wo 2019/097347 A1 | NIUNY 00D T 0 0 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

World Intellectual Propert N
O orgmivation > OO D
International Bureau / (10) International Publication Number
(43) International Publication Date g WO 2019/097347 Al
23 May 2019 (23.05.2019) WIRPOIPCT
(51) International Patent Classification: (72) Inventors: GSCHWIND, Michael Karl; IBM Corpora-
G11C 8/00 (2006.01) tion, Intellectual Property Law Department, 2455 South

Road, MS P386, Poughkeepsie, NY 12601 (US). SALA-
PURA, Valentina; IBM Corporation, PO Box 218, 1101
Kitchawan Rd, Yorktown Heights, New York 10598 (US).

(22) International Filing Date(; 2N ber 2018 (02.11.2018 (74) Agent: GASCOYNE, Belinda;, [BM United Kingdom
ovember 0z.11.) Limited, Intellectual Property Law, Hursley Park, Winches-
(25) Filing Language: English ter Hampshire SO21 2JN (GB).

(21) International Application Number:
PCT/IB2018/058619

(26) Publication Language: English (81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

(30) Priority Data: AO, AT, AU, AZ. BA, BB, BG, BH, BN, BR, BW, BY, BZ.

15/811,943 14 November 2017 (14.11.2017) US CA. CH, CL. CN, CO, CR, CU, CZ. DE, DJ, DK, DM. DO,

(71) Applicant: INTERNATIONAL BUSINESS DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,

MACHINES CORPORATION [US/US]; New Orchard HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,

Road, Armonk, New York 10504 (US). KR, KW KZ LA, LC,LK,LR,LS,LU,LY, MA, MD, ME,

. MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,

(71) Applicants (for MG only): IBM UNITED KING- OM. PA. PE, PG, PHL, PL. PT. QA. RO, RS, RU. RW. SA.

DOM LIMITED [QB/GB]; PO Box 41, North Harbour, SC, SD, SE. SG. SK. SL. SM. ST, SV, SY, TH, TJ, TM, TN.
Portsmouth Hampshire PO6 3AU (GB). IBM (CHINA) TR, TT, TZ. UA. UG, US. UZ, VC, VN, ZA, ZM., ZW.

INVESTMENT COMPANY LIMITED [CN/CN]; 25/

F, Pangu Plaza, No.27, Central North 4th Ring Road, (84) Designated States (unless otherwise indicated, for every

Chaoyang District, Beijing 100101 (CN). kind of regional protection available). ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

(54) Title: CONFIGURATION STATE REGISTERS GROUPED BASED ON FUNCTIONAL AFFINITY

BYSTEM MEMORY
208

PROCESSOR 200 IN-MEMORY CSR AREA
210

N-PROCESSOR CSRs 202

LR || CIR i WMSR | 22 .
FPSCR || N | XERFO || (EB3 9:72@8
YERF1 || XERF2 || (CACHE I\ |_SRRO|

grgﬁ HIERARCHY]

FIG. 2

(57) Abstract: Configuration state registers grouped based on functional affinity. An identification of an in-memory configuration state
register for which memory is assigned is obtained. Based on the identification, an offset into the memory at which the in-memory con-
figuration state register is stored is determined. The offset is allocated to the in-memory configuration state register based on functional
affinity of the in-memory configuration state register. The in- memory configuration state register is accessed using at least the offset.

[Continued on next page]

WO 2019/097347 A [IN 0|00 000 000 00RO 00O

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, IR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SL SK, SM,
TR). OAPI (BF, BJ, CF, CG, CL CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2019/097347 PCT/IB2018/058619

CONFIGURATION STATE REGISTERS GROUPED BASED ON FUNCTIONAL AFFINITY

BACKGROUND
[0001] One or more aspects relate, in general, to processing within a computing environment, and in
particular, to facilitating such processing.
[0002] Computers of a computing environment include central processing units (CPUs) or processors that

control processing within the computers. Behavior of a central processing unit is controlled by control registers.
Control registers are processor registers that perform particular tasks, such as interrupt control, switching the

addressing mode, paging control and/or coprocessor control, as examples.

[0003] Control registers are typically implemented as latches, such as solid state elements directly on a
processor chip. Some computers use a large number of control registers, as defined by the architectural

implementation of the computers. Thus, control registers represent a growing area of the chip.

[0004] Moreover, some computers support multi-threading in which a central processing unit can execute
multiple processes or threads concurrently. Each thread uses a separate set of control registers; thereby,

increasing the number of control registers on a chip.

[0005] An increasing number of latch-based control registers may affect performance, chip area and/or
power consumption. For instance, control registers are switched during context switches, and thus, an increase in
the number of control registers, increases the cost of context switching. Further, with latch-based control registers,

updates to controls occur in program order, which may also affect performance.

[0006] Different architectures may have different names for control registers. For instance, in the Power
Architecture offered by International Business Machines Corporation, Armonk, New York, the control registers are
referred to as special purpose register (SPRs). Other architectures may use other names. The use of control

registers herein includes control registers of other names, including, for instance, SPRs, as well as others.
SUMMARY

[0007] Shortcomings of the prior art are overcome and additional advantages are provided through the
provision of a computer program product for facilitating processing within a computing environment. The computer
program product includes a computer readable storage medium readable by a processing circuit and storing
instructions for performing a method. The method includes, for instance, obtaining an identification of an in-memory
configuration state register for which memory is assigned. Based on the identification, an offset into the memory at
which the in-memory configuration state register is stored is determined. The offset is allocated to the in-memory
configuration state register based on functional affinity of the in-memory configuration state register. The in-

memory configuration state register is accessed using at least the offset.

WO 2019/097347 PCT/IB2018/058619

[0008] As an example, the assigned offset places the in-memory configuration state register in a same cache
line as another in-memory configuration state register having a same functional affinity. This provides efficiencies

when accessing memory, facilitating processing and improving performance.

[0009] In one example, the in-memory configuration state register and the other in-memory configuration
state register have the same functional affinity based on both the in-memory configuration state register and the

other in-memory configuration state register being used in a particular operation.

[0010] As another example, the assigned offset places the in-memory configuration state register in an
adjacent cache line as another in-memory configuration state register having a same functional affinity. This

provides efficiencies when accessing memory, facilitating processing and improving performance.

[0011] In one example, the offset is an index position within a particular unit of the memory. Further, in one
example, a version indication is provided for the particular unit of the memory. The version indication provides

flexibility in memory management and facilitates processing.

[0012] In one aspect, the identification includes a register number of the in-memory configuration state
register.
[0013] Further, in one embodiment, the determining the offset includes performing a look-up in a data

structure. In another embodiment, the determining the offset includes using a computation to determine the offset.

[0014] In one aspect, the offset is returned to a requester in order for the requester to access the in-memory

configuration state register.

[0015] Computer-implemented methods and systems relating to one or more aspects are also described and

claimed herein. Further, services relating to one or more aspects are also described and may be claimed herein.

[0016] Additional features and advantages are realized through the techniques described herein. Other

embodiments and aspects are described in detail herein and are considered a part of the claimed aspects.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] One or more aspects are particularly pointed out and distinctly claimed as examples in the claims at

the conclusion of the specification. The foregoing and objects, features, and advantages of one or more aspects

are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
FIG. 1A depicts one example of a computing environment to incorporate and use one or more aspects

of the present invention;

FIG. 1B depicts another example of a computing environment to incorporate and use one or more aspects of the

present invention;

WO 2019/097347 PCT/IB2018/058619
3

FIG. 1C depicts further details of a processor of FIG. 1A or FIG. 1B, in accordance with one or more
aspects of the present invention;

FIG. 1D depicts further details of one example of an instruction execution pipeline used in accordance
with one or more aspects of the present invention;

FIG. 1E depicts further details of one example of a processor, in accordance with an aspect of the
present invention;

FIG. 2 depicts one example of in-processor configuration state registers and in-memory configuration
state registers, in accordance with an aspect of the present invention;

FIG. 3 depicts one example of decode logic associated with using in-memory configuration state
registers, in accordance with an aspect of the present invention;

FIG. 4 depicts one example of a load configuration state register internal operation, in accordance
with an aspect of the present invention;

FIG. 5 depicts one example of a store configuration state register internal operation, in accordance
with an aspect of the present invention;

FIG. 6 depicts one example of using an in-memory configuration state register, in accordance with an
aspect of the present invention;

FIG. 7 depicts another example of using an in-memory configuration state register, in accordance with
an aspect of the present invention;

FIG. 8 depicts one example of a configuration state register write operation, in accordance with an
aspect of the present invention;

FIG. 9 depicts one example of a configuration state register read operation, in accordance with an
aspect of the present invention;

FIG. 10 depicts one embodiment of decode logic associated with a move to or a move from
configuration state register, in accordance with an aspect of the present invention;

FIG. 11 depicts further details associated with a move to configuration state register instruction, in
accordance with an aspect of the present invention;

FIG. 12 depicts further details of a move from configuration state register instruction, in accordance
with an aspect of the present invention;

FIG. 13A depicts one embodiment of logic associated with a composite configuration state register
read reference, in accordance with an aspect of the present invention;

FIG. 13B depicts one embodiment of logic associated with a composite configuration state register
write reference, in accordance with an aspect of the present invention;

FIG. 14 depicts one example of a composite configuration state register, in accordance with an aspect
of the present invention;

FIGS. 15A-15B depict one example of linear mapping of configuration state registers, in accordance

with an aspect of the present invention;

WO 2019/097347 PCT/IB2018/058619
4

FIG. 16 depicts one example of remap flow logic for configuration state registers, in accordance with
an aspect of the present invention;

FIG. 17A depicts one example of multiple configuration state register store operations;

FIG. 17B depicts one example of a bulk store configuration state register operation, in accordance
with an aspect of the present invention;

FIG. 17C depicts one example of a bulk load configuration state register operation, in accordance with
an aspect of the present invention;

FIG. 18A depicts one example of specifying an architectural configuration control, in accordance with
an aspect of the present invention;

FIG. 18B depicts another example of specifying an architectural configuration control, in accordance
with an aspect of the present invention;

FIG. 19A depicts one example of performing a context switch, in accordance with an aspect of the
present invention;

FIG. 19B depicts another example of performing a context switch, in accordance with an aspect of the
present invention;

FIG. 20 depicts one embodiment of address translation associated with a move to configuration state
register operation, in accordance with an aspect of the present invention;

FIGS. 21A-21B depict examples of performing dynamic address translation, in accordance with
aspects of the present invention;

FIG. 22 depicts one example of a page table entry, in accordance with an aspect of the present
invention;

FIG. 23 depicts one example of particular configuration state registers being associated with particular
contexts, in accordance with an aspect of the present invention;

FIG. 24 depicts one embodiment of providing a pinning notification to a host system, in accordance
with an aspect of the present invention;

FIG. 25 depicts one embodiment of specifying a pin operation in a page table entry, in accordance
with an aspect of the present invention;

FIG. 26 depicts one embodiment of specifying an unpin operation in a page table entry, in accordance
with an aspect of the present invention;

FIG. 27 depicts one example of combining a pin and an unpin operation in one hypervisor call, in
accordance with an aspect of the present invention;

FIG. 28 depicts further details associated with performing a pin and an unpin operation based on a
single call, in accordance with an aspect of the present invention;

FIGS. 29A-29C provide various examples of a data write, in accordance with one or more aspects of
the present invention;

FIGS. 30A-30C provide various examples of a data read, in accordance with one or more aspects of

the present invention;

WO 2019/097347 PCT/IB2018/058619
5
FIGS. 31A-31B depict one embodiment of facilitating processing within a computing environment, in
accordance with an aspect of the present invention;
FIG. 32A depicts another example of a computing environment to incorporate and use one or more
aspects of the present invention;
FIG. 32B depicts further details of the memory of FIG. 324,
FIG. 33 depicts one embodiment of a cloud computing environment; and

FIG. 34 depicts one example of abstraction model layers.
DETAILED DESCRIPTION

[0018] In accordance with an aspect of the present invention, various configuration state registers are
provided in-memory rather than in-processor. As used herein, the term “configuration state register” includes
control registers; machine state registers (MSRs), such as a program status word (PSW) or other machine state
registers; status registers (e.g., floating point status control register); special purpose register (SPRs); configuration

registers; and/or other registers that configure operations, e.g., of instructions.

[0019] Selected configuration state registers (or portions thereof in a further agpect) are provided in-memory,
in which those registers are mapped to system memory and are included in the memory hierarchy which is coupled
to, but separate from, the processor. The memory hierarchy includes, for instance, load/store queues, one or more
memory caches, and system memory (also referred to herein as main memory, central storage, storage, main
storage, memory). By being in-memory, instead of in-processor, the registers are accessed by using a memory
address, and access requests may be re-ordered or speculatively processed. In contrast, access requests for
configuration state registers that are in-processor are not processed out-of-order or speculatively. In-processor
configuration state registers are implemented as, for instancs, solid state elements (such as latches), e.g., directly
on-chip. On-chip denotes or relates to circuitry included in a single integrated circuit or in the same integrated

circuit as a given device.

[0020] Based on the configuration state registers being stored in system memory, certain instructions, such
as a move to configuration state register instruction (e.g., move to SPR (mtspr) instruction) and a move from
configuration state register instruction (e.g., move from SPR (mfspr) instruction), are replaced by load and store
instructions or operations by instruction decode logic. The load and store instructions/operations that are generated

are committed to store queues, and typical load and store processing are performed.

[0021] As one example, a storage area to include the configuration state registers is defined by the operating
system and/or a hypervisor and set aside for storing memory-based registers. In one embodiment, a physical

memory region is architecturally specified (e.g., the first or last n pages of physical memory).

WO 2019/097347 PCT/IB2018/058619
6
[0022] In afurther aspect, one or more portions of a configuration state register are provided in-memory,
while one or more other portions of the configuration state register are provided in-processor. In one example, the

portions provided in-memory are those used less frequently.

[0023] In yet a further aspect, a remapping of configuration state registers is provided such that configuration
state registers (or at least portions thereof) that are typically used together, are placed in memory together (e.g., in

a single cache line or adjacent cache lines) to improve processing performance.

[0024] Further, in another aspect, instructions or operations are provided to perform a bulk store or load of
multiple configuration state registers. This is to facilitate, for instance, context switching, improving performance

thereof,

[0025] Yet further, in one aspect, processing is facilitated and performance is improved by defining a set of

controls to identify where in memory the configuration state registers are stored.

[0026] In a further aspect, efficiencies are achieved during context switching by manipulating memory
pointers of in-memory configuration state registers. The pointers are manipulated, rather than copying the old
configuration data. This improves processing within the computing environment by increasing the speed and

reducing complexity during context switches.

[0027] Moreover, in another aspect, based on executing an instruction that loads an address to be used as a
base address, address translation is automatically performed in order to avoid a potential page fault later on in

processing of the instruction.

[0028] In yet a further aspect, configuration state registers are segregated by context or group (e.g.,

hypervisor, operating system, process, thread) to facilitate processing by increasing management flexibility.

[0029] As a further aspect, an indication of automatic pinning for an initialized memory backing state is
provided.

[0030] Yet further, in another aspect, pinning of memory pages is efficiently managed using paravirtualized
pinning calls.

[0031] Even further, in one aspect, system memory is protected against single event upsets.

[0032] Various aspects are described herein. Further, many variations are possible without departing from a

spirit of aspects of the present invention. It should be noted that, unless otherwise inconsistent, each aspect or

feature described herein and variants thereof may be combinable with any other aspect or feature.

[0033] One embodiment of a computing environment to incorporate and use one or more aspects of the

present invention is described with reference to FIG. 1A. In one example, the computing environment is based on

WO 2019/097347 PCT/IB2018/058619
7
the z/Architecture, offered by International Business Machines Corporation, Armonk, New York. One embodiment
of the z/Architecture is described in “z/Architecture Principles of Operation,” IBM Publication No. SA22-7832-10,
March 2015, which is hereby incorporated herein by reference in its entirety. ZIARCHITECTURE is a registered

trademark of International Business Machines Corporation, Armonk, New York, USA.

[0034] In another example, the computing environment is based on the Power Architecture, offered by
International Business Machines Corporation, Armonk, New York. One embodiment of the Power Architecture is
described in “Power ISA™ Version 2.07B,” International Business Machines Corporation, April 9, 2015, which is
hereby incorporated herein by reference in its entirety. POWER ARCHITECTURE is a registered trademark of

International Business Machines Corporation, Armonk, New York, USA.

[0035] The computing environment may also be based on other architectures, including, but not limited to,

the Intel x86 architectures. Other examples also exist.

[0036] As shown in FIG. 1A, a computing environment 100 includes, for instance, a computer system 102
shown, e.g., in the form of a general-purpose computing device. Computer system 102 may include, but is not
limited to, one or more processors or processing units 104 (e.g., central processing units (CPUs)), a memory 106
(a.k.a., system memory, main memory, main storage, central storage or storage, as examples), and one or more

input/output (I/0) interfaces 108, coupled to one another via one or more buses and/or other connections 110.

[0037] Bus 110 represents one or more of any of several types of bus structures, including a memory bus or
memory controller, a peripheral bus, an accelerated graphics port, and a processor or local bus using any of a
variety of bus architectures. By way of example, and not limitation, such architectures include the Industry
Standard Architecture (ISA), the Micro Channel Architecture (MCA), the Enhanced ISA (EISA), the Video

Electronics Standards Association (VESA) local bus, and the Peripheral Component Interconnect (PCI).

[0038] Memory 106 may include, for instance, a cache 120, such as a shared cache, which may be coupled
to local caches 122 of processors 104. Further, memory 106 may include one or more programs or applications
130, an operating system 132, and one or more computer readable program instructions 134. Computer readable

program instructions 134 may be configured to carry out functions of embodiments of agpects of the invention.

[0039] Computer system 102 may also communicate via, e.g., I/O interfaces 108 with one or more external
devices 140, one or more network interfaces 142, and/or one or more data storage devices 144. Example external
devices include a user terminal, a tape drive, a pointing device, a display, etc. Network interface 142 enables
computer system 102 to communicate with one or more networks, such as alocal area network (LAN), a general
wide area network (WAN), and/or a public network (e.g., the Internet), providing communication with other

computing devices or systems.

WO 2019/097347 PCT/IB2018/058619
8
[0040] Data storage device 144 may store one or more programs 146, one or more computer readable
program instructions 148, and/or data, etc. The computer readable program instructions may be configured to carry

out functions of embodiments of aspects of the invention.

[0041] Computer system 102 may include and/or be coupled to removable/non-removable, volatile/non-
volatile computer system storage media. For example, it may include and/or be coupled to a non-removable, non-
volatile magnetic media (typically called a "hard drive"), a magnetic disk drive for reading from and writing to a
removable, non-volatile magnetic disk (e.g., a "floppy disk"), and/or an optical disk drive for reading from or writing
to a removable, non-volatile optical disk, such as a CD-ROM, DVD-ROM or other optical media. It should be
understood that other hardware and/or software components could be used in conjunction with computer system
102. Examples, include, but are not limited to: microcode, device drivers, redundant processing units, external disk

drive arrays, RAID systems, tape drives, and data archival storage systems, etc.

[0042] Computer system 102 may be operational with numerous other general purpose or special purpose
computing system environments or configurations. Examples of well-known computing systems, environments,
and/or configurations that may be suitable for use with computer system 102 include, but are not limited to,
personal computer (PC) systems, server computer systems, thin clients, thick clients, handheld or laptop devices,
multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics,
network PCs, minicomputer systems, mainframe computer systems, and distributed cloud computing environments

that include any of the above systems or devices, and the like.

[0043] In another embodiment, the computing environment supports virtual machines. One example of such
an environment is described with reference to FIG. 1B. In one example, a computing environment 161 includes a
central processor complex (CPC) 163 providing virtual machine support. CPC 163 is coupled to one or more
input/output (I/0) devices 167 via one or more control units 169. Central processor complex 163 includes, for
instance, a memory 165 (a.k.a., system memory, main memory, main storage, central storage, storage) coupled to
one or more processors (a.k.a., central processing units (CPUs)) 171, and an input/output subsystem 173, each of

which is described below.

[0044] Memory 165 includes, for example, one or more virtual machines 175, a virtual machine manager,
such as a hypervisor 177, that manages the virtual machines, and processor firmware 179. One example of
hypervisor 177 is zIWM, offered by International Business Machines Corporation, Armonk, New York. The
hypervisor is sometimes referred to as a host. Further, as used herein, firmware includes, e.g., the microcode of
the processor. It includes, for instance, the hardware-level instructions and/or data structures used in
implementation of higher level machine code. In one embodiment, it includes, for instance, proprietary code that is
typically delivered as microcode that includes trusted software or microcode specific to the underlying hardware and

controls operating system access to the system hardware.

WO 2019/097347 PCT/IB2018/058619
9
[0045] The virtual machine support of the CPC provides the ability to operate large numbers of virtual
machines 175, each capable of operating with different programs 185 and running a guest operating system 183,
such as Linux. Each virtual machine 175 is capable of functioning as a separate system. That is, each virtual
machine can be independently reset, run a guest operating system, and operate with different programs. An
operating system or application program running in a virtual machine appears to have access to a full and complete

system, but in reality, only a portion of it is available.

[0046] Memory 165 is coupled to processors (e.g., CPUs) 171, which are physical processor resources
assignable to virtual machines. For instance, virtual machine 175 includes one or more logical processors, each of
which represents all or a share of a physical processor resource 171 that may be dynamically allocated to the

virtual machine.

[0047] Further, memory 165 is coupled to an I/O subsystem 173. Input/output subsystem 173 directs the
flow of information between input/output control units 169 and devices 167 and main storage 165. It is coupled to

the central processing complex, in that it can be a part of the central processing complex or separate therefrom.

