(86) Date de dépôt PCT/PCT Filing Date: 1994/01/14
(87) Date publication PCT/PCT Publication Date: 1994/08/04
(45) Date de délivrance/issue Date: 2004/10/12
(85) Entrée phase nationale/National Entry: 1995/07/24
(86) N° demande PCT/PCT Application No.: US 1994/000493
(87) N° publication PCT/PCT Publication No.: 1994/016559
(30) Priorité/Priority: 1993/01/25 (08/008,675) US

(54) Titre : REPULSIF SOLIDE POUR OISEAUX
(54) Title: SOLID BIRD AVERSION COMPOSITIONS

(57) Abrégé/Abstract:
A solid free flowing bird aversion compound comprising a bird aversion agent in an amount of from 10 to 80 %, preferably from 30-75 %, by weight of a total weight of the compound; and an inorganic or organic carrier in an amount of from 20 to 90 %, preferably from 25-70 %, by weight of a total weight of the compound. A bird aversion solution which is lighter than water comprising a bird aversion agent in an amount of from 5 to 50 % by weight of a total weight of the solution; a terpene hydrocarbon and oxygenated derivative thereof in an amount of from 10 to 50 % by weight of a total weight of the solution; and alkyl esters selected from the group consisting of saturated fatty acids having from 4-20 carbon atoms and unsaturated fatty acids having from 10-18 carbon atoms esterified with an alcohol having from 1-8 carbon atoms in an amount of from 10 to 50 % by weight of a total weight of the solution. A bird aversion emulsion, consisting essentially of a bird aversion agent in an amount of from 5 to 30 % by weight of a total weight of the emulsion; a terpene hydrocarbon and oxygenated derivative thereof in an amount of from 5 to 10 % by weight of a total weight of the emulsion; gums selected from the group consisting of storage polysaccharides, pectins, gelatins, xanthans, cellulose derivatives and alginate in an amount of from 0.5 to 10 % by weight of a total weight of the emulsion; and water in an amount of from 70 to 80 % by weight of a total weight of the emulsion. In all the embodiments of the present invention, the bird aversion agent is selected from the group consisting of methyl anthranilate, ortho-amino acetophenone, 2-amino-4,5-dimethyl acetophenone, veratroyl amine, dimethyl anthranilate, cinnamic aldehyde or esters, and combinations thereof.
<table>
<thead>
<tr>
<th>International Patent Classification</th>
<th>A01N 25/08, 35/04, 37/10, 37/22</th>
</tr>
</thead>
<tbody>
<tr>
<td>International Publication Number</td>
<td>WO 94/16559</td>
</tr>
<tr>
<td>International Publication Date</td>
<td>4 August 1994 (04.08.94)</td>
</tr>
<tr>
<td>Priority Data</td>
<td>08/008,675 25 January 1993 (25.01.93) US</td>
</tr>
<tr>
<td>Title</td>
<td>SOLID BIRD AVERSION COMPOSITIONS</td>
</tr>
<tr>
<td>Abstract</td>
<td>A solid free flowing bird aversion compound comprising a bird aversion agent in an amount of from 10 to 80%, preferably from 30-75%, by weight of a total weight of the compound; and an inorganic or organic carrier in an amount of from 20 to 90%, preferably from 25-70%, by weight of a total weight of the compound. A bird aversion solution which is lighter than water comprising a bird aversion agent in an amount of from 5 to 50% by weight of a total weight of the solution; a terpene hydrocarbon and oxygenated derivative thereof in an amount of from 10 to 50% by weight of a total weight of the solution; and alkylesters selected from the group consisting of saturated fatty acids having from 4-20 carbon atoms and unsaturated fatty acids having from 10-18 carbon atoms esterified with an alcohol having from 1-8 carbon atoms in an amount of from 10 to 50% by weight of a total weight of the solution. A bird aversion emulsion, consisting essentially of a bird aversion agent in an amount of from 5 to 30% by weight of a total weight of the emulsion; a terpene hydrocarbon and oxygenated derivative thereof in an amount of from 5 to 10% by weight of a total weight of the emulsion; gums selected from the group consisting of storage polysaccharides, pectins, gelatins, xanthans, cellulose derivatives and alginate in an amount of from 0.5 to 10% by weight of a total weight of the emulsion; and water in an amount of from 70 to 80% by weight of a total weight of the emulsion. In all the embodiments of the present invention, the bird aversion agent is selected from the group consisting of methyl anthranilate, ortho-arnino acetophenone, 2-amino-4,5-dimethyl acetophenone, veratryl amine, dimethyl anthranilate, cinnamic aldehyde or esters, and combinations thereof.</td>
</tr>
</tbody>
</table>
BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to new formulations of bird aversion compounds.

2. Prior Art

Methyl and dimethyl anthranilate (MA and DMA, respectively) are ester derivatives of anthranilic acid (also known as ortho-amino-benzoic acid). MA, DMA and other derivatives of anthranilic acid as well as esters of phenylacetic acid, are known to be bird aversion agents with preferred embodiments as feed additives to deter feed loss (U.S. Patent 2,967,128 and 4,790,990), and as an anti-grazing compound for geese and swans (Mason, J.R. et al., "Anthranilate Repellency to Starlings: Chemical Correlates and Sensory Perception", JOURNAL OF WILDLIFE MANAGEMENT, 53:55-65 (1989)). Cinnamamide has also been shown to be a bird aversion agent. (Crocker & Perry, PLANT CHEMISTRY AND BIRD REPELLENTS, 132:300-308 (1990)).

U.S. Patent 2,967,128 discloses the incorporation of MA and other ester derivatives of anthranilic acid as bird aversion agents into feed or pesticide additives, or into liquids to be sprayed on material. U.S. Patent 4,790,990 teaches that the aversion agent can be at least partially trapped in a solid vehicle to improve its persistency. The solid vehicle can be a modified starch, oil or polymer which microencapsulates the aversion agent.

However, these prior art formulations have not proven entirely satisfactory, and there is still a continuing need to develop new formulations of bird aversion compounds.
In addition, prior art bird aversion formulations cannot be used for all conditions. For instance, these prior art bird repellents are heavier than water, e.g. methyl anthranilate has a density of 1.16. Thus, the prior art bird aversion compounds sink in water and as a consequence, they are not capable of repelling birds. Other mixtures of vegetable oils and bird aversion agents clump or coagulate in messy globs on the surface of water, which are not capable of repelling birds.

There is a need for bird aversion compounds which are capable of remaining at or near the surface of the water. This is especially true at airports located near bodies of water, where birds pose a potential danger or at fisheries, where birds eat the fish. Another area where a lighter than water bird aversion agent is required is at airports, where after rains or snows, puddles form on runways and other areas. These puddles attract birds which again pose a potential danger for the aircraft. Accordingly, there is a great need for bird aversion compounds which are lighter than water.

SUMMARY OF THE INVENTION

In one embodiment, the present invention is a formulation of a solid free flowing compound consisting essentially of a bird aversion agent in an amount of from 10 to 80%, preferably from 30 to 75%, by weight of the total weight of the compound; and an inorganic or organic carrier in an amount of from 20 to 90%, preferably from 25 to 70%, by weight of the total weight of the compound. Also, UV stabilizers, antioxidants and "lakes" or colors can be added in
small concentrations, usually below 1% by weight of the total weight of the final product.

In another embodiment, the present invention concerns a bird aversion solution which is lighter than water. The liquid formation comprises a bird aversion agent in an amount of from 5 to 50% by weight of the total weight of the solution; a terpene selected from the group consisting of terpene hydrocarbons, oxygenated terpenes and a mixture of terpene hydrocarbons and oxygenated terpenes in an amount of from 10 to 50% by weight of the total weight of the solution; and alkylesters selected from the group consisting of saturated fatty acids having from 4-20 carbon atoms and unsaturated fatty acids having from 10-18 carbon atoms esterified with an alcohol having from 1-8 carbon atoms in an amount of from 10 to 50% by weight of the total weight of the solution.

In another form the bird aversion compound is an emulsion, consisting essentially of a bird aversion agent in an amount of from 5 to 30% by weight of the total weight of the emulsion; a terpene in an amount of from 5 to 10% by weight of the total weight of the emulsion; gums selected from the group consisting of storage polysaccharides, pectins, gelatins, xanthans, cellulose derivatives and alginate in an amount of from 0.5 to 10% by weight of the total weight of the emulsion; and water in an amount of from 70 to 80% by weight of the total weight of the emulsion.

In all the embodiments of the present invention, the bird aversion agent is selected from the group consisting of methyl anthranilate, methyl phenyl acetate, ethyl phenyl acetate, ortho-amino acetophenone, 2-amino-4, 5-dimethyl acetophenone,
veratroyl amine, dimethyl anthranilate, cinnamic aldehyde, cinnamamide, cinnamic acid and combinations thereof.

5 DETAILED DESCRIPTION OF INVENTION

As used herein, the terms "bird(s)" refers to members of the class "Aves".

I. Solid Free Flowing Form

A formulation in a solid free flowing form, consists essential of from 10-80%, or preferably from 30-75%, by weight of the total weight of the solid form of a bird aversion agent; and 20-90%, preferably from 25-70%, by weight of the total weight of the solid form of a carrier. The bird aversion agent is selected from the group consisting of as methyl anthranilate, ortho-amino acetophenone, methyl phenyl acetate, ethyl phenyl acetate, veratroyl amine, 2-amino-4,5-dimethyl acetophenone, dimethyl anthranilate, cinnamamide, cinnamic acid, cinnamic aldehyde and combinations thereof. The carrier may be inorganic, organic or combinations of both. Examples of acceptable inorganic carriers are precipitated silica, such as silicon dioxide hydrate, e.g. SIPERNAT 22 HR from the North American Silica Company and talc. Examples of acceptable organic carriers are methacrylate ester copolymer, e.g. POLYTRAP Q5-6603 polymer powder from Dow Corning Corporation and calcium carbonate. When calcium carbonate and talc are used in the solid formulation either together or separately, they are added in amounts of from 40%-65% by weight of the total weight of the compound together with 1-10% silicon hydrate.

Optionally, "lakes" or colors, ultra violet
stabilizers and antioxidants can each be added in amounts of from 0 to 1% by weight of the total weight of the compound. In this amount, they do not affect the formulation. Examples of antioxidants are BHA, BHT and ethoxyquin, and some examples of colors are D&C violet #2 and FD&C blue #1.

By way of an example, the solid free flowing form may be prepared by first charging the "carrier" into a mixer or ribbon blender. The bird aversion agent, e.g. dimethyl anthranilate, is slowly added via a metering pump, or by gravity feed, while the blender is in operation. Upon completion of the addition, samples are taken to verify complete homogenization of the active ingredient. The final product may be sifted through a 20-80 mesh screen to ensure uniform particle size. Optional "lakes" or colors may be added during the blending operation if so desired. The final product is analyzed for the bird aversion agent.

The following are only examples of some of the solid free flowing formulations:

EXAMPLE Ia:
- Methyl and/or dimethyl anthranilate: 35-60%
- Silicon dioxide hydrate: 65-40%
- D&C Violet #2 and/or FD&C Blue #1: 0-1%

EXAMPLE Ib:
- Ortho-amino acetoophenone: 35-60%
- Silicon dioxide hydrate: 65-40%

EXAMPLE Ic:
- Cinnamamide: 40-60%
- Silicon dioxide hydrate: 60-40%
- D&C Violet #2 and/or FD&C Blue #1: 0-1%
EXAMPLE Id:
 Methyl phenyl acetate 40-60%
 Silicon dioxide hydrate 60-40%

EXAMPLE Ie:
 5 Methyl or dimethyl anthranilate 50%
 Silicon dioxide hydrate 50%

EXAMPLE If:
 Methyl anthranilate 60-80%
 Methacrylate ester copolymer 40-20%

10 EXAMPLE Ig:
 Dimethyl anthranilate 60-80%
 Methacrylate ester copolymer 40-20%

EXAMPLE Ih:
 Ortho-amino acetophenone 55-75%
 Methacrylate ester copolymer 45-25%

EXAMPLE II:
 Cinnamic aldehyde 50-80%
 Methacrylate ester copolymer 50-20%

EXAMPLE Ij:
 20 Dimethyl anthranilate 75%
 Methacrylate ester copolymer 25%

EXAMPLE Ik:
 Methyl and/or dimethyl anthranilate 10-30%
 Methacrylate ester copolymer 25-10%

25 Clay 65-60%

EXAMPLE Il:
 Cinnamic acid or aldehyde 10-30%
 Methacrylate ester copolymer 25-10%
 Clay 65-60%

30 EXAMPLE Im:
 Veratroyl amine 10-30%
 Methacrylate ester copolymer 25-10%
 Clay 65-60%
EXAMPLE In:
 Methyl anthranilate 25%
 Methacrylate ester copolymer 10%
 Clay 65%

EXAMPLE Io:
 Methyl and/or dimethyl anthranilate 35-55%
 Calcium carbonate and/or talc 65-40%
 Silicon dioxide hydrate 10-1%

EXAMPLE Ip:
 Cinnamic acid or aldehyde 15-45%
 Calcium carbonate and/or talc 65-40%
 Silicon dioxide hydrate 10-1%

II. Liquid Form (Lighter Than Water)

In another embodiment the present invention relates to a liquid formulation that is lighter than water and forms a thin liquid film on the water surface. The present invention formulation is made lighter than water by dissolving the bird aversion agent in a mixture of terpene hydrocarbons and oxygenated terpenes together with aliphatic mono-esters.

The bird aversion agent is selected from the group consisting of as methyl anthranilate, methyl phenyl acetate, ethyl phenyl acetate, ortho-amino acetophenone, 2-amino-4,5-dimethyl acetophenone, veratroyl amine, dimethyl anthranilate, cinnamic aldehyde, cinnamamide, cinnamic acid and combinations thereof. The bird aversion agent used in this formulation is in an amount of from 5 to 50%, preferably from 10 to 40%, and more preferably from 30 to 40% by weight of the total weight of the solution.

The terpene hydrocarbon and oxygenated
terpenes comprise from 10 to 50%, preferably 20-40%, and more preferably 25-35% by weight of the total weight of the solution. The terpene hydrocarbon and oxygenated terpenes are selected from limonene, d-limonene, dipentene, alpha-pinene, beta-pinene, caryophyllene, and p-cymene. The preferred terpene is d-limonene. A terpene is used because it is inert and reduced specific gravity.

The alkylesters which comprise from 10 to 50% by weight of the total weight of the solution are selected from saturated fatty acids having from 4 to 20 carbon atoms, unsaturated fatty acids having from 10 to 18 carbon atoms, including oleic, ricinoleic and linoleic acid esterified with an alcohol having from 1 to 8 carbon atoms, such as methyl to octyl alcohol, preferably isopropyl alcohol. Examples of some of the alkylesters are iso-propyl myristate, liquid petrolatum, caster oil, glycercyl trioleate and glycercyl palmitate.

Optionally, solubilizers, such as polyoxyethylated alkylphenol may be added in amounts of from 10-40% by weight of the total weight of the solution. Examples are octoxylnols, such as octyl phenoxy polyethoxyethanol (octoxynol 9 or TRITON X-100), and nonoxynols, such as nonoxynol 10. Also, a coloring dye may be added in an amount of from 0 to 1 % by weight of the total weight of the solution. An exemplary color is D&C violet #2. An antioxidant, such as BHT, BHA and ethoxyquin may also be added in an amount of from 0 to 0.5% by weight of the total weight of the solution.
The following are only examples of some of the liquid formulations:

EXAMPLE IIa:

Methyl anthranilate 35-50%
D-limonene 25-35%
Iso-propyl myristate 25-40%
D&C Violet #2 0-1%

EXAMPLE IIb:

Dimethyl anthranilate 30-45%
D-limonene 20-40%
Iso-propyl myristate 10-30%

EXAMPLE IIc:

Methyl anthranilate 40%
D-limonene 30%
Iso-propyl myristate 30%

EXAMPLE IIId:

Dimethyl anthranilate 35-45%
Caryophyllene 20-40%
Iso-propyl myristate 30-50%

EXAMPLE IIe:

Methyl phenyl acetate and/or
Ethyl phenyl acetate 20-40%
D-limonene 30%
Iso-propyl myristate 20-35%
D&C Violet #2 0-1%

EXAMPLE IIIf:

Ortho-amino acetophenone 20-40%
Di-pentene 25-30%
Octyl phenoxy polyethoxyethanol 10-40%
EXAMPLE IIg:
Cinnamamide 20-40%
Di-pentene 25-30%
Iso-propyl myristate 25-40%
D&C Violet #2 0-1%

EXAMPLE IIh:
2-amino-4,5-dimethyl acetophenone 25-35%
Alpha and/or beta-pinenes 10-30%
Nonoxynol 10 20-35%

EXAMPLE IIIi:
Methyl anthranilate and
Dimethyl anthranilate 5-50%
D-Limonene 25-50%
Iso-propyl myristate 10-30%

EXAMPLE IIIj:
Veratroyl amide 5-15%
Methyl phenyl acetate and
Ethyl phenyl acetate 5-15%
Di-pentene 20-35%
Castor Oil 15-25%

EXAMPLE IIk:
2-amino-4,5-dimethyl acetophenone 20-40%
Caryophyllene 10-30%
Glyceryl Trioleate/Tripalmitate 20-35%

EXAMPLE III:
Cinnamic aldehyde or cinnamic acid 15-45%
P-cymene 25-50%
Iso-propyl myristate 25-35%

EXAMPLE IIIm:
Cinnamic aldehyde or cinnamic acid 10-40%
Alpha and/or beta-pinenes 15-45%
Glyceryl Trioleate/Tripalmitate 20-35%
By way example only, a liquid "lighter than water" formulation was prepared by adding to a clean container, 80 g methyl anthranilate, 60 g iso-propyl myristate, and 60 g d-limonene. Additional ingredients such as antioxidants may also be added.

All materials except color are added sequentially under continuous agitation. If color is to be added, it is added after completely blending of the other ingredients. The finished product may be filtered prior to packaging. The final product is analyzed for methyl anthranilate.

III. Emulsion Water-dispersible

In a still further embodiment, the present invention relates to an emulsion formulation miscible with water, containing terpene hydrocarbons and gums to form a polymeric film on plant leaves and fruits. The formulation consists essentially of a bird aversion agent in an amount of from 5 to 30%, preferably from 10 to 20%, and more preferably 12% by weight of the total weight of the emulsion, a terpene hydrocarbon from 5 to 10% by weight of the total weight of the emulsion, and gum from 0.5 to 10%, preferably from 3 to 4% by weight of the total weight of the emulsion, with the remaining portion of the emulsion being water. Optionally, citric acid, sodium benzoate, colors may each be added in amounts of from 0 to 1% by weight of the total weight of the emulsion for stabilization and for appearance.

The bird aversion agent is selected from the group consisting of as methyl anthranilate, methyl phenyl acetate, ethyl phenyl acetate, ortho-amino acetophenone, 2-amino-4,5-dimethyl acetophenone,
veratroyl amine, dimethyl anthranilate, cinnamic aldehyde, cinnamamide, cinnamic acid and combinations thereof.

The gums are selected from polysaccharides, such as arabic, karaya, guar, tragacanth or pectin (carbohydrates), gelatins (proteins), xanthans, cellulose derivative or alginate (carbohydrates) and combinations thereof. Some exemplary gums are KETROL (a xanthan), EMUL (a gum arabic), KELGIN F and KELCO-GEL (alginites), locust bean gum and malto-dextrins.

The terpene is selected from limonene, di-pentene, alpha-pinene, beta-pinene, caryophyllene, p-cymene and combinations thereof. The preferred terpene is d-limonene. In this formulation, the terpene is used as an organic solvent.

The following are only examples of some of the emulsion formulations:

EXAMPLE IIIa:

Methyl and/or dimethyl anthranilate 10-15%
d-Limonene 5-10%
Xanthan gum (KELTROL) 0.5-5%
Gum arabic (EMUL) 1-5%
FD&C Blue #1 0-1%
Water 70-80%

EXAMPLE IIIb:

Methyl and/or dimethyl anthranilate 10-20%
Di-pentene 5-10%
Gum karaya 0.5-5%
Gum arabic (EMUL) 1-5%
Water 70-80%
EXAMPLE IIIc:
- Cinnamamide 5-15%
- Di-pentene 5-10%
- Xanthan gum 0.5-5%
5
- Gum arabic 1-5%
- FD&C Blue #1 0-1%
- Water 70-85%

EXAMPLE IIIId:
- Methyl anthranilate 13%
10
- d-Limonene 9%
- Xanthan gum 0.5%
- Gum arabic 3%
- Water 75%

EXAMPLE IIIe:
- Ortho-amino acetophenone 5-30%
15
- Alpha and/or beta pintenes 5-10%
- Xanthan gum (KELTROL) 0.5-5%
- Locust bean gum 1-5%
- FD&C Blue #1 0-1%
- Water 55-85%

EXAMPLE IIIf:
- Ethyl and/or methyl phenyl acetate 10-15%
25
- d-Limonene 5-10%
- Gum tragacanth 0.5-5%
- Malto-dextrins 1-5%
- Water 55-80%

EXAMPLE IIIg:
- 2-amino-4,5-dimethyl acetophenone 10-25%
30
- alpha and/or beta-pinene 5-10%
- Alginate gum (KELCO-GEL) 0.5-5%
- Gum arabic (EMUL) 1-5%
- Water 60-80%
EXAMPLE IIIh:
Veratroyl amine 10-15%
Ethyl and/or methyl phenyl acetate 10-15%
Di-pentene 5-10%
5 Xanthan gum 0.5-5%
Gum arabic 1-5%
Water 55-80%

EXAMPLE IIIi:
Methyl and/or dimethyl anthranilate 5-30%
p-cymene 5-10%
Alginate gum (KELGIN F) 0.5-5%
Gum arabic (EMUL) 1-5%
Water 55-85%

EXAMPLE IIIj:
15 Cinnamic acid or aldehyde 5-30%
Alpha and/or beta pintenes 5-10%
Xanthan gum (KELTROL) 0.5-5%
Locust bean gum 1-5%
Water 65-80%

EXAMPLE IIIk:
20 Methyl and/or dimethyl anthranilate 5-30%
Caryophyllene 5-10%
Xanthan gum 0.5-5%
Gum arabic 1-5%
Water 55-85%

By way of example only, an emulsion was prepared by mixing the "gums", e.g. 6 g of gum arabic (such as EMUL BV IRX 2900), with 150.2 g of water, and heating to about 50°C. Using a homogenizer, the "gums" are dispersed in water free of lumps. At this point 1.0 g of another gum such as a xanthan (for example KELTROL polysaccharide gum) is added under continued
agitation until homogenized. When complete suspension, free of lumps, is obtained, a premix consisting of a blend of 16.8 g of a terpene, for example caryophyllene, and 25.4 g of a bird aversion agent, such as cinnamamide, is slowly added under continued agitation until a stable emulsion is obtained. Additional ingredients such as 0.2 g citric acid and 0.4 g sodium benzoate may be added for stability. The final product is analyzed for the content of bird aversion agent.

The foregoing description of the invention has been made with references with a few preferred embodiments. Persons skilled in the art will understand that changes and modifications can be made in the invention without departing from the spirit and scope of the claims as follows.
What is claimed is:

1. A liquid bird aversion solution, comprising:
 a bird aversion agent selected from the group consisting of methyl anthranilate, methyl phenyl acetate, ethyl phenyl acetate, ortho-amino acetophenone, 2-amino-4, 5-dimethyl acetophenone, veratrolyl amine, dimethyl anthranilate, cinnamic aldehyde, cinnamic acid, cinnamamide and combinations thereof in an amount of from 5 to 50% by weight of a total weight of the solution;
 a terpene selected from the group consisting of limonene, d-limonene, di-pentene, alpha-pinene, beta-pinene, caryophyllene and p-cymene in an amount of from 10 to 50% by weight of the total weight of the solution; and
 alkylesters selected from the group consisting of saturated fatty acids having from 4-20 carbon atoms and unsaturated fatty acids having from 10-18 carbon atoms esterified with an alcohol having from 1-8 carbon atoms in an amount of from 10 to 50% by weight of the total weight of the solution, wherein the resulting liquid composition is lighter than water and forms a thin liquid film on a surface of water when applied to said water.

2. The solution of claim 1, further comprising a coloring dye in an amount of from 0 to 1% by weight of the total weight of the solution.

3. The solution of claim 1, further comprising: an ethoxy alkalated phenol in an amount of from 10 to 40% by weight of the total weight of the solution.

4. The solution of claim 3, wherein the ethoxy alkalated phenol is selected from the group consisting of octoxynols and nonoxynols.

5. The solution of claim 1, wherein the bird aversion agent is from 10 to 40% by weight of the total weight of the solution.
6. The solution of claim 1, wherein the bird aversion agent is from 30 to 40% by weight of the total weight of the solution.

7. The solution of claim 1, wherein the terpene is from 20 to 40% by weight of the total weight of the solution.

8. The solution of claim 1, wherein the terpene is from 25 to 35% by weight of the total weight of the solution.

9. The solution of claim 1, wherein the terpene is d-limonene.

10. The solution of claim 1, wherein the alkylesters are unsaturated fatty acids selected from the group consisting of oleic, ricinoleic and linoleic acid esterified with an alcohol having 1 to 8 carbon atoms.

11. The solution of claim 1, wherein the alkylesters are esterified with isopropyl alcohol.