wo 2015/094820 A2 ||V OO OO0 A0 AR R

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

25 June 2015 (25.06.2015)

(10) International Publication Number

WO 2015/094820 A2

WIPOIPCT

(51

eay)

(22)

(25)
(26)
(30)

1

International Patent Classification:
GO6F 9/50 (2006.01)

International Application Number:
PCT/US2014/069380

International Filing Date:
9 December 2014 (09.12.2014)

Filing Language: English

Publication Language: English
Priority Data:

61/917,487 18 December 2013 (18.12.2013) US
14/166,984 29 January 2014 (29.01.2014) US

Applicant: QUALCOMM INCORPORATED [US/US];
ATTN: International IP Administration, 5775 Morehouse
Drive, San Diego, California 92121-1714 (US).

(74

(8D

(84)

(72) Inventors: ANDERSON, Jon James; 5775 Morehouse

Drive, San Diego, California 92121-1714 (US). STEW-
ART, Richard Alan; 5775 Morehouse Drive, San Diego,
California 92121-1714 (US).

Agents: HANSEN, Robert et al; The Marbury Law
Group, PLLC, 11800 Sunrise Valley Drive, 15th Floor,
Reston, Virginia 20191 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,

[Continued on next page]

(54) Title: RUNTIME OPTIMIZATION OF MULTI-CORE SYSTEM DESIGNS FOR INCREASED OPERATING LIFE AND

MAXIMIZED PERFORMANCE
10
N
304 306
Software High Level
Application OSp;:et::g
L 7

SoC

300 A A

Virtual Processor
Identification |

Translation Table

30~ Y 324 W~V _
Expansion/

GPU PSP | MLater Added!
Cores Cores I Cores |

|

Y

Reliability Engine

FIG. 3

(57) Abstract: Aspects include computing devices, systems,
and methods for adjusting the assignment of tasks to pro-
cessor cores in a multi-core processing system to increase op-
erating life and maximize device performance by wear-level-
ing the processor cores. A reliability engine may be con-
figured to collect operation or built in self test data of
thermal output and current leakage, and historical operation
time for a group of equivalent processor cores configured for
the same purpose. Collected data may be applied to a
weighted function to determine priorities for each equivalent
processor core in the group. The reliability engine may re-
arrange a virtual processor identification translation table ac-
cording to the priorities of the equivalent processor cores. A
high level operating system may issue a process request spe-
citying a processor core and the specified processor core may
be translated to a different processor core according to the
order of processor cores dictated by the priorities.

WO 2015/094820 A2 W00V VT 0RO R AR AR A

GM, KF, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, Published:
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF,
SL SK, SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA,
GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

— as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

— without international search report and to be republished
upon receipt of that report (Rule 48.2(g))
Declarations under Rule 4.17:

— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

WO 2015/094820 PCT/US2014/069380

TITLE

Runtime Optimization of Multi-core System Designs for Increased Operating Life

and Maximized Performance
RELATED APPLICATIONS

[0001] This application claims the benefit of priority to U.S. Provisional
Application No. 61/917,487 entitled “Runtime Optimization of Multi-core System
Designs for Increased Operating Life and Maximized Performance” filed
December 18, 2013, the entire contents of which are hereby incorporated by

reference for all purposes.
BACKGROUND

[0002] The operating life of a high performance digital system is, in part, a
function of heating and cooling cycles of the system’s components. Failure of a
system’s components can cripple or render the system inoperable. One such
component is the system’s processor, including individual processor cores of a
multi-core processor. When constant and extreme thermal cycling occurs, the
operating life of the system’s components can be reduced as a result of physical

damage to the die, packaging, or bonds of the component.

[0003] Electronic components, such as processors, that are produced in large
manufacturing lots tend to exhibit differences in their internal resistance which
leads to differences in the amount of current that is used per unit time for a given
operating state. Due to such manufacturing variability, if there i1s more than one of
such component in a computing device, one or a few of them are likely to have
greater current usage than the others, and so are referred to herein as “higher
leakage components.” Higher leakage components tend to exhibit lower
performance levels compared to their lower leakage counterparts. Higher leakage
components also tend to run at higher temperatures than the lower leakage

components due to higher internal resistance. The higher temperatures of higher

WO 2015/094820 PCT/US2014/069380

leakage components may lead to reduced operating life compared to lower leakage
components. Thermal cycling may change the leakage characteristics of the
components overtime, and thus the differences in operating temperature and

operating life may increase as the computing device ages.
SUMMARY

[0004] The methods and apparatuses of various aspects provide circuits and
methods for assigning processing tasks to processor cores within a multi-core
processor in order to extend an operating life of the multi-core processor. Aspect
methods may include obtaining information relevant to wear out regarding each of
the processor cores within the multi-core processor, calculating a priority for each
of the processor cores based on the obtained information relevant to wear out, and
reassigning processor requests to specific processor cores based on the calculated
priority. In an aspect, obtaining information relevant to wear out regarding each of
the processor cores within the multi-core processor may include measuring one or
more of a temperature, cumulative usage, and a current leakage of the processor
cores under normal operations. In an aspect, obtaining information relevant to
wear out regarding each of the processor cores within the multi-core processor
may include determining whether the processor cores are active, providing a test
workload to each of the processor cores in response to determining that the
processor cores are inactive, measuring one or more of thermal output and current
leakage of the processor cores under the test workload individually or for groups
of the processor cores in response to providing the test workload, measuring one or
more of thermal output and current leakage of the processor cores under normal
operation individually or for groups of processor cores in response to determining
that the processor cores are active, and retrieving historical operating time for each

of the processor cores.

[0005] In an aspect, calculating a priority for each of the processor cores based on
the obtained information relevant to wear out may include calculating the priority

tfor each of the processor cores by multiplying weighting factors times the

WO 2015/094820 PCT/US2014/069380

measured thermal output, the measured current leakage, and the historical
operating time and summing the products. An aspect method may include
receiving over a network connection updated weighting factors, and updating the
weighting factors used in calculating a priority for each of the processor cores with

the updated weighting factors.

[0006] In an aspect, reassigning processor requests to specific processor cores
based on the calculated priority may include receiving a process request from a
high level operating system specifying a first virtual identifier for a first processor
core, mapping the process request to a second processor core, and returning a
result of the process request to the high level operating system as if the first

processor core generated the result of the process request.

[0007] An aspect method may include determining whether a historical operating
time for any of the processor cores exceeds an operating time threshold, grouping
those processor cores that exceed the operating time threshold into a first group of
processor cores and grouping those processor cores that do not exceed the
operating time threshold into a second group of processor cores, and ordering
associations between virtual identifiers for each of the processor cores and each of
the processor cores according to the priorities calculated for each of the processor
cores for the first group of processor cores separately from associations for the

second group of processor cores.

[0008] In an aspect, reassigning processor requests to specific processor cores
based on the calculated priority may include ordering associations between virtual
identifiers for each of the processor cores and physical identifiers for each of the
processor cores according to the priorities calculated for each of the processor
cores, mapping process requests received from a high level operating system
according to the ordered associations between the virtual identifiers and the
physical identifiers for each of the processor cores, and returning results of process
request to the high level operating system as if the processor cores identified by the

high level operating system had generated the results of the process requests.

WO 2015/094820 PCT/US2014/069380

[0009] An aspect method may include determining whether a historical operating
time for any of the processor cores exceeds an operating time threshold, and
grouping those processor cores that exceed the operating time threshold into a first
group of processor cores and grouping those processor cores that do not exceed the
operating time threshold into a second group of processor cores, in which ordering
associations between virtual identifiers for each of the processor cores and
physical identifiers for each of the processor cores according to the priorities
calculated for each of the processor cores comprises ordering associations for the
first group of processor cores separately from associations for the second group of

PTOCESSOr COres.

[0010] An aspect includes an apparatus including a multi-core processor having
multiple processor cores in which the multi-core processor is configured with
processor-executable instructions to perform operations of one or more of the

aspect methods described above.

[0011] An aspect includes a computing device having a multi-core processor with
multiple processor cores including means for performing functions of one or more

of the aspect methods described above.

[0012] An aspect includes a non-transitory processor-readable medium having
stored thereon processor-executable instructions configured to cause a multi-core
processor to perform operations of one or more of the aspect methods described

above.
BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The accompanying drawings, which are incorporated herein and constitute
part of this specification, illustrate example aspects of the invention, and together
with the general description given above and the detailed description given below,

serve to explain the features of the invention.

WO 2015/094820 PCT/US2014/069380

[0014] FIG. I is a component block diagram of an example computing device

suitable for implementing an aspect.

[0015] FIG. 2 is a component block diagram of an example multi-core processor

suitable for implementing an aspect.

[0016] FIG. 3 is a functional and component block diagram of a system-on-chip

suitable for implementing an aspect.

[0017] FIG. 4 is an example table relating a high level operating system processor
core identification to a hardware processor core priority, for runtime optimization
of multi-core system designs for increased operating life and maximized

performance, in accordance with an aspect.

[0018] FIG. 5 is a process tlow diagram illustrating an aspect method for

determining priorities for processor cores.

[0019] FIG. 6 is a process tlow diagram illustrating an aspect method for

determining when to update processor core priorities.

[0020] FIG. 7 is a process tlow diagram illustrating an aspect method for

collecting test/operation data and calculating processor core priorities.

[0021] FIG. 8 is a process tlow diagram illustrating an aspect method for
translating a high level operating system processor core identification to a

hardware processor core priority.

[0022] FIG. 9 is a process tlow diagram illustrating an aspect method for updating
weighting values for use in determining core priorities based on operational

experience.

[0023] FIG. 10 is a process flow diagram illustrating an aspect method for
updating weighting values for use in determining core priorities based on

operational experience.

WO 2015/094820 PCT/US2014/069380

[0024] FIG. 11 is component block diagram illustrating an example of a

computing device suitable for use with the various aspects.

[0025] FIG. 12 is component block diagram illustrating another example

computing device suitable for use with the various aspects.

[0026] FIG. 13 is component block diagram illustrating an example server device

suitable for use with the various aspects.
DETAILED DESCRIPTION

[0027] The various aspects will be described in detail with reference to the
accompanying drawings. Wherever possible, the same reference numbers will be
used throughout the drawings to refer to the same or like parts. References made
to particular examples and implementations are for illustrative purposes, and are

not intended to limit the scope of the invention or the claims.