[0048] Further details regarding one example of a processor, such as processor 104 (or processor 171), are
described with reference to FIG. 1C. A processor, such as processor 104 (or processor 171), includes a plurality of
functional components used to execute instructions. These functional components include, for instance, an
instruction fetch component 150 to fetch instructions to be executed; an instruction decode unit 152 to decode the
fetched instructions and to obtain operands of the decoded instructions; instruction execution components 154 to
execute the decoded instructions; a memory access component 156 to access memory for instruction execution, if
necessary; and a write back component 160 to provide the results of the executed instructions. One or more of
these components may, in accordance with an aspect of the present invention, be used to execute one or more

instructions and/or operations associated with memory-based configuration state register processing 166.

[0049] Processor 104 (or processor 171) also includes, in one embodiment, one or more registers 168 to be
used by one or more of the functional components. Processor 104 (or processor 171) may include additional, fewer

and/or other components than the examples provided herein.

[0050] Further details regarding an execution pipeline of a processor, such as processor 104 or processor
171, are described with reference to FIG. 1D. Although various processing stages of the pipeline are depicted and
described herein, it will be understood that additional, fewer and/or other stages may be used without departing

from the spirit of aspects of the invention.

[0051] Referring to FIG. 1D, in one embodiment, an instruction is fetched 170 from an instruction queue, and
branch prediction 172 and/or decoding 174 of the instruction may be performed. The decoded instruction may be
added to a group of instructions 176 to be processed together. The grouped instructions are provided to a mapper

178 that determines any dependencies, assigns resources and dispatches the group of instructions/operations to

WO 2019/097347 PCT/IB2018/058619
10

the appropriate issue queues. There are one or more issue queues for the different types of execution units,
including, as examples, branch, load/store, floating point, fixed point, vector, etc. During an issue stage 180, an
instruction/operation is issued to the appropriate execution unit. Any registers are read 182 to retrieve its sources,
and the instruction/operation executes during an execute stage 184. As indicated, the execution may be for a
branch, aload (LD) or a store (ST), a fixed point operation (FX), a floating point operation (FP), or a vector
operation (VX), as examples. Any results are written to the appropriate register(s) during a write back stage 186.
Subsequently, the instruction completes 188. If there is an interruption or flush 190, processing may return to

instruction fetch 170.

[0052] Further, in one example, coupled to the decode unit is a register renaming unit 192, which may be

used in the saving/restoring of registers.

[0053] Additional details regarding a processor are described with reference to FIG. 1E. In one example, a
processor, such as processor 104 (or processor 171), is a pipelined processor that may include prediction
hardware, registers, caches, decoders, an instruction sequencing unit, and instruction execution units, as examples.
The prediction hardware includes, for instance, alocal branch history table (BHT) 1054, a global branch history
table (BHT) 105b, and a global selector 105¢. The prediction hardware is accessed through an instruction fetch

address register (IFAR) 107, which has the address for the next instruction fetch.

[0054] The same address is also provided to an instruction cache 109, which may fetch a plurality of

instructions referred to as a "fetch group". Associated with instruction cache 109 is a directory 111.

[0055] The cache and prediction hardware are accessed at approximately the same time with the same
address. If the prediction hardware has prediction information available for an instruction in the fetch group, that
prediction is forwarded to an instruction sequencing unit (ISU) 113, which, in turn, issues instructions to execution
units for execution. The prediction may be used to update IFAR 107 in conjunction with branch target calculation
115 and branch target prediction hardware (such as a link register prediction stack 117a and a count register stack
117b). If no prediction information is available, but one or more instruction decoders 119 find a branch instruction in
the fetch group, a prediction is created for that fetch group. Predicted branches are stored in the prediction

hardware, such as in a branch information queue (BIQ) 125, and forwarded to ISU 113.

[0056] A branch execution unit (BRU) 121 operates in response to instructions issued to it by ISU 113, BRU
121 has read access to a condition register (CR) file 123. Branch execution unit 121 further has access to
information stored by the branch scan logic in branch information queue 125 to determine the success of a branch
prediction, and is operatively coupled to instruction fetch address register(s) (IFAR) 107 corresponding to the one or
more threads supported by the microprocessor. In accordance with at least one embodiment, BIQ entries are
associated with, and identified by an identifier, e.g., by a branch tag, BTAG. When a branch associated with a BIQ

entry is completed, it is so marked. BIQ entries are maintained in a queue, and the oldest queue entries are de-

WO 2019/097347 PCT/IB2018/058619
11
allocated sequentially when they are marked as containing information associated with a completed branch. BRU

121 is further operatively coupled to cause a predictor update when BRU 121 discovers a branch misprediction.

[0057] When the instruction is executed, BRU 121 detects if the prediction is wrong. If so, the prediction is to
be updated. For this purpose, the processor also includes predictor update logic 127. Predictor update logic 127 is
responsive to an update indication from branch execution unit 121 and configured to update array entries in one or
more of the local BHT 1053, global BHT 105b, and global selector 105¢. The predictor hardware 105a, 105b, and
105¢ may have write ports distinct from the read ports used by the instruction fetch and prediction operation, or a
single read/write port may be shared. Predictor update logic 127 may further be operatively coupled to link stack

117a and count register stack 117b.

[0058] Referring now to condition register file (CRF) 123, CRF 123 is read-accessible by BRU 121 and can
be written to by the execution units, including but not limited to, a fixed point unit (FXU) 141, a floating point unit
(FPU) 143, and a vector multimedia extension unit (VMXU) 145. A condition register logic execution unit (CRL
execution) 147 (also referred to as the CRU), and special purpose register (SPR) handling logic 149 have read and
write access to condition register file (CRF) 123. CRU 147 performs logical operations on the condition registers
stored in CRF file 123. FXU 141 is able to perform write updates to CRF 123,

[0059] Processor 104 (or processor 171) further includes, a load/store unit 151, and various multiplexors 153

and buffers 155, as well as address translation tables 157, and other circuitry.

[0060] Further details regarding various registers used by a processor 200, such as processor 104 or
processor 171, are described with reference to FIG. 2. As shown, processor 200 includes a plurality of in-processor
configuration state registers (CSRs) 202. As examples, the in-processor configuration state registers include a link
register (LR), a counter register (CTR), a machine state register (MSR), a floating point status control register
(FPSCR), a next instruction address (NIA) register, and one or more integer exception registers (XER) registers.
Further, in accordance with an aspect of the present invention, system memory 206 coupled to processor 200
includes one or more in-memory configuration state registers 208. As examples, the in-memory configuration state
registers include event based branch return registers (EBBRR), event based branch registers (EBB), state
restoration registers (SRRs); an integer exception register (XER); and a vector register save register (VRSAVE). In
one example, the in-memory configuration state registers 208 are stored in an in-memory configuration state

register area 210 of system memory 206.

[0061] A configuration state register that is accessed frequently (e.g., several accesses in a row) may be

moved to a cache hierarchy 212 coupled to processor 200 and system memory 206.

[0062] In accordance with one aspect, based on one or more configuration state registers being moved or

placed in-memory, in-processor accesses to those configuration state registers are replaced with accesses to

WO 2019/097347 PCT/IB2018/058619
12
memory. One example of decode logic that determines the type of access is described with reference to FIG. 3.

This processing is performed by, e.g., the decode unit and/or another unit of the processor.

[0063] Referring to FIG. 3, initially, an instruction is received, STEP 300. A determination is made as to
whether the instruction is a move to configuration state register instruction, such as a Move to SPR (mtspr)
instruction, INQUIRY 302. If the instruction is a move to configuration state register instruction, then a further
determination is made as to whether the configuration state register indicated in the instruction is an in-memory
configuration state register, INQUIRY 304. If not, then conventional handling of the move to configuration state
register instruction is performed, STEP 306. However, if the configuration state register is an in-memory
configuration state register, then a store configuration state register internal operation is generated to store the
configuration state register in memory (e.g., store the hew contents of the configuration state register in memory),
STEP 308.

[0064] Returning to INQUIRY 302, if the received instruction is not a move to configuration state register
instruction, then a further determination is made as to whether the instruction is a move from configuration state
register instruction, such as a Move from SPR (mfspr) instruction, INQUIRY 312. If the instruction is a move from
configuration state register instruction, then a determination is made as to whether the configuration state register
indicated in the instruction is in-memory, INQUIRY 314. If not, then conventional move from configuration state
register handling is performed, STEP 316. Otherwise, a load configuration state register internal operation is

generated to obtain the contents of the register from memory, STEP 318,

[0065] Returning to INQUIRY 312, if the received instruction is not a move to or move from configuration
state register instruction, then yet a further determination may be performed to determine whether the received
instruction is another instruction that uses a configuration state register, INQUIRY 322. If so, then a read and/or
write internal operation may be generated depending on the function being performed by the instruction, STEP 324,

Otherwise, processing continues to STEP 332, in which conventional instruction decode processing is performed.

[0066] In other aspects of the present invention, internal operations to load configuration state register and
store configuration state register values are performed in conjunction with the performing of processor operations
not corresponding to instructions, e.g., in response to entering an exception handler responsive to receiving an

interrupt request.

[0067] Further details regarding a load configuration state register internal operation are described with
reference to FIG. 4. This processing is performed by a processor. Referring to FIG. 4, initially, a memory base
address (base) is obtained from a register or location (e.g., a base register, such as a thread control base register
(TCBR)) that contains an address of a memory unit (e.g., memory page) that is the base address of the memory
that includes the configuration state registers, STEP 400. Additionally, a register number indicated in the operation
is obtained, STEP 402. That register number is mapped to an offset in memory, STEP 404. For instance, each

configuration state register number (or other identification in another embodiment) is mapped to a particular location

WO 2019/097347 PCT/IB2018/058619
13
in memory. That location, is a certain amount (e.g., offset) from the base address. Then, aload from an address
(base address plus offset) is performed, STEP 406, and the loaded value is returned, STEP 408.

[0068] As used herein, base refers to a base address of the memory that includes the in-memory
configuration state registers, and base register refers to a register that includes the base. One example of a base
register is a thread control base register (TCBR), but other contexts (e.g., operating system, etc.) may use other

base registers.

[0069] Further details regarding a store configuration state register internal operation are described with
reference to FIG. 5. This processing is performed by a processor. Referring to FIG. 5, initially, a memory base
address (base) is obtained, e.g., from a base register (e.g., from TCBR), STEP 500, as well as, the register number
indicated in the operation, STEP 502. The register number is mapped to an offset in memory, STEP 504, and a
store operand (e.g., the contents of the register) is stored at an address specified by the base address plus offset,
STEP 506.

[0070] As indicated above, instructions other than a move from or a move to configuration state register
instruction may use a configuration state register. Thus, processing associated with one of these instructions is
described with reference to FIG. 6. This processing is performed by a processor. Referring to FIG. 6, in this
embodiment, an instruction/operation is obtained that includes a configuration state register read reference, STEP
600. Based thereon, a memory base address (base) for the configuration state register indicated in the
instruction/operation is obtained, e.g., from a base register (e.g., from TCBR), STEP 602, as well as the register
number indicated in the instruction/operation, STEP 604. The register number is mapped to an offset in memory,
STEP 606, and the contents from the address specified by base plus offset are loaded into a temporary register,
STEP 608. The temporary register is then used, STEP 610.

[0071] Similar processing is performed for a configuration state register write reference, as described with
reference to FIG. 7. This processing is performed by a processor. Referring to FIG. 7, in one example, a
configuration state register write reference is obtained, STEP 700. Based thereon, a memory base address (base)
is obtained, e.g., from a base register (e.g., from TCBR) for the configuration state register indicated in the
instruction/operation, STEP 702, in addition to the register number specified in the instruction/operation, STEP 704,
The register number is mapped to an offset, STEP 706, and the contents included in the write reference (e.g., in a

temporary register) are stored at the address specified at base plus offset, STEP 708,

[0072] Further details regarding an operational implementation view of a configuration state register write
operation (such as a move to configuration state register (e.g., mtspr)) are described with reference to FIG. 8. This
processing is performed by a processor. Referring to FIG. 8, in one example, the register number specified in the
operation is translated, STEP 800. For instance, the memory address corresponding to or mapped to the register
number (or other indication) is determined (e.g., by using a look-up table or calculated). Further, a store queue

entry is allocated, STEP 802, and the address corresponding to the subject configuration state register is stored into

WO 2019/097347 PCT/IB2018/058619
14
the store queue entry, STEP 804. Moreover, the contents (e.g., data value(s)) corresponding to the data written to
the subject configuration state register is written into the store queue entry, STEP 806. In one example, STEPS

804 and 806 may be performed out-of-order.

[0073] The store queue entry is monitored for reads to the indicated address (e.g., bypass from store queue),
STEP 808. Further, the store queue entry may be flushed based on a mispeculation event, which, in one example,

can occur up to an architectural in-order point, STEP 810.

[0074] The contents (e.g., data values) are written to an address in the memory hierarchy, e.g., a first level
cache, STEP 812. The data from the first level cache is provided based on a read request, STEP 814. Further,
based on a cache replacement policy, data is evicted from the first level cache to one or more next levels of the
cache hierarchy, STEP 816. Data from one or more next levels of the cache hierarchy are provided based on a
read request, STEP 818, Based on the cache replacement policy, data from the cache levels is evicted to system
memory, e.g., DRAM, STEP 820. The data from the system memory is provided based on aread request, STEP
822.

[0075] Further details regarding an operational implementation view of a configuration state register read
operation are described with reference to FIG. 9. This processing is performed by a processor. Referring to FIG. 9,
in one example, the register number specified by the read operation is translated to a corresponding memory
address, STEP 900. A load sequence number used to indicate a position in a load queue used to track load
requests and a load tag that tracks dependencies are obtained, STEP 902. A test for the presence of data at the
address corresponding to the configuration state register being read in the store queue is performed, STEP 904
(i.e., is the data to be read from memory in the store queue). If the data for the configuration state register to be
read is found in the store queue, INQUIRY 9086, then the value is obtained from the store queue, STEP 908, and

processing is complete.

[0076] Returning to INQUIRY 906, if the data for the configuration state register to be read is not found in the
store queue, then a further determination is made as to whether the data for the configuration state register to be
read is found in the first level cache, INQUIRY 910. If so, then the value is obtained from the first level cache,

STEP 912, and processing is complete.

[0077] Returning to INQUIRY 910, however, if the data is not found in the first level cache, then a further
determination is made as to whether the data for the configuration state register to be read is found in one or more
next level caches, INQUIRY 914. If the data is found in one or more next level caches, then the data is obtained

from a next level cache, STEP 916, and processing is complete.

[0078] Returning to INQUIRY 914, if the data is not in one or more next level caches, then a read request is
issued to the load queue to retrieve the data from system memory, STEP 918, The data corresponding to the

configuration state register is obtained when the load from system memory completes, STEP 920.

WO 2019/097347 PCT/IB2018/058619
15
[0079] In accordance with an aspect of the present invention, the allocation of in-memory memory units (e.g.,
pages) is performed in order to provide software compatibility. For instance, the allocation is performed by firmware
for a processor to be able to execute legacy hypervisors, and hypervisors to be able to execute legacy operating

systems, and so forth.

[0080] In one example, upon initial boot of the system, firmware allocates in-memory pages for the in-
memory configuration state registers, in firmware-owned memory. In one example, if a hypervisor is unaware of the
in-memory configuration state registers, then the firmware-owned pages are used throughout the entire execution of

the system without any further software reference to a base register, e.g., TCBR, etc.

[0081] As such, the hypervisor will simply perform context switches by reading the context using, e.g., a
move from configuration state register, e.g., mfspr, and reloading the context with, e.g., a move to configuration
state register, e.g., mtspr. This offers significant design simplicity and performance advantages within the computer

system.

[0082] Further, in one example, when a hypervisor is aware of memory-backed pages, it may configure each
new partition to have a set of backing pages. Further, if an operating system is unaware of in-memory configuration
state registers, then the hypervisor owned page(s) is used throughout the entire execution of the system without
any further software reference to, e.g., a base register, e.g., TCBR, etc. If the hypervisor is unaware as well, then

the operating system will use firmware-owned pages.

[0083] As such, the operating system will simply perform context switches by reading the context using, e.g.,
a move from configuration state register, such as, e.g., mfspr, and reloading the context with, e.g., a move to
configuration state register, such as, e.g., mtspr. This offers significant design simplicity and performance

advantages, facilitating processing within the computer system.

[0084] As described herein, in accordance with one or more aspects, selected configuration state registers
are stored in system memory. Thus, move to and from configuration state registers are replaced by load and store
instructions by instruction decode logic. Loads and stores that are so generated are committed to store queues,
and normal load and store processing are performed. In one example, the configuration state registers that are not
constantly needed (e.g., those other than registers, such as the program counter (PC), data and address break

point registers, PSW, floating point control, etc.) are those stored in memory.

[0085] As an example, the storage area is defined by the operating system and hypervisor and set aside for
storing memory-based registers. In one embodiment, a physical memory region is architecturally specified (e.g.,

the first or last n pages of physical memory).

[0086] In at least one embodiment, in-memory configuration state registers are mapped to normal cacheable
memory. When a configuration state register is to be updated, it is stored into a store queue. The store queue is

not only a queuing mechanism, but effectively provides a way to rename locations for storage in order to enable

WO 2019/097347 PCT/IB2018/058619
16
speculative execution of memory accesses. Multiple versions of speculative values for an address can be in the
store queue (in addition to an authoritative, architected value at an architectural in-order point, which is in cache or
system memory). The cache entries may be updated out-of-order, once they have been allocated. Also stores may

be undone by flushing entries from the store queue.

[0087] Consequently, an in-memory configuration state register can be updated by using the store queue and
read back out-of-order with no performance cost, where an in-core latch based configuration state register forces
two serialization and in-order access cost penalties because implementing means for speculative execution of in-

processor configuration state registers are most often prohibitively expensive.

[0088] Further, when a value is not in the store queus, a read of the value can be done more efficiently than
from a latch because frequently used memory controls (e.g., in-memory configuration state registers) will be found
in the cache and may be available in as little as 2-3 cycles (time to access a first level cache), much faster than the

special purpose logic needed to access a latch based configuration state register in a processor.

[0089] In one embodiment, when a page is allocated to hold configuration state registers, the architecture
disallows access to the page using memory operands. This avoids an interlock between a memory operation and

move from/move to configuration state register instructions.

[0090] In accordance with a further aspect of the present invention, one or more portions of a configuration
state register are provided in-memory, while one or more other portions of the configuration state register are
provided in-processor. For instance, a configuration state register may have a plurality of portions (e.g., fields) and
one or more of those portions that are, for instance, frequently accessed, may remain in-processor and the
remaining portions that are, for instance, infrequently used, may be moved to memory. This is described in further
detail with reference to FIGS. 10-14.

[0091] Initially, referring to FIG. 10, the decode unit of a processor (or another component) receives an
instruction, STEP 1000. A determination is made by the decode unit (or another component) as to whether that
instruction is a move to configuration state register instruction (mtcsr), such as to a Move to SPR (mtspr) instruction,
INQUIRY 1002. If it is a move to configuration state register instruction, then that instruction is handled, STEP
1004, as described below.

[0092] Returning to INQUIRY 1002, if the instruction is not a move to configuration state register instruction,
then a further determination is made as to whether the instruction is a move from configuration state register
instruction (mfcsr), such as a Move from SPR (mfspr) instruction, INQUIRY 1006. If it is a move from configuration
state register instruction, then that instruction is handled, as described below, STEP 1008. Returning to INQUIRY
1006, if the instruction is neither a move to or a move from configuration state register instruction, then conventional

instruction decode is performed, STEP 1010.

WO 2019/097347 PCT/IB2018/058619
17
[0093] In a further embodiment, other inquiries may be made as to whether it is another instruction that uses
a configuration state register, and if so, those instructions may be handled, as appropriate, examples of which are
described herein. In yet a further embodiment, processor operations not corresponding to instructions (e.g.,

initiating an exception handling sequence) may be similarly performed.

[0094] Further details regarding handling a move to configuration state register instruction are described with
reference to FIG. 11. In one example, the configuration state register may be a special purpose register (SPR), and
the instruction is a Move to SPR (mtspr) instruction. However, this is only one example. Other configuration state

registers may be processed similarly. This logic is performed by a processor, such as, for instance, the decode unit

of the processor. In other examples, one or more other components perform this logic.

[0095] Referring to FIG. 11, based on obtaining (e.g., receiving, provided, selecting, etc.) a move to
configuration state register instruction, such as an mtspr instruction, a determination is made as to whether a least a
portion of the configuration state register (CSR) specified by the instruction is in-memory, INQUIRY 1100. If not,
then conventional processing of the move to configuration state register instruction (e.g., mtspr) is performed, STEP
1102.

[0096] Returning to INQUIRY 1100, if at least a portion of the configuration state register is in-memory, then
afurther determination is made as to whether the entire configuration state register is in-memory, INQUIRY 1104,

If the entire configuration state register is in-memory, then a store configuration state register internal operation is

generated, STEP 1106. An example of processing associated with this internal operation is described with

reference to FIG. 5.

[0097] Returning to INQUIRY 1104, if only one or more portions of the configuration state register are in-
memory, then one or more store configuration state register operations are generated for the one or more in-
memory configuration state register portions, STEP 1110. Further, updated internal operations are generated for
the one or more in-core configuration state register portions, STEP 1112. The updated internal operations may be
one or more instructions, a state machine or other that performs the operation of copying the contents of one or
more general purpose registers including data for the specified in-core portions to the appropriate portion(s) of the

in-core configuration state register. Processing is complete.

[0098] Further details regarding processing associated with handling a move from configuration state register
instruction are described with reference to FIG. 12. In one example, the configuration state register may be a
special purpose register (SPR), and the instruction is a Move from SPR (mfspr) instruction. However, this is only
one example. Other configuration state registers may be processed similarly. This logic is performed by a
processor, such as, for instance, the decode unit of the processor. In other examples, one or more other

components perform this logic.

