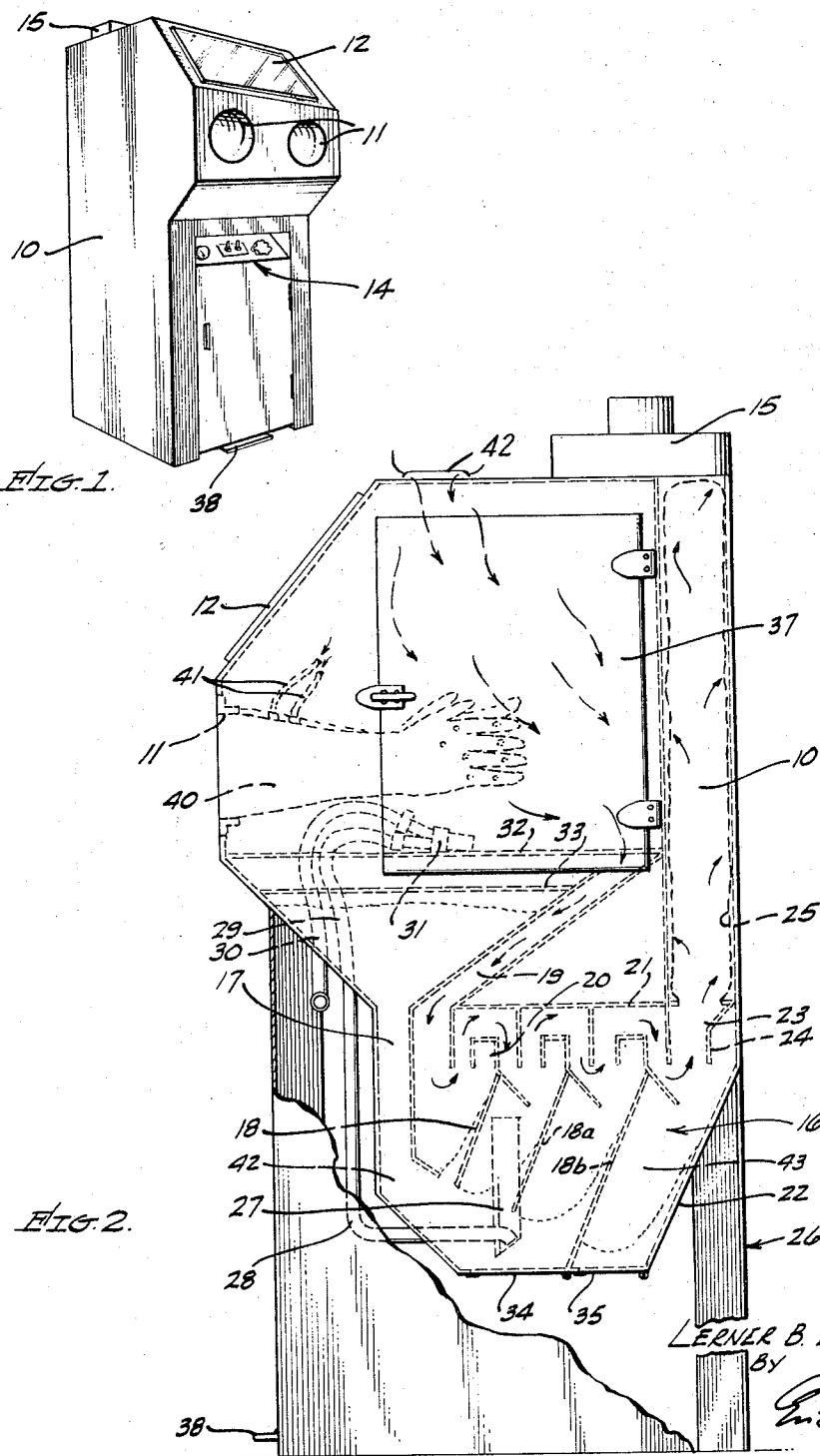


Jan. 31, 1967


L. B. DOCKERY

3,300,902

DRY ABRASIVE HONING DEVICE

Filed July 13, 1964

2 Sheets-Sheet 1

Jan. 31, 1967

L. B. DOCKERY

3,300,902

DRY ABRASIVE HONING DEVICE

Filed July 13, 1964

2 Sheets-Sheet 2

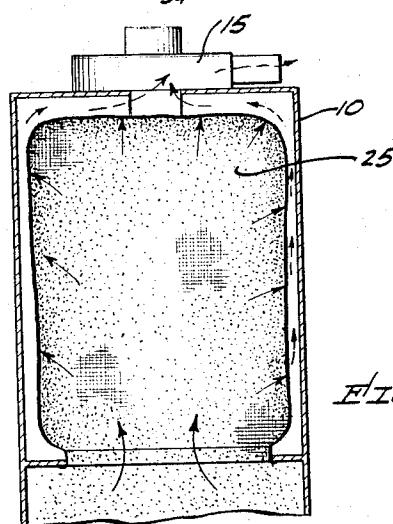
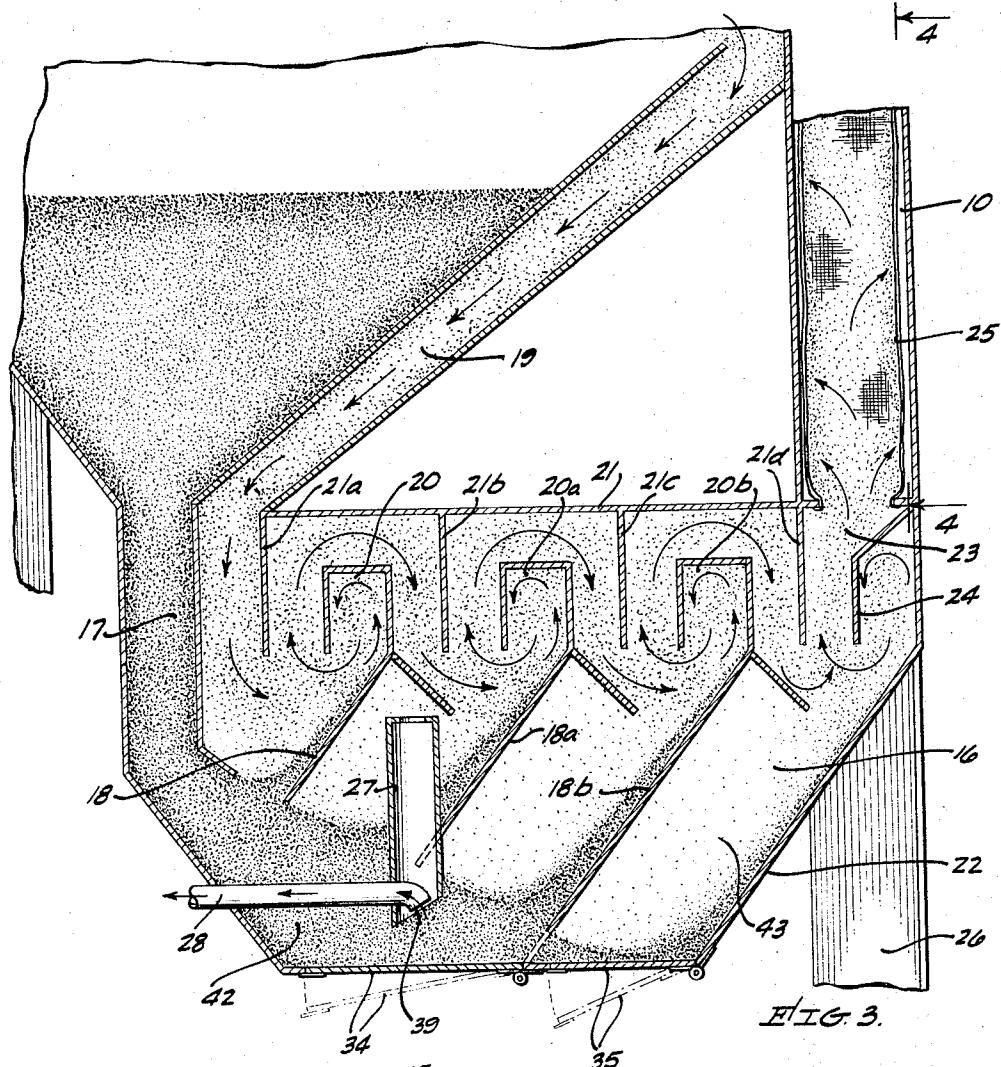



FIG. 4.

INVENTOR.
LERNER B. DOCKERY,
BY
Eric A. Rose
ATTORNEY.

United States Patent Office

3,300,902

Patented Jan. 31, 1967

1

3,300,902

DRY ABRASIVE HONING DEVICE
Lerner B. Dockery, 6143 Eastbrook Ave.,
Lakewood, Calif. 90713
Filed July 13, 1964, Ser. No. 382,104
7 Claims. (Cl. 51—8)

My invention relates to improvements in dry abrasive honing device, and particularly to its application using a plural cyclone separator; and the objects of my invention are, first, to provide a honing device operated on a low air volume and velocity cycle separator, second, to provide a dry abrasive honing device having a separator using clean abrasive particles and assuring thereby consistent high quality in the honing process, third, to provide a device permitting the changing of abrasives and removal of dust in an efficient manner and using a ventilated system enclosed in a sealed cabinet to prevent external emission of particles, dust or debris, fourth, to provide a device permitting a selected combination of air pressure and abrasives or particles to provide an infinite variety of finishing processes including the cleaning, peening, polishing, buffing and deburring of materials.

Additional objects, together with further advantages derived in utilizing the present invention will become apparent from the following detailed description thereof taken together with the accompanying drawing forming part of the specification, in which—

FIGURE 1 is a view in perspective of my dry abrasive honing device;

FIGURE 2 is a side elevational view of my device partially broken away and in section, and showing a portion of my device in transparency;

FIGURE 3 is an enlarged cross-sectional view of the separator portion of my device; and

FIGURE 4 is a cross-sectional view of the envelope-type dust collector bag of my device taken on line 4—4 of FIGURE 3.

Similar numerals refer to similar parts throughout the several views.

My invention relates to the improvement in dry abrasive honing device and particularly its application to a device using a plural cyclone separator, installed in a sealed cabinet as shown in the accompanying drawing.

Generally the device comprises a cabinet 10 having a working chamber provided with openings 11 for the introduction of hands and arms and a glass covered viewing opening 12 positioned above the openings provided for the arms and hands of the operator.

Operating controls 14 are provided below the working chamber on the front side of the cabinet and an exhaust blower 15 is provided at the top rear portion of the cabinet.

The separator 16 of my device is positioned below the working chamber.

A filler tube 17 is provided in the front portion of the separator extending downwardly along the front wall of the cabinet into the storage reservoir of the separator.

A plurality of inverted L-shaped stationary baffleplates 18, 18a, 18b are installed at substantially a 45° angle in spaced relation to each other transversely to said cabinet.

A chute 19 extends diagonally through the top portion of the separator from the floor of the working chamber into the separator.

A plurality of inverted U-shaped channels 20, 20a, 20b are installed transversely in said cabinet, one leg of each channel being integrally connected to the vertex of one of the inverted L-shaped stationary baffleplates 18, 18a, 18b.

2

A horizontal plate 21 is installed in spaced relation to and above the channels 20, 20a, 20b and extends from the rear of the separator to the chute 19.

A plurality of vertical louvers 21a, 21b, 21c, 21d are integrally connected to the plate 21 and extend at right angle downwardly therefrom for a predetermined distance, so positioned as to form a passage between such vertical louvers and the channels 20, 20a, 20b.

The separator rear wall 22 is sloped downwardly at approximately a 45° angle parallel to the long leg of the inverted L-shaped stationary baffleplates 18, 18a, 18b and at a level even with the vertex of said baffleplates, extends vertically upwards to form the rear wall of the cabinet.

10 The air exhaust duct 23 is provided at the rear of the cabinet 10 and is formed between an extension of a vertical louver 21d and the upright extension of the separator rear wall 22 having a reduced diameter formed by a dividing wall 24 extending into said air exhaust duct 23 at a level horizontal with the top portion of the U-shaped channel 20b.

An envelope-type dust collector bag 25 is positioned in the top portion of the air exhaust duct 23 above the level of the plate 21.

15 The lower portion 26 of the cabinet is in vertical alignment with the upper extension of the separator rear wall 22.

The blower 15 is positioned at the top of the air exhaust duct 23 above the envelope-type dust collector bag 25.

20 A controlled vacuum suction tube 27 is positioned vertically below the vertex of the baffleplate 18, located adjacent to the filler tube 17, and extends a predetermined distance downwardly below the normal level of abrasive material stored in the separator.

25 The controlled vacuum suction tube 27 is closed at the top by an orifice and has a slanted opening at the bottom. The size of the orifice and the slanted angle of the bottom opening of the tube is determined by the size of the separator, the air working pressure of the 30 separator and the volume of abrasives used by the device.

An abrasive pickup tube 28 extends horizontally into the controlled vacuum suction tube 27 near the bottom thereof, and the opening of the abrasive pickup tube 28 is slanted downwardly within the controlled vacuum suction tube 27 and is centered in the slanted opening 35 located in the bottom of the vacuum suction tube 27 and terminates at the same angle as the slanted angle of the controlled vacuum suction tube.

The other end of the abrasive pickup tube extends 40 upwardly towards the working chamber of the device, where it is connected through an abrasive feed hose 29 to the abrasive feed valve 31.

A compressed air supply is conducted through a suitable air pressure hose 30 into the abrasive feed valve 31 where 45 the abrasive, conducted by the abrasive feed hose 29, is injected into the air stream.

The floor of the working chamber consists of a horizontal grate 32 extending from the front to the rear of the working cabinet.

50 A screen 33 is positioned below the grate 32 and parallel thereto, to receive the abrasives and other particles deposited upon the grate 32 during the working process.

The floor of the separator is comprised of a forward door 34 and a rear door 35 through which abrasives may 55 be removed from the separator.

The working chamber is made accessible by a side opening and working chamber door 37 provided at the level of the working chamber on the side of the cabinet 10.

The abrasive feed valve 31 is controlled by a lever 38 located at the bottom of the front of the cabinet 10.

60 Abrasive resistant gloves 40, having openings in the finger portions thereof, extend through the openings 11

in the front of the cabinet 10 and a separate air supply is conducted through an air supply hose 41 to each glove for cooling purposes, the air stream entering each glove 40 through the air supply hose 41, and is discharged through the openings in the fingers of the respective glove.

A suitable vent opening 42 is positioned on the top of the cabinet above the working chamber.

In operation, the abrasive selected by the operator is introduced into the filler tube 17 to a level below the screen 33. The lower level of the abrasive will slant downwardly in the bottom portion of the separator as shown in FIGURE 3 of the drawing. The part to be worked upon is then placed upon the grate 32 and power is supplied to the blower 15. An air current is created through the vent 42 across the working chamber and through the chute, following a path between the channels 20, 20a, 20b and the compartment formed by the horizontal plate 21 and the vertical louvers 21a, 21b, 21c, 21d, and the air current then enters the envelope-type dust collector bag 25 through the narrowed passage formed between the vertical louver 21d located nearest the back of the cabinet and the dividing wall 24 extending into the air exhaust duct 23 from where it is expelled through the blower 15 to the outside air.

The arrangement of the horizontal plate, vertical louvers, channels and stationary baffleplates creates a swirling motion of the air current within each U-shaped channel before entering the passage created by the outside of the channel and the adjacent vertical louvers and horizontal plate. Specifically after leaving the chute 19 the air current will enter the first channel 20 in a swirling motion and leaving the inside of the channel will enter the passage created by the outside of the channel 20, and the vertical louver 21a, will then pass between the outside of the channel and the horizontal plate 21 and descend the passage created by the outside of the channel 20 and the adjacent vertical louver 21b. The air current will then be deflected by the short leg of the stationary baffleplate 18 and enter the second channel 20a, in a swirling motion, and will then enter the passage created by the outside of said channel 20a, and the adjacent vertical louver 21b, pass through the passage created by the outside of the channel and the horizontal plate 21 and descend through the passage created by the outside of the channel and the adjacent vertical louver 21c where it will be deflected by the short leg of the stationary baffleplate 18a, and striking the long leg of the stationary baffleplate 18b will be deflected into the inside of the channel 20b in a swirling motion. The air stream will then leave the interior of channel 20b and enter the passage created by the outside of the channel 20b, and the adjacent vertical louver 21c, and passing through the passage created by the outside of said channel and the horizontal plate 21, will then descend in the passage created by the outside of the channel 20b, and the adjacent vertical louver 21d whereupon it will be deflected by the short leg of the stationary baffleplate 18b into a space created by the extension of the separator 22, and the dividing wall 24, extending into the air exhaust duct 23, in a swirling motion and leaving said space, will enter the passage created by the dividing wall 24, and the adjacent vertical louver 21d, and ascend through the air exhaust duct 23, entering the envelope-type dust collector bag 25, and pass through the blower 15 into the outside air.

Operation of the abrasive feed valve when working upon a product placed upon the grate 32 will cause the abrasive particles to drop upon the screen 33, and a plurality of the particles will be carried into the chute 19, and following the air stream the largest particles of the abrasive will be deposited upon the long leg of the first stationary baffleplate 18 and slide into the reservoir at the bottom of the separator, the air current carrying smaller particles to the long leg of the next stationary baffleplate 18a, and depositing the largest particles then present into said reservoir and the residue of the abrasive is then car-

ried by the air current against the long leg of the succeeding stationary baffleplate 18b depositing the larger particles then present into the reservoir, while the fine particles still remaining in the air stream will be carried into the space created by the rear wall of the cabinet and the dividing wall 24, and will then be deposited in the separate reservoir created by the separator rear wall 22, the long leg of the stationary baffleplate 18b, and the rear door 35, from where these small unusable particles may be removed through said door.

During operation, air is supplied to the interior of the abrasive resistant gloves 40, through a separate air supply conducted through an air supply hose 41, and leaving through the openings provided in each glove, assuring thereby a continuous cooling of the hands and arms of the operator.

The pickup of the abrasives from the reservoir located on the floor of the separator is accomplished by the creation of a controlled vacuum in the controlled vacuum suction tube 27, causing abrasives to be sucked into the abrasive pickup tube 28, from where the abrasives are conducted to the abrasive feed valve 31. The exact negative air pressure required to accomplish a continuous effective flow of the abrasive through the abrasive pickup tube, is controlled by the size of the opening in the top of the controlled vacuum suction tube 27, and the angle of slant used at the bottom of the vacuum suction tube 27.

It is understood that various forms of my invention may be used or utilized embodying the principles of my invention, without departing from the spirit of my invention.

I claim:

1. A dry abrasive honing device comprising a cabinet having a working chamber in the top portion and a separator in the lower portion positioned below the working chamber and having a front wall, a rear wall and a floor; a filler tube extending downwardly along the front wall to the floor; a chute extending diagonally across the separator adjacent to the filler tube; a plurality of inverted L-shaped stationary baffleplates installed at substantially a 45° angle in spaced relation to each other transversely to said cabinet in said separator; a plurality of inverted U-shaped channels installed transversely in said separator, one leg of each channel being integrally connected to one of the L-shaped stationary baffleplates at the vertex thereof; a horizontal plate installed in spaced relation to and above said channels and extending from the rear wall of the cabinet to the chute; a plurality of vertical louvers integrally connected to said plate in spaced relation to each other and extending downwardly therefrom for a predetermined distance so as to form a passage between such vertical louvers and the channels; a separator rear wall sloped downwardly at approximately a 45° angle parallel to the long leg of the inverted L-shaped stationary baffleplates and at a level even with the vertex of said baffleplates and extending vertically upwards to form the rear wall of the cabinet; an air exhaust duct provided at the rear of the cabinet and formed between an extension of a vertical louver and the upright extension of the separator rear wall, having a reduced diameter formed by a dividing wall extending into said air exhaust duct at a level horizontal with the top portion of the U-shaped channel; an envelope-type dust collector bag positioned in the top portion of the air exhaust duct above the level of the horizontal plate; a blower positioned at the top of the air exhaust duct above the envelope-type dust collector bag; a controlled vacuum suction tube positioned vertically below the vertex of the baffleplate located nearest the filler tube and extending a predetermined distance downwardly, said controlled vacuum suction tube having an orifice at the top thereof and a slanted opening at the bottom, the size of the orifice and the slanted angle of the bottom opening of the tube being determined by the size of the separator, the air working pressure of the separator and the volume of abrasives used by the device; an abrasive pickup tube extending horizontally into said

controlled vacuum suction tube near the bottom thereof and having an opening slanted downwardly within the controlled vacuum suction tube and centered in the slanted opening located in the bottom thereof and terminating at the same angle as the slanted angle of the controlled vacuum suction tube, the other end of said tube extending upwardly towards the working chamber; and means to conduct a compressed air supply and abrasives supplied by the abrasive pickup tube to the working chamber.

2. A dry abrasive honing device having a separator including a controlled vacuum suction tube having a top portion and an orifice provided in said top portion and a bottom portion formed by a slanted opening, the size of the orifice and the slanted angle of the bottom portion being determined by the size of the separator, the air working pressure of the separator and the volume of abrasives used by the device, and an abrasive pickup tube extending horizontally into the controlled vacuum suction tube near the bottom portion thereof and being slanted downwardly with the controlled vacuum suction tube and being centered in the slanted opening located in the bottom portion of the vacuum suction tube and terminating at the same angle as the slanted angle of the controlled vacuum suction tube.

3. In a dry abrasive honing device, a housing including a working chamber and a separator positioned below said working chamber, said separator having a front wall, a rear wall and side walls; a plurality of inverted L-shaped stationary baffleplates positioned transversely between said front wall and rear wall in spaced relation to each other and extending from one side wall to the other side wall; a plurality of inverted U-shaped channels installed above said baffleplates and extending transversely between said front wall and rear wall from one side wall to the other side wall, one leg of each channel being integrally connected to one of the inverted L-shaped stationary baffleplates; a horizontal plate positioned in spaced relation to and above said channels and affixed to the rear wall of the separator; and a plurality of vertical louvers integrally connected to said horizontal plate in spaced relation to each other and extending downwardly therefrom for a predetermined distance so as to form a passage between such louvers and the channels.

4. In a dry abrasive honing device having a separator, tubular means positioned vertically in said separator and having an orifice at the top and a slanted opening at the bottom thereof, and tubular means extending into said first named tubular means near the bottom thereof and

having a slanted opening extending in the same plane as the slanted opening of the first named tubular means.

5. In a dry abrasive honing device having a separator, tubular means positioned vertically inside separator and having an orifice at the top and a slanted opening at the bottom thereof, and tubular means extending into said first named tubular means near the bottom thereof being slanted downwardly and having an opening slanted in the same plane as the slanted opening of the first named tubular means.

10 6. In a dry abrasive honing device having a working chamber and a separator positioned below said working chamber, a plurality of inverted L-shaped stationary baffleplates positioned in said separator in spaced relation to each other, a plurality of inverted U-shaped channels positioned above said baffleplates each having one leg in contact with one baffleplate near the vertex thereof, and means positioned above said baffleplates and between said baffleplates forming a passage between said means and said baffleplates and said channels.

15 7. In a dry abrasive honing device having a working chamber and a separator having a dry abrasive reservoir, mechanical means forming a dry abrasive passage way and depositing the dry abrasive in the reservoir and tubular means cooperating with said mechanical means removing said dry abrasive from said reservoir in controlled quantity, said tubular means comprising pipe means positioned vertically in said separator and extending into said reservoir and having an orifice at the top and a slanted opening at the bottom thereof, and tubular means 20 extending into said pipe means near the bottom thereof and having an end centered within the slanted opening of the pipe means and having an end slanted in the same plane as said slanted opening of said pipe means.

25 35 REFERENCES CITED BY THE EXAMINER
UNITED STATES PATENTS

1,475,992	12/1923	Hanson	-----	51—8
1,690,629	11/1928	Fleming et al.	-----	51—8
2,200,587	5/1940	Tirrell	-----	51—8
3,058,590	10/1962	Larson et al.	-----	209—137
3,237,351	3/1966	Millhiser	-----	51—12 X

FOREIGN PATENTS

557,181	5/1958	Canada.
993,540	8/1963	Great Britain.

LESTER M. SWINGLE, Primary Examiner.