[0028] The terms “computing device” is used herein to refer to any one or all of
cellular telephones, smartphones, personal or mobile multi-media players, personal
data assistants (PDA’s), personal computers, laptop computers, tablet computers,
smartbooks, ultrabooks, palm-top computers, wireless electronic mail receivers,
multimedia Internet enabled cellular telephones, wireless gaming controllers,
desktop computers, compute servers, data servers, telecommunication
infrastructure rack servers, video distribution servers, application specific servers,
and similar personal or commercial electronic devices which include a memory,

and one or more programmable multi-core processors.

[0029] The terms “system-on-chip” (SoC) and “integrated circuit” are used
interchangeably herein to refer to a set of interconnected electronic circuits
typically, but not exclusively, including multiple hardware cores, a memory, and a
communication interface. The hardware cores may include a variety of different
types of processors, such as a general purpose multi-core processor, a multi-core

central processing unit (CPU), a multi-core digital signal processor (DSP), a multi-

WO 2015/094820 PCT/US2014/069380

core graphics processing unit (GPU), a multi-core accelerated processing unit
(APU), and a multi-core auxiliary processor. A hardware core may further
embody other hardware and hardware combinations, such as a field programmable
gate array (FPGA), an application-specitic integrated circuit (ASCI), other
programmable logic device, discrete gate logic, transistor logic, performance
monitoring hardware, watchdog hardware, and time references. Integrated circuits
may be configured such that the components of the integrated circuit reside on a
single piece of semiconductor material, such as silicon. Such a configuration may

also be referred to as the IC components being on a single chip.

[0030] A computing device may include multiple equivalent processor cores, such
that each core is constructed for the same purposes and/or to have the same
capabilities. Even within a single multi-core processor chip, equivalent processor
cores may have slightly different physical and performance characteristics due to
intrinsic, natural variations in the equivalent processor cores’ component materials.
These differences may introduce variability in the processing speed, power
consumption, and thermal performance of each processor core in a computing
device. Processor cores may wear differently over time due to variable usage, heat
cycling, and operating temperature due to their characteristic current leakage.
Excessive wear on one or more processor cores may cause the computing device to

tail even though not all processor cores failed.

[0031] In a computing device in which all equivalent processor cores may not
always run concurrently, the aspects enable increasing the operating life of the
equivalent processor cores, and thereby the computing device, by directing tasks to
the cores in a priority order determined by their usage history as well as current
performance characteristics. An aspect may also improve the performance of the
system by directing tasks to the cores such a manner. The characteristics of the
processor cores may vary as they wear over time, so manufacturer data may not be
reliable. The current characteristics of the processor cores may be determined by

measuring thermal output and/or current leakage for normally operating processor

WO 2015/094820 PCT/US2014/069380

cores, or for processor cores under a built in self test designated for producing the
results necessary to determine the current characteristics. Historical operational
time for the processor cores may also be retrieved. The current characteristic data
may be applied to a weighted function to produce priorities for the processor cores.
The priorities may be used to assign processes and processing tasks to the
processor cores based on their level of wear. For example, the processor cores
with the least wear may be prioritized to run more processes as they are less likely

to fail.

[0032] In an aspect the weighted factors used in the function for determining the
priorities of the processor cores may be updated over the air so that original
equipment manufacturers (OEMs), wireless service providers, or chipset suppliers
can revise these weighted factors and improve system reliability and performance
in fielded units. The updating the weighted factors may be based on information
obtained from examining returned merchandise (e.g., devices failing within the

warranty period), as well as operational and test data from fielded units.

[0033] FIG. I illustrates a system having a computing device 10 in communication
with a processor manufacturer server 50. The computing device 10 may include
an SoC 12 with a processor 14, a memory 16, a communication interface 18, and a
storage interface 20. The computing device may further include a communication
component 22 such as a wired or wireless modem, a storage component 24, an
antenna 26 for establishing a wireless connection 32 to a wireless network 30,
and/or the network interface 28 or connecting to a wired connection 44 to the
Internet 40. The processor 14 may include any of a variety of hardware cores as
described above. The processor 14 may further include a number of processor
cores. The SoC 12 may include one or more processors 14. The computing device
10 may include one or more SoCs 12, thereby increasing the number of processors
14 and processor cores. The computing device 10 may also include processor
cores 14 that are not associated with an SoC 12. The processors 14 may each be

configured for specific purposes that may be the same or different from other

WO 2015/094820 PCT/US2014/069380

processors 14 of the computing device 10. Processors 14 configured for the same
purpose may be considered equivalent processors. Further, equivalent processors
14 may be configured to have similar performance characteristics. Further,
individual processors 14 may be multi-core processors as described below with

reference to FIG. 2.

[0034] The memory 16 of the SoC 12 may be a volatile or non-volatile memory
configured for storing data and processor-executable code for access by the
processor 14. In an aspect, the memory 16 may be contigured to, at least
temporarily, store a data structure, such as a table as described below with
reference to FIG. 4, for relating and translating between a high level operating
system processor core identification to a hardware processor core priority. As
discussed in further detail below, each of the processor cores of the processor 14
may be prioritized or given and identification value that is shared with a high level

operating system running on the computing device 10.

[0035] The computing device 10 and/or SoC 12 may include one or more
memories 16 configured for various purposes. In an aspect, one or more memories
16 may be configured to be dedicated to storing the data structure for storing core
priority information, such that the information of the data structure may be
accessed by one or more processors 14. When the memory 15 storing the data
structure 1s non-volatile, the memory 16 may retain the information of the data
structure even after the power of the computing device 10 has been shut off. When
the power is turned back on and the computing device 10 reboots, the memory 16
may be available to the computing device 10 to provide the information of the data
structure. In another aspect, the memory 16 may also store and maintain
weighting values, and historical processor core operation and/or test data, which
may be used to assign the hardware processor core priorities or to send to the

processor core manufacturer 28 for use in updating the weighting values.

[0036] The communication interface 18, communication component 22, antenna

26 and/or network interface 28, may work in unison to enable the computing

WO 2015/094820 PCT/US2014/069380

device 10 to communicate over a wireless network 30 via a wireless connection
32, and/or a wired network 44 with the processor core manufacturer server 50.
The wireless network 30 may be implemented using a variety of wireless
communication technologies, including, for example, radio frequency spectrum
used for wireless communications, to provide the computing device 10 with a
connection to the Internet 40 by which it may exchange data with the processor
core manufacturer server 50. In an aspect, a wireless network 30 and/or a wired
connection 44 to the Internet 40 may be used to communicate operational data
and/or test data of the computing device 10 to the processor core manufacturer
server 50. In another aspect, the wireless network 30 and/or wired connection 44
to the Internet 40 may be used to communicate updated weighting values, for use
in assigning the hardware processor core priorities, from the processor core

manufacturer server 50 to the computing device 10.

[0037] The storage interface 20 and the storage component 24 may work in unison
to allow the computing device 10 to store data on a non-volatile storage medium.
The storage component 24 may be configured much like an aspect of the memory
16 in which the storage component 24 may store the data structure, such that the
information of the data structure may be accessed by one or more processors 14.
The storage component 24, being non-volatile, may retain the information of the
data structure even after the power of the computing device 10 has been shut oft.
When the power is turned back on and the computing device 10 reboots, the
storage component 24 may be available to the computing device 10 to provide the
information of the data structure. In another aspect, the storage component 24 may
also store and maintain weighting values, and historical processor core operation
and/or test data, which may be used to assign the hardware processor core
priorities or to send to the processor core manufacturer 28 for use in updating the
weighting values. The storage interface 20 may control access the storage device
24 and allow the processor 14 to read data from and write data to the storage

device 24.

10

WO 2015/094820 PCT/US2014/069380

[0038] It should be noted that some or all of the components of the computing
device 10 may be difterently arranged and/or combined while still serving the
necessary functions. Moreover, the computing device 10 may not be limited to
one of each of the components, and multiple instances of each component, in

various configurations, may be included in the computing device 10

[0039] FIG. 2 illustrates a multi-core processor 14 suitable for implementing an
aspect. The multi-core processor 14 may have a plurality of equivalent processor
cores 200, 201, 202, 203. As described further herein, the processor cores 200,
201, 202, 203 are equivalent in that, processor cores 200, 201, 202, 203 of a single
processor 14 may be configured for the same purpose and to have the same
performance characteristics. For example, the processor 14 may be a general
purpose processor, and the processor cores 200, 201, 202, 203 may be equivalent
general purpose processor cores. Alternatively, the processor 14 may be a
graphics processing unit or a digital signal processor, and the processor cores 200,
201, 202, 203 may be equivalent graphics processor cores or digital signal
processor cores, respectively. Through variations in the manufacturing process
and materials, it may result that the performance characteristics of the processor
cores 200, 201, 202, 203 may difter from processor core to processor core, within
the same multi-core processor 14 or in another multi-core processor 14 using the
same designed processor cores. In the example illustrated in FIG. 2, the multi-core
processor 14 includes four processor cores 200, 201, 202, 203, (i.e., processor core
0, processor core 1, processor core 2, and processor core 3). For ease of
explanation, the examples herein may refer to the four processor cores 200, 201,
202, 203 illustrated in FIG. 2. However, it should be noted that FIG. 2 and the
four processor cores 200, 201, 202, 203 illustrated and described herein are in no
way meant to be limiting. The computing device 10, the SoC 12, or the multi-core
processor 14 may individually or in combination include fewer or more than the

tour processor cores 200, 201, 202, 203.

11

WO 2015/094820 PCT/US2014/069380

[0040] FIG. 3 illustrates a computing device 10 having an SoC 12 including
multiple processor cores 320, 321, 322, 324, 326, and a reliability engine 302 for
runtime optimization of multi-core system designs for increased operating life and
maximized performance, in accordance with an aspect. The computing device 10
may include the SoC 12 having the processor cores 320, 321, 322, 324, 326, as
well as a virtual processor identification translation table 300 and a reliability
engine 302. The computing device 10 may also include software applications 304
and a high level operating system 306 which may be configured to communicate

with the components of the SoC 12.

[0041] In FIG. 3, different types of multi-core processors are illustrated, including
a high performance/high leakage multi-core general purpose/central processing
unit (CPU) 320 (referred to as a ““ high power CPU core” in the figure), low
performance/low leakage multi-core general purpose/central processing unit
(CPU) 321 (referred to as a “low power CPU core” in the figure),a multi-core
graphics processing unit (GPU) 322, a multi-core digital signal processor (DSP)
324, and other multi-core computational units 326. Recent computing device
architectures are including a cluster of general purpose CPUs that exhibit high
performance but at the cost of high current leakage, and another cluster of CPUs
that exhibit lower performance but lower current leakage. The two clusters of
CPUs may maintain coherent caches, and therefore both clusters of CPUs may be
up and running simultaneously. For purposes of this disclosure each cluster of
CPUs may be prioritized independently. Also, for purposes of this disclosure,
computational elements with similar characteristics are generally grouped together;
however, this is not a requirement. For example, DSP clusters may be
distinguished in a similar manner, and thus the aspects include distinguishing

computing devices on other axes to distinguish similar processing elements.

[0042] FIG. 3 also illustrates that processor cores 326 may be installed in the
computing device after it is sold, such as an expansion or enhancement of

processing capability or as an update to the computing device. After-market

12

WO 2015/094820 PCT/US2014/069380

expansions of processing capabilities are not limited to central processor cores, and
may be any type of computing module that may be added to or replaced in a
computing system, including for example, additional, upgraded or replacement
modem processors, additional or replacement graphics processors (GPUs),
additional or replacement audio processors, and additional or replacement DSPs,
any of which may be installed as single-chip-multi-core modules or clusters of
processors (e.g., on an SoC). Also, in servers, such added or replaced processor
components may be installed as processing modules (or blades) that plug into a
receptacle and wiring harness interface. Implications of adding additional or
replacement processor cores to the computing device are discussed below with

reference to FIG. 6.

[0043] Each of the groups of processor cores illustrated in FIG. 3 may be part of a
multi-core processor 14 as described above. Moreover, these five example multi-
core processors (or groups of processor cores) are not meant to be limiting, and the
computing device 10 or the SoC 12 may individually or in combination include
fewer or more than the five multi-core processors 320, 321, 322, 324, 326 (or

groups of processor cores), including types not displayed in FIG. 3.

[0044] The reliability engine 302 may be implemented in hardware, software, or a
combination of hardware and software. The reliability engine may be configured
to analyze data relating to the various processor cores 320, 321, 322, 324, 326 and
modify the hardware processor core priorities to increase operating life and
maximized performance of the various processor cores 320, 321, 322, 324, 326
and thereby the computing device 10. As described above, processor cores in
multi-core processors may wear unevenly. Certain processor cores by virtue of
processor, SoC, and/or computing device design may be subject to different
operation conditions from other operating cores in the same computing device 10.
In an aspect, heat cycling of the processor cores may weaken components of the
processor cores causing them to fail. Some processor cores may be positioned

within a computing device such that they experience a greater rate and/or degree of

13

WO 2015/094820 PCT/US2014/069380

heat cycling between hotter and colder temperatures. The differences in heat
cycling may also result from use when some processor cores are used more than
others. This may result from the types of processes run on a computing device 10
and how the software 302 and high level operating system 304 are configured to
specitfy certain processor cores. Also, processor cores with higher current leakage
run at higher temperatures, relative to lower current leakage processor cores.
Higher current leakage processor cores also run at lower performance levels
relative to their lower current leakage counterparts. Thermal cycling changes the

current leakage characteristics of the processor cores overtime.

[0045] To delay the potential damage caused by the thermal cycling, the reliability
engine 302 may analyze data relating to each of the processor cores in multi-core
processors 320, 321, 322, 324, 326 and modify the hardware processor core
priorities, changing the frequency with which certain processor cores are used.

The hardware processor core priorities may also act as physical identifiers for the

PTOCESSOr COres.

[0046] Since the data relating to the processor cores may differ under varying
conditions and generally change overtime due to the wear on the processor cores, it
may be insufficient to rely on manufacturer data for the processor cores. The
reliability engine 302 may use measured data of the various processor cores,
including sensor data captured by sensors located at or close to the multi-core
processors 320, 321, 322, 324, 326. In an aspect, the measured data may be
captured during normal operation of the multi-core processors 320, 321, 322, 324,
326. In another aspect, when processor cores are idle, or in a quiescent state, such
as during boot time of the computing device 10, the computing device may run a
built in self test for selected processor cores. The built in self test may load a
preset routine or workload on the processor core being tested and measure various
performance parameters, such as processing time, voltage drop, current draw,
temperature rise, etc. In either the normal operation or the built in self test the

thermal output and the current leakage of the processor cores may be captured for

14

WO 2015/094820 PCT/US2014/069380

at least the selected processor cores. Other data related to the processor cores may
be retrieved from the memory 16, the storage component 24, or other dedicated
components for retaining or determining the operational time of the individual

processor cores and the weighting factors.

[0047] Using the data related to the processor cores, the reliability engine 302 may
calculate new hardware processor core priorities for the selected processor cores.
The hardware processor core priority for each processor core may be a function of
one or more of the thermal output, current leakage and operational time for the
individual processor core, and their respective weighting factors. The types of data
to be used in the function or algorithm used to assign priorities to processor cores
may include thermal output, current leakage and operational time, using only
selected types, or all types may be used and certain types may be rendered
irrelevant by using a weighting factor of zero for the undesired type. The function
or algorithm for calculating the priorities may be, for example, as summation of
one or more of the types of data augmented by first multiplying each type by its
respective weighting factor. The units for each type of data may vary, and
operational time may be expressed in percentage of time the processor core is
operational while the multi-core processor 14 is operational. The results of the
function or algorithm for each processor core may be compared and the priorities
determined according to the numerical order of the results of the function. For
example, the processor core with the lowest valued result may indicate the least
amount of wear and may be given the highest priority. The next lowest valued
result may indicate the next least amount of wear and the associated processor core
may be given the next highest priority, and so on for all of the processor cores for
which the function result is calculated. The processor cores may be selected in
groups of equivalent processor cores, and the hardware processor core priorities

may only apply within the groups.

[0048] The virtual processor identification translation table 300 may be

implemented in hardware, software, or a combination of hardware and software.

15

WO 2015/094820 PCT/US2014/069380

The virtual processor identification translation table 300 may be configured to
relate the high level operating system processor core identification to the hardware
processor core priority. The high level operating system processor core
identification (or core ID) is how the software applications 304 and high level
operating system 306 identify the processor cores that will handle specific
processing requests, threads, or tasks. The high level operating system processor
core identification may act as a virtual identifier for the processor cores. In an
aspect, the software applications 304 and high level operating system 306 may be
programmed to identify certain processor cores by certain high level operating
system processor core identifications. In another aspect, upon booting the
computing device 10, or starting the software applications 304 or high level
operating system 306, the computing device may instruct the software applications
304 and high level operating system 306 as to which processor cores are associated
with which high level operating system processor core identifications. These
associations may be static and programmed into the firmware, such as the BIOS,
of the computing device 10. Thus, when the software applications 304 and high
level operating system 306 make a process request to a particular processor core,
they may do so by specifying the high level operating system processor core

identification for the particular processor core.

[0049] However, the computing device 10 may change priorities of the processor
cores, as described further below. The computing device 10 may change the
priorities to increase operating life and maximize performance of the processor
cores. Changing the priorities of the processor cores may result in the high level
operating system processor core identification being associated with a processor
core that the computing device 10 does not intend to run the requested process.
The virtual processor identification translation table 300 may track the changes in
the priorities of the processor cores and associate the high level operating system
processor core identifications with the appropriately prioritized processor core. To
accomplish this, the virtual processor identification translation table 300 may

receive the updated hardware processor core priorities calculated by the reliability

16

WO 2015/094820 PCT/US2014/069380

engine 302. The virtual processor identification translation table 300 may also
associate the high level operating system processor core identifications with the
corresponding hardware processor core priority, and update the associations as the
hardware processor core priorities change. When, a process request is received
specitying a particular high level operating system processor core identification,
the computing device may use the virtual processor identification translation table
300 to assign the process to the appropriately prioritized processor core. A table is
used herein to describe this feature of the computing device 10, but the virtual
processor identification translation may be implemented using a variety of
different hardware, data structures, and software algorithms that may achieve the
same function as described above. In an aspect, one or more virtual processor
identification translation tables 300 may be implemented for numerous groups of
processor cores. For example, each group of a type of processor cores, such as a
multi-core general purpose CPU 320, 321, a multi-core GPU 322, a multi-core
DSP 324, and other multi-core computational units 326, may be combined or
separated in various configurations into one or more virtual processor

identification translation tables 300.

[0050] FIG. 4 illustrates an example table 400 relating the high level operating
system processor core identification to the hardware processor core priority in
accordance with an aspect. The table 400 continues the example of the four
processor cores (processor cores 0-3) illustrated in FIG. 2. The left column 402
represents the high level operating system processor core identifications, which
may be used as virtual identifiers for each of the processor cores selected to be in
the group represented in the table 400 (e.g., processor cores 0-3). The right
column 404 represents the processor core identifications/priorities, which may list
the priorities assigned to each processor core that may be used to order the
processor cores selected to be in the group represented in the table 400 (processor

cores 0-3), and as physical identifiers for each of these processor cores.

17

WO 2015/094820 PCT/US2014/069380

[0051] Each row 406, 408, 410, 412 of the table 400 relates to one of the processor
cores. For example, the first row 406 relates to processor core 0 as it is identified
by the high level operating system. In this example, however, the priorities of the
processor cores have been shuffled based on the data gathering and the
calculations made by the reliability engine described above. Thus, this example
shows that in the first row 406, the high level operating system processor core
identification processor core 0 is associated with the hardware processor core
identification processor core 2, because processor core 2 has the highest priority.
Similarly, the high level operating system processor core identification processor
core 1, in a second row 408, is associated with hardware processor core
identification processor core 0, because processor core 0 has the next highest
priority. The same applies to high level operating system processor core
identifications processor core 2 and processor core 3, and hardware processor core
identifications processor core 3 and processor core 1, in a third row 410 and a

fourth row 412, respectively.

[0052] In an aspect, as far as the high level operating system is concerned, when it
makes an operation request specifying a high level operating system processor
core identification, the high level operating system expects the operation to be
executed by the specified processor core. However, the specified processor core
may or may not execute the requested process when the priorities of the processor
cores have been shuffled according to the gathered data and the calculations made
by the reliability engine. The processor core that executes the requested process
may be the processor core having the associated hardware processor core
identification in table 400. The result of the processing may be the same as if the
high level operating system specified processor core executed the request process.
The high level operating system may be oblivious to the possibility that a different

processor core than the one it specified may have executed the requested process.

18

WO 2015/094820 PCT/US2014/069380

[0053] The virtual identifiers, physical identifiers, and priorities may be associated
with and calculated for groups of processor cores, such that a row of table 400 may

represent a group of processor cores, rather than a single processor core.