WO 2019/097347 PCT/IB2018/058619
18
[0099] Referring to FIG. 12, based on obtaining (e.g., receiving, providing, selecting, etc.) a move from
configuration state register instruction, such as an mfspr instruction, a determination is made as to whether at least
a portion of the configuration state register is in-memory. If not, then conventional processing is performed for the

move from configuration state register instruction, STEP 1202.

[00100] Returning to INQUIRY 1200, if at least a portion of the configuration state register is in-memory, then
afurther determination is made as to whether the entire configuration state register is in-memory, INQUIRY 1204,
If the entire configuration state register is in-memory, then a load configuration state register internal operation is
generated, STEP 1206. An example of processing associated with this operation is described with reference to
FIG. 4.

[00101] Returning to INQUIRY 1204, if only one or more portions of the configuration state register are in-
memory, then one or more load configuration state register internal operations are generated for one or more of the
in-memory configuration state register portions, STEP 1210. Further, one or more read internal operations are

generated for the one or more in-core configuration state register portions, STEP 1212.

[00102] Additionally, in one embodiment, one or more internal operations are generated to combine the in-
memory and in-core portions into an architecturally defined configuration state register image, STEP 1214, This
may include using, for instance, an Insert Under Mask instruction, or OR, AND, and/or NOT logic circuits, as

described further below.

[00103] Further details regarding the use of a composite configuration state register in which one or more
portions are in-processor and one or more portions are in-memory are described with reference to FIG. 13A, in
which a read reference is described. This logic is performed by a processor, such as, for instance, the decode unit

of the processor. In other examples, one or more other components perform this logic.

[00104] Referring to FIG. 13A, based on a composite configuration state register read reference 1300, a
determination is made as to whether a particular portion (also referred to as a component; e.g., a field) being
accessed is in-memory or in-processor, INQUIRY 1310. If it is in-processor, then the in-processor component is
accessed, STEP 1320, and processing continues to INQUIRY 1350, described below. However, if the particular
component is in-memory, INQUIRY 1310, then processing is performed, as described with reference to FIG. 6. For
instance, the memory base address (base) is obtained, STEP 1330, as well as a register number indicated in the
instruction referencing the composite configuration state register, STEP 1332. The register number is mapped to
an offset, STEP 1334, and a load is performed from the address (base + offset) to a temporary register, STEP
1336. The temporary register is then used, STEP 1338. Thereafter, or after STEP 1320, a determination is made
as to whether another component of the composite configuration register is to be accessed, INQUIRY 1350. If so,

then processing continues with INQUIRY 1310. Otherwise, processing is complete.

WO 2019/097347 PCT/IB2018/058619
19
[00105] Further details regarding the use of a composite configuration state register in which one or more
portions are in-processor and one or more portions are in-memory are described with reference to FIG. 13B, in
which a write reference is described. This logic is performed by a processor, such as, for instance, the decode unit

of the processor. In other examples, one or more other components perform this logic.

[00106] Referring to FIG. 13B, based on a composite configuration state register write reference 1360, a
determination is made as to whether a particular portion (also referred to as a component; e.g., a field) being
accessed is in-memory or in-processor, INQUIRY 1370. If it is in-processor, then the in-processor component is
accessed, STEP 1390, and processing continues to INQUIRY 1388, described below. However, if the particular
component is in-memory, INQUIRY 1370, then processing is performed, as described with reference to FIG. 7. For
instance, the memory base address (base) is obtained, STEP 1380, as well as a register number indicated in the
instruction referencing the composite configuration state register, STEP 1382. The register number is mapped to
an offset, STEP 1384, and a store is performed to an address defined by base + offset, STEP 1386. Thereafter, or
after STEP 1390, a determination is made as to whether another component of the composite configuration register
is to be accessed, INQUIRY 1388. If so, then processing continues with INQUIRY 1370. Otherwise, processing is

complete.

[00107] One example of a composite configuration state register is depicted in FIG. 14. As shown, in this
example, a composite configuration state register 1400 is special purpose register (SPR) 1, which corresponds to
an integer exception register (XER). This register includes a plurality of fields 1402. In one example, one or more
of the fields are in-processor fields 1404, and another field 1406 is an in-memory field. In this particular example,
Xerf0, 1, 2 (i.e., fields 0, 1, and 2 of XER) are renamed in-processor to SO (summary overflow), OV (overflow) and
CA (carry); and Xerf3 (field 3 of XER), which is not renamed in this example, is a byte count field in-memory. With
this configuration, the following |OP sequences may be generated and used to perform a mtspr and a mfspr,

respectively, for a composite configuration state register:

[00108] mtspr_xer mtxerf2

[00109] mtxerf0
[00110] mtxerf1
[00111] stxerf3

[00112] With the above, the mtspr for the XER register includes: a move to field 2 of XER (mtxerf2), in which
contents of a general purpose register are copied to XER field 2; a move to field 0 of XER (mtxerf0), in which
contents of a general purpose register are copied to XER field 0; and a move to field 1 of XER (mtxerf1), in which
contents of a general purpose register are copied to XER field 1. It also includes a store to field 3 of XER (stxerf3),

which is performed by a store operation, since field 3 is in memory.

WO 2019/097347 PCT/IB2018/058619
20

[00113] mfspr_xer mfxerf2

[00114] mfxerfO
[00115] or
[00116] ldxerf3
[00117] or
[00118] mfxerf1
[00119] or

[00120] For the move from XER, each of the fields is read, either from in-processor or in-memory and those
fields are combined by, e.g., an OR operation. For example, the contents of field 2 and field O are read and an OR
operation is performed to provide a result 1; then, the contents of field 3 are read (e.g., using a load, such as, for
example, a load xerf3 internal operation, ldxerf3, since field 3 is in-memory) and OR’d with result 1 to produce result
2. Further, the contents of field 1 are read and OR'd with result 2 to provide a final result, which is an image of XER

with its fields, regardless of whether in-processor or in-memory.

[00121] As described herein, in accordance with an aspect of the present invention, a move from configuration
state register instruction generates a sequence of moves from the in-processor portions, and a read for the portion
stored in-memory. The contents of the read in-memory and in-processor portions are collated, e.g., using a
sequence of, e.g., OR instructions. Further, a move to configuration state register instruction generates a sequence

of moves to the in-processor portions, and a store for the portion stored in-memory.

[00122] In one aspect, when memory is assigned to configuration state registers, the offsets are architecturally
(e.g., defined and externally visible) or micro-architecturally (defined but not externally visible) specified. For

instance, an offset may be derived directly from the configuration state register number (or other indication).

[00123] As one example mapping, each configuration state register is mapped to the corresponding offset (in
doublewords), i.e., base * configuration state register #, in which configuration state register 1 is at a first location;

configuration state register 2 is at the first location plus a defined number of bytes (e.g., 8), and so forth.

[00124] However, configuration state register numbers are non-contiguous, wasting memory, and cache
efficiency. Thus, in another embodiment in accordance with an aspect of the present invention, the configuration
state register number is not used to directly derive an offset into a memory page, rather configuration state registers
are allocated offsets based on functional affinity. Thus, configuration state registers that are used together in
common operations are allocated to the same or adjacent cache lines, to enhance cache locality. For example,
EBB handling uses the following registers: e.g., EBBHR, EBBRR, BESCR, and TAR. TAR is nhot contiguous with

WO 2019/097347 PCT/IB2018/058619
21
the others. However, they all are to be allocated to memory, so that they end up in the same cache line or an

adjacent cache line.

[00125] One example of a linear mapping is depicted in FIGS. 15A-15B. As shown, in one example, a linear
mapping 1500 is sparse. For instance, in one example, 8 KB (2 pages) is used, even though fewer than 1K of
configuration state registers is mapped. Further, jointly used configuration state registers, such as EBBHR,
EBBRR, BESCR, and TAR, are not contiguous. Additionally, groups of configuration state registers are not on an
alignment boundary to ensure they are in the same cache line (e.g., 779 MMCRO; 780 SIAR; 781 SDAR; 782
MMCR1). Yet further, some configuration state registers may refer to the same register; e.g., different access
permissions, subfields, etc. This is an inefficient use of cache. There is a lack of prefetch (to ensure each activity
only suffers one cache miss); and an overly large cache foot print (resulting in an increased working set which
reduces hit rate). Thus, in accordance with an aspect of the present invention, configuration state registers are not

stored at, e.g., base+(idx*8). Rather, they are stored at, for instance, base-+emaplidx].

[00126] This remap ensures groups are adjacent in order to share a cache line; it eliminates/reduces sparsity,
providing a more efficient cache use; and handles multiple names. As one example, the remapping is static and is
performed at processor design and provided in a data structure, such as a table, or by computation of a defined
equation. As another example, the remapping is dynamic and determined by use. For instancs, if tracking of
registers shows that registers of a set of registers are used together, then those registers are grouped and placed

adjacent to one another. Other possibilities exist.

[00127] Further details of remapping are described with reference to FIG. 16. This processing is performed by
a processor. In one example, a configuration state register number is obtained by the processor, STEP 1600,
Based on the configuration state register number, an index position (a.k.a., an offset) into the memory unit (e.g.,
page) is determined, STEP 1602. This may be determined by a table look-up or by computation. The index

position is returned to the requester (e.g., an internal operation), STEP 1604.

[00128] In a further example, a circuit that includes mapping logic is used. A configuration state register

number is input to the mapping logic, and the output is a page index.

[00129] As described above, in one embodiment, the configuration state register numbers, as defined in the
architecture, are remapped such that those configuration state registers that are used together are placed close to
one another in order to provide a more efficient cache. This reduces the number of cache lines used for the
configuration state registers and competes less with other programs for use of the cache. Further, it ensures that
once a cache line is loaded with a particular configuration state register and the penalty is paid for a cache miss for
that value, other configuration state registers that may also be used in conjunction with that configuration state

register will hit in the cache and consequently not involve other cache miss penalties.

WO 2019/097347 PCT/IB2018/058619
22
[00130] In a further embodiment, a sync_o_csr instruction writes a version stamp into a page when different
offset assignments are possible. A version stamp may be used to adjust offsets when migrating a partition between
different hosts; and/or to adjust offsets either directly in hardware (e.g., when a sync_i_csr may read an offset

version humber for a partition) or in software.

[00131] In accordance with another aspect of the present invention, a capability is provided to perform a bulk
operation to store or load multiple configuration state registers. An individual load or store of a configuration state
register is expensive, since each read or write is to be performed in-order, and is to complete before the next
instruction is started. Further, correct exception/error sequencing is to be ensured, since a lack of renaming for in-
processor configuration state registers disallows rollback. However, in accordance with one or more aspects of the
present invention, bulk configuration state register load to and store from memory units, such as pages, are

provided.

[00132] For instance, a store configuration state register instruction or operation (e.g., ST_CSR) is used to
store multiple in-processor configuration state registers in-memory (i.e., store the contents of the configuration state
registers associated with the current context (e.g., application, thread, etc.) in select memory locations defined for
the particular configuration state registers); and a load configuration state register instruction or operation (e.g.,
LD_CSR) is used to load configuration state registers stored in-memory back to in-processor (i.e., load the contents

of the configuration state registers associated with the current context from memory back into the processor).

[00133] In-processor (also referred to as non-memory backed) configuration state registers that may be stored
in memory are assigned locations in memory, e.g., in backing memory units (e.g., pages). In one example, the
memory locations and/or units are well-defined, pre-defined locations/units, and therefore, the instructions need not
have an operand to specify the locations/units. In another embodiment, the specific locations/units may be
specified as an operand of the instruction. Further in another embodiment, each instruction may include an

operand to indicate specific registers to be stored/loaded. Other variations are also possible.

[00134] Further, pages are just one example of memory units. Other units are possible. Also, although a

page is typically 4 KB, in other embodiments, it may be other sizes. Many possibilities exist.

[00135] In addition to the ST_CSR and LD_CSR instructions described above, another instruction that may be
used, in accordance with an aspect of the present invention, is mtspr TCBR, next_u->csr_page. This instruction is
used to load the base address of the memory region used to store the in-memory configuration state registers for a
particular context (e.g., processor, thread, etc.) in a register, such as TCBR. This address is then used in
processing that employs a base address, as described herein. In this instruction, next_u->csr_page refers to the
user data structure that stores data for the context issuing the instruction. This data includes the base address of
the memory unit (e.g., page) storing the in-memory configuration state registers. Although mtspr is specified, other
move to configuration state register (mtcsr) instructions may be used. Also, TCBR is just one example of a base

register. Other base registers may be specified. Many variations are possible.

WO 2019/097347 PCT/IB2018/058619
23
[00136] In addition to the above instructions, two synchronization instructions may be provided to synchronize
the cache with memory or in-processor registers. For example, sync_o_csr is used to synchronize the cache and
one or more in-memory configuration state registers; and sync_i_csr is used to synchronize the cache and one or

more in-processor configuration state registers.

[00137] As described herein, in one aspect, multiple configuration state registers are loaded or stored. There
are no intervening exceptions; i.e., exceptions are avoided; the operation is either completed on all the configuration
state registers of the operation or none. Further, there are no page faults (e.g., pages are pinned; also once a page
has been loaded, references are guaranteed to the same page). If desired, hardware can make a process

restartable; e.g., a load or store sequence in microcode or a state machine.

[00138] By using instructions to store/load multiple configuration state registers, certain expensive operations,
such as ensure in-order point and complete instruction in-order, are used less frequently, as described with

reference to FIGS. 17A-17C. The processing of FIGS. 17A-17C is performed by a processor.

[00139] Referring to FIG. 17A, one example of using individual instructions (i.e., hot a bulk operation) to store
a plurality of configuration state registers to memory is described with reference to FIG. 17A. In one example, to
move a configuration state register to memory, a move from configuration state register instruction and a store
instruction are used. For instance, in one example, the configuration state register is an SPR and the move from
configuration state register instruction is an mfspr. Other configuration state registers and corresponding

instructions may be used.

[00140] In this example, based on execution of a mfspr instruction, such as a Move from SPR (mfspr)
instruction, an in-order point is ensured, STEP 1700. Then, contents of the configuration state register (e.g., SPR)
specified by the instruction are copied from the configuration state register into, e.g., a general purpose register
(GPR), STEP 1702. The instruction is completed in-order, STEP 1704. Thereafter, via a store instruction (STD),
contents of the general purpose register are stored to memory, STEP 1706. This same process is repeated for
each configuration state register to be stored in memory (e.g., STEPS 1708-1722), which may be many
configuration state registers. Thus, requiring an ensure in-order point and complete instruction in-order operation

for each configuration state register to be stored to memory.

[00141] However, in accordance with an aspect of the present invention, a store configuration state register
(ST_CSR) instruction is provided that stores multiple configuration state registers in memory using a single ensure

in-order point and a single complete instruction in-order operation, as described with reference to FIG. 17B.

[00142] Referring to FIG. 17B, based on execution of a store configuration state register instruction
(ST_CSR), an in-order point is reached, STEP 1750. Then, contents of a selected configuration state register are
loaded into a temporary register, STEP 1752. Further, the contents of the temporary register are then stored to

memory (e.g., @ memory control page), STEP 1754. The load/store operations are repeated one or more times

WO 2019/097347 PCT/IB2018/058619
24
1756-1762 for one or more additional configuration state registers. Subsequent to copying the chosen configuration

state registers to memory (which may be many such registers), the instruction is completed in-order, STEP 1770.

[00143] In one example, the ST_CSR instruction does not have an operand to specify the registers to be
copied; instead, all of the in-processor configuration state registers of the current context (e.g., process, thread,
etc.) are copied. In another example, an operand may be included and used to specify one or more configuration

state registers to be copied to memory. Other variations are also possible.

[00144] In a further example, multiple configuration state registers may be copied from memory to in-

processor using a bulk load operation (e.g., LD_CSR).

[00145] Referring to FIG. 17C, based on execution of a load configuration state register (LD_CSR) instruction,
an in-order point is ensured, STEP 1780. Then, contents of a selected configuration state register are obtained
from memory and loaded into a temporary register, STEP 1782. Then, the contents of the temporary register are
stored in a corresponding in-processor configuration state register, STEP 1784. The load/store operations are
repeated one or more times 1786-1792 for one or more (and possibly many) additional configuration state registers.

Thereafter, the instruction is completed in-order, STEP 1794,

[00146] In one example, the LD_CSR instruction does not have an operand to specify the registers to be
copied; instead, all of the configuration state registers of the current context (e.g., process, thread, etc.) are copied.
In another example, an operand may be included and used to specify one or more configuration state registers to

be copied from memory.

[00147] In one aspect, an instruction to perform a bulk operation performs the same operation (e.g., a store, a
load, etc.) on a group of configuration state registers, in which the group is defined by a common characteristic.

The common characteristic may be, for instance, a numeric range of registers; having a same access permission or
context (e.g., user, operating system, hypervisor); having a same functional purpose (e.g., exception handling, time
keeping, etc.); or having a same implementation property (e.g., a set of configuration state registers being stored in-

memory), as examples.

[00148] The use of bulk store and/or load operations improves processing within the computer. For instance,
by using a bulk store operation to efficiently copy a plurality of configuration state registers to memory, context

switch processing may be performed faster and more efficiently. Other benefits may also be realized.

[00149] In afurther aspect, to facilitate processing, an architectural placement control is provided to indicate
where in memory the configuration state registers are stored. For instance, hardware defines a set of controls to
identify where in memory the configuration state registers are stored. As an example, at least one configuration
state register is provided to specify the base address for storing the application state. As one example, the base
address is a guest physical address, i.e., the guest operating system specifies an address in its own address space.

For example, when an address is specified, a guest-level address (e.g., guest real, guest physical or guest virtual

WO 2019/097347 PCT/IB2018/058619
25
address) is specified, since allowing a guest to specify a host physical address may compromise virtualization and

security.

[00150] Further details regarding specifying an architectural configuration control are described with reference
to FIG. 18A. In one example, a processor performs this logic. Initially, an address indicative of a memory backing
location (i.e., a base address) with respect to a present execution environment (e.g., application state, thread state,
operating system state, hypervisor state, particular guest or host operating system level, etc.) is received, STEP
1800. For instance, a hypervisor uses hypervisor addresses (e.g., host virtual or absolute, physical, real
addresses) and an operating system uses guest real or guest virtual addresses with respect to the virtual
machine/logical partition. The processor obtains the address that indicates a location of the memory page to store

configuration state registers (i.e., the base address).

[00151] Optionally, that base address is translated to a physical address, STEP 1802. (A translation may
already have been performed or the address does not need to be translated.) In one embodiment, this translation
may cause a page fault. In a further embodiment, collaborating hardware and software are used to avoid the page

fault, e.g., by pinning the page prior to executing one or more aspects of the present technique.

[00152] Additionally, in one example, the translated address is captured, STEP 1804. That is, in one example,
the translated address is cached. In another embodiment, both the untranslated and translated addresses are

stored.

[00153] In another embodiment with reference to FIG. 18B, a captured address with respect to the memory
control (e.g., configuration state register) being referenced is obtained, STEP 1850. Additionally, the address may
be translated to a physical address, STEP 1852, and the in-memory control (e.g., configuration state register) is
accessed, STEP 1854. The translation may cause a page fault, but using collaborating hardware and software, the
page fault may be avoided by, e.g., pinning the page prior to performing one or more aspects of the present

technique.

[00154] In one embodiment, the base address is stored in a configuration state register, e.g., not in memory,

to avoid a circular dependence. Other examples are possible.

[00155] Further, in one embodiment, the base address is translated to a physical/real address; and in another
embodiment, the base address is translated to the next level’s supervisory address (i.e., when an operating system

sets a page address, it is translated to a supervisor address). Other examples are possible.

[00156] As an example, both the untranslated and translated (physical/real) base addresses are stored. This
eliminates the need to perform address translation (e.g., dynamic address translation (DAT)) on every configuration

state register access and to handle page faults.

WO 2019/097347 PCT/IB2018/058619
26
[00157] In one embodiment, the translated (real/physical) base address is maintained in a processor register,
and the untranslated base address is maintained in an in-memory-configuration state register. In such an
embodiment, the untranslated address is provided responsive to a software request to read out the base address of
the configuration state register again. The translated address may be used to access such an address from its in-

memory location. Other possibilities exist.

[00158] As described herein, a control, such as a configuration state register, is provided that includes a base
address specifying where in memory one or more in-memory configuration state registers are stored. These in-
memory configuration state registers are registers architecturally defined to be in-processor registers, but, in
accordance with one or more aspects of the present invention, have been converted to in-memory configuration
state registers. These in-memory configuration state registers are different than configuration values that are stored
in memory, since, at the very least, those values are not registers and they are architecturally defined to be in-

memory. They are not architecturally defined processor registers.

[00159] In afurther aspect, efficiencies are achieved during a context switch between the program
environment and, for instance, the operating system or other supervisor environment and/or between different
applications or threads, etc. When a context switch is to be performed, data for a previous context is saved. In one
example, to save the context data, contents of the configuration state registers are read out of the in-processor
registers and saved to memory. Then, the data for the next context is loaded, which includes loading the

configuration state registers to resume execution. This is an expensive process.

[00160] Even, in accordance with an aspect of the present invention, with in-memory configuration state
register execution, in which store queue based speculation and out-of-order execution accelerate this process,

there are still significant costs associated with saving and restoring context.

[00161] Therefore, in accordance with an aspect of the present invention, the context switch is performed by
configuration state register page manipulation. In one example, the location of configuration state register in-
memory storage is configurable. When switching contexts, instead of copying old configuration state register data
out of a configuration state register memory unit (e.g., page) and copying new data into the configuration state
register page, a different configuration state register memory unit (e.g., page) is selected, thereby changing the

values of configuration state registers seen by the processor.

[00162] In accordance with an aspect of the present invention, a context switch is performed by modifying the
base pointer or base address (referred to herein as base) included in, e.g., a base configuration state register
(referred to herein as a base register) that indicates a location in memory for one or configuration state registers
(referred to herein as CSR backing memory), to avoid the need for unloading and reloading the configuration state

registers.

WO 2019/097347 PCT/IB2018/058619
27

[00163] There may be several types of context switches that may benefit from this aspect, including an
operating system context switch, in which the operating system performs a switch between different applications; a
hypervisor context switch, in which a hypervisor or virtual machine monitor switches between different partitions or
virtual machines; and a hardware thread context switch between different hardware threads. Each context switch
affects different registers. For instance, when switching out an application as part of an operating system used
context switch, a few configuration state registers corresponding to the application are changed to another location,
but not other configuration state registers (e.g., not the operating system configuration state registers). Further,
with hypervisor context switching, there may be more registers to be switched out. Similarly, for a hardware thread

context switch. Further details regarding a hardware thread context switch are described below.

[00164] In one embodiment, for a hardware thread context switch, the processor uses a thread scheduler to
select from a plurality of threads loaded into the processor. In accordance with an aspect of the present invention,
however, hardware may select from a plurality of threads that can be scheduled by the hardware, in which the
plurality exceeds the number of hardware thread contexts loaded in the processor. That is, in accordance with an
aspect of the present invention, the ability to context switch, as described herein, allows the hardware to use more
threads than loaded in the processor. The thread is selected, and the hardware schedules the thread by selecting
that thread’s in-memory configuration information. In one embodiment, some of the executable registers are stored
in a register file on-chip or a fast second level storage. In another embodiment, general registers are also stored to
an in-memory configuration page and loaded therefrom when a thread is scheduled. This is performed either on

demand (e.g., each register when first accessed), orin bulk (e.g., all registers at a scheduled time).

[00165] In one embodiment, rather than having a software agent (e.g., operating system or hypervisor) decide
to change a pointer to another configuration state register base, the hardware, responsive to a hardware criterion,
adjusts the base pointer itself. One of the plurality of threads is selected in hardware and based on the plurality of

threads, one of the pointers to a system memory page having configuration state registers is selected.

[00166] Further details relating to performing a context switch are described with reference to FIGS. 19A and
19B. FIG. 19A depicts one process for performing a context switch, in which the data is copied; and FIG. 19B
depicts another process for performing a context switch, in which pointers are modified in accordance with an

aspect of the present invention.

[00167] Referring initially to FIG. 19A, when a context switch is to be performed, a context copy-out is
initialized to copy-out the old context data, STEP 1900. This includes locating the context structure (e.g., a
supervisor structure) for a previous context and identifying a first configuration state register for the context to be

read-out.

[00168] As examples, the context can be one of a virtual machine, a logical partition, a process, a thread, etc.

The copy-out process continues.

WO 2019/097347 PCT/IB2018/058619
28

[00169] The configuration state register to be stored is selected, STEP 1902. In this iteration, it is the
configuration state register identified above. The selected configuration state register is read, STEP 1904, and the
contents of the configuration state register are stored to an in-memory structure maintained by, e.g., the supervisor
software (or hardware) for storing context-switch data, STEP 1906. Next, a determination is made as to whether
there are more configuration state registers to be context switched, INQUIRY 1908. If so, then processing
continues with STEP 1902.

[00170] Subsequent to copying-out the data for the previous context, a copy-in process is performed for the
new context. Thus, a context copy-in is initialized, in which the context structure for the next context is located and
the first configuration state register for the context write-in is identified, STEP 1910. The configuration state register
to be loaded in-memory is selected, STEP 1912, and the content for the selected configuration state register is read
from a context structure (e.g., a supervisor structure), STEP 1914. The read context data is written to the
configuration state register in-memory, STEP 1916. A determination is made as to whether there are more
configuration state registers to be context switched, INQUIRY 1920. If so, then processing continues with STEP

1912. Otherwise, processing is complete.

[00171] Referring to FIG. 19B, another example of a context switch process in accordance with an aspect of
the present invention is described. In this example, instead of copying the data, pointers to the data are
manipulated. Initially, a context copy-out is initialized, in which the context structure (e.g., supervisor or hardware
structure) for a previous context is located, STEP 1950. Again, the context can be one of a virtual machine, a
logical partition, a process, a thread, etc. Next, in-processor configuration state registers are handled, STEP 1952,
such that the contents of the registers are stored in memory. In one embodiment, this is accomplished using, for
instance, a copy loop, as described with reference to FIG. 19A. In another embodiment, this is accomplished using,

for instance, a bulk copy operation (e.g., ST_CSR).

[00172] The address of the in-memory configuration state register data unit (i.e., e.g., the address of the
memory page used to store the configuration state registers for this context (the base address)) may be read, STEP
1954, and stored to a context structure, STEP 1956. In one example, this address does not change, so there is o
need to repeatedly read it and store it to the context structure. Instead, it is stored the first time or when that page
is moved to a new location. The value is stored to an in-memory structure maintained, by, e.g., the supervisor

software or hardware, for storing context-switch data.

[00173] Subsequent to performing the copy-out process, a copy-in process is utilized to point to the new
context data. Thus, a context copy-in process is initialized, in which the context structure (e.g., supervisor or
hardware structure) is located for the next context and a first configuration state register is identified for the context
write-in, STEP 1960. The address for the configuration state register data unit for the next context is loaded, STEP
1962. Thatis, for instance, the address of the memory page (the base address) to store the configuration state

registers for the new context is obtained. Additionally, the in-memory configuration state register data page address

WO 2019/097347 PCT/IB2018/058619
29
(base address) is written, STEP 1964. Further, the in-processor configuration state registers are handled, STEP
1966. As an example, the in-processor configuration state registers for this context are loaded from memory, e.g.,

using a copy loop or a bulk load (e.g., LD_CSR).

[00174] As described above, pointer manipulation may be used in context switching. This is also true for

virtual machine migration.

[00175] In one embodiment, in-memory registers may be used to accelerate virtual machine (or logical
partition) migration and/or live machine migration. In one example, pages are migrated in accordance with
conventional techniques; however, in-memory configuration state registers are not moved. As an example, an
ST_CSR instruction or operation is used to capture the in-processor configuration state registers, but no

configuration state registers are moved. Rather, the in-memory configuration memory page is moved.

[00176] In a further embodiment, for live machine migration, the in-memory configuration state register state(s)
are moved, when the machine has been quiesced. This may include multiple pages if there are multiple contexts

(e.g., multiple threads/processes etc.).

[00177] In one embodiment, when the host and target migration formats (e.g., when configuration state
registers are mapped to different offsets within an in-memory configuration register page by different
implementation of an architecture) are not compatible, an adjustment is performed by the migration agent. In one
such embodiment, an architectural or micro-architectural version number of configuration state register formats is
provided, and the receiving system is responsible for adjusting the layout. In another embodiment, a receiving and
sending system negotiate a transfer format. |In another embodiment, a transfer format is defined, e.g., a linear list of
configuration state register values or a <key, value> pair, in which the key is a configuration state register number

and the value is the value of the configuration state register.

[00178] In yet other embodiments, processors may support multiple versions of layouts, adapting the remap
logic based on an externally configured configuration state register layout map (e.g., software specifies by loading a

layout identifier into a configuration state register).

[00179] In at least some processor embodiments, the design may cache some values in custom in-processor
locations for registers that are identified as in-memory registers. Thus, when performing a context switch, cached
copies are to be synchronized, i.e., invalidate old cached values. In one example, a context sync instruction (csync)
is provided, which indicates to the processor to invalidate old cached values. This is executed, for instance, each
time a context switch is performed. In one example, the cached values corresponding to all the configuration state

registers for a context are invalidated. In other examples, cached values for specific registers are invalidated.

[00180] As described herein, on a context switch, a new page may be indicated, instead of copying the
configuration state registers. This way, the configuration state register context image is already saved, and reduces

the context switch, at least for configuration state registers maintained in-memory.

WO 2019/097347 PCT/IB2018/058619
30
[00181] Further, in one embodiment, a context switch with page replace is enabled. A memory image (at least

for those registers that should live in memory) is synced before loading a new memory context page.

[00182] In accordance with one embodiment, configuration state register sync instructions are provided.
Specifically, this may flush any cached values, and suppress caching after the switch has been performed, and

conversely may indicate that it may save values to the cache again. Example instructions include:
[00183] Sync outgoing CSRs: sync_o_CSR

[00184] Load new backing page mtspr TCBR, next_u->spr_page

[00185] Sync incoming SPRs sync_i_CSR

[00186] In another embodiment, a move to configuration state register instruction (e.g., mtspr instruction) to a

base register (e.g., TCBR) automatically performs synchronization of cached outgoing and incoming values.

[00187] In a further aspect, based on loading a guest base address, which indicates a location in memory
used to store one or more in-memory configuration state registers and may be stored in a base configuration state
register, address translation from the guest base address to a corresponding host base address is performed, in
order to avoid the potential of a page fault. This translation is performed, e.g., immediately; i.e., based on receiving
the base address and prior to using the base address, e.g., during a storage reference. For example, when a
virtual address is loaded into a base register (e.g., a load to base, such as loading a guest base address in a
configuration state base register (e.g., TCBR) to be used as a base address), the system automatically performs an
address translation to a physical memory address, and the translated physical address is captured in conjunction
with the virtual address. In accordance with one architectural embodiment, a load to the base register is identified

as an instruction causing or may cause a translation to be performed.

[00188] When an address cannot be translated, a translation fault is taken. The page is to be accessible for
read and write in accordance with specified permissions in, for instance, a page table entry (described below), or a

page fault is raised.

[00189] Further details regarding automatically performing an address translation based on execution of an
operation that causes or may cause a translation of a base address to be performed are described with reference to
FIG. 20. This processing is performed by a processor, and in one example, this processing is performed based on
execution of a move to configuration state register instruction (e.g., an mtspr instruction) to a configuration state

register memory base register. It may also be performed based on execution of other instructions.

[00190] Based on executing the instruction, an address indicative of a memory backing location (e.g., a base
address) with the respect to the present execution environment is received, STEP 2000. In accordance with one

definition of the mtspr, the mtspr is defined to possibly incur a dynamic address translation (DAT) page fault. Thus,

WO 2019/097347 PCT/IB2018/058619
31
in accordance with an aspect of the present invention, address translation is automatically performed as part of the

mtspr, even before determining a translation is needed.

[00191] The received base address is translated to a physical base address using, e.g., DAT tables, an
example of which is further described below, STEP 2002. A determination is made as to whether a DAT translation
fault has occurred, INQUIRY 2004. If a DAT translation fault has occurred, a DAT page fault is indicated, STEP
2006. A page fault handler software routine is entered, STEP 2008, and the page fault handler is performed, STEP
2010. In one example, in accordance with a page fault handler, the instruction is restarted, if it was a permissible
fault (e.g., paged out). Otherwise, the context or execution environment (e.g., operating system, hypervisor, virtual

machine, thread, process, etc.) receives an error indication, possibly causing the context's termination.

[00192] Returning to INQUIRY 2004, if there is no DAT translation fault, the untranslated base address is
captured (e.g., stored in aregister), STEP 2012. Further, the translated base address is captured (e.g., cached),
STEP 2014. Optionally, the subject page is pinned, STEP 2016.

[00193] Further details regarding one example of dynamic address translation are described with reference to

FIGS. 21A-21B. This processing is performed by a processor.

[00194] Dynamic address translation is the process of translating a virtual address into the corresponding real
(or absolute) address. Dynamic address translation may be specified for instruction and data addresses generated
by the CPU. The virtual address may be a primary virtual address, a secondary virtual address, an AR (Access
Register)-specified virtual address, or a home virtual address. The addresses are translated by means of the
primary, the secondary, an AR-specified, or the home address space control element (ASCE), respectively. After
selection of the appropriate address space control element, the translation process is the same for all of the four
types of virtual addresses. An address space control element may be a segment table designation or a region table
designation. A segment table designation or region table designation causes translation to be performed by means

of tables established by the operating system in real or absolute storage.

[00195] In the process of translation when using a segment table designation or a region table designation,
three types of units of information are recognized — regions, segments, and pages. The virtual address,
accordingly, is divided into four fields. In one example, for a 64-bit address, bits 0-32 are called the region index
(RX), bits 33-43 are called the segment index (SX), bits 44-51 are called the page index (PX), and bits 52-63 are
called the byte index (BX). The RX part of a virtual address is itself divided into three fields. Bits 0-10 are called
the region first index (RFX), bits 11-21 are called the region second index (RSX), and bits 22-32 are called the

region third index (RTX), in one embodiment.

[00196] One example of translating a virtual address to a real address is described with reference to FIG. 21A.
This process is referred to herein as a DAT walk (or a page walk) in which the address translation tables are walked

to translate one address (e.g., a virtual address) to another address (e.g., a real address). In this example, an

WO 2019/097347 PCT/IB2018/058619
32

address space control element (ASCE) 2100 includes a table origin 2102, as well as a designation type (DT) control
2104, which is an indication of a start level for translation (i.e., an indication at which level in the hierarchy address
translation is to begin). Using table origin 2102 and DT 2104, the origin of a particular table is located. Then,
based on the table, bits of the virtual address are used to index into the specific table to obtain the origin of the next
level table. For instance, if the region first table (RFT) 2106 is selected, then bits 0-10 (RFX) 2108 of the virtual
address are used to index into the region first table to obtain an origin of a region second table 2110. Then, bits 11-
21 (RSX) 2112 of the virtual address are used to index into region second table (RST) 2110 to obtain an origin of a
region third table 2114. Similarly, bits 22-32 (RTX) 2116 of the virtual address are used to index into region third
table (RTT) 2114 to obtain an origin of a segment table 2118. Then, bits 33-43 (SX) 2120 of the virtual address are
used to index into segment table 2118 to obtain an origin of page table 2122, and bits 44-51 (PX) 2124 of the virtual
address are used to index into page table 2122 to obtain a page table entry (PTE) 2125 having a page frame real
address (PFRA) 2126. The page frame real address is then combined (e.g., concatenated) with offset 2128 (bits
52-63) to obtain areal address. Prefixing may then be applied, in one embodiment, to obtain the corresponding

absolute address.

[00197] Another example of address translation is described with reference to FIG. 21B. In this example, a
DAT walk is performed to translate an initial guest virtual address to a final host real address. In this example,
address space control element (ASCE) 2100 is a guest address space control element, and DT 2104 of ASCE 2100
indicates that guest translation determined by guest address translation structure 2160 is to start at region first table
2106 pointed to by table origin 2102. Thus, the appropriate bits of the initial guest virtual address (e.g., RFX 2108)
are used to index into region first table 2106 to obtain a pointer of an entry of the region first table. The address of
the region first table entry (RFTE) is a guest real or absolute address. This guest real or absolute address, with the
main storage origin and limit applied, when appropriate, corresponds to a host virtual address. This intermediate
host virtual address is then translated using host address translation structures 2170. In particular, address space
control element (ASCE) 2150 is a host address space control element used to indicate a start level for tranglation in
host address translation structures 2172. Based on the start level (e.g., region first table) indicated by DT 2154, the
particular bits of the host virtual address are used to index into the indicated table with table origin 2152 to be used
for translation using host address translation 2172, as described with reference to FIG. 21A. The translation of the
host virtual address corresponding to the guest RFTE continues until a host page frame real address (PFRA) 2174a

is obtained.

[00198] Data at the intermediate host page frame real address is a pointer to the next level of guest address
translation structures (e.g., guest region second table 2110, in this particular example), and translation continues,
as described above. Spedifically, host address translation structures 2176, 2178, 2180 and 2182 are used to
translate the intermediate host virtual addresses associated with the guest region second table 2110, region third
table 2114, segment table 2118 and page table 2122, respectively, resulting in host PFRAs 2174b, 2174c, 2174d
and 2174e, respectively. Host page frame real address 2174e includes the address of a guest page table entry

2125. Guest page table entry 2125 includes a guest page frame real address 2126, which is concatenated with the

WO 2019/097347 PCT/IB2018/058619
33
offset from the initial guest virtual address to obtain the corresponding guest absolute address. In some cases, the
main storage origin and limit are then applied to calculate the corresponding host virtual address, which is then
translated, as described above, using address translation structures 2184 to obtain host page frame real address
2174f. The host page frame real address is then combined (e.g., concatenated) with the offset (e.g., bits 52-63) of
the host virtual address to obtain the final host real address. This completes translation of a guest virtual address to

a host real address.

[00199] Although in the above examples, translation starts at the region first table, this is only one example.

Translation may start at any level for either the guest or the host.

[00200] In one embodiment, to improve address translation, the virtual address to real or absolute address
translation mapping is stored in an entry of a translation look-aside buffer (TLB). The TLB is a cache used by the
memory management hardware to improve virtual address translation speed. The next time translation for a virtual
address is requested, the TLB will be checked and if it is in the TLB, there is a TLB hit and the real or absolute

address is retrieved therefrom. Otherwise, a page walk is performed, as described above.

[00201] As indicated, guest translations may be included in the TLB. These entries may be composite
guest/host entries which implicitly include one or more host translations. For example, a guest virtual TLB entry
may buffer the entire translation from the initial guest virtual address down to the final host real or absolute address.
In this case, the guest TLB entry implicitly includes all intermediate host translations 2172, 2176, 2178, 2180 and
2182, as well as the final host translation 2184, as described in FIG. 21B above. In another example, a hierarchical
TLB may contain an entry in a first level of the TLB which buffers a translation from the initial guest virtual address
down to the associated origin of the guest page table 2122 and a separate entry from a second level of the TLB
which buffers the translation from the guest page table entry address down to the final host real or absolute
address. |n this example, guest entries in the first level of the TLB implicitly include intermediate host translations
2172, 2176, 2178 and 2180 which correspond to the host translations which back guest region and segment tables,
and guest entries in the second level implicitly include intermediate host translation 2182 which backs the guest
page table and final host translation 2184, as described in FIG. 21B. Many implementations of a translation look-

aside buffer are possible.

[00202] In the above examples, the page frame real address is included in a page table entry of a page table.
The page table includes one or more entries, and further details of a page table entry are described with reference
to FIG. 22.

[00203] In one example, a page table entry (PTE) 2200 is associated with a particular page of memory and

includes, for instance:

WO 2019/097347 PCT/IB2018/058619
34
[00204] (a) Page Frame Real Address (PFRA) 2202. This field provides the leftmost bits of a real (e.g., host
real) storage address. When these bits are concatenated with the byte index field of the virtual address on the

right, the real address is obtained.

[00205] (b) Page Invalid Indicator (I) 2204:; This field controls whether the page associated with the page
table entry is available. When the indicator is zero, address translation proceeds by using the page table entry.

When the indicator is one, the page table entry cannot be used for translation.

[00206] (c) Page Protection Indicator 2206: This field controls whether store accesses are permitted into the

page.

[00207] (d) Pinning indicator 2208: This field is used, in accordance with an aspect of the present invention,
to indicate whether this page is to be pinned. In one example, a one indicates it is to be pinned, and a zero

indicates it is not to be pinned.

[00208] A page table entry may include more, fewer and/or different fields than described herein. For
instance, in the Power Architecture, the PTE may include a reference indicator that indicates whether a
corresponding block of memory has been referenced, and/or a change indicator that indicates that a corresponding

block of memory has been stored into. Other variations are possible.

[00209] In yet a further aspect of the present invention, configuration state registers are separated and

assigned based on host and guest attributes, context and/or execution environment (e.g., thread state, application
state, operating system state, hypervisor state, particular guest or host operating system level, etc.), as examples,
in order to enable increased management flexibility. As examples, configuration state registers may be separated

by hypervisor, operating system, application, thread number or other execution environments, etc.

[00210] As particular examples, hypervisor privilege configuration state registers are stored in a hypervisor
assigned unit of memory (e.g., page); operating system privilege configuration state registers are stored in an
operating system unit of memory (e.g., page), and so forth. Further, when multiple threads are supported and
configuration state registers are replicated for each thread, then separate units of memory (e.g., pages) may be

supported for each thread. An example of such separation is depicted in FIG. 23.

[00211] As shown in FIG. 23, one set of configuration state registers 2300 is used by a thread or process
2302; another set of configuration state registers 2304 is used by an operating system 2306; a yet further set of
configuration state registers 2308 is used by a hypervisor 2310; and still another set of configuration state registers

2312 is used by a hypervisor 2314. Other examples are also possible.

[00212] In one example, the configuration registers for a particular execution environment are statically

defined for that execution environment, and include those registers readable or writable by the execution

WO 2019/097347 PCT/IB2018/058619
35
environment. In a further example, the registers are dynamically assigned based on use. Other examples are also

possible.

[00213] In one embodiment, a separate memory region (e.g., as a multiple of an allocatable translation unit) is
assigned to each separately controllable execution environment (e.g., thread, process, operating system,
hypervisor), and therefore, the set of configuration state registers associated with that execution environment is
assigned to that memory region. As an example, configuration state registers are assigned to a corresponding
memory area, based on logical ownership, since some configuration state registers may be accessible from multiple

execution environments (e.g., read accessible from an operating system, and read/write (R/W) from a hypervisor).

[00214] Although different execution environments may have different privilege levels, in one aspect, a higher
level privilege level has access control to lower levels. A specific privilege level may be specified with LD_CSR and

ST_CSR instructions, and sync operations described herein.

[00215] In one example, the configuration state register numbers are remapped, as described above; i.e.,

indices of configuration state register numbers are compacted to co-locate registers with respect to each grouping.

[00216] By providing a specific set of registers per execution environment, certain types of processing are
facilitated, including context switching. As described above, the assighing of specific sets of registers based on
execution environment and assigning separate memory units to those sets, facilitates the managing of the registers,

as well as processes that use those registers, including context switching.

[00217] As described herein, a context switch may be performed by changing a base address pointer in a
configuration state base register, rather than unloading and reloading the configuration state register state. To
accomplish this, a user mode state is to be independently switchable from supervisor state in order to switch user
contexts; an operating system state is to be independently switchable from hypervisor state in order to switch virtual
machines; and a per-hardware thread or subprocessor state is to be independently switchable, if those are to be
switched independently from other threads/sub-processors. The separate memory regions and separately

assignable configuration state registers facilitate this.

[00218] In accordance with one aspect of the present invention, separate configuration state base registers
designate the location (base) of each grouping of in-memory configuration state registers. Further, in at least one
embodiment, access control to each of the base registers is to have suitable access permissions. As examples, for
contexts to be switched by the operating system, an operating system privilege is a minimum prerequisite to modify
the base register; and for contexts to be switched by the hypervisor, a hypervisor privilege is the minimum

prerequisite to modify such base registers, and so forth.

[00219] In afurther aspect, a capability is provided to prevent the moving of a memory unit (e.g., a page) by

host level software (such as a hypervisor or virtual machine monitor) that provides the storage for one or more

WO 2019/097347 PCT/IB2018/058619
36
configuration state registers (i.e., the CSR backing memory). In one example, this includes pinning the memory unit

and providing an indication of automatic pinning for the CSR backing memory.

[00220] When a configuration state register indicating the base of memory that provides the storage for one or
more configuration state registers (i.e., the base register, such as TCBR) is written, an indication is provided to the
host of the present guest, in accordance with an architectural specification. In at least one embodiment, the
indication corresponds to an exception. In one embodiment, an exception type indicates a write event to a
configuration state base register. Responsive to receiving an indication of a configuration state base register
change, at least one host supervisor software (e.g., a hypervisor or a virtual machine monitor) performs operations
to update page pinning information. In one aspect of the invention, updating pinning information includes recording
the address of a pinned CSR backing memory page or setting a pinning indicator corresponding to the page. In
another aspect, updating pinning information further includes unpinning of a previously pinned CSR backing
memory page by removing a previously recorded address for a particular configuration state base register from a
pool of one or more recorded addresses corresponding to pinned CSR backing memory or resetting the pinning

indicator.

[00221] In accordance with one aspect of the present invention, these updates ensure that the one or more
host levels do not page out or move CSR backing memory, thereby invalidating a cached address translation, or
otherwise causing an update to a configuration state register causing a page translation fault. In another aspect of
the present invention, pinning information may also be used to move the location of CSR backing memory, by

providing notice of its location, and giving one or more hosts the opportunity to update any cached translations.

[00222] Further, in order to support multi-level guest schemes, the instruction that initializes the base register
that points to the memory backing the configuration state registers (the CSR backing memory) may further be
specified to transitively raise exceptions at multiple levels of host so as to ensure suitable pinning. In one
embodiment, only one level of host is notified, and that host will cause pinning by HCALLSs (hypervisor calls)

asfiwhen appropriate.

[00223] By pinning memory backing pages for configuration state registers in memory, page faults are avoided
when a configuration state register is accessed. This may be unexpected by the software, and cause panic() in
some software, such as for example, when software checks what instruction caused a trap and finds it was an
instruction not defined to access memory that caused a data page fault. Panic() is a call in operating systems

performed when an unexpected event happens and usually results in a system crash.

[00224] Pinning is also used, for instance, to avoid circular exceptions (e.g., when the page used for
exception-related configuration state registers is not available, a page fault exception for that page would have to be
raised, etc.); and to ensure a fast response (e.g., to exceptions and other external events that involve configuration

state register handling).

WO 2019/097347 PCT/IB2018/058619
37
[00225] In one embodiment, pinning is performed in software. For instance, as described below, pinning may
be performed using hypervisor calls (HCALL) in conjunction with a software context switch in a paravirtualized

environment,

[00226] In one embodiment, when a context (e.g., a thread context, or a process context, or a logical partition
context, or a virtual machine context, or an operating system context, and so forth) is initialized by supervisory
software, the supervisor allocates memory to provide storage for one or more configuration state registers

corresponding to the context being initialized.

[00227] In one example, this may be performed by calling an allocation routine providing memory of suitable
alignment and size. In accordance with at least one embodiment, the returned address is stored in a memory area
storing information corresponding to the context. In one embodiment, this memory area is referred to as the “u
area” and denoted by the variable “u”. In at least one embodiment, the variable u is a record, struct, class or other
composite data type with a plurality of members corresponding to various attributes to be recorded for a context. In
at least one embodiment, this structure includes a member (field) corresponding to the address of at least one CSR

backing memory page. In at least one example, this member is named “csr_page”.
[00228] my_csr_page_pointer = allocate backing page
[00229] U.CSr_page = my_csr_page_pointer

[00230] When performing pinning of CSR backing memory using e.g., HCALLSs to a hypervisor in a
paravirtualized environment, the context switch context sequence (e.g., a sequence in accordance with one of
FIGS. 19A and 19B) is augmented with pinning and unpinning HCALLs. In accordance with one embodiment of a

context switch with this aspect of the present invention, the following steps are performed:

[00231] (1) Save non-CSR state of previous context, including but not limited to, general purpose

registers, floating point registers, vector registers, etc., in accordance with known techniques;

[00232] (2) Save in-processor configuration state registers (e.g., based on the techniques of one of
FIGS. 19A and 19B);

[00233] (3) Pinincoming CSR backing memory page (i.e., page being activated as configuration
state register memory page as part of switching in (activating) the next context). HCALL(PIN, next_u->csr_page),

in which next_u is a pointer pointing to the u area of the context being switched in (activated) as next context;

[00234] (4) Optionally, in at least one embodiment, sync outgoing configuration state registers;
Sync_o_csr;
[00235] (5) Load base register with the base address of the CSR backing memory corresponding to

the context being activated (in one example, this CSR corresponds to TCBR): mtspr TCBR, next_u->csr_page;

WO 2019/097347 PCT/IB2018/058619

38
[00236] (6) Optionally, in at least one embodiment, sync incoming configuration state registers:
Sync_i_cst;
[00237] (7) Unpin outgoing CSR backing memory page (i.e., page being deactivated as CSR

backing memory page as part of switching out (deactivating) the previous context): HCALL(UNPIN, prev_u-
>gsr_page), in which prev_u is a pointer pointing to the u area of the context being switched out (deactivated) as

previous context;

[00238] (8) Load other non-CSR state of next context, including but not limited to, general purpose

registers, floating point registers, vector registers, etc., in accordance with known techniques;

[00239] 9) Transfer control to the newly activated context, e.g., transfer from operating system to
application thread or process context using, e.g., the rfid instruction (in an implementation in conjunction with Power
ISA).

[00240] Those skilled in the art will understand that the steps hereinabove may be reordered. For example,
the unpin operation may be performed prior to the pinning operation, in at least one embodiment. Other variations

are possible.

[00241] In another embodiment, pinning is performed responsive to loading a base register, such as TCBR. A
notification event (e.g., interrupt) may be raised to a supervisor. If there are multiple supervisor levels, a notification
event is raised to each supervisor level, in one embodiment. Responsive to receiving a notification event, pinning

information is updated.

[00242] In another embodiment, writing a value to a base register causes a page table entry indication flag
indicating a pinned page to be set in a corresponding PTE. If there are multiple levels of page table entry, a page

table entry indication flag may be set for each level.

[00243] In at least another embodiment, at least one of a pin and an unpin instruction is provided that initiates

a pin or unpin process.

[00244] In yet another embodiment, pinning may be determined by host software by inspecting base registers
active in the system to determine which pages are “pinned’, i.e., the plurality of contents of base registers (e.g.,
TCBR) represents the record of pinned pages. In at least one embodiment, before moving or paging out a page,
supervisor level software determines whether a page corresponds to a pinned page by determining whether a page

address corresponds to an address in at least one of the base registers.

[00245] In yet a further embodiment, a host may receive a notification event of pinning, e.g., as an exception
in one example embodiment. Based on receiving the notification, the host system receives an address to be pinned

and stores it for future reference during memory management. In one embodiment, a notification also includes

WO 2019/097347 PCT/IB2018/058619
39
information about a previous address that is being unpinned (e.g., the previous value stored in the base

configuration state register, or another value otherwise supplied, e.g., using a configuration state register).

[00246] Further details regarding one example of providing a pinning notification to the host are described with
reference to FIG. 24. This logic is performed by a processor. Referring to FIG. 24, a hew configuration value (e.g.,
a guest address) is received for a memory page (or other unit of memory) containing in-memory configuration state
registers, STEP 2400. In one example, this new configuration value is stored in a base register (such as, e.g.,

TCBR). However, in other embodiments, the value may be provided in another manner.

[00247] The guest address (e.g., a guest virtual address or a guest real address) of the memory page is
translated, STEP 2402. In one example, the guest address is translated to a physical real address and the
translation is cached for future access. A variable n is set equal to the guest level, STEP 2404. Then, nis
decremented by a select value, e.g., 1, STEP 2406. Host level n is notified of a pinning event using the host level n
virtual address corresponding to the guest address being pinned, STEP 2408, Further, a determination is made as
to whether there are more host levels (e.g., is n greater than 0), INQUIRY 2410. If there are more host levels, then

processing continues with STEP 2406. Otherwise, processing is complete.

[00248] In one embodiment, the pinning is indicated by an indicator, such as a bit, in a page table entry
corresponding to the address. The bit indicates that the page is pinned and in use by a guest. One example of this

pin indicator is depicted in FIG. 22.

[00249] Further details relating to pinning are described with reference to the example translate and pin
operations depicted in FIG. 25. |In one example, a processor performs this processing. Initially, a new configuration
value (e.g., guest address) for a memory page containing in-memory configuration state registers is received, STEP
2500. The guest address is translated to a physical address and the translation is cached for future access, STEP
2502. Avariable n is set equal to the guest level, and ADDRESS is set equal to the guest virtual address, STEP
2504. Thereafter, nis decremented by a defined value, such as 1, and ADDRESS is set equal to translate_to_host
(ADDRESS, n), STEP 2506. That is, ADDRESS is set to the translated host address for the host level. The
pinning indicator (e.g., bit) is set (e.g., set to one) in the page table entry for the address, STEP 2508. Further, a
determination is made as to whether there are more host levels; that is, is n greater than zero, INQUIRY 25107 If
there are more host levels, then processing continues with STEP 2506. Otherwise, processing ends. At this point,
ADDRESS corresponds to the physical address of a pinned page and can be used for synergy with address

translation.

[00250] Based on translation and caching, the indicator (e.g., bit) is set, in one example, at all host levels. In
one embodiment, page table walking and pin indication are combined. This improves performance since translation

accesses the same page table entries used for pin indication.

WO 2019/097347 PCT/IB2018/058619
40
[00251] In one embodiment, unpinning is performed on another value (e.g., the previous value (address)

stored in the configuration state register, or another value otherwise supplied, e.g., using a configuration register).

[00252] One example of processing relating to translate and unpin operations is described with reference to
FIG. 26. In one example, a processor performs this processing. Initially, a request is received to unpin an address,
STEP 2600. This request includes a guest virtual address to be unpinned. Further, n is set equal to the guest
level, and ADDRESS is set equal to the guest virtual address to be unpinned, STEP 2602. Next, n is decremented
by a defined value, such as 1, and ADDRESS is set equal to translate_to_host (ADDRESS, n), STEP 2604. That
is, ADDRESS is set to the translated host address for the host level. The pinning indicator (e.g., bit) in the page
table entry for the address is reset (e.g., set to zero), STEP 2606. Thereafter, a determination is made as to
whether there are more host levels (e.g., is n greater than 0), STEP 2608. If there are more host levels, then
processing continues with STEP 2604, Otherwise, processing ends. At this point, ADDRESS corresponds to the

physical address of the unpinned page.

[00253] As described herein, based on determining that a unit of memory is to be pinned, notification is, e.g.,
automatically provided. The notification may be by setting an indicator, raising an interrupt, providing an exception,

etc. Many variations are possible.

[00254] In a further aspect, efficient pinning management is provided via paravirtualized pinning calls. It is
desirable to not have to pin and unpin pages every time they are installed. On the other hand, it is also desirable to
limit the number of pinned pages so as to not unnecessarily fragment the host's page cache, and limit its page
allocation freedom. Consequently, pinning HCALLs (hypervisor calls) are introduced in which a guest specifies a
page to be unpinned by a host. A hypervisor can indicate whether a page to be unpinned was unpinned or not,
thereby giving the guest the flexibility to not have to call a pin request for every page, if the hypervisor has

resources available.

[00255] This call includes, in one embodiment, updating the base pointer or address (base) to the CSR
memory backing page. Further, in one embodiment, the guest specifies whether it would like to retain a page as

pinned.

[00256] In another embodiment, a hypervisor may request, by callback to an operating system, the return of
pinned pages that have been previously left to the operating system when the hypervisor runs into a low resource
situation. In one embodiment, the operating system specifies the one or more pages it would like to unpin as a

response to the callback.

[00257] In accordance with one or more aspects, a single call, such as one HCALL, is used to perform pin and
unpin operations by, e.g., a host executing on a processor, as described with reference to FIG. 27. As depicted, in
one example, a pin operation 2700 and an unpin operation 2702 are performed in response to one hypervisor call

2704. In one example, an unpin operation is performed on a first address (e.g., a first base address) to unpin an

WO 2019/097347 PCT/IB2018/058619
41
old page, STEP 2710, and a pin operation is performed on a second address (e.g., a second base address) to pin a
new page, STEP 2720. The one call is used, instead of multiple calls, saving processing time. The humber of
unpin and pin calls are reduced by having a combined pin and unpin call, specifying a new page (e.g., CSR backing

memory page) to be pinned, and specifying a previous page to be unpinned.

[00258] In one embodiment, the operating system can request that the address specified in the call to be
unpinned not be unpinned, if hypervisor console management constraints allow this. A response on whether the
address is pinned or unpinned is returned. Later, the hypervisor can still use callback to request the operating

system to have one or more pinned pages unpinned.

[00259] In one example, the operating system holds more than the number of pages necessary for active in-
memory configuration state register pages. In a further example, the operating system pins all pages holding in-
memory configuration state registers, whether active or not. This eliminates the need for future pinning. However,
this may lead to an excessive number of pinned pages and system inefficiency. Therefore, in one embodiment, the
operating system offers a callback function, in which the hypervisor can call the operating system to deallocate
pinned pages when too many pages (or a number greater than a selected number) are pinned in a system for in-

memory configuration state register use.

[00260] Further details relating to unpinning/pinning are described with reference to the below example in
which unpinning/pinning are performed in a context switch. In particular, the below example describes one example

of context pinning in which a guest (OS) requests a host (HV) to switch pinning, and further optionally, retain a pin.

[00261] In one embodiment, when a context (e.g., a thread context, or a process context, or a logical partition
context, or a virtual machine context, or an operating system context, and so forth) is initialized by supervisory
software, the supervisor allocates memory to provide storage for one or more configuration state registers

corresponding to the context being initialized.

[00262] In one example, this may be performed by calling an allocation routine providing memory of suitable
alignment and size. In accordance with at least one embodiment, the returned address is stored in a memory area
storing information corresponding to the context. In one embodiment, this memory area is referred to as the “u
area” and denoted by the variable “u”. In at least one embodiment, the variable u is a record, struct, class or other
composite data type with a plurality of members corresponding to various attributes to be recorded for a context. In
at least one embodiment, this structure includes a member (field) corresponding to the address of at least one CSR

backing memory page. In at least one example, this member is named “csr_page”.

[00263] my_csr_page_pointer = allocate backing page

[00264] U.CSr_page = my_csr_page_pointer

WO 2019/097347 PCT/IB2018/058619
42
[00265] When performing pinning of CSR backing memory using e.g., HCALLSs to a hypervisor in a
paravirtualized environment, the context switch context sequence (e.g., a sequence in accordance with one of
FIGS. 19A and 19B) is augmented with pinning and unpinning HCALLs. In accordance with one embodiment of a

context switch with this aspect of the present invention, the following steps are performed:

[00266] (1) Save non-CSR state of previous context, including but not limited to general purpose

registers, floating point registers, vector registers, etc., in accordance with known techniques;

[00267] (2) Savein-processor configuration state registers (e.g., based on the techniques of one of
FIGS. 19A and 19B);

[00268] 3) Optionally, in at least one embodiment, sync outgoing configuration state registers;
Sync_o_csr;

[00269] (4) If not (next_u->csr_page_pinned)

[00270] Find page to unpin victim=select_TCBR_for_unpin();

[00271] Desirable to retain? retain=retain_desirable_p(victim);

[00272] Give to get pin page lost_victim=HCALL(PIN_give_to_get,

next_u->csr_page, victim, retain)

[00273] Victim was lost? if (lost_victim) mark_unpinned (victim);

[00274] (5) Optionally, in at least one embodiment, sync incoming configuration state registers:
Sync_i_cst;

[00275] (6) Load other non-CSR state of hext context, including but not limited to general purpose

registers, floating point registers, vector registers, etc., in accordance with known techniques;

[00276] (7) Transfer control to the newly activated context, e.g., transfer from operating system to
application thread or process context using, e.g., the rfid instruction (in an implementation in conjunction with Power
ISA).

[00277] Further details of one example of performing pin/unpin operations are described with reference to FIG.
28. Arequest to pin a new address, NA, and to unpin an old address, OA, is received via, e.g., a single hypervisor
call, as well as a retain indicator (or an indication of such) specifying whether a request is being made to retain OA
as pinned memory, STEP 2800. As an example, the new address indicates a CSR memory backing page.

Address NA is pinned, STEP 2810, and a determination is made as to whether the retain indicator specifies a

request to retain address OA as pinned in memory, INQUIRY 2820. If there is a request to retain the pinning of OA,

WO 2019/097347 PCT/IB2018/058619
43
a determination is made as to whether to grant the maintaining of the pinned page based on an indicated policy
(e.g., resource allocation across multiple virtual machines) and available memory for pinning, INQUIRY 2822. If the
request is granted, INQUIRY 2824, an indication that an unpin operation is not to be performed is made, STEP
2826. Otherwise, address OA is unpinned, STEP 2830, and an indication is provided that the unpin is performed,
STEP 2832.

[00278] Returning to INQUIRY 2820, if the retain indicator specifies that the pinning is not to be retained, then
processing continues with STEP 2830.

[00279] As described above, one call may be used to unpin one address, pin another address and/or request
that the address to be unpinned actually not be unpinned. By using one call, processing is facilitated and

performance is improved.

[00280] As described herein, selected configuration state registers are stored in-memory, instead of in-
processor. By storing the registers in-memory, certain benefits and optimizations may be achieved, including those

associated with data corruption detection and correction.

[00281] In one example, memory-backed state is used to enhance resiliency and to address single event
upsets (SEU) or soft errors. Single event upsets are state changes introduced by the effect of ionizing radiation.
As CMOS (complementary metal-oxide-semiconductor) feature sizes shrink, the amount of charge Qcrir used to
change a bit shrinks with it, as less charge is stored for each bit. To remediate the impact of single event upsets,
data protection is applied. This includes, for instance, using parity or error correction code (ECC) protection of
registers, to detect and repair, respectively, damaged state register values. Error correction code or parity
protection is used, as repair is reasonably affordable for register files when the design across an area can be
amortized over many registers. For in-processor configuration registers, oftentimes this is unaffordable because

separate protection and recovery would have to be designed for each register.

[00282] However, in accordance with an aspect of the present invention, configuration state registers are
stored in-memory where they are protected with one or more advanced protection mechanisms, including, but not

limited to, parity bits and error correction codes (ECC), in accordance with an aspect of the present invention.

[00283] In one aspect, in-processor configuration state registers are also protected by using the SEU-resilient
system memory hierarchy. In one embodiment, in-processor configuration state registers are protected with a
technique to detect SEU-induced corruption. A variety of detection techniques may be used in conjunction with
aspects of the present invention. In one example, the corruption detection mechanism corresponds to the use of
data parity protection for in-processor configuration state registers. In another embodiment, SEU-induced
corruption may be detected by testing for signatures of register value changes in the absence of a write to a
configuration register. In addition, such in-processor registers are also stored in-memory to ensure an ECC-

protected copy of the in-processor configuration registers is available. In one embodiment, responsive to updates

WO 2019/097347 PCT/IB2018/058619
44
of the in-processor configuration registers which are so protected, a copy of the update is also stored to the in-
memory copy. When the processor recognizes a parity error, the value is retrieved from the ECC protected in-

memory copy and the in-processor register is updated.

[00284] Further, in one embodiment, high use-rate values, such as instruction address, data address and
content break point registers, are stored in backing memory and can be recovered when a single event upset is
detected. Recovery includes parity protection, either via a hardware reload path or by performing a machine check,
and having a machine check handler reload those registers. Thus, in accordance with an aspect of the present
invention, configuration register state is protected by storing the configuration state registers in system memory and

using, e.g., ECC, to protect the single event upsets.

[00285] Further details relating to using error correction code for configuration state registers are described
below. In particular, examples of using error correction code for data writes are described with reference to FIGS.
29A-29C, and examples of using error correction code for data reads are described with reference to FIGS. 30A-
30C.

[00286] Referring initially to FIG. 294, in this example, a data write is unprotected. In this example, a value is
received for an in-processor configuration state register, STEP 2900, and that value is written to a latch
implementing the configuration state register, STEP 2902. This data write is unprotected for single event upsets

and other types of errors.

[00287] In contrast, with reference to FIG. 29B, a value is received for an in-processor configuration state
register, STEP 2920, and error protection or an error correction code is computed, STEP 2922, The received value
is written to the configuration state register (e.g., the latch implementing the configuration state register) in

conjunction with the protection or error correction code, STEP 2924,

[00288] Yet further, with reference to FIG. 29C, one embodiment of a data write for an in-memory
configuration state register is described. In this example, a value for the in-memory configuration state register is
received, STEP 2952, and a determination is made as to the system memory address at which the configuration
state register is stored, STEP 2954. The value is then stored to that system memory address which is protected,

since it is part of memory benefitting from error protection, STEP 2956.

[00289] In one aspect, the storing includes, for instance, computing an error correction code for a received in-
memory configuration state register value, and storing the computed error correction code with the received value.
As known, an error correction code adds one or more parity bits to the data bits representing the value (e.g., one or
more parity bits per one or more subsets of the data bits) and uses those parity bits to determine any errors. If
there is an error in the data, the parity bits indicate where in the data bits there is an error, allowing a correction to

be made (e.g., change one or more data bits, represented in binary, to another value).

WO 2019/097347 PCT/IB2018/058619
45
[00290] In addition to the above, one example of performing data reads for in-processor configuration state

registers and in-memory configuration state registers are described with reference to FIGS. 30A-30C.

[00291] Referring to FIG. 30A, one example of a data read for an in-processor configuration state register, in
which no protection is offered is described. In this example, the value is provided to the processor logic, STEP
3000.

[00292] In contrast, one example of processing associated with reading a value from an in-processor
configuration state register in which protection is provided is described with reference to FIG. 30B. In this example,
the value is received from the latch, STEP 3020, and the correction code is checked, STEP 3022. If corruption is
not detected, INQUIRY 3024, the value is provided to the processor logic, STEP 3030. However, returning to
INQUIRY 3024, if corruption is detected, then the corrected value is computed, STEP 3026, and the corrected value
is written back to the latch, STEP 3028. Further, that value is provided to the processor logic, STEP 3030.

[00293] Additionally, a data read that uses an in-memory configuration state register is described with
reference to FIG. 30C. In this example, a configuration state register number is received, STEP 3050. A
determination is made as to the system memory address for the configuration state register, STEP 3052. The value
is read from the protected system memory, STEP 3054, and that value is provided to the processor logic, STEP
3056.

[00294] In one aspect, the reading includes determining, using the error correction code, whether corruption of
the data (e.g., the value) has occurred. If corruption is detected, one or more actions may be taken, including but
not limited to, performing recovery. Recovery may include computing a corrected value for the corrupted value

using the error correction code. Other examples also exist.

[00295] By using in-memory configuration state registers, error protection benefits are received, avoiding
expensive additional steps and latency to add such protection to the latches implementing in-processor

configuration state registers.

[00296] As examples, error correction is provided based on writing to an in-memory configuration state
register. Error detection and correction code may be generated based on receiving a value of a configuration state
register to be stored in memory. Error detection and correction code may be used to detect whether corruption has
occurred, based on receiving a read request for memory storing a configuration state register. Corruption is

corrected, based on reading an in-memory configuration state register and detecting corruption has occurred.

[00297] Described in detail herein are aspects related to providing in-memory configuration state registers. By
providing configuration state registers in-memory, processing is facilitated, and performance may be enhanced.

Certain improvements and optimizations may be realized.

WO 2019/097347 PCT/IB2018/058619
46
[00298] The in-memory configuration state registers may be used in instruction processing, as well as in other
operation sequences. For example, an exception may be received based on receiving an interrupt signal from an
external device. In processing the exception, one or more configuration state registers, such as a SRR0 and SRR1,
may be accessed. When these registers are in-memory configuration state registers, the interrupt processing

sequence is expanded to include load and/or store operations. Other examples and/or variations are possible.

[00299] One or more aspects of the present invention are inextricably tied to computer technology and
facilitate processing within a computer, improving performance thereof. Further details of one embodiment of
facilitating processing within a computing environment, as it relates to one or more aspects of the present invention,
are described with reference to FIGS. 31A-31B.

[00300] Referring to FIG. 31A, an identification of an in-memory configuration state register for which memory
is assigned is obtained (3100). Based on the identification, an offset into the memory at which the in-memory
configuration state register is stored is determined (3102). The offset is allocated to the in-memory configuration
state register based on functional affinity of the in-memory configuration state register (3104). The in-memory

configuration state register is accessed using at least the offset (3106).

[00301] As an example, the offset places the in-memory configuration state register in a same cache line as
another in-memory configuration state register having a same functional affinity (3108). In one example, the in-
memory configuration state register and the other in-memory configuration state register have the same functional
affinity based on both the in-memory configuration state register and the other in-memory configuration state

register being used in a particular operation (3110).

[00302] As another example, the offset places the in-memory configuration state register in an adjacent cache

line as another in-memory configuration state register having a same functional affinity (3112).

[00303] In one example, referring to FIG. 31B, the offset is an index position within a particular unit of the
memory (3114). Further, in one example, a version indication is provided for the particular unit of the memory
(3116).

[00304] In one aspect, the identification includes a register number of the in-memory configuration state
register (3118).

[00305] Further, in one embodiment, the determining the offset includes performing a look-up in a data
structure (3120). In another embodiment, the determining the offset includes using a computation to determine the
offset (3122).

[00306] In one aspect, the offset is returned to a requester in order for the requester to access the in-memory

configuration state register (3124).

WO 2019/097347 PCT/IB2018/058619
47

[00307] Other variations and embodiments are possible.

[00308] Other types of computing environments may also incorporate and use one or more aspects of the
present invention, including, but not limited to, emulation environments, an example of which is described with
reference to FIG. 32A. In this example, a computing environment 20 includes, for instance, a native central
processing unit (CPU) 22, a memory 24, and one or more input/output devices and/or interfaces 26 coupled to one
another via, for example, one or more buses 28 and/or other connections. As examples, computing environment 20
may include a PowerPC processor or a pSeries server offered by International Business Machines Corporation,
Armonk, New York; and/or other machines based on architectures offered by International Business Machines

Corporation, Intel, or other companies.

[00309] Native central processing unit 22 includes one or more native registers 30, such as one or more
general purpose registers and/or one or more special purpose registers used during processing within the
environment. These registers include information that represents the state of the environment at any particular

pointin time.

[00310] Moreover, native central processing unit 22 executes instructions and code that are stored in memory
24. In one particular example, the central processing unit executes emulator code 32 stored in memory 24. This
code enables the computing environment configured in one architecture to emulate another architecture. For
instance, emulator code 32 allows machines based on architectures other than the z/Architecture, such as
PowerPC processors, pSeries servers, or other servers or processors, to emulate the z/Architecture and to execute

software and instructions developed based on the z/Architecture.

[00311] Further details relating to emulator code 32 are described with reference to FIG. 32B. Guest
instructions 40 stored in memory 24 comprise software instructions (e.g., correlating to machine instructions) that
were developed to be executed in an architecture other than that of native CPU 22. For example, guest instructions
40 may have been designed to execute on a z/Architecture processor, but instead, are being emulated on native
CPU 22, which may be, for example, an Intel processor. In one example, emulator code 32 includes an instruction
fetching routine 42 to obtain one or more guest instructions 40 from memory 24, and to optionally provide local
buffering for the instructions obtained. It also includes an instruction translation routine 44 to determine the type of
guest instruction that has been obtained and to translate the guest instruction into one or more corresponding
native instructions 46. This translation includes, for instance, identifying the function to be performed by the guest

instruction and choosing the native instruction(s) to perform that function.

[00312] Further, emulator code 32 includes an emulation control routine 48 to cause the native instructions to
be executed. Emulation control routine 48 may cause native CPU 22 to execute a routine of native instructions that
emulate one or more previously obtained guest instructions and, at the conclusion of such execution, return control
to the instruction fetch routine to emulate the obtaining of the next guest instruction or a group of guest instructions.

Execution of native instructions 46 may include loading data into a register from memory 24; storing data back to

WO 2019/097347 PCT/IB2018/058619
48
memory from a register; or performing some type of arithmetic or logic operation, as determined by the translation

routine.

[00313] Each routine is, for instance, implemented in software, which is stored in memory and executed by
native central processing unit 22. In other examples, one or more of the routines or operations are implemented in
firmware, hardware, software or some combination thereof. The registers of the emulated processor may be
emulated using registers 30 of the native CPU or by using locations in memory 24. In embodiments, guest
instructions 40, native instructions 46 and emulator code 32 may reside in the same memory or may be disbursed

among different memory devices.

[00314] As used herein, firmware includes, e.g., the microcode or Millicode of the processor. It includes, for
instance, the hardware-level instructions and/or data structures used in implementation of higher level machine
code. In one embodiment, it includes, for instance, proprietary code that is typically delivered as microcode that
includes trusted software or microcode specific to the underlying hardware and controls operating system access to

the system hardware.

[00315] A guest instruction 40 that is obtained, translated and executed may be, for instance, one of the
instructions described herein. The instruction, which is of one architecture (e.g., the Z/Architecture), is fetched from
memory, translated and represented as a sequence of native instructions 46 of another architecture (e.g.,

PowerPC, pSeries, Intel, etc.). These native instructions are then executed.

[00316] One or more aspects may relate to cloud computing.

[00317] It is understood in advance that although this disclosure includes a detailed description on cloud
computing, implementation of the teachings recited herein are not limited to a cloud computing environment.
Rather, embodiments of the present invention are capable of being implemented in conjunction with any other type

of computing environment now known or later developed.

[00318] Cloud computing is a model of service delivery for enabling convenient, on-demand network access to
a shared pool of configurable computing resources (e.g. networks, network bandwidth, servers, processing,
memory, storage, applications, virtual machines, and services) that can be rapidly provisioned and released with
minimal management effort or interaction with a provider of the service. This cloud model may include at least five

characteristics, at least three service models, and at least four deployment models.

[00319] Characteristics are as follows:

[00320] On-demand self-service: a cloud consumer can unilaterally provision computing capabilities, such as
server time and network storage, as heeded automatically without requiring human interaction with the service's

provider.

WO 2019/097347 PCT/IB2018/058619
49
[00321] Broad network access: capabilities are available over a network and accessed through standard
mechanisms that promote use by heterogeneous thin or thick client platforms (e.g., mobile phones, laptops, and
PDAs).

[00322] Resource pooling: the provider's computing resources are pooled to serve multiple consumers using a
multi-tenant model, with different physical and virtual resources dynamically assigned and reassigned according to
demand. There is a sense of location independence in that the consumer generally has no control or knowledge
over the exact location of the provided resources but may be able to specify location at a higher level of abstraction

(e.g., country, state, or datacenter).

[00323] Rapid elasticity: capabilities can be rapidly and elastically provisioned, in some cases automatically, to
quickly scale out and rapidly released to quickly scale in. To the consumer, the capabilities available for

provisioning often appear to be unlimited and can be purchased in any quantity at any time.

[00324] Measured service: cloud systems automatically control and optimize resource use by leveraging a
metering capability at some level of abstraction appropriate to the type of service (e.g., storage, processing,
bandwidth, and active user accounts). Resource usage can be monitored, controlled, and reported providing

transparency for both the provider and consumer of the utilized service.

[00325] Service Models are as follows:

[00326] Software as a Service (SaaS); the capability provided to the consumer is to use the provider's
applications running on a cloud infrastructure. The applications are accessible from various client devices through
a thin client interface such as a web browser (e.g., web-based email). The consumer does not manage or control
the underlying cloud infrastructure including network, servers, operating systems, storage, or even individual

application capabilities, with the possible exception of limited user-specific application configuration settings.

[00327] Platform as a Service (PaaS): the capability provided to the consumer is to deploy onto the cloud
infrastructure consumer-created or acquired applications created using programming languages and tools
supported by the provider. The consumer does hot manage or control the underlying cloud infrastructure including
networks, servers, operating systems, or storage, but has control over the deployed applications and possibly

application hosting environment configurations.

[00328] Infrastructure as a Service (laaS); the capability provided to the consumer is to provision processing,
storage, networks, and other fundamental computing resources where the consumer is able to deploy and run
arbitrary software, which can include operating systems and applications. The consumer does not manage or
control the underlying cloud infrastructure but has control over operating systems, storage, deployed applications,

and possibly limited control of select networking components (e.g., host firewalls).

[00329] Deployment Models are as follows:

WO 2019/097347 PCT/IB2018/058619
50
[00330] Private cloud: the cloud infrastructure is operated solely for an organization. It may be managed by

the organization or a third party and may exist on-premises or off-premises.

[00331] Community cloud: the cloud infrastructure is shared by several organizations and supports a specific
community that has shared concerns (e.g., mission, security requirements, policy, and compliance considerations).

It may be managed by the organizations or a third party and may exist on-premises or off-premises.

[00332] Public cloud: the cloud infrastructure is made available to the general public or a large industry group

and is owned by an organization selling cloud services.

[00333] Hybrid cloud: the cloud infrastructure is a composition of two or more clouds (private, community, or
public) that remain unique entities but are bound together by standardized or proprietary technology that enables

data and application portability (e.g., cloud bursting for loadbalancing between clouds).

[00334] A cloud computing environment is service oriented with a focus on statelessness, low coupling,
modularity, and semantic interoperability. At the heart of cloud computing is an infrastructure comprising a network

of interconnected nodes.

[00335] Referring now to FIG. 33, illustrative cloud computing environment 50 is depicted. As shown, cloud
computing environment 50 comprises one or more cloud computing nodes 10 with which local computing devices
used by cloud consumers, such as, for example, personal digital assistant (PDA) or cellular telephone 54A, desktop
computer 54B, laptop computer 54C, and/or automobile computer system 54N may communicate. Nodes 10 may
communicate with one another. They may be grouped (not shown) physically or virtually, in one or more networks,
such as Private, Community, Public, or Hybrid clouds as described hereinabove, or a combination thereof. This
allows cloud computing environment 50 to offer infrastructure, platforms and/or software as services for which a
cloud consumer does not need to maintain resources on a local computing device. It is understood that the types of
computing devices 54A-N shown in FIG. 33 are intended to be illustrative only and that computing nodes 10 and
cloud computing environment 50 can communicate with any type of computerized device over any type of hetwork

and/or network addressable connection (e.g., using a web browser).

[00336] Referring now to FIG. 34, a set of functional abstraction layers provided by cloud computing
environment 50 (FIG. 33) is shown. It should be understood in advance that the components, layers, and functions
shown in FIG. 34 are intended to be illustrative only and embodiments of the invention are not limited thereto. As

depicted, the following layers and corresponding functions are provided:

[00337] Hardware and software layer 60 includes hardware and software components. Examples of hardware
components include mainframes 61; RISC (Reduced Instruction Set Computer) architecture based servers 62;
servers 63; blade servers 64; storage devices 65; and networks and networking components 66. In some

embodiments, software components include network application server software 67 and database software 68.

WO 2019/097347 PCT/IB2018/058619
51
[00338] Virtualization layer 70 provides an abstraction layer from which the following examples of virtual
entities may be provided:; virtual servers 71; virtual storage 72; virtual networks 73, including virtual private

networks; virtual applications and operating systems 74; and virtual clients 75.

[00339] In one example, management layer 80 may provide the functions described below. Resource
provisioning 81 provides dynamic procurement of computing resources and other resources that are utilized to
perform tasks within the cloud computing environment. Metering and Pricing 82 provide cost tracking as resources
are utilized within the cloud computing environment, and billing or invoicing for consumption of these resources. In
one example, these resources may comprise application software licenses. Security provides identity verification
for cloud consumers and tasks, as well as protection for data and other resources. User portal 83 provides access
to the cloud computing environment for consumers and system administrators. Service level management 84
provides cloud computing resource allocation and management such that required service levels are met. Service
Level Agreement (SLA) planning and fulfilment 85 provide pre-arrangement for, and procurement of, cloud

computing resources for which a future requirement is anticipated in accordance with an SLA.

[00340] Workloads layer 90 provides examples of functionality for which the cloud computing environment
may be utilized. Examples of workloads and functions which may be provided from this layer include: mapping and
navigation 91; software development and lifecycle management 92; virtual classroom education delivery 93; data

analytics processing 94; transaction processing 95; and table of contents processing 96.

[00341] The present invention may be a system, a method, and/or a computer program product at any
possible technical detail level of integration. The computer program product may include a computer readable
storage medium (or media) having computer readable program instructions thereon for causing a processor to carry

out aspects of the present invention.

[00342] The computer readable storage medium can be a tangible device that can retain and store
instructions for use by an instruction execution device. The computer readable storage medium may be, for
example, but is not limited to, an electronic storage device, a magnetic storage device, an optical storage device, an
electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing. A
non-exhaustive list of more specific examples of the computer readable storage medium includes the following: a
portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash memory), a static random access memory (SRAM), a portable
compact disc read-only memory (CD-ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised structures in a groove having instructions recorded
thereon, and any suitable combination of the foregoing. A computer readable storage medium, as used herein, is
not to be construed as being transitory signals per se, such as radio waves or other freely propagating
electromagnetic waves, electromagnetic waves propagating through a waveguide or other transmission media (e.g.,

light pulses passing through a fiber-optic cable), or electrical signals transmitted through a wire.

WO 2019/097347 PCT/IB2018/058619
52

[00343] Computer readable program instructions described herein can be downloaded to respective
computing/processing devices from a computer readable storage medium or to an external computer or external
storage device via a network, for example, the Internet, a local area network, a wide area network and/or a wireless
network. The network may comprise copper transmission cables, optical transmission fibers, wireless transmission,
routers, firewalls, switches, gateway computers and/or edge servers. A network adapter card or network interface
in each computing/processing device receives computer readable program instructions from the network and
forwards the computer readable program instructions for storage in a computer readable storage medium within the

respective computing/processing device.

[00344] Computer readable program instructions for carrying out operations of the present invention may be
assembler instructions, instruction-set-architecture (ISA) instructions, machine instructions, machine dependent
instructions, microcode, firmware instructions, state-setting data, configuration data for integrated circuitry, or either
source code or object code written in any combination of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++, or the like, and procedural programming languages, such
as the "C" programming language or similar programming languages. The computer readable program instructions
may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package,
partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the user's computer through any type of network,
including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external
computer (for example, through the Internet using an Internet Service Provider). In some embodiments, electronic
circuitry including, for example, programmable logic circuitry, field-programmable gate arrays (FPGA), or
programmable logic arrays (PLA) may execute the computer readable program instructions by utilizing state
information of the computer readable program instructions to personalize the electronic circuitry, in order to perform

aspects of the present invention.

[00345] Aspects of the present invention are described herein with reference to flowchart illustrations and/or
block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the
invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and
combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer

readable program instructions.

[00346] These computer readable program instructions may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable data processing apparatus to produce a machine,
such that the instructions, which execute via the processor of the computer or other programmable data processing
apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block
or blocks. These computer readable program instructions may also be stored in a computer readable storage
medium that can direct a computer, a programmable data processing apparatus, and/or other devices to function in

a particular manner, such that the computer readable storage medium having instructions stored therein comprises

WO 2019/097347 PCT/IB2018/058619
53
an article of manufacture including instructions which implement aspects of the function/act specified in the

flowchart and/or block diagram block or blocks.

[00347] The computer readable program instructions may also be loaded onto a computer, other
programmable data processing apparatus, or other device to cause a series of operational steps to be performed
on the computer, other programmable apparatus or other device to produce a computer implemented process, such
that the instructions which execute on the computer, other programmable apparatus, or other device implement the

functions/acts specified in the flowchart and/or block diagram block or blocks.

[00348] The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation
of possible implementations of systems, methods, and computer program products according to various
embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a
module, segment, or portion of instructions, which comprises one or more executable instructions for implementing
the specified logical function(s). In some alternative implementations, the functions noted in the block may occur out
of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed
substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the
functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose
hardware-based systems that perform the specified functions or acts or carry out combinations of special purpose

hardware and computer instructions.

[00349] In addition to the above, one or more aspects may be provided, offered, deployed, managed,
serviced, etc. by a service provider who offers management of customer environments. For instance, the service
provider can create, maintain, support, etc. computer code and/or a computer infrastructure that performs one or
more aspects for one or more customers. In return, the service provider may receive payment from the customer
under a subscription and/or fee agreement, as examples. Additionally or alternatively, the service provider may

receive payment from the sale of advertising content to one or more third parties.

[00350] In one aspect, an application may be deployed for performing one or more embodiments. As one
example, the deploying of an application comprises providing computer infrastructure operable to perform one or

more embodiments.

[00351] As a further aspect, a computing infrastructure may be deployed comprising integrating computer
readable code into a computing system, in which the code in combination with the computing system is capable of

performing one or more embodiments.

[00352] As yet a further aspect, a process for integrating computing infrastructure comprising integrating

computer readable code into a computer system may be provided. The computer system comprises a computer

WO 2019/097347 PCT/IB2018/058619
54
readable medium, in which the computer medium comprises one or more embodiments. The code in combination

with the computer system is capable of performing one or more embodiments.

[00353] Although various embodiments are described above, these are only examples. For example,
computing environments of other architectures can be used to incorporate and use one or more embodiments.
Further, different instructions or operations may be used. Additionally, different registers may be used and/or other

types of indications (other than register numbers) may be specified. Many variations are possible.

[00354] Further, other types of computing environments can benefit and be used. As an example, a data
processing system suitable for storing and/or executing program code is usable that includes at least two
processors coupled directly or indirectly to memory elements through a system bus. The memory elements include,
for instance, local memory employed during actual execution of the program code, bulk storage, and cache memory
which provide temporary storage of at least some program code in order to reduce the number of times code must

be retrieved from bulk storage during execution.

[00355] Input/Output or I/0 devices (including, but not limited to, keyboards, displays, pointing devices, DASD,
tape, CDs, DVDs, thumb drives and other memory media, etc.) can be coupled to the system either directly or
through intervening I/O controllers. Network adapters may also be coupled to the system to enable the data
processing system to become coupled to other data processing systems or remote printers or storage devices
through intervening private or public networks. Modems, cable modems, and Ethernet cards are just a few of the

available types of network adapters.

[00356] The terminology used herein is for the purpose of describing particular embodiments only and is not
intended to be limiting. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural
forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises’
and/or “comprising’, when used in this specification, specify the presence of stated features, integers, steps,
operations, elements, and/or components, but do not preclude the presence or addition of one or more other

features, integers, steps, operations, elements, components and/or groups thereof.

[00357] The corresponding structures, materials, acts, and equivalents of all means or step plus function
elements in the claims below, if any, are intended to include any structure, material, or act for performing the
function in combination with other claimed elements as specifically claimed. The description of one or more
embodiments has been presented for purposes of illustration and description, but is not intended to be exhaustive
or limited to in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in
the art. The embodiment was chosen and described in order to best explain various aspects and the practical
application, and to enable others of ordinary skill in the art to understand various embodiments with various

modifications as are suited to the particular use contemplated.

WO 2019/097347 PCT/IB2018/058619
55

CLAIMS

1. A computer program product for facilitating processing within a computing environment, the computer
program product comprising:

a computer readable storage medium readable by a processing circuit and storing instructions for
performing a method comprising:

obtaining an identification of an in-memory configuration state register for which memory is assigned;
determining, based on the identification, an offset into the memory at which the in-memory configuration state
register is stored, the offset being allocated to the in-memory configuration state register based on functional affinity
of the in-memory configuration state register; and

accessing the in-memory configuration state register using at least the offset.

2. The computer program product of claim 1, wherein the offset places the in-memory configuration state

register in a same cache line as another in-memory configuration state register having a same functional affinity.

3. The computer program product of claim 2, wherein the in-memory configuration state register and the
other in-memory configuration state register have the same functional affinity based on both the in-memory

configuration state register and the other in-memory configuration state register being used in a particular operation.

4, The computer program product of claim 1, wherein the offset places the in-memory configuration state
register in an adjacent cache line as another in-memory configuration state register having a same functional

affinity.

5. The computer program product of claim 1, wherein the offset is an index position within a particular unit of

the memory.

6. The computer program product of claim 5, wherein the method further comprises providing a version

indication for the particular unit of the memory.

7. The computer program product of claim 1, wherein the identification comprises a register number of the in-

memory configuration state register.

8. The computer program product of claim 1, wherein the determining the offset comprises performing a look-

up in a data structure.

9. The computer program product of claim 1, wherein the determining the offset comprises using a

computation to determine the offset.

WO 2019/097347 PCT/IB2018/058619
56
10. The computer program product of claim 1, wherein the method further comprises returning the offset to a

requester in order for the requester to access the in-memory configuration state register.

1. A computer system for facilitating processing within a computing environment, the computer system
comprising:

amemory; and

a proces sor in communication with the memory, wherein the computer system is configured to perform a
method, said method comprising:

obtaining an identification of an in-memory configuration state register for which memory is assigned;

determining, based on the identification, an offset into the memory at which the in-memory configuration
state register is stored, the offset being allocated to the in-memory configuration state register based on functional
affinity of the in-memory configuration state register; and

accessing the in-memory configuration state register using at least the offset.

12. The computer system of claim 11, wherein the offset places the in-memory configuration state register in a

same cache line as another in-memory configuration state register having a same functional affinity.

13. The computer system of claim 12, wherein the in-memory configuration state register and the other in-
memory configuration state register have the same functional affinity based on both the in-memory configuration

state register and the other in-memory configuration state register being used in a particular operation.

14, The computer system of claim 11, wherein the offset places the in-memory configuration state register in

an adjacent cache line as another in-memory configuration state register having a same functional affinity.

15. The computer system of claim 11, wherein the offset is an index position within a particular unit of the
memory, and wherein the method further comprises providing a version indication for the particular unit of the

memory.

16. A computer-implemented method of facilitating processing within a computing environment, the computer-
implemented method comprising:
obtaining an identification of an in-memory configuration state register for which memory is assigned;
determining, based on the identification, an offset into the memory at which the in-memory configuration
state register is stored, the offset being allocated to the in-memory configuration state register based on functional
affinity of the in-memory configuration state register; and

accessing the in-memory configuration state register using at least the offset.

WO 2019/097347 PCT/IB2018/058619
57
17. The computer-implemented method of claim 16, wherein the offset places the in-memory configuration
state register in a same cache line as another in-memory configuration state register having a same functional

affinity.

18. The computer-implemented method of claim 17, wherein the in-memory configuration state register and
the other in-memory configuration state register have the same functional affinity based on both the in-memory

configuration state register and the other in-memory configuration state register being used in a particular operation.

19. The computer-implemented method of claim 16, wherein the offset places the in-memory configuration
state register in an adjacent cache line as another in-memory configuration state register having a same functional

affinity.

20. The computer-implemented method of claim 16, wherein the offset is an index position within a particular
unit of the memory, and wherein the method further comprises providing a version indication for the particular unit

of the memory.

PCT/IB2018/058619

WO 2019/097347

1144

Vi 9id

-
oLt
(SINGLLONYLSNI
YO0
ITRYOYIH
¥ HILNAWOD
(nd0) | IHOWD el
HOSSIDOHEL | WI0T A?ﬁ&? L
ol &l ol WALSAS
ZEL Ok "
(nd2) 3HOYD] e
0L Zeh | gLy | NOILYOTddY
3 , ogl
IHOYO SEOVANIIN
Q3HYHS AMOWEW o
ozl 0L 80l L
y
OLL

201 WILSAS ¥ILNGWOD

i

P

(SINOUONYISNT
WPHOOM
TIEVAYIY HILNANOD

SAVHOOHd [™

" (3s10) 301ATG
. JOVHOLS VIva

_
oFt

)

JOYAHILNI
HHOMLIAN

Tyl

(FAMa JdYL 93
ADIATA TYNHILXI

avi

(TyNIAE L ¥aSN "o°3)
JOINT0 TYNYZLKS

ovi

i

PCT/IB2018/058619

WO 2019/097347

2144

|
|

| >
B DL P
|

|

|

w ,
O
|

| g

|

_ e
|

| o Ly,
|

|

|

| p—
|

Neol|
1s3noi] €8k
811 NINHOW g/t
. ALY
THVMINY I
MOSSIO0Yd
7510
1gangtak
RS ZANHOYN ~gty !
LLt LA |
HOSIAYIAAH
A J1 18I0
S8 15300~ €81
LINHOYW |-G/ 1
TALHIA
SINIHOYA
TYALHIA

€L
WaLsAsENs
ol

AHOWIN

(30} XTINOD HOSSINOUE TrEINID

~~581

9L
Ee e
EET k\ﬁ, O
1N
ONINDD s
, 181
/ é/ﬁ
of ER
0/
w PSS
[FAZ])
am/p — 30IAZ
601 v O
e
Y o i
M ol | el 791
_ I0IASC
_ of
_
|
|
~eeegy

WO 2019/097347 PCT/IB2018/058619

3/44

PROCESSOR 104

INSTRUCTION FETCH ¢~-150

% 166
¢

INSTRUCTION DECODE | _ 150 VEMORY BASED
QPERARDFETCR CONFIGURATION STATE
% 154 REGISTER PROCESSING
—m{ INSTRUCTION EXECUTE 168
y 15 -
, REGISTER(S)
MEMORY ACCESS |st—
§ 160
{

WRITE BACK et

FIG. 1C

PCT/IB2018/058619
4144

WO 2019/097347

061 al '9id
. S -
m "SEHEM4 ONY S LArMH LN _
! |
m ONINYNDS !
w €811 Ymisioay |
| u
_ XA . : |
HOVE _ — SHFLSI9TY NOILYWNOS .
{23100 H S e %z %m\] msmmxm vy %mw L N
¢ - _ ! T
| N
_ NOILDIOTd Ol [E—
! HONvYE NOILOMYLSNI !
J 7 T M
ﬁ Zil 0Lt |
| i
Do e o o e e e et e e e e e e e e e oot et e et e i e]

WO 2019/097347 PCT/IB2018/058619

5144

_____ i I L35 RELOAD DATA

, L15 REQUEST
104 . " AGDEESS
] ﬁ%ﬁ&‘?%ﬁ ‘ PREDECODE

; , - — : 109
LINE {,__1 11] RELOAD FROM TLB | woRD g §
PAGE ADIR GACHE
- FiN 280 LiNES L8 \\._aL, »
{12@3 TES 9 ok 1;}:}{;%0@ (IFARJ@SZB) VK 2) 16KE 8 wsmscmmowme
sy || T
1 5? 1—

RS
G
)yl
‘éﬁ
e
Lir
e Ve
4
o
)
oy
=
2]
D
3
=]
2]
]

ERAT HIT rgjé T

§] 118
LOLAL)GJ JLOBAL>Q‘ GLOBAL : 135
LT el B SYISELECTOR| b L] PREDICTOR] FERRICH TARGET >
fmms 1K X 18 } KX 16 UPDATE e BRANCH TARGE ; l
- INSTRUCT ON
105a | 105b | 105¢ L. FEERS |
118 We 7 ls 127 5 =1 | (bR
- =1 B 1 -
153
S BRANCH SELECTMUXES, \JHREAD SELECTZ.{ 53
' i { ‘
2 BRANGC HF"“ PER CYCLE GROUP > FORMATION
| BRANGH IO JA?*G‘\!J
1 Zg QUELE (BIQ)
~ g ”Hgg
121 ! i

FROM ISY

BRANCH | USED TO UPDATE 5
EXECU Tion] BHTS AND GLOBAL DISPATCH

SELECTORFLUSH L.
_—117b st 113
/ FROM FROM FROM
LINK COUNT isu 15H 184 155UE
1478 REG¥ Ev- I a— - I - T
| STAGK ¥ 1.
iif?HREAD} {25@(6&8’\ Fie |exeElmion] | RO dk] | FXU |\ Lau PRy
=T T[Tl I\
. = I V151 143
123 147 TOEER
TO SPR S
BUS 141 fan]
)
v
145

FIG. 1E

PCT/IB2018/058619

WO 2019/097347

6/44

IAYSHA
Q024 X
IS

¢ BOid

Ve

gozé~ 8a3
S uugad

oLz
VY H80 AdOWIN-NI

90z
AHOWIN WILSAS

AHOYYHEIH
FHOVD

M

Ratsh "R

)
Zie

" E4d3X b4 3X
04u3X ViN H05dd
S 43 ol

Z0Z 345D H0SSIT0HA-NI

00Z H0S3300ud

PCT/IB2018/058619

WO 2019/097347

7144

20E 1 d0IHSD Fd0LE F1VHINGD

ONANYH
HAS LA TENOLLNIANOS

)
80¢

£ 'old

ONITANYH
GLE~4 HdS4A TYNOLLMIANDD

30030 NOULONHLEN
Zee 4 TYNOLLNIANGD WO 2434

ont

(8315193 ;
LY LS NOLLYENDIINGD
SESN LYHL NOLLONELSNI
HFHLO SINOLLOMYLSN]

a=A1303d ,

/.“

dO} 31IEM HO
PEe~1 Qvdd JL¥HENZ0

53A

zee~

d0I M8 VO ILYEENID bglg

S3A |

gan |

ON LS RIONEH,_ =

e~

= AT AHONTI
fl k
702~

ON

s éﬁ%ﬁm
zZ0¢ ﬁ

00E 1 NOLLOMHLSNI 3AE09Y

WO 2019/097347

LOAD CSR1OP

PCT/IB2018/058619

OBTAIN MEMORY BASE ADDRESS

(BASE) |-400

é

%

OBTAIN REGISTER # |~-402

MAP REGISTER # TO OFFSET }—404

%

LOAD FROM BASE+OFFSET

- 406

r

RETURN LOADED VALLUE

408

FIG. 4

STORE CSR 0P (START)

OBTAIN MEMORY BASE ADDRESS

(BASE) 500

'

!

OBTAIN REGISTER # 502

MAP REGISTER # TO OFFSET 504

%

STORE STORE-OPERAND TO BASE+OFFSET 506

FIG. 5

WO 2019/097347

600
)

CER READ
REFERENCE

8/44

PCT/IB2018/058619

OBTAIN MEMORY BASE
ADDRESS (BASE)

- 802

%

OBTAIN REGISTER #

-804

!

MAP REGISTER # TO OFFSET 606

%

LOAD FROM BASE+OFFSET |_goa
TO TEMPORARY REGISTER

%_

USE TEMPORARY REGISTER 610

WO 2019/097347

700
|

CSRWRITE

REFERENCE |

PCT/IB2018/058619

10/44

{ STARYT)

OBTAIN MEMORY BASE
ADDRESS (BASE)

702

!

OBTAIN REGISTER #

704

!

MAP REGISTER # TO OFFSET |-706

f

STORE TO BASE+QOFFSET (708

WO 2019/097347 PCT/IB2018/058619

11/44

CSR WRITE

v

TRANSLATE REGISTER NUMBER |~ 800
i

¥
ALLOCATE STORE QUEUE ENTRY (802

""""" !
¥

STORE ADDRESS CORRESPONDING TO SUBJECT CSR INTG STORE QUEUE ENTRY f~804
!

¥

STORE DATA VALUE CORRESPONDING TO DATA 806
WRITTEN TO SUBJECT CSR INTO STORE QUEUE ENTRY

s
¥

MONITOR STORE QUEUE ENTRY FOR RFADS TO INDICATED (808
ADDRESS (E.G,, BYPASS FROM STORE QUEUE)

Y

FLUSH STORE QUEUE ENTRY RESPONSIVE TO MISPECULATION EVENT 810

v

WRITE DATA VALUE TO ADDRESS IN MEMORY HIERARCHY, E.G., A FIRST LEVEL CACHE {812

Y

PROVIDE DATA FROM FIRST LEVEL CACHE RESPONSIVE TO READ REQUEST 814

Y

BASED GN CACHE REPLACEMENT POLICY, EVICT DATA |~818
TO ONE OR MORE NEXT LEVELS OF CACHE HIERARCHY

!
¥

PROVIDE DATA FROM ONE OR MORE NEXT LEVELS OF |~818
CACHE HIERARCHY RESPONSIVE TO A READ REQUEST

i

¥

BASED ON CACHE REPLACEMENT POLICY, EVICT DATA |~ 820
FROM CAGCHE LEVELS TO SYSTEM MEMORY {E.G., DRAM;

s
¥

PROVIOE DATA FRGM SYSTEM MEMORY RESPONSIVE TO A READ REQUEST 822
{

END

FIG. 8

WO 2019/097347 PCT/IB2018/058619
12/44

CSR READ

{ START)

TRANSLATE REGISTER NUMBER 800

Y

ORTAIN LOAD SEQUENCE NUMBER (LOAD TAG) |- 602

TEST FOR DATA PRESENCE OF ADDRESS - 904
CORRESPONDING TO CSR BEING READ {N STORE QUEUE

Iy

| _~908
DATA <\ ’
FOR CSR TO BE READ ™, YES

g, FOUND N STORE

OSTAINDATAFROM |~-008
STORE QUEUE

“oara 910
FOR CSRTO BE\ YES i OBTAINDATAFROM |~912

FOUR et
ng%?g X}fg tN 'FIRST LEVEL GACHE

- \\ 914
/ DATA ;
" FORGSRTOBE ™~
, RCAD FOUND I ONE OR
Ny MORE NEXT LEVEL

YES | OBTANDATAFROM 816
NEXT LEVEL CACHE |

{ NO
¥

ISSUE A READ REQUEST TO LOAD QUEUE TO 1918
RETRIEVE DATA FROM SYSTEM MEMORY

T

VOBTAEN DATA CORRESPONDING TO-CSR WHEN. p~920
LOAD FROM SYSTEM MEMORY COMPLETES

END

FIG. 9

WO 2019/097347 PCT/IB2018/058619

13/44

(" START)

RECE{VE INSTRUCTION ¢~ 1000

//

S

< RECEVEDNTCSR? S ES

o

»’ﬁ\c"i Qo2

=1 HANDLE MTOSR 1004

| HANDLE MFCSR {1008

PERFORM CONVENTIONAL }—1010
INSTRUCTION DECODE

WO 2019/097347 PCT/IB2018/058619

14/44

MTCSR

(staRT)
1100
< MEMORY-CSR? 0

#= CONVENTIONAL MTCSR HANDLING 1102

w1104

 ENTIRE CERIN ™ VES

e MEMORY?

GENERATE STORECSRIOP |~1108

{END

GENERATE STORE CSR IOPs FORONE 1110
OR MORE IN-MEMORY CSR PORTIONS
]
¥
GENERATE UPDATE {OPs FOR OME 1112
OR MORE IN-CORE CSR PORTIONS

{ END)
FIG. 11

WO 2019/097347 PCT/IB2018/058619

16/44

MFCSR

CONVENTIONAL MFCSR HANDLING 1202

=+

T ENTIRECSRIN ™. YES pe—. —
U MENORY? w{ GENERATE LOAD CSRICP 1206

L NG

GENERATE LOAD CSR 10Ps FOR ONE 1210
OR MORE IN-MEMORY CSR PORTIONS

¥

GENERATE READ [OPs FORONEOR 1212
MORE IN-CORE SR PORTIONS

Y

GENERATE ONE ORMOREIOPs TD 1214
COMBINE PORTIONS INTO
ARCHITECTURALLY DEFINED CSR IMAGE

PCT/IB2018/058619

WO 2019/097347

16/44

<mm‘ D

=

&U3SSI0Y w_mu

= 31150100 40 SENOS aou,,.‘._s,.
N
0sel— o

INENOAINOD
076~ HOSSIOOHdNI 553007

8EE L™

|

HALSIOT AdUOGNAL 280

F

28Tl ™

L8103 AUYHONTL
01 138:440+38vd W04 QY01

f

PeEl™

13834001 #HILSIOF YN

IONTHI43 Qv
30 2LISOdN0D

= B LNINOIWGD H0S
HOSSEO0SA NI _H0 Aon3

gLe

cmmwwmju,q

?
ZoSL~ #ALSIONI NIVLED
4
— (33ve) s8aHaay
geet 38YE AHOWIIN NIV.LED
SHOOHN s
e »m@ﬁ& z_

T

3
goel

PCT/IB2018/058619

WO 2019/097347

17144

mmm\ old

¢A355300V

mna

FL804W00 40 m&zmzoaﬁﬂuo .\\\

- JONS=E43d 1M

HSD JLSOdNOD

- meMx ///mmcz o
9ge L~ 13S40+38¥E 04 JH018
yeEL—~ Ll3S44001# Hma_mmm Al
ZegL ™ #mEm@W NIVIE0
w ‘
1NINONOD (3gva) 5530V
0BE L~ HOSSIV0U4-NI 55300V 08EL™1 3svg Eo%z NIYL80

i,

HOSSII0EIN -
0igL— T

A L3883 Q,q
ININOAWOD J085300ud zm
T HO APOWENNI

AdO:

WEW-NI

)
0oLl

PCT/IB2018/058619

WO 2019/097347

18/44

H3X

7i Ol

2071 et
™ A1
INAOD T1AD 0000000000000000000000 vo a0 08! | uds

)
90vE

0¥

N

¥ori

S0 JLSCANOT F1dWvXd

WO 2019/097347 PCT/IB2018/058619

19/44

1500

13| AMR

128| TFHAR4
120 TFIAR4
130 TEXASR4
131 TEXASRU4

136 CTRL

256 VRSAVE

2591 SPRG3

268 | TB2
 269|TBU2

768/ SIER
769|MMCR2
770|MMCRA
771|PMC1
772|PMC2
773 PMC3
774 PMC4
775 PMC5
776|PMC6

M“-ﬁ_,__ ! __,.—’"#-’HM\\ - ,—/———\\.——-—‘-/ -

FIG. 15A

WO 2019/097347 PCT/IB2018/058619

20/44

779 MMCRO
780, SIAR
781| SDAR
782 MMCR1

800|BESCRS
801|BESCRSU
802|BESCRR
~ 803|BESCRRU
804 |EBBHR
805 |EBBRR
808 BESCR

808 | reserved3
808 | reserveds
810 | reservad3
811|reserved3

813|LMRR
_ B14|LMSER
815/ TAR

896 |PPR10

~

898 PPR3Z

FIG. 158

WO 2019/097347

21744

(START)

RECEIVE CONFIGURATION 1600
STATE REGISTER NUMBER

%

DETERMINE INDEX POSITION 1802

'

RETURN POSITION |~1604

PCT/IB2018/058619

WO 2019/097347 PCT/IB2018/058619

22/44

(" START)

ENSURE IN-ORDER POINT [~1700

Y

MFSPR RS, 128 < LOAD SPRINTO GPR §~-1702

!

COMPLETE INSTRUCTION IN-ORDER |~ 1704

!

STD RS, 17,0 STORE REGISTER TO MEMORY 1~1708

Y

ENSURE IN-ORDER POINT ~1708

!

MFSPR RS, 129 < LOAD SPRINTOGPR |=1710

1

COMPLETE INSTRUCTION IN-ORDER |~-1712

!

STORS, 17,8 STORE REGISTER TO MEMORY }~1714

!

4 'ENSURE IN-ORDER POINT |~-1716
v
MFSPR R, 130 < LOAD SPRINTO GPR }~-1718
| [COMPLETE INSTRUCTION IN-ORDER 11720

v

STORE, 17, 18 STORE REGISTER TG MEMORY §~1722

WO 2019/097347 PCT/IB2018/058619

23144

(" START)

/ ENSURE IN-ORDER POINT 1750

f

LOAD CSR INTO TEMPORARY REGISTER {1752

!

STORE REGISTER TO MEMCRY CONTROL PAGE ¢~-1754
B

v

LOAD CSR INTO TEMPORARY REGISTER 11756

ST CSR «{i %
L1758

STORE REGISTER TQ MEMORY CONTRQL PAGE

Y

LOAD CSR INTO TEMPORARY REGISTER 1760

¥

STORE REGISTER TO MEMORY CONTROL PAGE §~ 1762

1

\\ COMPLETE INSTRUCTION IN-ORDER }~1770

FIG. 178

WO 2019/097347 PCT/IB2018/058619

24/44

/ i ENSURE IN-ORDER POINT $~1780

!

LOAD CSR INTO TEMPORARY REGISTER |~1782
¥

STORE REGISTER IN-PROCESSOR ~1784

!

LOAD CSR INTO TEMPORARY REGISTER 1786

LD_08R < %

STORE REGISTER IN-PROCESSOR |~-1788

!

LOAD CSR INTO TEMPORARY REGISTER 1780

t
¥

STORE REGISTER INPROCESSOR 1792

!

\ COMPLETE INSTRUCTION IN-ORDER |~-1794

{

FIG. 17C

WO 2019/097347 PCT/IB2018/058619

25/44

START)

RECEIVE ADDRESS INDICATIVE OF MEMORY BACKING |~1800
LOCATION WiTH RESPECT TO PRESENT ADDRESSING MODE

!

OPTIONALLY TRANSLATE ADDRESS TO PHYSICAL ADDRESS 11802

!

CAPTURE TRANSLATED ADDRESS (AND {~ 1804
OPTIONALLY UNTRANSLATED ADDRESS)

|
|

(_END)

FIG. 18A

(8TART }

H

y

OBTAIN CAPTURED ADDRESS wrt MEMORY -1850
CONTROL BEING REFERENCED

f

OPTIONALLY TRANSLATE ADDRESS TO PHYSICAL ADDRESS |~ 1852

!

ACCESS 1N—MEMORY CONTROL 1854

A

END

FIG. 188

WO 2019/097347 PCT/IB2018/058619

INITIALIZE CONTEXT COPY-OUT -~ LOCATE CONTEXT |_1g00
. STRUCTURE FOR PREVIOUS CONTEXT AND IDENTIFY |~

Lo o FIRST GSRFORCONTEXT READ-OUT

¥

SELECT CSR TO STORE 11802

!

READ CSR ~ 1504

!

STORE VALUE TO IN-MEMORY STRUCTURE MAINTA!NED gY |—1806
SUPERVISOR SOFTWARE FOR STORING CONTEXT-SWITCH DATA

,,Ldz a08
" MORE

- > ES
< CSRs TOBE CONTE\(Y

o SWITCHED o™

3

i NO

INITIALIZE CONTEXT COPY-IN ~ LOCATE CONTEXT _|_1g10
| STRUGTURE FOR NEXT CONTEXT AND IDENTIFY FIRST |
L CSRFORCONTEXT WRITEIN

i

SELECT CSRTO LOAD |~1912

!

READ VALUE FGR CSR FROM CONTEXT STRUCTURE |~ 1914

!

WRITE VALUE TOCSR ~-1916

1620

_—"MORE ™~ yES§
CSRs TO BE CONTEXT

FIG. 19A

WO 2019/097347 PCT/IB2018/058619

27/144

" INITIALIZE CONTEXT COPY-OUT - LOCATE CONTEXT | _1g50
| STRUCTURE FOR PREVIOUS CONTEXT

__________ SRR

HANDLE IN-PROCESSOR CSRs (1952

m '

(OPTIONALLY) READ ADDRESS OF IN-MEMORY CSR DATA PAGE 1954

%

(OPTIONALLY) STORE THE ADDRESS OF }~1956
THE PREVIOUS CONTEXT DATA
; .

mmmmmmmmm B A

| INITIALIZE CONTEXT COPY-IN -- LOCATE CONTEXT | 1960
| 'STRUCTURE FOR NEXT CONTEXT AND IDENTIFY |
| FIRST CSR FOR CONTEXT WRITEIN

 FRETCSRFOS I

LOAD ADDRESS FOR CSR DATA PAGE FOR NEXT CONTEXT |~1962

'

WRITE IN-MEMORY CSR DATA PAGE ADDRESS |~1964

|
| A

HANDLE IN-PROCESSOR CSRs 1966

FiG. 198

WO 2019/097347

28/44

RECEIVE ADDRESS INDICATIVE #2000
OF MEMORY BACKING LOCATION
(BASE ADDRESS) WITH RESPECT

TO PRESENT EXECUTION
ENVIRONMENT

)

|

TRANSLATE ADDRESS TQ PHYSICAL (~-2002
ADDRESS USING DAT TABLES

PCT/IB2018/058619

TRANSLATION N—

INDIGATE DAT PAGE FAULT 2008

| NO

CAPTURE UNTRANSLATED ADDRESS [~2012

%

CAPTURE TRANSLATED ADDRESS 2014

%

OPTIONALLY, CAUSE SUBJECT |-2016
PAGE TO BE PINNED

%

ENTER PAGE FAULT
HANDLER SOFTWARE
“ROUTINE

2008

|
¥

PERFORM PAGE

-~ 2010

FAULT HANDLER

FIG. 20

WO 2019/097347 PCT/IB2018/058619

29/44

ADDRESS-SPACE-CONTROL ~ 2100
ELEMENT VIRTUAL ADDRESS

TABLE ORIGIN DY RFX RSX | RTX | SX | PX | OFFSET

hY A

7 T ~ ' 4])52)63
o107 2 104] 0 z 11 22:2 i 331) 44|) 52 (53
e oo o e e e 2108 (2112 {2116|2120] 2124 2128

SELECT START LEVEL

REGION FIRST TABLE~- 2106

s
QRIGIN 4 INDEX
s -

2110

REGION SECOND TABLE
RN S

ORIGIN - INDEX
R

-~ 2114
REGION THIRD TABLE

g

ORIGIN INDEX
5T -

~ 2118
SEGMENT TABLE

fo
ORIGIN INDEX

2122
PAGE TASLE

ORIGIN INDEX

P
2125

2126 PAGE-FRAME REAL ADDRESS ¥

FIG. 21A

WO 2019/097347 PCT/IB2018/058619

30/44

ASCE ~2100 ASCE~2150
TABLE QRIGIN oT TABLE ORIGIN DT

) % 73
2102 2‘304‘ 2152 21584,

;@W ammms mmma ammms emmma Yaaas imm— — _. : 2 mm—— T SRR N -
GUEST 2§50 o N HOST 2&?10

REGION FIRST TABLE
REGION SECOND TABLE
REGION THIRD TABLE
SEGMENT TABLE

PAGE TABLE ~2172

\
Z:Z";'.ém

HOST PFRA~2174a

\\
X

3

2110
o
REGION SECOND TABLE

e

A

REGION FiRST TABLE
REGION SECOND TABLE
REGION THIRD TABLE
SEGMENT TABLE T
PAGE T};—\BLE 2176

i
_\%

\

¥ ,
HOST PFRA~~2174b |

i
E
i
|
|
|
!
i
|
l
l
|
|
!
|
REGION FIRST TABLE §
REGION SECOND TABLE |
REGION THIRD TABLE |
I

|

i

|

|

1

l

!

!

|

i

l

E

§

SEGMENT TABLE »
PAGE TABLE 2178

HOST PERA~ 2174

SEGMENTTARLE "1 | [REGION FIRST TABLE

ol ' & | REGION SECOND TABLE
! | REGION THIRD TABLE

SEGMENT TABLE 2180

e o e o T e e e S

{ | PAGE TABLE
; !

¥
/‘/ HOST PFRA ~2174d

PAGE TABLE W, | {REGION FIRST TABLE
e REGION SECOND TABLE

REGION THIRDTABLE

| !
SEGMENT TABLE 0

{ PAGE TABLE 2182 {

sl

2125

(2126 GUESTFFR ﬁ HOST PFRA~2174e

I

|

" {
g REGION FIRST TABLE |
REGION SECOND TABLE |
REGION THIRD TABLE |
l

J

|

|

|
I
SEGMENT TABLE -
; PAGE TABLE 2184
]]
| :
|

FIG. 218 L. FOSTPRRA~274T

WO 2019/097347 PCT/IB2018/058619

31/44
2200
PTE
PAGE PAGE "
PAGE FRAME REAL ADDRESS | ' | proTection | PINNING
2202 2204 2206 2208

FIG. 22

PCT/IB2018/058619

WO 2019/097347

32144

IWARD I

M
| N
|) |
m | IAVEHA |
| LEHOA . NHSYXAL |
| 9EHOA! ommwy pHNS HOYX3L |
| GEHOA! - 0uYs MvIdL |
| YEMOAL fors |9 HYHHL |
CEMONI | igH posz— 09HdS Ve _

| ZLEZ~ ZEHOA 80ET™ ! 00EZ™ jmsd m
_ HLD “
| 1 |
| YaX _
| |
| (MOSSIO0HAANS ¥ad) (OvasHL Y3d) (Ov3HL Hd) Nommmmmmmmme&v |
| pLez~NH 0Lz~ AH 90gz S0 " OvEMHL W
]

L e e

WO 2019/097347 PCT/IB2018/058619

33/44

(" START)

RECEIVE NEW CONFIGURATION VALUE (GUEST ADDRES-S) FOR MEMORY 12400
PAGE CONTAINING IN-MEMORY CONFIGURATION STATE REGISTERS

¥

TRANSLATE GUEST ADDRESS TQ PHYSICAL { REAL) - 2402
ADDRESS AND CACHE TRANSLATION FOR FUTURE AGCESS

!

n=GUEST LEVEL $~ 2404

r

n=ng 2408

!

NOTIFY HOST LEVEL n OF PINNING EVENT USING HOST LEVEL n ~-2408
VIRTUAL ADDRESS FOR GUEST ADDRESS BEING PINNED

,f’& 2410
7 MORE R
" HOSTLEVELS = JES

T, (.G >0}

FIG. 24

WO 2019/097347 PCT/IB2018/058619

34/44

PIN

RECEIVE NEW CONFIGURATION \/ALE (GUEST ADDRESS) FOR MEMORY
PAGE CONTAINING IN-MEMORY CONFIGURATION STATE REGISTERS

~- 2500

|

ADDRESS AND CACHE TRANSLATION FOR FUTURE AGCESS

%

- n=GUEST LEVEL - 2004
ADDRESS = GUEST VIRTUAL ADDRESS

L

=01) - 2508
ADDRESS = translate_to_host (ADDRESS)

!

" SET PINNING BIT IN PTE FOR ADDRESS |~ 2508

ﬁi [2510

" MORE .
HOSTLEVELS oy B9

EG, 0>

FIG. 25

TRANSLATE GUEST ADDRESS TO PHYSICAL (REAL) 2502

WO 2019/097347

35/44

UNPIN

{ START)

RECEIVE REQUEST TO UNPIN ADDRESS

!

PCT/IB2018/058619

~ 2600

n = GUEST LEVEL

ADDRESS = GUEST VIRTUAL ADDRESS TO BE UNPINNED

-
L

n = e
ADDRESS = transiate_to_host {ADDRESS, n}

-~ 2604

!

RESET PINNING BIT IN PTE FOR ADDRESS

~ 2606

e 2608

— ostievELs T YES

END

FIG. 26

PCT/IB2018/058619

WO 2019/097347

36/44

XA

- SSTHGAY ANODES
pzlz-4 NONid WHOIHEd

i

SSIAGYISHING | gy zgg~] NiNAWHOREd | 0ozz~] Nid MOAd

oLZzZ~~ NidNN AHOLHEd _
} |
LevlS |

o

H
i
H

s%?lliil%%éil!ill%i%lliiJ
|
|
|
|
|
|

WO 2019/097347

37144

RECEIVE REQUEST TO PIN NEW ADDREGS NA,
AND UNPIN OLD ADDRESS OA; FURTHER RETAIN
INDICATOR SPECIFIES WHETHER A REQUEST IS
BEING MADE TO RETAIN OA AS PINNED MEMORY

PCT/IB2018/058619

- 2800

'

PIN INDICATED ADDRESS NA

~ 2810

P ,L 2820

RETAN

-—"/

T

NO

DETERMINE WHETHER TO GRANT RETAIN OF
PINKNED PAGE, BASED ON INDICATED POLICY (EG.,
RESOURCE ALLOCATION ACROSS MULTIPLE Vis)
AND AVAILABLE MEMORY FOR PINNING

2822

P s \\(2824

s - DETERMINATION
- T0 GRANT REQUESTER
%y, TO MAINTAIN OA AS
sy PINNED PAGE?

1 ves

INDICATE UNPIN NOT PERFC‘RMED

]

FIG. 28

- 2826

¥ ‘
UNPIN INDICATED
ADDRESS OA

'

INDICATE UNPIN
PERFORMED

2830

- 2832

PCT/IB2018/058619

WO 2019/097347

38/44

262 ©id

SSTHAAY QANINYZLIA LY
IOVHOLS (0L LOH)

d0d AHOWIN

868z~ INHLSAS OLINTYA SSVd

i

PE62 ™

T S53HaAY AHOWEN
| WELSAS INIWHILEG

!

H50 {04

zegz -~ INTWA SAIZO3Y

g6¢ oid

3003 NOLLOFEH00
HO NOILZEL0dd
HLIM NOILONNTNOD N
#EBZ] HOLYTOLIANTVA JLIGM

I
]
000 NOILOZHHOD
HO NOILOZLOMd

CE6e 1 HOWY3 2LNdNOD

:

HSD HOA
gzez~ FMWA IAIEOTY

Yeo old

HOLVT OL
2062~ INAILIEM |
)
|
¥S0 04
006z~ INWA INF0TY |

PCT/IB2018/058619

WO 2019/097347

39/44

g50e—1 OLINTWA 3AAOH

20¢€ ol4

21907 H0853008d

!

0cog~ Ol 3NWWA ZAACEd

g0g ©id

D07 J088300Hd

AYIAODTH HOHES
ONIANTIN AJOWZN WALSAS

: Q3L0310dd WOY4 AMWA GvEd

i

HST MO S53HATY AHOWZN

2606 NFLSAS SNIWEELET

:

0508~ #YS0 SAZ0T |

geos—~ 03L0THH0D LM

-

HOLYT OL MOYE 3NWA

!

Y0g "Old

o907
HOSSIO0Hd 01
ANTYA 3AIAOY

9208~ ANVA GZLOF00 FLNGNOD
| ™ 0a0aEg
NOLLANN0D_
vwv %ﬁ
Z70e~ 3000 NOLLOTHHOT ¥OIHD
!
0z0e~ HOLY] WONH 3MTA NIVLEO

{
000g

WO 2019/097347 PCT/IB2018/058619

40/44

o

OBTAIN AN iDENTiFICAT!DNHOF AN IN-MEMORY CONFIGURATION STATE
REGISTER FOR WHICH MEMORY 18 ASSIGNED ~—-3100

DETERMINE, BASED ON THE IDENTIFICATION, AN OFFSET INTO THE MEMCRY AT
WHICH THE IN-MEMORY CONFIGURATION STATE REGISTER IS STORED —~-3102

!
|
l
|
|
| THE OFFSET BEING ALLOCATED TO THE IN-MEMORY CONFIGURATION
STATE REGISTER BASED ON FUNCTIONAL AFFINITY OF THE IN-MEMORY
| CONFIGURATION STATE REGISTER ~—3104
g |
" | ACCESS THE IN-MEMORY CONFIGURATION STATE REGISTER USING AT LEAST
THE OFFSET —~—3108

THE OFFSET PLACES THE IN-MEMORY CONFIGURATION STATE REGISTERIN A
SAME CACHE LINE AS ANOQTHER IN-MEMORY CONFIGURATION STATE REGISTER
HAVING A SAME FUNCTIONAL AFFINITY ~-3108

CONFIGURATION STATE REGISTER HAVE THE SAME FUNCTIONAL AFFINITY.
BASED ON BOTH THE IN-MEMORY CONFIGURATION STATE REGISTER AND THE
OTHER IN-MEMORY CONFIGURATION STATE REGISTER BEING USED IN A
PARTICULAR OPERATION ~— 3110

i

l

| 1
| THE OFFSET PLACES THE IN-MEMORY CONFIGURATION STATE REGISTER IN AN |
ADJACENT CACHE LINE AS ANOTHER IN-MEMORY CONFIGURATION STATE |
|

|

I
|
i
|
|| THE IN-MEMORY CONFIGURATION STATE REGISTER AND THE OTHER IN-MEMORY
!
I
i
|
|
|
|

REGISTER HAVING A SAME FUNCTIONAL AFFINITY —~—3112

FIG. 31A

WO 2019/097347 PCT/IB2018/058619

41/44

[e e e

THE OFFSET IS AN INDEX POSITION WITHIN A PARTICULAR UNIT OF THE
MEMORY —~—3114

PROVIDE A VERSION INDICATION FOR THE PARTICULAR UNIT OF THE
MEMORY ~—-3116

THE IDENTIFICATION INCLUDES A REGISTER NUMBER OF THE IN-MEMORY
CONFIGURATION STATE REGISTER—~—3118

THE OETERM!N?NG THE OFFSET INCGLUDES PERFORMING A LOOK-UP IN A
DATA STRUCTURE —~—3120

THE DETERMINING THE OFFSET INCLUDES USING A COMPUTATION T
DETERMINE THE OFFSET —~—3122

RETURN THE OFESET TO A REQUESTER IN ORDER FOR THE REQUESTER TO
ACCESS THE IN-MEMORY CONFIGURATION STATE REGISTER —~—3124

FIG. 31B

WO 2019/097347 PCT/IB2018/058619

42144
20
22 25 2§
¥ ¢ T
NATIVE CPU MEMORY
e ~ EMULATOR INPUT /QUTPUT
30-~|REGISTERS] [___f AT
32— 2«5\
FIG. 32A
j,r“** 24
32 MEMORY
r__l ______ - 420
I INSTRUCTION] | : :
427 FETCHING =t s raiicTions
| |__ROUTINE | ‘
| v | 4
| INSTRUCTION] | —
o ane) AT NATIVE
44— TRANSLATIONF——
- T RRE-Syh iy | INSTRUCTIONS
. |__ROUTINE 3
| ¥ i
|
EMULATION
48#"“%“‘* CONTROL | |
| |_ROUTINE i
| T W UV P UV, 1

FIG. 32B

WO 2019/097347 PCT/IB2018/058619

43/44

|
RER

FIG. 33

(]
<
o)

o
clek

e

T
e B30

R

fard

i

PCT/IB2018/058619

WO 2019/097347

4444

08
/
~ 15 wa AIBNYOS PUR SIBMPIEH
29 — BUBMLOS o
@%&cw Smw%mwd wm £g mmw%mm« ww
asEqEleq WOWIEN mgﬁo}amz e \m " NG SSUBLUEI \
i) —
@ = o
Sl P~ €L L~) UOREZEIHIA
aaﬁ i B [eniA JenuiA
= B &8 oo L
g8 ¥8 £y 28 g wewsbeuey /
{ Ri / : ¢
wiellyng pue /# uswsbeueyy /, E._o o a8 Buu pue Buosinaid
Buueld yIs /7 1AST 20meg / BoInDsey

/ /

R

/S 7 bussasoid
Ve " ssiBey ES

améam
/ uopennpy

mgmmmopm ' Buissao0ld /.
yonemByue) /g | ssenoig /) LI
peseqd cOwommcme /' mu@ﬁm@q ere(] WIeOISEE|D

\ Jusiusbeueyy /
m_@&&j

/f Mms.tS \

e}
A

96 &6 6 %]

INTERNATIONAL SEARCH REPORT International application No.
PCT/IB2018/058619

A. CLASSIFICATION OF SUBJECT MATTER
G11C 8/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Gl11C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNABS, DWPI, SIPOABS, CNTXT, CNKIL:computer, register, memo+, state, offset,address ,Jlocation,storage,
function,access

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A CN 102163141 A (UNIV. SHANGHAI JIAOTONG ET AL) 24 August 2011 (2011-08-24) 1-20
the whole document

A US 9218862 B1 (ALTERA CORP.) 22 December 2015 (2015-12-22) 1-20
the whole document

D Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents: «1> later document published after the international filing date or priority
. Lo . date and not in conflict with the application but cited to understand the
«A” document defining the general state of the art which is not considered principle or theory underlying the invention

to be of particular relevance
P «x” document of particular relevance; the claimed invention cannot be

“E” ?zil.'herdapphcatlon or patent but published on or after the international considered novel or cannot be considered to involve an inventive step
iling date when the document is taken alone

LT dpcgment le)ll‘?hhllzﬁ‘y thfgl‘.’v d(.)ubtz on plélorltyhclz.um(s). or wl_nctl;lls_ «“y” document of particular relevance; the claimed invention cannot be
cited tlo.esFa 1sn the Pfl.l dlcatlon ate of another citation or other considered to involve an inventive step when the document is
special reason (as specified) combined with one or more other such documents, such combination

«“0” document referring to an oral disclosure, use, exhibition or other being obvious to a person skilled in the art
means “&” document member of the same patent family

«p>” document published prior to the international filing date but later than
the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report

28 January 2019 15 February 2019

Name and mailing address of the [SA/CN Authorized officer
National Intellectual Property Administration, PRC
6, Xitucheng Rd., Jimen Bridge, Haidian District, Beijing YU.Chen
100088 ’
China

Facsimile No. (86-10)62019451 Telephone No. 62411716

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/IB2018/058619

Patent document Publication date

Patent family member(s) Publication date

cited in search report (day/month/year) (day/month/year)
CN 102163141 A 24 August 2011 CN 102163141 B 06 November 2013
uUsS 9218862 Bl 22 December 2015 None

Form PCT/ISA/210 (patent family annex) (January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - claims
	Page 58 - claims
	Page 59 - claims
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - wo-search-report
	Page 105 - wo-search-report

