70327708 A2 I 0O 00 0 O A

=)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O T O O 0O O

International Bureau

(43) International Publication Date
12 March 2009 (12.03.2009)

(10) International Publication Number

WO 2009/032708 A2

(51) International Patent Classification:
GOG6F 17/30 (2006.01)

(21) International Application Number:
PCT/US2008/074505

(22) International Filing Date: 27 August 2008 (27.08.2008)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
60/969,948 4 September 2007 (04.09.2007) US
(71) Applicant (for all designated States except US): APPLE
INC. [US/US]; 1 Infinite Loop, MS 40-PAT, Cupertino,

California 95014 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LYDON, Gregory
T. [US/US]; 1 Infinite Loop, MS 40-PAT, Cupertino, Cal-
ifornia 95014 (US). BOLTON, Lawrence, G. [US/US];
1 Infinite Loop, MS 40-PAT, Cupertino, California 95014
(US). SCHUBERT, Emily Clark [US/US]; 1 Infinite
Loop, MS 40-PAT, Cupertino, California 95014 (US).

(74)

(81)

(34)

Agents: CRETSINGER, Cathy, E. et al.; Townsend And
Townsend And Crew LLP, Two Embarcadero Center, 8th
Floor, San Francisco, California 94111-3834 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT,
RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ,
™™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report

(54) Title: PROTOCOL FOR REMOTE USER INTERFACE FOR PORTABLE MEDIA DEVICE

PMD
202

200

210 208

STORAGE DEVICE

PROCESSOR 204

209-

~| METADATA IJ ’

PLAYBACK
ENGINE

207— ASSET

‘ DATABASE

ENGINE

2“\\ﬁ PLAYLIST

USER
INTERFACE

212

208

ACCESSORY 1/0 % 214

ACCESSORY
220
222

228

USER
INTERFACE

]

PMD IJO
226
/

CONTROLLER

CACHE

™~224

MEDIA
OUTPUT

FIG. 2

(57) Abstract: Remote user interfaces for portable media devices provided improved access by accessories to media assets and
metadata stored in a database of a portable media device, enhancing a user’s ability to control operation of the portable media device
& using a remote user interface provided by the accessory. In one example, an accessory can determine whether the database of the
portable media device was updated while the portable media device was disconnected from the accessory. In a second example,
an accessory can create and manage a playlist for the portable media device and can incorporate into the playlist tracks already
O queued for playback when the accessory connects to the portable media device. In a third example, an accessory can obtain database
g navigation history and initialize a database navigation interface to match the database navigation history.

10

15

20

25

30

WO 2009/032708 PCT/US2008/074505

PROTOCOL FOR REMOTE USER INTERFACE
FOR PORTABLE MEDIA DEVICE

CROSS-REFERENCES TO RELATED APPLICATIONS
[0001] This application claims the benefit of U.S. Provisional Patent Application No.:
60/969,948, filed September 4, 2007, entitled "Protocol For Remote User Interface."

FIELD OF THE INVENTION
[0002] The present invention relates generally to portable media devices such as media
players and accessories and in particular to a protocol allowing an accessory to provide a

remote user interface for a portable media device.

BACKGROUND OF THE INVENTION
[0003] A portable media device can store media assets, such as audio tracks, video tracks
or photos that may be played or displayed on the portable media device. Examples of
portable media devices are the iPod® and the iPhone™ portable media devices, which are
available from Apple Inc. of Cupertino, CA. Often, a portable media device acquires its
media assets from a host computer that serves to enable a user to manage media assets. As an
example, the host computer may execute a media management application to manage media

assets. One example of a media management application is iTunes®, produced by Apple Inc.

[0004] A portable media device typically includes one or more connectors or ports that may
be used to interface with other devices. For example, the connector or port may enable the
portable media device to couple to a host computer, be inserted into a docking system, or
receive an accessory device. In the case of the iPod®, for example, a vast array of accessory
devices have been developed that may interconnect to the portable media device. For
example, a remote control may be connected to the connector or port to allow the user to
remotely control the portable media device. As another example, an automobile may include
a connector and the portable media device may be inserted onto the connector such that an
automobile media system may interact with the portable media device, thereby allowing the

media content on the portable media device to be played within the automobile. In another

10

15

20

25

30

WO 2009/032708 PCT/US2008/074505

example, a digital camera may be connected to the portable media device to download

images and the like.

[0005] Portable media devices commonly connect with remote devices for playback or
presentation of media assets stored on the portable media device. A user may want to dock a
portable media device to a home stereo system (or in-vehicle stereo system), for example, and
play back songs stored on the portable media device but with sound experience provided by
the home stereo system. In such situations, it is convenient for the user to be able to operate
the portable media device remotely, e.g., using controls of the home stereo system or a

remote control device that communicates with the home stereo system.

[0006] It has been known to provide a remote user interface for a portable media device via
an accessory. A communication protocol is provided, via which the accessory and the
portable media device can exchange instructions and information. Using suitable command
signals, the accessory can invoke the playback functions of the portable media device and can

obtain certain information about media assets stored on the portable media device.

BRIEF SUMMARY OF THE INVENTION
[0007] Existing remote user interface protocols, while enhancing convenience, do not
provide all of the functionality that would be available through the user interface of a portable
media device. For example, such protocols do not provide the ability to create or modify a
playlist on the fly via the remote user interface. As another example, existing protocols do
not allow the accessory's remote user interface to initialize in the same state that the portable
media device's user interface had at the time the portable media device was connected to the
accessory. Thus, for instance, if the user selects a media asset or group of assets for playback
via the portable media device's own interface and thereafter connects the portable media
device to the accessory, the remote interface does not present the same state of the database
navigation process; the user has to begin again at the starting point of database navigation.
Such discontinuities in interface state can make the transition from the portable media

device's interface to the remote interface awkward and non-intuitive for the user.

[0008] The present invention relates to remote user interfaces with improved remote access
by an accessory to media assets and metadata stored in a database of a portable media device,
enhancing a user's ability to control operation of the portable media device using a remote
user interface provided by the accessory. In one embodiment, each time the portable media

device re-connects to the accessory, the accessory can determine whether the database of the

10

15

20

25

30

WO 2009/032708 PCT/US2008/074505

portable media device was updated while the portable media device was disconnected from
the accessory. Consequently, the accessory can cache information obtained from the portable
media device and can continue to use cached information across multiple
connection/disconnection cycles, for at least as long as the database is not updated. This can
reduce the burden on the communication path between the accessory and the portable media

device by reducing redundant requests for information.

[0009] In another embodiment, the accessory can be used to manage a remote playlist for
the portable media device. The remote playlist can be created, modified, and deleted on the
fly by the user interacting with the remote user interface provided by the accessory. The
accessory can provide user selections from the database to the portable media device and
instruct the portable media device to add the selections to the remote playlist; the selections
can include a single media asset or a group of media assets (e.g., all songs on an album). The
accessory can create the remote playlist starting from an empty list or from a list of media
assets that were queued for playback at the time the portable media device became connected

to the accessory.

[0010] In another embodiment, the accessory can obtain database selection history
information from the portable media device. For example, if the portable media device
becomes connected to the accessory at a time when one or more media assets are queued for
playback in the portable media device, the portable media device can provide the accessory
with information about the queued media assets and also information about a navigational
path that the user followed to select the queued media assets via the portable media device's
own user interface. The accessory can then initialize the remote user interface into the same
state, for purposes of database navigation, as the portable media device's own user interface.
The result can be a more seamless transition for the user from using the portable media
device's interface to communicating with the portable media device via the remote user

interface of the accessory.

[0011] The following detailed description together with the accompanying drawings will

provide a better understanding of the nature and advantages of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS
[0012] FIGS. 1A and 1B illustrate docking of a portable media device ("PMD") and an
entertainment system to provide a remote user interface for a PMD according to

embodiments of the present invention.

10

15

20

25

30

WO 2009/032708 PCT/US2008/074505

[0013] FIG. 2 is a block diagram of a system including a PMD and accessory according to

an embodiment of the present invention.

[0014] FIG. 3 is a flow diagram of a process that can be used by an accessory when a PMD
becomes connected to determine whether to use an existing cache of PMD information

according to an embodiment of the present invention.

[0015] FIGS. 4A and 4B are a flow diagram of process that can be used by an accessory to
build and manage a remote playlist for a PMD according to an embodiment of the present

invention.

[0016] FIG. 5 is a flow diagram of a process that can be used by an accessory to detect and
interact with a temporary playlist already existing in a PMD according to an embodiment of

the present invention.

[0017] FIG. 6 is a flow diagram of process that can be used by an accessory to recreate a
pre-existing database navigation path of a PMD according to an embodiment of the present

invention.

DETAILED DESCRIPTION OF THE INVENTION
[0018] A remote user interface provides improved remote access by an accessory to media
assets and metadata stored in a database of a portable media device, enhancing a user's ability
to control operation of the portable media device using a remote user interface provided by
the accessory. In one embodiment, each time the portable media device re-connects to the
accessory, the accessory can determine whether the database of the portable media device
was updated while the portable media device was disconnected from the accessory.
Consequently, the accessory can cache information obtained from the portable media device
and can continue to use cached information across multiple connection/disconnection cycles,
for at least as long as the database is not updated. This can reduce the burden on the
communication path between the accessory and the portable media device by reducing

redundant requests for information.

[0019] In another embodiment, the accessory can be used to manage a remote playlist for
the portable media device. The remote playlist can be created, modified, and deleted on the
fly by the user interacting with the remote user interface provided by the accessory. The
accessory can provide user selections from the database to the portable media device and

instruct the portable media device to add the selections to the remote playlist; the selections

10

15

20

25

30

WO 2009/032708 PCT/US2008/074505

can include a single media asset or a group of media assets (e.g., all songs on an album). The
accessory can create the remote playlist starting from an empty list or from a list of media
assets that were queued for playback at the time the portable media device became connected

to the accessory.

[0020] In another embodiment, the accessory can obtain database selection history
information from the portable media device. For example, if the portable media device
connects to the accessory at a time when one or more media assets are queued for playback in
the portable media device, the portable media device can provide the accessory with
information about the queued media assets and also information about a navigational path
that the user followed to select the queued media assets via the portable media device's own
user interface. The accessory can then initialize the remote user interface into the same state,
for purposes of database navigation, as the portable media device's own user interface. The
result can be a more seamless transition for the user from using the portable media device's
interface to communicating with the portable media device via the remote user interface of

the accessory.

System Overview

[0021] FIG. 1A illustrates portable media device ("PMD") 105 that can be docked with

entertainment system 110 according to an embodiment of the present invention.
Entertainment system 110 may be, e.g., a home audio system, a home theater system, an
in-vehicle audio system, or the like. PMD 105 in this embodiment has a user interface that
includes touch screen 115, which displays information and responds to pressure by the user to
receive user input. It is to be understood that other user interfaces and user interface

components may be substituted.

[0022] Entertainment system 110 includes user interface 125, which can include, e.g.,
control knobs 126 and display device 127. Display device 127 can be a text-based display as
shown, graphical or video display, or the like. In accordance with an embodiment of the
present invention, while PMD 105 is docked with entertainment system 110, a user can
operate PMD 105 by operating control knobs 126 and can obtain information about the
current state of PMD 105 by viewing display 127.

[0023] FIG. 1B illustrates an embodiment in which entertainment system 110 can be
operated by remote control unit 130, which communicates wirelessly (e.g., using radio

frequency or infrared signaling) with entertainment system 110. Remote control unit 130

10

15

20

25

30

WO 2009/032708 PCT/US2008/074505

includes display screen 135 and control buttons 136 (or other input devices). In accordance
with another embodiment of the present invention, while PMD 105 is docked with
entertainment system 110, a user can operate PMD 105 by operating control buttons 136 or
other user input controls that may be present on remote control unit 130 and can obtain
information about the current state of PMD 105 by viewing display screen 135. It will be
appreciated that the system configurations of FIGS. 1A and 1B are illustrative and that
variations and modifications are possible. Any type of accessory that provides a user
interface with user input controls and a display (or other device capable of communicating

interface-related feedback to the user) can be used in connection with the present invention.