[0054] A result of determining priorities for the processor cores and
mapping/reassigning processing tasks according to priority order may be that the
processor cores wear more evenly overtime. By reducing the priority of a
processor core that demonstrates greater wear by analyzing the collected data
related to the processor core, fewer processes and threads will be performed by the
processor core. The less work the processor core is tasked to perform, the fewer
heat cycles it will experience, reducing the rate at which the core ages. The higher
priority processor cores may be assigned more requested processes or threads, and
as a result experience more heat cycles, which may cause greater wear on the
components of the higher priority processor cores. As the higher priority
processor cores exhibit (or calculated to experience) more wear, the priorities
assigned to the processor cores by the aspect method will begin to normalize,
resulting in a more equal scheduling of requested processes. Spreading requested
processes across processor cores in this manner may result in more even wear out
of all processor cores, allowing the computing device to function longer at a higher
capacity than if one processor core were assigned more task than other cores, or a
higher leakage core is tasked the same as other cores, which could lead to one core

wearing out and failing before other cores.

[0055] FIG. 5 illustrates an aspect method 500 for calculating processor core
priorities based on information collected from the processor cores. A processor
executing the reliability engine may execute the method 500. In block 502 the
processor may select a cluster, or group, of equivalent processor cores. As
previously described, equivalent processor cores may be configured for the same
purpose and to have the same performance characteristics, though the performance
characteristics may vary due to manufacturing variability. Thus, the processor

may select a group of processor cores configured for the same purpose. For

19

WO 2015/094820 PCT/US2014/069380

example, the processor may select a group of general purpose processor cores, or
groups of graphics or digital signaling processor cores, respectively. When there
are multiple equivalent processors, the group of equivalent processor cores may

extend across the multiple equivalent processors, or the group may be confined to

equivalent processor cores of a single processor.

[0056] In determination block 504, the processor may determine whether the
selected processor cores are inactive, idle, or in a quiescent state. This
determination may affect how the processor implements data gathering and
prioritization of the processor cores. When the cores are active, there may not be a
need to run a test, because information regarding the processor cores measured
from the processor cores’ normal activity may be sufficient. Also, prioritizing
active processor cores may be a more complex process because active processor
cores may be interacting with other components that may expect a particular
processor core to be available to execute tasks. When the processor determines
that the selected processor cores are active (i.e. determination block 504 = “No”),
the processor may collect operation data for the selected active cores in block 506.
In other word, the processor may monitor sensors and collect data from the normal
operation of the selected processor cores without running a separate test to obtain
readings for the relevant data for the selected processor cores. For example, the
processor may monitor the thermal output and the current leakage of the selected

processor cores during normal operation.

[0057] In optional block 507, this collected operational data and related
information may be stored in any nonvolatile memory accessible by the processor,
including FLASH memory of the computing device, a storage component
configured to store this information, or another component dedicated to tracking
and storing data on processor core operational data and cumulative operation time.
The operational data stored in non-volatile memory may be used at boot time to set
initial processor core priorities and mappings. As part of the data saved in block

507, the operational time or usage of the processor core may be stored in a

20

WO 2015/094820 PCT/US2014/069380

frequently updated data field. Thus, as part of the operations in block 506, the
processor may retrieve from this memory the operational time (i.e., total or relative

active time) for the selected processor core.

[0058] In block 508 the processor may calculate priorities for each of the selected
processor cores based on the collected operation data and operating history. The
processor may apply the function or algorithm to the collected data, along with the
weighting factors for each of the types of data, for each of the selected processor
cores, calculating the new priority values for the selected cores. The function or
algorithm used to calculate the priorities may vary. In various aspects, different
combinations of one or more of the thermal output, current leakage and operating
time, and their weighting factors, may be used to calculate the core priorities. In
an aspect the three types of collected data may be multiplied by their respective
weighting factors, and the results summed together to produce a priority value for
each processor core. In another aspect, when one of the types of data is to be
discounted, the weighting value may be set to zero, or the data of the discounted

type may be removed from the function or algorithm.

[0059] In block 510 the computing device may wait for the selected processor
cores to become inactive. As described above, prioritizing active cores may pose
problems when components of the computing device expect particular processor
cores to be available to execute certain tasks. However, when an expected
processor core is prioritized differently from what is expected, it may leave the
components without a processor core to execute the expected task, leading to
potential errors in operation of the computing device. Thus, the computing device
may wait for the processor cores to become inactive, when there are no scheduled
or expected tasks for the processor cores, before changing the processor cores’

priority in order to avoid negatively affecting the other components.

[0060] In another aspect, in optional block 512 the processor may migrate the
selected processor cores’ current and expected processes and data to one or more

other processor cores. Rather than waiting for the selected processor cores to

21

WO 2015/094820 PCT/US2014/069380

become inactive, the processor may reassign the current and scheduled processes,
and the related data, from the selected processor cores to other processor cores that
are available. In this aspect, the components of the computing device may
continue to operate as expected with processes and data mapped to different
processor cores, in essence, forcing the selected processor cores into a quiescent
state when the processing demand on the computing device requires less than all

PTOCESSOr COres.

[0061] In either aspect, whether waiting for the selected processor cores to become
inactive or migrating the processes away from the lower priority processor cores,
in block 526 the processor may update the hardware processor core priority in the
virtual processor identification translation table. As described above, updating the
priorities of the selected processor cores results from ordering or reordering the
hardware processor core identifications according to their priority values. The
numerical order of the resulting priority values may determine the relative
priorities of the selected processor cores. In an aspect, the selected processor core
with the first or highest priority value may be moved to the top of the virtual
processor identification translation table and associated with the high level
operating system processor core identification in the first row. The selected
processor core with the second priority value may be moved to the second row of
the virtual processor identification translation table and associated with the high
level operating system processor core identification in the second row, and so on

for all of the selected processor cores.

[0062] When the processor determines that the selected processor cores are
inactive (1.e. determination block 504 = “Yes”), the processor may run the built in
self test for the selected processor cores in block 514. The built in self test may
provide a workload for the selected processor cores to execute so that the
processor may collect thermal output and current leakage data from the selected
processor cores that are relevant for calculating priorities for the processor cores.

The built in self test may be run while the selected processor cores are otherwise

22

WO 2015/094820 PCT/US2014/069380

inactive, idle, or in a quiescent state. In an aspect, the built in self test may be run
for the selected processor cores (which may be preselected as a default group of
processor cores) during the boot process of the computing device. In block 516
the processor may collect the relevant data for the selected processor cores

obtained during their built in self test.

[0063] In block optional 517, self test data may be stored in nonvolatile memory
accessible by the processor, such as the nonvolatile memory used to store collected
operational data in block 507. Storing the self test data in non-volatile memory
may enable this information to be used at boot time to set initial processor core

priorities and mappings.

[0064] The processor may also retrieve the operating time data for the selected
processor cores as part of collecting the built in self test data. In block 518 the
processor may calculate priorities for each of the selected processor cores based on
the collected operation data and operating history in the same manner as in block
508. In block 526 the processor may update the hardware processor core priority

in the virtual processor identification translation table as described above.

[0065] In another aspect, when the processor determines that the selected
processor cores are inactive (i.e. determination block 504 = “Yes”), in optional
determination block 520 the processor may optionally determine whether the
computing device is in a cold boot and configured to boot quickly rather than
running the built in self test for the selected processor cores in block 514. A cold
boot may occur when the computing device boots from a powered down state.
When the processor determines that the computing device is either not in a cold
boot, or in a cold boot but is not configured to boot fast (i.e. optional determination
block 520 = “No”), the processor may run the built in self test for the selected

processor cores in block 514 and proceed as described above.

[0066] When the processor determines that computing device is in a cold boot and

1s configured to boot fast (i.e. optional determination block 520 = “Yes”), the

23

WO 2015/094820 PCT/US2014/069380

processor may retrieve stored built in self test data or stored operational data, and
the operating history for the selected processor cores from the nonvolatile memory
in optional block 522. The nonvolatile memory may be the same memory used to
store collected operational data in block 507 and/or the same memory used to store
self test data in block 517. In an aspect, it may be possible for the processor to
retrieve a combination of stored built in self test data and operational data for the
selected processor cores. For example, the stored built in self test data or
operational data for the selected processor cores may be incomplete, and the
processor may supplement missing data with the other type of data when it is
available. The processor may also make a determination that one of the built in
self test data or operational data for one or more of the types of data, used in
calculating the priorities of the processor cores, may be more recent and determine

to user the more recent data for the one or more types of data.

[0067] In optional block 524 the processor may calculate priorities for each of the
selected processor cores based on the retrieved stored data and operating history in
the same manner as in blocks 508 and 518 as described above. In block 526 the

processor may update the hardware processor core priority in the virtual processor

identification translation table as described above.

[0068] In alternative aspects, the computing device or system may be configured
so that the processor only uses self tests or run time measurements to determine
how to reprioritize processor cores. In aspects that only use self tests, the
operations of blocks 504 through 512 may not be performed, and the results of self
tests stored in memory in 517 may be used at boot time to set initial processor
priorities before the first self test can be performed as described above. In aspects
that only use run time measurements to reprioritize processor cores, the operations
of block 514 through 524 may not be performed and the results of run time
measurements may be saved in nonvolatile storage so that results can be
referenced in future boot cycles or during run time. In such aspects, the processor

may be configured with a default processor core mapping (e.g., 0=0, 1=1,

24

WO 2015/094820 PCT/US2014/069380

2=2,3=3) that may be used upon an initial boot cycle before sufficient run time

measurements have been stored in memory.

[0069] FIG. 6 illustrates an aspect method 600 for runtime optimization of multi-
core system designs for increased operating life and maximized performance for a
system including updated hardware. The processor executing the reliability engine

may execute the method 600.

[0070] The addition of new processing hardware including new processor cores to
the computing device, such as expansion, upgraded, replaced, or later added
processor cores 326 illustrated in FIG. 3 (e.g., modem processors, additional or
replacement graphics processors (GPUs), additional or replacement audio
processors, and additional or replacement DSPs), may create an imbalance in the
wear levels between the new processor cores and the older processor cores. Such a
later-added/replaced/upgraded set of processor cores could be akin to a second
CPU cluster 326 that may be optionally added (e.g., plugged into a pre-existing
interface slot) sometime after sale of the computing device. The imbalance may be
so great as to greatly prioritize the new processor cores over the older processor
cores in an attempt to even the wear on the processor cores. However, this may
defeat the purpose of adding new hardware, because new hardware is often added
to increase the performance of the computing device by adding supplemental
hardware. Prioritizing the new hardware above the old hardware until the
hardware use levels even out may have the unintended effect of replacing the old
hardware for a period of time rather than supplementing it. Thus, to avoid relying
too heavily on the new hardware, in block 602 the processor executing the
reliability engine may compare historical operating time for selected cores to an
operating time threshold. The operating time threshold may be predetermined or
calculated based on operating time data for the new and old processor cores. The
operating time threshold may provide a demarcation line as to when new processor
cores may be treated the same as the old processor cores. In determination block

604 the processor may determine whether any of the selected processor cores’

25

WO 2015/094820 PCT/US2014/069380

historical operating time exceeds the operating time threshold. In other words, the
processor may check to see whether any of the new processor cores are so new that
they have not yet been run sufficiently to be comingled with the older processor

cores for the purposes of determining the priority of equivalent processor cores.

[0071] When the processor determines that at least one processor core’s historical
operating time exceeds the operating time threshold (i.e. determination block
“604” = Yes), in block 606 the processor may group the selected processor cores
into over the threshold (or new) processor cores, and under the threshold (or old)
processor cores. In block 608 the processor may execute the method 500 for each
of the over the threshold and under the threshold groups of selected processor
cores independently of the other group. Thus, for example, in block 602 processor
may select either the over the threshold or under the threshold groups of selected
processor cores and execute the remaining blocks as described above. The
processor may do the same for the group that was not selected first. In this aspect,
the old and new processor cores are prioritized separately and compared only to
other processor cores of similar ware. Thus, the processor cores in both the old
and the new groups may be assigned processing requests from the high level
operating system. When the processor determines that none of the processor
core’s historical operating time exceeds the operating time threshold (i.e.
determination block “604” = No), in block 610 the processor may execute the

method 500 for all of the selected processor cores together.

[0072] The method 600 may be particularly useful in a server environment where
the operational times of the multi-core processors of a server are often higher than
in a consumer device. Because servers are often employed in a commercial setting
where server uptime may be critical to the functions supported by the server, the
demand on the multi-core processors may be near constant. Servers are also often
configured to be flexibly reconfigured for varying uses and levels of demand by
adding, removing and replacing processing hardware. The addition and

replacement of processing hardware in a server, such as adding or replacing multi-

26

WO 2015/094820 PCT/US2014/069380

core processors, allows for servers to perform new tasks, more of the same tasks,
or perform tasks better than before the additions. The high operational time of the
multi-core processors of a server may result in large disparities between currently
employed multi-core processors and newly introduced multi-core processors. As
mentioned above, server systems may include compute servers, data servers,
telecommunication infrastructure rack servers, video distribution servers,
application specific servers, etc. Implementing method 600 in a server
environment may increase the reliability of the servers resulting in a higher
uptime, which is a critical aspect for server service providers and those who rely

on SErver access.

[0073] FIG. 7 illustrates an aspect method 700 for collecting test/operation data
and calculating processor core priorities. The processor executing the reliability
engine may execute the method 700. This method 700 describes operations for
collecting test/operation data and calculating processor core priorities in blocks
5006, 508, 514 and 516 of method 500 described above with reference to FIG. 5.
When the processor determines that the selected processor cores are inactive in
determination block 504 (i.e., determination block 504 in method 500 = “Yes”),
the processor may apply a test workload to the selected processor cores in block
702. The test workload may be a predetermined workload designed to cause
certain behaviors in the processor cores. For example, the test workload may
attempt to incite a normal work response from the processor cores by providing a
normal workload. Similarly, the test workload may attempt to incite a heavy work
response from the processor cores by providing them with a heavy workload of
tasks. Difterent workloads may be designated for different types of processor

cores, such as a graphic processing workload for graphics processor cores.

[0074] In block 704 the processor may measure the thermal output of each
selected processor core based on data gathered during the self test in block 702 or
based on data gathered from normal operations of the processor cores when the

cores are active (i.e., determination block 504 in method 500 = “No”). For

27

WO 2015/094820 PCT/US2014/069380

example, temperature data may be obtained from thermal sensors that may be
strategically placed on a die of the multi-core processors containing the processor
cores. Analysis of temperature data from a number of sensors may be used to
calculate the thermal output of the individual processor cores. In an aspect in
which the processor cores are placed so closely together that the thermal output of
one or more of the processor cores affects another of the processor cores, it may be
sufficient to observer the thermal output of the group of processor cores rather than
each processor core individually. In such an aspect, it may be possible to reduce
the number of thermal sensors required per processor core to observer the thermal

output.

[0075] In block 706 the processor may measure the current leakage of each
selected processor core. Current or voltage sensors may be strategically placed on
a die of the multi-core processors containing the processor cores such that the
voltage drop through the core or the amount of current consumed by the core may
be observed and recorded. The current leakage may also be calculated based on
the thermal output of the individual processor cores that may be observed using

temperature sensors.

[0076] In block 708 the processor may retrieve the historical operating time of
each selected processor core. As described above, the historical operating time
may be retrieved from the memory, the storage component, the multi-core
processor, or some other component dedicated to tracking and recording the
historical operating time of the processor cores. The historical operating time may
be presented in a number of different manners. In an aspect, the historical
operating time may include a count value of the amount of time a processor core
has been active (referred to herein as the “active time”). In an aspect, the historical
operating time may include a relative active time value for the processor core that
1s based on a comparison (or relative measure) of the active time on the core
compared the amount of active time of the other equivalent processor cores. For

example, the historical operating time may be a percentage of the total operating

28

WO 2015/094820 PCT/US2014/069380

time of all of the equivalent processor cores for which a particular operating core

has been active.

[0077] In block 710 the processor may apply the thermal output weighting factor
to the measured thermal output of each of the selected processor cores. In block
712 the processor may apply the current leakage weighting factor to the measured
current leakage of each of the selected processor cores. In block 714 the processor
may apply the operating time weighting factor to the historical operating time of
each of the selected processor cores. For each of the weighting factors, the
weighting factor may remain the same across the equivalent processor cores. For
example, the thermal output weighting factor may be the same for each of the
equivalent processor cores. In an aspect, the weighting factors may be the same or
may vary for nonequivalent processor cores. For example, the thermal output
weighting factor may or may not be the same for a general processor core as
compared to a graphics processor core. In various aspects, applying the weighting
factor to the measured or historical values may include using one or more of any
number of mathematical operations. For example, the measured or historical

values may be multiplied by their respective weighting factors.

[0078] In block 716 the processor may combine the weighted thermal output, the
weighted current leakage, and/or the weighted historical operating time of each
selected processor core individually, resulting in the priority value for each
selected processor core. As described above, the combination of these values may
be accomplished in a variety of forms. In various aspects, some or all of these
values may be combined to produce the priority values for each selected processor
core. In some aspects, some of the values may not be included in the combination
by either not combining the discarded value through a mathematical operation with
the other values, or by discounting the value by cancelling the value out using its

respective weighting factor.

[0079] It should be noted that the different types of operational information

regarding processor cores may be independent and thus may be obtained and

29

WO 2015/094820 PCT/US2014/069380

processed in any order, and not necessarily in the order in which the operations are
illustrated in FIG. 7. For example, a processor could sample current leakage upon
boot up or system initialization only, and obtain temperature/thermal
measurements periodically (e.g., hourly) thereafter and as part of normal
operations. Therefore, the sequence of operations illustrated in FIG. 7 is for

illustration purposes only and is not intended to limit the scope of the claims.

[0080] FIG. 8 illustrates an aspect method 800 for translating a high level
operating system processor core identification to a hardware processor core
priority. The processor executing the reliability engine may execute the method
800. In block 802 the processor may receive a process request from the high level
operating system specifying a high level operating system processor core
identification. In doing so, the high level operating system is expecting that the
processor core identified by the high level operating system processor core
identification will be assigned the process request. For example, an original
pairing of virtual and physical processor core identifiers may pair virtual identifier
processor core 0 with physical identifier processor core 0. However, if the
processor cores are prioritized as illustrated in the priorities table in FIG. 4, the
virtual identifier processor core 0 may be paired with physical identifier processor

core 2.

[0081] In block 804 the processor may match the high level operating system
processor core identification with the corresponding hardware processor core
identification according to its priority. When the processor cores are prioritized
and no longer matched with their original pairing of the high level operating
system processor core identification, the processor may make the connection
between the high level operating system processor core identification and the
newly prioritized processor cores so that the process request made by the high
level operating system is mapped to a processor core, and more specifically the
appropriate processor core. However, the appropriate processor core may no

longer be the processor core the high level operating system expects.

30

WO 2015/094820 PCT/US2014/069380

[0082] In block 806 the processor may map the process request from the high
level operating system for the specified processor core identification to the
processor core assigned the corresponding hardware processor core identification.
The processor may map the processing request to the processor core now
associated with the requested virtual processor core identifier. The associated

processor core may be the processor core to execute the process request.

[0083] In block 808 the processor may return the result of the process request to
the high level operating system as if the process request had been executed by the
processor core identified by the high level operating system in the process request.
By not informing the high level operating system of the change of priorities of the
processor cores and managing the process requests without the high level
operating system having to adjust for the changes may eliminate a layer of
complexity in the high level operation system, and reduce costs that might

otherwise be necessary to implement the aspects in the operating system.

[0084] FIG. 9 illustrates an aspect method 900 for updating weighting values for
use in runtime optimization of multi-core system designs for increased operating
life and maximized performance. A computer within the manufacturer may
execute at least some operations of the method 900. Manufactures may learn
about performance characteristics of the processor cores during manufacturing and
then use the data to adjust the processor cores in use to rectify issues, such as
inefficiencies and uneven heat cycling, that were not detected during testing phases
of the processor cores. For example, as a manufacturer ramps up production of
integrated circuits in a new process, the manufacturer typically learns things about
variability and performance of processor cores during the tuning of the wafer
fabrication process. Such learning may lead the manufacturer to revise already
fielded devices, such as by transmitting updated parameters in over-the-air updates
for computing devices implementing integrated circuits from previously fabricated
lots. As another example, failed consumer products may be returned to the

manufacturer, such as according to the well-known Return Merchandise

31

WO 2015/094820 PCT/US2014/069380

Authorization (RMA) process. Returned merchandise may be analyzed to
discover a pattern of issues that lead to device failures that prompted the
merchandise returns. Through the analysis of failures in returned merchandise the
manufacturer may determine that it can improve the failure rates and longevity of
its processor cores by updating the weighting values to alter the wear on the

PTOCESSOr COres.

[0085] In block 902 the manufacturer may receive and analyze returned
merchandise to determine causes of failures and failure rate data. This data may
include customer comments and technical analysis of potentially defective or
broken processor cores obtained pursuant to the RMA process. In an aspect, in
block 904 the manufacturer may also receive operation and test data of the
processor cores from functioning computing devices via communications over a

wired or wireless connection.

[0086] In block 906 the manufacturer may analyze the return merchandise analysis
data and operation and test data if received to determine causes of component
failures. In block 908 the manufacturer may determine updates for one or more of
the weighting factors for the processor cores using the received data that may
avoid the causes of the failures of the components. The weighting factors may be
modified to place greater or less importance on one or more of the data relating to
the processor cores to skew the prioritization of cores in a manner that is expected

to lead to better or more even wearing of the processor cores.

[0087] In block 910 the manufacturer may send the updated weighting factors to
the computing device over a wired or wireless connection, such as in the form of
an over-the-air update to a computing device, an in-store update accomplished by a
technician, or an update that is downloaded from an Internet server to a computing
device (e.g., a desktop or laptop computer) over a wired or wireless network
connection to the Internet. Sending such updates may be accomplished using a

targeted or broadcast push of data to the computing device, or the computing

32

WO 2015/094820 PCT/US2014/069380

device may be notified of the update and requested to download (i.e., pull) the

update from an Internet server.

[0088] FIG. 10 is a process flow diagram illustrating an aspect method for
updating weighting values for use in runtime optimization of multi-core system
designs for increased operating life and maximized performance. In an associated
method 1000 to method 900, the computing device may send and receive data to

the manufacturer in order to update the weighting values.

[0089] In block 1002 the computing device may send operation and test data to the
manufacturer over a wireless connection. Sending this data may be optional
because either the computing device and/or the manufacturer is not setup for the

transmission of this data, or optional as a user option on the computing device.

[0090] In block 1004 the computing device may receive the updated weighting
factors for one or more of the thermal output, the current leakage, and the
operating time. The received updated weighting factors may be dependent on the
updated weighting factors sent or made available to the computing device, and/or

the updated weighting factors accepted by the computing device and/or user.

[0091] In block 1006 the processor executing the reliability engine may replace
the weighting factors with the update weighting factors. In an aspect, some or all
of the old weighting factors may be deleted, disassociated from their pointers, or
overwritten when updated with the new weighting factors. The updated factors

may be used at the next time the processor cores are prioritized.

[0092] FIG. 11 illustrates an example of a computing device suitable for
implementing the various aspects in the form of a smartphone. A smartphone
computing device 1100 may include a multi-core processor 1102 coupled to a
touchscreen controller 1104 and an internal memory 1106. The multi-core
processor 1102 may be one or more multi-core integrated circuits designated for
general or specific processing tasks. The internal memory 1106 may be volatile or

non-volatile memory, and may also be secure and/or encrypted memory, or

33

WO 2015/094820 PCT/US2014/069380

unsecure and/or unencrypted memory, or any combination thereof. The
touchscreen controller 1104 and the multi-core processor 1102 may also be
coupled to a touchscreen panel 1112, such as a resistive-sensing touchscreen,
capacitive-sensing touchscreen, infrared sensing touchscreen, etc. Additionally,

the display of the computing device 1100 need not have touch screen capability.

[0093] The smartphone computing device 1100 may have one or more radio signal
transceivers 1108 (e.g., Peanut, Bluetooth, Zigbee, Wi-Fi, RF radio) and antennae
1110, for sending and receiving communications, coupled to each other and/or to
the multi-core processor 1102. The transceivers 1108 and antennae 1110 may be
used with the above-mentioned circuitry to implement the various wireless
transmission protocol stacks and interfaces. The smartphone computing device
1100 may include a cellular network wireless modem chip 1116 that enables

communication via a cellular network and is coupled to the processor.

[0094] The smartphone computing device 1100 may include a peripheral device
connection interface 1118 coupled to the multi-core processor 1102. The
peripheral device connection interface 1118 may be singularly configured to
accept one type of connection, or may be configured to accept various types of
physical and communication connections, common or proprietary, such as USB,
FireWire, Thunderbolt, or PCle. The peripheral device connection interface 1118
may also be coupled to a similarly configured peripheral device connection port

(not shown).

[0095] The smartphone computing device 1100 may also include speakers 1114
for providing audio outputs. The smartphone computing device 1100 may also
include a housing 1120, constructed of a plastic, metal, or a combination of
materials, for containing all or some of the components discussed herein. The
smartphone computing device 1100 may include a power source 1122 coupled to
the multi-core processor 1102, such as a disposable or rechargeable battery. The
rechargeable battery may also be coupled to the peripheral device connection port

to receive a charging current from a source external to the smartphone computing

34

WO 2015/094820 PCT/US2014/069380

device 1100. The smartphone computing device 1100 may also include a physical
button 1124 for receiving user inputs. The smartphone computing device 1100
may also include a power button 1126 for turning the smartphone computing

device 1100 on and off.

[0096] The various aspects described above may also be implemented within a
variety of other computing devices, such as a laptop computer 1200 illustrated in
FIG. 12. Many laptop computers include a touchpad touch surface 1217 that
serves as the computer’s pointing device, and thus may receive drag, scroll, and
flick gestures similar to those implemented on computing devices equipped with a
touch screen display and described above. A laptop computer 1200 will typically
include a multi-core processor 1211 coupled to volatile memory 1212 and a large
capacity nonvolatile memory, such as a disk drive 1213 of Flash memory.
Additionally, the computer 1200 may have one or more antenna 1208 for sending
and receiving electromagnetic radiation that may be connected to a wireless data
link and/or cellular telephone transceiver 1216 coupled to the multi-core processor
1211. The computer 1200 may also include a floppy disc drive 1214 and a
compact disc (CD) drive 1215 coupled to the multi-core processor 1211. Ina
notebook configuration, the computer housing includes the touchpad 1217, the
keyboard 1218, and the display 1219 all coupled to the multi-core processor 1211.
Other configurations of the computing device may include a computer mouse or
trackball coupled to the processor (e.g., via a USB input) as are well known, which
may also be use in conjunction with the various aspects. A desktop computer may
similarly include these computing device components in various configurations,
including separating and combining the components in one or more separate but

connectable parts.

[0097] The various aspects may also be implemented on any of a variety of
commercially available server devices, such as the server 1300 illustrated in FIG.
13. Such a server 1300 typically includes one or more multi-core processor

assemblies 1301 coupled to volatile memory 1302 and a large capacity nonvolatile

35

WO 2015/094820 PCT/US2014/069380

memory, such as a disk drive 1304. As illustrated in FIG. 13, multi-core processor
assemblies 1301 may be added to the server 1300 by inserting them into the racks
of the assembly. The server 1300 may also include a floppy disc drive, compact
disc (CD) or DVD disc drive 1306 coupled to the processor 1301. The server 1300
may also include network access ports 1303 coupled to the multi-core processor
assemblies 1301 for establishing network interface connections with a network
1305, such as a local area network coupled to other broadcast system computers
and servers, the Internet, the public switched telephone network, and/or a cellular
data network (e.g., CDMA, TDMA, GSM, PCS, 3G, 4G, LTE, or any other type of

cellular data network).

[0098] Computer program code or “program code” for execution on a
programmable processor for carrying out operations of the various aspects may be
written in a high level programming language such as C, C++, C#, Smalltalk, Java,
JavaScript, Visual Basic, a Structured Query Language (e.g., Transact-SQL), Perl,
or in various other programming languages. Program code or programs stored on
a computer readable storage medium as used in this application may refer to
machine language code (such as object code) whose format is understandable by a

ProCessor.

[0099] Many computing devices operating system kernels are organized into a
user space (in which non-privileged code runs) and a kernel space (in which
privileged code runs). This separation is of particular importance in Android and
other general public license (GPL) environments where code that is part of the
kernel space must be GPL licensed, while code running in the user-space may not
be GPL licensed. It should be understood that the various software
components/modules discussed here may be implemented in either the kernel

space or the user space, unless expressly stated otherwise.

[0100] The foregoing method descriptions and the process flow diagrams are
provided merely as illustrative examples and are not intended to require or imply

that the operations of the various aspects must be performed in the order presented.

36

WO 2015/094820 PCT/US2014/069380

As will be appreciated by one of skill in the art the order of operations in the
foregoing aspects may be performed in any order. Words such as “thereafter,”
“then,” “next,” etc. are not intended to limit the order of the operations; these
words are simply used to guide the reader through the description of the methods.
Further, any reference to claim elements in the singular, for example, using the

99 ¢¢

articles “a,” “an” or “the” is not to be construed as limiting the element to the

singular.

[0101] The various illustrative logical blocks, modules, circuits, and algorithm
operations described in connection with the various aspects may be implemented
as electronic hardware, computer software, or combinations of both. To clearly
illustrate this interchangeability of hardware and software, various illustrative
components, blocks, modules, circuits, and operations have been described above
generally in terms of their functionality. Whether such functionality is
implemented as hardware or software depends upon the particular application and
design constraints imposed on the overall system. Skilled artisans may implement
the described functionality in varying ways for each particular application, but
such implementation decisions should not be interpreted as causing a departure

from the scope of the present invention.

[0102] The hardware used to implement the various illustrative logics, logical
blocks, modules, and circuits described in connection with the aspects disclosed
herein may be implemented or performed with a general purpose processor, a
digital signal processor (DSP), an application specific integrated circuit (ASIC), a
tield programmable gate array (FPGA) or other programmable logic device,
discrete gate or transistor logic, discrete hardware components, or any combination
thereof designed to perform the functions described herein. A general-purpose
processor may be a microprocessor, but, in the alternative, the processor may be
any conventional processor, controller, microcontroller, or state machine. A
processor may also be implemented as a combination of computing devices, e.g., a

combination of a DSP and a microprocessor, a plurality of microprocessors, one or

37

WO 2015/094820 PCT/US2014/069380

more microprocessors in conjunction with a DSP core, or any other such
configuration. Alternatively, some operations or methods may be performed by

circuitry that is specific to a given function.

[0103] In one or more aspects, the functions described may be implemented in
hardware, software, firmware, or any combination thereof. If implemented in
software, the functions may be stored as one or more instructions or code on a non-
transitory computer-readable medium or a non-transitory processor-readable
medium. The operations of a method or algorithm disclosed herein may be
embodied in a processor-executable software module that may reside on a non-
transitory computer-readable or processor-readable storage medium. Non-
transitory computer-readable or processor-readable storage media may be any
storage media that may be accessed by a computer or a processor. By way of
example but not limitation, such non-transitory computer-readable or processor-
readable media may include RAM, ROM, EEPROM, FLASH memory, CD-ROM
or other optical disk storage, magnetic disk storage or other magnetic storage
devices, or any other medium that may be used to store desired program code in
the form of instructions or data structures and that may be accessed by a computer.
Disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc,
digital versatile disc (DVD), floppy disk, and blu-ray disc, wherein disks usually
reproduce data magnetically, while discs reproduce data optically with lasers.
Combinations of the above are also included within the scope of non-transitory
computer-readable and processor-readable media. Additionally, the operations of
a method or algorithm may reside as one or any combination or set of codes and/or
instructions on a non-transitory processor-readable medium and/or computer-

readable medium, which may be incorporated into a computer program product.

[0104] The preceding description of the disclosed aspects is provided to enable
any person skilled in the art to make or use the present invention. Various
modifications to these aspects will be readily apparent to those skilled in the art,

and the generic principles defined herein may be applied to other aspects without

38

WO 2015/094820 PCT/US2014/069380

departing from the spirit or scope of the invention. Thus, the present invention is
not intended to be limited to the aspects shown herein but is to be accorded the
widest scope consistent with the following claims and the principles and novel

features disclosed herein.

39

WO 2015/094820 PCT/US2014/069380

CLAIMS
What is claimed is:

1. A method of assigning processing tasks to processor cores within a multi-core
processor in order to extend an operating life of the multi-core processor,
comprising:

obtaining information relevant to wear out regarding each of the processor
cores within the multi-core processor;

calculating a priority for each of the processor cores based on the obtained
information relevant to wear out; and

reassigning processor requests to specific processor cores based on the

calculated priority.

2. The method according to claim 1, wherein obtaining information relevant to
wear out regarding each of the processor cores within the multi-core processor
comprises measuring one or more of a temperature, cumulative usage, and a

current leakage of the processor cores under normal operations.

3. The method according to claim 1, wherein obtaining information relevant to
wear out regarding each of the processor cores within the multi-core processor
comprises:

determining whether the processor cores are active;

providing a test workload to each of the processor cores in response to
determining that the processor cores are inactive;

measuring one or more of thermal output and current leakage of the
processor cores under the test workload individually or for groups of the processor
cores in response to providing the test workload;

measuring one or more of thermal output and current leakage of the
processor cores under normal operation individually or for groups of processor
cores in response to determining that the processor cores are active; and

retrieving historical operating time for each of the processor cores.

40

WO 2015/094820 PCT/US2014/069380

4. The method according to claim 3, wherein calculating a priority for each of the
processor cores based on the obtained information relevant to wear out comprises
calculating the priority for each of the processor cores by multiplying weighting
factors times the measured thermal output, the measured current leakage, and the

historical operating time and summing the products.

5. The method of claim 4, further comprising:
receiving over a network connection updated weighting factors; and
updating the weighting factors used in calculating a priority for each of the

processor cores with the updated weighting factors.

6. The method of claim 1, wherein reassigning processor requests to specific
processor cores based on the calculated priority comprises:

receiving a process request from a high level operating system specifying a
first virtual identifier for a first processor core;

mapping the process request to a second processor core; and

returning a result of the process request to the high level operating system

as if the first processor core generated the result of the process request.

7. The method of claim 6, further comprising:

determining whether a historical operating time for any of the processor
cores exceeds an operating time threshold;

grouping those processor cores that exceed the operating time threshold into
a first group of processor cores and grouping those processor cores that do not
exceed the operating time threshold into a second group of processor cores; and

ordering associations between virtual identifiers for each of the processor
cores and each of the processor cores according to the priorities calculated for each
of the processor cores for the first group of processor cores separately from

associations for the second group of processor cores.

41

WO 2015/094820 PCT/US2014/069380

8. The method of claim 1, wherein reassigning processor requests to specific
processor cores based on the calculated priority comprises:

ordering associations between virtual identifiers for each of the processor
cores and physical identifiers for each of the processor cores according to the
priorities calculated for each of the processor cores;

mapping process requests received from a high level operating system
according to the ordered associations between the virtual identifiers and the
physical identifiers for each of the processor cores; and

returning results of process request to the high level operating system as if
the processor cores identified by the high level operating system had generated the

results of the process requests.

9. The method of claim 8, further comprising:

determining whether a historical operating time for any of the processor
cores exceeds an operating time threshold; and

grouping those processor cores that exceed the operating time threshold into
a first group of processor cores and grouping those processor cores that do not
exceed the operating time threshold into a second group of processor cores,

wherein ordering associations between virtual identifiers for each of the
processor cores and physical identifiers for each of the processor cores according
to the priorities calculated for each of the processor cores comprises ordering
associations for the first group of processor cores separately from associations for

the second group of processor cores.

10. A computing device, comprising a multi-core processor having multiple
processor cores, the multi-core processor configured with processor-executable
instructions to perform operations comprising:

obtaining information relevant to wear out regarding each of the processor

cores within the multi-core processor;

42

WO 2015/094820 PCT/US2014/069380

calculating a priority for each of the processor cores based on the obtained
information relevant to wear out; and
reassigning processor requests to specific processor cores based on the

calculated priority.

11. The computing device of claim 10, wherein the multi-core processor is
configured with processor-executable instructions to perform operations such that
obtaining information relevant to wear out regarding each of the processor cores
within the multi-core processor comprises:

determining whether the processor cores are active;

providing a test workload to each of the processor cores in response to
determining that the processor cores are inactive;

measuring one or more of thermal output and current leakage of the
processor cores under the test workload individually or for groups of processor
cores in response to providing the test workload;

measuring one or more of thermal output and current leakage of the
processor cores under normal operation individually or for groups of processor
cores in response to determining that the processor cores are active; and

retrieving historical operating time for each of the processor cores.

12. The computing device of claim 11, wherein the multi-core processor is
configured with processor-executable instructions to perform operations such that
calculating a priority for each of the processor cores based on the obtained
information relevant to wear out comprises calculating the priority for each of the
processor cores by multiplying weighting factors times the measured thermal
output, the measured current leakage, and the historical operating time and

summing the products.

43

WO 2015/094820 PCT/US2014/069380

13. The computing device of claim 12, wherein the multi-core processor is
configured with processor-executable instructions to perform operations further
comprising:
receiving over a network connection updated weighting factors; and
updating the weighting factors used in calculating a priority for each of the

processor cores with the updated weighting factors.

14. The computing device of claim 10, wherein the multi-core processor is
configured with processor-executable instructions to perform operations further
comprising:

associating a first virtual identifier for a first processor core with a second
processor core according to the calculated priority for the second processor core;

receiving a process request from a high level operating system specifying
the first virtual identifier for the first processor core;

mapping the process request to the second processor core; and

returning a result of the process request to the high level operating system

as if the first processor core generated the result of the process request.

15. The computing device of claim 14, wherein the multi-core processor is
configured with processor-executable instructions to perform operations further
comprising ordering associations between virtual identifiers for each of the
processor cores and physical identifiers for each of the processor cores according
to the priorities calculated for each of the processor cores,

wherein associating a first virtual identifier for a first processor core with a
second processor core according to the calculated priority for the second processor
core comprises associating the first virtual identifier for the first processor core
with a physical identifier for the second processor core, and

wherein mapping the process request to the second processor core
comprises mapping process requests received from the high level operating system

according to the ordered associations between the virtual identifiers and the

44

WO 2015/094820 PCT/US2014/069380

physical identifiers for each of the processor cores.

16. The computing device of claim 15, wherein the multi-core processor is
configured with processor-executable instructions to perform operations further
comprising:

determining whether a historical operating time for any of the processor
cores exceeds an operating time threshold; and

grouping those processor cores that exceed the operating time threshold into
a first group of processor cores and grouping those processor cores that do not
exceed the operating time threshold into a second group of processor cores,

wherein ordering associations between virtual identifiers for each of the
processor cores and physical identifiers for each of the processor cores according
to the priorities calculated for each of the processor cores comprises ordering
associations for the first group of processor cores separately from associations for

the second group of processor cores.

17. A computing device having a multi-core processor with multiple processor
cores comprising:

means for obtaining information relevant to wear out regarding each of the
processor cores within the multi-core processor;

means for calculating a priority for each of the processor cores based on the
obtained information relevant to wear out; and

means for reassigning processor requests to specific processor cores based

on the calculated priority.

18. The computing device of claim 17, wherein means for obtaining information
relevant to wear out regarding each of the processor cores within the multi-core
processor comprises:

means for determining whether the processor cores are active;

means for providing a test workload to each of the processor cores in

45

WO 2015/094820 PCT/US2014/069380

response to determining that the processor cores are inactive;

means for measuring one or more of thermal output and current leakage of
the processor cores under the test workload individually or for groups of processor
cores in response to providing the test workload;

means for measuring one or more of thermal output and current leakage of
the processor cores under normal operation individually or for groups of processor
cores in response to determining that the processor cores are active; and

means for retrieving historical operating time for each of the processor

corcs.

19. The computing device of claim 18, wherein means for calculating a priority
for each of the processor cores based on the obtained information relevant to wear
out comprises means for calculating the priority for each of the processor cores by
multiplying weighting factors times the measured thermal output, the measured

current leakage, and the historical operating time and summing the products.

20. The computing device of claim 19, further comprising:

means for receiving over a network connection updated weighting factors;
and

means for updating the weighting factors used in calculating a priority for

each of the processor cores with the updated weighting factors.

21. The computing device of claim 17, further comprising:

means for associating a first virtual identifier for a first processor core with
a second processor core according to the calculated priority for the second
processor core;

means for receiving a process request from a high level operating system
specifying the first virtual identifier for the first processor core;

means for mapping the process request to the second processor core; and

means for returning a result of the process request to the high level

46

WO 2015/094820 PCT/US2014/069380

operating system as if the first processor core generated the result of the process

request.

22. The computing device of claim 21, further comprising means for ordering
associations between virtual identifiers for each of the processor cores and
physical identifiers for each of the processor cores according to the priorities
calculated for each of the processor cores,

wherein means for associating a first virtual identifier for a first processor
core with a second processor core according to the calculated priority for the
second processor core comprises means for associating the first virtual identifier
for the first processor core with a physical identifier for the second processor core,
and

wherein means for mapping the process request to the second processor
core comprises means for mapping process requests received from the high level
operating system according to the ordered associations between the virtual

identifiers and the physical identifiers for each of the processor cores.

23. The computing device of claim 22, further comprising:

means for determining whether a historical operating time for any of the
processor cores exceeds an operating time threshold; and

means for grouping those processor cores that exceed the operating time
threshold into a first group of processor cores and grouping those processor cores
that do not exceed the operating time threshold into a second group of processor
cores,

wherein means for ordering associations between virtual identifiers for each
of the processor cores and physical identifiers for each of the processor cores
according to the priorities calculated for each of the processor cores comprises
means for ordering associations for the first group of processor cores separately

from associations for the second group of processor cores.

47

WO 2015/094820 PCT/US2014/069380

24. A non-transitory processor-readable medium having stored thereon processor-
executable instructions configured to cause a multi-core processor to perform
operations comprising:

obtaining information relevant to wear out regarding each of the processor
cores within the multi-core processor;

calculating a priority for each of the processor cores based on the obtained
information relevant to wear out; and

reassigning processor requests to specific processor cores based on the

calculated priority.

25. The non-transitory processor-readable medium of claim 24, wherein the stored
processor-executable instructions are configured to cause the multi-core processor
to perform operations such that obtaining information relevant to wear out
regarding each of the processor cores within the multi-core processor comprises:

determining whether the processor cores are active;

providing a test workload to each of the processor cores in response to
determining that the processor cores are inactive;

measuring one or more of thermal output and current leakage of the
processor cores under the test workload individually or for groups of processor
cores in response to providing the test workload;

measuring one or more of thermal output and current leakage of the
processor cores under normal operation individually or for groups of processor
cores in response to determining that the processor cores are active; and

retrieving historical operating time for each of the processor cores.

26. The non-transitory processor-readable medium of claim 25, wherein the stored
processor-executable instructions are configured to cause the multi-core processor
to perform operations such that calculating a priority for each of the processor
cores based on the obtained information relevant to wear out comprises calculating

the priority for each of the processor cores by multiplying weighting factors times

48

WO 2015/094820 PCT/US2014/069380

the measured thermal output, the measured current leakage, and the historical

operating time and summing the products.

27. The non-transitory processor-readable medium of claim 26, wherein the stored
processor-executable instructions are configured to cause the multi-core processor
to perform operations further comprising:
receiving over a network connection updated weighting factors; and
updating the weighting factors used in calculating a priority for each of the

processor cores with the updated weighting factors.

28. The non-transitory processor-readable medium of claim 24, wherein the stored
processor-executable instructions are configured to cause the multi-core processor
to perform operations further comprising:

associating a first virtual identifier for a first processor core with a second
processor core according to the calculated priority for the second processor core;

receiving a process request from a high level operating system specifying
the first virtual identifier for the first processor core;

mapping the process request to the second processor core; and

returning a result of the process request to the high level operating system

as if the first processor core generated the result of the process request.

29. The non-transitory processor-readable medium of claim 28, wherein the stored
processor-executable instructions are configured to cause the multi-core processor
to perform operations further comprising ordering associations between virtual
identifiers for each of the processor cores and physical identifiers for each of the
processor cores according to the priorities calculated for each of the processor
cores,

wherein associating a first virtual identifier for a first processor core with a

second processor core according to the calculated priority for the second processor

49

WO 2015/094820 PCT/US2014/069380

core comprises associating the first virtual identifier for the first processor core
with a physical identifier for the second processor core, and

wherein mapping the process request to the second processor core
comprises mapping process requests received from the high level operating system
according to the ordered associations between the virtual identifiers and the

physical identifiers for each of the processor cores.

30. The non-transitory processor-readable medium of claim 29, wherein the stored
processor-executable instructions are configured to cause the multi-core processor
to perform operations further comprising:

determining whether a historical operating time for any of the processor
cores exceeds an operating time threshold; and

grouping those processor cores that exceed the operating time threshold into
a first group of processor cores and grouping those processor cores that do not
exceed the operating time threshold into a second group of processor cores,

wherein ordering associations between virtual identifiers for each of the
processor cores and physical identifiers for each of the processor cores according
to the priorities calculated for each of the processor cores comprises ordering
associations for the first group of processor cores separately from associations for

the second group of processor cores.

50

WO 2015/094820 PCT/US2014/069380
1/11

30

Wireless Network

J

26
22~ 8~
Communication Storage
Component Component
12~
SoC
© 18~ D~
Communication Storage
Interface Interface
14~ 10~
Processor Memory

FIG. 1

WO 2015/094820 PCT/US2014/069380

2/11
1~
Processor
200~ 01~
Processor Processor
Core O Core 1
202~ 203~
Processor Processor
Core 2 Core 3

FIG. 2

WO 2015/094820 PCT/US2014/069380
3/11
N
304~ 306~
Software lggg rgﬁ\rgzl
Application System
| |
SoC
300~ Y
Virtual Processor
Identification |-
Translation Table
l ______ I
WY P~ 7 B B> ¥_ _
High Low I Expansion !
Power Power GPU I Li)’igfz\sdlggé I
CPU CPU Cores Cores ||| I
Cores Cores by Cores I
e
_____ |
02~ Y

»| Reliability Engine

FIG. 3

WO 2015/094820 PCT/US2014/069380

4/11
40&\
402~ 404~
High Level Operating System Hardware Processor Core
Processor Core Identification (Virtual) Identification/Priority (Physical)

282\ Processor Core 0 Processor Core 2
" 0\ Processor Core 1 Processor Core O
" 2\ Processor Core 2 Processor Core 3

™ Processor Core 3 Processor Core 1

FIG. 4

WO 2015/094820 5/11 PCT/US2014/069380
500 Select Cluster Of |~902
\ Cores
504
Are
Selected Cores Yes _ _
Inactive? i
Yes 7 7 N ~
.7 InCold N\ vyes
< Boot And Want To >— — — — \
™ (Boot Fast’?/ pad |
Y58 AN !
Collect Operation No |
Data For Selected . | |
Active Cores \l |
51 __ Y _
l Run Built In Self Retrieve Stored |
Y Test For Selected Previous I
| Store Collected | Inactive Cores | Operation Data Or
Operation Data | Previous Built In |
-—————" l Self Test Data And!
_l 516 | Operating History |
kil Collect Test Data [| Of Selected Cores|
Calculate PrIOFItIIeS For Selected ————- -
Of SeleCted. A.Ctlve Inactive Cores I
Cores Within
Cluster Of Cores L —_—— i __£5Z4I
Based On Y A5 |Calculate Priorities
Collected | | | Of Selected
Operation Data | Store Test Data | Inactive Cores
And Operating L —— ————3 | Within Cluster Of |
History —l | Cores Based On |
18 | Retrieved Stored !
Calculate Priorities Data And
—_——————— Of Selected | |
M __ i _ =N Inactive Cores OBeEtgg—l—“—Stciy-'
Wait For Selected | | Migrate Selected | | within Cluster Of |
Active Cores To I Active Core | Cores Based On |
Become Inactive | Processes And | Collected Test |
| Data To Other | Data And |
| Cores ' Operating History |
| I —_—— e
]))
S e ——— e e e o o - -

Update Hardware Processing
Core Priority In Virtual Processor
Identification Translation Table

FIG. 5

WO 2015/094820 PCT/US2014/069380
6/11

600

Compare Historical Operating 50
Time For Selected Cores To |~
Operating Time Threshold

604

Do Any Selected
Core Historical Operating
Time Exceed Operating
Time Threshold?

y Yy
Group Selected Cores Into Over/ I
Under Operating Time Threshold |~ 606 Update Core Priorities For All
Groups Selected Cores Together

_~610

Update Core Priorities For Each 508
Group Of Selected Cores P~
Independent Of The Other Group

FIG. 6

WO 2015/094820 7111 PCT/US2014/069380
700 |- == —— — — — = — = 1
I
\ : Apply Test Load To Selected Inactive Cores |/' 102
| I
____________ T————————————
I
\ 4

Measure Thermal Output Of Each Selected Active/Inactive Core P~ 704

'

Measure Current Leakage Of Each Selected Active/lnactive Core |~ 106

l

Retrieve Historical Operating Time Of Each Selected Active/ | _~7(08
Inactive Core

Y

Apply Thermal Output Weighting Factor To Measured Thermal | _~710
Output Of Each Selected Active/Inactive Core

'

Apply Current Leakage Weighting Factor To Measured Current | _~712
Leakage Of Each Selected Active/lnactive Core

l

Apply Operating Time Weighting Factor To Historical Operating | ~714
Time Of Each Selected Active/Inactive Core

'

Combine Weighted Thermal Output, Current Leakage, And 16
Operating Time Of Each Selected Active/Inactive Core Resulting
In A Priority Value For Each Selected Active/Inactive Core

FIG. 7

WO 2015/094820 PCT/US2014/069380

8/11

800

Receive Process Request From High Level Operating System
Specifying High Level Operating System Processing Core
Identification

|~ 802

Match High Level Operating System Processing Core Identification
With Corresponding Hardware Processing Core Identification

|~ 804

Map Process Request From High Level Operating System For
Specified Processing Core Identification To Processing Core
Assigned Corresponding Hardware Processing Core Identification

|~ 806

Return Result Of Process Request To High Level Operating System

As If Process Request Was Executed By Processing Core That High

Level Operating System Expects To Be Associated With High Level
Operating System Processing Core Identification

808

FIG. 8

WO 2015/094820

_~902

Receive And Test
Analyze Return
Merchandise

9/11

______ < 904
Receive Operation/

Data From

Computing Device |
Over Wireless
L Connection |

——r—-—-

———

Analyze Received
Data For Indications
Of Causes Of
Component Failure

906

Update Weighting
Factors Using
Received Data To
Attempt To Avoid
The Causes Of
Component Failure

908

Send Updated
Weighting Factors
To Computing
Device Via Wired or
Wireless Connection

FIG. 9

PCT/US2014/069380

ISend Operation/Test:

I Data To 1002
| Manufacturer Over :/
|Wireless Connection

e ———_|

Receive Updated
Weighting Factors
For One Or More Of [_~1004
Thermal Output,
Current Leakage,
And Operating Time

Replace Weighting
Factors With
Updated Weighting
Factors

_~ 1006

FIG. 10

1108
/

N
7

PCT/US2014/069380

WO 2015/094820

11/11

FIG. 12

1300

1305

1301

302

FIG. 13

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - claims
	Page 47 - claims
	Page 48 - claims
	Page 49 - claims
	Page 50 - claims
	Page 51 - claims
	Page 52 - claims
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings

