address memory block 150 (i.e., memory
index ‘2’), a second data record 124 that links a second virtual address (i.e.,
address ‘2’ corresponding to the first processor 501) to a second physical address
memory block 152 (i.e., memory index ‘3’), and a third data record 126 that links a
third virtual address (i.e., address ‘3’ corresponding to the first processor 501) to a
third physical address memory block 154 (i.e., memory index ‘X’). The second
page table 140 may include a fourth data record 142 that links a fourth virtual
address (i.e., address ‘1’ corresponding to the second processor 531) to the third
physical address memory block 154 (i.e., memory index ‘X’), and a fifth data
record 144 that links a fifth virtual address (i.e., address ‘2’ corresponding to the
second processor 531) to a fourth physical address memory block 156 (i.e.,

memory index ‘X+3).

[0027] As the memory 502 is shared system memory, the first page table 120 and
the second page table 140 may include data records that include references to the
same physical addresses of the memory 502. As a non-limiting illustration: the
third data record 126 may link the third virtual address (i.e., address ‘3’
corresponding to the first processor 501) to the third physical address memory
block 154 (i.e., memory index ‘X’) and the fourth data record 142 may link the
tourth virtual address (i.e., address ‘1’ corresponding to the second processor 531)
to the third physical address memory block 154. In other words, via the page
tables 120, 140 both the first processor 501 and the second processor 531 may link
to and access the same data stored in shared system memory 502 using different

virtual addresses.

11

WO 2015/050726 PCT/US2014/056664

[0028] The first processor 501 may also be associated with a first TLB 110
(referred to in FIG. 1 as “TLB_A”) and the second processor 531 may be
associated with a second TLB 130 (referred to in FIG. 1 as “TLB_B”), each TLB
110,130 including stored data from the first page table 120 and the second page
table 140, respectively. For example, the first TLB 110 may include a subset of
the data records 124, 126 of the first page table 120 and the second TLB 130 may
include a subset (or all) of the data records 142, 144 of the second page table 140.

[0029] FIG. 2 illustrates an aspect multi-core heterogeneous computing device 500
configured for utilizing a physical address associated with a shared system
memory to perform reverse TLB look-up operations. The multi-core
heterogeneous computing device 500 may be configured with circuitry, hardware,
and/or various modules for performing hardware reverse TLB probe instructions
without duplication of the TLB or memory entries and without a major time
impact. In particular, the multi-core heterogeneous computing device 500 may
include a content-addressable memory (referred to in FIG. 2 as ‘CAM”) 202 that
may store a set of masks 206-208 corresponding to virtual addresses 203-205 that
are associated with physical addresses. The CAM 202 may function as a TLB for
a processor (e.g., an applications processor, a first processor, a second processor,
etc.). The masks 206-208 may be used to control the number of most significant
bits of page frame number or virtual address values and typically may be
implemented as bit fields stored in TLB entries with their corresponding virtual
addresses 203-205. In an aspect, the CAM 202 may also store a set of page frame
numbers in association with the virtual addresses 203-205 and masks 206-208.
For example, the CAM 202 may receive and store page frame numbers from a

system page table for storage in TLB entries of related virtual addresses 203-205.

[0030] The multi-core heterogeneous computing device S00 may also include

hardware/circuitry for receiving and storing a physical address input 220, such as
within a register, system variable, or other buffer element, and may be referred to
for the purposes of FIG. 2 as an “input module” 250. For example, in response to

the multi-core heterogeneous computing device 500 detecting the instantiation of

12

WO 2015/050726 PCT/US2014/056664

an API command for invalidating TLB entries using a physical address, the multi-
core heterogeneous computing device 500 may store the physical address input
220 within a register associated with the input module 250. In an aspect, the input
module 250 may be a part of the CAM 202. In another aspect, the input module
250 and/or the CAM 202 may be associated with an individual processor within

the multi-core heterogeneous computing device 500.

[0031] The multi-core heterogeneous computing device 500 may also include a
RAM controller 240 for managing shared system memory, such as the random
access memory (or RAM 502). The RAM controller 240 may also utilize a hit
vector, such as a buffer that may be used by the RAM controller 240 to store
information associated with TLB look-up operations. For example, the RAM
controller 240 may store indices (or entry indices) of the CAM 202 in response to
detecting “hits” (i.e., matches between data stored in entries of the CAM 202 and a
search token, such as a physical address). In an aspect, the hit vector may store
multiple indices (or hits) of CAM 202 entries. The RAM controller 240 may be
configured to burst read the RAM 502, such as by evaluating the data stored in
each memory block of the RAM 502 entry by entry (or cycle by cycle). In
particular, the RAM controller 240 may be configured to iteratively read the
blocks 211-213 of the RAM 502 one at a time to identify the page frame numbers
associated with each of the blocks 211-213. In an aspect, the multi-core
heterogeneous computing device S00 may use one clock cycle for each entry the
RAM controller 240 reads/evaluates. In an aspect, the page frame numbers may
be indicated within a system page table associated with the RAM 502. In another
aspect, the blocks 211-213 may be associated with the TLB entries of the CAM
202. For example, the page frame number of the first block 211 (e.g., “PFN 1)
may be associated with the first virtual address 203 (e.g., “VA 1) and the first
mask 206 (e.g., “Mask 1) stored in a TLB entry.

[0032] The RAM controller 240 may transmit signals 214 indicating the various
page frame numbers, such as by transmitting a signal 214 indicating a page frame

number (e.g., ‘PFN 1, ‘PFN _2,” ‘PFN n,’ etc.) in response to reading each of the

13

WO 2015/050726 PCT/US2014/056664

blocks 211-213 of the RAM 502. The RAM controller 240 may transmit the
individual page frame numbers iteratively and one at a time via the signals 214.
The multi-core heterogeneous computing device S00 may be configured to receive
at the CAM 202 the signals 214 transmitted via the RAM controller 240 and use
the indicated page frame numbers for comparison or masking operations with data

stored in the CAM 202.

[0033] In an aspect, the multi-core heterogeneous computing device 500 may be
configured to transmit signals 210, 210’ indicating the various masks 206-208
corresponding to the virtual addresses 203-205 stored in the CAM 202. For
example, the multi-core heterogeneous computing device 500 may transmit the
signals 210’ for use by the input module 250 and/or signals 210 for use by the
CAM 202. The individual masks 206-208 corresponding to the virtual addresses
203-205 stored in the CAM 202 may be transmitted iteratively and one at a time
via the signals 210, 210°.

[0034] The multi-core heterogeneous computing device 500 may be configured to
utilize mask apply components 201, 201° in combination with masks 206-208
transmitted via the signals 210, 210°. Such mask apply components 201, 201° may
be circuitry, hardware, or a module for filtering, augmenting, decoding,
combining, or otherwise changing two input values into a single, unique resulting
value, such as a multiplexor or gate. For example, mask apply components 201,
201” may be hardware logic that applies a mathematical operation, a bit pattern, or
equation to page frame number input values. As another example, mask apply
components 201, 201° may apply one of the masks 206-208 as a bit pattern that
indicates which bits of an address (e.g., a physical memory address) or frame
number are to be zeroed out. In another aspect, mask apply components 201, 201’

may be state machines.

[0035] The CAM 202 may be configured to apply the masks 206-208 via a first
mask apply component 201, and the input module 250 may be configured to apply

the masks 206-208 via a second mask apply component 201°. In particular, using

14

WO 2015/050726 PCT/US2014/056664

the first mask apply component 201, the CAM 202 may be configured to apply the
masks 206-208 individually indicated within the signals 210 to the page frame
numbers individually indicated within the signals 214. For example, the CAM 202
may iteratively apply masks 206-208 via the first mask apply component 201 to
page frame numbers transmitted via the signals 214 (e.g., ‘PFN _1’, etc.) to
generate output values. In an aspect, the multi-core heterogeneous computing
device 500 may be configured to reuse the data within the received signals 214
(i.e., reusing page frame numbers from the entries in the system page table)
without duplication of the data. In other words, the CAM 202 may be configured
to avoid duplicating the comparators during iterative applications of the masks
206-208 to page frame numbers via the first mask apply component 201, such as
by buffering or otherwise storing the various page frame numbers received via the
signals 214. The CAM 202 may transmit signals 265 that indicate output values
from applying the masks 206-208 to the various page frame numbers via the first

mask apply component 201.

[0036] Further, using a second mask apply component 201°, the input module 250
may be configured to apply the masks 206-208 individually indicated within the
signals 210’ to the physical address input 220. For example, via the second mask
apply component 201°, the input module 250 may apply a first mask 206 to the
physical address indicated by the physical address input 220 to generate an output
value. The input module 250 may transmit signals 260 that indicate output values

from applying the masks 206-208 via the second mask apply component 201°.

[0037] As the same masks 206-208 may be used by the CAM 202 and the input
module 250 via the first and second mask apply components 201, 201°
respectively, the output values transmitted in the signals 260, 265 may be the same
when generated by applying the same mask to the same value (i.e., the physical
address input 220 or the page frame numbers in the signals 214). For example, the
output values from the first mask apply component 201 associated with the CAM

202 and the second mask apply component 201 associated with the input module

15

WO 2015/050726 PCT/US2014/056664

250 may be the same when the physical address input 220 is the same as a page
frame number received by the CAM 202 via the signals 214.

[0038] The multi-core heterogeneous computing device 500 may utilize
comparison circuitry 230 to determine whether output values resulting from
applying the masks 206-206 via the mask apply components 201, 201” and
transmitted by the signals 260, 265 are the same. In other words, the comparison
circuitry 230 may be used to determine whether the CAM 202 and the input
module 250 generated matching output values and, thus, whether both used their
respective mask apply components 201, 201’ with the same input values (i.e.,
whether there is a “hit”). Via the comparison circuitry 230, the CAM 202 may be
configured to compare the output values in the signals 260 in parallel with the
results of applying the masks 206-208 within the signals 210 to the page frame
numbers received within the signals 214. When the comparison circuitry 230
determines that the output values from the signals 260, 265 are the same (i.e., a
“hit”), signals 270 may be transmitted to the RAM controller 240 that indicate
CAM 202 (or TLB) entries or entry indices corresponding to the input values (i.e.,
the masks 206-208) used with the mask apply components 201, 201’ to generate
the same output values. In an aspect, the CAM 202 may perform parallel
comparisons by utilizing a plurality of comparison circuits, such as one for each

entry in the CAM 202.

[0039] FIG. 3A illustrates an aspect method 300 for processor of a multi-core
heterogeneous computing device to utilize a physical address associated with a
shared system memory to perform reverse TLB look-up operations. The method
300 may be performed to identify TLB entries that correspond to particular
physical addresses, such as entries that may need to be modified or flushed in
response to actions performed by other processors within the multi-core
heterogeneous computing device. For example, in response to a first processor
modifying content within a shared memory block of RAM, a second processor in
the multi-core heterogeneous computing device may perform the method 300 as

part of a TLB shoot-down mechanism. In various aspects, the method 300 may be

16

WO 2015/050726 PCT/US2014/056664

implemented in processors within the multi-core heterogeneous computing device
via an instruction, software method, or hardware, as described above. For
simplicity of description, the aspect operations of the method 300 are described
below with reference to a “first processor” within the multi-core heterogeneous

computing device.

[0040] In block 302, the first processor within the multi-core heterogeneous
computing device may obtain a physical address input corresponding to a shared
memory, such as by receiving the physical address input with the first processor in
relation to an API command. The physical address input may be a system memory
block identifier, page frame number or identifier, or other index value relevant to
the shared system memory. The multi-core heterogeneous computing device may
monitor for instantiations of instructions, API commands, and/or methods that
indicate the physical address, such as called commands for a TLB entry
corresponding to the physical address is to be invalidated or flushed. For example,
the multi-core heterogeneous computing device may detect that an APl command
“Invalidate(PA)” has been called for execution, where ‘PA’ is an input variable or

parameter that represents a particular physical address to be invalidated.

[0041] In block 304, the first processor may select a TLB entry within the TLB
associated with the first processor. In various aspects, the selected TLB entry may
include a virtual address, a mask associated with the virtual address, and a page
frame number from a system page table associated with the shared memory of the
device. For example, the TLB entry may be a data table record that includes
various data, including a certain virtual address, a bit pattern mask, and an
associated page frame number from a system page table. The TLB entry may have
a corresponding index or other identifier, such as a data table index, that may be
used to reference the information stored in association with the TLB entry. In an

aspect, the TLB may be a CAM as described above.

[0042] In block 306, the first processor may obtain a mask associated with a virtual

address from the selected TLB entry. Each TLB entry may include a mask that

17

WO 2015/050726 PCT/US2014/056664

may be of various mask sizes (e.g., 4K, 4MB, etc.). The mask may be a bit pattern
or a bit representation. The first processor may obtain a page frame number from
the selected TLB entry in block 308. In an aspect, to avoid redundant cycles and
avoid bottlenecks, at the time of TLB population, the multi-core heterogeneous
computing device via the first processor may get page frame numbers for writing
into the TLB, and so there may not be a need to fetch anything from system
memory during the performance of the method 300. For example, the obtained
page frame number may be a physical address of a page currently stored in the
system memory that was retrieved from a system page table for storage in the TLB
prior to runtime. In an aspect, the page frame number may be information

indicating an index or memory block identifier.

[0043] In block 310, the first processor may apply the obtained mask to the
obtained page frame number to generate a first output value. As described above,
the first processor may apply the mask via a filter, equation, method, or other
operation that takes input values (e.g., the obtained mask and the obtained page
frame number) and generates an output value that can be replicated or repeated
using the same input values. For example, the first processor may apply a mask bit
pattern to the obtained page frame number to zero-out bits. In other words, when
the same mask is used with a same input value (e.g., the page frame number), the
same output value will be generated. Similar to the operations in block 310, the
first processor may apply the obtained mask to the obtained physical address input

to generate a second output value in block 312.

[0044] In block 314, the first processor may compare the first output value and the
second out value. For example, the first processor within may perform a pattern-
matching, mathematical, or other comparison operation to the first and second
output values to detect equivalency. In determination block 316, the first
processor may determine whether the first output value and the second output
value match, such as based on the comparison operations. If the first and second
output values are determined not to match (i.e., determination block 316 = “No”),

the first processor may end the method 300. If the first and second output values

18

WO 2015/050726 PCT/US2014/056664

match (i.e., determination block 316 = “Yes”), the first processor may return the
index of the selected TLB entry in block 318. For example, the first processor
may transmit the index of the matching TLB entry to the TLB (e.g., a CAM) for
use in invalidation or flush operations (or flushing operations). Using the returned
index, in optional block 320 the first processor may flush the selected TLB entry.
For example, the first processor may negate, remove, invalidate, or otherwise
nullify the virtual address and other information stored in association with the

selected TLB entry based on the reverse TLB look-up operations.

[0045] FI1G. 3B illustrates another aspect method 350 for processors within a multi-
core heterogeneous computing device to utilize a physical address associated with
a shared system memory to perform reverse TLB look-up operations. The method
350 1s similar to the method 300 described above with reference to FIG. 3A,
except that the method 350 includes operations for enabling an operational loop
that enable processors within the multi-core heterogeneous computing device to
iteratively generate output values with each page frame number related to the
system memory and each mask associated with virtual addresses indicated in a
TLB. In other words, the multi-core heterogeneous computing device may be
configured to iteratively obtain masks and page frame numbers from TLB entries,
iteratively apply the obtained masks to the obtained page frame numbers as well as
a received/ obtained physical address (or physical address input), and iteratively
compare the resulting output values to determine whether there are any matches.
In various aspects, the method 350 may be implemented in processors within the
multi-core heterogeneous computing device via an instruction, software method, or
dedicated hardware, as described above. Again, for simplicity of description, the
aspect operations of the method 350 are described below with reference to a “first

processor” within the multi-core heterogeneous computing device.

[0046] In block 302, a first processor within the multi-core heterogeneous
computing device may obtain a physical address input corresponding to a shared
memory. In block 304°, the first processor may select a next TLB entry within the

TLB associated with the first processor. The operations in block 304’ may be the

19

WO 2015/050726 PCT/US2014/056664

same as described above in block 304 with reference to FIG. 3A; however, the first
processor may be configured to select TLB entries in order. For example, the next
TLB entry may be the first TLB entry when the method 350 is first executed. In
block 306, the first processor may obtain a mask associated with a virtual address
from the selected TLB entry. The first processor may obtain a page frame number
from the selected TLB entry in block 308. In block 310, the first processor may
apply the obtained mask to the obtained page frame number to generate a first
output value. In block 312, the first processor may apply the obtained mask to the

obtained physical address input to generate a second output value.

[0047] In block 314, the first processor may compare the first output value and the
second out value. In determination block 316, the first processor may determine
whether the first output value and the second output value match, such as based on
the comparison operations. If the first and second output values are determined
not to match (i.e., determination block 316 = “No”), in determination block 352
the first processor may determine whether the selected TLB entry is the last entry
in the TLB. If it is determined that the selected TLB entry is the last TLB entry
(i.e., determination block 352 = “Yes”), the first processor may end the method
350. However, if it is determined that the selected TLB entry is not the last TLB
entry (i.e., determination block 352 = “No”), the first processor may continue with
the operations in block 304’ by selecting the next TLB entry and continuing to
generate and evaluate various output values. If the first and second output values
are determined to match (i.e., determination block 316 = “Yes”), the first processor
may return the index of the selected TLB entry in block 318. Using the returned
index, the first processor may flush the selected TLB entry in optional block 320.

[0048] Various processors in a multi-core heterogeneous computing device may be
configured to execute hand-shaking operations or protocols to implement TLB
shoot-down mechanisms. For example, when a first processor determines that
translation information related to a virtual address within its TLB needs to be
modified, the first processor may clear its active flag (e.g., a bit/variable accessible

to the operating system of the multi-core heterogeneous computing device), lock a

20

WO 2015/050726 PCT/US2014/056664

system page table (e.g., the page table associated with system memory), flush TLB
entries related to the virtual address, send a message (or interrupt) to a second
processor describing the TLB actions to be performed (e.g., invalidate a TLB
entry), and busy-wait until the active flag of the second processor is clear. In
response to receiving the message, the second processor may clear its active flag
and busy-wait until the system page table is locked (i.e., wait until it is safe to
modify the TLB local to the second processor). When the second processor’s
active flag is cleared, the first processor may then modify the page-table of the
system memory, set its active flag, unlock the system page table, and continue
executing its regular processes. The second processor may then execute the TLB
actions indicated in the message (e.g., invalidate TLB entries), set its active flag,
and continue execution of its processes. However, such a conventional hand-
shaking mechanism may rely on virtual address parity between processors and/or
costly serial operations to maintain coherency in the multi-core heterogeneous

computing device.

[0049] FIG. 4 illustrates an aspect method 400 for a multi-core heterogeneous
computing device to utilize a physical address to invalidate (or flush) a first TLB
entry associated with a first processor and an aspect method 450 for utilizing the
physical address to invalidate a second TLB entry associated with a second
processor. In other words, FIG. 4 illustrates methods 400, 450 that may be
performed by two processors in tandem to enable an enhanced TLB shoot-down
mechanism for invalidating TLB entries for the first and second processor that
correspond to a physical frame number matching the physical address. In various
aspects, the methods 400, 450 may be performed by various processors of the
multi-core heterogeneous computing device as concurrently executing software,

applications, routines, or operating system threads.

[0050] In block 402, a first processor within the multi-core heterogeneous
computing device may receive TLB actions and a physical address input
corresponding to a shared memory. For example, the multi-core heterogeneous

computing device may receive an API call for flushing an entry of a TLB

21

WO 2015/050726 PCT/US2014/056664

associated with the first processor. The TLB action and/or the physical address
input may be received as data within an interrupt. In block 404, the first processor
may clear an active flag associated with the first processor, such as by zeroing-out
a system bit or variable associated with the first processor. Such active flags may
be accessible or otherwise visible to the various processors within the multi-core
heterogeneous computing device and/or operating system routines executing on
the multi-core heterogeneous computing device. The first processor may send a
message, such as an interrupt, to a second processor indicating the TLB actions
and the received physical address in block 406. In block 407, the first processor
may be configured to disable inter-processor interrupts (or IPI) in response to
receiving the TLB actions and physical address input. The first processor may
then perform busy-waiting operations in block 408, such as by entering a sleep or
wait mode for a period of time, and in determination block 410 may determine
whether the active flags of the other processors within the multi-core
heterogeneous computing device have been cleared. In an aspect, the first
processor may periodically evaluate stored information indicating the active flags
of all processor, or alternatively may receive a signal or message when various
processors clear or set their respective active flags. If the first processor
determines that all of the active flags are not cleared (i.e., determination block 410
= “No”), the first processor may continue with the busy-wait operations in block

408.

[0051] Referring to the method 450, in response to the execution of the operations
in block 406 by the first processor, in block 452 the second processor within the
multi-core heterogeneous computing device may receive the message from the first
processor indicating the TLB actions and the physical address. In block 454, the
second processor may clear its active flag based on the received message. The
second processor may then perform busy-waiting operations in block 456, such as
by entering a sleep or wait mode for a period of time, and in determination block
458 may determine whether the system page table has been locked by the first

processor. In an aspect, the second processor may periodically evaluate stored

22

WO 2015/050726 PCT/US2014/056664

information indicating the locked status of the system page table, or alternatively
may receive a signal or message when the system page table is locked, such as a
signal via the operating system of the multi-core heterogeneous computing device.
If the second processor determines that the system page table has not been locked
by the first processor (i.e., determination block 458 = “No”), the second processor

may continue with the busy-wait operations in block 456.

[0052] Referring back to the method 400, if the first processor determines that all
of the active flags are cleared (i.e., determination block 410 = “Yes”), in block
412, the first processor may lock the system page table, such as the page table
associated with the shared memory. This may be accomplished by the first
processor setting an operating system bit, variable, or indicator, or alternatively by

executing a system API call for locking the page table of the shared memory.

[0053] In block 414, the first processor may perform reverse TLB look-up
operations to identify entries of a first TLB associated with the first processor
using the received physical address. In various aspects, the first processor may
perform the reverse TLB look-up operations by performing the method 350
described above with reference to FIG. 3B, executing an APl command for finding
TLB entries associated with the physical address, and/or executing a hardware-
implemented reverse TLB look-up instruction as described above. For example,
the operations of block 414 may include operations of the method 350 of FIG. 3B
described above or the use of reverse TLB look-up hardware such as described

above with reference to FIG. 2.

[0054] In block 416, the first processor may perform the TLB actions on the
identified entries of the first TLB. For example, the first processor may flush or
otherwise invalidate the identified entries that correspond to the physical address.
The first processor may modify the system page table based on the TLB actions
and the physical address in block 418, such as by clearing a block or range of
pages in the shared memory. In block 420, the first processor may unlock the

system page table and set the active flag of the first processor in block 422. The

23

WO 2015/050726 PCT/US2014/056664

first processor may then re-enable inter-processor interrupts (IPI) in block 424 and
continue with regular operations, such as executing software routines in progress
prior to receiving the TLB actions and physical address. In an embodiment, the
first processor may re-enable inter-processor interrupts in response to the second

processor setting its active flag with the operations described below with reference

to block 464.

[0055] Referring back to the method 450, if the second processor determines that
the system page table has been locked by the first processor (i.e., determination
block 458 =“Yes”), the second processor may perform reverse TLB look-up
operations to identity entries of the second TLB associated with the second
processor using the received physical address. The operations in block 460 may be
similar to those described above with reference to block 414, except that the
operations in block 460 may be performed by the second processor to identify

TLB entries associated with the second processor. For example, the second
processor may perform operations of the method 350 in FIG. 3B described above.
In block 462, the second processor may perform the TLB actions on the identified
entries of the second TLB, such as flushing or invalidating the TLB entries
identified using the reverse TLB look-up method, API command, or hardware such
as described above with reference to FIG. 2. In block 464, the second processor
may set its active flag and continue executing other routines, such as pending or

previously launched applications or routines.

[0056] FIG. 5 1s a system block diagram of a multi-core heterogeneous computing
device 500 suitable for use with various aspects. In various embodiments, the
multi-core heterogeneous computing device 500 may include a processor 501
coupled to a touchscreen controller 504 and an internal memory 502. The
processor 501 may be one or more multi-core ICs designated for general or
specific processing tasks. In an aspect, the multi-core heterogeneous computing
device 500 may include a second processor 531 coupled to the internal memory
502. In an aspect, the first processor 501 may be an applications processor and the

second processor 531 may be an auxiliary processor (e.g., a digital signal

24

WO 2015/050726 PCT/US2014/056664

processor, a graphics processor (or GPU), etc.). The internal memory 502 may be
volatile or non-volatile memory, and may also be secure and/or encrypted
memory, or unsecure and/or unencrypted memory, or any combination thereof.
The touchscreen controller 504 and the processor 501 may also be coupled to a
touchscreen panel 512, such as a resistive-sensing touchscreen, capacitive-sensing
touchscreen, infrared sensing touchscreen, etc. The multi-core heterogeneous
computing device S00 may have one or more radio signal transceivers 508 (e.g.,
Peanut®, Bluetooth®, Zigbee®, Wi-Fi, RF radio) and antennae 510, for sending
and receiving, coupled to each other and/or to the processor 501. The transceivers
508 and antennae 510 may be used with the above-mentioned circuitry to
implement the various wireless transmission protocol stacks and interfaces. The
multi-core heterogeneous computing device 500 may include a cellular network
wireless modem chip 516 that enables communication via a cellular network and is
coupled to the processor. The multi-core heterogeneous computing device 500
may include a peripheral device connection interface 518 coupled to the processor
501. The peripheral device connection interface 518 may be singularly configured
to accept one type of connection, or multiply configured to accept various types of
physical and communication connections, common or proprietary, such as USB,
FireWire, Thunderbolt, or PCle. The peripheral device connection interface 518
may also be coupled to a similarly configured peripheral device connection port
(not shown). The multi-core heterogeneous computing device 500 may also
include speakers 514 for providing audio outputs. The multi-core heterogeneous
computing device S00 may also include a housing 520, constructed of a plastic,
metal, or a combination of materials, for containing all or some of the components
discussed herein. The multi-core heterogeneous computing device 500 may
include a power source 522 coupled to the processor 501, such as a disposable or
rechargeable battery. The rechargeable battery may also be coupled to the
peripheral device connection port to receive a charging current from a source

external to the multi-core heterogeneous computing device 500.

25

WO 2015/050726 PCT/US2014/056664

[0057] The processors 501 and 531 may be any programmable microprocessor,
microcomputer or multiple processor chip or chips that can be configured by
software instructions (applications) to perform a variety of functions, including the
functions of the various aspects described above. In the various devices, multiple
processors may be provided, such as one processor dedicated to wireless
communication functions and one processor dedicated to running other
applications. Typically, software applications may be stored in the internal
memory 502 before they are accessed and loaded into the processors 501 and 531.
The processors 501 and 531 may include internal memory sufficient to store the
application software instructions. In many devices the internal memory may be a
volatile or nonvolatile memory, such as flash memory, or a mixture of both. For
the purposes of this description, a general reference to memory or system memory
refers to memory accessible by the processors 501 and 531 including internal
memory or removable memory plugged into the various devices and memory

within the processors 501 and 531.

[0058] The foregoing method descriptions and the process flow diagrams are
provided merely as illustrative examples and are not intended to require or imply
that the steps of the various aspects must be performed in the order presented. As
will be appreciated by one of skill in the art the order of steps in the foregoing
aspects may be performed in any order. Words such as “thereafter,” “then,”
“next,” etc. are not intended to limit the order of the steps; these words are simply
used to guide the reader through the description of the methods. Further, any
reference to claim elements in the singular, for example, using the articles “a,”

“an” or “the” 1s not to be construed as limiting the element to the singular.

[0059] The various illustrative logical blocks, modules, circuits, and algorithm
steps described in connection with the aspects disclosed herein may be
implemented as electronic hardware, computer software, or combinations of both.
To clearly illustrate this interchangeability of hardware and software, various
illustrative components, blocks, modules, circuits, and steps have been described

above generally in terms of their functionality. Whether such functionality is

26

WO 2015/050726 PCT/US2014/056664

implemented as hardware or software depends upon the particular application and
design constraints imposed on the overall system. Skilled artisans may implement
the described functionality in varying ways for each particular application, but
such implementation decisions should not be interpreted as causing a departure

from the scope of the present invention.

[0060] The hardware used to implement the various illustrative logics, logical
blocks, modules, and circuits described in connection with the aspects disclosed
herein may be implemented or performed with a general purpose processor, a
digital signal processor (DSP), an application specific integrated circuit (ASIC), a
field programmable gate array (FPGA) or other programmable logic device,
discrete gate or transistor logic, discrete hardware components, or any combination
thereof designed to perform the functions described herein. A general-purpose
processor may be a microprocessor, but, in the alternative, the processor may be
any conventional processor, controller, microcontroller, or state machine. A
processor may also be implemented as a combination of computing devices, e.g., a
combination of a DSP and a microprocessor, a plurality of microprocessors, one or
more microprocessors in conjunction with a DSP core, or any other such
configuration. Alternatively, some steps or methods may be performed by

circuitry that is specific to a given function.

[0061] In one or more exemplary aspects, the functions described may be
implemented in hardware, software, firmware, or any combination thereof. If
implemented in software, the functions may be stored on or transmitted over as
one or more instructions or code on a non-transitory computer-readable or server-
readable medium or a non-transitory processor-readable storage medium. The
steps of a method or algorithm disclosed herein may be embodied in a processor-
executable software module which may reside on a tangible, non-transitory
computer-readable storage medium, a non-transitory server-readable storage
medium, and/or a non-transitory processor-readable storage medium. In various
aspects, such instructions may be stored processor-executable instructions or

stored processor-executable software instructions. Tangible, non-transitory

27

WO 2015/050726 PCT/US2014/056664

computer-readable storage media may be any available media that may be
accessed by a computer. By way of example, and not limitation, such non-
transitory computer-readable media may comprise RAM, ROM, EEPROM, CD-
ROM or other optical disk storage, magnetic disk storage or other magnetic
storage devices, or any other medium that may be used to store desired program
code in the form of instructions or data structures and that may be accessed by a
computer. Disk and disc, as used herein, includes compact disc (CD), laser disc,
optical disc, digital versatile disc (DVD), floppy disk, and blu-ray disc where disks
usually reproduce data magnetically, while discs reproduce data optically with
lasers. Combinations of the above should also be included within the scope of non-
transitory computer-readable media. Additionally, the operations of a method or
algorithm may reside as one or any combination or set of codes and/or instructions
on a tangible, non-transitory processor-readable storage medium and/or computer-

readable medium, which may be incorporated into a computer program product.

[0062] The preceding description of the disclosed aspects is provided to enable any
person skilled in the art to make or use the present invention. Various
modifications to these aspects will be readily apparent to those skilled in the art,
and the generic principles defined herein may be applied to other aspects without
departing from the spirit or scope of the invention. Thus, the present invention is
not intended to be limited to the aspects shown herein but is to be accorded the
widest scope consistent with the following claims and the principles and novel

features disclosed herein.

28

WO 2015/050726 PCT/US2014/056664

CLAIMS

What is claimed 1s:

1. A method for performing a reverse translation lookaside buffer (TLB) look-up
using a physical address input, comprising;:

obtaining with a first processor the physical address input, wherein the
physical address input indicates a physical address corresponding to a shared
memory;

obtaining a first mask associated with a first virtual address from a first
TLB entry within a TLB associated with the first processor, wherein the obtained
first mask is a bit pattern;

obtaining from the first TLB entry a first page frame number associated
with the shared memory;

applying the obtained first mask to the obtained first page frame number to
generate a first value;

applying the obtained first mask to the obtained physical address input to
generate a second value; and

comparing the first value and the second value to determine whether the

first value and the second value match.

2. The method of claim 1, further comprising:

iteratively obtaining a second mask and a second page frame number from
other TLB entries within the TLB in response to determining that the first value
and the second value do not match;

iteratively applying the obtained second mask to the obtained second page
frame number to generate the first value; and

iteratively applying the obtained second mask to the obtained physical
address input to generate the second value,

wherein comparing the first value and the second value to determine

whether the first value and the second value match comprises iteratively

29

WO 2015/050726 PCT/US2014/056664

comparing the first value and the second value to determine whether the first value

and the second value match.

3. The method of claim 2, wherein iteratively applying the obtained second mask
to the obtained second page frame number to generate the first value comprises
reusing page frame numbers from entries in a system page table without

duplication.

4. The method of claim 1, further comprising flushing the first TLB entry in

response to determining that the first value and the second value match.

5. The method of claim 1, further comprising sending a message indicating TLB
actions and the physical address to a second processor, wherein the TLB actions

include a TLB flush operation.

6. The method of claim 1, further comprising returning an index of the first TLB

entry in response to determining that the first value and the second value match.

7. The method of claim 6, wherein obtaining with a first processor the physical
address input comprises receiving a message from a second processor including
TLB actions and the physical address,
the method further comprising;:
clearing an active flag in response to receiving the message
transmitted by the second processor;
performing the TLB actions indicated in the received message using
the returned index of the first TLB entry; and

setting the active flag in response to performing the TLB actions.

8. A multi-core heterogeneous computing device, comprising:

30

WO 2015/050726 PCT/US2014/056664

means for obtaining with a first processor a physical address input, wherein
the physical address input indicates a physical address corresponding to a shared
memory;

means for obtaining a first mask associated with a first virtual address from
a first TLB entry within a TLB associated with the first processor, wherein the
obtained first mask is a bit pattern;

means for obtaining from the first TLB entry a first page frame number
associated with the shared memory;

means for applying the obtained first mask to the obtained first page frame
number to generate a first value;

means for applying the obtained first mask to the obtained physical address
input to generate a second value; and

means for comparing the first value and the second value to determine

whether the first value and the second value match.

9. The multi-core heterogeneous computing device of claim 8, further comprising:

means for iteratively obtaining a second mask and a second page frame
number from other TLB entries within the TLB in response to determining that the
first value and the second value do not match;

means for iteratively applying the obtained second mask to the obtained
second page frame number to generate the first value; and

means for iteratively applying the obtained second mask to the obtained
physical address input to generate the second value,

wherein means for comparing the first value and the second value to
determine whether the first value and the second value match comprises means for
iteratively comparing the first value and the second value to determine whether the

first value and the second value match.

10. The multi-core heterogeneous computing device of claim 9, wherein means

for iteratively applying the obtained second mask to the obtained second page

31

WO 2015/050726 PCT/US2014/056664

frame number to generate the first value comprises means for reusing page frame

numbers from entries in a system page table without duplication.

11. The multi-core heterogeneous computing device of claim &, further
comprising means for flushing the first TLB entry in response to determining that

the first value and the second value match.

12. The multi-core heterogeneous computing device of claim 8, further
comprising means for sending a message indicating TLB actions and the physical
address to a second processor, wherein the TLB actions include a TLB flush

operation.

13. The multi-core heterogeneous computing device of claim 8, further
comprising means for returning an index of the first TLB entry in response to

determining that the first value and the second value match.

14. The multi-core heterogeneous computing device of claim 13, wherein means
for obtaining with a first processor the physical address input comprises means for
receiving a message from a second processor including TLB actions and the
physical address,
the multi-core heterogeneous computing device further comprising:
means for clearing an active flag in response to receiving the
message transmitted by the second processor;
means for performing the TLB actions indicated in the received
message using the returned index of the first TLB entry; and
means for setting the active flag in response to performing the TLB

actions.

15. A multi-core heterogeneous computing device, comprising:

a first processor;

32

WO 2015/050726 PCT/US2014/056664

a second processor; and
a shared memory, wherein the first processor is configured with processor-
executable instructions to perform operations comprising:

obtaining with the first processor a physical address input, wherein
the physical address input indicates a physical address corresponding to the
shared memory;

obtaining a first mask associated with a first virtual address from a
first TLB entry within a TLB associated with the first processor, wherein
the obtained first mask is a bit pattern;

obtaining from the first TLB entry a first page frame number
associated with the shared memory;

applying the obtained first mask to the obtained first page frame
number to generate a first value;

applying the obtained first mask to the obtained physical address
input to generate a second value; and

comparing the first value and the second value to determine whether

the first value and the second value match.

16. The multi-core heterogeneous computing device of claim 15, wherein the first
processor is configured with processor-executable instructions to perform
operations further comprising:

iteratively obtaining a second mask and a second page frame number from
other TLB entries within the TLB in response to determining that the first value
and the second value do not match;

iteratively applying the obtained second mask to the obtained second page
frame number to generate the first value; and

iteratively applying the obtained second mask to the obtained physical
address input to generate the second value,

wherein comparing the first value and the second value to determine

whether the first value and the second value match comprises iteratively

33

WO 2015/050726 PCT/US2014/056664

comparing the first value and the second value to determine whether the first value

and the second value match.

17. The multi-core heterogeneous computing device of claim 16, wherein the first
processor is configured with processor-executable instructions to perform
operations such that iteratively applying the obtained second mask to the obtained
second page frame number to generate the first value comprises reusing page

frame numbers from entries in a system page table without duplication.

18. The multi-core heterogeneous computing device of claim 15, wherein the first
processor is configured with processor-executable instructions to perform
operations further comprising flushing the first TLB entry in response to

determining that the first value and the second value match.

19. The multi-core heterogeneous computing device of claim 15, wherein the first
processor is configured with processor-executable instructions to perform
operations further comprising sending a message indicating TLB actions and the
physical address to the second processor, wherein the TLB actions include a TLB

tlush operation.

20. The multi-core heterogeneous computing device of claim 15, wherein the first
processor is configured with processor-executable instructions to perform
operations further comprising returning an index of the first TLB entry in response

to determining that the first value and the second value match.

21. The multi-core heterogeneous computing device of claim 20, wherein the first
processor is configured with processor-executable instructions to perform
operations such that obtaining with the first processor the physical address input
comprises receiving a message from the second processor including TLB actions

and the physical address, and

34

WO 2015/050726 PCT/US2014/056664

wherein the first processor is configured with processor-executable
instructions to perform operations further comprising:
clearing an active flag in response to receiving the message
transmitted by the second processor;
performing the TLB actions indicated in the received message using
the returned index of the first TLB entry; and

setting the active flag in response to performing the TLB actions.

22. A non-transitory processor-readable storage medium having stored thereon
processor-executable software instructions configured to cause a first processor to
perform operations comprising:

obtaining with the first processor a physical address input, wherein the
physical address input indicates a physical address corresponding to a shared
memory;

obtaining a first mask associated with a first virtual address from a first
TLB entry within a TLB associated with the first processor, wherein the obtained
first mask is a bit pattern;

obtaining from the first TLB entry a first page frame number associated
with the shared memory;

applying the obtained first mask to the obtained first page frame number to
generate a first value;

applying the obtained first mask to the obtained physical address input to
generate a second value; and

comparing the first value and the second value to determine whether the

first value and the second value match.
23. The non-transitory processor-readable storage medium of claim 22, wherein

the stored processor-executable software instructions are configured to cause the

first processor to perform operations further comprising:

35

WO 2015/050726 PCT/US2014/056664

iteratively obtaining a second mask and a second page frame number from
other TLB entries within the TLB in response to determining that the first value
and the second value do not match;

iteratively applying the obtained second mask to the obtained second page
frame number to generate the first value; and

iteratively applying the obtained second mask to the obtained physical
address input to generate the second value,

wherein comparing the first value and the second value to determine
whether the first value and the second value match comprises iteratively
comparing the first value and the second value to determine whether the first value

and the second value match.

24. The non-transitory processor-readable storage medium of claim 23, wherein
the stored processor-executable software instructions are configured to cause the
first processor to perform operations such that iteratively applying the obtained
second mask to the obtained second page frame number to generate the first value
comprises reusing page frame numbers from entries in a system page table without

duplication.

25. The non-transitory processor-readable storage medium of claim 22, wherein
the stored processor-executable software instructions are configured to cause the
first processor to perform operations further comprising flushing the first TLB

entry in response to determining that the first value and the second value match.

26. The non-transitory processor-readable storage medium of claim 22, wherein
the stored processor-executable software instructions are configured to cause the
first processor to perform operations further comprising sending a message
indicating TLB actions and the physical address to a second processor, wherein the

TLB actions include a TLB flush operation.

36

WO 2015/050726 PCT/US2014/056664

27. The non-transitory processor-readable storage medium of claim 22, wherein
the stored processor-executable software instructions are configured to cause the
first processor to perform operations further comprising returning an index of the
first TLB entry in response to determining that the first value and the second value

match.

28. The non-transitory processor-readable storage medium of claim 27, wherein
the stored processor-executable software instructions are configured to cause the
first processor to perform operations such that obtaining with the first processor
the physical address input comprises receiving a message from a second processor
including TLB actions and the physical address, and
wherein the stored processor-executable software instructions are
configured to cause the first processor to perform operations further comprising:
clearing an active flag in response to receiving the message
transmitted by the second processor;
performing the TLB actions indicated in the received message using
the returned index of the first TLB entry; and

setting the active flag in response to performing the TLB actions.

37

WO 2015/050726

PCT/US2014/056664

1/6
5500
\
501 531
First Proc Second Proc
(e.g., 64-bit) (e.g., 32-bit)
(110 h - 130
TLB_A TLB B
126 — L 142
124 — L 144
_ J _
(120 h (140
Page Table_A Page Table B
126 — — 142
124 | I 144
2]
122 X 2
1 -
_ J
156
150 — 1152 154 — | .19
A Y v
101 | 111 | 100 | 010 110 | 100 | 001 | 011
0 1 2 3 X X+1 X+2 X+3
RAM 502
J

FIG. 1

WO 2015/050726 PCT/US2014/056664

2/6
é)ﬁ500
4)
210’ (A
N 220 250
T
‘\I
[95]
X
s 201" y
=
.
270
,
202
CAM Masks_1_n RAM
> 1 controller
210
> 240
502 A
RAM 11
206 —(Mmask_1| vA_1 |~ 203 PEN 1|
207 204 212
[Mask_2| VA 2 | '\ PFN_1—-PFN _n PFN_2
214
208 205 | —213
|Mask_n| VA n | PFN_n
\. J \. J
\

FIG. 2

WO 2015/050726 PCT/US2014/056664

3/6
300

302

Obtain a physical address input
corresponding to shared memory

304 v
Select a TLB entry within TLB
associated with a processor (e.g, an
entry that includes a virtual address, a
mask, and a page frame number from a
system page table associated with the
shared memory)

306 ¢

Obtain a mask associated with a virtual
address from the selected TLB entry

308 v

Obtain a page frame number from the
selected TLB entry

310 !

Apply obtained mask to obtained page
frame number to generate a first output
value

312 v

Apply obtained mask to the obtained
physical address input to generate a
second output value

314 v

Compare first output value and second
output value

316

And second output values

318
Return index of selected TLB entry

WO 2015/050726 PCT/US2014/056664

4/6
302 350

Obtain a physical address input
corresponding to shared
memory

304" Y N

Select next TLB entry within TLB
associated with a processor

306 l

Obtain a mask associated with a
virtual address from the selected
TLB entry

308 l

Obtain a page frame number
from the selected TLB entry

310 ¢

Apply obtained mask to obtained
page frame number to generate
a first output value

312 ¢

Apply obtained mask to the
obtained physical address input
to generate a second output
value

314 l

Compare first output value and
second output value

316

and second output values

318
Return index of selected TLB
entry
20 oy

L_ Flush the selected TLB entry | FIG. 3B

PCT/US2014/056664

WO 2015/050726
5/6
First Proc Second Proc
402
Receive TLB actions and physical — 450
address input corresponding to
shared memory
404
Clear an active flag associated with
the first processor
406 J 422 -
Send a message to a second eceive the message from the
e : first processor indicating the TLB
processor indicating the TLB actions actions and the phvsical address
and the received physical address at the seconp d Bpgrocessor
407 v
Disable inter-processor interrupts
(1P1)
(408
Perform busy-wait for first 454
processor 4
Clear active flag associated with
the second processor
410 Active 456 k)
flags of other processors Perform busy-wait for second
No cleared? processor
Yes
412
Lock system page table
414 458 No
Perform reverse TLB lookup to S page table locked?
identify entries of first TLB using es
received physical address
416 v 460
Perform TLB actions on identified Perform reverse TLB |00kup to
entries of first TLB (e.g., flush) identify entries of second TLB
418 using received physical address
Modify system page table based on 462 l
TLB actions & physical address 6
420 ¢ Perform TLB actions on
identified entries of second TLB
Unlock system page table (e.g., flush)
422 3
- - 464
Set active flag of first processor
Set active flag of second
424 . # . processor
Re-enable inter-processor interrupts
(1P1)
4005v FIG. 4

6/6

N
|:;él]
Ll

@o

S~ O\
= P

N

L
14
=

FIG. 5

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/056664

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F12/10
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

10 December 2002 (2002-12-10)

figures 1-10
column 11, Tine 41 - Tine 67

figures 1-4

X US 6 493 812 B1 (LYON TERRY L [US])

Y column 8, line 28 - column 9, line 58;

X US 2010/228944 Al (BASSETT PAUL DOUGLAS
[US] ET AL) 9 September 2010 (2010-09-09)

paragraph [0027] - paragraph [0040];

1-3,6,
8-10,13,
15-17,
20,
22-24,27
4,5,7,
11,12,
14,18,
19,21,
25,26,28

1-3,6,
8-10,13,
15-17,
20,
22-24,27

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

28 November 2014

Date of mailing of the international search report

09/12/2014

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Toader, Elena Lidia

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/056664

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

paragraph [0058] - paragraph [0071];
figures 1-7

Category” | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y EP 1 405 191 A2 (ADVANCED MICRO DEVICES 4,5,7,
INC [US] GLOBALFOUNDRIES INC [KY]) 11,12,
7 April 2004 (2004-04-07) 14,18,
19,21,

25,26,28

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2014/056664
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 6493812 Bl 10-12-2002 GB 2365167 A 13-02-2002
us 6493812 Bl 10-12-2002
US 2010228944 Al 09-09-2010 TW 201042453 A 01-12-2010
US 2010228944 Al 09-09-2010
WO 2010102134 Al 10-09-2010
EP 1405191 A2 07-04-2004 AU 2002242048 Al 05-11-2002
CN 1524228 A 25-08-2004
EP 1405191 A2 07-04-2004
JP 4105551 B2 25-06-2008
JP 2005500592 A 06-01-2005
KR 20030092101 A 03-12-2003
TW 574646 B 01-02-2004
us 6684305 Bl 27-01-2004
WO 02086730 A2 31-10-2002

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - wo-search-report
	Page 47 - wo-search-report
	Page 48 - wo-search-report