[0024] FIG. 2 is a block diagram of system 200 according to an embodiment of the present
invention. System 200 can include PMD 202 (e.g., implementing PMD 105 of FIGS. 1A and
1B) and an accessory 220 (e.g., implementing entertainment system 110 of FIGS. 1A and
1B).

[0025] PMD 202 in this embodiment can provide media player capability. PMD 202 can
include processor 204, storage device 206, user interface 208, and accessory input/output
(I/O) interface 214. Processor 204 in this embodiment can implement playback engine 210

and database engine 212, e.g., as software programs executed by processor 204.

[0026] Storage device 206 may be implemented, e.g., using disk, flash memory, or any
other non-volatile storage medium. In some embodiments, storage device 206 can store
media assets 207 (also referred to herein as "tracks"), such as audio, video, still images, or the
like, that can be played by host device 202. Storage device 206 can implement a database
that stores media assets 207 and also stores metadata records 209 associated with each media
asset 207. The metadata record 209 for a given asset can include various fields, e.g., a media
type (audio track, video track, audio book, still image, etc.); an asset title; a name of an artist
or performer associated with the asset; composer or author information; asset length; chapter
information; album information; lyrics; information about associated artwork or images;
description of the asset; and so on. The database can also include "playlists” 211, which are
lists of assets that can be played sequentially by playback engine 210. Playlists can include
user-created playlists and/or automatically generated playlists. (It is to be understood that
playback engine 210 can also have the capability to "shuffle" a playlist 211 and play the
tracks of the playlist in a random order; user interface 208 can be used to turn shuffle on or

oft)

10

15

20

25

30

WO 2009/032708 PCT/US2008/074505

[0027] Storage device 206 can also store other information such as information about a
user's contacts (names, addresses, phone numbers, etc.); scheduled appointments and events;
notes; and/or other personal information. In still other embodiments, storage device 206 can
store one or more programs to be executed by processor 204 (e.g., video game programs,
personal information management programs, programs implementing playback engine 210

and/or database engine 212, etc.).

[0028] User interface 208 may include input controls such as a touch pad, touch screen,
scroll wheel, click wheel, dial, button, keypad, microphone, or the like, as well as output
devices such as video screen, indicator lights, speakers, headphone jacks or the like, together
with supporting electronics (e.g., digital-to-analog or analog-to-digital converters, signal
processors or the like). A user can operate the various input controls of user interface 208 to
invoke the functionality of PMD 202 and can view and/or hear output from PMD 202 via

user interface 208.

[0029] Processor 204, which can be implemented as one or more integrated circuits (e.g., a
conventional microprocessor or microcontroller), can control the operation of PMD 202. For
example, in response to user input signals provided by user interface 208, processor 204 can
operate database engine 212 to navigate a database of assets 207 stored in storage device 206
in response to user input and can display lists of selected assets 207 using some or all of the
associated metadata 209 to identify each selected asset 207. Processor 204 can respond to
user selection of an asset 207 by transferring asset information to playback engine 210.
Playback engine 210 can play an asset 207 or a playlist 211 of assets; assets to be played can
be selected by the user interacting with database engine 212. In some embodiments,
playback engine 210 can also store and play a temporary playlist (e.g., an "on the go" playlist
as supported in certain iPod® media players) created by the user interacting with user

interface 208.

[0030] Accessory I/O interface 214 can allow PMD 202 to communicate with various
accessories. For example, accessory I/O interface 214 might support connections to an
external speaker dock, a radio (e.g., FM, AM and/or satellite) tuner, an in-vehicle
entertainment system, an external video device, or the like. In one embodiment, accessory
I/O interface 214 includes a 30-pin connector corresponding to the connector used on iPod®
products manufactured and sold by Apple Inc. Alternatively or additionally, accessory I/O

interface 214 can include a wireless interface (e.g., Bluetooth or the like).

10

15

20

25

30

WO 2009/032708 PCT/US2008/074505

[0031] In some embodiments, PMD 202 can also use accessory 1/O interface 214 to
communicate with a host computer (not explicitly shown) that executes a media asset
management program (such as the iTunes® media asset management program distributed by
Apple Inc.). The media asset management program can enable a user to add media assets 207
to PMD 202 and/or remove media assets from PMD 202. The user can also update metadata
209 associated with media assets 207 on PMD 202. In some embodiments, the user can also
interact with the media asset management program to create and update playlists 211. In one
embodiment, the host computer maintains a master database of media assets (including
associated metadata and playlists), and the media asset management program synchronizes
the master database with the database maintained on storage device 206 of PMD 202

automatically whenever PMD 202 connects to the host computer.

[0032] Accessory 220 includes controller 224, user interface 222, PMD I/O interface 226,
cache 228, and media output device 230. Controller 224 can include, e.g., a microprocessor
or microcontroller executing program code to perform various functions such as digital audio
decoding, analog or digital audio and/or video processing, and the like. User interface 222
may include input controls such as a touch pad, touch screen, scroll wheel, click wheel, dial,
button, keypad, microphone, or the like, as well as output devices such as video screen,
indicator lights, speakers, headphone jacks or the like, together with supporting electronics
(e.g., digital-to-analog or analog-to-digital converters, signal processors or the like).
Alternatively, output components of user interface 222 can be integrated with media output
device 230. A user can operate the various input controls of user interface 222 to invoke the
functionality of accessory 220 and can view and/or hear output from accessory 220 via user

interface 222. In addition, a user can operate PMD 202 via user interface 222.

[0033] PMD T/O interface 226 can allow accessory 220 to communicate with PMD 202 (or
another PMD). Examples are described below.

[0034] Cache 228, which can be implemented using volatile and/or nonvolatile memory
provides storage for various information including information obtained from PMD 202. For
example, as described below, accessory 220 can obtain some or all of metadata 209 and/or
playlists 211 from PMD 202. Any or all of this information can be stored in cache 228.
Caching of information obtained from PMD 202 by accessory 220 is optional; where used,
caching can help speed up performance of accessory 220 by avoiding repeated requests for

information from PMD 202.

10

15

20

25

30

WO 2009/032708 PCT/US2008/074505

[0035] Media output device 230, which can be implemented, e.g., as one or more integrated
circuits, provides the capability to output various types of media. For example, media output
device 230 can include a display screen or a driver circuit and connector for an external
display screen, thereby enabling video and/or still images to be presented to a user.
Additionally or instead, media output device 230 can also include one or more speakers or
driver circuits and connectors for external speakers, thereby enabling audio to be presented to
a user. In one embodiment, controller 224 can receive media content signals from PMD 202
via PMD I/O interface 226 and can provide the signals with or without further processing to
media output device 230; media output device 230 can transform the signals as appropriate

for presentation to the user.

[0036] Accessory 220 can be any accessory that provides a user interface suitable to
navigating a database. Examples of accessories implementing accessory 220 include, e.g., an
external speaker dock, a radio (e.g., FM, AM and/or satellite) tuner, an in-vehicle
entertainment system, an external video device, or the like. In one embodiment, PMD I/O
interface 226 includes a 30-pin connector that mates with the connector used on iPod®
products manufactured and sold by Apple Inc. PMD I/O interface 226 can also include other
types of connectors, e.g., Universal Serial Bus (USB) or FireWire connectors. Alternatively,

PMD /O interface 226 can include a wireless interface (e.g., Bluetooth or the like).

[0037] It will be appreciated that the system configurations and components described
herein are illustrative and that variations and modifications are possible. The PMD and/or

accessory may have other capabilities not specifically described herein.

Protocol Overview

[0038] Accessory I/O interface 214 of PMD 202 and PMD V/O interface 226 of accessory

220 allow PMD 202 to be connected to accessory 220 and subsequently disconnected from
accessory 220. As used herein, PMD 202 and accessory 220 are "connected" whenever a
communication channel between accessory I/O interface 214 and PMD I/O interface 226 is
open and are "disconnected" whenever the communication channel is closed. Connection can
be achieved by physical attachment (e.g., between respective mating connectors of PMD 202
and accessory 220), by an indirect connection such as a cable, or by establishing a wireless
communication channel. Similarly, disconnection can be achieved by physical detachment,
disconnecting a cable, powering down accessory 220 or PMD 202, or closing the wireless

communication channel. Thus, a variety of communication channels may be used, including

10

15

20

25

30

WO 2009/032708 PCT/US2008/074505

wired channels such as USB, FireWire, or universal asynchronous receiver/transmitter

("UART"), or wireless channels such as Bluetooth.

[0039] Regardless of the particular communication channel, as long as PMD 202 and
accessory 220 are connected to each other, the devices can communicate by exchanging
commands and data according to a protocol. The protocol defines a format for sending
messages between PMD 202 and accessory 220. For instance, the protocol may specify that
each message is sent in a packet with a header and an optional payload. The header provides
basic information (e.g., a start indicator, length of the packet, and a command to be processed
by the recipient), while the payload provides any data associated with the command; the
amount of associated data can be different for different commands, and some commands may
provide for variable-length payloads. In some embodiments, the commands may be defined
such that a particular command is valid in only one direction. The packet can also include

error-detection or error-correction codes as known in the art.

[0040] The protocol can define a number of "lingoes," where a "lingo" is a group of related
commands that can be supported (or unsupported) by various classes of accessories. In one
embodiment, a command can be uniquely identified by a first byte identifying the lingo to
which the command belongs and a second byte identifying the particular command within the
lingo. Other command structures may also be used. It is not required that all accessories, or
all PMDs to which an accessory can be connected, support every lingo defined within the

protocol.

[0041] In some embodiments, every accessory 220 and every PMD 202 that are designed to
be interoperable with each other support at least a "general" lingo that includes commands
common to all such devices. The general lingo can include commands enabling the PMD and
the accessory to identify and authenticate themselves to each other and to provide general
information about their respective capabilities, including which (if any) other lingoes each
supports. The general lingo can also include authentication commands that the PMD can use
to verify the purported identity and capabilities of the accessory (or vice versa), and the
accessory (or PMD) may be blocked from invoking certain commands or lingoes if the

authentication is unsuccessful.

[0042] A command protocol supported by PMD 202 and accessory 220 can include a
"remote user interface" lingo (or other group of commands) that can be used to communicate

commands and data related to permitting a user to control the operation of PMD 202 by

10

10

15

20

25

30

WO 2009/032708 PCT/US2008/074505

operating accessory 220. The remote user interface lingo can include commands that
accessory 220 can send to PMD 202 to start and stop playback; to obtain information about a
currently playing media asset (also referred to herein as a "track"); to interact with database
engine 212 to navigate the database of media assets stored in PMD 202 and select a track or
group of tracks to be played; and to control various settings (e.g., equalizer, audio book
speed, etc.) of PMD 202. Such functionality has been implemented in a remote user interface

lingo of previous iPod® media players.

[0043] Embodiments of the present invention provide enhanced capability to control PMD

202 via a remote user interface lingo (or other group of commands).

Detecting Intervening Synchronization

[0044] In some embodiments, accessory 220 may cache database information from PMD
202, including metadata 209 related to all or some of media assets 207, e.g., in cache 228.
Previously, when PMD 202 was disconnected from accessory 220, any cache maintained by
accessory 220 would become invalid. This was necessary because the database of PMD 202
can be updated (e.g., through synchronizing with a host computer) while PMD 202 is
disconnected from accessory 220; accessory 220 had no way to determine whether any

update had occurred.

[0045] One embodiment of the present invention allows accessory 220 to determine
whether PMD 202 did or did not update its database while it was disconnected from
accessory 220. The remote user interface lingo can include the following commands that can

be invoked, e.g., when PMD 202 becomes connected:

[0046] (1) A GetDBSynclnfo command, sent by accessory 220 to PMD 202 to request
information related to the last synchronization of PMD 202 with a host computer. This
command can have an associated parameter that indicates the type of database
synchronization information requested. One type of information can be a database identifier
("DBID") that is fixed for a particular combination of PMD 202 and host computer database
to which that PMD 202 synchronizes. Another type of information can be a synchronization
index ("SyncID") that changes every time PMD 202 synchronizes with its host computer and
otherwise remains constant. Other types of information can include, e.g., the date and time of
the last synchronization between PMD 202 and its host computer as well as counts of various

types of media assets stored on PMD 202.

11

10

15

20

25

30

WO 2009/032708 PCT/US2008/074505

[0047] (2) A RetDBSynclnfo command, sent by PMD 202 in response to the
GetDBSynclnfo command. This command is used to return the requested database

synchronization information.

[0048] When PMD 202 becomes connected, accessory 220 can use these commands to
obtain database synchronization information from PMD 202. Comparing the newly obtained
database synchronization information to cached database synchronization information
obtained before PMD 202 last disconnected can indicate whether a synchronization operation
occurred since the last time PMD 202 was connected and consequently whether the database
of PMD 202 may have been updated. If no synchronization operation (or other database
update) has occurred, then accessory 220 can treat any previously cached data as valid. Ifa
synchronization operation has occurred, then accessory 220 can treat previously cached data

as invalid.

[0049] FIG. 3 is a flow diagram of process 300 that can be used by accessory 220 when
PMD 202 connects to determine whether to use existing data in cache 228 according to an
embodiment of the present invention. Process 300 starts (step 302) when PMD 202 is not
connected to accessory 220. At step 304, accessory 220 attempts to detect that PMD 202 has
been connected. Detecting connection may include, e.g., detecting an electrical contact made
via a connector or detecting a wireless signal indicating that PMD 202 is ready to
communicate with accessory 220. Process 300 can wait at step 304 until such time as

connection of PMD 202 is detected.

[0050] At step 306, once PMD 202 is connected, accessory 220 can identify itself to PMD
202. Identification may include, e.g., sending a command to PMD 202 indicating that
accessory 220 supports the remote user interface lingo. Step 306 may also include
performing an authentication procedure, e.g., using digital signatures, to confirm that
accessory 220 is authorized to invoke the remote user interface functionality of PMD 202.

Step 306 can also include PMD 202 identifying and/or authenticating itself to accessory 220.

[0051] At step 308, accessory 220 can initiate the remote user interface operating mode of
PMD 202. In this mode, PMD 202 can disable its own user interface and operate in response
to commands received from accessory 220. In one embodiment, accessory 220 may send an
EnterRemoteUIMode command to PMD 202 to initiate the remote user interface mode. In
other embodiments, PMD 202 may automatically enter the remote user interface mode based

on the identification of accessory 220 at step 306.

12

10

15

20

25

30

WO 2009/032708 PCT/US2008/074505

[0052] At step 310, accessory 220 can request database identifying information from PMD
220, e.g., by sending a GetDBSynclnfo command with the parameter set to request the DBID.
At step 312, accessory 220 can receive the DBID (or other requested database identifying
information) from PMD 220; for instance, PMD 220 may send a RetDBSyncInfo command
whose payload includes the DBID.

[0053] At step 314, accessory 220 can request database synchronization information from
PMD 220, e.g., by sending a GetDBSyncInfo command with the parameter set to request the
SynclID or by sending a GetDBSyncinfo command with the parameter set to request
synchronization data and/or time information. At step 316, accessory 220 can receive the
requested database synchronization information from PMD 220; for instance, PMD 220 may
send a RetDBSynclnfo command whose payload includes the requested database

synchronization information.

[0054] At step 318, accessory 220 can compare the received database identifying
information to cached database identifying information stored in cache 228 (e.g., from a
previous execution of process 300). If the cached information does not match the received

information, then the cache can be invalidated as described below.

[0055] If, at step 318 the cached database ID and the received database ID are the same,
accessory 220 can compare the received synchronization information to cached
synchronization information stored in cache 228 (e.g., from a previous execution of process
300). Ifthe cached synchronization information matches the received synchronization
information, then accessory 220 determines (step 322) that PMD 202 did not synchronize
with a host computer while it was disconnected from accessory 220. Therefore, at step 324,
accessory 220 can continue to use any existing cached information regarding the content of

PMD 202 that may be present in cache 228.

[0056] If, at step 320, the cached synchronization does not match the received
synchronization information, accessory 220 can determine (step 326) that PMD 202
synchronized with a host computer while it was disconnected from accessory 220. At step
328, accessory 220 can invalidate the contents of cache 228, and at step 330, accessory 220
can cache the current database ID and synchronization information. In another embodiment,
accessory 220 can update the information stored in cache 228, e.g., using commands
described below to request updated metadata for each track for which metadata is present in

cache 228. Thereafter process 300 ends (step 332), although accessory 220 and PMD 202

13

10

15

20

25

30

WO 2009/032708 PCT/US2008/074505

can remain connected and can continue to operate in the remote user interface mode. For
example, accessory 220 can initialize its display to present a remote user interface menu to
the user and wait for user input. While accessory 220 and PMD 202 remain connected,
accessory 220 can cache various information received from PMD 202, such as metadata for a

particular track (e.g., track type, track name, artist, album, genre, etc.).

[0057] It will be appreciated that process 300 is illustrative and that variations and
modifications are possible. Steps described as sequential may be executed in parallel, order
of steps may be varied, and steps may be modified or combined. If the media assets and
metadata stored on PMD 202 change only during synchronization with a host computer, then
any time PMD 202 re-connects to accessory 220, accessory 220 can use process 300 or other
processes using the commands described above to determine whether the database of PMD
202 was updated while PMD 202 was disconnected from accessory 220. Consequently,
accessory 220 can cache information obtained from PMD 202 and can continue to use cached
information across multiple connection/disconnection cycles, for at least as long as a database
synchronization operation between PMD 202 and a host computer does not occur. This can
reduce the burden on the communication path between accessory 220 and PMD 202 by
reducing redundant requests for information. Further, accessory 220 in some embodiments
can maintain cached information for multiple PMDs. For example, the cache can be
physically or logically partitioned with each partition being associated with a different DBID.
In this case, when a PMD connects, accessory 220 can compare the DBID to the DBID
associated with each partition to determine which partition of the cache pertains to the
currently connected PMD. Thereafter, accessory 220 can use the synchronization
information to determine whether cached information in the pertinent partition should be

invalidated.

[0058] In some embodiments PMD 202 may be able to update its database without
synchronizing with a host computer. For example, PMD 202 may provide a wired or
wireless Internet connection and may be able to download assets via the Internet without
intervention by a host computer. In such embodiments, if PMD 202 updates its
synchronization information whenever the database content changes, process 300 can still be

used by accessory 220 to determine whether cached information is reliable.

[0059] In still other embodiments, PMD 202 may provide a database identifier that changes

whenever PMD 202 synchronizes with a host computer. Accessory 220 can then detect an

14

10

15

20

25

30

WO 2009/032708 PCT/US2008/074505

intervening synchronization operation from the database identifier without requesting

additional synchronization information.

Obtaining Media Asset Metadata

[0060] While in remote user interface mode, accessory 220 may obtain metadata about
media assets that are stored on PMD 202 including not only the currently playing track but
also other tracks as well. For example, in one embodiment, playback engine 210 of PMD
202 may already have one or more tracks queued for playback at the time when PMD 202
becomes connected to accessory 220. Queued tracks can include, e.g., one of the playlists
stored in the database of PMD 202, a user selection of one or more related database entries
(e.g., all tracks of an album or all tracks by a particular artist), or a list of tracks selected by
the user via user interface 208 of PMD 202. In one embodiment, the following commands

can be used to obtain information about tracks queued in playback engine 210:

[0061] (1) A GetPBTrackiInfo command that can be sent by accessory 220 to PMD 202 to
request information for one or more tracks queued in playback engine 210. The command
parameters can include a starting track index, a track count, and a bitmask identifying the
type(s) of information requested. Playback engine 210 of PMD 202 can maintain an indexed
list of tracks in the playback queue, with the index corresponding to the order in which tracks
are to be played. The starting track index of the GetPBTrackinfo command can identify the
playback engine index for the first track of interest, and the track count can identify a range
of tracks starting from the starting track index for which information is requested. In one
embodiment, the track count can be set to a special value (e.g., -1) to indicate that PMD 202
should return information for all tracks in the queue, starting with the starting track identifier.
Type(s) of information can include information about the track itself such as, e.g., media type
(audio, video, etc.); genre information; whether the track has associated data (e.g., artwork or
images, song lyrics, etc.); track identifier (e.g., as assigned by a media asset management
application); track name; artist name; composer name; album name; series name and season
identifier (e.g., for television shows); track duration; chapter information (for tracks that have
chapters); release date of the track; etc. Other information types can relate to the user's
interaction with the track, e.g., a count of the number of times the track has been played or
skipped; date and time when the track was most recently played; the user's rating of the track;
etc. In some embodiments, any type of information that may be stored in PMD 202 can be

requested.

15

10

15

20

25

30

WO 2009/032708 PCT/US2008/074505

[0062] (2) A RetPBTrackinfo command that can be sent by PMD 202 to accessory 220 to
return the requested track information. In one embodiment, accessory 220 can request
information for multiple tracks with a single GetPBTrackInfo command, and PMD 202 can
send a separate RetPBTrackInfo command for each track for which information was
requested and for each type of information. Thus, the RetPBTrackInfo command can include
a track identifier and information type identifier as parameters. PMD 202 can respond to a
single GetPBTracklnfo command by sending a series of RetPBTrackinfo commands to
accessory 220 in rapid succession without waiting for a response. Accessory 220 can buffer
the received RetPBTrackInfo commands and process them sequentially. In some
embodiments, the size of a buffer in accessory 220 may limit the number of tracks for which
accessory 220 can request information using a single GetPBTrackInfo command and/or the

number of information types included in a single GetPBTrackinfo command.

[0063] In other embodiments, accessory 220 can also obtain information for tracks not in
the playlist of playback engine 210. For example, a GetDBTrackInfo command and a
RetDBTrackInfo command can be similar to the GetPBTrackInfo command and
RetPBTrackInfo command described above, except that the track index refers to a database
index based on a listing of tracks currently selected by database engine 212 rather than to an
index in the playback queue. In another embodiment, a GetUIDTrackinfo command and a
RetUIDTrackInfo command can be similar to the GetPBTrackinfo command and
RetPBTracklnfo command described above, except that instead of a track index and track
count, a unique track identifier ("UID") is used as the input parameter. The UID is

advantageously different for every track stored on PMD 202.

Creating and Modifying Playlists via Remote User Interface

[0064] In another embodiment of the present invention, the remote user interface protocol
can include commands that allow a user to create, modify, and delete a playlist (e.g., in
playback engine 210) by interacting with user interface 222 of accessory 220. In some
embodiments, these commands can support multiple such playlists concurrently. For

example, the following commands can be used:

[0065] (1) A PlaylistCreate command that can be sent by accessory 220 to PMD 202 to
indicate that a new playlist (referred to herein as a "remote playlist") is to be created. This

command need not include any parameters or other data.

16

10

15

20

25

30

WO 2009/032708 PCT/US2008/074505

[0066] (2) A PlaylistAck command that can be sent by PMD 202 to acknowledge
playlist-related commands received from accessory 220. In one embodiment, the PlaylistAck
command includes a "playlist ID" parameter identitying the remote playlist to which the
command pertains, an identifier of which playlist-related command is being acknowledged,
and a status data indicating whether any errors occurred. In one embodiment, the PlaylistAck
command returned in response to a PlaylistCreate command establishes the playlist identifier
that is thereafter used by accessory 220 and PMD 202 to refer to the remote playlist that
PMD 202 creates. The playlist ID parameter can be used to support coexistence of multiple

remote playlists.

[0067] (3) A PlaylistAddTrack command that can be sent by accessory 220 to PMD 202 to
indicate that a track should be added to the remote playlist. The track can be identified, e.g.,
using the UID described above. The command can also include the playlist ID parameter. In

one embodiment, tracks are added to the end of the remote playlist identified by playlist ID.

[0068] (5) A PlaylistAddDBSelection command that can be sent by accessory 220 to PMD
202 to indicate that the track(s) currently selected by database engine 212 should be added to
the remote playlist. The command can also include the playlist ID parameter. In one
embodiment tracks are added to the end of the remote playlist identified by playlist ID. The
addition of currently selected tracks to the remote playlist can be independent of how the
selection was made. For example, in some embodiments a user can select all tracks on an
album, all tracks by an artist, all tracks in a genre, etc.; once such a selection is made, the
PlaylistAddDBSelection command can be used to add the selected tracks to the remote

playlist.

[0069] (6) A PlaylistRemTrack command that can be sent by accessory 220 to PMD 202 to
indicate that a track should be removed from the remote playlist. The track can be identified,
€.g., using the UID described above. The command can include the playlist identifier as a
parameter. In some embodiments, multiple tracks can be removed using a single

PlaylistRemTrack command.

[0070] (7) A PlaylistSortOrder command that can be sent by accessory 220 to PMD 202 to
reorder tracks in the remote playlist. Tracks can be sorted based on any available
information, including genre, artist, composer, album, track, release date, series, season,
episode, presence in a playlist, expiration date (e.g., in embodiments where some or all tracks

may be available on PMD 220 for a limited time), and so on. The command can include the

17

10

15

20

25

30

WO 2009/032708 PCT/US2008/074505

playlist ID parameter and/or a parameter identifying the information type to be used for

sorting.

[0071] (8) A PlaylistDelete command that can be sent by accessory 220 to PMD 202 to
indicate that the remote playlist should be deleted. (Deleting a playlist does not delete tracks
from storage device 206 of PMD 202.) The command can include the playlist identifier as a

parameter.

[0072] FIGS. 4A and 4B are a flow diagram of process 400 that can be used by accessory
220 to build and manage a remote playlist according to an embodiment of the present
invention. Referring first to FIG. 4A, process 400 starts (step 402) when accessory 220 is
connected to PMD 202; for example, process 300 of FIG. 3 may already have been executed.
At step 404, accessory 220 can receive a user input; process 400 can remain at step 404 until

such time as a user input is received. The action to be taken depends on the user input.

[0073] At step 406, it is determined whether the user input pertains to database navigation.
In one embodiment, database navigation can be accomplished by accessory 220 presenting a
menu of navigational options to a user; the options may mimic some or all of the options that
would be presented on the user interface of PMD 220. For instance, the user may initially
select a media type, then select within that media type by genre, album, artist, etc. If the user
input pertains to database navigation, then at step 408, accessory 220 can send a database
navigation command to database engine 212 of PMD 202 (e.g., indicating the user's
selection). At step 410, accessory 220 can receive a response to the database navigation
command (e.g., providing a new list of selection options), and at step 412, accessory 220 can
update its display to reflect the result of the navigation command (e.g., displaying the new
options). Conventional commands for a remote user interface can be used to implement
database navigation at steps 408 and 410. Thereafter, process 400 can return (node A) to step

404 to await the next user input.

[0074] Thus, it is to be understood that database navigation can be an iterative process. At
each stage of navigation, as the user makes a selection, accessory 220 can send a navigational
command to PMD 220 reporting the selection made and can receive a response indicating
what content or further selections are available. For example, if the user selects a "music" or
"video" media asset type, accessory 220 can send a command indicating that selection to

PMD 202; PMD 202 can respond with a list of categories within the selected media asset

18

10

15

20

25

30

WO 2009/032708 PCT/US2008/074505

type. Suitable commands for database navigation are known in the art (see, e.g., U.S. Patent

No. 7,293,122 for examples; other examples are implemented in iPod® media players).

[0075] If the user input does not pertain to database navigation, then at step 414, it is
determined whether the user input pertains to adding one or more tracks to the remote
playlist. For example, the user may select a single track from a list of tracks to be added to
the playlist, or the user may select all tracks in a currently displayed list (e.g., all tracks of a
currently selected album, all tracks by a currently selected artist, etc.). If the user input
pertains to adding tracks, then at step 416, a further determination can be made as to whether
a remote playlist already exists. If a remote playlist does not already exist, accessory 220 can
instruct database engine 212 of PMD 202 to create the remote playlist (step 418), e.g., using
the PlaylistCreate command described above. Accessory 220 can wait for a PlaylistAck
command before proceeding to step 420 to instruct database engine 212 to add the selected
track(s) to the remote playlist. For example, a single track can be added using the
PlaylistAddTrack command described above; a selected list of tracks can be added using the

PlaylistAddDBSelection command described above.

[0076] If, at step 416, the remote playlist already exists, then accessory 220 can proceed
directly to step 420 to add the track(s) to the remote playlist. Once the tracks have been

added, process 400 can return (node A) to step 404 to await the next user input.

[0077] If the user input does not pertain to database navigation or adding tracks to the
remote playlist, then process 400 continues (node B) as shown in FIG. 4B. At step 422,
process 400 can determine whether the user input pertains to removing one or more tracks
from the remote playlist. If so, then at step 424, accessory 220 can instruct database engine
212 to remove the track(s), e.g., using the PlaylistRemTrack command described above.

Thereafter, process 400 can return (node A) to step 404 to await the next user input.

[0078] If the user input does not pertain to database navigation, adding tracks, or removing
tracks, at step 426, process 400 determines whether the user input pertains to deleting the
remote playlist. If so, then at step 428, accessory 220 can instruct database engine 212 to
delete the remote playlist, e.g., using the PlaylistDelete command described above. Once the
remote playlist is deleted, process 400 can end (step 430) or return to step 404 to await
further user input.

[0079] At step 432, other user input can be processed. Such user input may pertain to, e.g.,

reordering the tracks of the remote playlist using the PlaylistSortOrder command, starting,

19

10

15

20

25

30

WO 2009/032708 PCT/US2008/074505

pausing, or resuming playback of the remote playlist; advancing to the next track; returning
to the previous track; beginning or ending fast forward or rewind operations; displaying
information about the currently playing track; adjusting volume or equalizer settings, etc. In
some instances, the user input may cause process 400 to end; in other instances, after
processing the user input at step 432, process 400 can return to step 404 to await further user

input.

[0080] It will be appreciated that process 400 is illustrative and that variations and
modifications are possible. Steps described as sequential may be executed in parallel, order
of steps may be varied, and steps may be modified or combined. Using process 400 or other
processes invoking the commands described above, a user can operate the remote user
interface provided by accessory 220 to select a single track or group of tracks and instruct
accessory 220 to add the selected track(s) to the remote playlist. The user can also remove
tracks from the playlist, reorder tracks on the playlist, and control playback, all via accessory

220.

[0081] A remote playlist can include any number of tracks. In some embodiments, an
upper limit may be imposed on the number of tracks that can be included in a single remote
playlist. If an attempt to add tracks (e.g., using the PlaylistAddTrack or
PlaylistAddDBSelection commands described above) would result in the remote playlist
exceeding the maximum number of tracks, PMD 202 can send a PlaylistAck command with
status data indicating that the tracks were not added because of the limit on the number of
tracks. Accessory 220 can then notify the user of the failure, ¢.g., by displaying a message.
In other embodiments, accessory 220 may be programmed to keep a running count of the
number of tracks in a remote playlist and to refuse a user request for adding additional tracks
if the upper limit is exceeded; again, accessory 220 can communicate a failure message to the
user. The upper limit in this instance may be established by accessory 220 or PMD 202. For
example, in the former case, a developer of accessory 220 can program or hard-wire a limit
into a register. In the latter case, accessory 220 and PMD 202 may exchange additional
commands related to remote playlist capability, and such commands can include a command
by which PMD 202 specifies the maximum number of tracks. Thus, an upper limit on
number of tracks per remote playlist can be established and/or enforced by either PMD 202

or accessory 220.

20

10

15

20

25

30

WO 2009/032708 PCT/US2008/074505

[0082] Similarly, any number of remote playlists can be concurrently defined, provided that
a unique playlist ID exists for each concurrently defined remote playlist. As with the number
of tracks per remote playlist, the maximum number of remote playlists can be established
and/or enforced by either PMD 202 or accessory 220. In one embodiment, if the maximum
number of remote playlists already exists, PMD 202 can respond to a further PlaylistCreate
command from accessory 220 by sending a PlaylistAck command with status data indicating
that the playlist was not created because the maximum number of playlists already exists.
Accessory 220 can then notify the user, e.g., by displaying a message. In other embodiments,
accessory 220 may be programmed to keep a running count of the number of remote playlists
and to refuse a user request for creating an additional remote playlist if the upper limit has
been reached; again, accessory 220 can communicate this condition to the user. The upper
limit on number of remote playlists may be established by accessory 220 or PMD 202. For
example, in the former case, a developer of accessory 220 can program or hard-wire a limit
into a register. In the latter case, accessory 220 and PMD 202 may exchange additional
commands related to remote playlist capability, and such commands can include a command
by which PMD 202 specifies the maximum number of remote playlists supported. Thus, an
upper limit on the number of remote playlists can be established and/or enforced by either

PMD 202 or accessory 220.

[0083] Insome embodiments where multiple remote playlists can coexist within PMD 202,
the playback ID can be included as a command parameter in the above commands to identify
one of the multiple remote playlists as being subject to the command. Accessory 220 can
provide user control over the multiple playlists. For example, accessory 220 may implement
a user interface element (e.g., a menu item in a graphical user interface) that allows a user to
request creation of a new remote playlist. In response to such a request, accessory 220 can
send a PlaylistCreate command to PMD 202 and obtain (via the PlaylistAck command) a
playlist ID for the new remote playlist. For manipulation of existing remote playlists, one
embodiment of accessory 220 provides a menu of existing remote playlists; the user can
select an existing remote playlist as a "current" playlist to which subsequent playlist-related
commands are to be applied until such time as the user changes that selection. When a user
input results in transmitting a playlist-related command (e.g., any of the commands described
above) to PMD 202, accessory 220 can provide the playlist ID of the current playlist as a
parameter of the command. Thus, for example, a newly created remote playlist can

automatically be designated as the current playlist upon creation, but the user can interact

21

10

15

20

25

30

WO 2009/032708 PCT/US2008/074505

with the user interface of accessory 220 to select a different remote playlist as current at a

subsequent time.

[0084] After one or more remote playlists have been created, in some embodiments a user
can operate accessory 220 to view a list of remote playlists, as well as a list of tracks in a
remote playlist. In one such embodiment, a list of remote playlists can appear in a listing of
all playlists; this list may include, e.g., "static" playlists stored on PMD 202 that were defined
via a media asset management program executing on a host computer as described above, or
other playlists created using conventional techniques. The remote playlists can have default
names such as "Remote Playlist 1," "Remote Playlist 2," etc. and can be grouped at the end of
the list or presented elsewhere within the list. In another embodiment, the listing of remote

playlists is viewed separately from the listing of other playlists.

[0085] Accessory 220 can, but is not required to, maintain a local store of information
about the remote playlists it creates. In some embodiments, accessory 220 retrieves
playlist-related information on demand from PMD 202. In one embodiment, PMD 202 and
accessory 220 support additional commands that allow accessory 220 to retrieve a listing of
static playlists and/or information about tracks included in the static playlist. These
commands can be used to retrieve listings and information for remote playlists.
Alternatively, separate commands specific to remote playlists can be provided. The former
option reduces the number of commands used to create and manage playlists, while the latter
separates the static playlists from the remote playlists, which can be dynamically updated,

thus potentially simplifying information management.

[0086] In one embodiment, the remote playlist can persist until it is deleted by the user or
until PMD 202 disconnects from accessory 220. In another embodiment, accessory 220 can
cache information identifying the tracks included in the remote playlist (e.g., in cache 228)
and can restore the remote playlist automatically when PMD 202 reconnects. The cached
information might include, e.g., the unique identifier (UID) of the track, database index,
and/or other identifying information such as title, artist, album, etc. In some embodiments,
the cached remote playlist information can be invalidated if PMD 202 was synchronized with
a host computer (or its database was otherwise updated) between disconnecting from
accessory 220 and reconnecting to accessory 220. In still other embodiments, if an
intervening synchronization is detected, accessory 220 can use the GetUIDTracklnfo

command described above (or another command) to determine whether each track in the

22

10

15

20

25

30

WO 2009/032708 PCT/US2008/074505

remote playlist is still present in PMD 202 and can automatically update the remote playlist
by removing from the playlist any tracks that have been deleted from PMD 202. Techniques
described above can be used by accessory 220 to detect intervening synchronization of PMD

202 with a host computer or other intervening database updates.

[0087] In yet another embodiment, PMD 202 can be configured to store the remote playlist
indefinitely. For example, the remote playlist can be stored until PMD 202 synchronizes with
a host computer. Via the media asset management application of the host computer, a user
can elect to add the remote playlist to playlists 211 (and assign it a persistent name) or delete

the remote playlist.

[0088] As noted above, in some embodiments a user can create a temporary playlist by
interacting directly with user interface 208 of PMD 202. Thus, when PMD 202 connects to
accessory 220, playback engine 210 may already have a temporary playlist or other playlist
queued for playback. In some embodiments of the present invention, accessory 220 can
detect whether a temporary playlist or other playlist is already queued in playback engine 210
and can retrieve information about the queued playlist. Accessory 220 can use this
information to initialize a remote playlist, which the user can then further manipulate via

accessory 220, e.g., using process 400.

[0089] FIG. 5 is a flow diagram of a process 500 that can be used by accessory 220 to
detect and interact with a temporary playlist already existing in playback engine 210
according to an embodiment of the present invention. Process 500 starts (step 502) when
PMD 202 connects to accessory 220 at step 504. In some embodiments, step 504 can include

performing all or part of process 300 of FIG. 3.

[0090] At step 506, accessory 220 can request playback track information from PMD 202,
€.g., using the GetPBTracklnfo command described above, with the starting track index set to
0 (the first track in the playlist) and the track count set to a special value (e.g., -1) that
designates that information is requested for all playing tracks. The information type
parameter can be set to request a small amount of information for each track, to allow
accessory 220 to determine how many tracks are in the currently queued playlist. At step
508, PMD 202 returns the requested information, e.g., using one or more RetPBTracklnfo
commands as described above. If no tracks are currently queued, PMD 202 may return an
error message or other command signifying that playback engine 210 has no tracks queued

for playback.

23

10

15

20

25

30

WO 2009/032708 PCT/US2008/074505

[0091] Atstep 510, accessory 220 determines whether any tracks are currently queued in
playback engine 210; the determination can be based on the response from PMD 202
received at step 508. If any tracks are queued, at step 512 accessory 220 can obtain
additional information about the queued tracks, e.g., by sending one or more additional
GetPBTracklInfo commands to PMD 202 and receiving one or more RetPBTracklnfo
commands in response. At step 514, accessory 220 can display the remote playlist, which at
this point can be identical to the playlist that was queued in playback engine 210 prior to

PMD 202 connecting to accessory 220.

[0092] At step 516, the user can input further playback selections to accessory 220, and at
step 518, accessory 220 combines these further playback selections into the remote playlist.
For example, process 400 of FIG. 4 can be used to update the remote playlist. Accessory 220
can display the updated remote playlist (step 520), incorporating the previously queued
playlist as well as any user modifications, and/or begin playing the remote playlist (step 522).
Displaying and playing of the remote playlist may be responsive to user inputs to accessory

220.

[0093] It will be appreciated that process 500 is also illustrative and that variations and
modifications are possible. Steps described as sequential may be executed in parallel, order
of steps may be varied, and steps may be modified or combined. As noted above, a remote
playlist can persist in accessory 220, e.g., until PMD 202 is disconnected or until a new
synchronization operation between PMD 202 and its host computer occurs. In addition, in
some embodiments, PMD 202 can obtain the remote playlist from accessory 220 and store
the playlist, e.g., in storage device 206. The remote playlist can thereafter be accessible
directly from PMD 202, and PMD 202 can provide the remote playlist to a host computer
during a subsequent synchronization operation, either automatically or based on a user

request.

[0094] Using the commands described above, accessory 220 can be used to manage a
remote playlist for PMD 202. The remote playlist can be created, modified, and deleted on
the fly by the user interacting with the remote user interface provided by accessory 220.
Accessory 220 can signal user selections from the database of PMD 202 (e.g., a single media
asset or a group of media assets) to PMD 202 and can instruct PMD 202 to add the selections
to the remote playlist. Accessory 220 can create the remote playlist starting from an empty

list or from a list of media assets that were queued for playback at the time when PMD 202

24

10

15

20

25

30

WO 2009/032708 PCT/US2008/074505

connected to accessory 220, thus providing continuity of playback engine state when PMD
202 connects to accessory 220. Other commands can also be used in addition to or instead of

those specifically described herein.

Continuity of Database Engine State

[0095] Another embodiment provides commands via which accessory 220 can determine a
database navigation path that was followed by the user prior to connecting PMD 202 to
accessory 220. Thus, upon connection, accessory 220 can reproduce not only the current
database selection of database engine 212 but also the navigation history of how the current

database selection came to be made. For example, the following commands can be used:

[0096] (1) A GetDBStateForPB command that can be sent by accessory 220 to PMD 202,
In some embodiments, the accessory can specify one or more types of database information
that should be provided. For example, the GetDBStateForPB command can have, as a
parameter, a bitmask with a set of bits corresponding to one or more database information
types; each bit can be set or cleared to indicate whether the corresponding information type
should or should not be returned. Any type of selection a user might make can be associated
with a bit in the bitmask. Examples of selections include playlist, artist, album, genre, etc. In
addition, information types can also pertain to a selection (or navigation) path that was
followed by a user. For example, bits in the information type bitmask can be used to request
information as to whether an audio or video hierarchy within the database was selected and/or
what, if any, selections were made at various levels within the hierarchy (e.g., a selection of
playlists, genres, albums, artists, composers, audiobooks, specific tracks, and so on). Still
other information types can pertain to PMD 202 settings, such as the current shuffle setting
(whether tracks will be queued for playback in the listed order or a random reordering
thereof) and repeat setting (whether the content of the playback queue, or a subset thereof,

will be repeated or played one time).

[0097] (2) A RetDBStateForPB command that can be sent by PMD 202 to accessory 220 in
response to the GetDBStateForPB command. The payload of the RetDBStateForPB
command can include the information types specified in the GetDBStateForPB command,
and in some embodiments, a separate RetDBStateForPB command can be used to return each
type of information requested. In some embodiment, the payload of the RetDBStateForPB
command can include navigation history information that identifies a navigational path

through the database that was followed by the user of PMD 202. For example, if the user of

25

10

15

20

25

30

WO 2009/032708 PCT/US2008/074505

PMD 202 had chosen to display music tracks, then a list of artists, then a list of albums by a
selected artist, then a list of songs on a selected album, thus arriving at a currently selected
song, the payload of the RetDBStateForPB command can include data indicating each step of
this selection path. Alternatively, if the user of PMD 202 had chosen to display music tracks,
then a list of genres, then a list of albums in a selected genre, then a list of songs in the
selected album, thus arriving at a currently selected song, the payload of the
RetDBStateForPB command can include data indicating each step of this alternative selection
path. If no database navigation was in progress, the payload of the RetDBStateForPB

command may indicate a null path.

[0098] In one such embodiment, where the GetDBStateForPB command requested
selection path information, the payload of each RetDBStateForPB command can include a
database index value for a selection made during navigation of a database hierarchy. The
information can be formatted using one byte (referred to herein as a "level byte") to identify a
level within the hierarchy and one or more additional bytes (referred to herein as "index
byte(s)") to a selection made at that level. A special value (e.g., -1) can be used to indicate

that no selection was made at a given level.

[0099] For example, suppose that the user of PMD 202 had arrived at a currently playing
song by first selecting music tracks, then selecting an artist from a list of artists, then
selecting an album by the selected artist, then selecting a song from the album. In one
embodiment, this information can be represented using multiple RetDBStateForPB
commands, one for each selection. A first RetDBStateForPB command can include a level
byte indicating "hierarchy type" and an index byte (or bytes) with a value corresponding to
"music." A second RetDBStateForPB command can include a level byte indicating "artist"
and an index byte with a value corresponding to the selected artist. (In one embodiment,
artists represented in the database are assigned sequential index values in alphabetical order,
and the index byte is the index assigned to the selected artist.) A third RetDBStateForPB
command can include a level byte indicating "album" and an index byte with a value
corresponding to the selected album. (As with artists, albums by an artist can be assigned
sequential index values in alphabetical order.) A fourth RetDBStateForPB command can
include a level byte indicating "song" and an index byte with a value corresponding to the
selected song. (Again, songs in an album can be assigned sequential index values, e.g.,
corresponding to order of album tracks.) Additional RetDBStateForPB commands can also

be used; e.g., a command with a level byte indicating "genre" can have an index byte

26

10

15

20

25

30

WO 2009/032708 PCT/US2008/074505

indicating no selection made at that level. (Although the foregoing refers to "index byte" in
the singular, it is to be understood that multiple bytes can be used to represent the index value

if appropriate.)

[0100] In this embodiment, the order in which the RetDBStateForPB commands are
returned need not match the order in which selections were made. Navigation history can be
reconstructed by accessory 220 based on rules of the database hierarchy implemented in
PMD 202. For example, the various selection categories such as genre, artist, album, etc.
may each be given a hierarchical rank, and the selections proceed in rank order. Thus, for
example, if artist has a higher rank than album, if the RetDBStateForPB command indicates
that both an artist selection and an album selection were made, it follows from the rankings

that the artist selection would have been made first.

[0101] PMD 202 can respond to a single GetDBStateForPB command by sending a series
of RetDBStateForPB commands to accessory 220 in rapid succession without waiting for a
response. Accessory 220 can buffer the received RetDBStateForPB commands and process
them sequentially. In some embodiments, the size of a buffer in accessory 220 may limit the
number of tracks for which accessory 220 can request information using a single
GetDBStateForPB command and/or the number of information types included in a single

GetDBStateForPB command.

[0102] The accessory can use the navigation history information in various ways. For
example, if the user had selected an album before connecting PMD 202 to accessory 220, the
remote user interface provided by accessory 220 can initially display the list of tracks on the
selected album. In addition, user interface 222 of accessory 220 can implement a "back"
control, allowing a user to back up on a navigational path. Based on the navigational history
provided by PMD 202, accessory 220 can correctly navigate backward along a selection path
even if the path was initially navigated before PMD 202 connected to accessory 220.

[0103] FIG. 6 is a flow diagram of process 600 that can be used by accessory 220 to
recreate a pre-existing database navigation path according to an embodiment of the present
invention. Process 600 starts (step 602) when PMD 202 connects to accessory 204 at step
604. In some embodiments, step 604 can include performing all or part of process 300 of
FIG. 3 and/or all or part of process 500 of FIG. 5 (if it is desired to establish the current
playback engine state).

27

10

15

20

25

30

WO 2009/032708 PCT/US2008/074505

[0104] At step 606, accessory 220 requests the database selection history from PMD 202,
e.g., by using a GetDBStateForPB command as described above. At step 608, PMD 202

returns the history information, e.g., using a RetDBStateForPB command as described above.

[0105] At step 610, accessory 220 can display the current database selection for the user,
allowing the user to begin or continue navigation. At step 612, accessory 220 can receive a
user input pertaining to navigation of the database. At step 614, accessory 220 determines
whether the user input is a "back" command, signifying that the user wants to back up along
the navigational path. If so, then at step 616, accessory 220 can use the database selection
history information received at step 608 to revert to a previous point on the selection path.
Otherwise, at step 618, accessory 220 can continue the navigation from the current selection,
e.g., by obtaining information from database engine 210 using other remote interface

commands.

[0106] It will be appreciated that process 600 is illustrative and that variations and
modifications are possible. Steps described as sequential may be executed in parallel, order

of steps may be varied, and steps may be modified or combined.

[0107] In one embodiment, process 600 can be used if PMD 202 connects to accessory 220
at a time when one or more media assets are queued for playback in playback engine 210 of
PMD 202. Using process 600 or other processes with the commands described above,
accessory 220 can obtain information about the navigational path that the user followed to
select the queued media asset(s) via user interface 208 of PMD 202. Accessory 220 can then
initialize its remote user interface presentation based on this navigational path. The result can
be a more seamless transition for the user from controlling PMD 202 via user interface 208 to

controlling PMD 202 via user interface 222 of accessory 220.

Alphabetical Database Lookup

[0108] Still another embodiment of the present invention relates to improved database
lookup. For example, accessory 220 can support an alphabetical lookup of tracks stored on

PMD 202 using the following commands:

[0109] (1) A GetDBIndexByAlpha command sent by accessory 220 to PMD 202. The
parameter or payload of this command can include an alphabetical (or alphanumeric)
character string (one or more characters) and can also include a category of information to be
searched. In one embodiment, categories can include, e.g., track name, album name, and

artist name. In response to this command, database engine 212 of PMD 202 searches the

28

10

15

20

25

30

WO 2009/032708 PCT/US2008/074505

database for metadata of the specified category that begins with the specified character string.
Thus, for example, a user can search for all tracks whose names start with the letter "A" or all
artists whose names start with "Mich." (Searches can be case-sensitive or not as desired.) In
some embodiments, the search can be performed within the context of any previously applied
database selection. Thus, for instance, a user can first select a particular genre (using a

database navigation command), then search within that genre for artists beginning with "Q."

[0110] (2) A RetDBIndexByAlpha command sent by PMD 202 to accessory 220 in
response to a GetDBIndexByAlpha command. The payload of the RetDBIndexByAlpha
command can include a listing of items (which may be tracks, artists, albums, etc. depending
on the particular search) that were found in the database search; in one embodiment, each
track can be represented in the listing by its UID. In another embodiment, the payload can

include a starting index and count, if the records are indexed alphabetically.

[0111] In another embodiment, accessory 220 can support an alphabetical lookup of tracks
stored on PMD 202 using the following commands, which can be implemented in addition to

or instead of those described above:

[0112] (1) A GetDBAlphaCount command sent by accessory 220 to PMD 202. Like the
GetDBIndexByAlpha command, the parameter or payload of this command can include an
alphabetical (or alphanumeric) character string (one or more characters) and can also include
a category of information to be searched. As with the GetDBIndexByAlpha command,
database engine 212 of PMD 202 responds to the GetDBAlphaCount command by searching
the database for metadata of the specified category that begins with the specified character
string. The search can be performed within the context of any previously applied database

selection, as described above.

[0113] (2) A RetDBAIphaCount command sent by PMD 202 to accessory 220 in response
to a GetDBAIphaCount command. The payload of the RetDBAIlphaCount command can

include a value indicating the number of matching records found in the search.

[0114] (3) A GetDBAlphaRec command sent by accessory 220 to PMD 202. After using a
GetDBAlphaCount command to perform a search, accessory 220 can send the
GetDBAlphaRec command to request information for one or more of the items found in the
search. In one embodiment, the GetDBAIphaRec command includes parameters designating
a starting index and a number of items for which information is requested; a special value can

be used to indicate that information for all records is to be returned. In some embodiments,

29

10

15

20

25

30

WO 2009/032708 PCT/US2008/074505

the GetDBAlphaRec can include a further parameter specifying a requested information type
(e.g., as with other information-requesting commands described above); in other
embodiments, the GetDBAlphaRec command is always used to request a name field, and a

parameter specifying information type can be omitted.

[0115] (4) A RetDBAlphaRec command sent by PMD 202 to accessory 220 in response to a
GetDBAlphaRec command. In one embodiment, a separate RetDBAlphaRec command is
used to return information for each item requested; thus a single GetDBAlphaRec command
can result in multiple RetDBAlphaRec commands. The payload or parameters of the
RetDBAlphaRec command can include an index identifying the record as well as the
requested information. Where the GetDBAIphaRec command specifies an information type,
the payload or parameters of the RetDBAIlphaRec command can also include an

information-type identifier.

[0116] These commands can be used with any accessory whose user interface allows the

user to input a character string to be searched.

Playback Control and Status

[0117] Other embodiments of the present invention relate to controlling playback
operations of playback engine 210 of PMD 202 via accessory 220. In one embodiment, a
PlayControl command can be sent by accessory 220 to PMD 202 to specify a desired new
play state. The new play state can be specified via a command parameter value. The state
can include play and pause, as well as options such as next track, previous track, next chapter,
previous chapter, begin fast forward, begin rewind, end fast forward, end rewind, and the
like. In response to the PlayControl command, playback engine 210 changes to the requested
state; if playback engine 210 is already in the requested state, it can simply remain in that
state. In some embodiments, PMD 202 returns an acknowledgement command to accessory

220 indicating whether the state command was successfully executed.

[0118] In one embodiment, the PlayControl parameter values can include one value that
instructs playback engine 210 to toggle between play and pause states (i.e., if playing, go to
pause state; if paused, go to play state) and additional values that instruct playback engine
210 to go to the play state or the pause state. The latter play control parameters can be used
to avoid problems that can arise, e.g., if accessory 220 does not know the current play/pause

state of playback engine 210.

30

10

15

20

25

30

WO 2009/032708 PCT/US2008/074505

[0119] In another embodiment, accessory 220 can request to be notified of changes in the
state of playback engine 210. For example, a SetStatusNotification command can be sent by
accessory 220 to PMD 202 to request notifications for various state-change events. In one
embodiment, a bit mask is used to select the desired notifications from a list of possible
notifications. Examples include notifications when playback starts (or resumes after pause),
when playback pauses or stops, when playback engine 210 changes to a new track, when a
media type associated with the currently playing track changes, when the track time
increments (e.g., in seconds or milliseconds), whether lyrics or other supplemental content is
available for a track, and so on. Each notification can be individually enabled or disabled. In
one embodiment, the bit mask includes multiple bytes and a "short-form" command is also
supported. In the short-form command, a bit mask having one byte can be used in place of
the multi-byte bitmask to enable or disable all status notifications. For example, PMD 202
can interpret a SetStatusNotification command with a one-byte bit mask set to 0x00 as
signaling "disable all" while interpreting the same command with a one-byte bit mask set to
0x01 signals "enable all." PMD 202 can respond immediately to a SetStatusNotification
command with an acknowledgement. In addition, when an event occurs for which accessory
220 has requested notification, PMD 202 can send an EventNotify command to accessory

220; the payload can indicate which event occurred.

Further Embodiments

[0120] While the invention has been described with respect to specific embodiments, one
skilled in the art will recognize that numerous modifications are possible. For instance, the
commands and event sequences used to bring about a given interaction between an accessory
and a PMD might be different from the particular commands and event sequences described
herein. Any or all of the commands above may be implemented in any combination,
optionally along with additional commands including, e.g., commands to navigate the

database of the PMD or the like.

[0121] Several embodiments described above relate to preserving aspects of a current state
of a PMD when the PMD connects to an accessory. Thus, for example, when a PMD
connects to an accessory, the accessory can ascertain the current state of the database engine,
including the currently selected media asset(s) as well as the navigational path that led to the
current selection. The accessory can also ascertain the current state of the playback engine,
including which (if any) tracks are currently queued for playback. As a result, the user can

decide at any time to connect a PMD to an accessory that provides a remote user interface

31

10

15

20

25

30

WO 2009/032708 PCT/US2008/074505

and expect that the accessory's interface will begin in the same state as the PMD had

immediately prior to connecting.

[0122] The protocols described herein can be used with a wide range of PMDs and/or

accessories; for example, the PMD and/or the accessory could have additional functionality
such as the ability to receive broadcasts, to make and receive telephone calls, voice recorder
capability, personal information management capability (e.g., calendar, contacts list, e-mail,

etc.), and/or other functionality.

[0123] Embodiments of the present invention can be applied to a wide variety of media
asset types, including music, spoken word (e.g., audio books, lectures), video (e.g., television,
movies), still images, and others. Accordingly, any description herein that refers to songs,
albums or other concepts generally associated with music should be understood as also
applicable to other media types. For example, a track can correspond to a song; an episode of
a television series; a podcast; a portion (or all) of an audio book, lecture, or movie; and so on.
An "artist" can correspond to the performer of a track, reader or author of an audio book, star
of a television show, etc. An "album" can correspond to any collection of related tracks, such
as a season of a television series, an audio book that is broken into multiple tracks, and so on.
Thus, the invention is not limited to music but can apply to any type of media asset that can

be stored and played or displayed.

[0124] Embodiments of the present invention can be realized using any combination of
dedicated components and/or programmable processors and/or other programmable devices.
While the embodiments described above may make reference to specific hardware and
software components, those skilled in the art will appreciate that different combinations of
hardware and/or software components may also be used and that particular operations
described as being implemented in hardware might also be implemented in software or vice

versa.

[0125] Computer programs incorporating various features of the present invention may be
encoded on various computer readable storage media; suitable media include magnetic disk
or tape, optical storage media such as compact disk (CD) or DVD (digital versatile disk),
flash memory, and the like. Computer readable media encoded with the program code may
be packaged with a compatible device, or the program code may be provided separately from

other devices (e.g., via Internet download).

32

WO 2009/032708 PCT/US2008/074505

[0126] Thus, although the invention has been described with respect to specific
embodiments, it will be appreciated that the invention is intended to cover all modifications

and equivalents within the scope of the following claims.

33

[

S O 0 N AW

~ O WL

WO 2009/032708 PCT/US2008/074505

WHAT IS CLAIMED IS:

1. A method of operating an accessory to communicate with a portable
media device, the method comprising, by the accessory:
establishing a first connection to a portable media device;
during the first connection to the portable media device, obtaining and caching
information, including media asset metadata, from a database stored in the portable media
device;
ending the first connection to the portable media device;
establishing a second connection to the portable media device; and
during the second connection to the portable media device:
obtaining, from the portable media device, database synchronization
information related to a most recent update of the database in the portable media
device;
determining, based on the database synchronization information,
whether the most recent update of the database occurred after the first connection to
the portable media device ended; and
in the event that the most recent update of the database occurred after
the first connection to the portable media device ended, invalidating at least a portion

of the cached information.

2. The method of claim 1 further comprising, during the second
connection to the portable media device:

providing a remote user interface for the portable media device in a user
interface of the accessory,

wherein in the event that the most recent update of the database did not occur
after the first connection to the portable media device ended, providing the remote user

interface includes using the cached database information.

3. The method of claim 1 wherein the database synchronization
information includes a synchronization identifier that changes each time an update of the

database in the portable media player occurs.

4. The method of claim 1 wherein the database synchronization

information includes one or more of:

34

AN W W

~N O kW N

Uy

e e e S S G S WY
AN L AW = O Y 0N Y D WN

[a—
~

2
3

WO 2009/032708 PCT/US2008/074505

date and time information indicating when the database in the portable media
player was most recently updated; or
asset count information indicating a total number of media assets currently

stored in the database in the portable media player.

5. The method of claim 1 further comprising:

during the first connection to the portable media device, obtaining and storing
a first value representing the database synchronization information,

wherein determining whether the most recent update of the database occurred
after the first connection to the portable media device ended includes obtaining from the
portable media device a second value representing the database synchronization information

and comparing the first value to the second value.

6. An accessory for providing a remote user interface for a portable
media device, the accessory comprising:

an input/output interface configured to exchange commands and data with the
portable media device;

a cache configured to store information obtained from the portable media
device via the input/output interface, the stored information including metadata pertaining to
a media asset stored on the portable media device and cached database synchronization
information specific to a particular instance of a synchronization operation between the
portable media device and a host computer; and

a controller coupled to the input/output interface and the cache, the controller
being configured to:

detect a connection of the portable media device to the input/output
interface; and

obtain from the portable media device, in response to detecting the
connection, current database synchronization information specific to a most recent
instance of the synchronization operation between the portable media device and the

host computer.

7. The accessory of claim 6 wherein the database synchronization
information includes a synchronization identifier that changes each time an update of the

database in the portable media player occurs.

35

SN L bW

S O 0 NN N BN [B A A

—_

R

WD

= NV T N FCR

WO 2009/032708 PCT/US2008/074505

8. The accessory of claim 6 wherein the database synchronization
information includes one or more of:

date and time information indicating when the database in the portable media
player was most recently updated; or

asset count information indicating a total number of media assets currently

stored in the database in the portable media player.

9. The accessory of claim 6 further comprising:

a user interface including at least one input control operable by a user,

wherein the controller is coupled to the user interface and configured to detect
a user input from the user interface and to direct the input/output interface to send a command

to the portable media device in response to the user input.

10. The accessory of claim 6 wherein the controller is further configured
to:

retrieve the cached database synchronization information from the cache;

determine, based on the current database synchronization information and the
cached database synchronization information, whether the most recent instance of the
synchronization operation occurred after the cached synchronization information was stored;
and

invalidate at least a part of the information stored in the cache in the event that
the most recent instance of the synchronization operation occurred after the cached database

synchronization information was stored.

11. The accessory of claim 10 wherein the controller is further configured
to replace the cached database synchronization information with the current database
synchronization information in the event that the most recent instance of the synchronization

operation occutred after the cached database synchronization information was stored.

12. The accessory of claim 10 wherein the controller is further configured
to use the metadata stored in the cache in the event that the most recent instance of the
synchronization operation did not occur after the cached database synchronization
information was stored and to request updated metadata from the portable media device in the
event that the most recent instance of the synchronization operation occurred after the cached

database synchronization information was stored.

36

[am—y

O 00 1 O i L N

Rt e Y, B N U0 N 8

WO 2009/032708 PCT/US2008/074505

13, The accessory of claim 6 wherein the controller is further configured to
obtain the current database synchronization information using a plurality of commands
exchanged via the input/output interface, wherein the plurality of commands includes:

a first command sendable by the accessory to the portable media device, the
first command requesting database synchronization information from the portable media
device, the database synchronization information pertaining to an update of a database of
media assets stored in the portable media device; and

a second command receivable by the accessory from the portable media

device, the second command providing the requested database synchronization information.

14. The accessory of claim 13 wherein the first command includes a
parameter specifying a type of database synchronization information to be provided by the

portable media device.

15. The accessory of claim 14 wherein the parameter specifies one or more
types of database synchronization information selected from a plurality of available
information types, wherein the plurality of available information types includes:

date and time information indicating when the database of media assets stored
in the portable media device was most recently updated; and

asset count information indicating a total number of media assets currently

stored in the database of media assets.

16. The accessory of claim 6 wherein the input/output interface comprises

a wireless interface.

17. The accessory of claim 6 wherein the input/output interface comprises

a connector.

18. A method of operating a portable media device, the method
comprising:

updating a database of media assets stored on the portable media device,
wherein updating includes updating database synchronization information associated with the
database;

subsequently to updating the database, establishing a connection to an

acCceSsSory,

37

[I T = e U e N S

p—t e e e b
AW N =

WO 2009/032708 PCT/US2008/074505

receiving from the accessory a request for the database synchronization
information; and

providing to the accessory the updated database synchronization information.

19. The method of claim 18 wherein the database synchronization
information includes a synchronization identifier and wherein updating the database

synchronization information includes changing the synchronization identifier.

20. The method of claim 18 wherein the database synchronization
information includes a plurality of information items, the plurality of information items
including:

date and time information indicating when the act of synchronizing with the
host computer occurred; and

asset count information indicating a total number of media assets stored by the

portable media device after the synchronization operation.

21. The method of claim 20 wherein the request received from the

accessory specifies which one or more of the information items is requested.

22. The method of claim 18 wherein updating the database of media assets

includes synchronizing the portable media device with a host computer.

23. A portable media device for use with an accessory, the portable media
device comprising:

a storage device configured to store a database of media assets and metadata
associated with the media assets and further configured to store database synchronization
information for the database;

a database engine configured to access the metadata on the storage device;

a playback engine configured to play media assets stored on the storage
device;

an input/output interface configured to exchange commands and data with an
accessory; and

control logic coupled to the database engine, the playback engine, and the
input/output interface, the control logic being configured to:

update the database, including updating the database synchronization

information;

38

15
16
17
18
19

p—

S DO X 1N W N

X 1 N AWM

fum—

WO 2009/032708 PCT/US2008/074505

establish a connection to an accessory via the input/output interface;

receive from the accessory, via the input/output interface, a request for
the database synchronization information; and

provide to the accessory, via the input/output interface, the updated

database synchronization information.

24. A portable media device for use with an accessory, the portable media
device comprising:

a storage device configured to store a database of media assets;

an input/output interface configured to exchange a plurality of commands with
the accessory,

wherein the plurality of commands includes:

a first command receivable from the accessory by the portable media
device, the first command requesting database synchronization information from the
portable media device, the database synchronization information pertaining to an
update of the database of media assets; and

a second command sendable by the portable media device to the
accessory, the second command providing the requested database synchronization

information.

25. The portable media device of claim 24 wherein the first command
includes a parameter specifying a type of database synchronization information to be

provided by the portable media device.

26. The portable media device of claim 25 wherein the types of database
synchronization information include at least one of:

a synchronization identifier that changes whenever the database of media
assets is updated,

date and time information indicating when a most recent update to the
database of media assets occurred; or

asset count information indicating a total number of media assets stored in the

database.

27. A method of operating an accessory to control a portable media device,

the method comprising, by the accessory:

39

O 0 N N W AW

10
11
12

AOW N

W

WO 2009/032708 PCT/US2008/074505

receiving a first user input indicating a selection to be made from a database of
media assets stored by the portable media device;

sending a first command to the portable media device, the first command
instructing the portable media device to make the selection and thereby select one or more
media assets from the database;

receiving a second user input indicating that the selected one or more media
assets are to be added to a playlist maintained in the portable media device; and

sending a second command to the portable media device, the second command
instructing the portable media device to add the selected one or more media assets to the

playlist.

28. The method of claim 27 further comprising:
receiving a third user input indicating that the playlist is to be played; and
sending a third command to the portable media device, the third command

instructing the portable media device to begin playing the playlist.

29. The method of claim 27 further comprising:
caching information identifying the media assets added to the playlist in a

local cache of the accessory.

30. The method of claim 27 further comprising:

in response to receiving the second user input and prior to sending the second
command to the portable media device, determining whether the playlist already exists; and

in the event that the playlist does not already exist, sending a third command
to the portable media device, the third command instructing the portable media device to

create the playlist, wherein the third command is sent prior to sending the second command.

31. The method of claim 30 further comprising:
receiving an acknowledgement command from the portable media device in

response to the third command.

32. The method of claim 31 wherein the acknowledgement command
includes an identifier assigned to the playlist by the portable media device and wherein
sending the second command includes sending the identifier as a parameter of the second

command.

40

AW

O 00 N O W AW N e [V I S VS)

—_—
- O

WO 2009/032708 PCT/US2008/074505

33. The method of claim 27 further comprising, prior to sending the
second command:
sending a third command to the portable media device, the third command

instructing the portable media device to create the playlist.

34. The method of claim 33 further comprising, prior to sending the third
command:

receiving a third user input requesting creation of a new playlist,

wherein the third command is sent in response to receiving the third user

input.

35. A method of operating an accessory to control a portable media device,
the method comprising, by the accessory:

requesting, from the portable media device, information about one or more
media assets in a playback queue of the portable media device;

receiving the requested information;

instructing the portable media device to define a remote playlist based on the
received information;

receiving a user input modifying the remote playlist; and

in response to the user input, sending a playlist modification command to the
portable media device, wherein the portable media device modifies the remote playlist based

on the playlist modification command.

36. The method of claim 35 wherein the user input modifying the remote
playlist includes a user selection of a media asset from a database of media assets stored by

the portable media device to be added to the remote playlist.

37. The method of claim 35 wherein the user input modifying the remote
playlist includes a user selection of a group of media assets from a database of media assets

stored by the portable media device to be added to the remote playlist.

38. The method of claim 35 wherein the user input modifying the remote

playlist includes a user selection of a media asset to be removed from the remote playlist.

39. The method of claim 35 further comprising:

41

O 0 1 N W)

DN DN = e e e e e e e
—_— O v X NN R WD -, O

2

WO 2009/032708 PCT/US2008/074505

displaying the remote playlist prior to receiving the user input.

40. The method of claim 39 further comprising:

displaying a modified remote playlist in response to the user input.

41. The method of claim 35 wherein requesting the information about the
one or more media assets is performed in response to detecting that the portable media device

has become connected to the accessory.

42. An accessory for use with a portable media device, the accessory
comprising:

a user interface including at least one input control operable by a user;

an input/output interface configured to exchange a plurality of commands with
the portable media device; and

a controller coupled to the user interface and the input/output interface and
configured to control the input/output interface to exchange commands with the portable
media device based at least in part on user input received by the user interface via the at least
one input control,

wherein the plurality of commands includes:

a first command sendable by the accessory to the portable media
device, the first command instructing the portable media device to create a playlist in
the portable media device;

a second command sendable by the accessory to the portable media
device, the second command instructing the portable media device to add a specified
media asset from a database of media assets stored by the portable media device to the
playlist; and

a third command sendable by the accessory to the portable media
device, the third command instructing the portable media device to add a currently
selected group of media assets from the database of media assets stored by the

portable media device to the playlist.

43. The accessory of claim 42 wherein the plurality of commands further

includes:

42

B WD whn B~ W N

w»n AW N

WO 2009/032708 PCT/US2008/074505

a fourth command sendable by the accessory to the portable media device, the
fourth command instructing the portable media device to remove a specified media asset

from the playlist.

44, The accessory of claim 42 wherein the plurality of commands further
includes:

a fourth command sendable by the accessory to the portable media device, the
fourth command instructing the portable media device to change an ordering of the media

assets in the playlist.

45. The accessory of claim 42 wherein the plurality of commands further
includes:
a fourth command sendable by the accessory to the portable media device, the

fourth command instructing the portable media device to delete the playlist.

46. The accessory of claim 42 wherein the plurality of commands further
includes:

an acknowledgement command receivable by the accessory from the portable
media device, the acknowledgement command acknowledging receipt by the portable media

device of one of the plurality of commands sent by the accessory.

47. The accessory of claim 46 wherein an instance of the
acknowledgement command received by the accessory in response to the first command

includes an identifier of the created playlist.

48. The accessory of claim 47 wherein each instance of the second

command or the third command includes the identifier of the created playlist as a parameter.

49. The accessory of claim 47 wherein each instance of the second
command or the third command includes as a parameter the identifier of one of a plurality of

playlists, wherein each one of the plurality of playlists was created using the first command.

50. The accessory of claim 42 wherein the plurality of commands further

includes:

43

0 2N bW

O 0 3 N R W N =

—_— = s
[N =

WO 2009/032708 PCT/US2008/074505

a fourth command sendable by the accessory to the portable media device, the
fourth command instructing the portable media device to provide information about one or
more media assets in a playback queue of the portable media device; and

a fifth command receivable by the accessory from the portable media device,
the fifth command providing information about the one or more media assets in the playback

queue of the portable media device.

51. The accessory of claim 50 wherein the controller is further configured
to control the input/output interface to send the fourth command in response to detecting that

the accessory has become attached to a portable media device.

52. The accessory of claim 51 wherein the controller is further configured
to use the first and second commands together with information provided via the fifth

command to define a playlist.

53. The accessory of claim 42 wherein the input/output interface

comprises a wireless interface.

54. The accessory of claim 42 wherein the input/output interface

comprises a connector.

55. A method of operating a portable media device, the method
comprising:

receiving, from an accessory communicably coupled to the portable media
device, a first command instructing the portable media device to make a selection from a
database of media assets stored by the portable media device;

making the requested selection, thereby selecting one or more media assets
from the database of media assets;

receiving, from the accessory, a second command indicating that the selected
one or more media assets are to be added to a playlist maintained in the portable media
device; and

adding the selected one or more media assets to the playlist in response to the

second command.

56. The method of claim 55 further comprising:

44

AN W AW N

o« 1 N bW N e

WO 2009/032708 PCT/US2008/074505

receiving, from the accessory, a third command indicating that the playlist is
to be played; and

initiating playing of the playlist in response to the third command.

57. The method of claim 55 further comprising, prior to receiving the
second command:

receiving, from the accessory, a third command indicating that a new playlist
is to be created; and

creating the new playlist in response to the third command.

58. The method of claim 57 further comprising:
sending an acknowledgement command to the accessory in response to the

third command.

59. The method of claim 58 wherein creating the new playlist includes
assigning a playlist identifier to the new playlist and wherein the playlist identifier is included

in the acknowledgement command as a parameter.

60. The method of claim 59 wherein the second command, as received by

the portable media device, includes the playlist identifier as a parameter.

61. The method of claim 60 further comprising:

in response to receiving the second command, extracting the playlist identifier
from the second command; and

using the playlist identifier to identify one of a plurality of playlists maintained
in the portable media device as the playlist to which the selected one or more media assets are

to be added.

62. A portable media device for use with an accessory, the portable media
device comprising:

a storage device configured to store a database of media assets and metadata
associated with the media assets and further configured to store one or more playlists;

an input/output interface configured to exchange a plurality of commands with
the accessory; and

a processor coupled to the storage device and the input/output interface, the

processor being configured to respond to commands received via the input/output interface,

45

10
11
12
13
14
15
16
17
18
19
20

N 9N A WD

~N O W B L N =

WO 2009/032708 PCT/US2008/074505

wherein the plurality of commands includes:

a first command receivable by the portable media device from the
accessory, the first command instructing the portable media device to create a playlist
in the portable media device;

a second command receivable by portable media device from the
accessory, the second command instructing the portable media device to add a
currently selected media asset from a database of media assets stored by the portable
media device to the playlist; and

a third command receivable by the portable media device from the
accessory, the third command instructing the portable media device to add a currently
selected group of media assets from the database of media assets stored by the

portable media device to the playlist.

63. The portable media device of claim 62 wherein the plurality of
commands further includes:

a fourth command receivable by the portable media device from the accessory,
the fourth command instructing the portable media device to provide information about one
or more media assets in the playback queue; and

a fifth command sendable by the portable media device to the accessory in
response to the fourth command, the fifth command providing information about the one or

more media assets in the playback queue.

64. The portable media device of claim 62 wherein the input/output

interface comprises a wireless interface.

65. The portable media device of claim 62 wherein the input/output

interface comprises a connector.

66. A method of operating an accessory to control a portable media device,
the method comprising, by the accessory:

establishing a connection to the portable media device;

determining that a media asset from a database of media assets stored by the
portable media device is queued for playback by the portable media device;

requesting, from the portable media device, navigation history information

indicating a navigational path by which the media asset was selected;

46

10
11

AW N

(S N N . 2 \®]

wm AW N

wnm AW

WO 2009/032708 PCT/US2008/074505

receiving the navigation history information from the portable media device;
and
initializing a database navigation interface of the accessory according to the

navigation history information.

67. The method of claim 66 further comprising:
presenting the database navigation interface to a user of the accessory;
receiving a user input indicating a navigation operation to be performed; and

using the navigation history information to perform the navigation operation.

68. The method of claim 67 wherein the navigation operation corresponds

to backing up on a navigational path.

69. The method of claim 66 wherein:

requesting the navigation history information includes sending a first
command to the portable media device; and

receiving the navigation history information includes receiving a second
command from the portable media device, the second command including at least a portion

of the navigation history information.

70. The method of claim 69 wherein the portion of the navigation history
information includes:

information identifying a level from a plurality of levels of a hierarchy in a
database of media assets maintained by the portable media device; and

information identifying a selection made at the identified level.

71. The method of claim 70 wherein the first command includes a
parameter identifying one or more of the plurality of levels as a level for which selection

information is requested.

72. An accessory for providing a remote user interface for a portable
media device, the accessory comprising:

a user interface including at least one input control operable by a user;

an input/output interface configured to exchange commands and data with the

portable media device; and

47

(e N e N =

12
13
14
15
16
17
18
19

S O 0 9 N AW = O VS o

—_ e
[N

WO 2009/032708 PCT/US2008/074505

a controller coupled to the user interface and the input/output interface, the
controller being configured to detect a user input from the user interface and to control the
input/output interface based at least in part on the user input,

wherein the controller is further configured to:

establish a connection to the portable media device via the input/output
interface;

request, from the portable media device, navigation history information
indicating a navigational path by which a media asset currently queued for playback
by the portable media device was selected from a database of media assets stored by
the portable media device; and

initialize the user interface of the accessory to provide a navigational
interface for navigating the database of media assets stored by the portable media
device, wherein an initial state of the navigational interface is determined based on the

navigation history information.

73. The accessory of claim 72 wherein:

the user interface is further configured to receive a user input indicating a
navigation operation; and

the controller is further configured to respond to the user input based at least in

part on the navigation history information.

74. Anaccessory for use with a portable media device, the accessory
comprising:
a user interface including at least one input control operable by a user; and
an input/output interface configured to exchange a plurality of commands with
the portable media device; and
a controller coupled to the user interface and the input/output interface, the
controller being configured to detect a user input from the user interface and to control the
input/output interface based at least in part on the user input,
wherein the plurality of commands includes:
a first command sendable by the accessory to the portable media
device, the first command instructing the portable media device to provide navigation

history information indicating a navigational path by which a media asset from a

48

13
14
15
16
17

= O O 0 N N AW

—_—

WO 2009/032708 PCT/US2008/074505

database of media assets stored by the portable media device became selected for
playback by the portable media device; and

a second command receivable by the accessory from the portable
media device, the second command providing at least a portion of the navigation

history information.

75. The accessory of claim 74 wherein the controller is further configured
to present a remote database navigation interface via the user interface and to initialize the

remote database navigation interface based on the navigation history information.

76. The accessory of claim 75 wherein the controller is further configured
to receive a user input indicating a navigation operation to be performed and to use the

navigation history information to perform the navigation operation.

77. The accessory of claim 76 wherein the navigation operation

corresponds to backing up on a navigational path.

78. The accessory of claim 74 wherein the first command includes a level
parameter identifying a level from a plurality of levels of a hierarchy in a database of media

assets maintained by the portable media device.

79. The accessory of claim 78 wherein the second command includes an
index parameter identifying a selection made at the level identified by the level parameter of

the first command.

80. A method for operating a portable media device, the method
comprising:

selecting a media asset from a database of media assets stored by the portable
media device for playback, wherein selecting a media asset includes responding to a sequence
of user inputs, the sequence of user inputs establishing a navigational path through the
database;

queuing the selected media asset for playback by the portable media device;

establishing a connection to an accessory, the accessory providing a user
interface;

receiving from the accessory a request for navigation history information; and

providing to the accessory information identifying the navigational path.

49

AW ~N Y G AW N EEN OS N S

O 00 3 N R WD

e e e =,
W N o= O

WO 2009/032708 PCT/US2008/074505

81. The method of claim 80 further comprising:
receiving from the accessory a request for information about the media asset
that is queued for playback by the portable media device; and

providing the requested information about the media asset to the accessory.

82. The method of claim 80 wherein providing the information identifying
the navigational path includes sending a first command to the accessory, wherein the first
command includes:

a level parameter identifying one of a plurality of levels of a hierarchy for the
database of media assets; and

an index parameter identifying a selection made by the user from a plurality of

available selections at the level identified by the level parameter.

83. The method of claim 82 wherein receiving the request for navigation
history information includes receiving a second command from the accessory, wherein the
second command identifies one or more of the plurality of levels as being a level for which

selection information is requested.

84. The method of claim 83 wherein sending the first command to the
accessory includes sending one instance of the first command for each level identified by the

second command as being a level for which selection information is requested.

85. A portable media device for use with an accessory, the portable media
device comprising:

a user interface including at least one input control operable by a user;

an input/output interface configured to exchange a plurality of commands with
the accessory,

a storage device configured to store a database of media assets and metadata
associated with the media assets;

a playback engine configured to maintain a playback queue of media assets in
the database and to play media assets from the playback queue in response to playback
instructions received via the user interface or the input/output interface; and

a database engine configured to respond to commands received from either the
user interface or the input/output interface by navigating the database and selecting a media

asset from the database to be added to the playback queue, wherein selecting a media asset

50

14
15
16
17
18
19

S O 0 N1 N N RN W e

DN DNV = e = e e el e e e
[s o N e B N I * AN ¥, T "G U% T (O TN

AW

WO 2009/032708 PCT/US2008/074505

includes responding to a sequence of user inputs, the sequence of user inputs establishing a
navigational path through the database,

wherein the input/output interface is further configured to receive a request
from the accessory for navigation history information and to provide to the accessory
information identifying a navigational path via which a media asset became included in the

playback queue.

86. A portable media device for use with an accessory, the portable media
device comprising;:

a user interface including at least one input control operable by a user;

a storage device configured to store a database of media assets and metadata
associated with the media assets;

a database engine configured to respond to navigational instructions received
via the user interface by selecting one or more media assets from the database in accordance
with the navigational instructions, wherein a sequence of received navigational instructions
establishes a navigational path;

a playback engine configured to maintain a playback queue of media assets to
be played and to play media assets from the playback queue in response to playback
instructions received via the user interface; and

an input/output interface configured to exchange a plurality of commands with
the accessory, the plurality of commands including:

a first command receivable by the portable media device from the
accessory, the first command instructing the portable media device to provide
navigation history information indicating a navigational path by which a media asset
from the database of media assets stored by the portable media device became
included in the playback queue; and

a second command sendable by the portable media device to the

accessory, the second command providing the navigation history information.

87. The portable media device of claim 86 wherein the metadata in the
database of media assets is navigable as a hierarchy having a plurality of levels and wherein
the first command includes a parameter identifying one or more of the plurality of levels as

being a level for which selection information is requested.

51

WO 2009/032708 PCT/US2008/074505

1 88. The portable media device of claim 87 wherein the second command
2 includes a level parameter identifying one of the plurality of levels and an index parameter

3 identifying a selection made at the level identified by the level parameter.

52

WO 2009/032708 PCT/US2008/074505

117

\ 100

S
O
7

e e o o e e e = e . —— — . a— — — — o —

WO 2009/032708 PCT/US2008/074505
2/7
PMD
202 200
210 208 /
STORAGE DEVICE PROCESSQOR 204 /
209l ° J-‘ PLAYBACK |1
I~ METADATA ENGINE USER
1 INTERFACE
207 ASSET (U DATABASE
ENGINE [~
21— PLAYLIST J | 212
/ ACCESSORY /0 ~_,,
206 +
ACCESSORY
220
220 PMD 1/0
222 l \226 228
USER
INTERFACE CONTROLLER CACHE
T~ 224
MEDIA
OUTPUT [™~230

FIG. 2

WO 2009/032708

300

318

320

YES

304

3/7

302

PCT/US2008/074505

PMD attached?

YES

Identify and authenticate

306

v

Initiate remote user interface mode

™308

v

Request DBID from PMD

™310

v

Receive DBID

312

v

Request sync information

314

v

Receive sync info

316

Received DBID =
Cached DBID?

Received sync info =
Cached sync info?

NO

Determine that no
intervening sync occurred

S~322

326 |

Determine that intervening
sync occurred

v

v

Use existing cache

324 328—]

Invalidate cache

v

330—

Cache current DBID,

sync info

J

End 332

FIG. 3

WO 2009/032708

400

406

414

a/7

Receive user input

Navigate Database?

NO

Add track(s) to playlist?

PCT/US2008/074505

408

Send navigation command
to database engine

v

410

Receive response

v

412

Update display to reflect
navigation result

Instruct database engine to

create playlist

420

Instruct database engine to |

add track(s) to playlist

|

FIG. 4A

WO 2009/032708 PCT/US2008/074505

517

422

Instruct database engine to
remove track(s) from
playlist

Remove track(s) from playlist?

NO /

424

Instruct database engine to
delete remote playlist

428

Delete playlist?

End

430

Process other user input (—_ .,

FIG. 4B

WO 2009/032708 PCT/US2008/074505

6/7

502

\ / 504
PMD attaches to accessory

506
Request initial queued track /
information from PMD

'

508
PMD returns requested /
information

510
YES

Any tracks queued? 1

\ Obtain additional information
about queued tracks

v

514 \
Display remote playlist

J

-

: 516
User inputs further playback
selections to accessory

y

Accessory combines playback
selections into remote playlist

v

Accessory displays updated
remote playlist

v

Play remote playlist

522

S N S S

FIG. 5

WO 2009/032708

77

PCT/US2008/074505

600
.

PMD attaches to accessory ~— 604

v

Request database selection history 605

v

Receive database selection history | 608

v

Display current database selection |~ g,

v

Receive user input to navigate

database

612

614

Use database selection
history to revert to previous
selection

™—616

FIG. 6

Obtain information from
database engine

618

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - claims
	Page 47 - claims
	Page 48 - claims
	Page 49 - claims
	Page 50 - claims
	Page 51 - claims
	Page 52 - claims
	Page 53 - claims
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings

